National Library of Energy BETA

Sample records for ventilation rate standards

  1. Developing evidence-based prescriptive ventilation rate standards for commercial buildings in California: a proposed framework

    SciTech Connect (OSTI)

    Mendell, Mark J.; Fisk, William J.

    2014-02-01

    Background - The goal of this project, with a focus on commercial buildings in California, was to develop a new framework for evidence-based minimum ventilation rate (MVR) standards that protect occupants in buildings while also considering energy use and cost. This was motivated by research findings suggesting that current prescriptive MVRs in commercial buildings do not provide occupants with fully safe and satisfactory indoor environments. Methods - The project began with a broad review in several areas ? the diverse strategies now used for standards or guidelines for MVRs or for environmental contaminant exposures, current knowledge about adverse human effects associated with VRs, and current knowledge about contaminants in commercial buildings, including their their presence, their adverse human effects, and their relationships with VRs. Based on a synthesis of the reviewed information, new principles and approaches are proposed for setting evidence-based VRs standards for commercial buildings, considering a range of human effects including health, performance, and acceptability of air. Results ? A review and evaluation is first presented of current approaches to setting prescriptive building ventilation standards and setting acceptable limits for human contaminant exposures in outdoor air and occupational settings. Recent research on approaches to setting acceptable levels of environmental exposures in evidence-based MVR standards is also described. From a synthesis and critique of these materials, a set of principles for setting MVRs is presented, along with an example approach based on these principles. The approach combines two sequential strategies. In a first step, an acceptable threshold is set for each adverse outcome that has a demonstrated relationship to VRs, as an increase from a (low) outcome level at a high reference ventilation rate (RVR, the VR needed to attain the best achievable levels of the adverse outcome); MVRs required to meet each specific outcome threshold are estimated; and the highest of these MVRs, which would then meet all outcome thresholds, is selected as the target MVR. In a second step, implemented only if the target MVR from step 1 is judged impractically high, costs and benefits are estimated and this information is used in a risk management process. Four human outcomes with substantial quantitative evidence of relationships to VRs are identified for initial consideration in setting MVR standards. These are: building-related symptoms (sometimes called sick building syndrome symptoms), poor perceived indoor air quality, and diminished work performance, all with data relating them directly to VRs; and cancer and non-cancer chronic outcomes, related indirectly to VRs through specific VR-influenced indoor contaminants. In an application of step 1 for offices using a set of example outcome thresholds, a target MVR of 9 L/s (19 cfm) per person was needed. Because this target MVR was close to MVRs in current standards, use of a cost/benefit process seemed unnecessary. Selection of more stringent thresholds for one or more human outcomes, however, could raise the target MVR to 14 L/s (30 cfm) per person or higher, triggering the step 2 risk management process. Consideration of outdoor air pollutant effects would add further complexity to the framework. For balancing the objective and subjective factors involved in setting MVRs in a cost-benefit process, it is suggested that a diverse group of stakeholders make the determination after assembling as much quantitative data as possible.

  2. Infiltration in ASHRAE's Residential Ventilation Standards (Journal...

    Office of Scientific and Technical Information (OSTI)

    Ventilation Standards The purpose of ventilation is to dilute or remove indoor contaminants that an occupant could be exposed to. It can be provided by mechanical or natural...

  3. Residential ventilation standards scoping study

    SciTech Connect (OSTI)

    McKone, Thomas E.; Sherman, Max H.

    2003-10-01

    The goals of this scoping study are to identify research needed to develop improved ventilation standards for California's Title 24 Building Energy Efficiency Standards. The 2008 Title 24 Standards are the primary target for the outcome of this research, but this scoping study is not limited to that timeframe. We prepared this scoping study to provide the California Energy Commission with broad and flexible options for developing a research plan to advance the standards. This document presents the findings of a scoping study commissioned by the Public Interest Energy Research (PIER) program of the California Energy Commission to determine what research is necessary to develop new residential ventilation requirements for California. This study is one of three companion efforts needed to complete the job of determining the ventilation needs of California residences, determining the bases for setting residential ventilation requirements, and determining appropriate ventilation technologies to meet these needs and requirements in an energy efficient manner. Rather than providing research results, this scoping study identifies important research questions along with the level of effort necessary to address these questions and the costs, risks, and benefits of pursuing alternative research questions. In approaching these questions and corresponding levels of effort, feasibility and timing were important considerations. The Commission has specified Summer 2005 as the latest date for completing this research in time to update the 2008 version of California's Energy Code (Title 24).

  4. Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems

    SciTech Connect (OSTI)

    Sherman, Max H.; Walker, Iain S.

    2011-04-01

    Existing ventilation standards, including American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE) Standard 62.2, specify continuous operation of a defined mechanical ventilation system to provide minimum ventilation, with time-based intermittent operation as an option. This requirement ignores several factors and concerns including: other equipment such as household exhaust fans that might incidentally provide ventilation, negative impacts of ventilation when outdoor pollutant levels are high, the importance of minimizing energy use particularly during times of peak electricity demand, and how the energy used to condition air as part of ventilation system operation changes with outdoor conditions. Dynamic control of ventilation systems can provide ventilation equivalent to or better than what is required by standards while minimizing energy costs and can also add value by shifting load during peak times and reducing intake of outdoor air contaminants. This article describes the logic that enables dynamic control of whole-house ventilation systems to meet the intent of ventilation standards and demonstrates the dynamic ventilation system control concept through simulations and field tests of the Residential Integrated Ventilation-Energy Controller (RIVEC).

  5. Final Report Balancing energy conservation and occupant needs in ventilation rate standards for Big Box stores in California. Predicted indoor air quality and energy consumption using a matrix of ventilation scenarios

    SciTech Connect (OSTI)

    Apte, Michael G.; Mendell, Mark J.; Sohn, Michael D.; Dutton, Spencer M.; Berkeley, Pam M.; Spears, Michael

    2011-02-01

    Through mass-balance modeling of various ventilation scenarios that might satisfy the ASHRAE 62.1 Indoor Air Quality (IAQ) Procedure, we estimate indoor concentrations of contaminants of concern (COCs) in California big box stores, compare estimates to available thresholds, and for selected scenarios estimate differences in energy consumption. Findings are intended to inform decisions on adding performance-based approaches to ventilation rate (VR) standards for commercial buildings. Using multi-zone mass-balance models and available contaminant source rates, we estimated concentrations of 34 COCs for multiple ventilation scenarios: VRmin (0.04 cfm/ft2 ), VRmax (0.24 cfm/ft2 ), and VRmid (0.14 cfm/ft2 ). We compared COC concentrations with available health, olfactory, and irritant thresholds. We estimated building energy consumption at different VRs using a previously developed EnergyPlus model. VRmax did control all contaminants adequately, but VRmin did not, and VRmid did so only marginally. Air cleaning and local ventilation near strong sources both showed promise. Higher VRs increased indoor concentrations of outdoor air pollutants. Lowering VRs in big box stores in California from VRmax to VRmid would reduce total energy use by an estimated 6.6% and energy costs by 2.5%. Reducing the required VRs in Californias big box stores could reduce energy use and costs, but poses challenges for health and comfort of occupants. Source removal, air cleaning, and local ventilation may be needed at reduced VRs, and even at current recommended VRs. Also, alternative ventilation strategies taking climate and season into account in ventilation schedules may provide greater energy cost savings than constant ventilation rates, while improving IAQ.

  6. Infiltration in ASHRAE's Residential Ventilation Standards (Journal...

    Office of Scientific and Technical Information (OSTI)

    critically important to correctly evaluate the contribution infiltration makes to both energy consumption and equivalent ventilation. ASHRAE Standard 62.2 specifies how much...

  7. Balancing energy conservation and occupant needs in ventilation rate standards for Big Box stores and other commercial buildings in California. Issues related to the ASHRAE 62.1 Indoor Air Quality Procedure

    SciTech Connect (OSTI)

    Mendell, Mark J.; Apte, Mike G.

    2010-10-31

    This report considers the question of whether the California Energy Commission should incorporate the ASHRAE 62.1 ventilation standard into the Title 24 ventilation rate (VR) standards, thus allowing buildings to follow the Indoor Air Quality Procedure. This, in contrast to the current prescriptive standard, allows the option of using ventilation rate as one of several strategies, which might include source reduction and air cleaning, to meet specified targets of indoor air concentrations and occupant acceptability. The research findings reviewed in this report suggest that a revised approach to a ventilation standard for commercial buildings is necessary, because the current prescriptive ASHRAE 62.1 Ventilation Rate Procedure (VRP) apparently does not provide occupants with either sufficiently acceptable or sufficiently healthprotective air quality. One possible solution would be a dramatic increase in the minimum ventilation rates (VRs) prescribed by a VRP. This solution, however, is not feasible for at least three reasons: the current need to reduce energy use rather than increase it further, the problem of polluted outdoor air in many cities, and the apparent limited ability of increasing VRs to reduce all indoor airborne contaminants of concern (per Hodgson (2003)). Any feasible solution is thus likely to include methods of pollutant reduction other than increased outdoor air ventilation; e.g., source reduction or air cleaning. The alternative 62.1 Indoor Air Quality Procedure (IAQP) offers multiple possible benefits in this direction over the VRP, but seems too limited by insufficient specifications and inadequate available data to provide adequate protection for occupants. Ventilation system designers rarely choose to use it, finding it too arbitrary and requiring use of much non-engineering judgment and information that is not readily available. This report suggests strategies to revise the current ASHRAE IAQP to reduce its current limitations. These strategies, however, would make it more complex and more prescriptive, and would require substantial research. One practical intermediate strategy to save energy would be an alternate VRP, allowing VRs lower than currently prescribed, as long as indoor VOC concentrations were no higher than with VRs prescribed under the current VRP. This kind of hybrid, with source reduction and use of air cleaning optional but permitted, could eventually evolve, as data, materials, and air-cleaning technology allowed gradual lowering of allowable concentrations, into a fully developed IAQP. Ultimately, it seems that VR standards must evolve to resemble the IAQP, especially in California, where buildings must achieve zero net energy use within 20 years.

  8. Estimated costs of ventilation systems complying with the HUD ventilation standard for manufactured homes

    SciTech Connect (OSTI)

    Miller, J.D.; Conner, C.C.

    1993-11-01

    At the request of the US Department of Housing and Urban Development (HUD), the Pacific Northwest Laboratory estimated the material, labor, and operating costs for ventilation equipment needed for compliance with HUD`s proposed revision to the ventilation standard for manufactured housing. This was intended to bound the financial impacts of the ventilation standard revision. Researchers evaluated five possible prototype ventilation systems that met the proposed ventilation requirements. Of those five, two systems were determined to be the most likely used by housing manufacturers: System 1 combines a fresh air duct with the existing central forced-air system to supply and circulate fresh air to conditioned spaces. System 2 uses a separate exhaust fan to remove air from the manufactured home. The estimated material and labor costs for these two systems range from $200 to $300 per home. Annual operating costs for the two ventilation systems were estimated for 20 US cities. The estimated operating costs for System 1 ranged from $55/year in Las Vegas, Nevada, to $83/year in Bismarck, North Dakota. Operating costs for System 2 ranged from a low of $35/year in Las Vegas to $63/year in Bismarck. Thus, HUD`s proposed increase in ventilation requirements will add less than $100/year to the energy cost of a manufactured home.

  9. Waste tank ventilation rates measured with a tracer gas method

    SciTech Connect (OSTI)

    Huckaby, J.L.; Evans, J.C.; Sklarew, D.S.; Mitroshkov, A.V.

    1998-08-01

    Passive ventilation with the atmosphere is used to prevent accumulation of waste gases and vapors in the headspaces of 132 of the 177 high-level radioactive waste Tanks at the Hanford Site in Southeastern Washington State. Measurements of the passive ventilation rates are needed for the resolution of two key safety issues associated with the rates of flammable gas production and accumulation and the rates at which organic salt-nitrate salt mixtures dry out. Direct measurement of passive ventilation rates using mass flow meters is not feasible because ventilation occurs va multiple pathways to the atmosphere (i.e., via the filtered breather riser and unsealed tank risers and pits), as well as via underground connections to other tanks, junction boxes, and inactive ventilation systems. The tracer gas method discussed in this report provides a direct measurement of the rate at which gases are removed by ventilation and an indirect measurement of the ventilation rate. The tracer gas behaves as a surrogate of the waste-generated gases, but it is only diminished via ventilation, whereas the waste gases are continuously released by the waste and may be subject to depletion mechanisms other than ventilation. The fiscal year 1998 tracer studies provide new evidence that significant exchange of air occurs between tanks via the underground cascade pipes. Most of the single-shell waste tanks are connected via 7.6-cm diameter cascade pipes to one or two adjacent tanks. Tracer gas studies of the Tank U-102/U-103 system indicated that the ventilation occurring via the cascade line could be a significant fraction of the total ventilation. In this two-tank cascade, air evidently flowed from Tank U-103 to Tank U-102 for a time and then was observed to flow from Tank U-102 to Tank U-103.

  10. Class 2 Permit Modification Request Active Room Ventilation Flow Rate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2/23/16 Item 2 Class 2 Permit Modification Request Active Room Ventilation Flow Rate Waste Isolation Pilot Plant Carlsbad, New Mexico WIPP Permit Number - NM4890139088-TSDF February 2016 i DRAFT 2/23/16 Table of Contents Transmittal Letter Table of Contents ......................................................................................................................... i Acronyms and Abbreviations

  11. ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality in Low-

    Energy Savers [EERE]

    Rise Residential Buildings - Building America Top Innovation | Department of Energy ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality in Low- Rise Residential Buildings - Building America Top Innovation ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality in Low- Rise Residential Buildings - Building America Top Innovation "Build tight, ventilate right" is a universal mantra of high performance home designers and scientists. Tight construction is

  12. Recommended Changes to Specifications for Demand Controlled Ventilation in California's Title 24 Building Energy Efficiency Standards

    SciTech Connect (OSTI)

    Fisk, William J.; Sullivan, Douglas P.; Faulkner, David

    2010-04-08

    In demand-controlled ventilation (DCV), rates of outdoor air ventilation are automatically modulated as occupant density varies. The objective is to keep ventilation rates at or above design specifications and code requirements and also to save energy by avoiding excessive ventilation rates. DCV is most often used in spaces with highly variable and sometime dense occupancy. In almost all cases, carbon dioxide (CO{sub 2}) sensors installed in buildings provide the signal to the ventilation rate control system. People produce and exhale CO{sub 2} as a consequence of their normal metabolic processes; thus, the concentrations of CO{sub 2} inside occupied buildings are higher than the concentrations of CO{sub 2} in the outdoor air. The magnitude of the indoor-outdoor CO{sub 2} concentration difference decreases as the building's ventilation rate per person increases. The difference between the indoor and outdoor CO{sub 2} concentration is also a proxy for the indoor concentrations of other occupant-generated bioeffluents, such as body odors. Reviews of the research literature on DCV indicate a significant potential for energy savings, particularly in buildings or spaces with a high and variable occupancy. Based on modeling, cooling energy savings from applications of DCV are as high as 20%. With support from the California Energy Commission and the U.S. Department of Energy, the Lawrence Berkeley National Laboratory has performed research on the performance of CO{sub 2} sensing technologies and optical people counters for DCV. In addition, modeling was performed to evaluate the potential energy savings and cost effectiveness of using DCV in general office spaces within the range of California climates. The above-described research has implications for the specifications pertaining to DCV in section 121 of the California Title 24 Standard. Consequently, this document suggests possible changes in these specifications based on the research findings. The suggested changes in specifications were developed in consultation with staff from the Iowa Energy Center who evaluated the accuracy of new CO{sub 2} sensors in laboratory-based research. In addition, staff of the California Energy Commission, and their consultants in the area of DCV, provided input for the suggested changes in specifications.

  13. Equivalence in Ventilation and Indoor Air Quality

    SciTech Connect (OSTI)

    Sherman, Max; Walker, Iain; Logue, Jennifer

    2011-08-01

    We ventilate buildings to provide acceptable indoor air quality (IAQ). Ventilation standards (such as American Society of Heating, Refrigerating, and Air-Conditioning Enginners [ASHRAE] Standard 62) specify minimum ventilation rates without taking into account the impact of those rates on IAQ. Innovative ventilation management is often a desirable element of reducing energy consumption or improving IAQ or comfort. Variable ventilation is one innovative strategy. To use variable ventilation in a way that meets standards, it is necessary to have a method for determining equivalence in terms of either ventilation or indoor air quality. This study develops methods to calculate either equivalent ventilation or equivalent IAQ. We demonstrate that equivalent ventilation can be used as the basis for dynamic ventilation control, reducing peak load and infiltration of outdoor contaminants. We also show that equivalent IAQ could allow some contaminants to exceed current standards if other contaminants are more stringently controlled.

  14. A Prospective Study of Ventilation Rates and Illness Absence in California Office Buildings

    SciTech Connect (OSTI)

    Eliseeva, Ekaterina A.; Spears, Michael; Chan, Wanyu R.; Cohn, Sebastian; Sullivan, Douglas P.; Fisk, William J.

    2014-10-07

    Background – This study investigated the associations of ventilation rates (VRs), estimated from indoor CO2 concentrations, in offices with the amount of respiratory infections, illness absences, and building-related health symptoms in occupants. Methods – Office buildings were recruited from three California climate zones. In one or more study spaces within each building, real-time logging sensors measured carbon dioxide, temperature, and relative humidity for one year. Ventilation rates were estimated using daily peak CO2 levels, and also using an alternative metric. Data on occupants and health outcomes were collected through web-based surveys every three months. Multivariate models were used to assess relationships between metrics of ventilation rate or CO2 and occupant outcomes. For all outcomes, negative associations were hypothesized with VR metrics, and positive associations with CO2 metrics. Results – Difficulty recruiting buildings and low survey response limited sample size and study power. In 16 studied spaces within 9 office buildings, VRs were uniformly high over the year, from twice to over nine times the California office VR standard (7 L/s or 15 cfm per person). VR and CO2 metrics had no statistically significant relationships with occupant outcomes, except for a small significantly positive association of the alternative VR metric with respiratory illness-related absence, contrary to hypotheses. Conclusions– The very high time-averaged VRs in the California office buildings studied presumably resulted from “economizer cycles” bringing in large volumes of outdoor air; however, in almost all buildings even the estimated minimum VRs supplied (without the economizer) substantially exceeded the minimum required VR. These high VRs may explain the absence of hypothesized relationships with occupant outcomes. Among uniformly high VRs, little variation in contaminant concentration and occupant effects would be expected. These findings may provide initial evidence for an upper bound of the range of VRs within which increased VRs provide benefits in reducing illness absence.

  15. Economizer system cost effectiveness: Accounting for the influence of ventilation rate on sick leave

    SciTech Connect (OSTI)

    Fisk, William J.; Seppanen, Olli; Faulkner, David; Huang, Joe

    2003-06-01

    This study estimated the health, energy, and economic benefits of an economizer ventilation control system that increases outside air supply during mild weather to save energy. A model of the influence of ventilation rate on airborne transmission of respiratory illnesses was used to extend the limited data relating ventilation rate with illness and sick leave. An energy simulation model calculated ventilation rates and energy use versus time for an office building in Washington, DC with fixed minimum outdoor air supply rates, with and without an economizer. Sick leave rates were estimated with the disease transmission model. In the modeled 72-person office building, our analyses indicate that the economizer reduces energy costs by approximately $2000 and, in addition, reduces sick leave. The financial benefit of the decrease in sick leave is estimated to be between $6,000 and $16,000. This modelling suggests that economizers are much more cost effective than currently recognized.

  16. Healthy Zero Energy Buildings (HZEB) Program - Cross-Sectional Study of Contaminant Levels, Source, Strengths, and Ventilation Rates in Retail Stores

    SciTech Connect (OSTI)

    Chan, Wanyu R.; Sidheswaran, Meera; Cohn, Sebastian; Sullivan, Douglas P.; Fisk, William

    2014-02-01

    This field study measured ventilation rates and indoor air quality parameters in 21 visits to retail stores in California. The data was collected to guide the development of new, science-based commercial building ventilation rate standards that balance the dual objectives of increasing energy efficiency and maintaining acceptable indoor air quality. Data collection occurred between September 2011 and March 2013. Three types of stores participated in this study: grocery stores, furniture/hardware stores, and apparel stores. Ventilation rates and indoor air contaminant concentrations were measured on a weekday, typically between 9 am and 6 pm. Ventilation rates measured using a tracer gas decay method exceeded the minimum requirement of California’s Title 24 Standard in all but one store. Even though there was adequate ventilation according to Title 24, concentrations of formaldehyde, acetaldehyde, and acrolein exceeded the most stringent chronic health guidelines. Other indoor air contaminants measured included carbon dioxide (CO{sub 2}), carbon monoxide (CO), ozone (O{sub 3}), and particulate matter (PM). Concentrations of CO{sub 2} were kept low by adequate ventilation, and were assumed low also because the sampling occurred on a weekday when retail stores were less busy. CO concentrations were also low. The indoor-outdoor ratios of O{sub 3} showed that the first-order loss rate may vary by store trade types and also by ventilation mode (mechanical versus natural). Analysis of fine and ultrafine PM measurements showed that a substantial portion of the particle mass in grocery stores with cooking-related emissions was in particles less than 0.3 μm. Stores without cooking as an indoor source had PM size distributions that were more similar indoors and outdoors. The whole-building emission rates of volatile organic compounds (VOCs) and PM were estimated from the measured ventilation rates and indoor and outdoor contaminant concentrations. Mass balance models were then used to determine the ventilation rates, filtration strategies, or source reductions needed to maintain indoor contaminant concentrations below reference levels. Several scenarios of potential concern were considered: (i) formaldehyde levels in furniture/hardware stores, (ii) contaminants associated with cooking (e.g., PM, acrolein, and acetaldehyde) in grocery stores, and (iii) outdoor contaminants (e.g., PM and O{sub 3}) impacting stores that use natural ventilation. Estimated formaldehyde emission rates suggest that retail stores would need to ventilate at levels far exceeding the current Title 24 requirement to lower indoor concentrations below California’s stringent formaldehyde reference level. Given the high costs of providing ventilation but only modest chronic health benefit is expected, effective source control is an attractive alternative, as demonstrated by some retail stores in this study. Predictions showed that grocery stores need MERV 13 air filters, instead of MERV 8 filters that are more commonly used, to maintain indoor PM at levels that meet the chronic health standards for PM. Exposure to acrolein is a potential health concern in grocery stores, and should be addressed by increasing the use of kitchen range hoods or improving their contaminant removal efficiency. In stores that rely on natural ventilation, indoor PM can be a health concern if the stores are located in areas with high outdoor PM. This concern may be addressed by switching to mechanical ventilation when the outdoor air quality is poor, while continuing natural ventilation when outdoor air quality is good.

  17. DEMAND CONTROLLED VENTILATION AND CLASSROOM VENTILATION

    SciTech Connect (OSTI)

    Fisk, William J.; Mendell, Mark J.; Davies, Molly; Eliseeva, Ekaterina; Faulkner, David; Hong, Tienzen; Sullivan, Douglas P.

    2014-01-06

    This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling. Major findings included: ? The single-location carbon dioxide sensors widely used for demand controlled ventilation frequently have large errors and will fail to effectively control ventilation rates (VRs).? Multi-location carbon dioxide measurement systems with more expensive sensors connected to multi-location sampling systems may measure carbon dioxide more accurately.? Currently-available optical people counting systems work well much of the time but have large counting errors in some situations. ? In meeting rooms, measurements of carbon dioxide at return-air grilles appear to be a better choice than wall-mounted sensors.? In California, demand controlled ventilation in general office spaces is projected to save significant energy and be cost effective only if typical VRs without demand controlled ventilation are very high relative to VRs in codes. Based on the research, several recommendations were developed for demand controlled ventilation specifications in the California Title 24 Building Energy Efficiency Standards.The research on classroom ventilation collected data over two years on California elementary school classrooms to investigate associations between VRs and student illness absence (IA). Major findings included: ? Median classroom VRs in all studied climate zones were below the California guideline, and 40percent lower in portable than permanent buildings.? Overall, one additional L/s per person of VR was associated with 1.6percent less IA. ? Increasing average VRs in California K-12 classrooms from the current average to the required level is estimated to decrease IA by 3.4percent, increasing State attendance-based funding to school districts by $33M, with $6.2 M in increased energy costs. Further VR increases would provide additional benefits.? Confirming these findings in intervention studies is recommended. ? Energy costs of heating/cooling unoccupied classrooms statewide are modest, but a large portion occurs in relatively few classrooms.

  18. Energy and IAQ Implications of Alternative Minimum Ventilation Rates in California Retail and School Buildings

    SciTech Connect (OSTI)

    Dutton, Spencer M.; Fisk, William J.

    2015-01-01

    For a stand-alone retail building, a primary school, and a secondary school in each of the 16 California climate zones, the EnergyPlus building energy simulation model was used to estimate how minimum mechanical ventilation rates (VRs) affect energy use and indoor air concentrations of an indoor-generated contaminant. The modeling indicates large changes in heating energy use, but only moderate changes in total building energy use, as minimum VRs in the retail building are changed. For example, predicted state-wide heating energy consumption in the retail building decreases by more than 50% and total building energy consumption decreases by approximately 10% as the minimum VR decreases from the Title 24 requirement to no mechanical ventilation. The primary and secondary schools have notably higher internal heat gains than in the retail building models, resulting in significantly reduced demand for heating. The school heating energy use was correspondingly less sensitive to changes in the minimum VR. The modeling indicates that minimum VRs influence HVAC energy and total energy use in schools by only a few percent. For both the retail building and the school buildings, minimum VRs substantially affected the predicted annual-average indoor concentrations of an indoor generated contaminant, with larger effects in schools. The shape of the curves relating contaminant concentrations with VRs illustrate the importance of avoiding particularly low VRs.

  19. Should Title 24 Ventilation Requirements Be Amended to include an Indoor

    Office of Scientific and Technical Information (OSTI)

    Air Quality Procedure? (Technical Report) | SciTech Connect Should Title 24 Ventilation Requirements Be Amended to include an Indoor Air Quality Procedure? Citation Details In-Document Search Title: Should Title 24 Ventilation Requirements Be Amended to include an Indoor Air Quality Procedure? Minimum outdoor air ventilation rates (VRs) for buildings are specified in standards, including California?s Title 24 standards. The ASHRAE ventilation standard includes two options for

  20. Changing ventilation rates in U.S. offices: Implications for health, work performance, energy, and associated economics

    SciTech Connect (OSTI)

    Fisk, William; Black, Douglas; Brunner, Gregory

    2011-07-01

    This paper provides quantitative estimates of benefits and costs of providing different amounts of outdoor air ventilation in U.S. offices. For four scenarios that modify ventilation rates, we estimated changes in sick building syndrome (SBS) symptoms, work performance, short-term absence, and building energy consumption. The estimated annual economic benefits were $13 billion from increasing minimum ventilation rates (VRs) from 8 to 10 L/s per person, $38 billion from increasing minimum VRs from 8 to 15 L/s per person, and $33 billion from increasing VRs by adding outdoor air economizers for the 50% of the office floor area that currently lacks economizers. The estimated $0.04 billion in annual energy-related benefits of decreasing minimum VRs from 8 to 6.5 L/s per person are very small compared to the projected annual costs of $12 billion. Benefits of increasing minimum VRs far exceeded energy costs while adding economizers yielded health, performance, and absence benefits with energy savings.

  1. ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This 2014 Top Innovation describes Building America research and support that was instrumental in developing and gaining adoption of this vitally important standard. The U.S. ...

  2. Advanced Controls for Residential Whole-House Ventilation Systems

    SciTech Connect (OSTI)

    Turner, William; Walker, Iain; Sherman, Max

    2014-08-01

    Whole-house ventilation systems are becoming commonplace in new construction, remodeling/renovation, and weatherization projects, driven by combinations of specific requirements for indoor air quality (IAQ), health and compliance with standards, such as ASHRAE 62.2. Ventilation systems incur an energy penalty on the home via fan power used to drive the airflow, and the additional space-conditioning load associated with heating or cooling the ventilation air. Finding a balance between IAQ and energy use is important if homes are to be adequately ventilated while not increasing the energy burden. This study used computer simulations to examine RIVEC the Residential Integrated Ventilation Controller - a prototype ventilation controller that aims to deliver whole-house ventilation rates that comply with ventilation standards, for the minimum use of energy. Four different whole-house ventilation systems were simulated, both with and without RIVEC, so that the energy and IAQ results could be compared. Simulations were conducted for 13 US climate zones, three house designs, and three envelope leakage values. The results showed that the RIVEC controller could typically return ventilation energy savings greater than 40percent without compromising long-term chronic or short-term acute exposures to relevant indoor contaminants. Critical and average peak power loads were also reduced as a consequence of using RIVEC.

  3. Building America Top Innovations 2014 Profile: ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings

    SciTech Connect (OSTI)

    none,

    2014-11-01

    This 2014 Top Innovations profile describes Building America research and support in developing and gaining adoption of ASHRAE 62.2, a residential ventilation standard that is critical to transforming the U.S. housing industry to high-performance homes.

  4. HOSPITAL VENTILATION STANDARDS AND ENERGY CONSERVATION: A REVIEW OF GOVERNMENTAL AND PRIVATE AGENCY ENERGY CONSERVATION INITIATIVES

    SciTech Connect (OSTI)

    Banks, Robert S.; Rainer, David

    1980-03-01

    This report presents the results of a recent research project originally concerned with review of governmental initiatives for changes to hospital design and operation standards at both the federal and state levels. However. it quickly became apparent that concern with energy conservation was not impacting hospital environmental standards, especially at the state level, irrespective of the energy implications. Consequently, the study was redirected to consider all energy conservation initiatives directed toward design and operating practices unique to the hospital environment. The scope was limited to agency programs (i.e., not undertaken at the initiative of individual hospitals), applicable to non-federal public and private hospitals.

  5. Optimization of Occupancy Based Demand Controlled Ventilation in Residences

    SciTech Connect (OSTI)

    Mortensen, Dorthe K.; Walker, Iain S.; Sherman, Max H.

    2011-05-01

    Although it has been used for many years in commercial buildings, the application of demand controlled ventilation in residences is limited. In this study we used occupant exposure to pollutants integrated over time (referred to as 'dose') as the metric to evaluate the effectiveness and air quality implications of demand controlled ventilation in residences. We looked at air quality for two situations. The first is that typically used in ventilation standards: the exposure over a long term. The second is to look at peak exposures that are associated with time variations in ventilation rates and pollutant generation. The pollutant generation had two components: a background rate associated with the building materials and furnishings and a second component related to occupants. The demand controlled ventilation system operated at a low airflow rate when the residence was unoccupied and at a high airflow rate when occupied. We used analytical solutions to the continuity equation to determine the ventilation effectiveness and the long-term chronic dose and peak acute exposure for a representative range of occupancy periods, pollutant generation rates and airflow rates. The results of the study showed that we can optimize the demand controlled airflow rates to reduce the quantity of air used for ventilation without introducing problematic acute conditions.

  6. Why We Ventilate

    SciTech Connect (OSTI)

    Logue, Jennifer M.; Sherman, Max H.; Price, Phil N.; Singer, Brett C.

    2011-09-01

    It is widely accepted that ventilation is critical for providing good indoor air quality (IAQ) in homes. However, the definition of"good" IAQ, and the most effective, energy efficient methods for delivering it are still matters of research and debate. This paper presents the results of work done at the Lawrence Berkeley National Lab to identify the air pollutants that drive the need for ventilation as part of a larger effort to develop a health-based ventilation standard. First, we present results of a hazard analysis that identified the pollutants that most commonly reach concentrations in homes that exceed health-based standards or guidelines for chronic or acute exposures. Second, we present results of an impact assessment that identified the air pollutants that cause the most harm to the U.S. population from chronic inhalation in residences. Lastly, we describe the implications of our findings for developing effective ventilation standards.

  7. Confinement Ventilation and Process Gas Treatment Functional...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    . NOT MEASUREMENT SENSITIVE DOE-STD-1168-2013 October 2013 DOE STANDARD CONFINEMENT VENTILATION AND PROCESS GAS TREATMENT FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear ...

  8. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    SciTech Connect (OSTI)

    Rudd, A.; Bergey, D.

    2014-02-01

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. It was inferior because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  9. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    SciTech Connect (OSTI)

    Rudd, Armin; Bergey, Daniel

    2014-02-01

    In this project, Building America research team Building Science Corporation tested the effectiveness of ventilation systems at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. This was because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four system factor categories: balance, distribution, outside air source, and recirculation filtration. Recommended system factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  10. Building America Top Innovations 2014 Profile: ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE goals call for zero energy ready homes that are 50% more efficient than the 2009 IECC and whole-house retrofits that reduce energy use 25% in existing homes by 2025. By specifying minimum ventilation rates, ASHRAE 62.2 is a critical enabling innovation that will contribute to DOE's long-term goal of saving the nation $2.2 trillion in energy-related costs through a 50% reduction in building energy consumption. BUILDING AMERICA TOP INNOVATIONS 2014 PROFILE Building America research and support

  11. Ventilation Model

    SciTech Connect (OSTI)

    V. Chipman

    2002-10-05

    The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their post-closure analyses. The Ventilation Model report was initially developed to analyze the effects of preclosure continuous ventilation in the Engineered Barrier System (EBS) emplacement drifts, and to provide heat removal data to support EBS design. Revision 00 of the Ventilation Model included documentation of the modeling results from the ANSYS-based heat transfer model. The purposes of Revision 01 of the Ventilation Model are: (1) To validate the conceptual model for preclosure ventilation of emplacement drifts and verify its numerical application in accordance with new procedural requirements as outlined in AP-SIII-10Q, Models (Section 7.0). (2) To satisfy technical issues posed in KTI agreement RDTME 3.14 (Reamer and Williams 2001a). Specifically to demonstrate, with respect to the ANSYS ventilation model, the adequacy of the discretization (Section 6.2.3.1), and the downstream applicability of the model results (i.e. wall heat fractions) to initialize post-closure thermal models (Section 6.6). (3) To satisfy the remainder of KTI agreement TEF 2.07 (Reamer and Williams 2001b). Specifically to provide the results of post-test ANSYS modeling of the Atlas Facility forced convection tests (Section 7.1.2). This portion of the model report also serves as a validation exercise per AP-SIII.10Q, Models, for the ANSYS ventilation model. (4) To further satisfy KTI agreements RDTME 3.01 and 3.14 (Reamer and Williams 2001a) by providing the source documentation referred to in the KTI Letter Report, ''Effect of Forced Ventilation on Thermal-Hydrologic Conditions in the Engineered Barrier System and Near Field Environment'' (Williams 2002). Specifically to provide the results of the MULTIFLUX model which simulates the coupled processes of heat and mass transfer in and around waste emplacement drifts during periods of forced ventilation. This portion of the model report is presented as an Alternative Conceptual Model with a numerical application, and also provides corroborative results used for model validation purposes (Section 6.3 and 6.4).

  12. Energy and air quality implications of passive stack ventilation in residential buildings

    SciTech Connect (OSTI)

    Mortensen, Dorthe Kragsig; Walker, Iain S.; Sherman, Max

    2011-01-01

    Ventilation requires energy to transport and condition the incoming air. The energy consumption for ventilation in residential buildings depends on the ventilation rate required to maintain an acceptable indoor air quality. Historically, U.S. residential buildings relied on natural infiltration to provide sufficient ventilation, but as homes get tighter, designed ventilation systems are more frequently required particularly for new energy efficient homes and retrofitted homes. ASHRAE Standard 62.2 is used to specify the minimum ventilation rate required in residential buildings and compliance is normally achieved with fully mechanical whole-house systems; however, alternative methods may be used to provide the required ventilation when their air quality equivalency has been proven. One appealing method is the use of passive stack ventilation systems. They have been used for centuries to ventilate buildings and are often used in ventilation regulations in other countries. Passive stacks are appealing because they require no fans or electrical supply (which could lead to lower cost) and do not require maintenance (thus being more robust and reliable). The downside to passive stacks is that there is little control of ventilation air flow rates because they rely on stack and wind effects that depend on local time-varying weather. In this study we looked at how passive stacks might be used in different California climates and investigated control methods that can be used to optimize indoor air quality and energy use. The results showed that passive stacks can be used to provide acceptable indoor air quality per ASHRAE 62.2 with the potential to save energy provided that they are sized appropriately and flow controllers are used to limit over-ventilation.

  13. Building America Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts, Tyler, Texas

    SciTech Connect (OSTI)

    2015-08-01

    ?Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy.

  14. Ventilation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ventilation Ventilation Controlled ventilation keeps energy-efficient homes healthy and comfortable. <a href="/node/1265726">Learn more about ventilation</a>. Controlled ventilation keeps energy-efficient homes healthy and comfortable. Learn more about ventilation. When creating an energy-efficient, airtight home through air sealing, it's very important to consider ventilation. Unless properly ventilated, an airtight home can seal in indoor air pollutants. Ventilation also

  15. Models for prediction of temperature difference and ventilation effectiveness with displacement ventilation

    SciTech Connect (OSTI)

    Yuan, X.; Chen, Q.; Glicksman, L.R.

    1999-07-01

    Displacement ventilation may provide better indoor air quality than mixing ventilation. Proper design of displacement ventilation requires information concerning the air temperature difference between the head and foot level of a sedentary person and the ventilation effectiveness at the breathing level. This paper presents models to predict the air temperature difference and the ventilation effectiveness, based on a database of 56 cases with displacement ventilation. The database was generated by using a validated CFD program and covers four different types of US buildings: small offices, large offices with partitions, classrooms, and industrial workshops under different thermal and flow boundary conditions. Both the maximum cooling load that can be removed by displacement ventilation and the ventilation effectiveness are shown to depend on the heat source type and ventilation rate in a room.

