Powered by Deep Web Technologies
Note: This page contains sample records for the topic "ventilation rate standards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Developing evidence-based prescriptive ventilation rate standards for commercial buildings in California: a proposed framework  

SciTech Connect

Background - The goal of this project, with a focus on commercial buildings in California, was to develop a new framework for evidence-based minimum ventilation rate (MVR) standards that protect occupants in buildings while also considering energy use and cost. This was motivated by research findings suggesting that current prescriptive MVRs in commercial buildings do not provide occupants with fully safe and satisfactory indoor environments. Methods - The project began with a broad review in several areas ? the diverse strategies now used for standards or guidelines for MVRs or for environmental contaminant exposures, current knowledge about adverse human effects associated with VRs, and current knowledge about contaminants in commercial buildings, including their their presence, their adverse human effects, and their relationships with VRs. Based on a synthesis of the reviewed information, new principles and approaches are proposed for setting evidence-based VRs standards for commercial buildings, considering a range of human effects including health, performance, and acceptability of air. Results ? A review and evaluation is first presented of current approaches to setting prescriptive building ventilation standards and setting acceptable limits for human contaminant exposures in outdoor air and occupational settings. Recent research on approaches to setting acceptable levels of environmental exposures in evidence-based MVR standards is also described. From a synthesis and critique of these materials, a set of principles for setting MVRs is presented, along with an example approach based on these principles. The approach combines two sequential strategies. In a first step, an acceptable threshold is set for each adverse outcome that has a demonstrated relationship to VRs, as an increase from a (low) outcome level at a high reference ventilation rate (RVR, the VR needed to attain the best achievable levels of the adverse outcome); MVRs required to meet each specific outcome threshold are estimated; and the highest of these MVRs, which would then meet all outcome thresholds, is selected as the target MVR. In a second step, implemented only if the target MVR from step 1 is judged impractically high, costs and benefits are estimated and this information is used in a risk management process. Four human outcomes with substantial quantitative evidence of relationships to VRs are identified for initial consideration in setting MVR standards. These are: building-related symptoms (sometimes called sick building syndrome symptoms), poor perceived indoor air quality, and diminished work performance, all with data relating them directly to VRs; and cancer and non-cancer chronic outcomes, related indirectly to VRs through specific VR-influenced indoor contaminants. In an application of step 1 for offices using a set of example outcome thresholds, a target MVR of 9 L/s (19 cfm) per person was needed. Because this target MVR was close to MVRs in current standards, use of a cost/benefit process seemed unnecessary. Selection of more stringent thresholds for one or more human outcomes, however, could raise the target MVR to 14 L/s (30 cfm) per person or higher, triggering the step 2 risk management process. Consideration of outdoor air pollutant effects would add further complexity to the framework. For balancing the objective and subjective factors involved in setting MVRs in a cost-benefit process, it is suggested that a diverse group of stakeholders make the determination after assembling as much quantitative data as possible.

Mendell, Mark J.; Fisk, William J.

2014-02-01T23:59:59.000Z

2

Developing evidence-based prescriptive ventilation rate standards for commercial buildings in California: a proposed framework  

E-Print Network (OSTI)

control with ventilation, given current ventilation and filtration system practices, are the indoor-sourced gaseous pollutants with low octanal-air

Mendell, Mark J.

2014-01-01T23:59:59.000Z

3

Developing evidence-based prescriptive ventilation rate standards for commercial buildings in California: a proposed framework  

E-Print Network (OSTI)

quality survey. In: Healthy Buildings 2006. Lisbon,In: Proceedings of Healthy Buildings 2006. Lisbon, Portugal:as ventilation varies. In: Healthy Buildings 2012. Brisbane,

Mendell, Mark J.

2014-01-01T23:59:59.000Z

4

Procedures and Standards for Residential Ventilation System  

E-Print Network (OSTI)

1 Procedures and Standards for Residential Ventilation System Commissioning: An Annotated, commissioning, procedures, standards, ASHRAE 62.2 Please use the following citation for this report: Stratton, J.C. and C.P. Wray. 2013. Procedures and Standards for Residential Ventilation System Commissioning

5

Procedures and Standards for Residential Ventilation System Commissioning:  

NLE Websites -- All DOE Office Websites (Extended Search)

Procedures and Standards for Residential Ventilation System Commissioning: Procedures and Standards for Residential Ventilation System Commissioning: An Annotated Bibliography Title Procedures and Standards for Residential Ventilation System Commissioning: An Annotated Bibliography Publication Type Report LBNL Report Number LBNL-6142E Year of Publication 2013 Authors J. Chris Stratton, and Craig P. Wray Keywords ASHRAE 62.2, commissioning, procedures, residential, standards, ventilation Abstract Beginning with the 2008 version of Title 24, new homes in California must comply with ANSI/ASHRAE Standard 62.2-2007 requirements for residential ventilation. Where installed, the limited data available indicate that mechanical ventilation systems do not always perform optimally or even as many codes and forecasts predict. Commissioning such systems when they are installed or during subsequent building retrofits is a step towards eliminating deficiencies and optimizing the tradeoff between energy use and acceptable IAQ. Work funded by the California Energy Commission about a decade ago at Berkeley Lab documented procedures for residential commissioning, but did not focus on ventilation systems. Since then, standards and approaches for commissioning ventilation systems have been an active area of work in Europe. This report describes our efforts to collect new literature on commissioning procedures and to identify information that can be used to support the future development of residential-ventilation-specific procedures and standards. We recommend that a standardized commissioning process and a commissioning guide for practitioners be developed, along with a combined energy and IAQ benefit assessment standard and tool, and a diagnostic guide for estimating continuous pollutant emission rates of concern in residences (including a database that lists emission test data for commercially-available labeled products).

6

Review on Ventilation Rate Measuring and Modeling Techniques in Naturally  

NLE Websites -- All DOE Office Websites (Extended Search)

Review on Ventilation Rate Measuring and Modeling Techniques in Naturally Review on Ventilation Rate Measuring and Modeling Techniques in Naturally Ventilated Building Speaker(s): Sezin Eren Ozcan Date: May 16, 2006 - 12:00pm Location: Bldg. 90 Due to limited energy sources, countries are looking for alternative solutions to decrease energy needs. In that context, natural ventilation can be seen as a very attractive sustainable technique in building design. However, understanding of ventilation dynamics is needed to provide an efficient control. Ventilation rate has to be determined not only in terms of energy, but also for controlling indoor air quality and emissions. For these reasons, agricultural buildings (livestock houses, greenhouses, etc.), naturally ventilated industrial buildings, and residences require a reliable ventilation rate measuring technique. Measuring techniques suffer

7

ASHRAE's Residential Ventilation Standard: Exegesis of Proposed Standard 62.2  

E-Print Network (OSTI)

In February 2000, ASHRAE's Standard Project Committee on "Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings", SPC 62.2P7 recommended ASHRAE's first complete standard on residential ventilation for public review...

Sherman, M.

2000-01-01T23:59:59.000Z

8

Confinement Ventilation and Process Gas Treatment Functional Area Qualification Standard  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

. . NOT MEASUREMENT SENSITIVE DOE-STD-1168-2013 October 2013 DOE STANDARD CONFINEMENT VENTILATION AND PROCESS GAS TREATMENT FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1168-2013 This document is available on the Department of Energy Technical Standards Program Website at http://energy.gov/hss/information-center/department-energy-technical-standards-program ii DOE-STD-1168-2013 INTENTIONALLY BLANK iv DOE-STD-1168-2013 TABLE OF CONTENTS ACKNOWLEDGMENT...................................................................................................................vii

9

Effect of Outside Air Ventilation Rate on Volatile Organic Compound  

NLE Websites -- All DOE Office Websites (Extended Search)

Outside Air Ventilation Rate on Volatile Organic Compound Outside Air Ventilation Rate on Volatile Organic Compound Concentrations in a Call Center Title Effect of Outside Air Ventilation Rate on Volatile Organic Compound Concentrations in a Call Center Publication Type Journal Article Year of Publication 2003 Authors Hodgson, Alfred T., David Faulkner, Douglas P. Sullivan, Dennis L. DiBartolomeo, Marion L. Russell, and William J. Fisk Journal Atmospheric Environment Volume 37 Start Page Chapter Pagination 5517-5528 Abstract A study of the relationship between outside air ventilation rate and concentrations of volatile organic compounds (VOCs) generated indoors was conducted in a call center office building. The building, with two floors and a floor area of 4,600 m2, was located in the San Francisco Bay Area, CA. Ventilation rates were manipulated with the building's four air handling units (AHUs). VOC concentrations in the AHU returns were measured on seven days during a 13-week period. VOC emission factors were determined for individual zones on days when they were operating at near steady-state conditions. The emission factor data were subjected to principal component (PC) analysis to identify groups of co-varying compounds. Potential sources of the PC vectors were ascribed based on information from the literature supporting the associations. Two vectors with high loadings of compounds including formaldehyde, 2,2,4-trimethyl-1,3- pentanediol monoisobutyrate, decamethylcyclopentasiloxane (d5 siloxane), and isoprene likely identified occupant-related sources. One vector likely represented emissions from building materials. Another vector represented emissions of solvents from cleaning products. The relationships between indoor minus outdoor VOC concentrations and ventilation rate were qualitatively examined for eight VOCs. Of these, acetaldehyde and hexanal, which were likely associated with material sources, and d5 siloxane exhibited general trends of higher concentrations at lower ventilation rates. For other compounds, the operation of the building and variations in pollutant generation and removal rates apparently combined to obscure the inverse relationship between VOC concentrations and ventilation. This result emphasizes the importance of utilizing source control measures, in addition to adequate ventilation, to limit concentrations of VOCs of concern in office buildings

10

CANCELLED: Mechanism of Human Responses to Ventilation Rates and Air  

NLE Websites -- All DOE Office Websites (Extended Search)

CANCELLED: Mechanism of Human Responses to Ventilation Rates and Air CANCELLED: Mechanism of Human Responses to Ventilation Rates and Air Temperature Speaker(s): Henry Willem Date: July 2, 2010 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Max Sherman (THIS SEMINAR TO BE RESCHEDULED.) Sustainability of the built-environment must be achieved in parallel with the sustenance of occupants' health and comfort. Actions to conserve energy and resources require much forethought and careful consideration due to possible consequences on the human aspects. Thus, many extensive works in the recent decades have focused on identifying the associations between indoor environment and human responses. Results have shown moderate to strong implications of thermal and indoor air quality factors on the prevalence and intensity of sick

11

Hospital ventilation standards and energy conservation: chemical contamination of hospital air. Final report  

SciTech Connect

In an era of increasing energy conservation consciousness, a critical reassessment of the validity of hospital ventilation and thermal standards is made. If current standards are found to be excessively conservative, major energy conservation measures could be undertaken by rebalancing and/or modification of current HVAC systems. To establish whether or not reducing ventilation rates would increase airborne chemical contamination to unacceptable levels, a field survey was conducted to develop an inventory and dosage estimates of hospital generated airborne chemical contaminants to which patients, staff, and visitors are exposed. The results of the study are presented. Emphasis is on patient exposure, but an examination of occupational exposure was also made. An in-depth assessment of the laboratory air environment is documented. Housekeeping products used in survey hospitals, hazardous properties of housekeeping chemicals and probable product composition are discussed in the appendices.

Rainer, D.; Michaelsen, G.S.

1980-03-01T23:59:59.000Z

12

HOSPITAL VENTILATION STANDARDS AND ENERGY CONSERVATION: CHEMICAL CONTAMINATION OF HOSPITAL AIR. FINAL REPORT.  

E-Print Network (OSTI)

LBL-10475 EEB-Hosp 79-6 HOSPITAL VENTILATION STANDARDS ANDCHH1ICAL CONTAMINATION OF HOSPITAL AIR na 1 Report DavidMinnesota 55455 TWIN CITIES HOSPITAL VEtHILATION STANDARDS

Rainer, David

2012-01-01T23:59:59.000Z

13

Balancing energy conservation and occupant needs in ventilation rate standards for Big Box stores and other commercial buildings in California: Issues related to the ASHRAE 62.1 Indoor Air Quality Procedure  

E-Print Network (OSTI)

control should be the first priority instead of dilution of pollutants by ventilation or by cleaning the air.air quality, could better provide healthful indoor environments, and also reward designers and owners who control indoor pollutantsair quality, could better document healthful indoor environments, and also reward designers and owners who control indoor pollutants

Mendell, Mark

2014-01-01T23:59:59.000Z

14

Economizer system cost effectiveness: Accounting for the influence of ventilation rate on sick leave  

SciTech Connect

This study estimated the health, energy, and economic benefits of an economizer ventilation control system that increases outside air supply during mild weather to save energy. A model of the influence of ventilation rate on airborne transmission of respiratory illnesses was used to extend the limited data relating ventilation rate with illness and sick leave. An energy simulation model calculated ventilation rates and energy use versus time for an office building in Washington, DC with fixed minimum outdoor air supply rates, with and without an economizer. Sick leave rates were estimated with the disease transmission model. In the modeled 72-person office building, our analyses indicate that the economizer reduces energy costs by approximately $2000 and, in addition, reduces sick leave. The financial benefit of the decrease in sick leave is estimated to be between $6,000 and $16,000. This modelling suggests that economizers are much more cost effective than currently recognized.

Fisk, William J.; Seppanen, Olli; Faulkner, David; Huang, Joe

2003-06-01T23:59:59.000Z

15

Effect of outside air ventilation rate on VOC concentrations and emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Effect of outside air ventilation rate on VOC concentrations and emissions Effect of outside air ventilation rate on VOC concentrations and emissions in a call center Title Effect of outside air ventilation rate on VOC concentrations and emissions in a call center Publication Type Conference Proceedings Year of Publication 2002 Authors Hodgson, Alfred T., David Faulkner, Douglas P. Sullivan, Dennis L. DiBartolomeo, Marion L. Russell, and William J. Fisk Conference Name Proceedings of the Indoor Air 2002 Conference, Monterey, CA Volume 2 Pagination 168-173 Publisher Indoor Air 2002, Santa Cruz, CA Abstract A study of the relationship between outside air ventilation rate and concentrations of VOCs generated indoors was conducted in a call center. Ventilation rates were manipulated in the building's four air handling units (AHUs). Concentrations of VOCs in the AHU returns were measured on 7 days during a 13- week period. Indoor minus outdoor concentrations and emission factors were calculated. The emission factor data was subjected to principal component analysis to identify groups of co-varying compounds based on source type. One vector represented emissions of solvents from cleaning products. Another vector identified occupant sources. Direct relationships between ventilation rate and concentrations were not observed for most of the abundant VOCs. This result emphasizes the importance of source control measures for limiting VOC concentrations in buildings

16

Changing Ventilation Rates in U.S. Offices: Implications for Health, Work  

NLE Websites -- All DOE Office Websites (Extended Search)

Changing Ventilation Rates in U.S. Offices: Implications for Health, Work Changing Ventilation Rates in U.S. Offices: Implications for Health, Work Performance, Energy, and Associated Economics Title Changing Ventilation Rates in U.S. Offices: Implications for Health, Work Performance, Energy, and Associated Economics Publication Type Journal Article Refereed Designation Refereed LBNL Report Number LBNL-5035E Year of Publication 2012 Authors Fisk, William J., Douglas R. Black, and Gregory Brunner Journal Building and Environment Volume 47 Pagination 368-372 Date Published 01/2012 Keywords cost-benefit analysis, economizer, health, office, ventilation rate, work performance Abstract This paper provides quantitative estimates of benefits and costs of providing different amounts of outdoor air ventilation in U.S. offices. For four scenarios that modify ventilation rates, we estimated changes in sick building syndrome (SBS) symptoms, work performance, short-term absence, and building energy consumption. The estimated annual economic benefits were $13 billion from increasing minimum ventilation rates (VRs) from 8 to 10 L/s per person, $38 billion from increasing minimum VRs from 8 to 15 L/s per person, and $33 billion from increasing VRs by adding outdoor air economizers for the 50% of the office floor area that currently lacks economizers. The estimated $0.04 billion in annual energy-related benefits of decreasing minimum VRs from 8 to 6.5 L/s per person are very small compared to the projected annual costs of $12 billion. Benefits of increasing minimum VRs far exceeded energy costs while adding economizers yielded health, performance, and absence benefits with energy savings.