  16. Indoor Air Quality and Ventilation in Residential Deep Energy Retrofits

    SciTech Connect (OSTI)

    Less, Brennan; Walker, Iain

    2014-06-01

    Because airtightening is a significant part of Deep Energy Retrofits (DERs), concerns about ventilation and Indoor Air Quality (IAQ) have emerged. To investigate this, ventilation and IAQ were assessed in 17 non-smoking California Deep Energy Retrofit homes. Inspections and surveys were used to assess household activities and ventilation systems. Pollutant sampling performed in 12 homes included six-day passive samples of nitrogen dioxide (NO2), formaldehyde and air exchange rate (AER); time-resolved data loggers were used to measure particle counts. Half of the homes provided continuous mechanical ventilation. Despite these homes being twice as airtight (3.0 and 7.6 ACH50, respectively), their median AER was indistinguishable from naturally vented homes (0.36 versus 0.37 hr--1). Numerous problems were found with ventilation systems; however, pollutant levels did not reach levels of concern in most homes. Ambient NO2 standards were exceeded in some gas cooking homes that used legacy ranges with standing pilots, and in Passive House-style homes without range hoods exhausted to outside. Cooking exhaust systems were installed and used inconsistently. The majority of homes reported using low-emitting materials, and formaldehyde levels were approximately half those in conventional new CA homes (19.7 versus 36 ?g/m3), with emissions rates nearly 40percent less (12.3 versus 20.6 ?g/m2/hr.). Presence of air filtration systems led to lower indoor particle number concentrations (PN>0.5: 8.80E+06 PN/m3 versus 2.99E+06; PN>2.5: 5.46E+0.5 PN/m3 versus 2.59E+05). The results indicate that DERs can provide adequate ventilation and IAQ, and that DERs should prioritize source control, particle filtration and well-designed local exhaust systems, while still providing adequate continuous ventilation.

  17. Ventilation | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    can improve the effectiveness of natural and whole-house ventilation by removing indoor air pollution andor moisture at its source. Spot ventilation includes the use of...

  18. Using a Ventilation Controller to Optimize Residential Passive Ventilation For Energy and Indoor Air Quality

    SciTech Connect (OSTI)

    Turner, William; Walker, Iain

    2014-08-01

    One way to reduce the energy impact of providing residential ventilation is to use passive and hybrid systems. However, these passive and hybrid (sometimes called mixed-mode) systems must still meet chronic and acute health standards for ventilation. This study uses a computer simulation approach to examine the energy and indoor air quality (IAQ) implications of passive and hybrid ventilation systems, in 16 California climate zones. Both uncontrolled and flow controlled passive stacks are assessed. A new hybrid ventilation system is outlined that uses an intelligent ventilation controller to minimise energy use, while ensuring chronic and acute IAQ standards are met. ASHRAE Standard 62.2-2010 – the United States standard for residential ventilation - is used as the chronic standard, and exposure limits for PM2.5, formaldehyde and NO2 are used as the acute standards.The results show that controlled passive ventilation and hybrid ventilation can be used in homes to provide equivalent IAQ to continuous mechanical ventilation, for less use of energy.

  19. Buoyancy-Driven Ventilation of Hydrogen from Buildings: Laboratory Test and Model Validation

    SciTech Connect (OSTI)

    Barley, C. D.; Gawlik, K.

    2009-05-01

    Passive, buoyancy-driven ventilation is one approach to limiting hydrogen concentration. We explored the relationship between leak rate, ventilation design, and hydrogen concentrations.

  20. Development of a Rating System for a Comparative Accelerated Test Standard

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Rating System for a Comparative Accelerated Test Standard Development of a Rating System for a Comparative Accelerated Test Standard Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado PDF icon pvmrw13_ps2_nrel_kurtz.pdf More Documents & Publications Linkage to Previous International PV Module QA Task Force Workshops: Proposal for Rating System Accelerated Stress Testing, Qualification Testing, HAST, Field Experience QA TG5 UV,

  1. Measured Air Distribution Effectiveness for Residential Mechanical Ventilation Systems

    SciTech Connect (OSTI)

    Sherman, Max; Sherman, Max H.; Walker, Iain S.

    2008-05-01

    The purpose of ventilation is dilute or remove indoor contaminants that an occupant is exposed to. In a multi-zone environment such as a house, there will be different dilution rates and different source strengths in every zone. Most US homes have central HVAC systems, which tend to mix the air thus the indoor conditions between zones. Different types of ventilation systems will provide different amounts of exposure depending on the effectiveness of their air distribution systems and the location of sources and occupants. This paper will report on field measurements using a unique multi-tracer measurement system that has the capacity to measure not only the flow of outdoor air to each zone, but zone-to-zone transport. The paper will derive seven different metrics for the evaluation of air distribution. Measured data from two homes with different levels of natural infiltration will be used to evaluate these metrics for three different ASHRAE Standard 62.2 compliant ventilation systems. Such information can be used to determine the effectiveness of different systems so that appropriate adjustments can be made in residential ventilation standards such as ASHRAE Standard 62.2.

  2. Air Distribution Effectiveness for Residential Mechanical Ventilation: Simulation and Comparison of Normalized Exposures

    SciTech Connect (OSTI)

    Petithuguenin, T.D.P.; Sherman, M.H.

    2009-05-01

    The purpose of ventilation is to dilute indoor contaminants that an occupant is exposed to. Even when providing the same nominal rate of outdoor air, different ventilation systems may distribute air in different ways, affecting occupants' exposure to household contaminants. Exposure ultimately depends on the home being considered, on source disposition and strength, on occupants' behavior, on the ventilation strategy, and on operation of forced air heating and cooling systems. In any multi-zone environment dilution rates and source strengths may be different in every zone and change in time, resulting in exposure being tied to occupancy patterns.This paper will report on simulations that compare ventilation systems by assessing their impact on exposure by examining common house geometries, contaminant generation profiles, and occupancy scenarios. These simulations take into account the unsteady, occupancy-tied aspect of ventilation such as bathroom and kitchen exhaust fans. As most US homes have central HVAC systems, the simulation results will be used to make appropriate recommendations and adjustments for distribution and mixing to residential ventilation standards such as ASHRAE Standard 62.2.This paper will report on work being done to model multizone airflow systems that are unsteady and elaborate the concept of distribution matrix. It will examine several metrics for evaluating the effect of air distribution on exposure to pollutants, based on previous work by Sherman et al. (2006).

  3. Ventilation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weatherize » Ventilation Ventilation This ventilation system in a tight, energy-efficient home ensures good indoor air quality. | Photo courtesy of ©iStockphoto.com/brebca. This ventilation system in a tight, energy-efficient home ensures good indoor air quality. | Photo courtesy of ©iStockphoto.com/brebca. Ventilation is very important in an energy-efficient home. Air sealing techniques can reduce air leakage to the point that contaminants with known health effects such as formaldehyde,

  4. Failure Rates from Certification Testing to UL and IEC Standards for Flat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plate PV Modules | Department of Energy Rates from Certification Testing to UL and IEC Standards for Flat Plate PV Modules Failure Rates from Certification Testing to UL and IEC Standards for Flat Plate PV Modules Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado PDF icon pvmrw13_ps2_cfv_pratt.pdf More Documents & Publications Agenda for the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado Literature Review of the Effects of

  5. VENTILATION MODEL REPORT

    SciTech Connect (OSTI)

    V. Chipman

    2002-10-31

    The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their postclosure analyses.

  6. Smart Ventilation - RIVEC

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Secondary Ventilation Activity Inputs Control Ventilation to Ensure Acceptable Indoor Air Quality Outputs  Required air flows  Weather  DR / price signal  Occupancy / schedule  Outdoor air quality Residential Integrated VEntilation Control System Contact: Dr. Iain S. Walker, iswalker@lbl.gov Lawrence Berkeley National Laboratory Smart Ventilation - RIVEC 2014 Building Technologies Office Peer Review Project Summary Timeline: Start date: 2011 Planned end date: 2016 Key Milestones

  7. Whole-House Ventilation

    Broader source: Energy.gov [DOE]

    Tight, energy-efficient homes require mechanical -- usually whole-house -- ventilation to maintain a healthy, comfortable indoor environment.

  8. READ THIS: Before You Ventilate

    SciTech Connect (OSTI)

    2006-12-08

    This document reviews ventilation strategies for different climate zones and includes schematic drawings and photographs of various ventilation installations.

  9. Ventilation System Basics

    Broader source: Energy.gov [DOE]

    Ventilation is the process of moving air into and out of an interior space by natural or mechanical means. Ventilation is necessary for the health and comfort of occupants of all buildings. Ventilation supplies air for occupants to breathe and removes moisture, odors, and indoor pollutants like carbon dioxide.

  10. Technology Solutions Case Study: Selecting Ventilation Systems for Existing Homes

    SciTech Connect (OSTI)

    2014-12-01

    In multifamily buildings, particularly in the Northeast, exhaust ventilation strategies are the norm as a means of meeting both local exhaust and whole-unit mechanical ventilation rates. The issue of where the "fresh" air is coming from is gaining significance as air-tightness standards for enclosures become more stringent, and the normal leakage paths through the building envelope disappear. Researchers from the Consortium for Advanced Residential Buildings (CARB) found that the majority of high performance, new construction, multifamily housing in the Northeast use one of four general strategies for ventilation: continuous exhaust only with no designated supply or make-up air source, continuous exhaust with ducted make-up air to apartments, continuous exhaust with supply through a make-up air device integral to the unit HVAC, and continuous exhaust with supply through a passive inlet device, such as a trickle vent. Insufficient information is available to designers on how these various systems are best applied. In this project, the CARB team evaluated the four different strategies for providing make-up air to multifamily residential buildings and developed guidelines to help contractors and building owners choose the best ventilation systems.

  11. Evaluation of Ventilation Strategies in New Construction Multifamily Buildings

    SciTech Connect (OSTI)

    Maxwell, S.; Berger, D.; Zuluaga, M.

    2014-07-01

    In multifamily buildings, particularly in the Northeast, exhaust ventilation strategies are the norm as a means of meeting both local exhaust and whole-unit mechanical ventilation rates. The issue of where the "fresh" air is coming from is gaining significance as air-tightness standards for enclosures become more stringent. CARB researchers have found that most new high performance, multifamily housing in the Northeast use one of four strategies for ventilation: continuous exhaust only with no designated supply or make-up air source, continuous exhaust with ducted make-up air to apartments, continuous exhaust with supply through a make-up air device integral to the unit HVAC, and continuous exhaust with supply through a passive inlet device, such as a trickle vent. Insufficient information is available to designers on how these various systems are best applied. Product performance data are based on laboratory tests, but there is no guarantee that those conditions will exist consistently in the finished building. In this research project, CARB evaluated the four ventilation strategies in the field to validate system performance.

  12. Building America Guidance for Identifying and Overcoming Code, Standard, and Rating Method Barriers

    SciTech Connect (OSTI)

    Cole, P. C.; Halverson, M. A.

    2013-09-01

    This guidance document was prepared using the input from the meeting summarized in the draft CSI Roadmap to provide Building America research teams and partners with specific information and approaches to identifying and overcoming potential barriers to Building America innovations arising in and/or stemming from codes, standards, and rating methods.

  13. Sensor-based demand controlled ventilation

    SciTech Connect (OSTI)

    De Almeida, A.T.; Fisk, W.J.

    1997-07-01

    In most buildings, occupancy and indoor pollutant emission rates vary with time. With sensor-based demand-controlled ventilation (SBDCV), the rate of ventilation (i.e., rate of outside air supply) also varies with time to compensate for the changes in pollutant generation. In other words, SBDCV involves the application of sensing, feedback and control to modulate ventilation. Compared to ventilation without feedback, SBDCV offers two potential advantages: (1) better control of indoor pollutant concentrations; and (2) lower energy use and peak energy demand. SBDCV has the potential to improve indoor air quality by increasing the rate of ventilation when indoor pollutant generation rates are high and occupants are present. SBDCV can also save energy by decreasing the rate of ventilation when indoor pollutant generation rates are low or occupants are absent. After providing background information on indoor air quality and ventilation, this report provides a relatively comprehensive discussion of SBDCV. Topics covered in the report include basic principles of SBDCV, sensor technologies, technologies for controlling air flow rates, case studies of SBDCV, application of SBDCV to laboratory buildings, and research needs. SBDCV appears to be an increasingly attractive technology option. Based on the review of literature and theoretical considerations, the application of SBDCV has the potential to be cost-effective in applications with the following characteristics: (a) a single or small number of dominant pollutants, so that ventilation sufficient to control the concentration of the dominant pollutants provides effective control of all other pollutants; (b) large buildings or rooms with unpredictable temporally variable occupancy or pollutant emission; and (c) climates with high heating or cooling loads or locations with expensive energy.

  14. Assessment of Energy Savings Potential from the Use of Demand Controlled Ventilation in General Office Spaces in California

    SciTech Connect (OSTI)

    Hong, Tianzhen; Fisk, William

    2010-01-01

    A prototypical office building meeting the prescriptive requirements of the 2008 California building energy efficiency standards (Title 24) was used in EnergyPlus simulations to calculate the energy savings potential of demand controlled ventilation (DCV) in five typical California climates per three design occupancy densities and two minimum ventilation rates. The assumed minimum ventilation rates in offices without DCV, based on two different measurement methods employed in a large survey, were 38 and 13 L/s per occupant. The results of the life cycle cost analysis show DCV is cost effective for office spaces if the typical minimum ventilation rate without DCV is 38 L/s per person, except at the low design occupancy of 10.8 people per 100 m2 in climate zones 3 (north coast) and 6 (south Coast). DCV was not found to be cost effective if the typical minimum ventilation rate without DCV is 13 L/s per occupant, except at high design occupancy of 21.5 people per 100 m2 in climate zones 14 (desert) and 16 (mountains). Until the large uncertainties about the base case ventilation rates in offices without DCV are reduced, the case for requiring DCV in general office spaces will be a weak case. Under the Title 24 Standards office occupant density of 10.8 people per 100 m2, DCV becomes cost effective when the base case minimum ventilation rate is greater than 42.5, 43.0, 24.0, 19.0, and 18.0 L/s per person for climate zone 3, 6, 12, 14, and 16 respectively.

  15. Natural Ventilation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Ventilation Natural Ventilation Opening a window is a simple natural ventilation strategy. | Credit: ©iStockphoto/Simotion Opening a window is a simple natural ventilation strategy. | Credit: ©iStockphoto/Simotion Natural ventilation relies on the wind and the "chimney effect" to keep a home cool. Natural ventilation works best in climates with cool nights and regular breezes. The wind will naturally ventilate your home by entering or leaving windows, depending on their

  16. Ventilation Model Report

    SciTech Connect (OSTI)

    V. Chipman; J. Case

    2002-12-20

    The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their post-closure analyses. The Ventilation Model report was initially developed to analyze the effects of preclosure continuous ventilation in the Engineered Barrier System (EBS) emplacement drifts, and to provide heat removal data to support EBS design. Revision 00 of the Ventilation Model included documentation of the modeling results from the ANSYS-based heat transfer model. Revision 01 ICN 01 included the results of the unqualified software code MULTIFLUX to assess the influence of moisture on the ventilation efficiency. The purposes of Revision 02 of the Ventilation Model are: (1) To validate the conceptual model for preclosure ventilation of emplacement drifts and verify its numerical application in accordance with new procedural requirements as outlined in AP-SIII-10Q, Models (Section 7.0). (2) To satisfy technical issues posed in KTI agreement RDTME 3.14 (Reamer and Williams 2001a). Specifically to demonstrate, with respect to the ANSYS ventilation model, the adequacy of the discretization (Section 6.2.3.1), and the downstream applicability of the model results (i.e. wall heat fractions) to initialize post-closure thermal models (Section 6.6). (3) To satisfy the remainder of KTI agreement TEF 2.07 (Reamer and Williams 2001b). Specifically to provide the results of post-test ANSYS modeling of the Atlas Facility forced convection tests (Section 7.1.2). This portion of the model report also serves as a validation exercise per AP-SIII.10Q, Models, for the ANSYS ventilation model. (4) To asses the impacts of moisture on the ventilation efficiency.

  17. Building America Guidance for Identifying and Overcoming Code, Standard, and Rating Method Barriers

    SciTech Connect (OSTI)

    Cole, Pamala C.; Halverson, Mark A.

    2013-09-01

    The U.S. Department of Energys (DOE) Building America program implemented a new Codes and Standards Innovation (CSI) Team in 2013. The Teams mission is to assist Building America (BA) research teams and partners in identifying and resolving conflicts between Building America innovations and the various codes and standards that govern the construction of residences. A CSI Roadmap was completed in September, 2013. This guidance document was prepared using the information in the CSI Roadmap to provide BA research teams and partners with specific information and approaches to identifying and overcoming potential barriers to Building America (BA) innovations arising in and/or stemming from codes, standards, and rating methods. For more information on the BA CSI team, please email: CSITeam@pnnl.gov

  18. Ventilation | Department of Energy

    Office of Environmental Management (EM)

    uniformly. Natural ventilation depends on a home's airtightness, outdoor temperatures, wind, and other factors. During mild weather, some homes may lack sufficient natural...

  19. Ventilation in Multifamily Buildings

    Broader source: Energy.gov [DOE]

    This webinar, hosted by Building America,was conducted on November 1, 2011, and describes ways to save energy in buildings through effective ventilation techniques.

  20. Building Science- Ventilation

    Broader source: Energy.gov [DOE]

    This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question "What are the best ventilation techniques"

  1. A critical review of displacement ventilation

    SciTech Connect (OSTI)

    Yuan, X.; Chen, Q.; Glicksman, L.R.

    1998-10-01

    This paper reviews several aspects of the performance of displacement ventilation: temperature distribution, flow distribution, contaminant distribution, comfort, energy and cost analysis, and design guidelines. Ventilation rate, cooling load, heat source, wall characteristics, space height, and diffuser type have major impacts on the performance of displacement ventilation. Some of the impacts can be estimated by simple equations, but many are still unknown. Based on current findings, displacement ventilation systems without cooled ceiling panels can be used for space with a cooling load up to 13 Btu/(h{center_dot}ft{sup 2}) (40 W/m{sup 2}). Energy consumed by HVAC systems depends on control strategies. The first costs of the displacement ventilation system are similar to those of a mixing ventilation system. The displacement system with cooled ceiling panels can remove a higher cooling load, but the first costs are higher as well. The design guidelines of displacement ventilation developed in Scandinavian countries need to be clarified and extended so that they can be used for US buildings. This paper outlines the research needed to develop design guidelines for US buildings.

  2. Particle deposition in ventilation ducts

    SciTech Connect (OSTI)

    Sippola, Mark R.

    2002-09-01

    Exposure to airborne particles is detrimental to human health and indoor exposures dominate total exposures for most people. The accidental or intentional release of aerosolized chemical and biological agents within or near a building can lead to exposures of building occupants to hazardous agents and costly building remediation. Particle deposition in heating, ventilation and air-conditioning (HVAC) systems may significantly influence exposures to particles indoors, diminish HVAC performance and lead to secondary pollutant release within buildings. This dissertation advances the understanding of particle behavior in HVAC systems and the fates of indoor particles by means of experiments and modeling. Laboratory experiments were conducted to quantify particle deposition rates in horizontal ventilation ducts using real HVAC materials. Particle deposition experiments were conducted in steel and internally insulated ducts at air speeds typically found in ventilation ducts, 2-9 m/s. Behaviors of monodisperse particles with diameters in the size range 1-16 {micro}m were investigated. Deposition rates were measured in straight ducts with a fully developed turbulent flow profile, straight ducts with a developing turbulent flow profile, in duct bends and at S-connector pieces located at duct junctions. In straight ducts with fully developed turbulence, experiments showed deposition rates to be highest at duct floors, intermediate at duct walls, and lowest at duct ceilings. Deposition rates to a given surface increased with an increase in particle size or air speed. Deposition was much higher in internally insulated ducts than in uninsulated steel ducts. In most cases, deposition in straight ducts with developing turbulence, in duct bends and at S-connectors at duct junctions was higher than in straight ducts with fully developed turbulence. Measured deposition rates were generally higher than predicted by published models. A model incorporating empirical equations based on the experimental measurements was applied to evaluate particle losses in supply and return duct runs. Model results suggest that duct losses are negligible for particle sizes less than 1 {micro}m and complete for particle sizes greater than 50 {micro}m. Deposition to insulated ducts, horizontal duct floors and bends are predicted to control losses in duct systems. When combined with models for HVAC filtration and deposition to indoor surfaces to predict the ultimate fates of particles within buildings, these results suggest that ventilation ducts play only a small role in determining indoor particle concentrations, especially when HVAC filtration is present. However, the measured and modeled particle deposition rates are expected to be important for ventilation system contamination.

  3. Multifamily Ventilation Retrofit Strategies

    SciTech Connect (OSTI)

    Ueno, K.; Lstiburek, J.; Bergey, D.

    2012-12-01

    In multifamily buildings, central ventilation systems often have poor performance, overventilating some portions of the building (causing excess energy use), while simultaneously underventilating other portions (causing diminished indoor air quality). BSC and Innova Services Corporation performed a series of field tests at a mid-rise test building undergoing a major energy audit and retrofit, which included ventilation system upgrades.

  4. Guide to Home Ventilation

    SciTech Connect (OSTI)

    2010-10-01

    A fact sheet from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy: Ventilation refers to the exchange of indoor and outdoor air. Without proper ventilation, an otherwise insulated and airtight house will seal in harmful pollutants, such as carbon monoxide, and moisture that can damage a house.

  5. Ventilation efficiencies of a desk-edge-mounted task ventilation system

    SciTech Connect (OSTI)

    Faulkner, David; Fisk, William J.; Sullivan, Douglas P.; Lee, Seung Min

    2002-03-01

    In chamber experiments, we investigated the effectiveness of a task ventilation system with an air supply nozzle located underneath the front edge of a desk and directing air toward a heated mannequin seated at the desk. The task ventilation system provided outside air, while another ventilation system provided additional space cooling but no outside air. Test variables included the vertical angle of air supply (-15{sup o} to 45{sup o} from horizontal), and the supply flow rate of (3.5 to 6.5 L s{sup -1}). Using the tracer gas step-up and step-down procedures, the measured air change effectiveness (i.e., exhaust air age divided by age of air at the mannequin's face) ranged from 1.4 to 2.7, which is higher than typically reported for commercially available task ventilation or displacement ventilation systems.

  6. Critical Question #7: What are the Best Practices for Single-Family Ventilation in All Climate Regions?

    Broader source: Energy.gov [DOE]

    Why ventilate? What are the ultimate goals of ventilation requirements in codes and standards? What are the characteristics of an effective ventilation system in new vs. existing construction? What are the risks and solutions associated with ventilation in hot-humid climates?

  7. Building America Webinar: Multifamily Ventilation Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multifamily Ventilation Strategies and Compartmentalization Requirements - Sean Maxwell Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization...

  8. Building America Webinar: Multifamily Ventilation Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization ... webinar, Multifamily Ventilation Strategies and Compartmentalization Requirements, ...

  9. Building America Webinar: Multifamily Ventilation Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multifamily Ventilation Strategies and Compartmentalization Requirements Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements This ...

  10. Evaluation of Ventilation Strategies in New Construction Multifamily Buildings

    SciTech Connect (OSTI)

    Maxwell, S.; Berger, D.; Zuluaga, M.

    2014-07-01

    In multifamily buildings, particularly in the Northeast, exhaust ventilation strategies are the norm as a means of meeting both local exhaust and whole-unit mechanical ventilation rates. The issue of where the 'fresh' air is coming from is gaining significance as air-tightness standards for enclosures become more stringent, and the 'normal leakage paths through the building envelope' disappear. CARB researchers have found that the majority of high performance, new construction, multifamily housing in the Northeast use one of four general strategies for ventilation: continuous exhaust only with no designated supply or make-up air source, continuous exhaust with ducted make-up air to apartments, continuous exhaust with supply through a make-up air device integral to the unit HVAC, and continuous exhaust with supply through a passive inlet device, such as a trickle vent. Insufficient information is available to designers on how these various systems are best applied. Product performance data are based on laboratory tests, and the assumption is that products will perform similarly in the field. Proper application involves matching expected performance at expected building pressures, but there is no guarantee that those conditions will exist consistently in the finished building. This research effort, which included several weeks of building pressure monitoring, sought to provide field validation of system performance. The performance of four substantially different strategies for providing make-up air to apartments was evaluated.

  11. Promising Technology: Demand Control Ventilation

    Broader source: Energy.gov [DOE]

    Demand control ventilation (DCV) measures carbon dioxide concentrations in return air or other strategies to measure occupancy, and accurately matches the ventilation requirement. This system reduces ventilation when spaces are vacant or at lower than peak occupancy. When ventilation is reduced, energy savings are accrued because it is not necessary to heat, cool, or dehumidify as much outside air.

  12. Ventilation technologies scoping study

    SciTech Connect (OSTI)

    Walker, Iain S.; Sherman, Max H.

    2003-09-30

    This document presents the findings of a scoping study commissioned by the Public Interest Energy Research (PIER) program of the California Energy Commission to determine what research is necessary to develop new residential ventilation requirements for California. This study is one of three companion efforts needed to complete the job of determining the needs of California, determining residential ventilation requirements, and determining appropriate ventilation technologies to meet these needs and requirements in an energy efficient manner. Rather than providing research results, this scoping study identifies important research questions along with the level of effort necessary to address these questions and the costs, risks, and benefits of pursuing alternative research questions. In approaching these questions and level of effort, feasibility and timing were important considerations. The Commission has specified Summer 2005 as the latest date for completing this research in time to update the 2008 version of California's Energy Code (Title 24).

  13. Measure Guideline: Selecting Ventilation Systems for Existing Homes

    SciTech Connect (OSTI)

    Aldrich, R.

    2014-02-01

    This document addresses adding -or improving - mechanical ventilation systems to existing homes. The purpose of ventilation is to remove contaminants from homes, and this report discusses where, when, and how much ventilation is appropriate in a home, including some discussion of relevant codes and standards. Advantages, disadvantages, and approximate costs of various system types are presented along with general guidelines for implementing the systems in homes. CARB intends for this document to be useful to decision makers and contractors implementing ventilation systems in homes. Choosing the "best" system is not always straightforward; selecting a system involves balancing performance, efficiency, cost, required maintenance, and several other factors. It is the intent of this document to assist contractors in making more informed decisions when selecting systems. Ventilation is an integral part of a high-performance home. With more air-sealed envelopes, a mechanical means of removing contaminants is critical for indoor environmental quality and building durability.

  14. Building America Webinar: Retrofit Ventilation Strategies in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retrofit Ventilation Strategies in Multifamily Buildings Webinar Building America Webinar: Retrofit Ventilation Strategies in Multifamily Buildings Webinar This webinar, presented ...

  15. Measure Guideline: Ventilation Cooling

    SciTech Connect (OSTI)

    Springer, D.; Dakin, B.; German, A.

    2012-04-01

    The purpose of this measure guideline on ventilation cooling is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  16. Development of a Rating System for a Comparative Accelerated Test Standard (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.

    2013-06-01

    This presentation discusses methods of developing and structuring a useful rating system and communicating the results.

  17. CO2 MONITORING FOR DEMAND CONTROLLED VENTILATION IN COMMERCIAL BUILDINGS

    SciTech Connect (OSTI)

    Fisk, William J.; Sullivan, Douglas P.; Faulkner, David; Eliseeva, Ekaterina

    2010-03-17

    Carbon dioxide (CO{sub 2}) sensors are often deployed in commercial buildings to obtain CO{sub 2} data that are used, in a process called demand-controlled ventilation, to automatically modulate rates of outdoor air ventilation. The objective is to keep ventilation rates at or above design specifications and code requirements and also to save energy by avoiding excessive ventilation rates. Demand controlled ventilation is most often used in spaces with highly variable and sometime dense occupancy. Reasonably accurate CO{sub 2} measurements are needed for successful demand controlled ventilation; however, prior research has suggested substantial measurement errors. Accordingly, this study evaluated: (a) the accuracy of 208 CO{sub 2} single-location sensors located in 34 commercial buildings, (b) the accuracy of four multi-location CO{sub 2} measurement systems that utilize tubing, valves, and pumps to measure at multiple locations with single CO{sub 2} sensors, and (c) the spatial variability of CO{sub 2} concentrations within meeting rooms. The field studies of the accuracy of single-location CO{sub 2} sensors included multi-concentration calibration checks of 90 sensors in which sensor accuracy was checked at multiple CO{sub 2} concentrations using primary standard calibration gases. From these evaluations, average errors were small, -26 ppm and -9 ppm at 760 and 1010 ppm, respectively; however, the averages of the absolute values of error were 118 ppm (16%) and 138 ppm (14%), at concentrations of 760 and 1010 ppm, respectively. The calibration data are generally well fit by a straight line as indicated by high values of R{sup 2}. The Title 24 standard specifies that sensor error must be certified as no greater than 75 ppm for a period of five years after sensor installation. At 1010 ppm, 40% of sensors had errors greater than {+-}75 ppm and 31% of sensors has errors greater than {+-}100 ppm. At 760 ppm, 47% of sensors had errors greater than {+-}75 ppm and 37% of sensors had errors greater than {+-}100 ppm. A significant fraction of sensors had errors substantially larger than 100 ppm. For example, at 1010 ppm, 19% of sensors had an error greater than 200 ppm and 13% of sensors had errors greater than 300 ppm. The field studies also included single-concentration calibration checks of 118 sensors at the concentrations encountered in the buildings, which were normally less than 500 ppm during the testing. For analyses, these data were combined with data from the calibration challenges at 510 ppm obtained during the multi-concentration calibration checks. For the resulting data set, the average error was 60 ppm and the average of the absolute value of error was 154 ppm. Statistical analyses indicated that there were statistically significant differences between the average accuracies of sensors from different manufacturers. Sensors with a 'single lamp single wavelength' design tended to have a statistically significantly smaller average error than sensors with other designs except for 'single lamp dual wavelength' sensors, which did not have a statistically significantly lower accuracy. Sensor age was not consistently a statistically significant predictor of error.

  18. Infiltration Effects on Residential Pollutant Concentrations for Continuous and Intermittent Mechanical Ventilation Approaches

    SciTech Connect (OSTI)

    Sherman, Max; Logue, Jennifer; Singer, Brett

    2010-06-01

    The prevailing residential ventilation standard in North America, American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Standard 62.2, specifies volumetric airflow requirements as a function of the overall size of the home and the number of bedrooms, assumes a fixed, minimal amount of infiltration, and requires mechanical ventilation to achieve the remainder. The standard allows for infiltration credits and intermittent ventilation patterns that can be shown to provide comparable performance. Whole-house ventilation methods have a substantial effect on time-varying indoor pollutant concentrations. If alternatives specified by Standard 62.2, such as intermittent ventilation, are used, short-term pollutant concentrations could exceed acute health standards even if chronic health standards are met.The authors present a methodology for comparing ASHRAE- and non-ASHRAE-specified ventilation scenarios on relative indoor pollutant concentrations. We use numerical modeling to compare the maximum time-averaged concentrations for acute exposure relevant (1-hour, 8-hour, 24-hour ) and chronic exposure relevant (1-year) time periods for four different ventilation scenarios in six climates with a range of normalized leakage values. The results suggest that long-term concentrations are the most important metric for assessing the effectiveness of whole-house ventilation systems in meeting exposure standards and that, if chronic health exposure standards are met, acute standards will also be met.

  19. Ventilation efficiencies and thermal comfort results of a desk-edge-mounted task ventilation system

    SciTech Connect (OSTI)

    Faulkner, D.; Fisk, W.J.; Sullivan, D.P.; Lee, S.M.

    2003-09-01

    In chamber experiments, we investigated the ventilation effectiveness and thermal comfort of a task ventilation system with an air supply nozzle located underneath the front edge of a desk and directing air toward a heated mannequin or a human volunteer seated at the desk. The task ventilation system provided outside air, while another ventilation system provided additional space cooling but no outside air. Test variables included the vertical angle of air supply (-15{sup o} to 45{sup o} from horizontal), and the supply flow rate of (3.5 to 6.5 L s{sup -1}). Using the tracer gas step-up and step-down procedures, the measured air change effectiveness (i.e., exhaust air age divided by age of air in the breathing zone) in experiments with the mannequin ranged from 1.4 to 2.7 (median, 1.8), whereas with human subjects the air change effectiveness ranged from 1.3 to 2.3 (median, 1.6). The majority of the air change effectiveness values with the human subjects were less than values with the mannequin at comparable tests. Similarly, the tests run with supply air temperature equal to the room air temperature had lower air change effectiveness values than comparable tests with the supply air temperature lower ({approx}5 C) than the room air temperature. The air change effectiveness values are higher than typically reported for commercially available task ventilation or displacement ventilation systems. Based on surveys completed by the subjects, operation of the task ventilation system did not cause thermal discomfort.

  20. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy

    SciTech Connect (OSTI)

    Sidheswaran, Meera; Destaillats, Hugo; Sullivan, Douglas P.; Fisk, William J.

    2010-10-27

    Approximately ten percent of the energy consumed in U.S. commercial buildings is used by HVAC systems to condition outdoor ventilation air. Reducing ventilation rates would be a simple and broadly-applicable energy retrofit option, if practical counter measures were available that maintained acceptable concentrations of indoor-generated air pollutants. The two general categories of countermeasures are: 1) indoor pollutant source control, and 2) air cleaning. Although pollutant source control should be used to the degree possible, source control is complicated by the large number and changing nature of indoor pollutant sources. Particle air cleaning is already routinely applied in commercial buildings. Previous calculations indicate that particle filtration consumes only 10percent to 25percent of the energy that would otherwise be required to achieve an equivalent amount of particle removal with ventilation. If cost-effective air cleaning technologies for volatile organic compounds (VOCs) were also available, outdoor air ventilation rates could be reduced substantially and broadly in the commercial building stock to save energy. The research carried out in this project focuses on developing novel VOC air cleaning technologies needed to enable energy-saving reductions in ventilation rates. The minimum required VOC removal efficiency to counteract a 50percent reduction in ventilation rate for air cleaning systems installed in the HVAC supply airstream is modest (generally 20percent or less).

  1. Measure Guideline: Selecting Ventilation Systems for Existing Homes

    SciTech Connect (OSTI)

    Aldrich, R.

    2014-02-01

    This report, developed by Building America research team CARB, addresses adding or improving mechanical ventilation systems to existing homes. The goal of this report is to assist decision makers and contractors in making informed decisions when selecting ventilation systems for homes. With more air-sealed envelopes, a mechanical means of removing contaminants is critical for indoor environmental quality and building durability. The purpose of ventilation is to remove contaminants from homes, and this report discusses where, when, and how much ventilation is appropriate in a home, including examination of relevant codes and standards. Choosing the "best" system is not always straightforward; selecting a system involves balancing performance, efficiency, cost, required maintenance, and several other factors.

  2. Ventilation System Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ventilation System Basics Ventilation System Basics August 16, 2013 - 1:33pm Addthis Ventilation is the process of moving air into and out of an interior space by natural or mechanical means. Ventilation is necessary for the health and comfort of occupants of all buildings. Ventilation supplies air for occupants to breathe and removes moisture, odors, and indoor pollutants like carbon dioxide. Too little ventilation may result in poor indoor air quality, while too much may cause unnecessarily

  3. Ventilation by stratification and displacement

    SciTech Connect (OSTI)

    Skaaret, E.

    1983-03-01

    Ventilation effectiveness is not one single index which can be used for classifying ventilating systems. It is shown that a system has different effectivenesses depending on the characteristics of the pollution sources. A transient ventilation effectiveness can be used to generally characterize the system behavior during transient conditions. This index is, for a given system, dependent only on the thermal conditions. Using the different concepts of ventilation effectiveness and knowledge of the nature of the diffusion process it is concluded that the mixing principle in ventilation is not the best one. The displacement principle working vertical-up (air supply directly to the zone of occupation) is generally working much better. Density stratification improves the efficiency. Conditions for stable thermal stratification is dealt with. Room heating systems are concluded to be based on the radiant heating principle. A no recirculating displacement solution using a heat exchanger is claimed to be energy efficient. Research work which substantiated the different conclusions is referenced.

  4. Whole-House Ventilation | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    systems provide a controlled way of ventilating a home while minimizing energy loss. They reduce the costs of heating ventilated air in the winter by transferring heat...

  5. Building America Technologies Solutions Case Study: Ventilation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Solutions Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts Building America Technologies Solutions Case Study: Ventilation System ...

  6. Building America Technology Solutions Case Study: Ventilation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts Building America Technology Solutions Case Study: Ventilation System Effectiveness and Tested ...

  7. Retrofit Ventilation Strategies in Multifamily Buildings Webinar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retrofit Ventilation Strategies in Multifamily Buildings Webinar Retrofit Ventilation Strategies in Multifamily Buildings Webinar Slides from the Building America webinar on ...

  8. Air exchange effectiveness of conventional and task ventilation for offices

    SciTech Connect (OSTI)

    Fisk, W.J.; Faulkner, D.; Prill, R.J.

    1991-12-01

    Air quality and comfort complaints within large buildings are often attributed to air distribution problems. We define three air exchange effectiveness parameters related to air distribution. The first two indicate the indoor air flow pattern (i.e., the extent of short circuiting, mixing, or displacement flow) for an entire building or region. The third parameter is most useful for assessments of the spatial variability of ventilation. We also define the air diffusion effectiveness which indicates the air flow pattern within specific rooms or sections of buildings. The results of measurements of these parameters in US office buildings by the authors and other researchers are reviewed. Almost all measurements indicate very limited short circuiting or displacement flow between locations of air supply and removal. However, a moderate degree of short circuiting is evident from a few measurements in rooms with heated supply air. The results of laboratory-based measurements by the authors are consistent with the field data. Our measurements in office buildings do indicate that ventilation rates can vary substantially between indoor locations, probably due to variation in air supply rates between locations rather than variation in the indoor air flow patterns. One possible method of improving air distribution is to employ task ventilation with air supplied closer to the occupant`s breathing zone. We have evaluated two task ventilation systems in a laboratory setting. During most operating conditions, these systems did not provide a region of substantially increased ventilation where occupants breath. However, both systems are capable of providing substantially enhanced ventilation at the breathing zone under some operating conditions. Therefore, task ventilation is a potential option for using ventilation air more effectively.

  9. Air exchange effectiveness of conventional and task ventilation for offices

    SciTech Connect (OSTI)

    Fisk, W.J.; Faulkner, D.; Prill, R.J.

    1991-12-01

    Air quality and comfort complaints within large buildings are often attributed to air distribution problems. We define three air exchange effectiveness parameters related to air distribution. The first two indicate the indoor air flow pattern (i.e., the extent of short circuiting, mixing, or displacement flow) for an entire building or region. The third parameter is most useful for assessments of the spatial variability of ventilation. We also define the air diffusion effectiveness which indicates the air flow pattern within specific rooms or sections of buildings. The results of measurements of these parameters in US office buildings by the authors and other researchers are reviewed. Almost all measurements indicate very limited short circuiting or displacement flow between locations of air supply and removal. However, a moderate degree of short circuiting is evident from a few measurements in rooms with heated supply air. The results of laboratory-based measurements by the authors are consistent with the field data. Our measurements in office buildings do indicate that ventilation rates can vary substantially between indoor locations, probably due to variation in air supply rates between locations rather than variation in the indoor air flow patterns. One possible method of improving air distribution is to employ task ventilation with air supplied closer to the occupant's breathing zone. We have evaluated two task ventilation systems in a laboratory setting. During most operating conditions, these systems did not provide a region of substantially increased ventilation where occupants breath. However, both systems are capable of providing substantially enhanced ventilation at the breathing zone under some operating conditions. Therefore, task ventilation is a potential option for using ventilation air more effectively.

  10. Designing for thermal comfort in combined chilled ceiling/displacement ventilation environments

    SciTech Connect (OSTI)

    Loveday, D.L.; Hodder, S.G.; Jeal, L.D.; Parsons, K.C.; Taki, A.H.

    1998-10-01

    This paper presents general guidance on designing for thermal comfort in combined chilled ceiling/displacement ventilation environments. Thermal comfort measurements involving 184 human subjects were carried out in a laboratory-based test room, constructed to resemble a normal office and equipped with a combined chilled ceiling and wall-mounted displacement ventilation system. Room characterization tests revealed that the chilled ceiling has a detrimental effect upon displacement flow, suppressing the stratified boundary layer at ceiling temperatures of 18 C--21 C and destroying displacement flow all together at low ceiling temperatures (14 C--16 C). Reduction in ceiling temperature was found to increase local air velocities at heights of 0.1 m and 1.1 m above the floor, showing further evidence of mixing, though there was an insignificant effect on local discomfort due to draft, as measured by subjective responses and by draft rating assessment. ISO Standard 7730 (1995) is shown to be valid, without modification, for predicting the thermal comfort of sedentary occupants performing office work in combined chilled ceiling/displacement ventilation environments. The vertical radiant asymmetry induced by a cooled ceiling does not significantly affect the thermal comfort of desk-seated occupants; this, together with relative humidity, is shown to require no additional comfort-related design limitations beyond those already in the literature and beyond the prevention of ceiling surface condensation.

  11. The WIPP Underground Ventilation System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the ventilation system provides a continuous flow of fresh air to the underground tunnels and rooms that make up the disposal facility at WIPP. Air is supplied to the...

  12. Technology Solutions Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    SciTech Connect (OSTI)

    A. Rudd and D. Bergey

    2015-08-01

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs.

  13. Transpired Solar Collector at NREL's Waste Handling Facility Uses Solar Energy to Heat Ventilation Air

    SciTech Connect (OSTI)

    2010-09-08

    The transpired solar collector was installed on NREL's Waste handling Facility (WHF) in 1990 to preheat ventilation air. The electrically heated WHF was an ideal candidate for the this technology - requiring a ventilation rate of 3,000 cubic feet per meter to maintain safe indoor conditions.

  14. Building America Webinar: Ventilation Strategies for High Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ventilation Strategies for High Performance Homes, Part I: Application-Specific Ventilation Guidelines Building America Webinar: Ventilation Strategies for High Performance Homes, ...

  15. Ventilation Systems for Cooling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat & Cool » Home Cooling Systems » Ventilation Systems for Cooling Ventilation Systems for Cooling Proper ventilation helps you save energy and money. | Photo courtesy of <a href="http://www.flickr.com/photos/jdhancock/3802136698/">JD Hancock</a>. Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Ventilation is the least expensive and most energy-efficient way to cool buildings. Ventilation works best when combined with methods to

  16. Impact of Residential Mechanical Ventilation on Energy Cost and Humidity Control

    SciTech Connect (OSTI)

    Martin, E.

    2014-01-01

    The DOE Building America program has been conducting research leading to cost effective high performance homes since the early 1990's. Optimizing whole house mechanical ventilation as part of the program's systems engineered approach to constructing housing has been an important subject of the program's research. Ventilation in residential buildings is one component of an effective, comprehensive strategy for creation and maintenance of a comfortable and healthy indoor air environment. The study described in this white paper is based on building energy modeling with an important focus on the indoor humidity impacts of ventilation. The modeling tools used were EnergyPlus version 7.1 (E+) and EnergyGauge USA (EGUSA). Twelve U.S. cities and five climate zones were represented. A total of 864 simulations (2*2*3*3*12= 864) were run using two building archetypes, two building leakage rates, two building orientations, three ventilation systems, three ventilation rates, and twelve climates.

  17. Impact of Residential Mechanical Ventilation on Energy Cost and Humidity Control

    SciTech Connect (OSTI)

    Martin, Eric

    2014-01-01

    Optimizing whole house mechanical ventilation as part of the Building Ameerica program's systems engineered approach to constructing housing has been an important subject of the program's research. Ventilation in residential buildings is one component of an effective, comprehensive strategy for creation and maintenance of a comfortable and healthy indoor air environment. The study described in this report is based on building energy modeling with an important focus on the indoor humidity impacts of ventilation. The modeling tools used were EnergyPlus version 7.1 (E+) and EnergyGauge USA (EGUSA). Twelve U.S. cities and five climate zones were represented. A total of 864 simulations (2*2*3*3*12= 864) were run using two building archetypes, two building leakage rates, two building orientations, three ventilation systems, three ventilation rates, and twelve climates.

  18. Whole-House Ventilation | Department of Energy

    Office of Environmental Management (EM)

    - 2:37pm Addthis A whole-house ventilation system with dedicated ducting in a new energy-efficient home. | Photo courtesy of iStockphotobrebca. A whole-house ventilation...

  19. The impact of demand-controlled and economizer ventilation strategies on energy use in buildings

    SciTech Connect (OSTI)

    Brandemuehl, M.J.; Braun, J.E.

    1999-07-01

    The overall objective of this work was to evaluate typical energy requirements associated with alternative ventilation control strategies for constant-air-volume (CAV) systems in commercial buildings. The strategies included different combinations of economizer and demand-controlled ventilation, and energy analyses were performed for four typical building types, eight alternative ventilation systems, and twenty US climates. Only single-zone buildings were considered so that simultaneous heating and cooling did not exist. The energy savings associated with economizer and demand-controlled ventilation strategies were found to be very significant for both heating and cooling. In general, the greatest savings in electrical usage for cooling with the addition of demand-controlled ventilation occur in situations where the opportunities for economizer cooling are less. This is true for warm and humid climates and for buildings that have relatively low internal gains (i.e., low occupant densities). As much as 20% savings in electrical energy for cooling were possible with demand-controlled ventilation. The savings in heating energy associated with demand-controlled ventilation were generally much larger but were strongly dependent upon the building type and occupancy schedule. Significantly greater savings were found for buildings with highly variable occupancy schedules and large internal gains (i.e., restaurants) as compared with office buildings. In some cases, the primary heating energy was virtually eliminated by demand-controlled ventilation as compared with fixed ventilation rates. For both heating and cooling, the savings associated with demand-controlled ventilation are dependent on the fixed minimum ventilation rate of the base case at design conditions.

  20. Building America Case Study: Selecting Ventilation Systems for Existing Homes (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-12-01

    This document addresses adding -or improving - mechanical ventilation systems to existing homes. The purpose of ventilation is to remove contaminants from homes, and this report discusses where, when, and how much ventilation is appropriate in a home, including some discussion of relevant codes and standards. Advantages, disadvantages, and approximate costs of various system types are presented along with general guidelines for implementing the systems in homes. CARB intends for this document to be useful to decision makers and contractors implementing ventilation systems in homes. Choosing the "best" system is not always straightforward; selecting a system involves balancing performance, efficiency, cost, required maintenance, and several other factors. It is the intent of this document to assist contractors in making more informed decisions when selecting systems. Ventilation is an integral part of a high-performance home. With more air-sealed envelopes, a mechanical means of removing contaminants is critical for indoor environmental quality and building durability.

  1. Building America Webinar: Ventilation in Multifamily Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ventilation strategies for multifamily buildings, including how to successfully implement those strategies through smart design, specification, and construction techniques. ...

  2. Heating Ventilation and Air Conditioning Efficiency

    Broader source: Energy.gov [DOE]

    This presentation covers common pitfalls that lead to wasted energy in industrial heating ventilation and air conditioning (HVAC) systems.

  3. Supermassive black holes with high accretion rates in active galactic nuclei. II. The most luminous standard candles in the universe

    SciTech Connect (OSTI)

    Wang, Jian-Min; Du, Pu; Hu, Chen; Qiu, Jie; Li, Yan-Rong [Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Beijing 100049 (China); Netzer, Hagai; Kaspi, Shai [Wise Observatory, School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978 (Israel); Bai, Jin-Ming; Wang, Fang [Yunnan Observatory, Chinese Academy of Sciences, Kunming 650011, Yunnan (China); Lu, Kai-Xing [Astronomy Department, Beijing Normal University, Beijing 100875 (China); Collaboration: SEAMBH collaboration

    2014-10-01

    This is the second in a series of papers reporting on a large reverberation mapping (RM) campaign to measure black hole (BH) mass in high accretion rate active galactic nuclei (AGNs). The goal is to identify super-Eddington accreting massive black holes (SEAMBHs) and to use their unique properties to construct a new method for measuring cosmological distances. Based on theoretical models, the saturated bolometric luminosity of such sources is proportional to the BH mass, which can be used to obtain their distance. Here we report on five new RM measurements and show that in four of the cases, we can measure the BH mass and three of these sources are SEAMBHs. Together with the three sources from our earlier work, we now have six new sources of this type. We use a novel method based on a minimal radiation efficiency to identify nine additional SEAMBHs from earlier RM-based mass measurements. We use a Bayesian analysis to determine the parameters of the new distance expression and the method uncertainties from the observed properties of the objects in the sample. The ratio of the newly measured distances to the standard cosmological ones has a mean scatter of 0.14 dex, indicating that SEAMBHs can be use as cosmological distance probes. With their high luminosity, long period of activity, and large numbers at high redshifts, SEAMBHs have a potential to extend the cosmic distance ladder beyond the range now explored by Type Ia supernovae.

  4. Promising Technology: Energy Recovery Ventilation

    Broader source: Energy.gov [DOE]

    Energy recovery ventilation (ERV) systems exchange heat between outgoing exhaust air and the incoming outdoor air. Using exhaust air to pre-condition supply air can reduce the capacity of the heating and cooling system and save heating and cooling energy consumption.

  5. Technology Solutions Case Study: Evaluation of Ventilation Strategies in New Construction Multifamily Buildings, New York, New York

    SciTech Connect (OSTI)

    2014-09-01

    In multifamily buildings, particularly in the Northeast, exhaust ventilation strategies are the norm as a means of meeting both local exhaust and whole-unit mechanical ventilation rates. The issue of where the "fresh" air is coming from is gaining significance as air-tightness standards for enclosures become more stringent, and the "normal leakage paths through the building envelope" disappear. Consortium for Advanced Residential Buildings researchers have found that the majority of high performance, new construction, multifamily housing in the Northeast use one of four general strategies for ventilation: continuous exhaust only with no designated supply or make-up air source, continuous exhaust with ducted make-up air to apartments, continuous exhaust with supply through a make-up air device integral to the unit HVAC, and continuous exhaust with supply through a passive inlet device, such as a trickle vent. This research effort included several weeks of building pressure monitoring to validate system performance of the different strategies for providing make-up air to apartments.

  6. Building America Case Study: Evaluation of Ventilation Strategies in New Construction Multifamily Buildings, New York, New York (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-09-01

    In multifamily buildings, particularly in the Northeast, exhaust ventilation strategies are the norm as a means of meeting both local exhaust and whole-unit mechanical ventilation rates. The issue of where the 'fresh' air is coming from is gaining significance as air-tightness standards for enclosures become more stringent, and the 'normal leakage paths through the building envelope' disappear. CARB researchers have found that the majority of high performance, new construction, multifamily housing in the Northeast use one of four general strategies for ventilation: continuous exhaust only with no designated supply or make-up air source, continuous exhaust with ducted make-up air to apartments, continuous exhaust with supply through a make-up air device integral to the unit HVAC, and continuous exhaust with supply through a passive inlet device, such as a trickle vent. Insufficient information is available to designers on how these various systems are best applied. Product performance data are based on laboratory tests, and the assumption is that products will perform similarly in the field. Proper application involves matching expected performance at expected building pressures, but there is no guarantee that those conditions will exist consistently in the finished building. This research effort, which included several weeks of building pressure monitoring, sought to provide field validation of system performance. The performance of four substantially different strategies for providing make-up air to apartments was evaluated.

  7. Energy Impact of Residential Ventilation Norms in the UnitedStates

    SciTech Connect (OSTI)

    Sherman, Max H.; Walker, Iain S.

    2007-02-01

    The first and only national norm for residential ventilation in the United States is Standard 62.2-2004 published by the American Society of Heating, Refrigerating and Air-conditioning Engineers (ASHRAE). This standard does not by itself have the force of regulation, but is being considered for adoption by various jurisdictions within the U.S. as well as by various voluntary programs. The adoption of 62.2 would require mechanical ventilation systems to be installed in virtually all new homes, but allows for a wide variety of design solutions. These solutions, however, may have a different energy costs and non-energy benefits. This report uses a detailed simulation model to evaluate the energy impacts of currently popular and proposed mechanical ventilation approaches that are 62.2 compliant for a variety of climates. These results separate the energy needed to ventilate from the energy needed to condition the ventilation air, from the energy needed to distribute and/or temper the ventilation air. The results show that exhaust systems are generally the most energy efficient method of meeting the proposed requirements. Balanced and supply systems have more ventilation resulting in greater energy and their associated distribution energy use can be significant.

  8. Mechanical ventilation in HUD-code manufactured housing in the Pacific Northwest

    SciTech Connect (OSTI)

    Lubliner, M.; Stevens, D.T.; Davis, B.

    1997-12-31

    Electric utilities in the Pacific Northwest have spent more than $100 million to support energy-efficiency improvements in the Housing and Urban Development (HUD) code manufactured housing industry in the Pacific Northwest over the past several years. More than 65,000 manufactured housing units have been built since 1991 that exceed the new HUD standards for both thermal performance and mechanical ventilation that became effective in October 1994. All of these units included mechanical ventilation systems that were designed to meet or exceed the requirements of ASHRAE Standard 62-1989. This paper addresses the ventilation solutions that were developed and compares the comfort and energy considerations of the various strategies that have evolved in the Pacific Northwest and nationally. The use and location of a variety of outside air inlets will be addressed, as will the acceptance by the occupants of the ventilation strategy.

  9. The impact of demand-controlled ventilation on energy use in buildings

    SciTech Connect (OSTI)

    Braun, J.E.; Brandemuehl, M.J.

    1999-07-01

    The overall objective of this work was to evaluate typical energy requirements associated with alternative ventilation control strategies. The strategies included different combinations of economizer and demand-controlled ventilation controls and energy analyses were performed for a range of typical buildings, systems, and climates. Only single zone buildings were considered, so that simultaneous heating and cooling did not exist. The energy savings associated with economizer and demand-controlled ventilation strategies were found to be very significant for both heating and cooling. In general, the greatest savings in electrical usage for cooling with the addition of demand-controlled ventilation occur in situations where the opportunities for economizer cooling are less. This is true for warm and humid climates, and for buildings that have low relative internal gains (i.e., low occupant densities). As much as 10% savings in electrical energy for cooling were possible with demand-controlled ventilation. The savings in heating energy associated with demand-controlled ventilation were generally much larger, but were strongly dependent upon the occupancy schedule. Significantly greater savings were found for buildings with highly variable occupancy schedules (e.g., stores and restaurants) as compared with office buildings. In some cases, the primary heating energy was reduced by a factor of 10 with demand-controlled ventilation as compared with fixed ventilation rates.

  10. Study on the applicability of the desk displacement ventilation concept

    SciTech Connect (OSTI)

    Loomans, M.G.L.C.

    1999-07-01

    This paper summarizes an experimental and numerical study into a ventilation concept that combines displacement ventilation with task conditioning, the so-called desk displacement ventilation (DDV) concept. The study uses steady-state and transient results to discuss the applicability of the DDV concept for standard office room configurations. The evaluation of the concept focuses on the micro/macroclimate and thermal comfort. Results show that the separation between micro- and macroclimate, a characteristic of task conditioning, is less pronounced. Furthermore, the thermal comfort conditions at the desk limit the cooling capacity of a DDV system. Finally, the transient characteristics of the concept do not conform to stated requirements for task conditioning systems. The main conclusion, therefore, is that there is no particular advantage in sitting close to a displacement ventilation unit. An improvement of the DDV system is proposed by incorporating a parallel system that provides the fresh air near head level. The improvement of the combined system has been investigated using computational fluid dynamics.

  11. Analysis of Buoyancy-Driven Ventilation of Hydrogen from Buildings (Presentation)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Buoyancy-Driven Ventilation of Hydrogen from Buildings C. Dennis Barley, Keith Gawlik, Jim Ohi, Russell Hewett National Renewable Laboratory U.S. DOE Hydrogen Safety, Codes & Standards Program Presented at 2 nd ICHS, San Sebastián, Spain September 11, 2007 NREL/PR-550-42289 Scope of Work * Safe building design * Vehicle leak in residential garage * Continual slow leak * Passive, buoyancy-driven ventilation (vs. mechanical) * Steady-state concentration of H 2 vs. vent size Prior Work *

  12. Development of a Residential Integrated Ventilation Controller

    SciTech Connect (OSTI)

    Staff Scientist; Walker, Iain; Sherman, Max; Dickerhoff, Darryl

    2011-12-01

    The goal of this study was to develop a Residential Integrated Ventilation Controller (RIVEC) to reduce the energy impact of required mechanical ventilation by 20percent, maintain or improve indoor air quality and provide demand response benefits. This represents potential energy savings of about 140 GWh of electricity and 83 million therms of natural gas as well as proportional peak savings in California. The RIVEC controller is intended to meet the 2008 Title 24 requirements for residential ventilation as well as taking into account the issues of outdoor conditions, other ventilation devices (including economizers), peak demand concerns and occupant preferences. The controller is designed to manage all the residential ventilation systems that are currently available. A key innovation in this controller is the ability to implement the concept of efficacy and intermittent ventilation which allows time shifting of ventilation. Using this approach ventilation can be shifted away from times of high cost or high outdoor pollution towards times when it is cheaper and more effective. Simulations, based on the ones used to develop the new residential ventilation requirements for the California Buildings Energy code, were used to further define the specific criteria and strategies needed for the controller. These simulations provide estimates of the energy, peak power and contaminant improvement possible for different California climates for the various ventilation systems. Results from a field test of the prototype controller corroborate the predicted performance.

  13. Model conservation standards bibliography

    SciTech Connect (OSTI)

    Not Available

    1986-06-01

    This bibliography is divided into sections dealing with building design (superinsulation, solar houses, earth sheltered houses, heat loss calculation, lighting, retrofitting); heating, ventilation, and air conditioning; windows; doors; walls; roofs; floors; air leakage/infiltration; insulation materials; indoor air quality; moisture; performance; codes, laws, standards; economics; and program description. (DLC)

  14. Multifamily Individual Heating and Ventilation Systems, Lawrence, Massachusetts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01

    The conversion of an older Massachusetts building into condominiums illustrates a safe, durable, and cost-effective solution for heating and ventilation systems that can potentially benefit millions of multifamily buildings. Merrimack Valley Habitat for Humanity (MVHfH) partnered with U.S. Department of Energy Building America team Building Science Corporation (BSC) to provide high performance affordable housing for 10 families in the retrofit of an existing mass masonry building (a former convent). The original ventilation design for the project was provided by a local engineer and consisted of a single large heat recovery ventilator (HRV) located in a mechanical room in the basement with a centralized duct system providing supply air to the main living space and exhausting stale air from the single bathroom in each apartment. This design was deemed to be far too costly to install and operate for several reasons: the large central HRV was oversized and the specified flows to each apartment were much higher than the ASHRAE 62.2 rate; an extensive system of ductwork, smoke and fire dampers, and duct chases were specified; ductwork required a significant area of dropped ceilings; and the system lacked individual ventilation control in the apartments

  15. Transpired Solar Collector at NREL's Waste Handling Facility Uses Solar Energy to Heat Ventilation Air (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01

    The transpired solar collector was installed on NREL's Waste handling Facility (WHF) in 1990 to preheat ventilation air. The electrically heated WHF was an ideal candidate for the this technology - requiring a ventilation rate of 3,000 cubic feet per meter to maintain safe indoor conditions.

  16. Workers Adjust Ventilation in WIPP Underground

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    29, 2014 Workers Adjust Ventilation in WIPP Underground On May 28, WIPP workers entered the underground facility to adjust the ventilation system. While underground, they adjusted a regulator on a bulkhead door and closed and taped doors at another underground location to allow more air flow through Panel 7 and better ventilation control in preparation for the planned filter change. Geotechnical experts also conducted underground inspections at several locations to make sure the ground was still

  17. Building America Case Study: Ventilation System Effectiveness...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... particle counts for formaldehyde and other volatile organic compound (VOC) concentrations. ... In House 1, all ventilation systems reduced the formaldehyde concentration compared to the ...

  18. Preoperational test report, primary ventilation system

    SciTech Connect (OSTI)

    Clifton, F.T.

    1997-11-04

    This represents a preoperational test report for Primary Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides vapor space filtered venting of tanks AY101, AY102, AZ101, AZ102. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  19. Commissioning Ventilated Containment Systems in the Laboratory

    SciTech Connect (OSTI)

    Not Available

    2008-08-01

    This Best Practices Guide focuses on the specialized approaches required for ventilated containment systems, understood to be all components that drive and control ventilated enclosures and local exhaust systems within the laboratory. Geared toward architects, engineers, and facility managers, this guide provides information about technologies and practices to use in designing, constructing, and operating operating safe, sustainable, high-performance laboratories.

  20. Effect of Ventilation Strategies on Residential Ozone Levels...

    Office of Scientific and Technical Information (OSTI)

    Effect of Ventilation Strategies on Residential Ozone Levels Citation Details In-Document Search Title: Effect of Ventilation Strategies on Residential Ozone Levels You are...

  1. Effect of Ventilation Strategies on Residential Ozone Levels...

    Office of Scientific and Technical Information (OSTI)

    Effect of Ventilation Strategies on Residential Ozone Levels Citation Details In-Document Search Title: Effect of Ventilation Strategies on Residential Ozone Levels Authors:...

  2. Workers Remove Glove Boxes from Ventilation at Hanford's Plutonium...

    Broader source: Energy.gov (indexed) [DOE]

    processing area have been cleaned, allowing for their removal from ventilation used to control contamination. Addthis Related Articles Employees cut a ventilation duct attached...

  3. Summer Infiltration/Ventilation Test Results from the FRTF Laboratory...

    Energy Savers [EERE]

    Summer InfiltrationVentilation Test Results from the FRTF Laboratory Summer InfiltrationVentilation Test Results from the FRTF Laboratory This presentation was delivered at the ...

  4. Case Study - The Challenge: Improving Ventilation System Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ventilation System Energy Efficiency in a Textile Plant Case Study - The Challenge: Improving Ventilation System Energy Efficiency in a Textile Plant This case study examines how ...

  5. Does Mixing Make Residential Ventilation More Effective? (Conference...

    Office of Scientific and Technical Information (OSTI)

    Make Residential Ventilation More Effective? Ventilation dilutes or removes indoor contaminants to reduce occupant exposure. In a multi-zone environment such as a house, there...

  6. Promising Technology: Variable-Air-Volume Ventilation System

    Broader source: Energy.gov [DOE]

    Variable-air-volume (VAV) ventilation saves energy compared to a constant-air-volume (CAV) ventilation system, mainly by reducing energy consumption associated with fans.

  7. DOE ZERH Webinar: Ventilation and Filtration Strategies with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ventilation and Filtration Strategies with Indoor airPLUS DOE ZERH Webinar: Ventilation and Filtration Strategies with Indoor airPLUS Watch the video or view the presentation ...

  8. Smart Ventilation (RIVEC)- 2014 BTO Peer Review

    Broader source: Energy.gov [DOE]

    Presenter: Iain Walker, Lawrence Berkeley National Laboratory The objective of this project is to minimize the energy required to provide acceptable indoor air quality. High-performance homes built with tight envelopes will benefit most from this technology. Their mechanical ventilation systems dominate for energy use; as the foundation, wall, and roof work together. Smart ventilation is expected to save at least 40% on energy and peak demand. The project is seeking to create an industry partnership to commercialize the current Residential Integrated Ventilation Controller (RIVEC) and is collaborating with Building America’s research teams to improve its control algorithms.

  9. Ceilings and Attics: Install Insulation and Provide Ventilation

    SciTech Connect (OSTI)

    2000-02-01

    This document provides guidelines for installing insulation and managing ventilation through your attic.

  10. Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements

    Broader source: Energy.gov [DOE]

    The webinar will focus on key challenges in multifamily ventilation and strategies to address these challenges.

  11. Test Plan to Evaluate the Relationship Among IAQ, Comfort, Moisture, and Ventilation in Humid Climates

    SciTech Connect (OSTI)

    Widder, Sarah H.; Martin, Eric

    2013-03-15

    This experimental plan describes research being conducted by Pacific Northwest National Laboratory (PNNL), in coordinatation with Florida Solar Energy Center (FSEC), Florida HERO, and Lawrence Berkeley National Laboratory (LBNL) to evaluate the impact of ventilation rate on interior moisture levels, temperature distributions, and indoor air contaminant concentrations. Specifically, the research team will measure concentrations of indoor air contaminants, ventilation system flow rates, energy consumption, and temperature and relative humidity in ten homes in Gainesville, FL to characterize indoor pollutant levels and energy consumption associated with the observed ventilation rates. PNNL and FSEC have collaboratively prepared this experimental test plan, which describes background and context for the proposed study; the experimental design; specific monitoring points, including monitoring equipment, and sampling frequency; key research questions and the associated data analysis approach; experimental logistics, including schedule, milestones, and team member contact information; and clearly identifies the roles and responsibilities of each team in support of project objectives.

  12. Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation

    SciTech Connect (OSTI)

    Logue, J.M.; Price, P.N.; Sherman, M.H.; Singer, B.C.

    2011-07-01

    Intake of chemical air pollutants in residences represents an important and substantial health hazard. Sealing homes to reduce air infiltration can save space conditioning energy, but can also increase indoor pollutant concentrations. Mechanical ventilation ensures a minimum amount of outdoor airflow that helps reduce concentrations of indoor emitted pollutants while requiring some energy for fan(s) and thermal conditioning of the added airflow. This work demonstrates a physics based, data driven modeling framework for comparing the costs and benefits of whole-house mechanical ventilation and applied the framework to new California homes. The results indicate that, on a population basis, the health benefits from reduced exposure to indoor pollutants in New California homes are worth the energy costs of adding mechanical ventilation as specified by ASHRAE Standard 62.2.This study determines the health burden for a subset of pollutants in indoor air and the costs and benefits of ASHRAE's mechanical ventilation standard (62.2) for new California homes. Results indicate that, on a population basis, the health benefits of new home mechanical ventilation justify the energy costs.

  13. Ventilation Systems for Cooling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ventilation can help keep your home cool during hot days. To avoid heat buildup in your home, plan ahead by landscaping your lot to shade your house. If you replace your roof,...

  14. Building America Webinar: Ventilation in Multifamily Buildings

    Broader source: Energy.gov [DOE]

    This webinar was presented by research team Consortium for Advanced Residential Buildings (CARB), and discussed ventilation strategies for multifamily buildings, including how to successfully implement those strategies through smart design, specification, and construction techniques.

  15. Retrofit Ventilation Strategies in Multifamily Buildings Webinar |

    Energy Savers [EERE]

    Department of Energy Retrofit Ventilation Strategies in Multifamily Buildings Webinar Retrofit Ventilation Strategies in Multifamily Buildings Webinar Slides from the Building America webinar on November 30, 2011. PDF icon webinar_hybrid_insulation_20111130.pdf More Documents & Publications Building America Expert Meeting: Foundations Research Results Building America Expert Meeting: Interior Insulation Retrofit of Mass Masonry Wall Assemblies Building America Technology Solutions for

  16. Evaluating Ventilation Systems for Existing Homes

    SciTech Connect (OSTI)

    Aldrich, Robb; Arena, Lois

    2013-02-01

    In an effort to improve housing options near Las Vegas, Nevada, the Clark County Community Resources Division (CCCRD) performs substantial renovations to foreclosed homes. After dramatic energy, aesthetic, and health and safety improvements are made, homes are rented or sold to qualified residents. This report describes the evaluation and selection of ventilation systems for these homes, including key considerations when selecting an ideal system. The report then describes CCCRD’s decision process with respect to ventilation.

  17. Critical Question #2: What are the Best Practices for Ventilation Specific to Multifamily Buildings?

    Broader source: Energy.gov [DOE]

    What is the best practice to address ASHRAE 62.2 Addendum J (multifamily)? Why is exhaust only (with supply in hallway) the current standard practice? Are there options to avoid air exchange with neighbors? How do stack and wind pressures affect ventilation performance in multifamily homes? What systems actually function as intended and can be implemented by builders and contractors?

  18. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy ? FY11 Final Report

    SciTech Connect (OSTI)

    Sidheswaran, Meera; Destaillats, Hugo; Cohn, Sebastian; Sullivan, Douglas P.; Fisk, William J.

    2011-10-31

    The research carried out in this project focuses on developing novel volatile organic compounds (VOCs) air cleaning technologies needed to enable energy-saving reductions in ventilation rates. we targeted a VOC air cleaning system that could enable a 50% reduction in ventilation rates. In a typical commercial HVAC system that provides a mixture of recirculated and outdoor air, a VOC air cleaner in the supply airstream must have a 15% to 20% VOC removal efficiency to counteract a 50% reduction in outdoor air supply.

  19. British architectural concepts of natural ventilation

    SciTech Connect (OSTI)

    Cook, J.

    1997-12-31

    Recent large buildings in Britain are reviewed for their demonstration of programmatic determinates and architectural concepts of natural ventilation, systems that reduce electric use because they use natural convection. In size they range from the 5,000 square feet of Darwin College at Cambridge to the Inland Revenue Center at Nottingham with 400,000 square feet. The mix of passive and conventional mechanical systems of Ionica Office Building, Cambridge suggests the newest strategy of deliberate redundancy in what might better be called assisted natural ventilation. Daylighting, a distinctly different technique is typically coincident. Among the programmatic concepts are unsealed buildings, displacement ventilation, and user preference for immediate environmental control and strong contact with the outdoor environment. Architectural concepts include atriums, exhaust towers, and exposed structural concrete ceilings. These applications reinforce green policies and involve leadership from prominent architects and clients.

  20. Optimization of Ventilation Energy Demands and Indoor Air Quality in High-Performance Homes

    SciTech Connect (OSTI)

    Hun, Diana E; Jackson, Mark C; Shrestha, Som S

    2014-01-01

    High-performance homes require that ventilation energy demands and indoor air quality (IAQ) be simultaneously optimized. We attempted to bridge these two areas by conducting tests in a research house located in Oak Ridge, TN, that was 20 months old, energy-efficient (i.e., expected to consume 50% less energy than a house built per the 2006 IRC), tightly-built (i.e., natural ventilation rate ~0.02 h-1), unoccupied, and unfurnished. We identified air pollutants of concern in the test home that could generally serve as indicators of IAQ, and conduced field experiments and computer simulations to determine the effectiveness and energy required by various techniques that lessened the concentration of these contaminants. Formaldehyde was selected as the main pollutant of concern among the contaminants that were sampled in the initial survey because it was the only compound that showed concentrations that were greater than the recommended exposure levels. Field data indicate that concentrations were higher during the summer primarily because emissions from sources rise with increases in temperature. Furthermore, supply ventilation and gas-phase filtration were effective means to reduce formaldehyde concentrations; however, exhaust ventilation had minimal influence on this pollutant. Results from simulations suggest that formaldehyde concentrations obtained while ventilating per ASHRAE 62.2-2010 could be decreased by about 20% from May through September through three strategies: 1) increasing ASHRAE supply ventilation by a factor of two, 2) reducing the thermostat setpoint from 76 to 74 F, or 3) running a gas-phase filtration system while decreasing supply ventilation per ASHRAE by half. In the mixed-humid climate of Oak Ridge, these strategies caused increases in electricity cost of ~$5 to ~$15/month depending on outdoor conditions.

  1. A multiscale MDCT image-based breathing lung model with time-varying regional ventilation

    SciTech Connect (OSTI)

    Yin, Youbing, E-mail: youbing-yin@uiowa.edu [Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States) [Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States); IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Department of Radiology, The University of Iowa, Iowa City, IA 52242 (United States); Choi, Jiwoong, E-mail: jiwoong-choi@uiowa.edu [Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States) [Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States); IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Hoffman, Eric A., E-mail: eric-hoffman@uiowa.edu [Department of Radiology, The University of Iowa, Iowa City, IA 52242 (United States); Department of Biomedical Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242 (United States); Tawhai, Merryn H., E-mail: m.tawhai@auckland.ac.nz [Auckland Bioengineering Institute, The University of Auckland, Auckland (New Zealand); Lin, Ching-Long, E-mail: ching-long-lin@uiowa.edu [Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States) [Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States); IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242 (United States)

    2013-07-01

    A novel algorithm is presented that links local structural variables (regional ventilation and deforming central airways) to global function (total lung volume) in the lung over three imaged lung volumes, to derive a breathing lung model for computational fluid dynamics simulation. The algorithm constitutes the core of an integrative, image-based computational framework for subject-specific simulation of the breathing lung. For the first time, the algorithm is applied to three multi-detector row computed tomography (MDCT) volumetric lung images of the same individual. A key technique in linking global and local variables over multiple images is an in-house mass-preserving image registration method. Throughout breathing cycles, cubic interpolation is employed to ensure C{sub 1} continuity in constructing time-varying regional ventilation at the whole lung level, flow rate fractions exiting the terminal airways, and airway deformation. The imaged exit airway flow rate fractions are derived from regional ventilation with the aid of a three-dimensional (3D) and one-dimensional (1D) coupled airway tree that connects the airways to the alveolar tissue. An in-house parallel large-eddy simulation (LES) technique is adopted to capture turbulent-transitional-laminar flows in both normal and deep breathing conditions. The results obtained by the proposed algorithm when using three lung volume images are compared with those using only one or two volume images. The three-volume-based lung model produces physiologically-consistent time-varying pressure and ventilation distribution. The one-volume-based lung model under-predicts pressure drop and yields un-physiological lobar ventilation. The two-volume-based model can account for airway deformation and non-uniform regional ventilation to some extent, but does not capture the non-linear features of the lung.

  2. Modeling particle loss in ventilation ducts

    SciTech Connect (OSTI)

    Sippola, Mark R.; Nazaroff, William W.

    2003-04-01

    Empirical equations were developed and applied to predict losses of 0.01-100 {micro}m airborne particles making a single pass through 120 different ventilation duct runs typical of those found in mid-sized office buildings. For all duct runs, losses were negligible for submicron particles and nearly complete for particles larger than 50 {micro}m. The 50th percentile cut-point diameters were 15 {micro}m in supply runs and 25 {micro}m in return runs. Losses in supply duct runs were higher than in return duct runs, mostly because internal insulation was present in portions of supply duct runs, but absent from return duct runs. Single-pass equations for particle loss in duct runs were combined with models for predicting ventilation system filtration efficiency and particle deposition to indoor surfaces to evaluate the fates of particles of indoor and outdoor origin in an archetypal mechanically ventilated building. Results suggest that duct losses are a minor influence for determining indoor concentrations for most particle sizes. Losses in ducts were of a comparable magnitude to indoor surface losses for most particle sizes. For outdoor air drawn into an unfiltered ventilation system, most particles smaller than 1 {micro}m are exhausted from the building. Large particles deposit within the building, mostly in supply ducts or on indoor surfaces. When filters are present, most particles are either filtered or exhausted. The fates of particles generated indoors follow similar trends as outdoor particles drawn into the building.