17

Healthy Zero Energy Buildings (HZEB) Program - Cross-Sectional Study of Contaminant Levels, Source, Strengths, and Ventilation Rates in Retail Stores  

SciTech Connect

This field study measured ventilation rates and indoor air quality parameters in 21 visits to retail stores in California. The data was collected to guide the development of new, science-based commercial building ventilation rate standards that balance the dual objectives of increasing energy efficiency and maintaining acceptable indoor air quality. Data collection occurred between September 2011 and March 2013. Three types of stores participated in this study: grocery stores, furniture/hardware stores, and apparel stores. Ventilation rates and indoor air contaminant concentrations were measured on a weekday, typically between 9 am and 6 pm. Ventilation rates measured using a tracer gas decay method exceeded the minimum requirement of Californias Title 24 Standard in all but one store. Even though there was adequate ventilation according to Title 24, concentrations of formaldehyde, acetaldehyde, and acrolein exceeded the most stringent chronic health guidelines. Other indoor air contaminants measured included carbon dioxide (CO{sub 2}), carbon monoxide (CO), ozone (O{sub 3}), and particulate matter (PM). Concentrations of CO{sub 2} were kept low by adequate ventilation, and were assumed low also because the sampling occurred on a weekday when retail stores were less busy. CO concentrations were also low. The indoor-outdoor ratios of O{sub 3} showed that the first-order loss rate may vary by store trade types and also by ventilation mode (mechanical versus natural). Analysis of fine and ultrafine PM measurements showed that a substantial portion of the particle mass in grocery stores with cooking-related emissions was in particles less than 0.3 ?m. Stores without cooking as an indoor source had PM size distributions that were more similar indoors and outdoors. The whole-building emission rates of volatile organic compounds (VOCs) and PM were estimated from the measured ventilation rates and indoor and outdoor contaminant concentrations. Mass balance models were then used to determine the ventilation rates, filtration strategies, or source reductions needed to maintain indoor contaminant concentrations below reference levels. Several scenarios of potential concern were considered: (i) formaldehyde levels in furniture/hardware stores, (ii) contaminants associated with cooking (e.g., PM, acrolein, and acetaldehyde) in grocery stores, and (iii) outdoor contaminants (e.g., PM and O{sub 3}) impacting stores that use natural ventilation. Estimated formaldehyde emission rates suggest that retail stores would need to ventilate at levels far exceeding the current Title 24 requirement to lower indoor concentrations below Californias stringent formaldehyde reference level. Given the high costs of providing ventilation but only modest chronic health benefit is expected, effective source control is an attractive alternative, as demonstrated by some retail stores in this study. Predictions showed that grocery stores need MERV 13 air filters, instead of MERV 8 filters that are more commonly used, to maintain indoor PM at levels that meet the chronic health standards for PM. Exposure to acrolein is a potential health concern in grocery stores, and should be addressed by increasing the use of kitchen range hoods or improving their contaminant removal efficiency. In stores that rely on natural ventilation, indoor PM can be a health concern if the stores are located in areas with high outdoor PM. This concern may be addressed by switching to mechanical ventilation when the outdoor air quality is poor, while continuing natural ventilation when outdoor air quality is good.

Chan, Wanyu R.; Sidheswaran, Meera; Cohn, Sebastian; Sullivan, Douglas P.; Fisk, William

2014-02-01T23:59:59.000Z

18

DEMAND CONTROLLED VENTILATION AND CLASSROOM VENTILATION  

SciTech Connect

This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling. Major findings included: ? The single-location carbon dioxide sensors widely used for demand controlled ventilation frequently have large errors and will fail to effectively control ventilation rates (VRs).? Multi-location carbon dioxide measurement systems with more expensive sensors connected to multi-location sampling systems may measure carbon dioxide more accurately.? Currently-available optical people counting systems work well much of the time but have large counting errors in some situations. ? In meeting rooms, measurements of carbon dioxide at return-air grilles appear to be a better choice than wall-mounted sensors.? In California, demand controlled ventilation in general office spaces is projected to save significant energy and be cost effective only if typical VRs without demand controlled ventilation are very high relative to VRs in codes. Based on the research, several recommendations were developed for demand controlled ventilation specifications in the California Title 24 Building Energy Efficiency Standards.The research on classroom ventilation collected data over two years on California elementary school classrooms to investigate associations between VRs and student illness absence (IA). Major findings included: ? Median classroom VRs in all studied climate zones were below the California guideline, and 40percent lower in portable than permanent buildings.? Overall, one additional L/s per person of VR was associated with 1.6percent less IA. ? Increasing average VRs in California K-12 classrooms from the current average to the required level is estimated to decrease IA by 3.4percent, increasing State attendance-based funding to school districts by $33M, with $6.2 M in increased energy costs. Further VR increases would provide additional benefits.? Confirming these findings in intervention studies is recommended. ? Energy costs of heating/cooling unoccupied classrooms statewide are modest, but a large portion occurs in relatively few classrooms.

Fisk, William J.; Mendell, Mark J.; Davies, Molly; Eliseeva, Ekaterina; Faulkner, David; Hong, Tienzen; Sullivan, Douglas P.

2014-01-06T23:59:59.000Z

19

Experiments to Evaluate and Implement Passive Tracer Gas Methods to Measure Ventilation Rates in Homes  

E-Print Network (OSTI)

Pollutant Control Index: A New Method of Characterizing Ventilation in Commercial Buildings." Proceedings of Indoor Air'

Lunden, Melissa

2014-01-01T23:59:59.000Z

20

Advanced Controls and Sustainable Systems for Residential Ventilation  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Controls and Sustainable Systems for Residential Ventilation Advanced Controls and Sustainable Systems for Residential Ventilation Title Advanced Controls and Sustainable Systems for Residential Ventilation Publication Type Report LBNL Report Number LBNL-5968E Year of Publication 2012 Authors Turner, William J. N., and Iain S. Walker Date Published 12/2012 Keywords ashrae standard 62,2, california title 24, passive ventilation, residential ventilation, ventilation controller Abstract Whole-house ventilation systems are becoming commonplace in new construction, remodeling/renovation, and weatherization projects, driven by combinations of specific requirements for indoor air quality (IAQ), health, and compliance with standards, such as ASHRAE 62.2. At the same time we wish to reduce the energy use in homes and therefore minimize the energy used to provide ventilation. This study examined several approaches to reducing the energy requirements of providing acceptable IAQ in residential buildings. Two approaches were taken. The first used RIVEC - the Residential Integrated VEntilation Controller - a prototype ventilation controller that aims to deliver whole-house ventilation rates that comply with ventilation standards, for the minimum use of energy. The second used passive and hybrid ventilation systems, rather than mechanical systems, to provide whole-house ventilation.

Note: This page contains sample records for the topic "ventilation rate standards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Review of Residential Ventilation Technologies.  

NLE Websites -- All DOE Office Websites (Extended Search)

Review of Residential Ventilation Technologies. Review of Residential Ventilation Technologies. Title Review of Residential Ventilation Technologies. Publication Type Journal Article LBNL Report Number LBNL-57730 Year of Publication 2007 Authors Russell, Marion L., Max H. Sherman, and Armin F. Rudd Journal HVAC&R Research Volume 13 Start Page Chapter Pagination 325-348 Abstract This paper reviews current and potential ventilation technologies for residential buildings in North America and a few in Europe. The major technologies reviewed include a variety of mechanical systems, natural ventilation, and passive ventilation. Key parameters that are related to each system include operating costs, installation costs, ventilation rates, heat recovery potential. It also examines related issues such as infiltration, duct systems, filtration options, noise, and construction issues. This report describes a wide variety of systems currently on the market that can be used to meet ASHRAE Standard 62.2. While these systems generally fall into the categories of supply, exhaust or balanced, the specifics of each system are driven by concerns that extend beyond those in the standard and are discussed. Some of these systems go beyond the current standard by providing additional features (such as air distribution or pressurization control). The market will decide the immediate value of such features, but ASHRAE may wish to consider modifications to the standard in the future.

22

Economizer system cost effectiveness: Accounting for the influence of ventilation rate on sick leave  

E-Print Network (OSTI)

ECONOMIZER SYSTEM COST EFFECTIVENESS: ACCOUNTING FOR THEand economic benefits of an economizer ventilation controlanalyses indicate that the economizer reduces energy costs

Fisk, William J.; Seppanen, Olli; Faulkner, David; Huang, Joe

2003-01-01T23:59:59.000Z

23

Status of Revisions to ASHRAE Standard 62  

E-Print Network (OSTI)

The American Society of Heating Refrigerating and Air Conditioning Engineers (ASHRAE) Standard 62- 1989 "Ventilation for Acceptable Indoor air Quality", adopted in 1989, is widely used by HVAC engineers to determine ventilation rates for various...

Gallo, F. M.

1998-01-01T23:59:59.000Z

24

Healthy Zero Energy Buildings (HZEB) Program Interim Report on Cross Sectional Study of Contaminant Levels, Source Strengths, and Ventilation Rates in Retail Stores  

E-Print Network (OSTI)

levels within a commercial retail building. Indoor Air, 18,andVentilationRatesinRetailStores WanyuR. Chan,exchange rates of the nine retail stores estimated from the

Chan, Wanyu R.

2014-01-01T23:59:59.000Z

25

INDOOR AIR QUALITY AND ENERGY EFFICIENT VENTILATION RATES AT A NEW YORK CITY ELEMENTARY SCHOOL  

E-Print Network (OSTI)

UC-95d INDOOR AIR QUALITY AND ENERGY EFFICIENT VENTILATIONVentilation on Indoor Air Quality and Energy Use in Schoo s,EEB~Vent INDOOR AIR QUALITY AND ENERGY EFFICIENT VENTILATION

Young, Rodger A.

2013-01-01T23:59:59.000Z

26

Failure Rates from Certification Testing to UL and IEC Standards...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Failure Rates from Certification Testing to UL and IEC Standards for Flat Plate PV Modules Failure Rates from Certification Testing to UL and IEC Standards for Flat Plate PV...

27

Demand Controlled Ventilation and Classroom Ventilation  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Authors Fisk, William J., Mark J. Mendell, Molly Davies, Ekaterina Eliseeva, David Faulkner, Tienzen Hong, and Douglas P. Sullivan Publisher Lawrence Berkeley National Laboratory City Berkeley Keywords absence, building s, carbon dioxide, demand - controlled ventilation, energy, indoor air quality, schools, ventilation Abstract This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling. Major findings included:  The single-location carbon dioxide sensors widely used for demand controlled ventilation frequently have large errors and will fail to effectively control ventilation rates (VRs).  Multi-location carbon dioxide measurement systems with more expensive sensors connected to multi-location sampling systems may measure carbon dioxide more accurately.

28

PROCEEDINGS OF THE PELAGIC LONGLINE CATCH RATE STANDARDIZATION MEETING  

E-Print Network (OSTI)

PROCEEDINGS OF THE PELAGIC LONGLINE CATCH RATE STANDARDIZATION MEETING February 12-16, 2007 Imin;#12;Pelagic longline catch rate standardization meeting, Feb 2007 Table of Contents Introduction........................................................................................................... 6 1. Overview of longline effort standardizations in current Pacific HMS assessments... 6 2. Models

Hawai'i at Manoa, University of

29

Failure Rates from Certification Testing to UL and IEC Standards...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Failure Rates from Certification Testing to UL and IEC Standards for Flat Plate PV Modules Larry Pratt*, Nicholas Riedel*, Martin Plass, and Michael Yamasaki CFV Solar Test...

30

Advanced Controls for Residential Whole-House Ventilation Systems  

SciTech Connect

Whole-house ventilation systems are becoming commonplace in new construction, remodeling/renovation, and weatherization projects, driven by combinations of specific requirements for indoor air quality (IAQ), health and compliance with standards, such as ASHRAE 62.2. Ventilation systems incur an energy penalty on the home via fan power used to drive the airflow, and the additional space-conditioning load associated with heating or cooling the ventilation air. Finding a balance between IAQ and energy use is important if homes are to be adequately ventilated while not increasing the energy burden. This study used computer simulations to examine RIVEC the Residential Integrated Ventilation Controller - a prototype ventilation controller that aims to deliver whole-house ventilation rates that comply with ventilation standards, for the minimum use of energy. Four different whole-house ventilation systems were simulated, both with and without RIVEC, so that the energy and IAQ results could be compared. Simulations were conducted for 13 US climate zones, three house designs, and three envelope leakage values. The results showed that the RIVEC controller could typically return ventilation energy savings greater than 40percent without compromising long-term chronic or short-term acute exposures to relevant indoor contaminants. Critical and average peak power loads were also reduced as a consequence of using RIVEC.

Turner, William; Walker, Iain; Sherman, Max

2014-08-01T23:59:59.000Z

31

Effect of Ventilation Strategies on Residential Ozone Levels  

NLE Websites -- All DOE Office Websites (Extended Search)

Effect of Ventilation Strategies on Residential Ozone Levels Effect of Ventilation Strategies on Residential Ozone Levels Title Effect of Ventilation Strategies on Residential Ozone Levels Publication Type Journal Article LBNL Report Number LBNL-5889E Year of Publication 2012 Authors Walker, Iain S., and Max H. Sherman Journal Building and Environment Volume 59 Start Page 456 Pagination 456-465 Date Published 01/2013 Keywords ashrae standard 62,2, filtration, infiltration, mechanical ventilation, ozone, simulation Abstract Elevated outdoor ozone levels are associated with adverse health effects. Because people spend the vast majority of their time indoors, reduction in indoor levels of ozone of outdoor origin would lower population exposures and might also lead to a reduction in ozone---associated adverse health effects. In most buildings, indoor ozone levels are diminished with respect to outdoor levels to an extent that depends on surface reactions and on the degree to which ozone penetrates the building envelope. Ozone enters buildings from outdoors together with the airflows that are driven by natural and mechanical means, including deliberate ventilation used to reduce concentrations of indoor---generated pollutants. When assessing the effect of deliberate ventilation on occupant health one should consider not only the positive effects on removing pollutants of indoor origin but also the possibility that enhanced ventilation might increase indoor levels of pollutants originating outdoors. This study considers how changes in residential ventilation that are designed to comply with ASHRAE Standard 62.2 might influence indoor levels of ozone. Simulation results show that the building envelope can contribute significantly to filtration of ozone. Consequently, the use of exhaust ventilation systems is predicted to produce lower indoor ozone concentrations than would occur with balanced ventilation systems operating at the same air---exchange rate. We also investigated a strategy for reducing exposure to ozone that would deliberately reduce ventilation rates during times of high outdoor ozone concentration while still meeting daily average ventilation requirements.

32

INDOOR AIR QUALITY AND ENERGY EFFICIENT VENTILATION RATES AT A NEW YORK CITY ELEMENTARY SCHOOL  

E-Print Network (OSTI)

standard, ASHRAE 90-75R, Energy Conservation in New Building Design, 3 has stipulated that the minimum

Young, Rodger A.

2013-01-01T23:59:59.000Z

33

INDOOR AIR QUALITY AND ENERGY EFFICIENT VENTILATION RATES AT A NEW YORK CITY ELEMENTARY SCHOOL  

E-Print Network (OSTI)

jn Ne~ Building Desig~, ASHRAE 90-75R (New York, 1975). 4.in 1975. This standard, ASHRAE 90-75R, Energy Conservation

Young, Rodger A.

2013-01-01T23:59:59.000Z

34

Why We Ventilate  

NLE Websites -- All DOE Office Websites (Extended Search)

Why We Ventilate Why We Ventilate Title Why We Ventilate Publication Type Conference Paper LBNL Report Number LBNL-5093E Year of Publication 2011 Authors Logue, Jennifer M., Phillip N. Price, Max H. Sherman, and Brett C. Singer Conference Name Proceedings of the 2011 32nd AIVC Conference and 1st Tightvent Conference Date Published October 2011 Conference Location Brussels, Belgium Keywords indoor environment department, resave, ventilation and air cleaning Abstract It is widely accepted that ventilation is critical for providing good indoor air quality (IAQ) in homes. However, the definition of "good" IAQ, and the most effective, energy efficient methods for delivering it are still matters of research and debate. This paper presents the results of work done at the Lawrence Berkeley National Lab to identify the air pollutants that drive the need for ventilation as part of a larger effort to develop a health-based ventilation standard. First, we present results of a hazard analysis that identified the pollutants that most commonly reach concentrations in homes that exceed health-based standards or guidelines for chronic or acute exposures. Second, we present results of an impact assessment that identified the air pollutants that cause the most harm to the U.S. population from chronic inhalation in residences. Lastly, we describe the implications of our findings for developing effective ventilation standards.

35

Whole Building Ventilation Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Whole-Building Whole-Building Ventilation Systems for Existing Homes © 2011 Steven Winter Associates, Inc. All rights reserved. © 2011 Steven Winter Associates, Inc. All rights reserved. Home Performance / Weatherization  Addressing ventilation is the exception  Max tightness, e.g. BPI's "Building Airflow Standard" (BAS)  References ASHRAE 62-89  BAS = Max [0.35 ACH, 15 CFM/person], CFM50 eq.  If BD tests show natural infiltration below BAS...  Ventilation must be recommended or installed.  SO DON'T AIR SEAL TO MUCH! © 2011 Steven Winter Associates, Inc. All rights reserved. © 2011 Steven Winter Associates, Inc. All rights reserved. Ventilation Requirements Ventilation systems for existing homes that are:

36

Ventilative cooling  

E-Print Network (OSTI)

This thesis evaluates the performance of daytime and nighttime passive ventilation cooling strategies for Beijing, Shanghai and Tokyo. A new simulation method for cross-ventilated wind driven airflow is presented . This ...

Graa, Guilherme Carrilho da, 1972-

1999-01-01T23:59:59.000Z

37

Ventilation System Effectiveness and Tested Indoor Air Quality Impacts  

SciTech Connect

Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. It was inferior because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

Rudd, A.; Bergey, D.