  3. Building America Webinar: Ventilation Strategies for High Performance Homes, Part I: Application-Specific Ventilation Guidelines

    Broader source: Energy.gov [DOE]

    This webinar, held on Aug. 26, 2015, covered what makes high-performance homes different from a ventilation perspective and how they might need to be treated differently than traditional construction.

  4. Building America Case Study: Sealed Crawl Spaces with Integrated Whole-House Ventilation in a Cold Climate, Ithaca, New York

    SciTech Connect (OSTI)

    2015-09-01

    "9One method of code-compliance for crawlspaces is to seal and insulate the crawlspace, rather than venting to the outdoors. However, codes require mechanical ventilation; either via conditioned supply air from the HVAC system, or a continuous exhaust ventilation strategy. As the CARB's building partner, Ithaca Neighborhood Housing Services, intended to use the unvented crawlspace in a recent development, CARB was interested in investigating a hybrid ventilation method that includes the exhaust air from the crawlspace as a portion of an ASHRAE 62.2 compliant whole-house ventilation strategy. This hybrid ventilation method was evaluated through a series of long-term monitoring tests that observed temperature, humidity, and pressure conditions through the home and crawlspace. Additionally, CARB worked with NREL to perform multi-point tracer gas testing on six separate ventilation strategies - varying portions of 62.2 required flow supplied by the crawlspace fan and an upstairs bathroom fan. The intent of the tracer gas testing was to identify effective Reciprocal Age of Air (RAoA), which is equivalent to the air change rate in well-mixed zones, for each strategy while characterizing localized infiltration rates in several areas of the home.

  5. Development of an Integrated Residential Heating, Ventilation, Cooling, and Dehumidification System for Residences

    SciTech Connect (OSTI)

    Hoeschele, M.A.; D.A. Springer

    2008-06-18

    The Need and the Opportunity Codes such as ASHRAE 90.2 and IECC, and programs such as Energy Star and Builders Challenge, are causing new homes to be built to higher performance standards. As a result sensible cooling loads in new homes are going down, but indoor air quality prerogatives are causing ventilation rates and moisture loads to increase in humid climates. Conventional air conditioners are unable to provide the low sensible heat ratios that are needed to efficiently cool and dehumidify homes since dehumidification potential is strongly correlated with cooling system operating hours. The project team saw an opportunity to develop a system that is at least as effective as a conventional air conditioner plus dehumidifier, removes moisture without increasing the sensible load, reduces equipment cost by integrating components, and simplifies installation. Project Overview Prime contractor Davis Energy Group led a team in developing an Integrated Heating, Ventilation, Cooling, and Dehumidification (I-HVCD) system under the DOE SBIR program. Phase I and II SBIR project activities ran from July 2003 through December 2007. Tasks included: (1) Mechanical Design and Prototyping; (2) Controls Development; (3) Laboratory and Field Testing; and (4) Commercialization Activities Technology Description. Key components of the prototype I-HVCD system include an evaporator coil assembly, return and outdoor air damper, and controls. These are used in conjunction with conventional components that include a variable speed air handler or furnace, and a two-stage condensing unit. I-HVCD controls enable the system to operate in three distinct cooling modes to respond to indoor temperature and relative humidity (RH) levels. When sensible cooling loads are high, the system operates similar to a conventional system but varies supply airflow in response to indoor RH. In the second mode airflow is further reduced, and the reheat coil adds heat to the supply air. In the third mode, the reheat coil adds additional heat to maintain the supply air temperature close to the return air temperature (100% latent cooling). Project Outcomes Key Phase II objectives were to develop a pre-production version of the system and to demonstrate its performance in an actual house. The system was first tested in the laboratory and subsequently underwent field-testing at a new house in Gainesville, Florida. Field testing began in 2006 with monitoring of a 'conventional best practices' system that included a two stage air conditioner and Energy Star dehumidifier. In September 2007, the I-HVCD components were installed for testing. Both systems maintained uniform indoor temperatures, but indoor RH control was considerably better with the I-HVCD system. The daily variation from average indoor humidity conditions was less than 2% for the I-HVCD vs. 5-7% for the base case system. Data showed that the energy use of the two systems was comparable. Preliminary installed cost estimates suggest that production costs for the current I-HVCD integrated design would likely be lower than for competing systems that include a high efficiency air conditioner, dehumidifier, and fresh air ventilation system. Project Benefits This project verified that the I-HVCD refrigeration compacts are compact (for easy installation and retrofit) and can be installed with air conditioning equipment from a variety of manufacturers. Project results confirmed that the system can provide precise indoor temperature and RH control under a variety of climate conditions. The I-HVCD integrated approach offers numerous benefits including integrated control, easier installation, and reduced equipment maintenance needs. Work completed under this project represents a significant step towards product commercialization. Improved indoor RH control and fresh air ventilation are system attributes that will become increasingly important in the years ahead as building envelopes improve and sensible cooling loads continue to fall. Technologies like I-HVCD will be instrumental in meeting goals set by Building America

  6. Performance Assessment of Photovoltaic Attic Ventilator Fans

    Broader source: Energy.gov [DOE]

    A case study of photovoltaic attic ventilator fans was conducted on an occupied single family home in Central Florida. Two fans were installed at mid-summer in an instrumented home where attic air temperature, meteorological conditions and space cooling electric power were measured. The home already had an attic radiant barrier, but still experienced attic air temperatures in excess of 130oF.

  7. Microsoft Word - Ventilation System Sampling Results 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ventilation System Sampling Results Air sampling results before and after the High Efficiency Particulate Air (HEPA) filters at WIPP are available here. Station A samples air before the filters and Station B samples air after passing through the filters. These samples were analyzed following the detection of airborne radioactivity on February 14, 2014. They are not environmental samples, and are not representative of the public or worker breathing zone air samples. They do provide assurance that

  8. Final Report: Part 1. In-Place Filter Testing Instrument for Nuclear Material Containers. Part 2. Canister Filter Test Standards for Aerosol Capture Rates.

    SciTech Connect (OSTI)

    Brown, Austin Douglas; Runnels, Joel T.; Moore, Murray E.; Reeves, Kirk Patrick

    2014-11-02

    A portable instrument has been developed to assess the functionality of filter sand o-rings on nuclear material storage canisters, without requiring removal of the canister lid. Additionally, a set of fifteen filter standards were procured for verifying aerosol leakage and pressure drop measurements in the Los Alamos Filter Test System. The US Department of Energy uses several thousand canisters for storing nuclear material in different chemical and physical forms. Specialized filters are installed into canister lids to allow gases to escape, and to maintain an internal ambient pressure while containing radioactive contaminants. Diagnosing the condition of container filters and canister integrity is important to ensure worker and public safety and for determining the handling requirements of legacy apparatus. This report describes the In-Place-Filter-Tester, the Instrument Development Plan and the Instrument Operating Method that were developed at the Los Alamos National Laboratory to determine the as found condition of unopened storage canisters. The Instrument Operating Method provides instructions for future evaluations of as-found canisters packaged with nuclear material. Customized stainless steel canister interfaces were developed for pressure-port access and to apply a suction clamping force for the interface. These are compatible with selected Hagan-style and SAVY-4000 storage canisters that were purchased from NFT (Nuclear Filter Technology, Golden, CO). Two instruments were developed for this effort: an initial Los Alamos POC (Proof-of-Concept) unit and the final Los Alamos IPFT system. The Los Alamos POC was used to create the Instrument Development Plan: (1) to determine the air flow and pressure characteristics associated with canister filter clogging, and (2) to test simulated configurations that mimicked canister leakage paths. The canister leakage scenarios included quantifying: (A) air leakage due to foreign material (i.e. dust and hair) fouling of o-rings, (B) leakage through simulated cracks in o-rings, and (C) air leakage due to inadequately tightened canister lids. The Los Alamos POC instrument determined pertinent air flow and pressure quantities, and this knowledge was used to specify a customized Isaac (Z axis, Salt Lake City, UT) leak test module. The final Los Alamos IPFT (incorporating the Isaac leak test module) was used to repeat the tests in the Instrument Development Plan (with simulated filter clogging tests and canister leak pathway tests). The Los Alamos IPFT instrument is capable of determining filter clogging and leak rate conditions, without requiring removal of the container lid. The IPFT measures pressure decay rate from 1.7E-03 in WC/sec to 1.7E-01 in WC/sec. On the same unit scale, helium leak testing of canisters has a range from 5.7E-07 in WC/sec to 1.9E-03 in WC/sec. For a 5-quart storage canister, the IPFT measures equivalent leak flow rates from 0.03 to 3.0 cc/sec. The IPFT does not provide the same sensitivity as helium leak testing, but is able to gauge the assembled condition of as-found and in-situ canisters.

  9. Performance evaluation and design guidelines for displacement ventilation

    SciTech Connect (OSTI)

    Yuan, X.; Chen, Q.; Glicksman, L.R.

    1999-07-01

    This paper evaluates the performance of traditional displacement ventilation systems for small offices, large offices with partitions, classrooms, and industrial workshops under US thermal and flow boundary conditions, such as a high cooling load. With proper design, displacement ventilation can maintain a thermally comfortable environment that has a low air velocity, a small temperature difference between the head and foot level, and a low percentage of dissatisfied people. Compared with conventional mixing ventilation, displacement ventilation may provide better indoor air quality in the occupied zone when the contaminant sources are associated with the heat sources. The mean age of air is younger, and the ventilation effectiveness is higher. Based on results from Scandinavian countries and the authors' investigation of US buildings, this paper presents guidelines for designing displacement ventilation in the US.

  10. Case Study - The Challenge: Improving Ventilation System Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in a Textile Plant | Department of Energy Ventilation System Energy Efficiency in a Textile Plant Case Study - The Challenge: Improving Ventilation System Energy Efficiency in a Textile Plant This case study examines how Nisshinbo California, Inc. (NCI) worked with ADI Control Techniques Drives (ADI-CT) of Hayward, California, to improve ventilation system performance in its Fresno, California, textile plant. The company retrofitted 15 of the system's fan motors with variable frequency

  11. Research Shows Ventilated Auto Seats Improve Fuel Economy, Comfort - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL Research Shows Ventilated Auto Seats Improve Fuel Economy, Comfort March 2, 2006 Golden, Colo. - The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has demonstrated that ventilated automotive seats not only can improve passenger comfort but also a vehicle's fuel economy. That's because ventilated seats keep drivers and passengers cooler, so they need less air conditioning to be comfortable. NREL's Vehicle Ancillary Loads Reduction team has been

  12. Recommended Ventilation Strategies for Energy-Efficient Production Homes

    SciTech Connect (OSTI)

    Roberson, J.; Brown, R.; Koomey, J.; Warner, J.; Greenberg, S.

    1998-12-01

    This report evaluates residential ventilation systems for the U.S. Environmental Protection Agency's (EPA's) ENERGY STAR{reg_sign} Homes program and recommends mechanical ventilation strategies for new, low-infiltration, energy-efficient, single-family, ENERGY STAR production (site-built tract) homes in four climates: cold, mixed (cold and hot), hot humid, and hot arid. Our group in the Energy Analysis Department at Lawrence Berkeley National Lab compared residential ventilation strategies in four climates according to three criteria: total annualized costs (the sum of annualized capital cost and annual operating cost), predominant indoor pressure induced by the ventilation system, and distribution of ventilation air within the home. The mechanical ventilation systems modeled deliver 0.35 air changes per hour continuously, regardless of actual infiltration or occupant window-opening behavior. Based on the assumptions and analysis described in this report, we recommend independently ducted multi-port supply ventilation in all climates except cold because this strategy provides the safety and health benefits of positive indoor pressure as well as the ability to dehumidify and filter ventilation air. In cold climates, we recommend that multi-port supply ventilation be balanced by a single-port exhaust ventilation fan, and that builders offer balanced heat-recovery ventilation to buyers as an optional upgrade. For builders who continue to install forced-air integrated supply ventilation, we recommend ensuring ducts are airtight or in conditioned space, installing a control that automatically operates the forced-air fan 15-20 minutes during each hour that the fan does not operate for heating or cooling, and offering ICM forced-air fans to home buyers as an upgrade.

  13. Single-shell tank ventilation upgrades needs analysis report

    SciTech Connect (OSTI)

    Kriskovich, J.R., Fluor Daniel Hanford

    1997-02-03

    This report was written to comply with the objectives of the Hanford Federal Facility Agreement and Consent Order, Tri-Party Agreement Milestone M-43-03 Provide to the Washington State Department of Ecology and Department of Health the Results of the Single-Shell Tank Ventilation Upgrades Needs Analysis. The needs analysis consists of identifying the current type and status of each single-shell tank ventilation system, identifying current and projected authorization basis requirements, and identifying ventilation system compliance deficiencies.

  14. Building America Technology Solutions Case Study: Ventilation System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Effectiveness and Tested Indoor Air Quality Impacts | Department of Energy Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts Building America Technology Solutions Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts Building Science Corporation tested the effectiveness of various ventilation systems at two unoccupied, single-family lab homes at the University of Texas at Tyler. The only difference was that House 1 had a vented

  15. Building America Technologies Solutions Case Study: Ventilation System

    Energy Savers [EERE]

    Effectiveness and Tested Indoor Air Quality Impacts | Department of Energy Technologies Solutions Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts Building America Technologies Solutions Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts In this study, the Building America team Building Science Corporation tested the effectiveness of various ventilation systems at two unoccupied, single-family lab homes at the University of

  16. Outside Air Ventilation Controller - Building America Top Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    See an example of this Top Innovation in action. Find more case studies of Building America projects across the country that are implementing outside air ventilation controllers. ...

  17. Building America Case Study: Selecting Ventilation Systems for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Selecting the best ventilation system involves balancing performance, eff- ciency, cost, required maintenance, and several other factors. This case study outlines questions to ...

  18. Microsoft Word - Determination of Class to Update Ventilation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Original Signatures on File Determination of Class Modification Update Ventilation Language for Consistency Waste Isolation Pilot Plant Carlsbad, New Mexico Permit...

  19. Ventilation Industrielle de Bretagne VIB | Open Energy Information

    Open Energy Info (EERE)

    Sector: Geothermal energy, Solar Product: Ploudalmezeau-based company producing and marketing energy efficient and ventilation products including air source heat pumps,...

  20. Issue #9: What are the Best Ventilation Techniques?

    Broader source: Energy.gov [DOE]

    How do we address ventilation in all climates? What is the best compromise between occupant health and safety and energy efficiency?

  1. Energy and IAQ Implications of Residential Ventilation Cooling

    SciTech Connect (OSTI)

    Turner, William; Walker, Iain

    2014-08-01

    This study evaluates the energy, humidity and indoor air quality (IAQ) implications of residential ventilation cooling in all U.S. IECC climate zones. A computer modeling approach was adopted, using an advanced residential building simulation tool with airflow, energy and humidity models. An economizer (large supply fan) was simulated to provide ventilation cooling while outdoor air temperatures were lower than indoor air temperatures (typically at night). The simulations were performed for a full year using one-minute time steps to allow for scheduling of ventilation systems and to account for interactions between ventilation and heating/cooling systems.

  2. Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements

    Broader source: Energy.gov [DOE]

    This Building America webinar, held on Sept. 24, 2014, focused on key challenges in multifamily ventilation and strategies to address these challenges.

  3. Radionuclide Releases During Normal Operations for Ventilated Tanks

    SciTech Connect (OSTI)

    Blunt, B.

    2001-09-24

    This calculation estimates the design emissions of radionuclides from Ventilated Tanks used by various facilities. The calculation includes emissions due to processing and storage of radionuclide material.

  4. C-106 tank process ventilation test

    SciTech Connect (OSTI)

    Bailey, J.W.

    1998-07-20

    Project W-320 Acceptance Test Report for tank 241-C-106, 296-C-006 Ventilation System Acceptance Test Procedure (ATP) HNF-SD-W320-012, C-106 Tank Process Ventilation Test, was an in depth test of the 296-C-006 ventilation system and ventilation support systems required to perform the sluicing of tank C-106. Systems involved included electrical, instrumentation, chiller and HVAC. Tests began at component level, moved to loop level, up to system level and finally to an integrated systems level test. One criteria was to perform the test with the least amount of risk from a radioactive contamination potential stand point. To accomplish this a temporary configuration was designed that would simulate operation of the systems, without being connected directly to the waste tank air space. This was done by blanking off ducting to the tank and connecting temporary ducting and an inlet air filter and housing to the recirculation system. This configuration would eventually become the possible cause of exceptions. During the performance of the test, there were points where the equipment did not function per the directions listed in the ATP. These events fell into several different categories. The first and easiest problems were field configurations that did not match the design documentation. This was corrected by modifying the field configuration to meet design documentation and reperforming the applicable sections of the ATP. A second type of problem encountered was associated with equipment which did not operate correctly, at which point an exception was written against the ATP, to be resolved later. A third type of problem was with equipment that actually operated correctly but the directions in the ATP were in error. These were corrected by generating an Engineering Change Notice (ECN) against the ATP. The ATP with corrected directions was then re-performed. A fourth type of problem was where the directions in the ATP were as the equipment should operate, but the design of the equipment was not correct for that type of operation. To correct this problem an ECN was generated against the design documents, the equipment modified accordingly, and the ATP re-performed. The last type of problem was where the equipment operated per the direct ions in the ATP, agreed with the design documents, yet violated requirements of the Basis of Interim Operation (BIO). In this instance a Non Conformance Report (NCR) was generated. To correct problems documented on an NCR, an ECN was generated to modify the design and field work performed, followed by retesting to verify modifications corrected noted deficiencies. To expedite the completion of testing and maintain project schedules, testing was performed concurrent with construct on, calibrations and the performance of other ATP`s.

  5. Guide to Closing and Conditioning Ventilated Crawlspaces

    SciTech Connect (OSTI)

    Dickson, Bruce

    2013-01-01

    This how-to guide explains the issues and concerns with conventional ventilated crawlspaces and provides prescriptive measures for improvements that will create healthier and more durable spaces. The methods described in this guide are not the only acceptable ways to treat a crawlspace but represent a proven strategy that works in many areas of the United States. The designs discussed in this guide may or may not meet the local building codes and as such will need to be researched before beginning the project.

  6. A simplified model for estimating population-scale energy impacts of building envelope air-tightening and mechanical ventilation retrofits

    SciTech Connect (OSTI)

    Logue, J. M.; Turner, W. J.N.; Walker, I. S.; Singer, B. C.

    2015-07-01

    Changing the air exchange rate of a home (the sum of the infiltration and mechanical ventilation airflow rates) affects the annual thermal conditioning energy. Large-scale changes to air exchange rates of the housing stock can significantly alter the residential sector’s energy consumption. However, the complexity of existing residential energy models is a barrier to the accurate quantification of the impact of policy changes on a state or national level.

  7. Hybrid Ventilation Optimization and Control Research and Development |

    Energy Savers [EERE]

    Department of Energy Hybrid Ventilation Optimization and Control Research and Development Hybrid Ventilation Optimization and Control Research and Development Credit: Massachusetts Institute of Technology Credit: Massachusetts Institute of Technology Lead Performer: Massachusetts Institute of Technology - Cambridge, MA Partners: -- Chongqing University - Chongqing, China -- Tongji University - Shanghai, China -- Tianjin University - Tianjin, China -- Chongqing Fu Tai Construction Group

  8. Functional Area Qualification Standards | Department of Energy

    Office of Environmental Management (EM)

    Standards Functional Area Qualification Standards Qualification Standard Qualification Standard Number Approved Aviation Manager DOE-STD-1165-2003 (CN-1) 2009-12 Aviation Safety Officer DOE-STD-1164-2003 (CN-1) 2010-01 Chemical Processing DOE-STD-1176-2010 2010-02 Civil/Structural Engineering DOE-STD-1182-2014 2014-09 Confinement Ventilation and Process Gas Treatment DOE-STD-1168-2013 2013-10 Construction Management DOE-STD-1180-2004 2004-03 Criticality Safety DOE-STD-1173-2009 2009-04

  9. Does Mixing Make Residential Ventilation More Effective? (Conference...

    Office of Scientific and Technical Information (OSTI)

    Service, Springfield, VA at www.ntis.gov. Ventilation dilutes or removes indoor contaminants to reduce occupant exposure. In a multi-zone environment such as a house, there...

  10. Hybrid Ventilation Optimization and Control Research and Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    that come with it. The long-term goal is to reach the 1.6 billion market that includes design and architecture firms, hybrid ventilation equipment companies, and building...

  11. Find Standards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Standards Find Standards1354608000000Find StandardsIn IHS, please free up a standard for another person: downloadprint the PDF, then Log Out.NoQuestion? 667-5809library@lanl.go...

  12. Capture and Use of Coal Mine Ventilation Air Methane

    SciTech Connect (OSTI)

    Deborah Kosmack

    2008-10-31

    CONSOL Energy Inc., in conjunction with MEGTEC Systems, Inc., and the U.S. Department of Energy with the U.S. Environmental Protection Agency, designed, built, and operated a commercial-size thermal flow reversal reactor (TFRR) to evaluate its suitability to oxidize coal mine ventilation air methane (VAM). Coal mining, and particularly coal mine ventilation air, is a major source of anthropogenic methane emissions, a greenhouse gas. Ventilation air volumes are large and the concentration of methane in the ventilation air is low; thus making it difficult to use or abate these emissions. This test program was conducted with simulated coal mine VAM in advance of deploying the technology on active coal mine ventilation fans. The demonstration project team installed and operated a 30,000 cfm MEGTEC VOCSIDIZER oxidation system on an inactive coal mine in West Liberty, WV. The performance of the unit was monitored and evaluated during months of unmanned operation at mostly constant conditions. The operating and maintenance history and how it impacts the implementation of the technology on mine fans were investigated. Emission tests showed very low levels of all criteria pollutants at the stack. Parametric studies showed that the equipment can successfully operate at the design specification limits. The results verified the ability of the TFRR to oxidize {ge}95% of the low and variable concentration of methane in the ventilation air. This technology provides new opportunities to reduce greenhouse gas emissions by the reduction of methane emissions from coal mine ventilation air. A large commercial-size installation (180,000 cfm) on a single typical mine ventilation bleeder fan would reduce methane emissions by 11,000 to 22,100 short tons per year (the equivalent of 183,000 to 366,000 metric tonnes carbon dioxide).

  13. Hybrid ventilation optimization and control research and development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid ventilation optimization and control research and development 2014 Building Technologies Office Peer Review Alonso Dominguez, alonso@mit.edu Leon Glicksman, glicks@mit.edu Project Summary Timeline: Start date: August 2011 Planned end date: September 2015 Key Milestones 1. Enhanced CoolVent to simulate joint natural ventilation and air conditioning: illustrated energy savings for different US climates, building types (ASHRAE Winter Meeting 2014) 2. Obtained monitoring results for several

  14. Moisture and Ventilation Solutions in Hot, Humid Climates: Florida

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufactured Housing - Building America Top Innovation | Department of Energy Moisture and Ventilation Solutions in Hot, Humid Climates: Florida Manufactured Housing - Building America Top Innovation Moisture and Ventilation Solutions in Hot, Humid Climates: Florida Manufactured Housing - Building America Top Innovation Photo of workers on the roof of a home. This Top Innovation profile describes research by Building America Partnership for Improved Residential Construction team to diagnose

  15. Heating, Ventilation, and Air Conditioning Projects | Department of Energy

    Office of Environmental Management (EM)

    Heating, Ventilation, and Air Conditioning Projects Heating, Ventilation, and Air Conditioning Projects Credit: Oak Ridge National Lab 13-Energy Efficiency Ratio Window Air Conditioner Lead Performer: Oak Ridge National Laboratory - Oak Ridge, TN Partners: General Electric - Fairfield, CT Three new/under-utilized ground loop designs being evaluated for their ground loop cost reduction potential<br /> Credit: Oak Ridge National Lab Advanced Ground Source Heat Pump Technology for

  16. FAQS Qualification Card - Confinement Ventilation and Process...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in ...

  17. Technical Standards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Review for Technical Standards of Interest Legend: Red Technical Standards Program Activities and Responsibilities Blue Directives Program Activities and Responsibilities...

  18. Particle deposition in ventilation ducts: Connectors, bends anddeveloping flow

    SciTech Connect (OSTI)

    Sippola, Mark R.; Nazaroff, William W.

    2004-03-01

    In ventilation duct flow the turbulent flow profile is commonly disturbed or not fully developed and these conditions are likely to influence particle deposition to duct surfaces. Particle deposition rates at eight S-connectors, in two 90{sup o} duct bends and in two ducts where the turbulent flow profile was not fully developed were measured in a laboratory duct system with both galvanized steel and internally insulated ducts with hydraulic diameters of 15.2 cm. In the steel duct system, experiments with nominal particle diameters of 1, 3, 5, 9 and 16 {micro}m were conducted at each of three nominal air speeds: 2.2, 5.3 and 9.0 m/s. In the insulated duct system, deposition of particles with nominal diameters of 1, 3, 5, 8 and 13 {micro}m was measured at nominal air speeds of 2.2, 5.3 and 8.8 m/s. Fluorescent techniques were used to directly measure the deposition velocities of monodisperse fluorescent particles to duct surfaces. Deposition at S-connectors, in bends and in straight ducts with developing turbulence was often greater than deposition in straight ducts with fully developed turbulence for equal particle sizes, air speeds and duct surface orientations. Deposition rates at all locations were found to increase with an increase in particle size or air speed. High deposition rates at S-connectors resulted from impaction and these rates were nearly independent of the orientation of the S-connector. Deposition rates in the two 90{sup o} bends differed by more than an order of magnitude in some cases, probably because of the difference in turbulence conditions at the bend inlets. In straight steel ducts where the turbulent flow profile was developing, the deposition enhancement relative to fully developed turbulence generally increased with air speed and decreased with downstream distance from the duct inlet. This enhancement was greater at the duct ceiling and wall than at the duct floor. In insulated ducts, deposition enhancement was less pronounced overall than in steel ducts. Trends that were observed in steel ducts were present, but weaker, in insulated ducts.

  19. Yukawa radiative corrections to the triple self-couplings of neutral CP-even Higgs bosons and to the H {sup {yields}} hh decay rate within the minimal supersymmetric standard model

    SciTech Connect (OSTI)

    Philippov, Yu. P.

    2007-07-15

    Within the minimal supersymmetric standard model, four self-couplings, {lambda}{sub hhh}, {lambda}{sub hhH}, {lambda}{sub hHH}, and {lambda}{sub HHH}, and the decay rate {gamma}(H {sup {yields}} hh) are calculated with allowance for one-loop corrections induced by the contribution of the t, b, and c quarks, the {tau} lepton, and the corresponding superpartners and with the aid of the on-shell renormalization scheme. An analysis of the dependences of these features on tan{beta} and the mass of the A Higgs boson, M{sub A}, shows that, in a specific region of the model-parameter space, the calculated corrections can make a significant contribution to the couplings and decay rate in the one-loop approximation. The inclusion of the radiative corrections in question is mandatory in reconstructing the Higgs potential.

  20. Improving Ventilation and Saving Energy: Final Report on Indoor Environmental Quality and Energy Monitoring in Sixteen Relocatable Classrooms

    SciTech Connect (OSTI)

    Apte, Michael G.; Norman, Bourassa; Faulkner, David; Hodgson, Alfred T.; Hotchi, Toshfumi; Spears, Michael; Sullivan, Douglas P.; Wang, Duo

    2008-04-04

    An improved HVAC system for portable classrooms was specified to address key problems in existing units. These included low energy efficiency, poor control of and provision for adequate ventilation, and excessive acoustic noise. Working with industry, a prototype improved heat pump air conditioner was developed to meet the specification. A one-year measurement-intensive field-test of ten of these IHPAC systems was conducted in occupied classrooms in two distinct California climates. These measurements are compared to those made in parallel in side by side portable classrooms equipped with standard 10 SEER heat pump air conditioner equipment. The IHPAC units were found to work as designed, providing predicted annual energy efficiency improvements of about 36 percent to 42 percent across California's climate zones, relative to 10 SEER units. Classroom ventilation was vastly improved as evidenced by far lower indoor minus outdoor CO2 concentrations. TheIHPAC units were found to provide ventilation that meets both California State energy and occupational codes and the ASHRAE minimum ventilation requirements; the classrooms equipped with the 10 SEER equipment universally did not meet these targets. The IHPAC system provided a major improvement in indoor acoustic conditions. HVAC system generated background noise was reduced in fan-only and fan and compressor modes, reducing the nose levels to better than the design objective of 45 dB(A), and acceptable for additional design points by the Collaborative on High Performance Schools. The IHPAC provided superior ventilation, with indoor minus outdoor CO2 concentrations that showed that the Title 24 minimum ventilation requirement of 15 CFM per occupant was nearly always being met. The opposite was found in the classrooms utilizing the 10 SEER system, where the indoor minus outdoor CO2 concentrations frequently exceeded levels that reflect inadequate ventilation. Improved ventilation conditions in the IHPAC lead to effective removal of volatile organic compounds and aldehydes, on average lowering the concentrations by 57 percent relative to the levels in the 10 SEER classrooms. The average IHPAC to 10 SEER formaldehyde ratio was about 67 percent, indicating only a 33 percent reduction of this compound in indoor air. The IHPAC thermal control system provided less variability in occupied classroom temperature than the 10 SEER thermostats. The average room temperatures in all seasons tended to be slightly lower in the IHPAC classrooms, often below the lower limit of the ASHRAE 55 thermal comfort band. State-wide and national energy modeling provided conservative estimates of potential energy savings by use of the IHPAC system that would provide payback a the range of time far lower than the lifetime of the equipment. Assuming electricity costs of $0.15/kWh, the perclassroom range of savings is from about $85 to $195 per year in California, and about $89 to $250 per year in the U.S., depending upon the city. These modelsdid not include the non-energy benefits to the classrooms including better air quality and acoustic conditions that could lead to improved health and learning in school. Market connection efforts that were part of the study give all indication that this has been a very successful project. The successes include the specification of the IHPAC equipment in the CHPS portable classroom standards, the release of a commercial product based on the standards that is now being installed in schools around the U.S., and the fact that a public utility company is currently considering the addition of the technology to its customer incentive program. These successes indicate that the IHPAC may reach its potential to improve ventilation and save energy in classrooms.

  1. Standards, Ethics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Standards, Ethics Ombuds Standards and Ethics Committed to the fair and equitable treatment of all employees, contractors, and persons doing business with the Laboratory. Contact...

  2. Interconnection Standards

    Broader source: Energy.gov [DOE]

    Note: The North Carolina Utilities Commission approved revised interconnection standards in May 2015. The new standards used the Federal Energy Regulatory Commission's most recent Small Generator...

  3. A simplified model for estimating population-scale energy impacts of building envelope air-tightening and mechanical ventilation retrofits

    SciTech Connect (OSTI)

    Logue, Jennifer M.; Turner, William J. N.; Walker, Iain S.; Singer, Brett C.

    2015-01-19

    Changing the air exchange rate of a home (the sum of the infiltration and mechanical ventilation airflow rates) affects the annual thermal conditioning energy. Large-scale changes to air exchange rates of the housing stock can significantly alter the residential sector's energy consumption. However, the complexity of existing residential energy models is a barrier to the accurate quantification of the impact of policy changes on a state or national level. The Incremental Ventilation Energy (IVE) model developed in this study combines the output of simple air exchange models with a limited set of housing characteristics to estimate the associated change in energy demand of homes. The IVE model was designed specifically to enable modellers to use existing databases of housing characteristics to determine the impact of ventilation policy change on a population scale. The IVE model estimates of energy change when applied to US homes with limited parameterisation are shown to be comparable to the estimates of a well-validated, complex residential energy model.

  4. Ventilation and occupant behavior in two apartment buildings

    SciTech Connect (OSTI)

    Diamond, R.C.; Modera, M.P.; Feustel, H.E.

    1986-10-01

    In this paper we approach the subject of ventilation and occupant behavior in multifamily buildings by asking three questions: (1) why and how do occupants interact with ventilation in an apartment building, (2) how does the physical environment (i.e., building characteristics and climate) affect the ventilation in an apartment, and (3) what methods can be used to answer the first two questions. To investigate these and related questions, two apartment buildings in Chicago were monitored during the 1985-1986 heating season. In addition to collecting data on energy consumption, outdoor temperature, wind speed, and indoor apartment temperatures, we conducted diagnostic measurements and occupant surveys in both buildings. The diagnostic tests measured leakage areas of the individual apartments, both through the exterior envelope and to other apartments. The measured leakage areas are used in conjunction with a multizone air flow model to simulate infiltration and internal air flows under different weather conditions. The occupants were questioned about their attitudes and behavior regarding the comfort, air quality, ventilation, and energy use of their apartments. This paper describes each of the research methods utilized, the results of these efforts, and conclusions that can be drawn about ventilation-occupant interactions in these apartment buildings. We found that there was minimal window opening during the winter, widespread use of auxiliary heating to control thermal comfort, and that the simulations show little outside air entry in the top-floor apartments during periods of low wind speeds. The major conclusion of this work is that a multi-disciplinary approach is required to understand or predict occupant-ventilation interactions. Such an approach must take into account the physical characteristics of the building and the climate, as well as the preferences and available options of the occupants.

  5. Interconnection Standards

    Broader source: Energy.gov [DOE]

    Connecticut's interconnection guidelines, like FERC's standards, include provisions for three levels of systems:

  6. Heating, Ventilation and Air Conditioning Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... A major N.C. Manufacturer Tested 2-17 Months (yr 1985) .052KWH (.13 EP) 2700 HoursYear 15 HP COGGED BELT 10.67 STANDARD BELT 3.33 PREMIUM BELT 7.34 BRAND A 4.4% BRAND B ...

  7. Water spray ventilator system for continuous mining machines

    DOE Patents [OSTI]

    Page, Steven J. (Pittsburgh, PA); Mal, Thomas (Pittsburgh, PA)

    1995-01-01

    The invention relates to a water spray ventilator system mounted on a continuous mining machine to streamline airflow and provide effective face ventilation of both respirable dust and methane in underground coal mines. This system has two side spray nozzles mounted one on each side of the mining machine and six spray nozzles disposed on a manifold mounted to the underside of the machine boom. The six spray nozzles are angularly and laterally oriented on the manifold so as to provide non-overlapping spray patterns along the length of the cutter drum.

  8. Functional Area Qualification Standard Job Task Analyses | Department of

    Office of Environmental Management (EM)

    Energy Job Task Analyses Functional Area Qualification Standard Job Task Analyses DOE Aviation Manager DOE Aviation Safety Officer Chemical Processing Civil/Structural Engineering Confinement Ventilation and Process Gas Treatment Construction Management Criticality Safety Deactivation and Decommissioning Electrical Systems and Safety Oversight Emergency Management Environmental Compliance Environmental Restoration Facility Representative Fire Protection Engineering General Technical Base

  9. Advanced Manufacturing Office: Case Study - The Challenge: Improving Ventilation System Energy Efficiency in a Textile Plant

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cotton Fabric Process: Facility Ventilation System: Ventilation Fans Technology: Variable Frequency Drives (VFDs) Project Profile U.S. Department of Energy - Energy Efficiency and Renewable Energy Advanced Manufacturing Office Case Study - The Challenge: Improving Ventilation System Energy Efficiency in a Textile Plant Summary Company Background Project Overview Project Team The Systems Approach Project Implementation Results Lessons Learned Summary In an effort to improve ventilation system

  10. Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements- Sean Maxwell

    Broader source: Energy.gov [DOE]

    This presentation is included in the Building America webinar, Multifamily Ventilation Strategies and Compartmentalization Requirements, on September 24, 2014.

  11. Building America Top Innovations 2012: Outside Air Ventilation Controller

    SciTech Connect (OSTI)

    none,

    2013-01-01

    venThis Building America Top Innovations profile describes Building America research showing how automated night ventilation can reduce cooling energy costs up to 40% and peak demand up to 50% in Californias hot-dry central valley climates and can eliminate the need for air conditioning altogether in the coastal marine climate.

  12. Outside Air Ventilation Controller- Building America Top Innovation

    Broader source: Energy.gov [DOE]

    This Building America Innovations profile describes Building America research showing automated night ventilation can reduce cooling energy costs up to 40% and peak demand up to 50% in California’s hot-dry central valley climates and can eliminate the need for air conditioning altogether in the coastal marine climate.

  13. Interconnection Standards

    Broader source: Energy.gov [DOE]

    West Virginia's interconnection standards include two levels of review. The qualifications and application fees for each level are as follows:...

  14. Rate Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  15. Experiments measuring particle deposition from fully developed turbulent flow in ventilation ducts

    SciTech Connect (OSTI)

    Sippola, Mark R.; Nazaroff, William W.

    2003-08-01

    Particle deposition in ventilation ducts influences particle exposures of building occupants and may lead to a variety of indoor air quality concerns. Experiments have been performed in a laboratory to study the effects of particle size and air speed on deposition rates of particles from turbulent air flows in galvanized steel and internally insulated ducts with hydraulic diameters of 15.2 cm. The duct systems were constructed of materials typically found in commercial heating, ventilating and air conditioning (HVAC) systems. In the steel duct system, experiments with nominal particle sizes of 1, 3, 5, 9 and 16 {micro}m were conducted at each of three nominal air speeds: 2.2, 5.3 and 9.0 m/s. In the insulated duct system, deposition rates of particles with nominal sizes of 1, 3, 5, 8 and 13 {micro}m were measured at nominal air speeds of 2.2, 5.3 and 8.8 m/s. Fluorescent techniques were used to directly measure the deposition velocities of monodisperse fluorescent particles to duct surfaces (floor, wall and ceiling) at two straight duct sections where the turbulent flow profile was fully developed. In steel ducts, deposition rates were higher to the duct floor than to the wall, which were, in turn, greater than to the ceiling. In insulated ducts, deposition was nearly the same to the duct floor, wall and ceiling for a given particle size and air speed. Deposition to duct walls and ceilings was greatly enhanced in insulated ducts compared to steel ducts. Deposition velocities to each of the three duct surface orientations in both systems were found to increase with increasing particle size or air velocity over the ranges studied. Deposition rates measured in the current experiments were in general agreement with the limited observations of similar systems by previous researchers.

  16. Testing and Validation of Vehicle to Grid Communication Standards |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy and Validation of Vehicle to Grid Communication Standards Testing and Validation of Vehicle to Grid Communication Standards 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon vss055_gowri_2011_p..pdf More Documents & Publications Greenpower Trap Mufflerl System Idaho Operations AMWTP Fact Sheet Heating Ventilation and Air Conditioning Efficiency

  17. Interconnection Standards

    Broader source: Energy.gov [DOE]

    Massachusetts' interconnection standards apply to all forms of distributed generation (DG), including renewables, and to all customers of the state's three investor-owned utilities (Unitil,...

  18. Interconnection Standards

    Broader source: Energy.gov [DOE]

    Virginia has two interconnection standards: one for net-metered systems and one for systems that are not net-metered.

  19. Interconnection Standards

    Broader source: Energy.gov [DOE]

    The interconnection standards approved by the PUC also updated Nevada's net-metering policy, originally enacted in 1997. Previously, Nevada Revised Statute 704.774 addressed basic interconnection...

  20. Interconnection Standards

    Broader source: Energy.gov [DOE]

    NOTE: On March 2016, the NY Public Service Commission (PSC) modified the Standard Interconnection Requirements (SIR) increasing the maximum threshold for interconnection capacity of distributed...

  1. Interconnection Standards

    Broader source: Energy.gov [DOE]

    Technical screens have been established for each level, and the Institute of Electrical and Electronics Engineers 1547 technical standard is used for all interconnections. Reasonable time frames ...

  2. Interconnection Standards

    Broader source: Energy.gov [DOE]

    In response to state legislation enacted in 2001, in September 2004 the Minnesota Public Utilities Commission (MPUC) adopted an order establishing generic standards for utility tariffs for...

  3. Experimental study on the floor-supply displacement ventilation system

    SciTech Connect (OSTI)

    Akimoto, Takashi; Nobe, Tatsuo; Takebayashi, Yoshihisa

    1995-12-31

    These results are presented from a research project to investigate the effects of a floor-supply displacement ventilation system with practical indoor heat loads. The experiments were performed in an experimental chamber (35.2 m{sup 2}) located in a controlled environment chamber. Temperature distributions were measured at seven heights throughout the experimental chamber for each test condition. Data were analyzed to observe thermal stratification as affected by lighting, occupants, and heat loads (personal computers), and its disruption caused by walking and change of air volume. In addition, airflow characteristics and ventilation efficiencies were investigated using a smoke machine, tobacco smoke, dust for industrial testing, and a tracer gas (CO{sub 2}) step-up procedure.

  4. Ventilation of liquefied petroleum gas components from the Valley of Mexico

    SciTech Connect (OSTI)

    Elliott, S.; Blake, D.R.; Sherwood Rowland, F.; Lu, R.; Brown, M.J.; Williams, M.D.; Russell, A.G.; Bossert, J.E.; Streit, G.E.; Santoyo, M.R.; Guzman, F.; Porch, W.M.; McNair, L.A.; Keyantash, J.; Kao, C.J.; Turco, R.P.; Eichinger, W.E.

    1997-09-01

    The saturated hydrocarbons propane and the butane isomers are both indirect greenhouse gases and key species in liquefied petroleum gas (LPG). Leakage of LPG and its component alkanes/alkenes is now thought to explain a significant fraction of the volatile organic burden and oxidative potential in the basin which confines Mexico City. Propane and the butanes, however, are stable enough to escape from the basin. The gas chromatographic measurements which have drawn attention to their sources within the urban area are used here to estimate rates of ventilation into the free troposphere. The calculations are centered on several well studied February/March pollution episodes. Carbon monoxide observations and emissions data are first exploited to provide a rough time constant for the removal of typical inert pollutant species from the valley. The timescale obtained is validated through an examination of meteorological simulations of three-dimensional flow. Heuristic arguments and transport modeling establish that propane and the butanes are distributed through the basin in a manner analogous to CO despite differing emissions functions. Ventilation rates and mass loadings yield outbound fluxes in a box model type computation. Estimated in this fashion, escape from the Valley of Mexico constitutes of the order of half of 1{percent} of the northern hemispheric inputs for both propane and n-butane. Uncertainties in the calculations are detailed and include factors such as flow into the basin via surface winds and the size of the polluted regime. General quantification of the global propane and butane emissions from large cities will entail studies of this type in a variety of locales.{copyright} 1997 American Geophysical Union

  5. Development of a High Latent Effectiveness Energy Recovery Ventilator with Integration into Rooftop Package Equipment

    SciTech Connect (OSTI)

    Gregory M. Dobbs; Norberto O. Lemcoff; Frederick J. Cogswell; Jeffrey T. Benolt

    2006-03-01

    This Final Report covers the Cooperative Program carried out to design and optimize an enhanced flat-plate energy recovery ventilator and integrate it into a packaged unitary (rooftop) air conditioning unit. The project objective was to optimize the design of a flat plate energy recovery ventilator (ERV) core that compares favorably to flat plate air-to-air heat exchanger cores on the market and to cost wise to small enthalpy wheel devices. The benefits of an integrated unit incorporating an enhanced ERV core and a downsized heating/cooling unit were characterized and the design of an integrated unit considering performance and cost was optimized. Phase I was to develop and optimize the design of a membrane based heat exchanger core. Phase II was the creation and observation of a system integrated demonstrator unit consisting of the Enhanced Energy Recovery Ventilator (EERV) developed in Phase I coupled to a standard Carrier 50HJ rooftop packaged unitary air conditioning unit. Phase III was the optimization of the system prior to commercialization based on the knowledge gained in Phase II. To assure that the designs chosen have the possibility of meeting cost objectives, a preliminary manufacturability and production cost study was performed by the Center for Automation Technologies at RPI. Phase I also included a preliminary design for the integrated unit to be further developed in Phase II. This was to assure that the physical design of the heat exchanger designed in Phase I would be acceptable for use in Phase II. An extensive modeling program was performed by the Center for Building Performance & Diagnostics of CMU. Using EnergyPlus as the software, a typical office building with multiple system configurations in multiple climatic zones in the US was simulated. The performance of energy recovery technologies in packaged rooftop HVAC equipment was evaluated. The experimental program carried out in Phases II and III consisted of fabricating and testing a demonstrator unit using Carrier Comfort Network (CCN) based controls. Augmenting the control signals, CCN was also used to monitor and record additional performance data that supported modeling and conceptual understanding. The result of the testing showed that the EERV core developed in Phase I recovered energy in the demonstrator unit at the expected levels based on projections. In fact, at near-ARI conditions the core recovered about one ton of cooling enthalpy when operating with a three-ton rooftop packaged unit.

  6. EOS standards

    SciTech Connect (OSTI)

    Greeff, Carl W

    2011-01-12

    An approach to creating accurate EOS for pressure standards is described. Applications to Cu, Au, and Ta are shown. Extension of the method to high compressions using DFT is illustrated. Comparisons with modern functionals show promise.

  7. Interconnection Standards

    Broader source: Energy.gov [DOE]

    The revised standards provide for three separate levels of interconnection based on system capacity and other requirements. The first level, Tier 1 systems, applies generally to systems up to 25...

  8. Interconnection Standards

    Broader source: Energy.gov [DOE]

    The PUC standards generally apply to investor-owned utilities (IOUs) with 40,000 or more customers and all electric cooperatives. Municipal utilities with 5,000 customers or more are required to ...

  9. Interconnection Standards

    Broader source: Energy.gov [DOE]

    Utah’s interconnection rules are based on the Federal Energy Regulatory Commission’s (FERC) interconnection standards for small generators, adopted in May 2005 by FERC Order 2006. Utah's rules fo...

  10. Interconnection Standards

    Broader source: Energy.gov [DOE]

    The PSC has published two sets of standard forms for interconnection, available on the program web site. One set pertains to systems smaller than 20 kW while the second set applies to larger syst...

  11. Ventilation for an enclosure of a gas turbine and related method

    DOE Patents [OSTI]

    Schroeder, Troy Joseph; Leach, David; O'Toole, Michael Anthony

    2002-01-01

    A ventilation scheme for a rotary machine supported on pedestals within an enclosure having a roof, end walls and side walls with the machine arranged parallel to the side walls, includes ventilation air inlets located in a first end wall of the enclosure; a barrier wall located within the enclosure, proximate the first end wall to thereby create a plenum chamber. The barrier wall is constructed to provide a substantially annular gap between the barrier wall and a casing of the turbine to thereby direct ventilation air axially along the turbine; one or more ventilation air outlets located proximate a second, opposite end wall on the roof of the enclosure. In addition, one or more fans are provided for pulling ventilating air into said plenum chamber via the ventilation air inlets.

  12. Resonant thermonuclear reaction rate

    SciTech Connect (OSTI)

    Haubold, H.J.; Mathai, A.M.

    1986-08-01

    Basic physical principles for the resonant and nonresonant thermonuclear reaction rates are applied to find their standard representations for nuclear astrophysics. Closed-form representations for the resonant reaction rate are derived in terms of Meijer's G-italic-function. Analytic representations of the resonant and nonresonant nuclear reaction rates are compared and the appearance of Meijer's G-italic-function is discussed in physical terms.

  13. Internal combuston engine having separated cylinder head oil drains and crankcase ventilation passages

    DOE Patents [OSTI]

    Boggs, D.L.; Baraszu, D.J.; Foulkes, D.M.; Gomes, E.G.

    1998-12-29

    An internal combustion engine includes separated oil drain-back and crankcase ventilation passages. The oil drain-back passages extend from the cylinder head to a position below the top level of oil in the engine`s crankcase. The crankcase ventilation passages extend from passages formed in the main bearing bulkheads from positions above the oil level in the crankcase and ultimately through the cylinder head. Oil dams surrounding the uppermost portions of the crankcase ventilation passages prevent oil from running downwardly through the crankcase ventilation passages. 4 figs.

  14. Internal combuston engine having separated cylinder head oil drains and crankcase ventilation passages

    DOE Patents [OSTI]

    Boggs, David Lee (Bloomfield Hills, MI); Baraszu, Daniel James (Plymouth, MI); Foulkes, David Mark (Erfstadt, DE); Gomes, Enio Goyannes (Ann Arbor, MI)

    1998-01-01

    An internal combustion engine includes separated oil drain-back and crankcase ventilation passages. The oil drain-back passages extend from the cylinder head to a position below the top level of oil in the engine's crankcase. The crankcase ventilation passages extend from passages formed in the main bearing bulkheads from positions above the oil level in the crankcase and ultimately through the cylinder head. Oil dams surrounding the uppermost portions of the crankcase ventilation passages prevent oil from running downwardly through the crankcase ventilation passages.

  15. Building America Top Innovations 2012: Low-Cost Ventilation in Production Housing

    SciTech Connect (OSTI)

    none,

    2013-01-01

    This Building America Top Innovations profile describes Building America research on simple whole-house ventilation systems that cost less than $350 to install and meet code requirements.

  16. Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements- Joe Lstiburek

    Broader source: Energy.gov [DOE]

    This presentation will be delivered at the U.S. Department of Energy Building America webinar, Multifamily Ventilation Strategies and Compartmentalization Requirements, on September 24, 2014. Joe...

  17. Building America Whole-House Solutions for Existing Homes: Multifamily Individual Heating and Ventilation Systems

    Broader source: Energy.gov [DOE]

    The conversion of an older Massachusetts building into condominiums illustrates a safe, durable, and cost-effective solution for heating and ventilation systems in multifamily buildings.

  18. Low-Cost Ventilation in Production Housing- Building America Top Innovation

    Broader source: Energy.gov [DOE]

    This Building America Innovations profile describes Building America research on simple whole-house ventilation systems that cost less than $350 to install and meet code requirements.

  19. Rate Schedules

    Broader source: Energy.gov [DOE]

    One of the major responsibilities of Southeastern is to design, formulate, and justify rate schedules. Repayment studies prepared by the agency determine revenue requirements and appropriate rate...

  20. Functional Area Qualification Standard Qualification Cards | Department of

    Office of Environmental Management (EM)

    Energy Qualification Cards Functional Area Qualification Standard Qualification Cards Note: 1. Save the document from the website onto your PC and close it. 2. Open the document on your PC. Answer "No" to the question regarding whether to open the documents as read only. Aviation Manager Aviation Safety Officer Chemical Processing Civil Structural Engineering Confinement Ventilation and Process Gas Treatment Construction Management Criticality Safety Deactivation and

  1. Lower-Temperature Subsurface Layout and Ventilation Concepts

    SciTech Connect (OSTI)

    Christine L. Linden; Edward G. Thomas

    2001-06-20

    This analysis combines work scope identified as subsurface facility (SSF) low temperature (LT) Facilities System and SSF LT Ventilation System in the Technical Work Plan for Subsurface Design Section FY 01 Work Activities (CRWMS M&O 2001b, pp. 6 and 7, and pp. 13 and 14). In accordance with this technical work plan (TWP), this analysis is performed using AP-3.10Q, Analyses and Models. It also incorporates the procedure AP-SI.1Q, Software Management. The purpose of this analysis is to develop an overall subsurface layout system and the overall ventilation system concepts that address a lower-temperature operating mode for the Monitored Geologic Repository (MGR). The objective of this analysis is to provide a technical design product that supports the lower-temperature operating mode concept for the revision of the system description documents and to provide a basis for the system description document design descriptions. The overall subsurface layout analysis develops and describes the overall subsurface layout, including performance confirmation facilities (also referred to as Test and Evaluation Facilities) for the Site Recommendation design. This analysis also incorporates current program directives for thermal management.

  2. Text-Alternative Version of Building America Webinar: Ventilation Strategies for High Performance Homes, Part I: Application-Specific Ventilation Guidelines

    Broader source: Energy.gov [DOE]

    This webinar, held on Aug. 26, 2016, covered what makes high-performance homes different from a ventilation perspective and how they might need to be treated differently than traditional construction.

  3. Particle deposition from turbulent flow: Review of published research and its applicability to ventilation ducts in commercial buildings

    SciTech Connect (OSTI)

    Sippola, Mark R.; Nazaroff, William W.

    2002-06-01

    This report reviews published experimental and theoretical investigations of particle deposition from turbulent flows and considers the applicability of this body of work to the specific case of particle deposition from flows in the ducts of heating, ventilating and air conditioning (HVAC) systems. Particle deposition can detrimentally affect the performance of HVAC systems and it influences the exposure of building occupants to a variety of air pollutants. The first section of this report describes the types of HVAC systems under consideration and discusses the components, materials and operating parameters commonly found in these systems. The second section reviews published experimental investigations of particle deposition rates from turbulent flows and considers the ramifications of the experimental evidence with respect to HVAC ducts. The third section considers the structure of turbulent airflows in ventilation ducts with a particular emphasis on turbulence investigations that have been used as a basis for particle deposition models. The final section reviews published literature on predicting particle deposition rates from turbulent flows.

  4. Comparison of freezing control strategies for residential air-to-air heat recovery ventilators

    SciTech Connect (OSTI)

    Phillips, E.G.; Bradley, L.C. ); Chant, R.E. ); Fisher, D.R.

    1989-01-01

    A comparison of the energy performance of defrost and frost control strategies for residential air-to-air heat recovery ventilators (HRV) has been carried out by using computer simulations for various climatic conditions. This paper discusses the results and conclusions from the comparisons and their implications for the heat recovery ventilator manufacturers and system designers.

  5. Sealed Crawl Spaces with Integrated Whole-House Ventilation in a Cold Climate

    SciTech Connect (OSTI)

    Zoeller, William; Williamson, James; Puttafunta, Srikanth

    2015-07-30

    One method of code-compliance for crawlspaces is to seal and insulate the crawlspace, rather than venting to the outdoors. However, codes require mechanical ventilation; either via conditioned supply air from the HVAC system, or a continuous exhaust ventilation strategy. As the CARB's building partner, Ithaca Neighborhood Housing Services, intended to use the unvented crawlspace in a recent

  6. Comparison of energy consumption between displacement and mixing ventilation systems for different U.S. buildings and climates

    SciTech Connect (OSTI)

    Hu, S.; Chen, Q.; Glicksman, L.R.

    1999-07-01

    A detailed computer simulation method was used to compare the energy consumption of a displacement ventilation system with that of a mixing ventilation system for three types of US buildings: a small office, a classroom, and an industrial workshop. The study examined five typical climatic regions as well as different building zones. It was found that a displacement ventilation system may use more fan energy and less chiller and boiler energy than a mixing ventilation system. The total energy consumption is slightly less using a displacement ventilation system. Both systems can use a similarly sized boiler. However, a displacement ventilation system requires a larger air-handling unit and a smaller chiller than the mixing ventilation system. The overall first costs are lower for the displacement ventilation if the system is applied for the core region of a building.

  7. Sealed Crawl Spaces with Integrated Whole-House Ventilation in a Cold Climate

    SciTech Connect (OSTI)

    Zoeller, William; Williamson, James; Puttagunta, Srikanth

    2015-07-01

    One method of code-compliance for crawlspaces is to seal and insulate the crawlspace, rather than venting to the outdoors. However, codes require mechanical ventilation; either via conditioned supply air from the HVAC system, or a continuous exhaust ventilation strategy. As the CARB's building partner, Ithaca Neighborhood Housing Services, intended to use the unvented crawlspace in a recent development, CARB was interested in investigating a hybrid ventilation method that includes the exhaust air from the crawlspace as a portion of an ASHRAE 62.2 compliant whole-house ventilation strategy. This hybrid ventilation method was evaluated through a series of long-term monitoring tests that observed temperature, humidity, and pressure conditions through the home and crawlspace.

  8. Energy Code Enforcement Training Manual : Covering the Washington State Energy Code and the Ventilation and Indoor Air Quality Code.

    SciTech Connect (OSTI)

    Washington State Energy Code Program

    1992-05-01

    This manual is designed to provide building department personnel with specific inspection and plan review skills and information on provisions of the 1991 edition of the Washington State Energy Code (WSEC). It also provides information on provisions of the new stand-alone Ventilation and Indoor Air Quality (VIAQ) Code.The intent of the WSEC is to reduce the amount of energy used by requiring energy-efficient construction. Such conservation reduces energy requirements, and, as a result, reduces the use of finite resources, such as gas or oil. Lowering energy demand helps everyone by keeping electricity costs down. (It is less expensive to use existing electrical capacity efficiently than it is to develop new and additional capacity needed to heat or cool inefficient buildings.) The new VIAQ Code (effective July, 1991) is a natural companion to the energy code. Whether energy-efficient or not, an homes have potential indoor air quality problems. Studies have shown that indoor air is often more polluted than outdoor air. The VIAQ Code provides a means of exchanging stale air for fresh, without compromising energy savings, by setting standards for a controlled ventilation system. It also offers requirements meant to prevent indoor air pollution from building products or radon.

  9. Energy Standard

    Gasoline and Diesel Fuel Update (EIA)

    Standard as requested by Chairman Bingaman November 2011 Analysis of Impacts of a Clean www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as

  10. Ventilation Control of Volatile Organic Compounds in New U.S. Homes: Results of a Controlled Field Study in Nine Residential Units

    SciTech Connect (OSTI)

    Willem, Henry; Hult, Erin L.; Hotchi, Toshifumi; Russell, Marion L.; Maddalena, Randy L.; Singer, Brett C.

    2013-01-01

    In order to optimize strategies to remove airborne contaminants in residences, it is necessary to determine how contaminant concentrations respond to changes in the air exchange rate. The impact of air exchange rate on the indoor concentrations of 39 target volatile organic compounds (VOCs) was assessed by measuring air exchange rates and VOC concentrations at three ventilation settings in nine residences. Active sampling methods were used for VOC concentration measurements, and passive perfluorocarbon tracer gas emitters with active sampling were used to determine the overall air exchange rate corresponding to the VOC measurements at each ventilation setting. The concentration levels and emission rates of the target VOCs varied by as much as two orders of magnitude across sites. Aldehyde and terpene compounds were typically the chemical classes with highest concentrations, followed by alkanes, aromatics, and siloxanes. For each home, VOC concentrations tended to decrease as the air exchange rate was increased, however, measurement uncertainty was significant. The indoor concentration was inversely proportional to air exchange rate for most compounds. For a subset of compounds including formaldehyde, however, the indoor concentration exhibited a non-linear dependence on the timescale for air exchange

  11. Measurements and computations of room airflow with displacement ventilation

    SciTech Connect (OSTI)

    Yuan, X.; Chen, Q.; Glicksman, L.R.; Hu, Y.; Yang, X.

    1999-07-01

    This paper presents a set of detailed experimental data of room airflow with displacement ventilation. These data were obtained from a new environmental test facility. The measurements were conducted for three typical room configurations: a small office, a large office with partitions, and a classroom. The distributions of air velocity, air velocity fluctuation, and air temperature were measured by omnidirectional hot-sphere anemometers, and contaminant concentrations were measured by tracer gas at 54 points in the rooms. Smoke was used to observe airflow. The data also include the wall surface temperature distribution, air supply parameters, and the age of air at several locations in the rooms. A computational fluid dynamics (CFD) program with the Re-Normalization Group (RNG) {kappa}-{epsilon} model was also used to predict the indoor airflow. The agreement between the computed results and measured data of air temperature and velocity is good. However, some discrepancies exist in the computed and measured concentrations and velocity fluctuation.

  12. Should Title 24 Ventilation Requirements Be Amended to

    Office of Scientific and Technical Information (OSTI)

    r n e s t O r l a n d o La w r e n c e B e r k e l e y N a t i o n a l La b o r a t o r y Should Title 24 Ventilation Requirements Be Amended to include an Indoor Air Quality Procedure? William J. Fisk, Spencer M. Dutton, Mark J. Mendell, Wanyu R. Chan E n v iro n m en ta l E n erg y T e c h n o lo g ie s Division May 2013 The research reported here was supported by the California Energy Commission Public Interest Energy Research Program, Energy-Related Environmental Research Program, award

  13. Airflow reduction during cold weather operation of residential heat recovery ventilators

    SciTech Connect (OSTI)

    McGugan, C.A.; Edwards, P.F.; Riley, M.A.

    1987-06-01

    Laboratory measurements of the performance of residential heat recovery ventilators have been carried out for the R-2000 Energy Efficient Home Program. This work was based on a preliminary test procedure developed by the Canadian Standards Association, part of which calls for testing the HRV under cold weather conditions. An environmental chamber was used to simulate outdoor conditions. Initial tests were carried out with an outdoor temperature of -20/sup 0/C; subsequent tests were carried out at a temperature of -25/sup 0/C. During the tests, airflows, temperatures, and relative humidities of airstreams entering and leaving the HRV, along with electric power inputs, were monitored. Frost buildup in the heat exchangers and defrost mechanisms, such as fan shutoff or recirculation, led to reductions in airflows. The magnitude of the reductions is dependent on the design of the heat exchanger and the defrost mechanism used. This paper presents the results of tests performed on a number of HRVs commercially available in Canada at the time of the testing. The flow reductions for the various defrost mechanisms are discussed.

  14. Finance & Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    all of its costs in the rates it charges customers for wholesale electricity and transmission services. The agency is committed to careful cost management consistent with its...

  15. Design and Integrate Improved Systems for Nuclear Facility Ventilation and Exhaust Operations

    SciTech Connect (OSTI)

    Moore, Murray E.

    2014-04-15

    Objective: The objective of this R&D project would complete the development of three new systems and integrate them into a single experimental effort. However, each of the three systems has stand-alone applicability across the DOE complex. At US DOE nuclear facilities, indoor air is filtered and ventilated for human occupancy, and exhaust air to the outdoor environment must be regulated and monitored. At least three technical standards address these functions, and the Los Alamos National Laboratory would complete an experimental facility to answer at least three questions: (1) Can the drag coefficient of a new Los Alamos air mixer be reduced for better operation in nuclear facility exhaust stacks? (2) Is it possible to verify the accuracy of a new dilution method for HEPA filter test facilities? (3) Is there a performance-based air flow metric (volumetric flow or mass flow) for operating HEPA filters? In summary, the three new systems are: a mixer, a diluter and a performance-based metric, respectively. The results of this project would be applicable to at least four technical standards: ANSI N13.1 Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stacks and Ducts of Nuclear Facilities; ASTM F1471 Standard Test Method for Air Cleaning Performance of a High-Efficiency Particulate Air Filter System, ASME N511: In-Service Testing of Nuclear Air Treatment, Heating, Ventilating, and Air-Conditioning Systems, and ASME AG-1: Code On Nuclear Air And Gas Treatment. All of the three proposed new systems must be combined into a single experimental device (i.e. to develop a new function of the Los Alamos aerosol wind tunnel). Technical Approach: The Radiation Protection RP-SVS group at Los Alamos has an aerosol wind tunnel that was originally (2006) designed to evaluate small air samplers (cf. US EPA 40 CFR 53.42). In 2009, the tunnel was modified for exhaust stack verifications per the ANSI N13.1 standard. In 2010, modifications were started on the wind tunnel for testing HEPA filters (cf. ASTM F1471 and ASME N511). This project involves three systems that were developed for testing the 24*24*11 (inch) HEPA filters (i.e. the already mentioned mixer, diluter and metric). Prototypes of the mixer and the diluter have been built and individually tested on a preliminary basis. However, the third system (the HEPA metric method) has not been tested, since that requires complete operability of the aerosol wind tunnel device. (The experimental wind tunnel has test aerosol injection, control and measurement capabilities, and can be heated for temperature dependent measurements.) Benefits: US DOE facilities that use HEPA filters and/or require exhaust stacks from their nuclear facility buildings will benefit from access to the new hardware (mixer and diluter) and performance-based metric (for HEPA filter air flow).

  16. TECHNICAL BASIS FOR VENTILATION REQUIREMENTS IN TANK FARMS OPERATING SPECIFICATIONS DOCUMENTS

    SciTech Connect (OSTI)

    BERGLIN, E J

    2003-06-23

    This report provides the technical basis for high efficiency particulate air filter (HEPA) for Hanford tank farm ventilation systems (sometimes known as heating, ventilation and air conditioning [HVAC]) to support limits defined in Process Engineering Operating Specification Documents (OSDs). This technical basis included a review of older technical basis and provides clarifications, as necessary, to technical basis limit revisions or justification. This document provides an updated technical basis for tank farm ventilation systems related to Operation Specification Documents (OSDs) for double-shell tanks (DSTs), single-shell tanks (SSTs), double-contained receiver tanks (DCRTs), catch tanks, and various other miscellaneous facilities.

  17. Workers Remove Glove Boxes from Ventilation at Hanford’s Plutonium Finishing Plant

    Broader source: Energy.gov [DOE]

    An employee at Hanford’s Plutonium Finishing Plant uses a portable band saw to cut the last ventilation duct attached to glove boxes inside the facility’s former processing area.

  18. DOE ZERH Webinar: Ventilation and Filtration Strategies with Indoor airPLUS (Text Version)

    Broader source: Energy.gov [DOE]

    Below is the text version of the webinar, DOE Zero Energy Ready Home: Ventilation and Filtration Strategies with Indoor airPLUS, presented in August 2014. Watch the presentation.

  19. Alternatives generation and analysis for double-shell tank primary ventilation systems emissions control and monitoring

    SciTech Connect (OSTI)

    SEDERBURG, J.P.

    1999-09-30

    This AGA addresses the question: ''What equipment upgrades, operational changes, and/or other actions are required relative to the DST tanks farms' ventilation systems to support retrieval, staging (including feed sampling), and delivery of tank waste to the Phase I private contractor?'' Issues and options for the various components within the ventilation subsystem affect each other. Recommended design requirements are presented and the preferred alternatives are detailed.

  20. The RENEWABLES PORTFOLIO STANDARD RENEWABLES PORTFOLIO STANDARD |

    Energy Savers [EERE]

    Department of Energy The RENEWABLES PORTFOLIO STANDARD RENEWABLES PORTFOLIO STANDARD The RENEWABLES PORTFOLIO STANDARD RENEWABLES PORTFOLIO STANDARD The broader goal of the RPS is to achieve various benefits associated with renewable energy. These benefits relate to the environment, resource diversity, technology advancement, and in-state economic development. PDF icon THE THE RENEWABLES PORTFOLIO STANDARD RENEWABLES PORTFOLIO STANDARD More Documents & Publications Reference Manual and

  1. Moisture and Ventilation Solutions in Hot, Humid Climates: Florida...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    One manufacturer reported zero moisture-related issues in 35,000 homes built after ... Standard Work Specifications for Single-Family Home Energy Upgrades Building America ...

  2. FAQS Qualification Card – Confinement Ventilation and Process Gas Treatment

    Broader source: Energy.gov [DOE]

    A key element for the Department’s Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA).

  3. Technology Solutions Case Study: Sealed Crawl Space with Integrated Whole-House Ventilation in a Cold Climate

    SciTech Connect (OSTI)

    W. Zoeller, J. Williamson, and S. Puttagunta

    2015-09-01

    The Building America team Consortium for Advanced Residential Buildings (CARB) investigated a hybrid ventilation method that included the exhaust air from the crawl space as part of an ASHRAE 62.2-compliant whole-house ventilation strategy. The CARB team evaluated this hybrid ventilation method through long-term field monitoring of temperature, humidity, and pressure conditions within the crawl spaces of two homes (one occupied and one unoccupied) in New York state.

  4. Current longwall ventilation problems and implications for thick seam longwalls. Final technical report. [133 references

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    The objective of this investigation was to identify, analyze and suggest solutions to ventilation problems of the following mining systems proposed for use in western thick seams; multiple lift longwall; single pass longwall with face height in the range of 12 to 19 feet; longwall sublevel caving. To reach this objective, background information on the regulations and ventilation practices relevant to the three methods was reviewed. This was followed by an identification of ventilation problems including the sources and quantities of methane emissions, respirable coal dust, self ignition and self heating. The problems were then analyzed to determine the probability of occurrence, the cause of the problem, and its consequences. Having analyzed these problems, solutions were described to the problems. The major finding of this effort was that, while certain ventilation difficulties can be isolated peculiar to these three moethods, in general, seam specific conditions have a larger role in determining the success of ventilation than does the method used. The major difficulties to be faced by these novel methods are the same as those to be faced by conventional longwalls. Research efforts should proceed on that basis.

  5. Rates Meetings and Workshops (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rate Case Workshops Other Power Rates-Related Workshops July 1, 2004 - Rates and Finances Workshop (updated June 25, 2004) (financial and rate forecasts and scenarios for FY...

  6. February 2007 Standards Actions

    Office of Environmental Management (EM)

    DOE Technical Standards Posted in RevCom for TSP 1 DOE Technical Standards in Reaffirmation 1 DOE Technical Standards Change Notices 1 DOE Technical Standards Published1 Non-Government Standards Actions 2 American National Standards Institute (ANSI) 2 American Society of Mechanical Engineers (ASME) 2 ASTM International 2 American Nuclear Society (ANS) 2 National Fire Protection Association (NFPA) 2 Publication Staff Roster 2 DOE Technical Standards Program Document Status 01-26-2007 Activity

  7. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique

    SciTech Connect (OSTI)

    Battista, L.; Sciuto, S. A.; Scorza, A.

    2013-03-15

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s (18.0 l/min) for the mono-directional sensor and a measurement range of {+-}3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s ({+-}18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono-directional configuration, the coefficient of determination r{sup 2} is equal to 0.997; for the bi-directional configuration, the coefficient of determination r{sup 2} is equal to 0.990 for positive flows (inspiration) and 0.988 for negative flows (expiration). Measurement uncertainty {delta}Q of air flow rate has been evaluated by means of the propagation of distributions and the percentage error in the arrangement of bi-directional sensor ranges from a minimum of about 0.5% at -18.0 l/min to a maximum of about 9% at -12.0 l/min.

  8. CFD-based design of the ventilation system for the PHENIX detector

    SciTech Connect (OSTI)

    Parietti, L.; Martin, R.A.; Gregory, W.S.

    1996-10-01

    The three-dimensional flow and thermal fields surrounding the large PHENIX sub-atomic particle detector enclosed in the Major Facility Hall are simulated numerically in this study using the CFX finite volume, commercial, computer code. The predicted fields result from the interaction of an imposed downward ventilation system cooling flow and a buoyancy-driven thermal plume rising from the warm detector. An understanding of the thermal irregularities on the surface of the detector and in the flow surrounding is needed to assess the potential for adverse thermal expansion effects in detector subsystems, and to prevent ingestion of electronics cooling air from hot spots. With a computational model of the thermal fields on and surrounding the detector, HVAC engineers can evaluate and improve the ventilation system design prior to the start of construction. This paper summarizes modeling and results obtained for a conceptual MFH ventilation scheme.

  9. ADMINISTRATIVE AND ENGINEERING CONTROLS FOR THE OPERATION OF VENTILATION SYSTEMS FOR UNDERGROUND RADIOACTIVE WASTE STORAGE TANKS

    SciTech Connect (OSTI)

    Wiersma, B.; Hansen, A.

    2013-11-13

    Liquid radioactive wastes from the Savannah River Site are stored in large underground carbon steel tanks. The majority of the waste is confined in double shell tanks, which have a primary shell, where the waste is stored, and a secondary shell, which creates an annular region between the two shells, that provides secondary containment and leak detection capabilities should leakage from the primary shell occur. Each of the DST is equipped with a purge ventilation system for the interior of the primary shell and annulus ventilation system for the secondary containment. Administrative flammability controls require continuous ventilation to remove hydrogen gas and other vapors from the waste tanks while preventing the release of radionuclides to the atmosphere. Should a leak from the primary to the annulus occur, the annulus ventilation would also serve this purpose. The functionality of the annulus ventilation is necessary to preserve the structural integrity of the primary shell and the secondary. An administrative corrosion control program is in place to ensure integrity of the tank. Given the critical functions of the purge and annulus ventilation systems, engineering controls are also necessary to ensure that the systems remain robust. The system consists of components that are constructed of metal (e.g., steel, stainless steel, aluminum, copper, etc.) and/or polymeric (polypropylene, polyethylene, silicone, polyurethane, etc.) materials. The performance of these materials in anticipated service environments (e.g., normal waste storage, waste removal, etc.) was evaluated. The most aggressive vapor space environment occurs during chemical cleaning of the residual heels by utilizing oxalic acid. The presence of NO{sub x} and mercury in the vapors generated from the process could potentially accelerate the degradation of aluminum, carbon steel, and copper. Once identified, the most susceptible materials were either replaced and/or plans for discontinuing operations are executed.

  10. Optimization of Ventilation Energy Demands and Indoor Air Quality in the ZEBRAlliance Homes

    SciTech Connect (OSTI)

    Hun, D.; Jackson, M.; Shrestha, S.

    2013-09-01

    High-performance homes require that ventilation energy demands and indoor air quality (IAQ) be simultaneously optimized. In this project, Oak Ridge National Laboratory researchers attempted to bridge these two areas by conducting tests in research houses located in Oak Ridge, TN, that were less than 2 years old, energy-efficient (i.e., expected to consume 50% less energy than a house built per the 2006 IRC), tightly-built, unoccupied, and unfurnished. The team identified air pollutants of concern in the test homes that could generally serve as indicators of IAQ, and conduced field experiments and computer simulations to determine the effectiveness and energy required by various techniques that lessened the concentration of these contaminants. Formaldehyde was selected as the main pollutant of concern from initial air sampling surveys. Field data indicate that concentrations were higher during the summer primarily because emissions from sources rise with increases in temperature. Furthermore, supply ventilation and gas-phase filtration were effective means to reduce formaldehyde concentrations; however, exhaust ventilation had minimal influence on this pollutant. Results from simulations suggest that formaldehyde concentrations obtained while ventilating per ASHRAE 62.2-2010 could be decreased by about 20% from May through September through three strategies: 1) increasing ASHRAE supply ventilation by a factor of two, 2) reducing the thermostat setpoint from 76 to 74°F, or 3) running a gas-phase filtration system while decreasing supply ventilation per ASHRAE by half. In the mixed-humid climate of Oak Ridge, these strategies caused minimal to modest increases in electricity cost of ~$5 to ~$15/month depending on outdoor conditions.

  11. FAQS Job Task Analyses- Confinement Ventilation and Process Gas Treatment

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  12. Development of an Outdoor Temperature Based Control Algorithm for Residential Mechanical Ventilation Control

    SciTech Connect (OSTI)

    Less, Brennan; Walker, Iain; Tang, Yihuan

    2014-08-01

    The Incremental Ventilation Energy (IVE) model developed in this study combines the output of simple air exchange models with a limited set of housing characteristics to estimate the associated change in energy demand of homes. The IVE model was designed specifically to enable modellers to use existing databases of housing characteristics to determine the impact of ventilation policy change on a population scale. The IVE model estimates of energy change when applied to US homes with limited parameterisation are shown to be comparable to the estimates of a well-validated, complex residential energy model.

  13. Energy Efficiency Product Standards

    Broader source: Energy.gov [DOE]

    New Jersey Energy Efficiency Product Standards, enacted in 2005, include minimum standards for eight products, which were preempted by the federal Energy Policy Act of 2005. Future standards, if...

  14. Codes and Standards

    Broader source: Energy.gov [DOE]

    Currently, thirteen U.S. and two international standards development organizations (SDOs) are developing and publishing the majority of the voluntary domestic codes and standards. These...