2014-02-01T23:59:59.000Z

38

Ventilation Requirements in Hot Humid Climates  

E-Print Network (OSTI)

the Building America program, LBNL has simulated the effects of mechanical ventilation systems that meet ASHRAE Standard 62.2 on ventilation, energy use and indoor humidity levels. In order to capture moisture related HVAC system operation..., LBNL has simulated the effects of mechanical ventilation systems that meet ASHRAE Standard 62.2 on ventilation, energy use and indoor humidity levels for houses that meet current (2005) International Energy Conservation Code requirements...

Walker, I. S.; Sherman, M. H.

2006-01-01T23:59:59.000Z

39

Energy Recovery Ventilator Membrane Efficiency Testing  

E-Print Network (OSTI)

A test setup was designed and built to test energy recovery ventilator membranes. The purpose of this test setup was to measure the heat transfer and water vapor transfer rates through energy recover ventilator membranes and find their effectiveness...

Rees, Jennifer Anne

2013-05-07T23:59:59.000Z

40

Why We Ventilate - Recent Advances  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WHY WE VENTILATE: WHY WE VENTILATE: Recent Advances Max Sherman BA Stakeholders meeting ASHRAE BIO  Distinguished Lecturer  Exceptional Service Award  Board of Directors; TechC  Chair of committees:  62.2; Standards Committee  TC 4.3; TC 2.5  Holladay Distinguished Fellow OVERVIEW QUESTIONS  What is Ventilation? What is IAQ?  What functions does it provide?  How much do we need? Why?  How should ventilations standards be made? LBL has working on these problems Who Are You?  Engineers (ASHRAE Members & not);  architects,  contractors,  reps,  builders,  vendors,  code officials WHAT IS VENTILATION  Medicine: To Exchange Air In the Lungs  Latin: Ventilare, "to expose to the wind"  Today: To Bring In Outdoor Air And Replace

Note: This page contains sample records for the topic "ventilation rate standards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

HOSPITAL VENTILATION STANDARDS AND ENERGY CONSERVATION: A SUMMARY OF THE LITERATURE WITH CONCLUSIONS AND RECOMMENDATIONS, FY 78 FINAL REPORT  

E-Print Network (OSTI)

less stringent than ASHRAE Standard 90-75. The Code has alsoThe codification of ASHRAE standard 90:75 into the "Codefilters having at least 90% (ASHRAE 52-68) efficiencies

DeRoos, R.L.

2011-01-01T23:59:59.000Z

42

Ventilation, temperature, and HVAC characteristics in small and medium  

NLE Websites -- All DOE Office Websites (Extended Search)

Ventilation, temperature, and HVAC characteristics in small and medium Ventilation, temperature, and HVAC characteristics in small and medium commercial buildings in California Title Ventilation, temperature, and HVAC characteristics in small and medium commercial buildings in California Publication Type Journal Article Refereed Designation Refereed Year of Publication 2012 Authors Bennett, Deborah H., William J. Fisk, Michael G. Apte, X. Wu, Amber L. Trout, David Faulkner, and Douglas P. Sullivan Journal Indoor Air Volume 22 Issue 4 Pagination 309-20 Abstract This field study of 37 small and medium commercial buildings throughout California obtained information on ventilation rate, temperature, and heating, ventilating, and air-conditioning (HVAC) system characteristics. The study included seven retail establishments; five restaurants; eight offices; two each of gas stations, hair salons, healthcare facilities, grocery stores, dental offices, and fitness centers; and five other buildings. Fourteen (38%) of the buildings either could not or did not provide outdoor air through the HVAC system. The air exchange rate averaged 1.6 (s.d. = 1.7) exchanges per hour and was similar between buildings with and without outdoor air supplied through the HVAC system, indicating that some buildings have significant leakage or ventilation through open windows and doors. Not all buildings had sufficient air exchange to meet ASHRAE 62.1 Standards, including buildings used for fitness centers, hair salons, offices, and retail establishments. The majority of the time, buildings were within the ASHRAE temperature comfort range. Offices were frequently overcooled in the summer. All of the buildings had filters, but over half the buildings had a filter with a minimum efficiency reporting value rating of 4 or lower, which are not very effective for removing fine particles. PRACTICAL IMPLICATIONS: Most U.S. commercial buildings (96%) are small- to medium-sized, using nearly 18% of the country's energy, and sheltering a large population daily. Little is known about the ventilation systems in these buildings. This study found a wide variety of ventilation conditions, with many buildings failing to meet relevant ventilation standards. Regulators may want to consider implementing more complete building inspections at commissioning and point of sale.

43

Indoor Air Quality and Ventilation in Residential Deep Energy Retrofits  

SciTech Connect

Because airtightening is a significant part of Deep Energy Retrofits (DERs), concerns about ventilation and Indoor Air Quality (IAQ) have emerged. To investigate this, ventilation and IAQ were assessed in 17 non-smoking California Deep Energy Retrofit homes. Inspections and surveys were used to assess household activities and ventilation systems. Pollutant sampling performed in 12 homes included six-day passive samples of nitrogen dioxide (NO2), formaldehyde and air exchange rate (AER); time-resolved data loggers were used to measure particle counts. Half of the homes provided continuous mechanical ventilation. Despite these homes being twice as airtight (3.0 and 7.6 ACH50, respectively), their median AER was indistinguishable from naturally vented homes (0.36 versus 0.37 hr--1). Numerous problems were found with ventilation systems; however, pollutant levels did not reach levels of concern in most homes. Ambient NO2 standards were exceeded in some gas cooking homes that used legacy ranges with standing pilots, and in Passive House-style homes without range hoods exhausted to outside. Cooking exhaust systems were installed and used inconsistently. The majority of homes reported using low-emitting materials, and formaldehyde levels were approximately half those in conventional new CA homes (19.7 versus 36 ?g/m3), with emissions rates nearly 40percent less (12.3 versus 20.6 ?g/m2/hr.). Presence of air filtration systems led to lower indoor particle number concentrations (PN>0.5: 8.80E+06 PN/m3 versus 2.99E+06; PN>2.5: 5.46E+0.5 PN/m3 versus 2.59E+05). The results indicate that DERs can provide adequate ventilation and IAQ, and that DERs should prioritize source control, particle filtration and well-designed local exhaust systems, while still providing adequate continuous ventilation.

Less, Brennan; Walker, Iain

2014-06-01T23:59:59.000Z

44

THE EFFECTS OF ENERGY-EFFICIENT VENTILATION RATES ON INDOOR AIR QUALITY AT AN OHIO ELEMENTARY SCHOOL  

E-Print Network (OSTI)

New Buil~ Desi!! 1 ASHRAE 90-75R 5. J.V. Berk 1 C.D.recently 1 a new standard, ASHRAE 90~75R 3 Energy in New

Berk, J.V.

2013-01-01T23:59:59.000Z

45

Development of a Residential Integrated Ventilation Controller  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of a Residential Integrated Ventilation Controller Development of a Residential Integrated Ventilation Controller Title Development of a Residential Integrated Ventilation Controller Publication Type Report LBNL Report Number LBNL-5554E Year of Publication 2012 Authors Walker, Iain S., Max H. Sherman, and Darryl J. Dickerhoff Keywords ashrae standard 62,2, california title 24, residential ventilation, ventilation controller Abstract The goal of this study was to develop a Residential Integrated Ventilation Controller (RIVEC) to reduce the energy impact of required mechanical ventilation by 20%, maintain or improve indoor air quality and provide demand response benefits. This represents potential energy savings of about 140 GWh of electricity and 83 million therms of natural gas as well as proportional peak savings in California. The RIVEC controller is intended to meet the 2008 Title 24 requirements for residential ventilation as well as taking into account the issues of outdoor conditions, other ventilation devices (including economizers), peak demand concerns and occupant preferences. The controller is designed to manage all the residential ventilation systems that are currently available. A key innovation in this controller is the ability to implement the concept of efficacy and intermittent ventilation which allows time shifting of ventilation. Using this approach ventilation can be shifted away from times of high cost or high outdoor pollution towards times when it is cheaper and more effective. Simulations, based on the ones used to develop the new residential ventilation requirements for the California Buildings Energy code, were used to further define the specific criteria and strategies needed for the controller. These simulations provide estimates of the energy, peak power and contaminant improvement possible for different California climates for the various ventilation systems. Results from a field test of the prototype controller corroborate the predicted performance.

46

Should Title 24 Ventilation Requirements Be Amended to include an Indoor Air Quality Procedure?  

SciTech Connect

Minimum outdoor air ventilation rates (VRs) for buildings are specified in standards, including California?s Title 24 standards. The ASHRAE ventilation standard includes two options for mechanically-ventilated buildings ? a prescriptive ventilation rate procedure (VRP) that specifies minimum VRs that vary among occupancy classes, and a performance-based indoor air quality procedure (IAQP) that may result in lower VRs than the VRP, with associated energy savings, if IAQ meeting specified criteria can be demonstrated. The California Energy Commission has been considering the addition of an IAQP to the Title 24 standards. This paper, based on a review of prior data and new analyses of the IAQP, evaluates four future options for Title 24: no IAQP; adding an alternate VRP, adding an equivalent indoor air quality procedure (EIAQP), and adding an improved ASHRAE-like IAQP. Criteria were established for selecting among options, and feedback was obtained in a workshop of stakeholders. Based on this review, the addition of an alternate VRP is recommended. This procedure would allow lower minimum VRs if a specified set of actions were taken to maintain acceptable IAQ. An alternate VRP could also be a valuable supplement to ASHRAE?s ventilation standard.

Dutton, Spencer M.; Mendell, Mark J.; Chan, Wanyu R.

2013-05-13T23:59:59.000Z

47

Ventilation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Ventilation Ventilation Controlled ventilation keeps energy-efficient homes healthy and comfortable. Learn more about ventilation. Controlled ventilation keeps energy-efficient homes healthy and comfortable. Learn more about ventilation. When creating an energy-efficient, airtight home through air sealing, it's very important to consider ventilation. Unless properly ventilated, an airtight home can seal in indoor air pollutants. Ventilation also helps control moisture-another important consideration for a healthy, energy-efficient home. Featured Whole-House Ventilation A whole-house ventilation system with dedicated ducting in a new energy-efficient home. | Photo courtesy of ©iStockphoto/brebca. Tight, energy-efficient homes require mechanical -- usually whole-house --

48

Air Distribution Effectiveness for Residential Mechanical Ventilation: Simulation and Comparison of Normalized Exposures  

SciTech Connect

The purpose of ventilation is to dilute indoor contaminants that an occupant is exposed to. Even when providing the same nominal rate of outdoor air, different ventilation systems may distribute air in different ways, affecting occupants' exposure to household contaminants. Exposure ultimately depends on the home being considered, on source disposition and strength, on occupants' behavior, on the ventilation strategy, and on operation of forced air heating and cooling systems. In any multi-zone environment dilution rates and source strengths may be different in every zone and change in time, resulting in exposure being tied to occupancy patterns.This paper will report on simulations that compare ventilation systems by assessing their impact on exposure by examining common house geometries, contaminant generation profiles, and occupancy scenarios. These simulations take into account the unsteady, occupancy-tied aspect of ventilation such as bathroom and kitchen exhaust fans. As most US homes have central HVAC systems, the simulation results will be used to make appropriate recommendations and adjustments for distribution and mixing to residential ventilation standards such as ASHRAE Standard 62.2.This paper will report on work being done to model multizone airflow systems that are unsteady and elaborate the concept of distribution matrix. It will examine several metrics for evaluating the effect of air distribution on exposure to pollutants, based on previous work by Sherman et al. (2006).

Petithuguenin, T.D.P.; Sherman, M.H.

2009-05-01T23:59:59.000Z

49

Demand or No Demand: Electrical Rates for Standard 90.1-2010  

SciTech Connect

ASHRAE is developing the 2010 version of Standard 90.1 with the goal of reaching 30% savings beyond the 2004 edition of the standard. Economics are used to inform the process of setting criteria and the assumed electricity rates are crucial to these calculations. Previously the committee used national average electrical rates in the criteria setting but recently a number of voices have been heard in support of using demand rates instead. This article explores the issues surrounding the use of a pure consumption rate vs. the use of demand rates and looks at the implications for HVAC equipment efficiency.

Jarnagin, Ronald E.; McBride, Merle F.; Trueman, Cedric; Liesen, Richard J.

2008-04-30T23:59:59.000Z

50

The effects of standardized tax rates, average tax rates, and the distribution of income on tax progressivity  

Science Journals Connector (OSTI)

This study examines the changes in US individual income tax progressivity over the 19862003 period using the indexes developed by [Kakwani, N.C., 1976. Measurement of tax progressivity: An international comparison. Economic Journal 87(March), 7180]. Although progressivity over this time frame has generally been studied in the literature, we provide additional insights by decomposing the changes in index values to account for the effects of concurrent changes in the standardized tax rates, average tax rates, and the income distribution. The decomposition should prove to be particularly useful when different summary indexes lead to conflicting conclusions about progressivity changes, as is often the case. From a policy standpoint, we show that it is the standardized tax rates, a derivative of the legislated tax rates, which need to be monitored and managed to offset the negative progressivity effects of increasing before-tax income inequality.

Govind S. Iyer; Andrew Schmidt; Ananth Seetharaman

2008-01-01T23:59:59.000Z

51

Determining Bounds for a Pressure Hazard Rating to Augment the NFPA 704 Standard  

E-Print Network (OSTI)

States is the Instability Rating found in the NFPA 704 standard. While the NFPA 704 identifies hazards associated with exothermically decomposing compounds, it neglects compounds that decompose endothermicly to form large quantities of gas...

Hodge, Phillip

2012-02-14T23:59:59.000Z

52

Humidity Implications for Meeting Residential Ventilation Requirements  

E-Print Network (OSTI)

residential ventilation standard, ASHRAE Standard 62.2. Because meeting this standard can significantly change, Kansas City, Seattle, Minneapolis and Phoenix). In order to capture moisture related HVAC system.2, design strategies for moisture control, humidity and comfort. #12;INTRODUCTION ASHRAE standards 62

53

ASHRAE Standard 62-1989: Energy, Cost, and Program Implications.  

SciTech Connect

ASHRAE Standard 62-1989 (Standard 62-89) Ventilation for Acceptable Indoor Air Quality'' is the new heating, ventilating, and air-conditioning (HVAC) industry consensus for ventilation air in commercial buildings. Bonneville Power Administration (Bonneville) references ASHRAE Standard 62-81 (the predecessor to Standard 62-89) in their current environmental documents for required ventilation rates. Through its use, it had become evident to Bonneville that Standard 62-81 needed interpretation. Now that the revised Standard (Standard 62-89) is available, its usefulness needs to be evaluated. Based on current information and public comment, the American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE) revised Standard 62-1981 to Standard 62-89. Bonneville's study estimated the energy and cost implications of ASHRAE Standard 62-89 using simulations based on DOE-2.1D, a computer simulation program which estimates building use hourly as a function of building characteristics and climatic location. Ten types of prototypical commercial buildings used by Bonneville for load forecasting purposes were examined: Large and Small Office, Large and Small Retail, Restaurant, Warehouse, Hospital, Hotel, School, and Grocery. These building characterizations are based on survey and energy metering data and represent average or typical construction and operation practices and mechanical system types. Prototypical building ventilation rates were varied in five steps to estimate the impacts of outside air on building energy use. 11 refs., 14 tabs.

Steele, Tim R.; Brown, Marilyn A.

1990-10-15T23:59:59.000Z

54

DEMAND CONTROLLED VENTILATION AND CLASSROOM VENTILATION  

E-Print Network (OSTI)

columns indicate the energy and cost savings for demandand class size. (The energy costs of classroom ventilationTotal Increase in Energy Costs ($) Increased State Revenue

Fisk, William J.

2014-01-01T23:59:59.000Z

55

The International Journal of Ventilation  

E-Print Network (OSTI)

in Buildings: Harrington C and Modera M 345 Estimates of Uncertainty in Multi-Zone Air Leakage Measurements. Introduction Heating, cooling and ventilation can account for 50 percent of total building energy use flow rate. Over the past 15 years, the subject of duct leakage in buildings other than single-family

California at Davis, University of

56

Association of Classroom Ventilation with Reduced Illness Absence: A  

NLE Websites -- All DOE Office Websites (Extended Search)

Association of Classroom Ventilation with Reduced Illness Absence: A Association of Classroom Ventilation with Reduced Illness Absence: A Prospective Study in California Elementary Schools Title Association of Classroom Ventilation with Reduced Illness Absence: A Prospective Study in California Elementary Schools Publication Type Journal Article Refereed Designation Refereed LBNL Report Number LBNL-6259E Year of Publication 2013 Authors Mendell, Mark J., Ekaterina Eliseeva, Morris G. Davies, Michael Spears, Agnes B. Lobscheid, William J. Fisk, and Michael G. Apte Journal Indoor Air Keywords carbon dioxide, Illness absence, indoor environmental quality, schools, ventilation Abstract Limited evidence associates inadequate classroom ventilation rates (VRs) with increased illness absence (IA). We investigated relationships between VRs and IA in Californiaelementary schools over two school years in 162 3rd-5th grade classrooms in 28 schools in three school districts: South Coast (SC), Bay Area (BA), and Central Valley (CV). We estimated relationships between daily IA and VR (estimated from real-time carbon dioxide) in zero-inflated negative binomial models. We also compared IA benefits and energy costs of increased VRs. All school districts had median VRs below the 7.1 L/sec-person California standard. For each additional 1 L/sec-person of VR, IA was reduced significantly (p<0.05) in models for combined districts (-1.6%) and for SC (-1.2%), and non-significantly for districts providing less data: BA (-1.5%) and CV (-1.0%). Assuming associations were causal and generalizable, increasing classroom VRs from the California average (4 L/sec-person) to the State standard would decrease IA by 3.4%, increase attendance-linked funding to schools by $33 million annually, and increase costs only $4 million. Further increasing VRs would provide additional benefits. These findings, while requiring confirmation, suggest that increasing classroom VRs above the State

57

Ventilation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Ventilation Ventilation May 7, 2012 - 2:49pm Addthis This ventilation system in a tight, energy-efficient home ensures good indoor air quality. | Photo courtesy of ©iStockphoto.com/brebca. This ventilation system in a tight, energy-efficient home ensures good indoor air quality. | Photo courtesy of ©iStockphoto.com/brebca. What does this mean for me? After you've reduced air leakage in your home, adequate ventilation is critical for health and comfort. Depending on your climate, there are a number of strategies to ventilate your home. Ventilation is very important in an energy-efficient home. Air sealing techniques can reduce air leakage to the point that contaminants with known health effects such as formaldehyde, volatile organic compounds, and radon

58

Ventilation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Ventilation Ventilation May 7, 2012 - 2:49pm Addthis This ventilation system in a tight, energy-efficient home ensures good indoor air quality. | Photo courtesy of ©iStockphoto.com/brebca. This ventilation system in a tight, energy-efficient home ensures good indoor air quality. | Photo courtesy of ©iStockphoto.com/brebca. What does this mean for me? After you've reduced air leakage in your home, adequate ventilation is critical for health and comfort. Depending on your climate, there are a number of strategies to ventilate your home. Ventilation is very important in an energy-efficient home. Air sealing techniques can reduce air leakage to the point that contaminants with known health effects such as formaldehyde, volatile organic compounds, and radon

59

AEDG Implementation Recommendations: Ventilation | Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Ventilation Ventilation The Advanced Energy Design Guide (AEDG) for Small Office Buildings, 30% series, seeks to achieve 30% savings over ASHRAE Standard 90.1-1999. This guide focuses on improvements to small office buildings, less than 20,000ft2. The recommendations in this article are adapted from the implementation section of the guide and focus on ventilation air; exhaust air; control strategies; carbon dioxide sensors; economizers. Publication Date: Wednesday, May 13, 2009 air_ventilation.pdf Document Details Affiliation: DOE BECP Focus: Compliance Building Type: Commercial Code Referenced: ASHRAE Standard 90.1-1999 Document type: AEDG Implementation Recommendations Target Audience: Architect/Designer Builder Contractor Engineer State: All States Contacts Web Site Policies

60

Demand Controlled Ventilation and Classroom Ventilation  

E-Print Network (OSTI)

columnsindicatetheenergyandcostsavingsfor demandclasssize. (Theenergycosts ofclassroomventilationTotal Increase in Energy Costs ($) Increased State Revenue

Fisk, William J.

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation rate standards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

May 1999 LBNL -42975 ASHRAE'S RESIDENTIAL VENTILATION  

E-Print Network (OSTI)

indoor air quality in dwellings and to set minimum standards that would allow for energy efficiency Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology of the U.S. Department measures to be evaluated. The standard has requirements for whole-house ventilation, local exhaust

62

Building America Guidance for Identifying and Overcoming Code, Standard, and Rating Method Barriers  

SciTech Connect

The U.S. Department of Energys (DOE) Building America program implemented a new Codes and Standards Innovation (CSI) Team in 2013. The Teams mission is to assist Building America (BA) research teams and partners in identifying and resolving conflicts between Building America innovations and the various codes and standards that govern the construction of residences. A CSI Roadmap was completed in September, 2013. This guidance document was prepared using the information in the CSI Roadmap to provide BA research teams and partners with specific information and approaches to identifying and overcoming potential barriers to Building America (BA) innovations arising in and/or stemming from codes, standards, and rating methods. For more information on the BA CSI team, please email: CSITeam@pnnl.gov

Cole, Pamala C.; Halverson, Mark A.

2013-09-01T23:59:59.000Z

63

Building Science - Ventilation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Ventilation Joseph Lstiburek, Ph.D., P.Eng, ASHRAE Fellow www.buildingscience.com Build Tight - Ventilate Right Building Science Corporation Joseph Lstiburek 2 Build Tight - Ventilate Right How Tight? What's Right? Building Science Corporation Joseph Lstiburek 3 Air Barrier Metrics Material 0.02 l/(s-m2) @ 75 Pa Assembly 0.20 l/(s-m2) @ 75 Pa Enclosure 2.00 l/(s-m2) @ 75 Pa 0.35 cfm/ft2 @ 50 Pa 0.25 cfm/ft2 @ 50 Pa 0.15 cfm/ft2 @ 50 Pa Building Science Corporation Joseph Lstiburek 4 Getting rid of big holes 3 ach@50 Getting rid of smaller holes 1.5 ach@50 Getting German 0.6 ach@50 Building Science Corporation Joseph Lstiburek 5 Best As Tight as Possible - with - Balanced Ventilation Energy Recovery Distribution Source Control - Spot exhaust ventilation Filtration

64

Ventilation of Electrical Substations  

Science Journals Connector (OSTI)

... THE type of construction used for substations is generally governed by requirements, for example, fire and air-raid precautions, which ... Electrical Engineers, F. Favell and E. W. Connon record their experiences in overcoming substation ventilation problems in particular cases. Adequate and suitably planned ventilation will maintain ...

1943-05-01T23:59:59.000Z

65

Multifamily Ventilation - Best Practice?  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Multifamily Ventilation - Best Practice? Multifamily Ventilation - Best Practice? Dianne Griffiths April 29, 2013 Presentation Outline * Basic Objectives * Exhaust Systems * Make-up Air Systems Two Primary Ventilation Objectives 1) Providing Fresh Air - Whole-House 2) Removing Pollutants - Local Exhaust Our goal is to find the simplest solution that satisfies both objectives while minimizing cost and energy impacts. Common Solution: Align local exhaust with fresh air requirements (Ex: 25 Bath + 25 Kitchen) Exhaust-Driven Fresh Air Design * Exhaust slightly depressurizes the units * Outside air enters through leaks, cracks, or planned inlets * Widely used in the North Multifamily Ventilation Best Practice * Step 1: Understand ventilation requirements * Step 2: Select the simplest design that can

66

Evaluation of Ventilation Strategies in New Construction Multifamily Buildings  

SciTech Connect

In multifamily buildings, particularly in the Northeast, exhaust ventilation strategies are the norm as a means of meeting both local exhaust and whole-unit mechanical ventilation rates. The issue of where the 'fresh' air is coming from is gaining significance as air-tightness standards for enclosures become more stringent, and the 'normal leakage paths through the building envelope' disappear. CARB researchers have found that the majority of high performance, new construction, multifamily housing in the Northeast use one of four general strategies for ventilation: continuous exhaust only with no designated supply or make-up air source, continuous exhaust with ducted make-up air to apartments, continuous exhaust with supply through a make-up air device integral to the unit HVAC, and continuous exhaust with supply through a passive inlet device, such as a trickle vent. Insufficient information is available to designers on how these various systems are best applied. Product performance data are based on laboratory tests, and the assumption is that products will perform similarly in the field. Proper application involves matching expected performance at expected building pressures, but there is no guarantee that those conditions will exist consistently in the finished building. This research effort, which included several weeks of building pressure monitoring, sought to provide field validation of system performance. The performance of four substantially different strategies for providing make-up air to apartments was evaluated.

Maxwell, S.; Berger, D.; Zuluaga, M.

2014-07-01T23:59:59.000Z

67

Ventilation Effectiveness Research at UT-Typer Lab Houses  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Effectiveness Research Ventilation Effectiveness Research at UT-Tyler Lab Houses Source Of Outside Air, Distribution, Filtration Armin Rudd Twin (almost) Lab Houses at UT-Tyler House 2: Unvented attic, House 1: Vented attic lower loads + PV Ventilation Effectiveness Research 30 April 2013 2 * 1475 ft 2 , 3-bedroom houses * House 2 was mirrored plan * 45 cfm 62.2 ventilation rate * Garage connected to house on only one wall * Access to attic via pull-down stairs in garage * Further access to House 2 unvented attic through gasket sealed door Ventilation Effectiveness Research 30 April 2013 3 Testing Approach  Building enclosure and building mechanical systems characterization by measurement of building enclosure air leakage, central air distribution system airflows, and ventilation system airflows.

68

Natural Ventilation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Ventilation Natural Ventilation Natural Ventilation May 30, 2012 - 7:56pm Addthis Opening a window is a simple natural ventilation strategy. | Credit: ©iStockphoto/Simotion Opening a window is a simple natural ventilation strategy. | Credit: ©iStockphoto/Simotion What does this mean for me? If you live in a part of the country with cool nights and breezes, you may be able to cool your house with natural ventilation. If you're building a new home, design it to take advantage of natural ventilation. Natural ventilation relies on the wind and the "chimney effect" to keep a home cool. Natural ventilation works best in climates with cool nights and regular breezes. The wind will naturally ventilate your home by entering or leaving windows, depending on their orientation to the wind. When wind blows against your

69

Residential Ventilation & Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 Residential Ventilation & Energy Figure 1: Annual Average Ventilation Costs of the Current U.S. Single-Family Housing Stock ($/year/house). Infiltration and ventilation in dwellings is conventionally believed to account for one-third to one-half of space conditioning energy. Unfortunately, there is not a great deal of measurement data or analysis to substantiate this assumption. As energy conservation improvements to the thermal envelope continue, the fraction of energy consumed by the conditioning of air may increase. Air-tightening programs, while decreasing energy requirements, have the tendency to decrease ventilation and its associated energy penalty at the possible expense of adequate indoor air quality. Therefore, more energy may be spent on conditioning air.

70

Reducing Mortality from Terrorist Releases of Chemical and Biological Agents: I. Filtration for Ventilation Systems in Commercial Building  

E-Print Network (OSTI)

R.J. : Effect of ventilation rate in a healthy building.IAQ '91: Healthy Buildings, American Society of Heating,

Thatcher, Tracy L.

2011-01-01T23:59:59.000Z

71

Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Iron  

E-Print Network (OSTI)

DESIG: E 263 09 ^TITLE: Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Iron ^SIGNUSE: Refer to Guide E 844 for guidance on the selection, irradiation, and quality control of neutron dosimeters. Refer to Practice E 261 for a general discussion of the determination of fast-neutron fluence rate with threshold detectors. Pure iron in the form of foil or wire is readily available and easily handled. Fig. 1 shows a plot of cross section as a function of neutron energy for the fast-neutron reaction 54Fe(n,p)54Mn (1). This figure is for illustrative purposes only to indicate the range of response of the 54Fe(n,p)54Mn reaction. Refer to Guide E 1018 for descriptions of recommended tabulated dosimetry cross sections. 54Mn has a half-life of 312.13 days (3) (2) and emits a gamma ray with an energy of 834.845 keV (5). (2) Interfering activities generated by neutron activation arising from thermal or fast neutron interactions are 2.57878 (46)-h 56Mn, 44.95-d (8) 59Fe, and 5.27...

American Society for Testing and Materials. Philadelphia

2009-01-01T23:59:59.000Z

72

Measure Guideline: Selecting Ventilation Systems for Existing Homes  

SciTech Connect

This document addresses adding -or improving - mechanical ventilation systems to existing homes. The purpose of ventilation is to remove contaminants from homes, and this report discusses where, when, and how much ventilation is appropriate in a home, including some discussion of relevant codes and standards. Advantages, disadvantages, and approximate costs of various system types are presented along with general guidelines for implementing the systems in homes. CARB intends for this document to be useful to decision makers and contractors implementing ventilation systems in homes. Choosing the "best" system is not always straightforward; selecting a system involves balancing performance, efficiency, cost, required maintenance, and several other factors. It is the intent of this document to assist contractors in making more informed decisions when selecting systems. Ventilation is an integral part of a high-performance home. With more air-sealed envelopes, a mechanical means of removing contaminants is critical for indoor environmental quality and building durability.

Aldrich, R.

2014-02-01T23:59:59.000Z

73

Natural ventilation generates building form  

E-Print Network (OSTI)

Natural ventilation is an efficient design strategy for thermal comfort in hot and humid climates. The building forms can generate different pressures and temperatures to induce natural ventilation. This thesis develops a ...

Chen, Shaw-Bing

1996-01-01T23:59:59.000Z

74

Measuring Residential Ventilation  

NLE Websites -- All DOE Office Websites (Extended Search)

Measuring Residential Ventilation Measuring Residential Ventilation System Airflows: Part 2 - Field Evaluation of Airflow Meter Devices and System Flow Verification J. Chris Stratton, Iain S. Walker, Craig P. Wray Environmental Energy Technologies Division October 2012 LBNL-5982E 2 Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any

75

Standard  

NLE Websites -- All DOE Office Websites (Extended Search)

Standard Standard rock For at least two generations, the depth of underground muon experiments has been reduced to depth in "standard rock." This is by definition the overburden of the Cayuga Rock Salt Mine near Ithaca, New York, where K. Greisen and collaborators made seminal observations of muons at substantial depths[1]. Ref. 1 says only "Most of the ground consists of shales of various types, with average density 2.65 g/cm 2 and average atomic number 11." Menon and Murthy later extended the definition: Z 2 /A = 5.5, Z/A = 0.5, and and ρ = 2.65 g/cm 2 [2]. It was thus not-quite-sodium. Lohmann[3] further assumed the mean excitation energy and density effect parameters were those of calcium carbonate, with no adjustments for the slight density difference. We use their definition for this most important material. (Extracted from D.E. Groom, N.V. Mokhov, and S.I. Striganov,

76

Development of a Rating System for a Comparative Accelerated Test Standard (Presentation)  

SciTech Connect

This presentation discusses methods of developing and structuring a useful rating system and communicating the results.

Kurtz, S.

2013-06-01T23:59:59.000Z

77

Infiltration in ASHRAE's Residential Ventilation Standards  

E-Print Network (OSTI)

ofbothindoorairqualityandenergy. References ASHRAEbothindoorairqualityandbuildingenergyconsumption. acceptable indoor air quality at minimum energy cost, it is

Sherman, Max

2008-01-01T23:59:59.000Z

78

Improvement in impact insulation ratings of common floor/ceiling assemblies in multi?family dwellings with standard floor coverings  

Science Journals Connector (OSTI)

Improvement in the field?rated impact insulation class [FIIC] was measured for several common floor/ceiling assemblies in existing multi?family buildings utilizing several standard grades of carpet pad and various vinyl products. Testing included determination of FIIC ratings with existing floor coverings and with other more effective floor coverings including ordinary cushioned vinyl thickly cushion?backed vinyl and vinyl products with fiber board and particle board underlayment. Test results indicate that a significant improvement in the FIIC ratings of existing vinyl covered floor/ceiling assemblies can be achieved by the superposition of an appropriate cushioned vinyl on top of the existing standard vinyl. The test results also indicate that a significant increase in FIIC ratings of existing carpeted floor/ceiling assemblies can be achieved by appropriate selection of new pad and carpet. Test data from measurements performed in accordance with ISO recommendation R140 are presented in the paper for several representative configurations.

Stanley M. Rosen

1981-01-01T23:59:59.000Z

79

A New Empirical Model for Predicting Single-Sided, Wind-Driven Natural Ventilation in Buildings  

E-Print Network (OSTI)

ventilation rate due to the pulsating flow and eddy penetration of single-sided, wind-driven natural Normal to the opening q Fluctuating flow rate e Eddy penetration Wang, H. and Chen, Q. 2012. "A new buildings. A new empirical model was developed that can predict the mean ventilation rate and fluctuating

Chen, Qingyan "Yan"

80

Forecasting the Standard & Poor's 500 stock index futures price: interest rates, dividend yields, and cointegration  

E-Print Network (OSTI)

Daily Standard & Poor's 500 stock index cash and futures prices are studies in a cointegration framework using Johansen's maximum likelihood procedure. To account for the time varying relationship(basis) between the two markets, a theoretical...

Fritsch, Roger Erwin

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation rate standards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Ventilation Air Preconditioning Systems  

E-Print Network (OSTI)

Ventilation Air Preconditioning Systems Mukesh Khattar Michael J. Brandemuehl Manager, Space Conditioning and Refrigeration Associate Professor Customer Systems Group Joint Center for Energy Management Electric Power Research Institute Campus... costs, the small, modular nature of the system allows great flexibility for fitting into retrofit geometries and saves space in new construction. Moreover, a single chiller can serve multiple air-handling units-in stark contrast to packaged...

Khattar, M.; Brandemuehl, M. J.