  15. Energy Efficiency Resource Standard

    Broader source: Energy.gov [DOE]

    Washington voters passed Initiative 937 in 2006, creating a renewable energy standard and an energy efficiency resource standard for the state's electric utilities. Initiative 937, enacted as th...

  16. April 2008 Standards Actions

    Energy Savers [EERE]

    Visit the Technical Standards Program Web Site at http:www.hss.energy.govnuclear ... Standards Program (TSP) web page at http:hss.energy.govnuclear safetytechstds. ...

  17. Failure Rates from Certification Testing to UL and IEC Standards...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agenda for the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado Literature Review of the Effects of UV Exposure on PV Modules US TG 4 Activities of QA Forum...

  18. Evaluate fundamental approaches to longwall dust control: Subprogram E, Longwall application of ventilation curtains

    SciTech Connect (OSTI)

    Babbitt, C.; Ruggieri, S.

    1990-05-01

    There are a number of applications on longwall faces where Brattice curtains they can improve face ventilation and dust control in coal mines. This report describes the laboratory development and/or field evaluation of several longwall ventilation curtains, including: wing curtains: The headgate cut-out'' provides a source of extreme dust concentrations for shearer operators. A wing curtain in the headgate, which shields the headgate drum from the ventilation airstream as the drum cuts out, can reduce the operator's dust exposures during the cutout by 50 to 60%; Gob curtains: a significant amount of ventilating air can be lost to the gob in the headgate area. A gob curtain between the first shield and the chain pillar rib can block much of the leakage and increase the volume of air supplied to the face by approximately 10%; walkway curtains: curtains in the walkway, perpendicular to the airflow, were evaluated for their potential to reduce the migration of dusty face air into the walkway. Unfortunately they proved ineffective; and Extended spillplate: a vertical extension to the existing spillplate was evaluated for its potential to partition the clean and contaminated airflow. Unfortunately, only a full-height spillplate (impractical for actual application), showed appreciable reductions in walkway dust levels. 30 figs., 3 tabs.

  19. Analysis of Buoyancy-Driven Ventilation of Hydrogen from Buildings: Preprint

    SciTech Connect (OSTI)

    Barley, C. D.; Gawlik, K.; Ohi, J.; Hewett, R.

    2007-08-01

    When hydrogen gas is used or stored within a building, as with a hydrogen-powered vehicle parked in a residential garage, any leakage of unignited H2 will mix with indoor air and may form a flammable mixture. One approach to safety engineering relies on buoyancy-driven, passive ventilation of H2 from the building through vents to the outside.

  20. Model for Naturally Ventilated Cavities on the Exteriors of Opaque Building Thermal Envelopes

    SciTech Connect (OSTI)

    Griffith, B.

    2006-11-01

    This paper describes a model for naturally ventilated cavities on the exterior of opaque building thermal envelopes that are formed by the presence of a lightweight baffle. The model can be used for building components that are slightly detached from the main envelope (but do not connect to the interior).

  1. Technical Standards Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-02-23

    The Order promotes DOE's use of Voluntary Consensus Standards (VCS) as the primary method for application of technical standards and establishes and manages the DOE Technical Standards Program (TSP) including technical standards development, information, activities, issues, and interactions. Admin Chg 1 dated 3-12-13.

  2. Technical Standards Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-11-19

    The Technical Standards Program (TSP) promotes the use of voluntary consensus standards by the Department of Energy (DOE), provides DOE with the means to develop needed technical standards, and manages overall technical standards information, activities, issues, and interactions. Cancels DOE O 1300.2A. Canceled by DOE O 252.1A

  3. Current BPA Power Rates (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Workshops WP-10 Rate Case WP-07 Rate Case WP-07 Supplemental Rate Case ASC Methodology Adjustments (2007-2009) Adjustments (2002-2006) Previous Rate Cases Financial...

  4. Power Rates Announcements (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WP-10 Rate Case WP-07 Rate Case WP-07 Supplemental Rate Case ASC Methodology Adjustments (2007-2009) Adjustments (2002-2006) Previous Rate Cases Financial Choices (2003-06) Power...

  5. NETL Focused Standards List

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    24/08 Contact: Paul Lauterbach Reviewed: 10/28/08 Janet Lambert Page 1 of 15 This Focused Standards List has been primarily derived from selected standard references contained in NETL issued directives. All standards shall reference the most current edition/ version of that standard. DOE and other Government Standards and Requirements DOE DIRECTIVES Note: The following DOE directives can be found at http://www.directives.doe.gov DOE Policy 141.1, DOE Management of Cultural Resources DOE Order

  6. NETL Focused Standards List

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1/6/14 Contact: Janet Lambert Reviewed: 3/5/14 Page 1 of 17 The National Energy Technology Laboratory (NETL) Focused Standards List is primarily derived from standard references contained in the requirements section of NETL's environment, safety, security, and health (ESS&H) and cyber security directives. All standards shall reference the most current edition/version of that standard. 1. DEPARTMENT OF ENERGY (DOE) AND OTHER GOVERNMENT STANDARDS AND REQUIREMENTS a. DOE Directives The

  7. NETL Focused Standards List

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6/26/15 Contact: Janet Lambert Reviewed: 6/26/15 Page 1 of 18 The National Energy Technology Laboratory (NETL) Focused Standards List is primarily derived from standard references contained in the requirements section of NETL's environment, safety, security, and health (ESS&H) and cyber security directives. All standards shall reference the most current edition/version of that standard. 1. DEPARTMENT OF ENERGY (DOE) AND OTHER GOVERNMENT STANDARDS AND REQUIREMENTS a. DOE Directives The

  8. Use of 4-Dimensional Computed Tomography-Based Ventilation Imaging to Correlate Lung Dose and Function With Clinical Outcomes

    SciTech Connect (OSTI)

    Vinogradskiy, Yevgeniy, E-mail: yevgeniy.vinogradskiy@ucdenver.edu [Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado (United States)] [Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado (United States); Castillo, Richard [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Castillo, Edward [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States) [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Computational and Applied Mathematics, Rice University, Houston, Texas (United States); Tucker, Susan L. [Departments of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Departments of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Liao, Zhongxing [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Guerrero, Thomas [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States) [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Computational and Applied Mathematics, Rice University, Houston, Texas (United States); Martel, Mary K. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2013-06-01

    Purpose: Four-dimensional computed tomography (4DCT)-based ventilation is an emerging imaging modality that can be used in the thoracic treatment planning process. The clinical benefit of using ventilation images in radiation treatment plans remains to be tested. The purpose of the current work was to test the potential benefit of using ventilation in treatment planning by evaluating whether dose to highly ventilated regions of the lung resulted in increased incidence of clinical toxicity. Methods and Materials: Pretreatment 4DCT data were used to compute pretreatment ventilation images for 96 lung cancer patients. Ventilation images were calculated using 4DCT data, deformable image registration, and a density-change based algorithm. Dosevolume and ventilation-based dose function metrics were computed for each patient. The ability of the dosevolume and ventilation-based dosefunction metrics to predict for severe (grade 3+) radiation pneumonitis was assessed using logistic regression analysis, area under the curve (AUC) metrics, and bootstrap methods. Results: A specific patient example is presented that demonstrates how incorporating ventilation-based functional information can help separate patients with and without toxicity. The logistic regression significance values were all lower for the dosefunction metrics (range P=.093-.250) than for their dosevolume equivalents (range, P=.331-.580). The AUC values were all greater for the dosefunction metrics (range, 0.569-0.620) than for their dosevolume equivalents (range, 0.500-0.544). Bootstrap results revealed an improvement in model fit using dosefunction metrics compared to dosevolume metrics that approached significance (range, P=.118-.155). Conclusions: To our knowledge, this is the first study that attempts to correlate lung dose and 4DCT ventilation-based function to thoracic toxicity after radiation therapy. Although the results were not significant at the .05 level, our data suggests that incorporating ventilation-based functional imaging can improve prediction for radiation pneumonitis. We present an important first step toward validating the use of 4DCT-based ventilation imaging in thoracic treatment planning.

  9. Current Power Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  10. Current Transmission Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  11. Previous Power Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  12. Previous Transmission Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  13. Appliance Energy Efficiency Standards

    Broader source: Energy.gov [DOE]

    In 2004 the Energy Efficiency Standards Act (EESA of 2004) became law in the State of Maryland. The General Assembly passed the EESA to establish minimum energy efficiency standards on nine...

  14. Federal Appliance Standards

    Broader source: Energy.gov [DOE]

    Note: HR 6582 of 2012 made some modifications to the efficiency standards previously adopted for some appliance types. The bill did not adopt new standards for previously unregulated appliances,...

  15. Energy Efficiency Portfolio Standard

    Broader source: Energy.gov [DOE]

    On December 2015, the NY PSC issued an order extending the Energy Efficiency Portfolio Standard (EEPS) and Customer-Sited Tier (CST) of the Renewable Portfolio Standard (RPS) till Feb 29, 2016...

  16. August 2006 Standards Actions

    Office of Environmental Management (EM)

    Visit the Technical Standards Program Web Site at http:www.eh.doe.gov techstds ... on the Technical Standards Program (TSP) web page at http:www.eh.doe.govtechstds. ...

  17. TECHNICAL STANDARDS PROGRAM RESPONSIBILITIES

    Broader source: Energy.gov [DOE]

    PurposeThis procedure describes the responsibilities of persons who are charged with implementing the DOE Technical Standards Program.

  18. Appliance and Equipment Standards

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Appliance and Equipment Standards April 22, 2014 John Cymbalsky Program Manager 1 | Energy Efficiency and Renewable Energy eere.energy.gov 2 Appliance & Equipment Standards Mission The Appliance and Equipment Standards Program's Mission to Fulfill its Statutory Obligation to: * Develop and amend energy conservation standards that achieve the maximum energy efficiency that is technologically feasible and economically justified. * Develop and amend test procedures that are repeatable,

  19. TECHNICAL STANDARDS COMMENT RESOLUTION

    Broader source: Energy.gov [DOE]

    PurposeThis procedure provides guidance for resolving comments on DOE Technical Standards that are received during the coordination process.

  20. Enterprise Assessments Operational Awareness Record of Observations of the Design and Modification Progress of the Waste Isolation Pilot Plant Underground Interim Ventilation System and Supplemental Ventilation System November 2015

    Energy Savers [EERE]

    EA Operational Awareness Record Report Number: EA-WIPP-IVS/SVS-2015-11-15 Site: Waste Isolation Pilot Plant (WIPP) Subject: Observations of the design and modification progress of the WIPP Underground Interim Ventilation System and Supplemental Ventilation System Dates of Activity: 11/15/2015 - 11/19/2015 Report Preparer: Jeff Snook Activity Description / Purpose: The Office of Environment, Safety and Health Assessments within the Office of Enterprise Assessments (EA) is reviewing the design,

  1. Fact #705: December 12, 2011 Fuel Consumption Standards for Combinatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    mid, and high), gross vehicle weight rating (class 7 and 8), and types of tractor (day cab, sleeper cab). Combination Tractor Fuel Consumption Standards, Model Years (MY)...

  2. PNCA-02 Rate Case (rates/ratecases)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proposed Adjustment to the Rate for Interchange Energy Imbalances Under the Pacific Northwest Coordination Agreement (PNCA-02 Rate Case) (updated on April 26, 2002) BPA has issued...

  3. National Weatherization Assistance Program Impact Evaluation: Impact of Exhaust-Only Ventilation on Radon and Indoor Humidity - A Field Investigation

    SciTech Connect (OSTI)

    Pigg, Scott

    2014-09-01

    The study described here sought to assess the impact of exhaust-only ventilation on indoor radon and humidity in single-family homes that had been treated by the Weatherization Assistance Program (WAP).

  4. Evaluation of cracking in the 241-AZ tank farm ventilation line at the Hanford Site

    SciTech Connect (OSTI)

    ANANTATMULA, R.P.

    1999-10-20

    In the period from April to October of 1988, a series of welding operations on the outside of the AZ Tank Farm ventilation line piping at the Hanford Site produced unexpected and repeated cracking of the austenitic stainless steel base metal and of a seam weld in the pipe. The ventilation line is fabricated from type 304L stainless steel pipe of 24 inch diameter and 0.25 inch wall thickness. The pipe was wrapped in polyethylene bubble wrap and buried approximately 12 feet below grade. Except for the time period between 1980 and 1987, impressed current cathodic protection has been applied to the pipe since its installation in 1974. The paper describes the history of the cracking of the pipe, the probable cracking mechanisms, and the recommended future action for repair/replacement of the pipe.

  5. Test report of evaluation of primary exhaust ventilation flowmeters for double shell hydrogen watch list tanks

    SciTech Connect (OSTI)

    Willingham, W.E., Westinghouse Hanford

    1996-09-03

    This document reports the results of testing four different flowmeters for use in the primary exhaust ventilation ducts of Double Shell Tanks on the hydrogen watch list that do not already have this capability. This currently includes tanks 241-AW-101,241-AN- 103, 241-AN-104, 241-AN-105 and 241-SY-103. The anticipated airflow velocity in these tanks range from 0.25 m/s(50 ft/min) to 1/78 m/s (350 ft/min). Past experiences at Hanford have forced the evaluation and selection of instruments to be used at the low flow and relatively high humidity conditions found in these tanks. Based on the results of this test, a flow meter has been chosen for installation in the primary exhaust ventilation ducts of the above mentioned waste tanks.

  6. Technical Standards Managers

    Energy Savers [EERE]

    TECHNICAL STANDARDS PROGRAM ASSIGNMENT TELEPHONE/FAX/EMAIL NAME DOE FACILITY/ADDRESS LOC CODE DOE TECHNICAL STANDARD MANAGERS AU-30 DOE Technical Standards Program, Manager Jeī D. Feit AU-30 DOE Technical Standards Program, Program Specialist Kathy A. Knight AU-30 Support DOE Technical Standards Program, Contractor, supporƟng the DOE Oĸce of Environmental, Health, Safety and Security William A. Studniarz U.S. Department of Energy 19901 Germantown Road Germantown, MD 20876 U.S. Department of

  7. NETL Focused Standards List

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4/4/12 Contact: Janet Lambert Reviewed: 4/4/12 Page 1 of 17 This Focused Standards List has been primarily derived from selected standard references contained in NETL issued directives. All standards shall reference the most current edition/ version of that standard. DOE and other Government Standards and Requirements DOE DIRECTIVES Note: The following DOE directives can be found at http://www.directives.doe.gov: DOE Policy 141.1, DOE Management of Cultural Resources DOE Order 142.1, Classified

  8. NETL Focused Standards List

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6/12 Contact: Janet Lambert Reviewed: 10/4/12 Page 1 of 17 This Focused Standards List has been primarily derived from selected standard references contained in NETL issued directives. All standards shall reference the most current edition/ version of that standard. DOE and other Government Standards and Requirements DOE DIRECTIVES Note: The following DOE directives can be found at http://www.directives.doe.gov: DOE Policy 141.1, DOE Management of Cultural Resources DOE Order 142.1, Classified

  9. Existing Whole-House Solutions Case Study: Multifamily Individual Heating and Ventilation Systems, Lawrence, Massachusetts

    SciTech Connect (OSTI)

    2013-11-01

    The conversion of an older Massachusetts building into condominiums illustrates a safe, durable, and cost-effective solution for heating and ventilation systems that can potentially benefit millions of multifamily buildings. In this project, Merrimack Valley Habitat for Humanity (MVHfH) partnered with U.S. Department of Energy Building America team Building Science Corporation (BSC) to provide high performance affordable housing for 10 families in the retrofit of an existing mass masonry building (a former convent).

  10. Grand Challenge Semifinalist Study Yields Results for Hanford Plant's Ventilation System

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – Results of a recent EM Office of River Protection (ORP) effort to develop a test method and measure of the thermal properties of waste glasses show that the heating, ventilation and air conditioning (HVAC) system in the Waste Treatment and Immobilization Plant’s Low Activity Waste Facility is adequately designed to allow for the cooling of hot glass in the containers.

  11. Definition and means of maintaining the ventilation system confinement portion of the PFP safety envelope

    SciTech Connect (OSTI)

    Dick, J.D.; Grover, G.A.; O`Brien, P.M., Fluor Daniel Hanford

    1997-03-05

    The Plutonium Finishing Plant Heating Ventilation and Cooling system provides for the confinement of radioactive releases to the environment and provides for the confinement of radioactive contamination within designated zones inside the facility. This document identifies the components and procedures necessary to ensure the HVAC system provides these functions. Appendices E through J provide a snapshot of non-safety class HVAC equipment and need not be updated when the remainder of the document and Appendices A through D are updated.

  12. EVALUATION OF BEST AVAILABLE CONTROL TECHNOLOGY FOR TOXICS (TBACT) DOUBLE SHELL TANK FARMS PRIMARY VENTILATION SYSTEM SUPPORTING WASTE TRANSFER OPERATIONS

    SciTech Connect (OSTI)

    KELLY SE; HAASS CC; KOVACH JL; TURNER DA

    2010-06-03

    This report is an evaluation of Best Available Control Technology for Toxics (tBACT) for installation and operation of the Hanford double shell (DST) tank primary ventilation systems. The DST primary ventilation systems are being modified to support Hanford's waste retrieval, mixing, and delivery of single shell tank (SST) and DST waste throught the DST storage system to the Waste Treatment and Immobilization Plant (WTP).

  13. EVALUATION OF BEST AVAILABLE CONTROL TECHNOLOGY FOR TOXICS -TBACT- DOUBLE SHELL TANK FARMS PRIMARY VENTILATION SYSTEMS SUPPORTING WASTE TRANSFER OPERATIONS

    SciTech Connect (OSTI)

    HAAS CC; KOVACH JL; KELLY SE; TURNER DA

    2010-06-24

    This report is an evaluation of Best Available Control Technology for Toxics (tBACT) for installation and operation of the Hanford double shell (DST) tank primary ventilation systems. The DST primary ventilation systems are being modified to support Hanford's waste retrieval, mixing, and delivery of single shell tank (SST) and DST waste through the DST storage system to the Waste Treatment and Immobilizaiton Plant (WTP).

  14. Building America Case Study: Sealed Crawlspace with Integrated Whole-House Ventilation in a Cold Climate, Ithaca, New York

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sealed Crawl Spaces with Integrated Whole-House Ventilation in a Cold Climate Ithaca, New York PROJECT INFORMATION Project Name: Holly Creek Townhouses Location: Ithaca, NY Partners: Ithaca Neighborhood Housing Services, ithacanhs.org Consortium for Advanced Residential Buildings, carb-swa.com Building Component: Ventilation, sealed crawl space Application: New and/or retrofit; single- and multifamily Year Tested: 2014-2015 Climate Zones: Cold (5-6) PERFORMANCE DATA Sealed crawl spaces can: *

  15. Multiphase flow and multicomponent reactive transport model of the ventilation experiment in Opalinus clay

    SciTech Connect (OSTI)

    Zheng, L.; Samper, J.; Montenegro, L.; Major, J.C.

    2008-10-15

    During the construction and operational phases of a high-level radioactive waste (HLW) repository constructed in a clay formation, ventilation of underground drifts will cause desaturation and oxidation of the rock. The Ventilation Experiment (VE) was performed in a 1.3 m diameter unlined horizontal microtunnel on Opalinus clay at Mont Terri underground research laboratory in Switzerland to evaluate the impact of desaturation on rock properties. A multiphase flow and reactive transport model of VE is presented here. The model accounts for liquid, vapor and air flow, evaporation/condensation and multicomponent reactive solute transport with kinetic dissolution of pyrite and siderite and local-equilibrium dissolution/precipitation of calcite, ferrihydrite, dolomite, gypsum and quartz. Model results reproduce measured vapor flow, liquid pressure and hydrochemical data and capture the trends of measured relative humidities, although such data are slightly overestimated near the rock interface due to uncertainties in the turbulence factor. Rock desaturation allows oxygen to diffuse into the rock and triggers pyrite oxidation, dissolution of calcite and siderite, precipitation of ferrihydrite, dolomite and gypsum and cation exchange. pH in the unsaturated rock varies from 7.8 to 8 and is buffered by calcite. Computed changes in the porosity and the permeability of Opalinus clay in the unsaturated zone caused by oxidation and mineral dissolution/precipitation are smaller than 5%. Therefore, rock properties are not expected to be affected significantly by ventilation of underground drifts during construction and operational phases of a HLW repository in clay.

  16. American National Standard: design requirements for light water reactor spent fuel storage facilities at nuclear power plants

    SciTech Connect (OSTI)

    Not Available

    1983-10-07

    This standard presents necessary design requirements for facilities at nuclear power plants for the storage and preparation for shipment of spent fuel from light-water moderated and cooled nuclear power stations. It contains requirements for the design of fuel storage pool; fuel storage racks; pool makeup, instrumentation and cleanup systems; pool structure and integrity; radiation shielding; residual heat removal; ventilation, filtration and radiation monitoring systems; shipping cask handling and decontamination; building structure and integrity; and fire protection and communication.

  17. STANDARD REVIEW PLAN

    Office of Environmental Management (EM)

    Strengthening Line Management Oversight and Federal Monitoring of Nuclear Facilities Standard Review Plan Safety Design Strategy January 2015 OFFICE OF ENVIRONMENTAL MANAGEMENT Standard Review Plan Safety Design Strategy Critical Decision (CD) Applicability CD-0 CD-1 CD-2 CD-3 CD-4 Post Operation January 2015 i FOREWORD The Chief of Nuclear Safety (CNS) is developing of series of Standard Review Plans (SRPs) to provide consistent, predictable corporate review framework to ensure that issues and

  18. Title Standards 2001

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Standards 2001 A guide for the preparation of title evidence in land acquisitions by the United States of America. Quick links to Contents: Table of Contents / Why Title Standards 2001, and who uses it? / Evidence of title / Abstract of Title Supplemental and Supporting Title Evidence / Title Insurance Policies and Certificates of Title / Final Title Evidence Title Evidence for Condemnations / The Deed to the United States / Special Standards for Texas / Sample Forms U.S. Department of Justice

  19. Rate Case Elements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proceeding Rate Information Residential Exchange Program Surplus Power Sales Reports Rate Case Elements BPA's rate cases are decided "on the record." That is, in making a decision...

  20. Alternative Energy Portfolio Standard

    Broader source: Energy.gov [DOE]

    NOTE: On February 2016, the PA Public Service Commission (PUC) issued a final rulemaking order amending and clarifying several provisions of PA Alternative Energy Portfolio Standard (AEPS), net...

  1. Renewable Energy Portfolio Standard

    Broader source: Energy.gov [DOE]

    Maryland's Renewable Energy Portfolio Standard, enacted in May 2004 and revised numerous times since, requires electricity suppliers (all utilities and competitive retail suppliers) to use renewa...

  2. Renewable Energy Standard

    Office of Energy Efficiency and Renewable Energy (EERE)

    In 2007, Minnesota legislation modified the state's 2001 voluntary renewable energy objective to create a mandatory renewable portfolio standard (RPS). Public utilities (i.e., investor-owned...

  3. Renewable Energy Standard

    Broader source: Energy.gov [DOE]

    Note: H.B. 40, enacted in June 2015, created Vermont's Renewable Energy Standard and repeals the Sustainably Priced Energy Enterprise Development program's renewable energy goals. The Renewable...

  4. The Standard Model

    ScienceCinema (OSTI)

    Lincoln, Don

    2014-08-12

    Fermilab scientist Don Lincoln describes the Standard Model of particle physics, covering both the particles that make up the subatomic realm and the forces that govern them.

  5. Puerto Rico- Interconnection Standards

    Broader source: Energy.gov [DOE]

    Customer-generators seeking to interconnect first submit a standardized "Evaluation Request" to PREPA to determine whether or not the system will qualify for the "Simple Interconnection Process...

  6. Technical Standards Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-02-23

    The order establishes the DOE Technical Standards Program. Admin Chg 1, dated 3-12-13 supersedes DOE O 252.1A.

  7. Exhibit Standards and Guidelines

    Broader source: Energy.gov [DOE]

    The Office of Energy Efficiency and Renewable Energy (EERE) has standards and guidelines for designing and displaying exhibits for conferences, trade shows, and other events.

  8. Standard Subject Classification System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1979-08-14

    The order establishes the DOE Standard Subject Classification System for classifying documents and records by subject, including correspondence, directives, and forms.Cancels DOE O 0000.1.

  9. SSL Standards and Guidelines

    SciTech Connect (OSTI)

    none,

    2012-04-01

    Solid-state lighting program technology fact sheet that reviews the key performance and safety standards applicable to SSL-based lighting products.

  10. Renewable Portfolio Standard

    Broader source: Energy.gov [DOE]

    Massachusetts' 1997 electric-utility restructuring legislation created the framework for a renewable portfolio standard (RPS). In April 2002, the Massachusetts Department of Energy Resources (DOER)...

  11. Communication Standards Website Contact

    Broader source: Energy.gov [DOE]

    This form is used to submit comments, report problems, and/or ask questions about information on the Communication Standards website.

  12. Derived Concentration Technical Standard

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... guidance from various national and international standards and scientific ... 68) (ICRP 1994b), small intestine, kidney, muscle, pancreas, spleen, thymus and uterus. ...

  13. Power Rate Cases (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Choices (2003-06) Power Function Review (PFR) Firstgov Power Rate Cases BPA's wholesale power rates are set to recover its costs and repay the U.S. Treasury for the Federal...

  14. Chlorite Dissolution Rates

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Carroll, Susan

    2013-07-01

    Spreadsheets provides measured chlorite rate data from 100 to 300C at elevated CO2. Spreadsheet includes derived rate equation.

  15. Chlorite Dissolution Rates

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Carroll, Susan

    Spreadsheets provides measured chlorite rate data from 100 to 300C at elevated CO2. Spreadsheet includes derived rate equation.

  16. Standard Agent Framework 1

    Energy Science and Technology Software Center (OSTI)

    1999-04-06

    The Standard Agent framework provides an extensible object-oriented development environment suitable for use in both research and applications projects. The SAF provides a means for constructing and customizing multi-agent systems through specialization of standard base classes (architecture-driven framework) and by composition of component classes (data driven framework). The standard agent system is implemented as an extensible object-centerd framework. Four concrete base classes are developed: (1) Standard Agency; (2) Standard Agent; (3) Human Factor, and (4)more » Resources. The object-centered framework developed and utilized provides the best comprimise between generality and flexibility available in agent development systems today.« less

  17. Standard Terms and Conditions | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Standard Terms and Conditions Documents related to NREL's standard terms and conditions for subcontracts or purchase orders are available below. Standard Terms and Conditions -...

  18. Technical Standards,DOE Standards and Corresponding Directives Crosswalk -

    Energy Savers [EERE]

    February 2, 2002 | Department of Energy DOE Standards and Corresponding Directives Crosswalk - February 2, 2002 Technical Standards,DOE Standards and Corresponding Directives Crosswalk - February 2, 2002 February 2, 2002 DOE Standards and Corresponding Directives Crosswalk DOE Standards and Corresponding Directives Crosswalk table PDF icon Technical Standards,DOE Standards and Corresponding Directives Crosswalk More Documents & Publications Technical Standards, DOE Orders and Applicable

  19. USE OF VOLUNTARY CONSENSUS STANDARDS AND INTERACTION WITH STANDARDS

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DEVELOPMENT ORGANIZATIONS | Department of Energy USE OF VOLUNTARY CONSENSUS STANDARDS AND INTERACTION WITH STANDARDS DEVELOPMENT ORGANIZATIONS USE OF VOLUNTARY CONSENSUS STANDARDS AND INTERACTION WITH STANDARDS DEVELOPMENT ORGANIZATIONS Purpose This procedure identifies the process by which DOE adopts Voluntary Consensus Standards (VCSs) and provides guidance for the interaction of DOE and contractor employees with Standards Development Organizations (SDOs). PDF icon Use of Voluntary

  20. NREL: Photovoltaics Research - Photovoltaic Energy Ratings Methods

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validation Photovoltaic Energy Ratings Methods Validation The Photovoltaic (PV) Engineering group at NREL validates energy ratings methods by standards committees to establish an energy rating methodology. We are evaluating techniques to account for the impact on PV performance from variations in the spectral distribution of solar radiation. Two types of methods were evaluated for correcting the short-circuit current of PV modules for variations in the solar spectrum under clear skies: (1)

  1. Sonication standard laboratory module

    DOE Patents [OSTI]

    Beugelsdijk, Tony (Los Alamos, NM); Hollen, Robert M. (Los Alamos, NM); Erkkila, Tracy H. (Los Alamos, NM); Bronisz, Lawrence E. (Los Alamos, NM); Roybal, Jeffrey E. (Santa Fe, NM); Clark, Michael Leon (Menan, ID)

    1999-01-01

    A standard laboratory module for automatically producing a solution of cominants from a soil sample. A sonication tip agitates a solution containing the soil sample in a beaker while a stepper motor rotates the sample. An aspirator tube, connected to a vacuum, draws the upper layer of solution from the beaker through a filter and into another beaker. This beaker can thereafter be removed for analysis of the solution. The standard laboratory module encloses an embedded controller providing process control, status feedback information and maintenance procedures for the equipment and operations within the standard laboratory module.

  2. Technical Standards Managers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TECHNICAL STANDARDS PROGRAM ASSIGNMENT TELEPHONE/FAX/EMAIL NAME DOE FACILITY/ADDRESS LOC CODE AU-30 Je D. Feit DOE Technical Standards Program, Manager U.S. Department of Energy 19901 Germantown Road Germantown, MD 20876 Phone: (301) 903-0471 Fax: (301) 903-6172 Je rey.Feit@hq.doe.gov AU-30 Kathy A. Knight DOE Technical Standards Program, Program Specialist U.S. Department of Energy 19901 Germantown Road Germantown, MD 20876 Phone: (301) 903-4439 Fax: (301) 903-6172 kathy.knight@hq.doe.gov AU-30

  3. Standard Review Plan Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Framework for EM Projects Critical Decision (CD) Milestones Review & Approval Standard Review Plan (SRP) E n v i r o n m e n t a l M a n a g e m e n t DOE - EM - SRP - 2010 2nd Edition Overview March 2010 This page intentionally left blank. Standard Review Plan, 2 nd Edition, March 2010 1 Standard Review Plan Overview Technical Framework for EM Projects Critical Decision Milestones Review and Approval The Office of Environmental Management (EM) is responsible for managing the

  4. Chemical Processing Qualification Standard

    Office of Environmental Management (EM)

    6-2010 February 2010 DOE STANDARD CHEMICAL PROCESSING QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1176-2010 ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/ns/techstds DOE-STD-1176-2010 iv INTENTIONALLY BLANK DOE-STD-1176-2010 v

  5. Mechanical Systems Qualification Standard

    Office of Environmental Management (EM)

    61-2008 June 2008 DOE STANDARD MECHANICAL SYSTEMS QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1161-2008 ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ DOE-STD-1161-2008 iv INTENTIONALLY BLANK DOE-STD-1161-2008 v TABLE OF

  6. Analysis of Buoyancy-Driven Ventilation of Hydrogen from Buildings: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis of Buoyancy-Driven Ventilation of Hydrogen from Buildings Preprint C.D. Barley, K. Gawlik, J. Ohi, and R. Hewett National Renewable Energy Laboratory To be presented at the 2 nd International Conference on Hydrogen Safety San Sebastian, Spain September 11-13, 2007 Conference Paper NREL/CP-550-41081 August 2007 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 NOTICE The submitted manuscript has been offered by an employee of the Midwest Research

  7. Clear Standards | Open Energy Information

    Open Energy Info (EERE)

    Standards Place: Sterling, Virginia Product: Clear Standards provides enterprise software solutions to help global organizations accurately measure, mitigate, and monetize...

  8. DOE technical standards list. Department of Energy standards index

    SciTech Connect (OSTI)

    1995-08-01

    This document was prepared for use by personnel involved in the selection and use of DOE technical standards and other Government and non-Government standards. This TSL provides listing of current DOE technical standards, non-Government standards that have been adopted by DOE, other Government documents in which DOE has a recorded interest, and canceled DOE technical standards. Information on new DOE technical standards projects, technical standards released for coordination, recently published DOE technical standards, and activities of non-Government standards bodies that may be of interest to DOE is published monthly in Standards Actions.

  9. Renewable Portfolio Standard

    Broader source: Energy.gov [DOE]

    In October 1999, Wisconsin enacted Act 9, becoming the first state to enact a renewable portfolio standard (RPS) without having restructured its electric utility industry. The RPS sets a total goal...

  10. Energy Efficiency Resource Standard

    Broader source: Energy.gov [DOE]

    In 2008, New Mexico enacted H.B. 305, the Efficient Use of Energy Act, which created an Energy Efficiency Resource Standard (EERS) for New Mexico’s electric utilities, and a requirement that all ...

  11. Standard Subject Classification System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1978-07-19

    The order establishes the Department of Energy (DOE) Standard Subject Classification System for classifying documents and records by subject, including correspondence, directives, and forms. Canceled by DOE O 0000.1A.

  12. Standard Form 120

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 OF STANDARD FORM 120 REV. APRIL 1957 GEN. SERV. ADMIN. FPMR (41 CFR) 101-43.311 PROPERTY REPORT OF EXCESS PERSONAL 1. REPORT NO. 2. DATE MAILED 3. TOTAL COST 4. TYPE (Check one...

  13. Renewable Portfolio Standard

    Broader source: Energy.gov [DOE]

    NOTE:  On November 2nd 2015, Governor Cumo directed the Public Service Department (PSC) to establish a new Clean Energy Standard mandating 50% of the electricity consumed in NY to come from clean...

  14. Building Energy Standards

    Broader source: Energy.gov [DOE]

    The 2015 Vermont Commercial Building Energy Standards (CBES) took effect on March 1, 2015. The code is based on the 2015 IECC, with amendments to incorporate ASHRAE 90.1-2013. The new guidelines ...

  15. Renewable Portfolio Standard

    Broader source: Energy.gov [DOE]

    In January 2005, the District of Columbia Council enacted a Renewable Portfolio Standard (RPS) that applies to all retail electricity sales in the District. In October 2008 the RPS was amended by...

  16. Renewables Portfolio Standard

    Broader source: Energy.gov [DOE]

    New Jersey's Renewable Portfolio Standard (RPS) was first adopted in 1999 and has been updated several times. The total RPS requirement in New Jersey including solar carve out is 24.39% by EY 2028....

  17. Renewables Portfolio Standard

    Broader source: Energy.gov [DOE]

    Note: SB 350, signed on October 7, 2015, made a number of changes to California's Renewables Portfolio Standard (RPS). Most notably, SB 350 extended the timeline and requirements under the RPS to...

  18. Standard Offer Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Note: H.B. 40, enacted in June 2015, changes the name of the Sustainably Priced Energy Enterprise Development (SPEED) Program to the Standard Offer Program and replaces the associated state...

  19. Standardization of Firearms

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-03-02

    Establishes Department of Energy (DOE) requirements for the standardization of firearms and limitations of firearms inventories maintained in support of safeguards and security activities. Does not cancel other directives.

  20. National Certification Standard

    Broader source: Energy.gov [DOE]

    This project will create a national certification standard for all primary personnel involved in the installation of geothermal heat pump (GHP) systems; including drillers; plumbers; electricians; heating and air conditioning specialists; engineers and architects.

  1. Renewable Energy Standard

    Broader source: Energy.gov [DOE]

    Notes: In July 2015, the Tenth Circuit Court of Appeals upheld the constitutionality Colorado's renewable energy standard (Energy & Environment Legal, et al v. Epel, et al, case number 14-1216). 

  2. FREIGHT CONTAINER LIFTING STANDARD

    SciTech Connect (OSTI)

    POWERS DJ; SCOTT MA; MACKEY TC

    2010-01-13

    This standard details the correct methods of lifting and handling Series 1 freight containers following ISO-3874 and ISO-1496. The changes within RPP-40736 will allow better reading comprehension, as well as correcting editorial errors.

  3. Standards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This procedure utilized a writing group to prepare the standard and a group of subject matter experts to provide formal review and comment. PDF icon doe std 3020-2005 More ...

  4. IHS Standards Expert

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (1986- ) ANSI nuclear standards API (selected) ASCE ASHRAE ASME ASME-BPVC ASQ ASSESAFE ASTM AWS DRM (11th ed.) EIA IAPMO 2009 (Mechanical, Plumbing, Solar) Uncheck "Most Recent...

  5. ORISE: Standards development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Standards development For 30 years, health physicists with the Oak Ridge Institute for Science and Education (ORISE) have actively participated in the development of industry standards that provide guidance and support to decontamination and decommissioning projects across the United States. Because of our extensive experience conducting radiological surveys and site characterization, our federal agency customers, such as the U.S. Nuclear Regulatory Commission (NRC) and the U.S. Department of

  6. SAE Standards Support

    SciTech Connect (OSTI)

    Gowri, Krishnan

    2012-11-01

    This report summarizes PNNL activities in FY 2012 in support of the following two vehicle communication standards activities: Technical support to SAE, ANSI and NIST technical working groups. PNNL actively contributed to the use case development, harmonization, and evaluation of the SAE standards activities for vehicle to grid communication Tested and validated a set of potential technologies for meeting SAE communication requirements and provided recommendations for technology choices.