1996-01-01T23:59:59.000Z

82

Standard for the determination of steady-state neutron reaction-rate distributions and reactivity of nuclear power reactors  

SciTech Connect

American National Standard ANSI/ANS*-19.3-2005 [1] covers 'The Determination of Steady-State Neutron Reaction-Rate Distributions and Reactivity of Nuclear Power Reactors'. The 2005 version is a new revision of this Standard, which had previously been issued in 1995. In this revision, the sections on the various types of power reactors have been updated to cover the latest methodologies of calculation in current use, and a section on HWR [CANDU{sup R}] reactors has been added. Also, the sections on verification and validation were revised to more fully define, discuss, and distinguish between these topics, and describe actions related to them. (authors)

Rouben, B. [Atomic Energy of Canada Limited, 2251 Speakman Drive, Mississauga, Ont. L5K 1B2 (Canada)

2006-07-01T23:59:59.000Z

83

2008 Residential Building Efficiency Standards 1 Efficiency Ratings and Performance Modeling Inputs  

E-Print Network (OSTI)

Residential Building Efficiency Standards 2 a. Refrigerant charge and metering (Reference Appendices, RA3 Cooling · SplitHeatPump: SEER 13 · Refrigerant charge (or charge indicator light), watts/cfm and air flow.2), or presence of charge indicator display (Reference Appendices, RA3.4) b. Air system fan flow and air handler

84

Literature Review of Displacement Ventilation  

E-Print Network (OSTI)

) and Nielsen et al. (1988) showed the impact of supply diffusers whereby increasing the entrainment of room air can decrease the temperature gradient in the occupied zone. #0;? Two important parameters to evaluate the performance of displacement ventilation... of Ventilated Rooms, Oslo, Norway. Nielsen, P.V., Hoff, L., Pedersen, L.G. 1988. Displacement Ventilation by Different Types of Diffusers. Proceedings of the 9 th AIVC Conference, Warwick. Niu, J. 1994. Modeling of Cooled-Ceiling Air-Conditioning Systems Ph...

Cho, S.; Im, P.; Haberl, J. S.

85

Evaluation of an Incremental Ventilation Energy Model for Estimating  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of an Incremental Ventilation Energy Model for Estimating Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation Title Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation Publication Type Report LBNL Report Number LBNL-5796E Year of Publication 2012 Authors Logue, Jennifer M., William J. N. Turner, Iain S. Walker, and Brett C. Singer Date Published 06/2012 Abstract Changing the rate of airflow through a home affects the annual thermal conditioning energy.Large-scale changes to airflow rates of the housing stock can significantly alter the energy consumption of the residential energy sector. However, the complexity of existing residential energy models hampers the ability to estimate the impact of policy changes on a state or nationwide level. The Incremental Ventilation Energy (IVE) model developed in this study was designed to combine the output of simple airflow models and a limited set of home characteristics to estimate the associated change in energy demand of homes. The IVE model was designed specifically to enable modelers to use existing databases of home characteristics to determine the impact of policy on ventilation at a population scale. In this report, we describe the IVE model and demonstrate that its estimates of energy change are comparable to the estimates of a well-validated, complex residential energy model when applied to homes with limited parameterization. Homes with extensive parameterization would be more accurately characterized by complex residential energy models. The demonstration included a range of home types, climates, and ventilation systems that cover a large fraction of the residential housing sector.

86

Hottest spot temperatures in ventilated dry type transformers  

SciTech Connect

The hottest spot temperature allowance to be used for the different insulation system temperature classes is a major unknown facing IEEE Working Groups developing standards and loading guides for ventilated dry type transformers. In 1944, the hottest spot temperature allowance for ventilated dry type transformers was established as 30 C for 80 C average winding temperature rise. Since 1944, insulation temperature classes have increased to 220 C but IEEE standards continue to use a constant 30 C hottest spot temperature allowance. IEC standards use a variable hottest spot temperature allowance from 5 to 30 C. Six full size test windings were manufactured with imbedded thermocouples and 133 test runs performed to obtain temperature rise data. The test data indicated that the hottest spot temperature allowance used in IEEE standards for ventilated dry type transformers above 500 kVA is too low. This is due to the large thermal gradient from the bottom to the top of the windings caused by natural convection air flow through the cooling ducts. A constant ratio of hottest spot winding temperature rise to average winding temperature rise should be used in product standards for all insulation temperature classes. A ratio of 1.5 is suggested for ventilated dry type transformers above 500 kVA. This would increase the hottest spot temperature allowance from 30 C to 60 C and decrease the permissible average winding temperature rise from 150 C to 120 C for the 220 C insulation temperature class.

Pierce, L.W. (General Electric Co., Rome, GA (United States))

1994-01-01T23:59:59.000Z

87

Ventilation in Multifamily Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, 2011 , 2011 Ventilation in Multifamily Buildings Welcome to the Webinar! We will start at 2:00 PM Eastern Time Be sure that you are also dialed into the telephone conference call: Dial-in number: 888-324-9601; Pass code: 5551971 Download the presentation at: www.buildingamerica.gov/meetings.html Building Technologies Program eere.energy.gov Building America: Introduction November 1, 2011 Cheryn Engebrecht Cheryn.engebrecht@nrel.gov Building Technologies Program Building Technologies Program eere.energy.gov * Reduce energy use in new and existing residential buildings * Promote building science and systems engineering / integration approach * "Do no harm": Ensure safety, health and durability are maintained or improved * Accelerate adoption of high performance technologies

88

Solar ventilation and tempering  

Science Journals Connector (OSTI)

The paper presents basic information about solar panels designed realized and used for solar ventilation of rooms. Used method of numerical flow simulation gives good overview about warming and flowing of the air in several kinds of realized panels (window facade chimney). Yearlong measurements give a good base for calculations of economic return of invested capital. The operation of the system in transient period (spring autumn) prolongs the period without classical heating of the room or building in winter the classical heating is supported. In the summer period the system furnished with chimney can exhaust inner warm air together with necessary cooling of the system by gravity circulation only. System needs not any invoiced energy source; it is supplied entirely by solar energy. Large building systems are supported by classical electric fan respectively.

2014-01-01T23:59:59.000Z

89

RATES  

NLE Websites -- All DOE Office Websites (Extended Search)

Planning & Projects Planning & Projects Power Marketing Rates You are here: SN Home page > Power Marketing > RATES Rates and Repayment Services Rates Current Rates Power Revenue Requirement Worksheet (FY 2014) (Oct 2013 - Sep 2014) (PDF - 30K) PRR Notification Letter (Sep 27, 2013) (PDF - 959K) FY 2012 FP% True-Up Calculations(PDF - 387K) Variable Resource Scheduling Charge FY12-FY16 (October 1, 2012) PRR Forecast FY14-FY17 (May 23, 2013) (PDF - 100K) Forecasted Transmission Rates (May 2013) (PDF - 164K) Past Rates 2013 2012 2011 2010 2009 Historical CVP Transmission Rates (April 2013) (PDF - 287K) Rate Schedules Power - CV-F13 - CPP-2 Transmission - CV-T3 - CV-NWT5 - PACI-T3 - COTP-T3 - CV-TPT7 - CV-UUP1 Ancillary - CV-RFS4 - CV-SPR4 - CV-SUR4 - CV-EID4 - CV-GID1 Federal Register Notices - CVP, COTP and PACI

90

RATES  

NLE Websites -- All DOE Office Websites (Extended Search)

Marketing > RATES Marketing > RATES RATES Current Rates Past Rates 2006 2007 2008 2009 2010 2011 2012 Rates Schedules Power CV-F13 CPP-2 Transmissions CV-T3 CV-NWT5 PACI-T3 COTP-T3 CV-TPT7 CV-UUP1 Ancillary CV-RFS4 CV-SPR4 CV-SUR4 CV-EID4 CV-GID1 Future and Other Rates SNR Variable Resource Scheduling Charge FY12-FY16 (October 1, 2012) SNR Rates Process Calendar (PDF - 171K) Procedures Informal Process Transmission Action Items List (PDF - 144K) Power Action Item List updated on 4-27-10 (PDF - 155K) Power Action Item List (Quick links to relevant documents) Formal Process Rates Brochure (01/11/2011) (PDF - 900K) Appendix A - Federal Register Notice (01/03/2011) (PDF - 8000K) Appendix B - Central Valley Project Power Repayment Study (PDF - 22,322K) Appendix C - Development of the CVP Cost of Service Study (PDF - 2038K)

91

RATES  

NLE Websites -- All DOE Office Websites (Extended Search)

RATES RATES Rates Document Library SNR Rates Process Calendar (PDF - 171K) Procedures Informal Process Transmission Action Items List (PDF - 144K) Power Action Item List updated on 4-27-10 (PDF - 155K) Power Action Item List (Quick links to relevant documents) Formal Process Rates Brochure (01/11/2011) (PDF - 900K) Appendix A - Federal Register Notice (01/03/2011) (PDF - 8000K) Appendix B - Central Valley Project Power Repayment Study (PDF - 22,322K) Appendix C - Development of the CVP Cost of Service Study (PDF - 2038K) Appendix D - Western Transmission System Facilities Map (PDF - 274K) Appendix E - Estimated FY12 FP and BR Customer (PDF - 1144K) Appendix F - Forecasted Replacements and Additions FY11 - FY16 (PDF - 491K) Appendix G - Definitions (PDF - 1758K) Appendix H - Acronyms (PDF - 720K)

92

Ventilation Systems for Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Systems for Cooling Ventilation Systems for Cooling Ventilation Systems for Cooling May 30, 2012 - 6:19pm Addthis Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Ventilation is the least expensive and most energy-efficient way to cool buildings. Ventilation works best when combined with methods to avoid heat buildup in your home. In some cases, natural ventilation will suffice for cooling, although it usually needs to be supplemented with spot ventilation, ceiling fans, and window fans. For large homes, homeowners might want to investigate whole house fans. Interior ventilation is ineffective in hot, humid climates where

93

Ventilation Systems for Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Systems for Cooling Ventilation Systems for Cooling Ventilation Systems for Cooling May 30, 2012 - 6:19pm Addthis Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Ventilation is the least expensive and most energy-efficient way to cool buildings. Ventilation works best when combined with methods to avoid heat buildup in your home. In some cases, natural ventilation will suffice for cooling, although it usually needs to be supplemented with spot ventilation, ceiling fans, and window fans. For large homes, homeowners might want to investigate whole house fans. Interior ventilation is ineffective in hot, humid climates where

94

Ventilation System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation System Basics Ventilation System Basics Ventilation System Basics August 16, 2013 - 1:33pm Addthis Ventilation is the process of moving air into and out of an interior space by natural or mechanical means. Ventilation is necessary for the health and comfort of occupants of all buildings. Ventilation supplies air for occupants to breathe and removes moisture, odors, and indoor pollutants like carbon dioxide. Too little ventilation may result in poor indoor air quality, while too much may cause unnecessarily higher heating and cooling loads. Natural Ventilation Natural ventilation occurs when outdoor air is drawn inside through open windows or doors. Natural ventilation is created by the differences in the distribution of air pressures around a building. Air moves from areas of

95

Ventilation System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation System Basics Ventilation System Basics Ventilation System Basics August 16, 2013 - 1:33pm Addthis Ventilation is the process of moving air into and out of an interior space by natural or mechanical means. Ventilation is necessary for the health and comfort of occupants of all buildings. Ventilation supplies air for occupants to breathe and removes moisture, odors, and indoor pollutants like carbon dioxide. Too little ventilation may result in poor indoor air quality, while too much may cause unnecessarily higher heating and cooling loads. Natural Ventilation Natural ventilation occurs when outdoor air is drawn inside through open windows or doors. Natural ventilation is created by the differences in the distribution of air pressures around a building. Air moves from areas of

96

Energy Impact of Residential Ventilation Norms in the United States  

E-Print Network (OSTI)

legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus by the American Society of Heating, Refrigerating and Air- conditioning Engineers (ASHRAE). This standard does but about the environment in which they lived. Historically, people have ventilated buildings to provide

97

A robust CO2-based demand-controlled ventilation control strategy for multi-zone HVAC systems  

Science Journals Connector (OSTI)

There have been increasingly growing concerns over the quality of the air inside buildings and the associated energy use. The CO2-based demand-controlled ventilation DCV is one of the strategies that could offer a great opportunity to reduce energy consumption in HVAC systems. However, implementing CO2-based DCV under ASHRAE Standard 62.1 20042010 is not simple as it was under previous versions due to the changes in breathing-zone ventilating rate calculations. Thus, this paper provides insight into the performance of a multi-zone VAV system under different operating and ventilation conditions, discusses the difficulties in the CO2-based DCV, and proposes a robust DCV strategy based on the supply air CO2 concentration. The proposed strategy offers great benefits in terms of better indoor air control and improved energy efficiency. To evaluate the proposed strategy, energy simulations were performed on various USA locations and for a typical two-story office building conditioned by a VAV system. The results show that a significant energy saving could be achieved by implementing the proposed strategy as compared to the design-occupancy ASHRAE Standard 62.1 2010 multi-zone procedure and the amount of saving that could be up to 23% depends mainly on locations and the actual occupancy profile.

Nabil Nassif

2012-01-01T23:59:59.000Z

98

Energy saving by integrated control of natural ventilation and HVAC systems using model guide for comparison  

Science Journals Connector (OSTI)

Abstract Integrated control by controlling both natural ventilation and HVAC systems based on human thermal comfort requirement can result in significant energy savings. The concept of this paper differs from conventional methods of energy saving in HVAC systems by integrating the control of both these HVAC systems and the available natural ventilation that is based on the temperature difference between the indoor and the outdoor air. This difference affects the rate of change of indoor air enthalpy or indoor air potential energy storage. However, this is not efficient enough as there are other factors affecting the rate of change of indoor air enthalpy that should be considered to achieve maximum energy saving. One way of improvement can be through the use of model guide for comparison (MGFC) that uses physical-empirical hybrid modelling to predict the rate of change of indoor air potential energy storage considering building fabric and its fixture. Three methods (normal, conventional and proposed) are tested on an identical residential building model using predicted mean vote (PMV) sensor as a criterion test for thermal comfort standard. The results indicate that the proposed method achieved significant energy savings compared with the other methods while still achieving thermal comfort.

Raad Z. Homod; Khairul Salleh Mohamed Sahari; Haider A.F. Almurib

2014-01-01T23:59:59.000Z

99

Ventilation Behavior and Household Characteristics in NewCalifornia Houses  

SciTech Connect

A survey was conducted to determine occupant use of windows and mechanical ventilation devices; barriers that inhibit their use; satisfaction with indoor air quality (IAQ); and the relationship between these factors. A questionnaire was mailed to a stratified random sample of 4,972 single-family detached homes built in 2003, and 1,448 responses were received. A convenience sample of 230 houses known to have mechanical ventilation systems resulted in another 67 completed interviews. Some results are: (1) Many houses are under-ventilated: depending on season, only 10-50% of houses meet the standard recommendation of 0.35 air changes per hour. (2) Local exhaust fans are under-utilized. For instance, about 30% of households rarely or never use their bathroom fan. (3) More than 95% of households report that indoor air quality is ''very'' or ''somewhat'' acceptable, although about 1/3 of households also report dustiness, dry air, or stagnant or humid air. (4) Except households where people cook several hours per week, there is no evidence that households with significant indoor pollutant sources get more ventilation. (5) Except households containing asthmatics, there is no evidence that health issues motivate ventilation behavior. (6) Security and energy saving are the two main reasons people close windows or keep them closed.

Price, Phillip N.; Sherman, Max H.

2006-02-01T23:59:59.000Z

100

Experimental analysis and model validation of an opaque ventilated facade  

Science Journals Connector (OSTI)

Natural ventilation is a convenient way of reducing energy consumption in buildings. In this study an experimental module of an opaque ventilated faade (OVF) was built and tested for assessing its potential of supplying free ventilation and air preheating for the building. A numerical model was created and validated against the experimental data. The experimental results showed that the flow rates induced in the faade cavity were due to mixed driving forces: wind and buoyancy. Depending on the weather conditions one of them was the main driving force, or both were of the same order. When the wind force was the main driving force, higher flow rates were found. In these cases buoyancy acted as supporting driving force. When the wind speed was low and buoyancy prevailed lower flow rates were found. Air and surface temperatures were predicted by the numerical model with a better accuracy than flow and energy rates. The model predicts correctly the influence of the wind and buoyancy driving forces. The experimental OVF module showed potential for free ventilation and air preheating, although it depends on weather and geometrical variables. The use of the numerical model using the right parameters was found viable for analyzing the performance of an OVF.

F. Peci Lpez; R.L. Jensen; P. Heiselberg; M. Ruiz de Adana Santiago

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation rate standards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

The impact of demand-controlled and economizer ventilation strategies on energy use in buildings  

SciTech Connect

The overall objective of this work was to evaluate typical energy requirements associated with alternative ventilation control strategies for constant-air-volume (CAV) systems in commercial buildings. The strategies included different combinations of economizer and demand-controlled ventilation, and energy analyses were performed for four typical building types, eight alternative ventilation systems, and twenty US climates. Only single-zone buildings were considered so that simultaneous heating and cooling did not exist. The energy savings associated with economizer and demand-controlled ventilation strategies were found to be very significant for both heating and cooling. In general, the greatest savings in electrical usage for cooling with the addition of demand-controlled ventilation occur in situations where the opportunities for economizer cooling are less. This is true for warm and humid climates and for buildings that have relatively low internal gains (i.e., low occupant densities). As much as 20% savings in electrical energy for cooling were possible with demand-controlled ventilation. The savings in heating energy associated with demand-controlled ventilation were generally much larger but were strongly dependent upon the building type and occupancy schedule. Significantly greater savings were found for buildings with highly variable occupancy schedules and large internal gains (i.e., restaurants) as compared with office buildings. In some cases, the primary heating energy was virtually eliminated by demand-controlled ventilation as compared with fixed ventilation rates. For both heating and cooling, the savings associated with demand-controlled ventilation are dependent on the fixed minimum ventilation rate of the base case at design conditions.

Brandemuehl, M.J.; Braun, J.E.

1999-07-01T23:59:59.000Z

102

Building America Case Study: Selecting Ventilation Systems for Existing Homes (Fact Sheet)  

SciTech Connect

This document addresses adding -or improving - mechanical ventilation systems to existing homes. The purpose of ventilation is to remove contaminants from homes, and this report discusses where, when, and how much ventilation is appropriate in a home, including some discussion of relevant codes and standards. Advantages, disadvantages, and approximate costs of various system types are presented along with general guidelines for implementing the systems in homes. CARB intends for this document to be useful to decision makers and contractors implementing ventilation systems in homes. Choosing the "best" system is not always straightforward; selecting a system involves balancing performance, efficiency, cost, required maintenance, and several other factors. It is the intent of this document to assist contractors in making more informed decisions when selecting systems. Ventilation is an integral part of a high-performance home. With more air-sealed envelopes, a mechanical means of removing contaminants is critical for indoor environmental quality and building durability.

Not Available

2014-12-01T23:59:59.000Z

103

Whole-House Ventilation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Whole-House Ventilation Whole-House Ventilation Whole-House Ventilation May 30, 2012 - 2:37pm Addthis A whole-house ventilation system with dedicated ducting in a new energy-efficient home. | Photo courtesy of ©iStockphoto/brebca. A whole-house ventilation system with dedicated ducting in a new energy-efficient home. | Photo courtesy of ©iStockphoto/brebca. What does this mean for me? Whole-house ventilation is critical in an energy-efficient home to maintain adequate indoor air quality and comfort. The whole-house ventilation system you choose will depend upon your climate, budget, and the availability of experienced contractors in your area. Energy-efficient homes -- both new and existing -- require mechanical ventilation to maintain indoor air quality. There are four basic mechanical

104

Design of industrial ventilation systems  

SciTech Connect

This latest edition has a title change to reflect an expansion to cover the interrelated areas of general exhaust ventilation and makeup air supply. More coverage is also given the need for energy conservation and for the physical isolation of the workspace from major contaminant generation zones. Excellent and generous illustrative matter is included. Contents, abridged are as follows: flow of fluids; air flow through hoods; pipe resistance; piping design; centrifugal exhaust fans; axial-flow fans; monitoring industrial ventilization systems; isolation; and energy conservation.

Alden, J.L.; Kane, J.M.

1982-01-01T23:59:59.000Z

105

Building America Case Study: Evaluation of Ventilation Strategies in New Construction Multifamily Buildings, New York, New York (Fact Sheet)  

SciTech Connect

In multifamily buildings, particularly in the Northeast, exhaust ventilation strategies are the norm as a means of meeting both local exhaust and whole-unit mechanical ventilation rates. The issue of where the 'fresh' air is coming from is gaining significance as air-tightness standards for enclosures become more stringent, and the 'normal leakage paths through the building envelope' disappear. CARB researchers have found that the majority of high performance, new construction, multifamily housing in the Northeast use one of four general strategies for ventilation: continuous exhaust only with no designated supply or make-up air source, continuous exhaust with ducted make-up air to apartments, continuous exhaust with supply through a make-up air device integral to the unit HVAC, and continuous exhaust with supply through a passive inlet device, such as a trickle vent. Insufficient information is available to designers on how these various systems are best applied. Product performance data are based on laboratory tests, and the assumption is that products will perform similarly in the field. Proper application involves matching expected performance at expected building pressures, but there is no guarantee that those conditions will exist consistently in the finished building. This research effort, which included several weeks of building pressure monitoring, sought to provide field validation of system performance. The performance of four substantially different strategies for providing make-up air to apartments was evaluated.

Not Available

2014-09-01T23:59:59.000Z

106

Energy Impact of Residential Ventilation Norms in the UnitedStates  

SciTech Connect

The first and only national norm for residential ventilation in the United States is Standard 62.2-2004 published by the American Society of Heating, Refrigerating and Air-conditioning Engineers (ASHRAE). This standard does not by itself have the force of regulation, but is being considered for adoption by various jurisdictions within the U.S. as well as by various voluntary programs. The adoption of 62.2 would require mechanical ventilation systems to be installed in virtually all new homes, but allows for a wide variety of design solutions. These solutions, however, may have a different energy costs and non-energy benefits. This report uses a detailed simulation model to evaluate the energy impacts of currently popular and proposed mechanical ventilation approaches that are 62.2 compliant for a variety of climates. These results separate the energy needed to ventilate from the energy needed to condition the ventilation air, from the energy needed to distribute and/or temper the ventilation air. The results show that exhaust systems are generally the most energy efficient method of meeting the proposed requirements. Balanced and supply systems have more ventilation resulting in greater energy and their associated distribution energy use can be significant.

Sherman, Max H.; Walker, Iain S.

2007-02-01T23:59:59.000Z

107

RESIDENTIAL VENTILATION AND ENERGY CHARACTERISTICS*  

E-Print Network (OSTI)

to account for 1/3 to 1/2 of the space conditioning energy. There is not a great deal of measurement data opportunities, the United States Department of Energy and others need to put into perspective the energy based on energy conservation and ventilation strategies. Because of the lack of direct measurements, we

108

Comparative study of the thermal and power performances of a semi-transparent photovoltaic faade under different ventilation modes  

Science Journals Connector (OSTI)

Abstract This paper studied the thermal and power performances of a ventilated photovoltaic faade under different ventilation modes, and appropriate operation strategies for different weather conditions were proposed accordingly to maximize its energy conversion efficiency. This ventilated PV double-skin faade (PV-DSF) consists of an outside layer of semi-transparent amorphous silicon (a-Si) PV laminate, an inward-openable window and a 400mm airflow cavity. Before installation, the electrical characteristics under standard testing conditions (STC) and the temperature coefficients of the semi-transparent PV module were tested and determined in the laboratory. Field measurements were carried out to investigate the impact of different ventilation modes, namely, ventilated, buoyancy-driven ventilated and non-ventilated, on the thermal and power performances of this PV-DSF. The results show that the ventilated PV-DSF provides the lowest average solar heat gain coefficient (SHGC) and the non-ventilated PV-DSF provides the best thermal insulation performance. In terms of power performance, the energy output of the ventilated PV-DSF is greater than those of the buoyancy-driven ventilated and non-ventilated PV-DSFs by 1.9% and 3%, respectively, due to its much lower operating temperature. Based on the experimental results, a conclusion was drawn that the ventilation design can not only reduce the heat gain of PV-DSF but also improve the energy conversion efficiency of PV modules by bringing down their operating temperature. In addition, an optimum operation strategy is recommended for this kind of PV-DSF to maximize its overall energy efficiency under different weather conditions.

Jinqing Peng; Lin Lu; Hongxing Yang; Tao Ma

2014-01-01T23:59:59.000Z

109

The impact of demand-controlled ventilation on energy use in buildings  

SciTech Connect

The overall objective of this work was to evaluate typical energy requirements associated with alternative ventilation control strategies. The strategies included different combinations of economizer and demand-controlled ventilation controls and energy analyses were performed for a range of typical buildings, systems, and climates. Only single zone buildings were considered, so that simultaneous heating and cooling did not exist. The energy savings associated with economizer and demand-controlled ventilation strategies were found to be very significant for both heating and cooling. In general, the greatest savings in electrical usage for cooling with the addition of demand-controlled ventilation occur in situations where the opportunities for economizer cooling are less. This is true for warm and humid climates, and for buildings that have low relative internal gains (i.e., low occupant densities). As much as 10% savings in electrical energy for cooling were possible with demand-controlled ventilation. The savings in heating energy associated with demand-controlled ventilation were generally much larger, but were strongly dependent upon the occupancy schedule. Significantly greater savings were found for buildings with highly variable occupancy schedules (e.g., stores and restaurants) as compared with office buildings. In some cases, the primary heating energy was reduced by a factor of 10 with demand-controlled ventilation as compared with fixed ventilation rates.

Braun, J.E.; Brandemuehl, M.J.

1999-07-01T23:59:59.000Z

110

Improving Ventilation and Saving Energy: Laboratory Study in a Modular  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving Ventilation and Saving Energy: Laboratory Study in a Modular Improving Ventilation and Saving Energy: Laboratory Study in a Modular Classroom Test Bed Title Improving Ventilation and Saving Energy: Laboratory Study in a Modular Classroom Test Bed Publication Type Report Year of Publication 2005 Authors Apte, Michael G., Ian S. Buchanan, David Faulkner, William J. Fisk, Chi-Ming Lai, Michael Spears, and Douglas P. Sullivan Publisher Lawrence Berkeley National Laboratory Abstract The primary goals of this research effort were to develop, evaluate, and demonstrate a practical HVAC system for classrooms that consistently provides classrooms with the quantity of ventilation in current minimum standards, while saving energy, and reducing HVAC-related noise levels. This research was motivated by several factors, including the public benefits of energy efficiency, evidence that many classrooms are under-ventilated, and public concerns about indoor environmental quality in classrooms. This project involved the installation and verification of the performance of an Improved Heat Pump Air Conditioning (IHPAC) system, and its comparison, a standard HVAC system having an efficiency of 10 SEER. The project included the verification of the physical characteristics suitable for direct replacement of existing 10 SEER systems, quantitative demonstration of improved energy efficiency, reduced acoustic noise levels, quantitative demonstration of improved ventilation control, and verification that the system would meet temperature control demands necessary for the thermal comfort of the occupants. Results showed that the IHPAC met these goals. The IHPAC was found to be a direct bolt-on replacement for the 10 SEER system. Calculated energy efficiency improvements based on many days of classroom cooling or heating showed that the IHPAC system is about 44% more efficient during cooling and 38% more efficient during heating than the 10 SEER system. Noise reduction was dramatic, with measured A-weighed sound level for fan only operation conditions of 34.3 dB(A), a reduction of 19 dB(A) compared to the 10 SEER system. Similarly, the IHPAC stage-1 and stage-2 compressor plus fan sound levels were 40.8 dB(A) and 42.7 dB(A), reductions of 14 and 13 dB(A), respectively. Thus, the IHPAC is 20 to 35 times quieter than the 10 SEER systems depending upon the operation mode. The IHPAC system met the ventilation requirements and was able to provide consistent outside air supply throughout the study. Indoor CO2 levels with simulated occupancy were maintained below 1000 ppm. Finally temperature settings were met and controlled accurately. The goals of the laboratory testing phase were met and this system is ready for further study in a field test of occupied classrooms

111

Multifamily Individual Heating and Ventilation Systems, Lawrence, Massachusetts (Fact Sheet)  

SciTech Connect

The conversion of an older Massachusetts building into condominiums illustrates a safe, durable, and cost-effective solution for heating and ventilation systems that can potentially benefit millions of multifamily buildings. Merrimack Valley Habitat for Humanity (MVHfH) partnered with U.S. Department of Energy Building America team Building Science Corporation (BSC) to provide high performance affordable housing for 10 families in the retrofit of an existing mass masonry building (a former convent). The original ventilation design for the project was provided by a local engineer and consisted of a single large heat recovery ventilator (HRV) located in a mechanical room in the basement with a centralized duct system providing supply air to the main living space and exhausting stale air from the single bathroom in each apartment. This design was deemed to be far too costly to install and operate for several reasons: the large central HRV was oversized and the specified flows to each apartment were much higher than the ASHRAE 62.2 rate; an extensive system of ductwork, smoke and fire dampers, and duct chases were specified; ductwork required a significant area of dropped ceilings; and the system lacked individual ventilation control in the apartments

Not Available

2013-11-01T23:59:59.000Z

112

Predicting hottest spot temperatures in ventilated dry type transformer windings  

SciTech Connect

Test data indicates that hottest spot allowances used in IEEE standards for ventilated dry type transformers above 500 kVA are too low. A mathematical model to predict hottest spot temperature rises in ventilated dry type transformers was developed. Data from six layer type test windings and a 2500 kva prototype was used to refine the model. A correlation for the local heat transfer coefficient in the cooling ducts was developed. The model was used to study the effect of various parameters on the ratio of hottest spot to average winding temperature rise. The number of conductor layers, insulation thickness, and conductor strand size were found to have only a minor effect on the ratio. Winding height was found to be the main parameter influencing the ratio of hottest spot to average winding temperature rise. The study based on the mathematical model confirmed previous conclusions based on test data that the hottest spot allowances used in IEEE standards for ventilated dry type transformers above 500 kVA should be revised.

Pierce, L.W. (General Electric Co., Rome, GA (United States))

1994-04-01T23:59:59.000Z

113

Building ventilation and acoustics for people who dont know much about building ventilation.  

Science Journals Connector (OSTI)

The architectural composition required for building ventilation used both for low energy cooling and improved air quality can be anathema to acoustical goals of speech privacy and noise control. This paper presents a short tutorial on the basics of cross ventilation stack ventilation comfort ventilation and indoor air quality as it relates to climate building type and indoor pollutants. It is geared to those without significant prior knowledge and follows a similar tutorial on geothermal systems presented at the Miami ASA conference.

2009-01-01T23:59:59.000Z

114

Solar Ventilation Preheating Resources and Technologies  

Energy.gov (U.S. Department of Energy (DOE))

This page provides a brief overview of solar ventilation preheating (SVP) technologies supplemented by specific information to apply SVP within the Federal sector.

115

The effect of wind speed and direction and surrounding maize on hybrid ventilation in a dairy cow building in Denmark  

Science Journals Connector (OSTI)

Abstract This study evaluated the effect of wind speed and direction and surrounding maize field on the air exchange rate (ACH) and indoor air velocity in a dairy cow building with hybrid ventilation, which combined auto-controlled natural and partial mechanical pit ventilation. The standard k?? turbulence model and standard wall function were applied in CFD modeling with extension of capability to account for the aerodynamics effect of surrounding maize plant canopy in the wind domain by using user defined functions (UDF). This extended model was validated by on-site measured velocities and temperatures. A reasonably good agreement was found between simulated and measured results. The wind speed influenced ACH greatly while modeling the maize field had little effect on ACH with low wind speed. With wind speed of 3.86ms?1 in validation case, modeling the maize field reduced total ACH by 24%, ACH via bottom openings on the sidewall by 89.7% and air speed measured upwind by 71%. The results revealed that the plant canopy had the most significant effect on ACH through the opening on the sidewall. With the variation of wind direction from 0 to 90, the difference of ACH could be 60%.

L. Rong; D. Liu; E.F. Pedersen; G. Zhang

2015-01-01T23:59:59.000Z

116

Federal Energy Management Program: Solar Ventilation Preheating Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Ventilation Solar Ventilation Preheating Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Google Bookmark Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Delicious Rank Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on AddThis.com... Energy-Efficient Products

117

Low-Cost Ventilation in Production Housing - Building America...  

Energy Savers (EERE)

Low-Cost Ventilation in Production Housing - Building America Top Innovation Low-Cost Ventilation in Production Housing - Building America Top Innovation This drawing shows simple...

118

Webinar: Ventilation and Filtration Strategies with Indoor airPLUS...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ventilation and Filtration Strategies with Indoor airPLUS and Zero Energy Ready Homes Webinar: Ventilation and Filtration Strategies with Indoor airPLUS and Zero Energy...

119

Smart Ventilation (RIVEC) - 2014 BTO Peer Review | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

technology. Their mechanical ventilation systems dominate for energy use; as the foundation, wall, and roof work together. Smart ventilation is expected to save at least 40% on...

120

Summer Infiltration/Ventilation Test Results from the FRTF Laboratory...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summer InfiltrationVentilation Test Results from the FRTF Laboratory Summer InfiltrationVentilation Test Results from the FRTF Laboratory This presentation was delivered at the...

Note: This page contains sample records for the topic "ventilation rate standards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Test Plan to Evaluate the Relationship Among IAQ, Comfort, Moisture, and Ventilation in Humid Climates  

SciTech Connect

This experimental plan describes research being conducted by Pacific Northwest National Laboratory (PNNL), in coordinatation with Florida Solar Energy Center (FSEC), Florida HERO, and Lawrence Berkeley National Laboratory (LBNL) to evaluate the impact of ventilation rate on interior moisture levels, temperature distributions, and indoor air contaminant concentrations. Specifically, the research team will measure concentrations of indoor air contaminants, ventilation system flow rates, energy consumption, and temperature and relative humidity in ten homes in Gainesville, FL to characterize indoor pollutant levels and energy consumption associated with the observed ventilation rates. PNNL and FSEC have collaboratively prepared this experimental test plan, which describes background and context for the proposed study; the experimental design; specific monitoring points, including monitoring equipment, and sampling frequency; key research questions and the associated data analysis approach; experimental logistics, including schedule, milestones, and team member contact information; and clearly identifies the roles and responsibilities of each team in support of project objectives.