  7. Energy Conservation Standards Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report to Congress August 2014 United States Department of Energy Washington, DC 20585 Energy Conservation Standards Activities Report to Congress | Page i Message from the Assistant Secretary I am pleased to provide you with the semi-annual Implementation Report on Energy Conservation Standards Activities of the U.S. Department of Energy (DOE). This report meets the requirements of Section 141 of the Energy Policy Act of 2005 (EPACT 2005) and Sections 305 and 321 of the Energy Independence and

  8. Energy Conservation Standards Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Activities Report to Congress August 2015 United States Department of Energy Washington, DC 20585 Department of Energy | August 2015 Energy Conservation Standards Activities | i Message from the Assistant Secretary I am pleased to provide you with the semi-annual Implementation Report on Energy Conservation Standards Activities of the U.S. Department of Energy (DOE). This report meets the requirements of section 141 of the Energy Policy Act of 2005 (EPACT 2005) and sections 305 and 321 of the

  9. DOE technical standards list: Department of Energy standards index

    SciTech Connect (OSTI)

    1999-05-01

    This Department of Energy (DOE) technical standards list (TSL) has been prepared by the Office of Nuclear Safety Policy and Standards (EH-31) on the basis of currently available technical information. Periodic updates of this TSL will be issued as additional information is received on standardization documents being issued, adopted, or canceled by DOE. This document was prepared for use by personnel involved in the selection and use of DOE technical standards and other Government and non-Government standards. This TSL provides listings of current DOE technical standards, non-Government standards that have been adopted by DOE, other standards-related documents in which DOE has a recorded interest, and canceled DOE technical standards. Information on new DOE technical standards projects, technical standards released for coordination, recently published DOE technical standards, and activities of non-Government standards bodies that may be of interest to DOE is published monthly in Standards Actions.

  10. February 2010 Standards Forum and Standards Actions Newsletter

    Office of Environmental Management (EM)

    Continued on next page on next page Continued on next page on next page Office of Nuclear Safety, Quality Assurance and Environment February 2010 U.S. Department of Energy Technical Standards Program (http://www.hss.energy.gov/nuclearsafety/ns/techstds/) The Standards Forum and Standards Actions Technical Standards Program Manager's Note Welcome to the February 2010 edition of the Technical Standards Forum and Standards Actions. We are continuing to update the Technical Standards Program (TSP)

  11. State Building Energy Standards

    Broader source: Energy.gov [DOE]

    In May 2013 the Sustainable Coonstruction Advisory Committee responsible for adopting buildings codes was mandated to automatically adopt tne most recent version of the rating systems developed b...

  12. BP-18 Rate Proceeding

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Skip navigation links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases BP-18 Rate Case Related Publications Meetings...

  13. BP-12 Rate Case

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Skip navigation links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases BP-18 Rate Case Related Publications Meetings...

  14. BP-16 Rate Case

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Skip navigation links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases BP-18 Rate Case Related Publications Meetings...

  15. Before a Rate Case

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases BP-18 Rate Case Related Publications Meetings and Workshops Customer...

  16. Rating Agency Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liabilities Financial Plan Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Residential Exchange Program Surplus Power Sales...

  17. 2012 Transmission Rate Schedules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 Transmission, Ancillary, and Control Area Service Rate Schedules and General Rate Schedule Provisions (FY 2014-2015) October 2013 United States Department of Energy...

  18. Flexible Residential Test Facility: Impact of Infiltration and Ventilation on Measured Cooling Season Energy and Moisture Levels

    SciTech Connect (OSTI)

    Parker, D.; Kono, J.; Vieira, R.; Fairey, P.; Sherwin, J.; Withers, C.; Hoak, D.; Beal, D.

    2014-05-01

    Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC has conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.

  19. Neutron Sources for Standard-Based Testing

    SciTech Connect (OSTI)

    Radev, Radoslav; McLean, Thomas

    2014-11-10

    The DHS TC Standards and the consensus ANSI Standards use 252Cf as the neutron source for performance testing because its energy spectrum is similar to the 235U and 239Pu fission sources used in nuclear weapons. An emission rate of 20,000 20% neutrons per second is used for testing of the radiological requirements both in the ANSI standards and the TCS. Determination of the accurate neutron emission rate of the test source is important for maintaining consistency and agreement between testing results obtained at different testing facilities. Several characteristics in the manufacture and the decay of the source need to be understood and accounted for in order to make an accurate measurement of the performance of the neutron detection instrument. Additionally, neutron response characteristics of the particular instrument need to be known and taken into account as well as neutron scattering in the testing environment.

  20. Technical Standards Newsletters | Department of Energy

    Energy Savers [EERE]

    Technical Standards Newsletters Technical Standards Newsletters February 24, 2016 Technical Standards Newsletter - February 2016 Standards Actions Technical Standards Newsletter, February 2016 October 19, 2015 Technical Standards Newsletter - October 2015 Standards Actions Technical Standards Newsletter, October 2015 April 21, 2015 Technical Standards Newsletter - April 2015 Standards Actions Technical Standards Program Newsletter, April 2015 December 23, 2014 Technical Standards Newsletter -

  1. Healthy Zero Energy Buildings (HZEB) Program - Cross-Sectional...

    Office of Scientific and Technical Information (OSTI)

    development of new, science-based commercial building ventilation rate standards that balance the dual objectives of increasing energy efficiency and maintaining acceptable indoor...

  2. Department of Energy Standards Index

    SciTech Connect (OSTI)

    1995-08-01

    This TSL, intended for use in selecting and using DOE technical standards and other Government and non-Government standards, provides listing of current and inactive DOE technical standards, non-Government standards adopted by DOE, other Government documents in which DOE has a recorded interest, and cancelled DOE technical standards.

  3. USE OF VOLUNTARY CONSENSUS STANDARDS AND INTERACTION WITH STANDARDS...

    Broader source: Energy.gov (indexed) [DOE]

    which DOE adopts Voluntary Consensus Standards (VCSs) and provides guidance for the interaction of DOE and contractor employees with Standards Development Organizations (SDOs)....

  4. DOE technical standards list: Department of Energy standards index

    SciTech Connect (OSTI)

    1997-06-01

    This technical standards list (TSL) was prepared for use by personnel involved in the selection and use of US DOE technical standards and other government and non-government standards. This TSL provides listings of current DOE technical standards, non-government standards that have been adopted by DOE, other government documents in which DOE has a recorded interest, and cancelled DOE technical standards. Standards are indexed by type in the appendices to this document. Definitions of and general guidance for the use of standards are also provided.

  5. Derived Concentration Technical Standard

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-05-05

    This standard supports the implementation of Department of Energy (DOE) Order 458.1, Radiation Protection of the Public and the Environment. It also establishes the numerical values of DCSs in a manner reflecting the current state of knowledge and practice in radiation protection

  6. Building America Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts, Tyler, Texas (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ventilation System Effectiveness and Tested Indoor Air Quality Impacts Tyler, Texas PROJECT INFORMATION Project Name: Ventilation Effectiveness Location: Tyler, TX Partners: University of Texas, TxAIRE, uttyler.edu/txaire/houses/ Building Science Corporation, buildingscience.com Building Component: Heating, ventilating, and air conditioning (HVAC), whole-building dilution ventilation Application: New and retrofit; single-family and multifamily Year Tested: 2012 Climate Zones: All PERFORMANCE

  7. DOE standard: Radiological control

    SciTech Connect (OSTI)

    Not Available

    1999-07-01

    The Department of Energy (DOE) has developed this Standard to assist line managers in meeting their responsibilities for implementing occupational radiological control programs. DOE has established regulatory requirements for occupational radiation protection in Title 10 of the Code of Federal Regulations, Part 835 (10 CFR 835), ``Occupational Radiation Protection``. Failure to comply with these requirements may lead to appropriate enforcement actions as authorized under the Price Anderson Act Amendments (PAAA). While this Standard does not establish requirements, it does restate, paraphrase, or cite many (but not all) of the requirements of 10 CFR 835 and related documents (e.g., occupational safety and health, hazardous materials transportation, and environmental protection standards). Because of the wide range of activities undertaken by DOE and the varying requirements affecting these activities, DOE does not believe that it would be practical or useful to identify and reproduce the entire range of health and safety requirements in this Standard and therefore has not done so. In all cases, DOE cautions the user to review any underlying regulatory and contractual requirements and the primary guidance documents in their original context to ensure that the site program is adequate to ensure continuing compliance with the applicable requirements. To assist its operating entities in achieving and maintaining compliance with the requirements of 10 CFR 835, DOE has established its primary regulatory guidance in the DOE G 441.1 series of Guides. This Standard supplements the DOE G 441.1 series of Guides and serves as a secondary source of guidance for achieving compliance with 10 CFR 835.

  8. COORDINATION OF DOE TECHNICAL STANDARDS

    Broader source: Energy.gov [DOE]

    PurposeThis procedure provides guidance on the formal coordination of DOE Technical Standards in the DOE Technical Standards Program (TSP). The purpose of coordination of draft technical standards...

  9. Building America Case Study: Evaluation of Ventilation Strategies in New Construction Multifamily Buildings, New York, New York (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation of Ventilation Strategies in New Construction Multifamily Buildings New York, New York PROJECT INFORMATION Project Name: Evaluation of Ventilation Strategies in New Construction Multifamily Buildings Location: New York, NY Consortium for Advanced Residential Buildings (CARB): http://carb-swa.com Application: New construction; multifamily Building Component: Mechanical Ventilation Date completed: 2013 Climate Zone: Mixed-humid In multifamily buildings, particularly in the Northeast,

  10. Standard Solar | Open Energy Information

    Open Energy Info (EERE)

    Standard Solar Name: Standard Solar Address: 202 Perry Parkway Place: Gaithersburg, Maryland Zip: 20877 Region: Northeast - NY NJ CT PA Area Sector: Solar Product: Solar...

  11. Physics Beyond the Standard Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Beyond the Standard Model 1663 Los Alamos science and technology magazine Latest Issue:October 2015 past issues All Issues submit Physics Beyond the Standard Model...

  12. ISO 50001 Energy Management Standard

    SciTech Connect (OSTI)

    2013-08-12

    This powerful standard from the International Organization for Standardization (ISO) provides an internationally recognized framework for organizations to voluntarily implement an energy management system.

  13. Expert system for the design of heating, ventilating, and air-conditioning systems. Master's thesis

    SciTech Connect (OSTI)

    Camejo, P.J.

    1989-12-01

    Expert systems are computer programs that seek to mimic human reason. An expert system shelf, a software program commonly used for developing expert systems in a relatively short time, was used to develop a prototypical expert system for the design of heating, ventilating, and air-conditioning (HVAC) systems in buildings. Because HVAC design involves several related knowledge domains, developing an expert system for HVAC design requires the integration of several smaller expert systems known as knowledge bases. A menu program and several auxiliary programs for gathering data, completing calculations, printing project reports, and passing data between the knowledge bases are needed and have been developed to join the separate knowledge bases into one simple-to-use program unit.

  14. Standardized radiological dose evaluations

    SciTech Connect (OSTI)

    Peterson, V.L.; Stahlnecker, E.

    1996-05-01

    Following the end of the Cold War, the mission of Rocky Flats Environmental Technology Site changed from production of nuclear weapons to cleanup. Authorization baseis documents for the facilities, primarily the Final Safety Analysis Reports, are being replaced with new ones in which accident scenarios are sorted into coarse bins of consequence and frequency, similar to the approach of DOE-STD-3011-94. Because this binning does not require high precision, a standardized approach for radiological dose evaluations is taken for all the facilities at the site. This is done through a standard calculation ``template`` for use by all safety analysts preparing the new documents. This report describes this template and its use.

  15. Cooperation on Sustainability Standards

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cooperation on Sustainability Standards USDOE Biomass Program webinar "Global Solutions for Global Challenges: International Collaborations to Advance Bioenergy Research" Keith L. Kline Oak Ridge National Laboratory In collaboration with ORNL staff, ISO PC248 membership and others (see references) http://www.ornl.gov/sci/ees/cbes/ Summary * Bioenergy and climate change are global challenges that are best addressed in processes that include international cooperation * International

  16. ASHRAE Standard 152 Spreadsheet

    Broader source: Energy.gov [DOE]

    ASHRAE Standard 152 quantifies the delivery efficiency of duct systems, based on factors including location, leakage, and insulation of ductwork. This spreadsheet tool developed by Lawrence Berkeley National Laboratory (LBNL) and modified by the National Renewable Energy Laboratory, assists with the calculation of seasonal distribution system efficiency, This calculation is required by the House Simulation Protocols when the simulation tool being used does not permit detailed duct modeling.

  17. Materials, Reliability, & Standards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials, Reliability, & Standards - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  18. Standard interface file handbook

    SciTech Connect (OSTI)

    Shapiro, A.; Huria, H.C. )

    1992-10-01

    This handbook documents many of the standard interface file formats that have been adopted by the US Department of Energy to facilitate communications between and portability of, various large reactor physics and radiation transport software packages. The emphasis is on those files needed for use of the VENTURE/PC diffusion-depletion code system. File structures, contents and some practical advice on use of the various files are provided.

  19. National Emission Standards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Pollutants Calendar Year 1999 National Emission Standards for Hazardous Air Pollutants Calendar Year 1999 June 2000 June 2000 U.S. Department of Energy Nevada Operations Office Las Vegas, Nevada U.S. Department of Energy Nevada Operations Office Las Vegas, Nevada DOE/NV/11718--442 DOE/NV/11718--442 DISCLAIMER Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,

  20. Better Standards, less Ambiguity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    iT Helps with Plant Security engineers ensure Plant Uptime engineers Building Models Better Standards, less Ambiguity Department of energy on Cyber Security exclusive interview Special Pullout Section Packaging Automation review June 2008 FIFTH ANNIVERSARY ISSUE Among the many initiatives aimed at providing cyber security for the nation's critical infrastructure, the effort that led to a January 2006 document known as the "Roadmap to Secure Control Systems in the Energy Sector" stands

  1. DOE standard: Firearms safety

    SciTech Connect (OSTI)

    1996-02-01

    Information in this document is applicable to all DOE facilities, elements, and contractors engaged in work that requires the use of firearms as provided by law or contract. The standard in this document provides principles and practices for implementing a safe and effective firearms safety program for protective forces and for non-security use of firearms. This document describes acceptable interpretations and methods for meeting Order requirements.

  2. Standard Scenarios Annual Report

    Broader source: Energy.gov [DOE]

    The National Renewable Energy Laboratory is conducting a study sponsored by the U.S. Department of Energy DOE, Office of Energy Efficiency and Renewable Energy (EERE), that aims to document and implement an annual process designed to identify a realistic and timely set of input assumptions (e.g., technology cost and performance, fuel costs), and a diverse set of potential futures (standard scenarios), initially for electric sector analysis.

  3. Recommendations for Meeting ASHRAE Standard 62.2

    Broader source: Energy.gov [DOE]

    This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question What are the best ventilation techniques?"

  4. Fact #706: December 19, 2011 Vocational Vehicle Fuel Consumption Standards

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 6: December 19, 2011 Vocational Vehicle Fuel Consumption Standards Fact #706: December 19, 2011 Vocational Vehicle Fuel Consumption Standards The National Highway Traffic Safety Administration recently published final fuel consumption standards for heavy vehicles called "vocational" vehicles. A vocational vehicle is generally a single-unit work vehicle over 8,500 lbs gross vehicle weight rating (GVWR) or a passenger vehicle over 10,000 lbs GVWR that is not a

  5. Active DOE Technical Standards

    Office of Environmental Management (EM)

    01-96 Guide to Good Prac ces for Training and Quali ca on of Instructors James O'Brien DOE-HDBK-1002-96 Guide to Good Prac ces for Training and Quali ca on of Chemical Operators James O'Brien DOE-HDBK-1003-96 Guide to Good Prac ces for Training and Quali ca on of Maintenance Personnel James O'Brien DOE-STD-1020-2012 Na onal Phenomena hazards Design and Evalua on Criteria for DOE Facili es James O'Brien DOE-STD-1025-2008 Weapons Quality Assurance Quali ca on Standard Karen Boardman

  6. High Availability Electronics Standards

    SciTech Connect (OSTI)

    Larsen, R.S.; /SLAC

    2006-12-13

    Availability modeling of the proposed International Linear Collider (ILC) predicts unacceptably low uptime with current electronics systems designs. High Availability (HA) analysis is being used as a guideline for all major machine systems including sources, utilities, cryogenics, magnets, power supplies, instrumentation and controls. R&D teams are seeking to achieve total machine high availability with nominal impact on system cost. The focus of this paper is the investigation of commercial standard HA architectures and packaging for Accelerator Controls and Instrumentation. Application of HA design principles to power systems and detector instrumentation are also discussed.

  7. STANDARD FORM NO. 64

    Office of Legacy Management (LM)

    /qz-5 STANDARD FORM NO. 64 rl . . .' . , G Ojice Memoawl crl LA STATES GOVER pi,+ ip; ; / (' , TO : F. M . Belmore, M remtor, Produution Division DATE: Deomnber FROM : R. F. Van Wy TV Mvision of Teohnioal Advisers SUBJECT: R?IQUEST FOR&m SYMBOL: TA:RFV:rle For use under ooxrkraot AT-300l=Gen-72 at Columibia University, m request 6 pieoes Of A toleranoe of plus ordinary uranium out to the sizes listed below. or llliZlU8 l/16" i8 sati8faotory. P x 1u x 1" 1" x 1 !k x 1"

  8. Long-life leak standard assembly

    DOE Patents [OSTI]

    Basford, James A. (Oak Ridge, TN); Mathis, John E. (Oak Ridge, TN); Wright, Harlan C. (Oak Ridge, TN)

    1982-01-01

    The present invention is directed to a portable leak standard assembly which is capable of providing a stream of high-purity reference gas at a virtually constant flow rate over an extensive period of time. The leak assembly comprises a high pressure reservoir coupled to a metal leak valve through a valve-controlled conduit. A reproducible leak valve useful in this assembly is provided by a metal tube crimped with a selected pressure loading for forming an orifice in the tube with this orifice being of a sufficient size to provide the selected flow rate. The leak valve assembly is formed of metal so that it can be "baked-out" in a vacuum furnace to rid the reservoir and attendent components of volatile impurities which reduce the efficiency of the leak standard.

  9. Improving Entrainment Rate Parameterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Entrainment Rate Parameterization For original submission and image(s), see ARM Research Highlights http://www.arm.gov/science/highlights/ Research Highlight Parameterization of entrainment rate is critical for improving representation of cloud- and convection-related processes in climate models; however, much remains unclear. This work seeks to improve understanding and parameterization of entrainment rate by use of aircraft observations and large-eddy simulations of shallow cumulus clouds over

  10. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns for New Instrument Standards

    SciTech Connect (OSTI)

    Walker, Iain; Stratton, Chris

    2015-08-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The study team prepared a draft test method through ASTM International to determine the uncertainty of air flow measurements at residential heating ventilation and air conditioning returns and other terminals. This test method, when finalized, can be used by the Energy Commission and other entities to specify required accuracy of measurement devices used to show compliance with standards.

  11. LCC Guidance Rates

    Broader source: Energy.gov [DOE]

    Notepad text file provides the LCC guidance rates in a numbered format for the various regions throughout the U.S.

  12. Draft Tiered Rate Methodology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For Regional Dialogue Discussion Purposes Only Pre-Decisional Draft Tiered Rates Methodology March 7, 2008 Pre-decisional, Deliberative, For Discussion Purposes Only March 7,...

  13. Standard-E hydrogen monitoring system field acceptance testprocedure

    SciTech Connect (OSTI)

    Schneider, T.C.

    1997-02-01

    The purpose of this document is to demonstrate that the Standard-E Hydrogen Monitoring Systems (SHMS-E) installed on the Waste Tank Farms in the Hanford 200 Areas are constructed as intended by the design.

  14. Supernova Twins: Making Standard Candles More Standard Than Ever

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supernova Twins: Making Standard Candles More Standard Than Ever Supernova Twins: Making Standard Candles More Standard Than Ever New Modeling Method Measures Cosmological Distances With Far Greater Accuracy January 13, 2016 Contact: Paul Preuss, paul_preuss@lbl.gov, +1 415 272 3253 supernovatwins From left, Greg Aldering, Kyle Boone, Hannah Fakhouri and Saul Perlmutter of the Nearby Supernova Factory. Behind them is a poster of a supernova spectrum. Matching spectra among different supernovae

  15. Microfabricated ion frequency standard

    DOE Patents [OSTI]

    Schwindt, Peter (Albuquerque, NM); Biedermann, Grant (Albuquerque, NM); Blain, Matthew G. (Albuquerque, NM); Stick, Daniel L. (Albuquerque, NM); Serkland, Darwin K. (Albuquerque, NM); Olsson, III, Roy H. (Albuquerque, NM)

    2010-12-28

    A microfabricated ion frequency standard (i.e. an ion clock) is disclosed with a permanently-sealed vacuum package containing a source of ytterbium (Yb) ions and an octupole ion trap. The source of Yb ions is a micro-hotplate which generates Yb atoms which are then ionized by a ultraviolet light-emitting diode or a field-emission electron source. The octupole ion trap, which confines the Yb ions, is formed from suspended electrodes on a number of stacked-up substrates. A microwave source excites a ground-state transition frequency of the Yb ions, with a frequency-doubled vertical-external-cavity laser (VECSEL) then exciting the Yb ions up to an excited state to produce fluorescent light which is used to tune the microwave source to the ground-state transition frequency, with the microwave source providing a precise frequency output for the ion clock.

  16. US Department of Energys Regulatory Negotiations Convening on Commercial Certification for Heating, Ventilating, Air-Conditioning, and Refrigeration Equipment

    Broader source: Energy.gov [DOE]

    This document provides Public Information for Convening Interviews for US Department of Energys Regulatory Negotiations Convening on Commercial Certification for Heating, Ventilating, Air-Conditioning, and Refrigeration Equipment

  17. Technical Standards Newsletter - August 2006 | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    August 2006 Technical Standards Newsletter - August 2006 The Standards Forum and Standards Actions, August 2006 Inside This Isssue: DOE Standards Actions ......

  18. STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION & LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE [SEC 1 & 2

    SciTech Connect (OSTI)

    HU, T.A.

    2003-09-30

    Flammable gases such as hydrogen, ammonia, and methane are observed in the tank dome space of the Hanford Site high-level waste tanks. This report assesses the steady-state flammability level under normal and off-normal ventilation conditions in the tank dome space for 177 double-shell tanks and single-shell tanks at the Hanford Site. The steady-state flammability level was estimated from the gas concentration of the mixture in the dome space using estimated gas release rates, Le Chatelier's rule and lower flammability limits of fuels in an air mixture. A time-dependent equation of gas concentration, which is a function of the gas release and ventilation rates in the dome space, has been developed for both soluble and insoluble gases. With this dynamic model, the time required to reach the specified flammability level at a given ventilation condition can be calculated. In the evaluation, hydrogen generation rates can be calculated for a given tank waste composition and its physical condition (e.g., waste density, waste volume, temperature, etc.) using the empirical rate equation model provided in Empirical Rate Equation Model and Rate Calculations of Hydrogen Generation for Hanford Tank Waste, HNF-3851. The release rate of other insoluble gases and the mass transport properties of the soluble gas can be derived from the observed steady-state gas concentration under normal ventilation conditions. The off-normal ventilation rate is assumed to be natural barometric breathing only. A large body of data is required to do both the hydrogen generation rate calculation and the flammability level evaluation. For tank waste that does not have sample-based data, a statistical-based value from probability distribution regression was used based on data from tanks belonging to a similar waste group. This report (Revision 3) updates the input data of hydrogen generation rates calculation for 177 tanks using the waste composition information in the Best-Basis Inventory Detail Report in the Tank Waste Information Network System, and the waste temperature data in the Surveillance Analysis Computer System (SACS) (dated July 2003). However, the release rate of methane, ammonia, and nitrous oxide is based on the input data (dated October 1999) as stated in Revision 0 of this report. Scenarios for adding waste to existing waste levels (dated July 2003) have been studied to determine the gas generation rates and the effect of smaller dome space on the flammability limits to address the issues of routine water additions and other possible waste transfer operations. In the flammability evaluation with zero ventilation, the sensitivity to waste temperature and to water addition was calculated for double-shell tanks 241-AY-102, 241-AN-102,241-AZ-101,241-AN-107,241-AY-101 and 241-AZ-101. These six have the least margin to flammable conditions among 28 double-shell tanks.

  19. Energy Standards for State Buildings

    Broader source: Energy.gov [DOE]

    The State is still required by statute to adopt planning and construction standards for state buildings that conserve energy and optimize the energy performance of new buildings. The standards mu...

  20. Energy Efficiency Standards for Appliances

    Broader source: Energy.gov [DOE]

    Connecticut enacted efficiency standards through legislative actions in 2004 and 2007 and 2011. This law covers the following products that have not been pre-empted by federal standards:...

  1. Energy Efficiency Standards for Appliances

    Broader source: Energy.gov [DOE]

    In 2007 the District of Columbia (D.C.) enacted legislation, entitled the Energy Efficiency Standards Act of 2007, which created efficiency standards for six products, four of which were...

  2. Appliance and Equipment Efficiency Standards

    Broader source: Energy.gov [DOE]

    Arizona’s Appliance and Equipment Efficiency Standards (Arizona Revised Statutes, Title 44, Section 1375) set minimum energy efficiency standards for twelve products, all of which have since been...

  3. Descriptions and diagrams of the primary and annulus ventilation systems of the double-shell tank farms as of January 1988

    SciTech Connect (OSTI)

    Blackman, A.E.; Waters, E.D.

    1994-12-28

    This document is a compilation of information describing the ventilation systems of the Double-Shell Tank farms (214-AN, -AP, -AW, -AW, -AY, -AZ, and -SY). A general description of the primary tank and annulus ventilation systems is given along with specific information on the high efficiency particulate air (HEPA) filters, condensers, preheaters, exhaust fans, and piping. This information is considered to be current as of January 1988. 38 refs, 20 figs, 30 tabs.

  4. Appliance Standards and Building Codes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Manager Presentation Appliance Standards and Building Codes John Cymbalsky U.S Department of Energy - Building Technologies Office john.cymbalsky@ee.doe.gov 202.287.1692 2 | Building Technologies Office eere.energy.gov Appliance Standards and Building Codes Program Goals Appliance Standards Program Goals Provide cost-effective energy savings through national appliance and equipment standards: Issue 23 final rules by end of FY2015 Deliver at least 1 qBtu of savings annually by 2030

  5. A Standard for Neuroscience Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Standard for Neuroscience Data A Standard for Neuroscience Data Berkeley Lab researchers have developed a computational framework for standardizing neuroscience data worldwide December 16, 2014 Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov Neural1.jpg Image Credit: Wikimedia Commons Thanks to standardized image file formats-like JPEG, PNG or TIFF-which store information every time you take a digital photo, you can easily share selfies and other pictures with anybody connected to a computer,

  6. General Technical Base Qualification Standard

    Office of Environmental Management (EM)

    SENSITIVE DOE-STD-1146-2007 REAFFIRMED: March 2015 DOE STANDARD GENERAL TECHNICAL BASE QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited ii This document is available on the Department of Energy Technical Standards Program Website at http://energy.gov/ehss/services/nuclear-safety/ department-energy-technical-standards-program

  7. TECHNICAL STANDARDS PROGRAM TOPICAL COMMITTEES

    Broader source: Energy.gov [DOE]

    PurposeThis procedure describes how topical committees are organized and recognized under the Technical Standards Program. 

  8. Reducing Mortality from Terrorist Releases of Chemical and Biological Agents: I. Filtration for Ventilation Systems in Commercial Building

    SciTech Connect (OSTI)

    Thatcher, Tracy L.; Daisey, Joan M.

    1999-09-01

    There is growing concern about potential terrorist attacks involving releases of chemical and/or biological (CB) agents, such as sarin or anthrax, in and around buildings. For an external release, the CB agent can enter the building through the air intakes of a building's mechanical ventilation system and by infiltration through the building envelope. For an interior release in a single room, the mechanical ventilation system, which often recirculates some fraction of the air within a building, may distribute the released CB agent throughout the building. For both cases, installing building systems that remove chemical and biological agents may be the most effective way to protect building occupants. Filtration systems installed in the heating, ventilating and air-conditioning (HVAC) systems of buildings can significantly reduce exposures of building occupants in the event of a release, whether the release is outdoors or indoors. Reduced exposures can reduce the number of deaths from a terrorist attack. The purpose of this report is to provide information and examples of the design of filtration systems to help building engineers retrofit HVAC systems. The report also provides background information on the physical nature of CB agents and brief overviews of the basic principles of particle and vapor filtration.

  9. Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems

    SciTech Connect (OSTI)

    Wetter, Michael

    2009-06-17

    This paper presents a freely available Modelica library for building heating, ventilation and air conditioning systems. The library is based on the Modelica.Fluid library. It has been developed to support research and development of integrated building energy and control systems. The primary applications are controls design, energy analysis and model-based operation. The library contains dynamic and steady-state component models that are applicable for analyzing fast transients when designing control algorithms and for conducting annual simulations when assessing energy performance. For most models, dimensional analysis is used to compute the performance for operating points that differ from nominal conditions. This allows parameterizing models in the absence of detailed geometrical information which is often impractical to obtain during the conceptual design phase of building systems. In the first part of this paper, the library architecture and the main classes are described. In the second part, an example is presented in which we implemented a model of a hydronic heating system with thermostatic radiator valves and thermal energy storage.

  10. Energy-Efficient Supermarket Heating, Ventilation, and Air Conditioning in Humid Climates in the United States

    SciTech Connect (OSTI)

    Clark, J.

    2015-03-01

    Supermarkets are energy-intensive buildings that consume the greatest amount of electricity per square foot of building of any building type in the United States and represent 5% of total U.S. commercial building primary energy use (EIA 2005). Refrigeration and heating, ventilation, and air-conditioning (HVAC) systems are responsible for a large proportion of supermarkets’ total energy use. These two systems sometimes work together and sometimes compete, but the performance of one system always affects the performance of the other. To better understand these challenges and opportunities, the Commercial Buildings team at the National Renewable Energy Laboratory investigated several of the most promising strategies for providing energy-efficient HVAC for supermarkets and quantified the resulting energy use and costs using detailed simulations. This research effort was conducted on behalf of the U.S. Department of Energy (DOE) Commercial Building Partnerships (CBP) (Baechler et al. 2012; Parrish et al. 2013; Antonopoulos et al. 2014; Hirsch et al. 2014). The goal of CBP was to reduce energy use in the commercial building sector by creating, testing, and validating design concepts on the pathway to net zero energy commercial buildings. Several CBP partners owned or operated buildings containing supermarkets and were interested in optimizing the energy efficiency of supermarket HVAC systems in hot-humid climates. These partners included Walmart, Target, Whole Foods Market, SUPERVALU, and the Defense Commissary Agency.

  11. Airborne Effluent Monitoring System Certification for New Canister Storage Building Ventilation Exhaust Stack

    SciTech Connect (OSTI)

    Glissmeyer, J.A.; Maughan, A.D.

    1999-04-01

    Pacific Northwest National Laboratory conducted three of the six tests needed to verify that the effluent monitoring system for the new Canister Storage Building ventilation exhaust stack meets applicable regulatory performance criteria for air sampling systems at nuclear facilities. These performance criteria address both the suitability of the location for the air-sampling probe and the transport of the sample to the collection devices. The criteria covering the location for the air-sampling probe ensure that the contaminants in the stack are well mixed with the airflow at the probe location such that the extracted sample represents the whole. The sample-transport criteria ensure that the sampled contaminants are quantitatively delivered to the collection device. The specific performance criteria are described in detail in this report. The tests reported here cover the contaminant tracer uniformity and particle delivery performance criteria. These criteria were successfully met. The other three tests were conducted by the start-up staff of Duke Engineering and Services Hanford Inc. (DESH) and reported elsewhere. The Canister Storage Building is located in the 200 East Area of the U.S. Department of Energy's Hanford Site near Richland, Washington. The new air-exhaust system was built under the W379 Project. The air sampling system features a probe with a single shrouded sampling nozzle, a sample delivery line, and a filter holder to collect the sample.

  12. ARM Standards Policy Committee Report

    SciTech Connect (OSTI)

    Cialella, A; Jensen, M; Koontz, A; McFarlane, S; McCoy, R; Monroe, J; Palanisamy, G; Perez, R; Sivaraman, C

    2012-09-19

    Data and metadata standards promote the consistent recording of information and are necessary to ensure the stability and high quality of Atmospheric Radiation Measurement (ARM) Climate Research Facility data products for scientific users. Standards also enable automated routines to be developed to examine data, which leads to more efficient operations and assessment of data quality. Although ARM Infrastructure agrees on the utility of data and metadata standards, there is significant confusion over the existing standards and the process for allowing the release of new data products with exceptions to the standards. The ARM Standards Policy Committee was initiated in March 2012 to develop a set of policies and best practices for ARM data and metadata standards.

  13. 2007-2009 Power Rate Adjustments (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Function Review (PFR) Firstgov FY 2007 2009 Power Rate Adjustments BPA's 2007-2009 Wholesale Power Rate Schedules and General Rate Schedule Provisions (GRSPs) took effect on...

  14. WP-07 Power Rate Case (rates/ratecases)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meetings & Workshops Rate Case Parties Web Site WP-07 Supplemental Rate Case ASC Methodology Adjustments (2007-2009) Adjustments (2002-2006) Previous Rate Cases Financial...

  15. American National Standard: design criteria for an independent spent-fuel-storage installation (water pool type)

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    This standard provides design criteria for systems and equipment of a facility for the receipt and storage of spent fuel from light water reactors. It contains requirements for the design of major buildings and structures including the shipping cask unloading and spent fuel storage pools, cask decontamination, unloading and loading areas, and the surrounding buildings which contain radwaste treatment, heating, ventilation and air conditioning, and other auxiliary systems. It contains requirements and recommendations for spent fuel storage racks, special equipment and area layout configurations, the pool structure and its integrity, pool water cleanup, ventilation, residual heat removal, radiation monitoring, fuel handling equipment, cask handling equipment, prevention of criticality, radwaste control and monitoring systems, quality assurance requirements, materials accountability, and physical security. Such an installation may be independent of both a nuclear power station and a reprocessing facility or located adjacent to any of these facilities in order to share selected support systems. Support systems shall not include a direct means of transferring fuel assemblies from the nuclear facility to the installation.

  16. Environmental standards provide competitive advantage

    SciTech Connect (OSTI)

    Chynoweth, E.; Kirshner, E.

    1993-04-28

    Quality organizations are breaking new ground with the development of international standards for environmental management. These promise to provide the platform for chemical companies wanting to establish their environmental credibility with a global audience. [open quotes]It will be similar to auditing our customers to ISO 9000[close quote], says the environmental manager for a European chemical firm. [open quote]We will only want to deal with people who have got their environmental act together. And we'll be in a better competitive positions[close quote]. The International Organization for Standardization (ISO;Geneva) has set up a taskforce to develop an environmental management standard, which is expected to be completed by the mid-1990s. Observers think the ISO standard will draw heavily on the British Standard Institute's (BSI;London) environmental management standard, BS7750, which will likely be the first system adopted in the world. Published last year, BS7750 has been extensively piloted in the UK (CW, Sept. 30, 1992, p. 62) and is now set to be revised before being offically adopted by BSI. The UK's Chemical Industries Association (CIA;London) is anxious to prevent a proliferation of standards, and its report on BS7750 pilot projects calls for an approach integrating quality, environment, and health and safety. But standard setters, including ISO, appear to be moving in the opposite direction. In the US, the American national Standards Institute (ANSI;Washington) has started work on an environmental management standard.

  17. Inspection and Gamma-Ray Dose Rate Measurements of the Annulus of the VSC-17 Concrete Spent Nuclear Fuel Storage Cask

    SciTech Connect (OSTI)

    P. L. Winston

    2007-09-01

    The air cooling annulus of the Ventilated Storage Cask (VSC)-17 spent fuel storage cask was inspected using a Toshiba 7 mm (1/4) CCD video camera. The dose rates observed in the annular space were measured to provide a reference for the activity to which the camera(s) being tested were being exposed. No gross degradation, pitting, or general corrosion was observed.

  18. NREL: Photovoltaics Research - Standards Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Standards Development NREL's Photovoltaic (PV) Engineering group supports the development of national and international standards for PV engineering. Current standards lack specifics on how to precondition cadmium telluride (CdTe) and copper indium gallium diselenide (CIGS) modules so that when tested for reporting conditions, the results are well coordinated with subsequent field performance. This work examines existing and proposed methods and uses capacitance-voltage measurements, which is a

  19. Project Analysis Standard Operating Procedure

    Energy Savers [EERE]

    and Project Analysis Standard Operating Procedure (EPASOP) Issued by Office of Acquisition and Project Management MA-63 March 12, 2014 DEPARTMENT OF ENERGY Office of Acquisition and Project Management (OAPM) EVMS & PROJECT ANALYSIS SOP MARCH 2014 ii Earned Value Management System (EVMS) and Project Analysis Standard Operating Procedure (EPASOP) OPR: MA-63 March 2014 1. PURPOSE. This EVMS and Project Analysis Standard Operating Procedure (EPASOP) will serve as a primary reference for MA-631

  20. International Quality Assurance Standards (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.; Hacke, P.; Wohlgemuth, J.; Kempe, M.; Yamamichi, M.

    2011-02-01

    Tests to make quantitative predictions about photovoltaic (PV) modules are needed. This presentation proposes the creation of international quality assurance standards for PV modules.

  1. Project Analysis Standard Operating Procedure

    Office of Environmental Management (EM)

    Standard Operating Procedure (EPASOP) Issued by Office of Acquisition and Project Management MA-63 March 12, 2014 DEPARTMENT OF ENERGY Office of Acquisition and Project...

  2. standards | OpenEI Community

    Open Energy Info (EERE)

    Protection Agency Administrator, unveiled the joint effort, along with the Obama Administration, to create record fuel standards for vehicles built between 2017 and 2025....