Widder, Sarah H.; Martin, Eric

2013-03-15T23:59:59.000Z

122

Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation  

SciTech Connect

Intake of chemical air pollutants in residences represents an important and substantial health hazard. Sealing homes to reduce air infiltration can save space conditioning energy, but can also increase indoor pollutant concentrations. Mechanical ventilation ensures a minimum amount of outdoor airflow that helps reduce concentrations of indoor emitted pollutants while requiring some energy for fan(s) and thermal conditioning of the added airflow. This work demonstrates a physics based, data driven modeling framework for comparing the costs and benefits of whole-house mechanical ventilation and applied the framework to new California homes. The results indicate that, on a population basis, the health benefits from reduced exposure to indoor pollutants in New California homes are worth the energy costs of adding mechanical ventilation as specified by ASHRAE Standard 62.2.This study determines the health burden for a subset of pollutants in indoor air and the costs and benefits of ASHRAE's mechanical ventilation standard (62.2) for new California homes. Results indicate that, on a population basis, the health benefits of new home mechanical ventilation justify the energy costs.

Logue, J.M.; Price, P.N.; Sherman, M.H.; Singer, B.C.

2011-07-01T23:59:59.000Z

123

Current Concepts: Weaning Patients from the Ventilator  

Science Journals Connector (OSTI)

...neurologic ICUs. Patients who require reintubation have an increased risk of death, a prolonged hospital stay, and a decreased likelihood of returning home, as compared with patients in whom discontinuation of mechanical ventilation is successful. Thus, it is essential that critical care physicians identify... In the United States, almost 800,000 patients who are hospitalized each year require mechanical ventilation.1 This estimate excludes neonates, and there is little doubt that mechanical ventilation will be increasingly used as the number of patients 65 ...

McConville J.F.; Kress J.P.

2012-12-06T23:59:59.000Z

124

Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements  

Energy.gov (U.S. Department of Energy (DOE))

The webinar will focus on key challenges in multifamily ventilation and strategies to address these challenges.

125

Balancing energy conservation and occupant needs in ventilation rate standards for Big Box stores and other commercial buildings in California: Issues related to the ASHRAE 62.1 Indoor Air Quality Procedure  

E-Print Network (OSTI)

of Energy Use Intensity (EUI) predicted with building energyEnergyPlus 2.1 program. The EUI is the annual energy use per2008) provide the predicted EUI values while Benne et al (

Mendell, Mark

2014-01-01T23:59:59.000Z

126

Balancing energy conservation and occupant needs in ventilation rate standards for Big Box stores and other commercial buildings in California: Issues related to the ASHRAE 62.1 Indoor Air Quality Procedure  

E-Print Network (OSTI)

consider the HVAC system including filters as a source ofconsider the HVAC system, including filters, as a source ofHVAC system as a source of pollutants, including filters,

Mendell, Mark

2014-01-01T23:59:59.000Z

127

Balancing energy conservation and occupant needs in ventilation rate standards for Big Box stores and other commercial buildings in California: Issues related to the ASHRAE 62.1 Indoor Air Quality Procedure  

E-Print Network (OSTI)

In: Proceedings of Healthy Buildings 2009, Syracuse, NY,In: Proceedings of Healthy Buildings 2006, Lisbon, 2006;V.residences. Proceedings of Healthy Buildings 2009, Syracuse,

Mendell, Mark

2014-01-01T23:59:59.000Z

128

Balancing energy conservation and occupant needs in ventilation rate standards for Big Box stores and other commercial buildings in California: Issues related to the ASHRAE 62.1 Indoor Air Quality Procedure  

E-Print Network (OSTI)

5 III. Current ASHRAE 62.1 Indoor Air Quality Procedure (satisfied with indoor air quality in office buildings inthe U.S. in taking indoor air quality seriously, in the same

Mendell, Mark

2014-01-01T23:59:59.000Z

129

New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy ? FY11 Final Report  

SciTech Connect

The research carried out in this project focuses on developing novel volatile organic compounds (VOCs) air cleaning technologies needed to enable energy-saving reductions in ventilation rates. we targeted a VOC air cleaning system that could enable a 50% reduction in ventilation rates. In a typical commercial HVAC system that provides a mixture of recirculated and outdoor air, a VOC air cleaner in the supply airstream must have a 15% to 20% VOC removal efficiency to counteract a 50% reduction in outdoor air supply.

Sidheswaran, Meera; Destaillats, Hugo; Cohn, Sebastian; Sullivan, Douglas P.; Fisk, William J.

2011-10-31T23:59:59.000Z

130

Study on solar chimney used for room natural ventilation in Nanjing  

Science Journals Connector (OSTI)

Abstract The study investigated the performance of solar chimney, which is integrated into a one-story building. A module was developed for and implemented in the Energy Plus program for the simulation and determination of the energy impact of thermal chimneys. The basic concepts, assumptions, and algorithms are implemented into the Energy Plus program to predict the performance of a solar chimney. The results showed that in Nanjing 45 is found to be optimum for obtaining maximum rate of ventilation and the rate of ventilation increases with increase of the ratio between height of absorber and gap between glass and absorber. This finding is in agreement with experimental results.

Xu Jianliu; Liu Weihua

2013-01-01T23:59:59.000Z

131

Radon Mitigation in Schools Utilising Heating, Ventilating and Air Conditioning Systems  

Science Journals Connector (OSTI)

......and Air Conditioning Engineers (ASHRAE) standard Ventilation for Acceptable Indoor Air Quality...Two case studies are presented where HVAC technology was implemented for controlling...system in a two-storey building. The HVAC system's controls were restored and modified......

G. Fisher; B. Ligman; T. Brennan; R. Shaughnessy; B.H. Turk; B. Snead

1994-12-01T23:59:59.000Z

132

Sound quality descriptors for HVAC equipment from ARI Standards  

Science Journals Connector (OSTI)

The Air Conditioning and Refrigeration Institute (ARI) has several standards that provide methods to evaluate the sound quality of heating ventilating and air?conditioning (HVAC) equipment. These include Standard 270 Sound rating of outdoor unitary equipment Standard 350 Sound rating of non?ducted indoor air?conditioning equipment and Standard 1140P Procedures for evaluating sound quality of HVAC equipment. The preferred method in these standards is best described in Standard 1140P which uses one?third octave band sound power levels that are weighted to adjust for the sensitivity to frequency distribution and presence of tones and are then converted to a single number sound quality indicator. The tone adjustment is based on the projection of a given one?third octave band level relative to the average of the adjacent one?third octave bands. An alternate use of Zwicker method B to determine loudness and loudness level is also provided in ARI Standard 1140P. These standards provide a convenient method by which complex sounds for similar products may be compared.

2003-01-01T23:59:59.000Z

133

Chlorofluorocarbon Constraints on North Atlantic Ventilation  

Science Journals Connector (OSTI)

The North Atlantic Ocean vigorously ventilates the ocean interior. Thermocline and deep water masses are exposed to atmospheric contact there and are sequestered in two principal classes: Subtropical Mode Water (STMW: 26.5 ? ?? ? 26.8) and ...

Thomas W. N. Haine; Kelvin J. Richards; Yanli Jia

2003-08-01T23:59:59.000Z

134

Scale model studies of displacement ventilation  

E-Print Network (OSTI)

Displacement ventilation is an air conditioning method that provides conditioned air to indoor environments with the goal to improve air quality while reducing energy consumption. This study investigates the performance ...

Okutan, Galip Mehmet

1995-01-01T23:59:59.000Z

135

DOE/NBS (Department of Energy/National Bureau of Standards) forum on testing and rating procedures for consumer products, October 2-3, 1985. Final report  

SciTech Connect

One hundred thirty-four persons participated in a Forum on Testing and Rating Procedures for Consumer Products held at the National Bureau of Standards (NBS), Gaithersburg, Maryland, on October 2-3, 1985. The objectives of the forum, planned in cooperation with various industry associations, were: (1) to provide a line of communication between test procedure users and test-procedure developers; (2) to provide an opportunity for participants to present technical and research issues concerning Department of Energy (DOE) test procedures that need to be addressed; and (3) to assist DOE and NBS in establishing a future agenda for the development and/or revision of testing and rating procedures. The report summarizes discussions, conclusions and recommendations developed by the forum participants for the following consumer products: heat pumps and air conditioners; furnaces, boilers, and household heaters; water heaters; refrigerators, refrigerator-freezers and freezers.

Dikkers, R.D.

1986-07-01T23:59:59.000Z

136

Scholastic Standards Scholastic Standards  

E-Print Network (OSTI)

Scholastic Standards _______________ 1.8 Page 1 Scholastic Standards Center for Advising-7095 Gaye DiGregorio, Executive Director Scholastic standards are mandated by the faculty through the Faculty Council Committee on Scholastic Standards. Procedures relative to scholastic standards

137

Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation  

E-Print Network (OSTI)

Quality Benefits and Energy Costs of Mechanical VentilationQuality Benefits and Energy Costs of Mechanical VentilationQuality Benefits and Energy Costs of Mechanical Ventilation

Logue, J.M.

2012-01-01T23:59:59.000Z

138

Carbon-dioxide-controlled ventilation study  

SciTech Connect

The In-House Energy Management (IHEM) Program has been established by the U.S. Department of Energy to provide funds to federal laboratories to conduct research on energy-efficient technology. The Energy Sciences Department of Pacific Northwest Laboratory (PNL) was tasked by IHEM to research the energy savings potential associated with reducing outdoor-air ventilation of buildings. By monitoring carbon dioxide (CO{sub 2}) levels in a building, outdoor air provided by the heating, ventilating, and air-conditioning (HVAC) system can be reduced to the percentage required to maintain satisfactory CO{sub 2} levels rather than ventilating with a higher outdoor-air percentage based on an arbitrary minimum outdoor-air setting. During summer months, warm outdoor air brought into a building for ventilation must be cooled to meet the appropriate cooling supply-air temperature, and during winter months, cold outdoor air must be heated. By minimizing the amount of hot or cold outdoor air brought into the HVAC system, the supply air requires less cooling or heating, saving energy and money. Additionally, the CO{sub 2} levels in a building can be monitored to ensure that adequate outdoor air is supplied to a building to maintain air quality levels. The two main considerations prior to implementing CO{sub 2}-based ventilation control are its impact on energy consumption and the adequacy of indoor air quality (IAQ) and occupant comfort. To address these considerations, six portable CO{sub 2} monitors were placed in several Hanford Site buildings to estimate the adequacy of office/workspace ventilation. The monitors assessed the potential for reducing the flow of outdoor-air to the buildings. A candidate building was also identified to monitor various ventilation control strategies for use in developing a plan for implementing and assessing energy savings.

McMordie, K.L.; Carroll, D.M.

1994-05-01T23:59:59.000Z

139

Optimization of Ventilation Energy Demands and Indoor Air Quality in High-Performance Homes  

SciTech Connect

High-performance homes require that ventilation energy demands and indoor air quality (IAQ) be simultaneously optimized. We attempted to bridge these two areas by conducting tests in a research house located in Oak Ridge, TN, that was 20 months old, energy-efficient (i.e., expected to consume 50% less energy than a house built per the 2006 IRC), tightly-built (i.e., natural ventilation rate ~0.02 h-1), unoccupied, and unfurnished. We identified air pollutants of concern in the test home that could generally serve as indicators of IAQ, and conduced field experiments and computer simulations to determine the effectiveness and energy required by various techniques that lessened the concentration of these contaminants. Formaldehyde was selected as the main pollutant of concern among the contaminants that were sampled in the initial survey because it was the only compound that showed concentrations that were greater than the recommended exposure levels. Field data indicate that concentrations were higher during the summer primarily because emissions from sources rise with increases in temperature. Furthermore, supply ventilation and gas-phase filtration were effective means to reduce formaldehyde concentrations; however, exhaust ventilation had minimal influence on this pollutant. Results from simulations suggest that formaldehyde concentrations obtained while ventilating per ASHRAE 62.2-2010 could be decreased by about 20% from May through September through three strategies: 1) increasing ASHRAE supply ventilation by a factor of two, 2) reducing the thermostat setpoint from 76 to 74 F, or 3) running a gas-phase filtration system while decreasing supply ventilation per ASHRAE by half. In the mixed-humid climate of Oak Ridge, these strategies caused increases in electricity cost of ~$5 to ~$15/month depending on outdoor conditions.

Hun, Diana E [ORNL; Jackson, Mark C [University of Texas at Austin; Shrestha, Som S [ORNL

2014-01-01T23:59:59.000Z

140

Design Feature 7: Continuous Preclosure Ventilation  

SciTech Connect

This design feature (DF) is intended to evaluate the effects of continuous ventilation in the emplacement drifts during preclosure and how the effects, if any, compare to the Viability Assessment (VA) reference design for postclosure long term performance. This DF will be evaluated against a set of criteria provided by the License Application Design Selection (LADS) group. The VA reference design included a continuous ventilation airflow quantity of 0.1 m{sup 3}/s in the emplacement drifts in the design of the repository subsurface facilities. The effects of this continuous ventilation during the preclosure was considered to have a negligible effect on postclosure performance and therefore is not included during postclosure in the assessment of the long term performance. This DF discusses the effects of continuous ventilation on the emplacement drift environment and surrounding rock conditions during preclosure for three increased airflow quantities. The three cases of continuous ventilation systems are: System A, 1.0 m{sup 3}/s (Section 8), System B, 5.0 m{sup 3}/s (Section 9), and System C, 10.0 m{sup 3}/s (Section 10) in each emplacement drift split. An emplacement drift split is half total length of emplacement drift going from the east or west main to the exhaust main. The difference in each system is the quantity of airflow in the emplacement drifts.

A.T. Watkins

1999-06-22T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation rate standards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Underground ventilation remote monitoring and control system  

SciTech Connect

This paper presents the design and installation of an underground ventilation remote monitoring and control system at the Waste Isolation Pilot Plant. This facility is designed to demonstrate safe underground disposal of U.S. defense generated transuranic nuclear waste. To improve the operability of the ventilation system, an underground remote monitoring and control system was designed and installed. The system consists of 15 air velocity sensors and 8 differential pressure sensors strategically located throughout the underground facility providing real-time data regarding the status of the ventilation system. In addition, a control system was installed on the main underground air regulators. The regulator control system gives indication of the regulator position and can be controlled either locally or remotely. The sensor output is displayed locally and at a central surface location through the site-wide Central Monitoring System (CMS). The CMS operator can review all sensor data and can remotely operate the main underground regulators. Furthermore, the Virtual Address Extension (VAX) network allows the ventilation engineer to retrieve real-time ventilation data on his personal computer located in his workstation. This paper describes the types of sensors selected, the installation of the instrumentation, and the initial operation of the remote monitoring system.

Strever, M.T.; Wallace, K.G. Jr.; McDaniel, K.H.

1995-12-31T23:59:59.000Z

142

MODELING VENTILATION SYSTEM RESPONSE TO FIRE  

SciTech Connect

Fires in facilities containing nuclear material have the potential to transport radioactive contamination throughout buildings and may lead to widespread downwind dispersal threatening both worker and public safety. Development and implementation of control strategies capable of providing adequate protection from fire requires realistic characterization of ventilation system response which, in turn, depends on an understanding of fire development timing and suppression system response. This paper discusses work in which published HEPA filter data was combined with CFAST fire modeling predictions to evaluate protective control strategies for a hypothetical DOE non-reactor nuclear facility. The purpose of this effort was to evaluate when safety significant active ventilation coupled with safety class passive ventilation might be a viable control strategy.

Coutts, D

2007-04-17T23:59:59.000Z

143

Dehumidification and cooling loads from ventilation air  

SciTech Connect

The importance of controlling humidity in buildings is cause for concern, in part, because of indoor air quality problems associated with excess moisture in air-conditioning systems. But more universally, the need for ventilation air has forced HVAC equipment (originally optimized for high efficiency in removing sensible heat loads) to remove high moisture loads. To assist cooling equipment and meet the challenge of larger ventilation loads, several technologies have succeeded in commercial buildings. Newer technologies such as subcool/reheat and heat pipe reheat show promise. These increase latent capacity of cooling-based systems by reducing their sensible capacity. Also, desiccant wheels have traditionally provided deeper-drying capacity by using thermal energy in place of electrical power to remove the latent load. Regardless of what mix of technologies is best for a particular application, there is a need for a more effective way of thinking about the cooling loads created by ventilation air. It is clear from the literature that all-too-frequently, HVAC systems do not perform well unless the ventilation air loads have been effectively addressed at the original design stage. This article proposes an engineering shorthand, an annual load index for ventilation air. This index will aid in the complex process of improving the ability of HVAC systems to deal efficiently with the amount of fresh air the industry has deemed useful for maintaining comfort in buildings. Examination of typical behavior of weather shows that latent loads usually exceed sensible loads in ventilation air by at least 3:1 and often as much as 8:1. A designer can use the engineering shorthand indexes presented to quickly assess the importance of this fact for a given system design. To size those components after they are selected, the designer can refer to Chapter 24 of the 1997 ASHRAE Handbook--Fundamentals, which includes separate values for peak moisture and peak temperature.