  3. Interconnection Standards | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    construction by the utility in order accommodate the facility. The ICC adopted IEEE 1547 as the technical standard of evaluation in July 2007. Systems are considered to be...

  4. Standard-E hydrogen monitoring system shop acceptance test procedure

    SciTech Connect (OSTI)

    Schneider, T.C.

    1997-10-02

    The purpose of this report is to document that the Standard-E Hydrogen Monitoring Systems (SHMS-E), fabricated by Mid-Columbia Engineering (MCE) for installation on the Waste Tank Farms in the Hanford 200 Areas, are constructed as intended by the design. The ATP performance will verify proper system fabrication.

  5. [FIXED RATE GUARANTEED OBLIGATIONS]

    Broader source: Energy.gov (indexed) [DOE]

    FIXED RATE GUARANTEED OBLIGATIONS] Draft Date: May 09, 2011 AMR-306688-v5 81-40475664 DATED AS OF [______], 20[__] AMONG THE HOLDERS IDENTIFIED HEREIN, THEIR SUCCESSORS AND PERMITTED ASSIGNS, AND THE UNITED STATES DEPARTMENT OF ENERGY, AS GUARANTOR, AND [_____________________________], AS ADMINISTRATIVE AGENT LOAN GUARANTEE AGREEMENT _____________________________ DOE FIPP Guarantee No. [______] ______________________________ AMR-306688-v5 - i - 81-40475664 CONTENTS Clause Page Section 1.

  6. STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION AND LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE

    SciTech Connect (OSTI)

    MEACHAM JE

    2008-11-17

    This report assesses the steady state flammability level under off normal ventilation conditions in the tank headspace for 28 double-shell tanks (DST) and 149 single shell-tanks (SST) at the Hanford Site. Flammability was calculated using estimated gas release rates, Le Chatelier's rule, and lower flammability limits of fuels in an air mixture. This revision updates the hydrogen generation rate input data for al1 177 tanks using waste composition information from the Best Basis Inventory Detail Report (data effective as of August 4,2008). Assuming only barometric breathing, the shortest time to reach 25% of the lower flammability limit is 13 days for DSTs (i.e., tank 241-AZ-102) and 36 days for SSTs (i.e., tank 241-B-203). Assuming zero ventilation, the shortest time to reach 25% of the lower flammability limit is 12 days for DSTs (i.e., tank 241-AZ-102) and 34 days for SSTs (i.e., tank 241-B-203).

  7. STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION AND LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE

    SciTech Connect (OSTI)

    MEACHAM JE

    2009-10-26

    This report assesses the steady state flammability level under off normal ventilation conditions in the tank headspace for 28 double-shell tanks (DST) and 149 single shell-tanks (SST) at the Hanford Site. Flammability was calculated using estimated gas release rates, Le Chatelier's rule, and lower flammability limits of fuels in an air mixture. This revision updates the hydrogen generation rate input data for all 177 tanks using waste composition information from the Best Basis Inventory Detail Report (data effective as of August 4,2008). Assuming only barometric breathing, the shortest time to reach 25% of the lower flammability limit is 11 days for DSTs (i.e., tank 241-AZ-10l) and 36 days for SSTs (i.e., tank 241-B-203). Assuming zero ventilation, the shortest time to reach 25% of the lower flammability limit is 10 days for DSTs (i.e., tank 241-AZ-101) and 34 days for SSTs (i.e., tank 241-B-203).

  8. Impact of Four-Dimensional Computed Tomography Pulmonary Ventilation Imaging-Based Functional Avoidance for Lung Cancer Radiotherapy

    SciTech Connect (OSTI)

    Yamamoto, Tokihiro; Kabus, Sven; Berg, Jens von; Lorenz, Cristian; Keall, Paul J.

    2011-01-01

    Purpose: To quantify the dosimetric impact of four-dimensional computed tomography (4D-CT) pulmonary ventilation imaging-based functional treatment planning that avoids high-functional lung regions. Methods and Materials: 4D-CT ventilation images were created from 15 non-small-cell lung cancer patients using deformable image registration and quantitative analysis of the resultant displacement vector field. For each patient, anatomic and functional plans were created for intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT). Consistent beam angles and dose-volume constraints were used for all cases. The plans with Radiation Therapy Oncology Group (RTOG) 0617-defined major deviations were modified until clinically acceptable. Functional planning spared the high-functional lung, and anatomic planning treated the lungs as uniformly functional. We quantified the impact of functional planning compared with anatomic planning using the two- or one-tailed t test. Results: Functional planning led to significant reductions in the high-functional lung dose, without significantly increasing other critical organ doses, but at the expense of significantly degraded the planning target volume (PTV) conformity and homogeneity. The average reduction in the high-functional lung mean dose was 1.8 Gy for IMRT (p < .001) and 2.0 Gy for VMAT (p < .001). Significantly larger changes occurred in the metrics for patients with a larger amount of high-functional lung adjacent to the PTV. Conclusion: The results of the present study have demonstrated the impact of 4D-CT ventilation imaging-based functional planning for IMRT and VMAT for the first time. Our findings indicate the potential of functional planning in lung functional avoidance for both IMRT and VMAT, particularly for patients who have high-functional lung adjacent to the PTV.

  9. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Commercial Building Heating, Ventilation, and Air Conditioning Systems

    SciTech Connect (OSTI)

    none,

    2011-09-01

    This report covers an assessment of 182 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. commercial buildings to identify and provide analysis on 17 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, description of technical maturity, description of non-energy benefits, description of current barriers for market adoption, and description of the technologys applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.

  10. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Residential Building Heating, Ventilation, and Air Conditioning Systems

    SciTech Connect (OSTI)

    Goetzler, William; Zogg, Robert; Young, Jim; Schmidt, Justin

    2012-10-01

    This report is an assessment of 135 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. residential buildings to identify and provide analysis on 19 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, descriptions of technical maturity, descriptions of non-energy benefits, descriptions of current barriers for market adoption, and descriptions of the technology's applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.

  11. ISO 14000 environmental management standard

    SciTech Connect (OSTI)

    Block, M.R.

    1995-12-01

    National standards organizations around the world are developing an environmental management standard to help organizations address significant environmental aspects of their activities. This standard, designated ISO 14000, will provide guidance for environmental management systems: environmental audits: Environmental performance evaluation: Environmental labeling and life-cycle assessment. The environmental management system specification, the lynch-pin of ISO 14000, will be published as an international standard in early 1996. Audit documents will follow shortly thereafter. Although conformance to ISO 14000 will be voluntary, US multinational companies are likely to discover that failure to participate creates trade barriers in Europe. The Environmental Commission created by NAFTA also is considering whether to make adherence to ISO 14000 a condition of trade. This presentation will provide an understanding of the ISO process to create the standard, key elements of ISO 14000, and implications for US companies. Such an understanding will enable organizations to determine whether adoption of ISO 14000 is strategically sound.

  12. Standard Contracts Team | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Standard Contracts Team Standard Contracts Team The Standard Contracts Team has responsibility to: Act as Federal contracting officer for contracts with the nuclear power ...

  13. Gold Standard Program Model | Open Energy Information

    Open Energy Info (EERE)

    Standard Program Model Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Gold Standard Program Model AgencyCompany Organization: The Gold Standard Foundation Sector:...

  14. Review of Consensus Standard Spectra for Flat Plate and Concentrating Photovoltaic Performance

    SciTech Connect (OSTI)

    Myers, D.

    2011-09-01

    Consensus standard reference terrestrial solar spectra are used to establish nameplate ratings for photovoltaic device performance at standard reporting conditions. This report describes reference solar spectra developed in the United States and international consensus standards community which are widely accepted as of this writing (June 2011).

  15. Rotational rate sensor

    DOE Patents [OSTI]

    Hunter, Steven L. (Livermore, CA)

    2002-01-01

    A rate sensor for angular/rotational acceleration includes a housing defining a fluid cavity essentially completely filled with an electrolyte fluid. Within the housing, such as a toroid, ions in the fluid are swept during movement from an excitation electrode toward one of two output electrodes to provide a signal for directional rotation. One or more ground electrodes within the housing serve to neutralize ions, thus preventing any effect at the other output electrode.

  16. Residential Solar Valuation Rates

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Solar Valuation Rates Karl R. Rábago Rábago Energy LLC 1 The Ideal Residential Solar Tariff ‣ Fair to the utility and non-solar customers ‣ Fair compensation to the solar customer ‣ Decouple compensation from incentives ‣ Align public policy goals (decouple compensation from consumption) ‣ Intuitively sound and administratively simple 2 Historical Antecedents ‣ Externalities ‣ Price ≠ Cost ‣ Green Power ‣ Small Is Profitable (http://www.smallisprofitable.org/)

  17. [FLOATING RATE GUARANTEED OBLIGATIONS]

    Broader source: Energy.gov (indexed) [DOE]

    FLOATING RATE GUARANTEED OBLIGATIONS] Draft Date: May 09, 2011 AMR-306979-v3A 81-40475664 DATED AS OF [______], 20[__] AMONG THE HOLDERS IDENTIFIED HEREIN, THEIR SUCCESSORS AND PERMITTED ASSIGNS, AND THE UNITED STATES DEPARTMENT OF ENERGY, AS GUARANTOR, AND [_____________________________] AS ADMINISTRATIVE AGENT LOAN GUARANTEE AGREEMENT _____________________________ DOE FIPP Guarantee No. [______] ______________________________ AMR-306979-v3A - i - 81-40475664 CONTENTS Clause Page Section 1.

  18. Buildings Energy Data Book: 7.6 Efficiency Standards for Lighting

    Buildings Energy Data Book [EERE]

    4 Lighting Standards for General Service Incandescent Lamps Prescribed by EISA 2007 General Service Incandescent Effective Date Maximum Wattage Rated Lumen Range Minimum Life Modified Spectrum General Service Incandescent Effective Date Maximum Wattage Rated Lumen Range Minimum Life By 2020, the minimum efficacy for general service incandescent will be 45 lm/W unless the Secretary of Energy has implemented another standard which saves as much or more energy than a 45 lm/W standard. Source(s): U.

  19. Prototype Systems for Measuring Outdoor Air Intake Rates in Rooftop Air Handlers

    SciTech Connect (OSTI)

    Fisk, William J.; Chan, Wanyu R.; Hotchi, Toshifumi

    2015-01-01

    The widespread absence of systems for real-time measurement and feedback control, of minimum outdoor air intake rates in HVAC systems contributes to the poor control of ventilation rates in commercial buildings. Ventilation rates affect building energy consumption and influence occupant health. The project designed fabricated and tested four prototypes of systems for measuring rates of outdoor air intake into roof top air handlers. All prototypes met the ±20% accuracy target at low wind speeds, with all prototypes accurate within approximately ±10% after application of calibration equations. One prototype met the accuracy target without a calibration. With two of four prototype measurement systems, there was no evidence that wind speed or direction affected accuracy; however, winds speeds were generally below usually 3.5 m s-1 (12.6 km h-1) and further testing is desirable. The airflow resistance of the prototypes was generally less than 35 Pa at maximum RTU air flow rates. A pressure drop of this magnitude will increase fan energy consumption by approximately 4%. The project did not have resources necessary to estimate costs of mass produced systems. The retail cost of components and materials used to construct prototypes ranged from approximately $1,200 to $1,700. The test data indicate that the basic designs developed in this project, particularly the designs of two of the prototypes, have considerable merit. Further design refinement, testing, and cost analysis would be necessary to fully assess commercial potential. The designs and test results will be communicated to the HVAC manufacturing community.

  20. Realization rates of the National Energy Audit

    SciTech Connect (OSTI)

    Berry, L.G.; Gettings, M.B.

    1998-11-01

    Engineering estimates of savings resulting from installation of energy conservation measures in homes are often greater than the savings actually realized. A brief review of prior studies of realization rates prefaces this study of rates from an engineering audit tool, NEAT, (developed for the Department of Energy`s Low-Income Weatherization Assistance Program) used in a New York state utility`s low-income program. Estimates of metered and predicted savings are compared for 49 homes taken from a data base of homes that participated in the first year of the utility`s program. Average realization rates ranging from 57% to 69% result, depending on the data quality. Detailed examinations of two houses using an alternate engineering method, the DOE-2 computer program (considered an industry standard), seem to indicate that the low realization rates mainly result from factors other than inaccuracies in the audit`s internal algorithms. Causes of the low realization rates are examined, showing that the strongest single factor linked to the low rates in this study is the use of secondary heating fuels that supplement the primary heating fuel. This study, like the other similar studies, concludes that engineering estimates are valuable tools in determining ranked lists of cost-effective weatherization measures, but may not be accurate substitutes for measured results in evaluating program performance.

  1. Human Behavior, Standards and Tools to Improve Design & Operation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The building has an advanced ventilated double facade and uses low-energy underfloor air distribution and is designed to achieve energy savings of 30% below code.
    Image ...

  2. National Green Building Standard Analysis

    SciTech Connect (OSTI)

    none,

    2012-07-01

    DOE's Building America Program is a research and development program to improve the energy performance of new and existing homes. The ultimate goal of the Building America Program is to achieve examples of cost-effective, energy efficient solutions for all U.S. climate zones. Periodic maintenance of an ANSI standard by review of the entire document and action to revise or reaffirm it on a schedule not to exceed five years is required by ANSI. In compliance, a consensus group has once again been formed and the National Green Building Standard is currently being reviewed to comply with the periodic maintenance requirement of an ANSI standard.

  3. Active DOE Technical Standards Managers

    Office of Environmental Management (EM)

    TECHNICAL STANDARDS PROGRAM ASSIGNMENT TELEPHONE/FAX/EMAIL NAME DOE FACILITY/ADDRESS LOC CODE AU-30 Je D. Feit DOE Technical Standards Program, Manager U.S. Department of Energy 19901 Germantown Road Germantown, MD 20876 Phone: (301) 903-0471 Fax: (301) 903-6172 Je rey.Feit@hq.doe.gov AU-30 Kathy A. Knight DOE Technical Standards Program, Program Specialist U.S. Department of Energy 19901 Germantown Road Germantown, MD 20876 Phone: (301) 903-4439 Fax: (301) 903-6172 kathy.knight@hq.doe.gov AU-30

  4. Weapons Quality Assurance Qualification Standard

    Broader source: Energy.gov (indexed) [DOE]

    5-2008 September 2008 DOE STANDARD WEAPON QUALITY ASSURANCE QUALIFICATION STANDARD NNSA Weapon Quality Assurance Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1025-2008 This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ DOE-STD-1025-2008 iv INTENTIONALLY BLANK DOE-STD-1025-2008 v

  5. Writing Effective Initial Summary Ratings Initial Summary Rating (ISR)

    Broader source: Energy.gov (indexed) [DOE]

    Initial Summary Ratings Initial Summary Rating (ISR) At the end of the performance cycle, the rating official must prepare an ISR in ePerformance for each SES member who has completed at least 90 days on an established performance plan. Rating officials must take into account the SES member's accomplishments achieved during the performance cycle and the impact to the organization's performance. Rating officials must appraise executives realistically and fairly and avoid ratings inflation.

  6. Rail Coal Transportation Rates

    Gasoline and Diesel Fuel Update (EIA)

    reports Coal Transportation Rates to the Electric Power Sector With Data through 2014 | Release Date: February 23, 2016 | Next Release Date: January 2017 | Previous Data Years Year: 2013 2011 2010 2008 2002 Go Background and Methodology The data in the tables are based on primary data collected by EIA from plant owners and operators on the Form EIA-923, "Power Plant Operations Report" (EIA-923 Data) and supplement data and analysis of coal transportation costs released by EIA in June

  7. October 1996 - September 2001 Wholesale Power Rates (rates/previous...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    affecting a specific power purchase. For more specific information see: 1996 Final Wholesale Power and Transmission Rate Schedules: Power Rates (PDF, 84 pages, 188 kb) Ancillary...

  8. Stronger Manufacturers' Energy Efficiency Standards for Residential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency Standards for Residential Air Conditioners Go Into Effect Today Stronger Manufacturers' Energy Efficiency Standards for Residential Air Conditioners...

  9. Technical Standards Style Guide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Style Guide Technical Standards Style Guide May 13, 2015 Style Guide for the Preparation of DOE Technical Standards (Standards, Handbooks, and Technical Standards Lists), May 13, 2015 The need for a technical standard is established in accordance with the Department of Energy Technical Standards Program Procedures (DOE TSPPs). If a DOE Technical Standard is needed, the guidance contained in this Style Guide may be helpful for development or maintenance of DOE standards, handbooks, or technical

  10. External Independent Review (EIR) Standard Operating Procedure...

    Broader source: Energy.gov (indexed) [DOE]

    External Independent Review (EIR) Standard Operating Procedure (SOP) - September 2010 More Documents & Publications External Independent Review (EIR) Standard Operating Procedure...

  11. Technical Standards Newsletter - October 2007 | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Revision ... 1 *DOE Technical Standards Posted in RevCom for TSP ... 1 *DOE Technical Standards in Reaffirmation...

  12. Technical Standards Newsletter - February 2008 | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Revision ... 1 *DOE Technical Standards Posted in RevCom for TSP ... 1 *DOE Technical Standards in Reaffirmation...

  13. Technical Standards Newsletter - February 2007 | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Revision ... 1 *DOE Technical Standards Posted in RevCom for TSP ... 1 *DOE Technical Standards in Reaffirmation...

  14. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    7 2008 Gas Furnace Manufacturer Market Shares (Percent of Products Produced) Company Market Share (%) Total Units Shipped: UTC/Carrier 32% Goodman (Amana) 15% Lennox 13% American Standard (Trane) 13% Rheem 12% York 9% Nordyne 5% Others 1% Total 100% Source(s): 2,300,000

  15. City of Eugene- Solar Standards

    Broader source: Energy.gov [DOE]

    The purpose of Eugene's Solar Standards, as described in sections 9.2780 through 9.2795 of the City of Eugene's City Code, is to create lot divisions, layouts and building configurations in a...

  16. Interconnection Standards | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    applies to certified, inverter-based systems up to 25 kW in capacity that comply with IEEE standards and UL 1741. A system is considered "certified" if it has been tested and...

  17. Active DOE Technical Standard Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Number Title Document ID SLM ORG Author Phone Email Status Status Date P1073- ... P1166- 2003REV Deac va on and Decommissioning Func onal Area Quali ca on Standard ...

  18. Impact of Infiltration and Ventilation on Measured Space Conditioning Energy and Moisture Levels in the Hot-Humid Climate, Cocoa, Florida (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01

    Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC has conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season. ​

  19. Technology Solutions Case Study: Impact of Infiltration and Ventilation on Measured Space Conditioning Energy and Moisture Levels in the Hot-Humid Climate

    SciTech Connect (OSTI)

    2014-04-01

    Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.

  20. Beyond the Standard Model Theory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beyond the Standard Model Theory Beyond the Standard Model Understanding discoveries at the Energy, Intensity, and Cosmic Frontiers Get Expertise Rajan Gupta (505) 667-7664 Email Bruce Carlsten (505) 667-5657 Email LHC physics at Los Alamos The Large Hadron Collider (LHC) is studying the structure of matter at sub-nucleon distance scales by colliding protons together at high center of mass energy. The LHC has a broad scientific program, performing studies of QCD, heavy quarks, the W and Z

  1. Furnace Standard Analysis Discussion Document

    Office of Environmental Management (EM)

    Standard * Using field intelligence and thoughtful analysis - assess and quantify the effects a regional or national condensing standard for natural gas furnaces could have on energy efficiency and environmental objectives.  Provide insight on the potential impact limiting customer choices for heating systems could have on overall energy usage, cost, and carbon emissions outcomes.  Provide all data, models and sources of information to DOE and other stakeholders, to gain their confidence

  2. Rate Schedules | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rate Schedules Rate Schedules One of the major responsibilities of Southeastern is to design, formulate, and justify rate schedules. Repayment studies prepared by the agency determine revenue requirements and appropriate rate levels and these studies for each of Southeastern's four power marketing systems are updated annually. They demonstrate the adequacy of the rates for each system. Rates are considered to be adequate when revenues are sufficient to repay all costs associated with power

  3. How to align field guides and standards to the Standard Work Specifications

    Broader source: Energy.gov [DOE]

    This presentation demonstrates how to align field guides and standards to the Standard Work Specifications.

  4. Summary of HI Standards Relating to Energy Efficency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HI Standards Relating to Energy Efficency Summary of HI Standards Relating to Energy Efficency This guideline discusses the effects of operating a rotodynamic pump at rates of flow that are greater than or less than the rate of flow at the pump's best efficiency point (BEP). These effects influence the power consumption and life of pump components and, therefore, considering the operating rate of flow is essential to reliable, efficient pump operation. PDF icon

  5. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier5Rate | Open...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:OpenEIUtilityRateEnergyRateStructureTier5Rate Jump to: navigation, search This is a property of type...

  6. Property:OpenEI/UtilityRate/DemandRateStructure/Tier1Rate | Open...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:OpenEIUtilityRateDemandRateStructureTier1Rate Jump to: navigation, search This is a property of type...

  7. Property:OpenEI/UtilityRate/DemandRateStructure/Tier3Rate | Open...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:OpenEIUtilityRateDemandRateStructureTier3Rate Jump to: navigation, search This is a property of type...

  8. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier3Rate | Open...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:OpenEIUtilityRateEnergyRateStructureTier3Rate Jump to: navigation, search This is a property of type...

  9. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier4Rate | Open...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:OpenEIUtilityRateEnergyRateStructureTier4Rate Jump to: navigation, search This is a property of type...

  10. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    6 2008 Unitary Air-Conditioner/Heat Pump Manufacturer Market Shares (Percent of Products Produced) Company Market Share (%) Total Units Shipped: (1) UTC/Carrier 27% Goodman (Amana) 14% American Standard (Trane) 14% York 12% Nordyne 12% Rheem 9% Lennox 9% Others 3% Total 100% Note(s): Source(s): 5,833,354 1) Does not include water-source or ground-source heat pumps.

  11. Nuclear Data Verification and Standardization

    SciTech Connect (OSTI)

    Karam, Lisa R.; Arif, Muhammad; Thompson, Alan K.

    2011-10-01

    The objective of this interagency program is to provide accurate neutron interaction verification and standardization data for the U.S. Department of Energy Division of Nuclear Physics programs which include astrophysics, radioactive beam studies, and heavy-ion reactions. The measurements made in this program are also useful to other programs that indirectly use the unique properties of the neutron for diagnostic and analytical purposes. These include homeland security, personnel health and safety, nuclear waste disposal, treaty verification, national defense, and nuclear based energy production. The work includes the verification of reference standard cross sections and related neutron data employing the unique facilities and capabilities at NIST and other laboratories as required; leadership and participation in international intercomparisons and collaborations; and the preservation of standard reference deposits. An essential element of the program is critical evaluation of neutron interaction data standards including international coordinations. Data testing of critical data for important applications is included. The program is jointly supported by the Department of Energy and the National Institute of Standards and Technology.

  12. Hanford Tank Ventilation System Condensates and Headspace Vapors: An Assessment of Potential Dermal Exposures

    SciTech Connect (OSTI)

    Huckaby, James L.; Springer, David L.

    2006-04-24

    This study considers the question of whether potential dermal exposures to Hanford high-level radioactive waste tank headspace vapors and their condensates could result in significant exposure to workers. Three types of potential exposures were evaluated; dermal contact with aqueous condensate, organic condensate, and direct contact with head space vapors. The dermal absorption rates from aqueous and organic condensates were estimated for selected chemicals using a model described by EPA (1992) with a modified correlation for dermal permeability suggested by Wilschut et al. (1995). Dermal absorption rates of vapors were estimated using a model given by AIHA (2000). Results were compared to an ''equivalent inhalation dose'' calculated by multiplying the inhalation occupational exposure limit by a nominal daily inhalation rate. The results should provide guidance for industrial hygienists to prepare specific recommendations based on specific scenarios.

  13. The standard model and colliders

    SciTech Connect (OSTI)

    Hinchliffe, I.

    1987-03-01

    Some topics in the standard model of strong and electroweak interactions are discussed, as well as how these topics are relevant for the high energy colliders which will become operational in the next few years. The radiative corrections in the Glashow-Weinberg-Salam model are discussed, stressing how these corrections may be measured at LEP and the SLC. CP violation is discussed briefly, followed by a discussion of the Higgs boson and the searches which are relevant to hadron colliders are then discussed. Some of the problems which the standard model does not solve are discussed, and the energy ranges accessible to the new colliders are indicated. (LEW)

  14. Cyber Security Standards.PDF

    Office of Environmental Management (EM)

    1 I N S P E C T I O N R E P O R T U.S. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL OFFICE OF INSPECTIONS INSPECTION OF CYBER SECURITY STANDARDS FOR SENSITIVE PERSONAL INFORMATION NOVEMBER 2001 . DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL U.S. DEPARTMENT OF ENERGY Washington, DC 20585 November 13, 2001 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman /s/ Inspector General SUBJECT: INFORMATION: Report on "Inspection of Cyber Security Standards for Sensitive Personal

  15. Department of Energy Standards Index

    Office of Environmental Management (EM)

    TSL-1-2002 December 2002 Superseding DOE-TSL-1-99 May 1999 DOE TECHNICAL STANDARDS LIST DEPARTMENT OF ENERGY STANDARDS INDEX U.S. Department of Energy AREA SDMP Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public

  16. Demonstration of split-flow ventilation and recirculation as flow-reduction methods in an Air Force paint spray booth. Final technical report, February 1991-October 1992

    SciTech Connect (OSTI)

    Hughes, S.; Ayer, J.; Sutay, R.

    1994-07-01

    During a series of painting operations in a horizontal-flow paint spray booth at Travis AFB, CA, baseline concentrations of four classes of toxic airborne pollutants were measured at 24 locations across a plane immediately forward of the exhaust filters, in the exhaust duct, and inside and outside the respirator in the painter`s breathing zone (BZ). The resulting data were analyzed and used to design a modified ventilation system that (1) separates a portion of the exhaust exiting the lower portion of the booth, which contains a concentration of toxic pollutants greater than the average at the exhaust plane (split-flow); and (2) provides an option to return the flow from the upper portion of the exhaust to the intake plenum for mixing with fresh air and recirculation through the booth (recirculation). After critical review by cognizant Air Force offices and an experimental demonstration showing that a flame ionization detector monitoring the air entering the booth is able to detect excursions above the equivalent exposure limit for the solvents in the paint, the exhaust duct was reconfigured for split-flow and recirculating ventilation. A volunteer painter was briefed on the increased risk of exposure during recirculation, and on the purposes and possible benefits of this study. He then signed an informed consent form before participating in the recirculation tests. A series of tests generally equivalent to the baseline series was conducted during split-flow and recirculating ventilation, and three tests were performed during only split-flow ventilation.

  17. 2014-02-07 Issuance: Certification of Commercial Heating, Ventilation, and Air-conditioning, Water Heating, and Refrigeration Equipment; Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register notice of proposed rulemaking regarding certification of commercial heating, ventilation, and air-conditioning, water-heating, and refrigeration equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency on February 7, 2014.

  18. Functional design criteria for standard hydrogen monitoring system portable platform

    SciTech Connect (OSTI)

    Schneider, T.C.

    1997-01-17

    Functional design description for a Standard-E cabinet arrangement Standard Hydrogen Monitoring System Portable Platform.

  19. Overview of North American Hydrogen Sensor Standards

    SciTech Connect (OSTI)

    O'Malley, Kathleen; Lopez, Hugo; Cairns, Julie; Wichert, Richard; Rivkin, Carl; Burgess, Robert; Buttner, William

    2015-08-11

    An overview of the main North American codes and standards associated with hydrogen safety sensors is provided. The distinction between a code and a standard is defined, and the relationship between standards and codes is clarified, especially for those circumstances where a standard or a certification requirement is explicitly referenced within a code. The report identifies three main types of standards commonly applied to hydrogen sensors (interface and controls standards, shock and hazard standards, and performance-based standards). The certification process and a list and description of the main standards and model codes associated with the use of hydrogen safety sensors in hydrogen infrastructure are presented.

  20. SU-E-J-149: Establishing the Relationship Between Pre-Treatment Lung Ventilation, Dose, and Toxicity Outcome

    SciTech Connect (OSTI)

    Mistry, N; D'Souza, W; Sornsen de Koste, J; Senan, S

    2014-06-01

    Purpose: Recently, there has been an interest in incorporating functional information in treatment planning especially in thoracic tumors. The rationale is that healthy lung regions need to be spared from radiation if possible to help achieve better control on toxicity. However, it is still unclear whether high functioning regions need to be spared or have more capacity to deal with the excessive radiation as compared to the compromised regions of the lung. Our goal with this work is to establish the tools by which we can establish a relationship between pre-treatment lung function, dose, and radiographic outcomes of lung toxicity. Methods: Treatment planning was performed using a single phase of a 4DCT scan, and follow-up anatomical CT scans were performed every 3 months for most patients. In this study, we developed the pipeline of tools needed to analyze such a large dataset, while trying to establish a relationship between function, dose, and outcome. Pre-treatment lung function was evaluated using a recently published technique that evaluates Fractional Regional Ventilation (FRV). All images including the FRV map and the individual follow-up anatomical CT images were all spatially matched to the planning CT using a diffusion based Demons image registration algorithm. Change in HU value was used as a metric to capture the effects of lung toxicity. To validate the findings, a radiologist evaluated the follow-up anatomical CT images and scored lung toxicity. Results: Initial experience in 1 patient shows a relationship between the pre-treatment lung function, dose and toxicity outcome. The results are also correlated to the findings by the radiologist who was blinded to the analysis or dose. Conclusion: The pipeline we have established to study this enables future studies in large retrospective studies. However, the tools are dependent on the fidelity of 4DCT reconstruction for accurate evaluation of regional ventilation. Patent Pending for the technique presented in this work to evaluate FRV incorporating mass correction.

  1. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    3 Residential Boiler Efficiencies (1) Gas-Fired Boilers Oil-Fired Boilers Average shipped in 1985 (2): 74% AFUE Average shipped in 1985 (2): 79% AFUE Best Available in 1981: 81% AFUE Best Available in 1981: 86% AFUE Best Available in 2007: 96% AFUE Best Available in 2007: 89% AFUE Note(s): Source(s): 1) Federal appliance standards effective Jan. 1, 1992, require a minimum of 80% AFUE (except gas-fired steam boiler, which must have a 75% AFUE or higher). 2) Includes furnaces. GAMA, Consumer's

  2. 2007-2009 Power Rates Quarterly Updates (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (PFR) Firstgov FY 2007 2009 Power Rates Quarterly Updates In BPAs 2007-2009 Wholesale Power Rate Case (WP-07), BPA agreed that it would post reports about BPAs power...

  3. October 2005 - March 2006 Power Rates (rates/previous)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    above provides a table of monthly Slice, PF, RL, and IP rates with a 30.56% non-Slice LB + FB + SN CRAC adjustment for each month of the six-month rate period. The table below...

  4. April - September 2002 Power Rates (rates/previous)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    above provides a table of monthly Slice, PF, RL, and IP rates with a 40.77% non-Slice LB CRAC adjustment for each month of the six-month rate period. The table below is simply a...

  5. October 2004 - March 2005 Power Rates (rates/previous)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The PDF documents above provide tables of monthly Slice, PF, RL, and IP rates with the LB + FB + SN CRAC adjustments for each month of the rate period. The table below is simply...

  6. April - September 2005 Power Rates (rates/previous)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    above provides a table of monthly Slice, PF, RL, and IP rates with a 36.93% non-Slice LB + FB + SN CRAC adjustment for each month of the six-month rate period. The table below...

  7. October 2003 - March 2004 Power Rates (rates/previous)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    above provides a table of monthly Slice, PF, RL, and IP rates with a 43.66% non-Slice LB + FB + SN CRAC adjustment for each month of the rate period. The table below is simply a...

  8. October 2002 - March 2003 Power Rates (rates/previous)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    above provides a table of monthly Slice, PF, RL, and IP rates with a 43.91% non-Slice LB + FB CRAC adjustment for each month of the six-month rate period. The table below is...

  9. October 2001 - March 2002 Power Rates (rates/previous)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    above provides a table of monthly Slice, PF, RL, and IP rates with a 46% non-Slice LB CRAC adjustment for each month of the six-month rate period. The table below is simply a...

  10. April - September 2003 Power Rates (rates/previous)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    above provides a table of monthly Slice, PF, RL, and IP rates with a 49.50% non-Slice LB + FB CRAC adjustment for each month of the six-month rate period. The table below is...

  11. April - September 2004 Power Rates (rates/previous)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    above provides a table of monthly Slice, PF, RL, and IP rates with a 47.00% non-Slice LB + FB + SN CRAC adjustment for each month of the six-month rate period. The table below...

  12. WP-02 Power Rate Case (rates/ratecases)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WP-02 Power Rate Case (Updated on May 7, 2004) In May of 2000, the BPA Administrator signed a Record of Decision (ROD) on the 2002 Final Power Rate Proposal for the October 2001...

  13. FPS-96R Rate Adjustment (rates/ratecases)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Final Firm Power Products and Services (FPS-96R) Rate Adjustment In August 1999, BPA proposed to correct errors in the Firm Power Products and Services rate schedule (FPS-96), and...

  14. National Utility Rate Database: Preprint

    SciTech Connect (OSTI)

    Ong, S.; McKeel, R.

    2012-08-01

    When modeling solar energy technologies and other distributed energy systems, using high-quality expansive electricity rates is essential. The National Renewable Energy Laboratory (NREL) developed a utility rate platform for entering, storing, updating, and accessing a large collection of utility rates from around the United States. This utility rate platform lives on the Open Energy Information (OpenEI) website, OpenEI.org, allowing the data to be programmatically accessed from a web browser, using an application programming interface (API). The semantic-based utility rate platform currently has record of 1,885 utility rates and covers over 85% of the electricity consumption in the United States.

  15. Requirements for a Standard Test to Rate the Durability of PV Modules at System Voltage (Presentation)

    SciTech Connect (OSTI)

    Hacke, P.; Terwilliger, K.; Glick, S.; Kempe, M.; Kurtz, S.; Bennett, I.; Kloos, M.

    2011-02-01

    Degradation modes in photovoltaic modules under system bias voltage stress are described and classified.

  16. Aqueous Corrosion Rates for Waste Package Materials

    SciTech Connect (OSTI)

    S. Arthur

    2004-10-08

    The purpose of this analysis, as directed by ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]), is to compile applicable corrosion data from the literature (journal articles, engineering documents, materials handbooks, or standards, and national laboratory reports), evaluate the quality of these data, and use these to perform statistical analyses and distributions for aqueous corrosion rates of waste package materials. The purpose of this report is not to describe the performance of engineered barriers for the TSPA-LA. Instead, the analysis provides simple statistics on aqueous corrosion rates of steels and alloys. These rates are limited by various aqueous parameters such as temperature (up to 100 C), water type (i.e., fresh versus saline), and pH. Corrosion data of materials at pH extremes (below 4 and above 9) are not included in this analysis, as materials commonly display different corrosion behaviors under these conditions. The exception is highly corrosion-resistant materials (Inconel Alloys) for which rate data from corrosion tests at a pH of approximately 3 were included. The waste package materials investigated are those from the long and short 5-DHLW waste packages, 2-MCO/2-DHLW waste package, and the 21-PWR commercial waste package. This analysis also contains rate data for some of the materials present inside the fuel canisters for the following fuel types: U-Mo (Fermi U-10%Mo), MOX (FFTF), Thorium Carbide and Th/U Carbide (Fort Saint Vrain [FSVR]), Th/U Oxide (Shippingport LWBR), U-metal (N Reactor), Intact U-Oxide (Shippingport PWR, Commercial), aluminum-based, and U-Zr-H (TRIGA). Analysis of corrosion rates for Alloy 22, spent nuclear fuel, defense high level waste (DHLW) glass, and Titanium Grade 7 can be found in other analysis or model reports.

  17. Directional recoil rates for WIMP direct detection

    SciTech Connect (OSTI)

    Alenazi, Moqbil S.; Gondolo, Paolo [Department of Physics, University of Utah, 115 S 1400 E Rm 201, Salt Lake City, Utah 84112-0830 (United States)

    2008-02-15

    New techniques for the laboratory direct detection of dark matter weakly interacting massive particles (WIMPs) are sensitive to the recoil direction of the struck nuclei. We compute and compare the directional recoil rates dR/dcos{theta} (where {theta} is the angle measured from a reference direction in the sky) for several WIMP velocity distributions including the standard dark halo and anisotropic models such as Sikivie's late-infall halo model and logarithmic-ellipsoidal models. Since some detectors may be unable to distinguish the beginning of the recoil track from its end (lack of head-tail discrimination), we introduce a folded directional recoil rate dR/d|cos{theta}|, where |cos{theta}| does not distinguish the head from the tail of the track. We compute the CS{sub 2} and CF{sub 4} exposures required to distinguish a signal from an isotropic background noise, and find that dR/d|cos{theta}| is effective for the standard dark halo and some but not all anisotropic models.

  18. Technical Standards, Program Project Justification Statement...

    Energy Savers [EERE]

    Technical Standards, Program Project Justification Statement - August 29, 2012 Technical Standards, Program Project Justification Statement - August 29, 2012 August 29, 2012 DOE...

  19. Developing Integrated National Design Standards for Offshore...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Developing Integrated National Design Standards for Offshore Wind Plants Developing Integrated National Design Standards for Offshore Wind Plants January 6, 2014 - 10:00am Addthis ...

  20. Standard Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Standard Ethanol LLC Place: Nebraska Product: Nebraska based ethanol producer that operates two plants References: Standard Ethanol LLC1 This article is a stub. You can help...