Harriman, L.G. III [Mason-Grant, Portsmouth, NH (United States); Plager, D. [Quantitative Decision Support, Portsmouth, NH (United States); Kosar, D. [Gas Research Inst., Chicago, IL (United States)

1997-11-01T23:59:59.000Z

144

Breathing HRV by the Concept of AC Ventilation  

NLE Websites -- All DOE Office Websites (Extended Search)

Breathing HRV by the Concept of AC Ventilation Breathing HRV by the Concept of AC Ventilation Speaker(s): Hwataik Han Date: July 10, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Thomas McKone Heat recovery ventilators are frequently used to save heating/cooling loads of buildings for ventilation. There are several types of HRV's, including a parallel plate type, a rotary type, a capillary type, and a heat pipe type. The breathing HRV is a heat recovery ventilator of a new kind using the concept of alternating-current ventilation. The AC ventilation is the ventilation with the airflow directions reversed periodically. It has an advantage of using a single duct system, for both supply and exhaust purposes. In order to develop a breathing HRV system, the thermal recovery performance should be investigated depending on many parameters, such as

145

Design of a Natural Ventilation System in the Dunhuang Museum  

E-Print Network (OSTI)

Fresh air and good air quality can be obtained by a natural ventilation system, to fulfill the requirement of near natural conditions for the psychological health of mankind. A natural ventilation system is an ecological, energy saving system...

Zhang, Y.; Guan, W.

2006-01-01T23:59:59.000Z

146

A scale model study of displacement ventilation with chilled ceilings  

E-Print Network (OSTI)

Displacement ventilation is a form of air-conditioning which provides good air quality and some energy savings. The air quality is better than for a conventional mixed ventilation system. The maximum amount of cooling that ...

Holden, Katherine J. A. (Katherine Joan Adrienne)

1995-01-01T23:59:59.000Z

147

Maintenance Guide for Greenhouse Ventilation, Evaporative Cooling Heating Systems1  

E-Print Network (OSTI)

condensation in winter, reduced life and reliability of ventilation equipment, and high repair bills cooling and heating systems. VENTILATION SYSTEMS The operating efficiency of a ventilation fan can be pockets of stagnant air, inadequate cooling from evaporative cooling pads, high heating expenses, heavy

Watson, Craig A.

148

Effect of repository underground ventilation on emplacement drift temperature control  

SciTech Connect

The repository advanced conceptual design (ACD) is being conducted by the Civilian Radioactive Waste Management System, Management & Operating Contractor. Underground ventilation analyses during ACD have resulted in preliminary ventilation concepts and design methodologies. This paper discusses one of the recent evaluations -- effects of ventilation on emplacement drift temperature management.

Yang, H.; Sun, Y.; McKenzie, D.G.; Bhattacharyya, K.K. [Morrison Knudson Corporation, Las Vegas, NV (United States)

1996-02-01T23:59:59.000Z

149

Experimental simulation of wind driven cross-ventilation in a naturally ventilated building  

E-Print Network (OSTI)

A device was designed and constructed to simulate cross-ventilation through a building due to natural wind. The wind driver device was designed for use with a one tenth scale model of an open floor plan office building in ...

Hult, Erin L. (Erin Luelle), 1982-

2004-01-01T23:59:59.000Z

150

Hysteresis effects in hybrid building ventilation  

E-Print Network (OSTI)

Cross- breeze Kitchen Stove Ambient air Case study #3 #12;· Wind plays an integral role in low-energy remains a central challenge for the successful implementation of natural ventilation Case study - summary of population, urban energy consumption grows by 2.1% · Buildings consume 40% of world's energy

Flynn, Morris R.

151

An experimental system for advanced heating, ventilating and air conditioning (HVAC) control  

Science Journals Connector (OSTI)

While having the potential to significantly improve heating, ventilating and air conditioning (HVAC) system performance, advanced (e.g., optimal, robust and various forms of adaptive) controllers have yet to be incorporated into commercial systems. Controllers consisting of distributed proportional-integral (PI) control loops continue to dominate commercial HVAC systems. Investigation into advanced HVAC controllers has largely been limited to proposals and simulations, with few controllers being tested on physical systems. While simulation can be insightful, the only true means for verifying the performance provided by HVAC controllers is by actually using them to control an HVAC system. The construction and modeling of an experimental system for testing advanced HVAC controllers, is the focus of this article. A simple HVAC system, intended for controlling the temperature and flow rate of the discharge air, was built using standard components. While only a portion of an overall HVAC system, it is representative of a typical hot water to air heating system. In this article, a single integrated environment is created that is used for data acquisition, controller design, simulation, and closed loop controller implementation and testing. This environment provides the power and flexibility needed for rapid prototyping of various controllers and control design methodologies.

Michael Anderson; Michael Buehner; Peter Young; Douglas Hittle; Charles Anderson; Jilin Tu; David Hodgson

2007-01-01T23:59:59.000Z

152

Formadehyde in New Homes: Ventilation vs. Source Control  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

at at Building America Residential Energy Efficiency Stakeholder Meeting March 1, 2012 Austin, Texas Formaldehyde in New Homes --- Ventilation vs. Source Control Brett C. Singer and Henry Willem Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Acknowledgments * Funding - U.S. Department of Energy - Building America Program - U.S. EPA - Indoor Environments Division - U.S. HUD - Office of Healthy Homes and Lead Hazard Control - Cal. Energy Commission Public Interest Environmental Research * Technical Contributions - Fraunhofer - Ibacos - IEE-SF * LBNL Team - Sherman, Hotchi, Russell, Stratton, and Others Background 1  Formaldehyde is an irritant and a carcinogen  Odor threshold: about 800 ppb  Widely varying health standards  US HUD (8-h): 400 ppb

153

Heat balance for two commercial broiler barns with solar preheated ventilation air  

Science Journals Connector (OSTI)

In temperate climatic zones, solar air heaters can reduce heating loads, and increase winter ventilation rates thereby improving inside air quality and livestock performance without additional fuel input. A heat balance was carried out to measure bird heat production under field conditions on two commercial broiler barns to evaluate the impact of solar heated ventilation air on bird performance, and identify strategies to reduce winter heating load. Located 40km east of Montreal, Canada, the experimental broiler barns were identically built with three floors housing 6500 birds per floor in an all-in all-out fashion. Equipped with solar air pre-heaters over their fresh air inlets, the barns were instrumented to monitor inlet, inside and outside air conditions, ventilation rate and heating system operating time. The effects on bird performance were observed from November 2007 to March 2009 by alternating their operation between the barns. The measured sensible and total heat productions of 4.5W and 8.4W, respectively, for 1kg birds corresponded to laboratory measured values. Bird performance was not affected by the solar air pre-heaters which increased the ventilation rate above normal during only 20% of the daytime period. Room air temperature stratification resulted in 2040kW of heat losses during the winter, representing 25% of the total natural gas heat load. Because inside air moved directly to the fans, large and rapid increases in ventilation inlet air temperature, produced by the solar air pre-heaters, resulted in further heat losses equivalent to 15% of the solar energy recovered. Sustainable energy management in livestock barns requiring heating should incorporate an air mixing system to eliminate air temperature stratification and improve fan flows.

Sbastien Cordeau; Suzelle Barrington

2010-01-01T23:59:59.000Z

154

Performance Assessment of Photovoltaic Attic Ventilator Fans  

Energy.gov (U.S. Department of Energy (DOE))

A case study of photovoltaic attic ventilator fans was conducted on an occupied single family home in Central Florida. Two fans were installed at mid-summer in an instrumented home where attic air temperature, meteorological conditions and space cooling electric power were measured. The home already had an attic radiant barrier, but still experienced attic air temperatures in excess of 130oF.

155

Experimental study on flow and ventilation behaviours over idealised urban roughness  

Science Journals Connector (OSTI)

Flows in the urban boundary layer (UBL) are strongly affected by the inhomogeneous roughness elements at the bottom surface. In particular, in the near-ground region (roughness sublayer), the effect of the surface roughness dominates that complicates the behaviours of mean flow and turbulence and subsequently the near-wall transport processes. To safeguard the health of urban inhabitants, it is crucial to develop an in-depth understanding of the correlation among near-wall fluid motions, UBL turbulence and city ventilation. However, rather limited information is available. In this study, physical modelling in a laboratory wind tunnel is employed to measure the profiles of both stream-wise and vertical velocities over an array consisting of idealised two-dimensional (2D) roughness elements. Various arrangements are adopted in attempt to cover different flow regimes to examine city ventilation problems. The ventilation performance is measured by the air exchange rate (ACH). Consistent with our previous large-eddy simulation (LES) results, the current wind tunnel measurements suggest that city ventilation is dominated by the ACH turbulent component, i.e., air masses are mainly driven by atmospheric turbulence (at least 80% of the total ACH).

Yat-Kiu Ho; Chun-Ho Liu

2014-01-01T23:59:59.000Z

156

New and Underutilized Technology: Carbon Dioxide Demand Ventilation Control  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Dioxide Demand Ventilation Carbon Dioxide Demand Ventilation Control New and Underutilized Technology: Carbon Dioxide Demand Ventilation Control October 4, 2013 - 4:23pm Addthis The following information outlines key deployment considerations for carbon dioxide (CO2) demand ventilation control within the Federal sector. Benefits Demand ventilation control systems modulate ventilation levels based on current building occupancy, saving energy while still maintaining proper indoor air quality (IAQ). CO2 sensors are commonly used, but a multiple-parameter approach using total volatile organic compounds (TVOC), particulate matter (PM), formaldehyde, and relative humidity (RH) levels can also be used. CO2 sensors control the outside air damper to reduce the amount of outside air that needs to be conditioned and supplied to the building when

157

Airflow Simulation and Energy Analysis in Ventilated Room with a New Type of Air Conditioning  

E-Print Network (OSTI)

quality will be achieved. Our study aims to simulate airflow in the ventilated room with this new type of air conditioning. Radiation is taken into account by the energy conservation in the system. The following section presents algorithm, thermal..., the governing equations to be solved are the conservation equations for continuity, momentum, and energy as well as the equations for turbulent kinetic energy and its dissipation rate. The buoyancy effect is accounted for by Boussinesq approximation...

Liu, D.; Tang, G.; Zhao, F.

2006-01-01T23:59:59.000Z

158

Alternative Energy Portfolio Standard | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alternative Energy Portfolio Standard Alternative Energy Portfolio Standard Alternative Energy Portfolio Standard < Back Eligibility Investor-Owned Utility Retail Supplier Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Other Sealing Your Home Ventilation Heat Pumps Commercial Lighting Lighting Windows, Doors, & Skylights Bioenergy Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Energy Sources Solar Heating Water Heating Wind Program Info State Pennsylvania Program Type Renewables Portfolio Standard Provider Pennsylvania Public Utility Commission Pennsylvania's Alternative Energy Portfolio Standard (AEPS), created by S.B. 1030 on November 30, 2004, requires each electric distribution company

159

Ventilation System to Improve Savannah River Site's Liquid Waste...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A process vessel ventilation system is being installed in a facility that houses two tanks that will process decontaminated salt solution at the Saltstone Production Facility. A...

160

Building America Case Study: Selecting Ventilation Systems for...  

Energy Savers (EERE)

requirements must be met? * What is the scope of the renovation project? * What heating, air conditioning, and ventilation systems are currently in the home? * What type of...

Note: This page contains sample records for the topic "ventilation rate standards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Impact of Infiltration and Ventilation on Measured Space Conditioning...  

Energy Savers (EERE)

to provide needed ventilation under drier summer and winter conditions and reduce the air introduced during periods of peak space conditioning. For more information, see the...

162

Issue #9: What are the Best Ventilation Techniques?  

Energy.gov (U.S. Department of Energy (DOE))

How do we address ventilation in all climates? What is the best compromise between occupant health and safety and energy efficiency?

163

Radionuclide Releases During Normal Operations for Ventilated Tanks  

SciTech Connect

This calculation estimates the design emissions of radionuclides from Ventilated Tanks used by various facilities. The calculation includes emissions due to processing and storage of radionuclide material.

Blunt, B.

2001-09-24T23:59:59.000Z

164

Summer Infiltration/Ventilation Test Results from the FRTF Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summer InfiltrationVentilation Test Results from the FRTF Laboratory Building America Technical Review Meeting April 29-30, 2013 A Research Institute of the University of Central...

165

Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements  

Energy.gov (U.S. Department of Energy (DOE))

This Building America webinar, held on Sept. 24, 2014, focused on key challenges in multifamily ventilation and strategies to address these challenges.

166

Impact of Infiltration and Ventilation on Measured Space Conditioning...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hot-humid PERFORMANCE DATA Costs for reducing infiltration and incorporating mechanical ventilation in buildings will vary greatly depending on the condition and...

167

A Bench Study of Intensive Care Unit Ventilators: New versus Old and Turbine-Based versus Compressed Gas-Based Ventilators  

E-Print Network (OSTI)

. Material: Four turbine- based ventilators and nine conventional servo-valve compressed-gas ventilators were1 A Bench Study of Intensive Care Unit Ventilators: New versus Old and Turbine-Based versus Compressed Gas-Based Ventilators Arnaud W. Thille,1 MD; Aissam Lyazidi,1 Biomed Eng MS; Jean-Christophe M

Paris-Sud XI, Université de

168

LBNL-XXXXX | Logue et al., Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation  

E-Print Network (OSTI)

Impacts of Air Sealing and Mechanical Ventilation 1 Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation Jennifer M. Logue, William J. N for Estimating Impacts of Air Sealing and Mechanical Ventilation 2 Disclaimer This document was prepared

169

Results of the Evaluation Study DeAL Decentralized Facade Integrated Ventilation Systems  

E-Print Network (OSTI)

Most office buildings in Germany have either no mechanical ventilation system or a centralized ventilation system with fresh and exhaust air supply. Within the last 10 years some projects using decentralized ventilation systems (DVS) came up. Common...

Mahler, B.; Himmler, R.

170

Industrial Ventilation Statistics Confirm Energy Savings Opportunity  

E-Print Network (OSTI)

is based on installed on-demand ventilation systems, where sensors and PLC are installed with each system, so data is easily collected. Another critical factor for effective dust collecting is proper air velocities in duct system. Having measured air... of the cutting tool is active or not. Information from the sensor is transmitted to the Omron PLC. The Omron PLC saves data in binary form every 5 minutes (24/7) to the CompactFlash card (a similar card is used in digital cameras) along with the time...

Litomisky, A.

2006-01-01T23:59:59.000Z

171

Got Standards? "Got Standards?"  

E-Print Network (OSTI)

certifications available. Some of these certifications include ISO 9002 1994, ISO 9003 1994 and ISO 9001 in order to bring harmony to global standards for international trade. Enter ISO 9000. The Basics In order to fully understand the concept of ISO 9000, it is very important to have a good idea of what a standard is

Vardeman, Stephen B.

172

Numerical Simulation of a Displacement Ventilation System with Multi-heat Sources and Analysis of Influential Factors  

E-Print Network (OSTI)

Displacement ventilation (DV) is a promising ventilation concept due to its high ventilation efficiency. In this paper, the application of the CFD method, the velocity and temperature fields of three-dimensional displacement ventilation systems...

Wu, X.; Gao, J.; Wu, W.

2006-01-01T23:59:59.000Z

173

Natural Ventilation Design for Houses in Thailand Chalermwat Tantasavasdia  

E-Print Network (OSTI)

This paper explores the potential of using natural ventilation as a passive cooling system for new house windows in suburban houses can be opened. Passive cooling design elements are mostly ignored in modern1 Natural Ventilation Design for Houses in Thailand Chalermwat Tantasavasdia , Jelena Srebricb

Chen, Qingyan "Yan"

174

Heating, Ventilation, and Air Conditioning Renovations | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating, Ventilation, and Air Conditioning Renovations Heating, Ventilation, and Air Conditioning Renovations Heating, Ventilation, and Air Conditioning Renovations October 16, 2013 - 4:49pm Addthis Renewable Energy Options for HVAC Renovations Geothermal Heat Pumps (GHP) Solar Water Heating (SWH) Biomass Passive Solar Heating Biomass Heating Solar Ventilation Air Preheating Federal building renovations that encompass the heating, ventilation, and air conditioning (HVAC) systems in a facility provide a range of renewable energy opportunities. The primary technology option for HVAC renovations is geothermal heat pumps (GHP). Other options include leveraging a solar water heating (SWH) system to offset heating load or using passive solar heating or a biomass-capable furnace or boiler. Some facilities may also take

175

Opaque Ventilated Facades - Performance Simulation Method and Assessment of  

NLE Websites -- All DOE Office Websites (Extended Search)

Opaque Ventilated Facades - Performance Simulation Method and Assessment of Opaque Ventilated Facades - Performance Simulation Method and Assessment of Simulated Performance Speaker(s): Emanuele Naboni Date: May 29, 2007 - 12:00pm Location: 90-3122 Opaque ventilated façade systems are increasingly used in buildings, even though their effects on the overall thermal performance of buildings have not yet been fully understood. The research reported in this presentation focuses on the modeling of such systems with EnergyPlus. Ventilated façade systems are modeled in EnergyPlus with module "Exterior Naturally Vented Cavity." Not all façade systems can be modeled with this module; this research defined the types of systems that can be modeled, and the limitations of such simulation. The performance of a ventilated façade

176

Secondary pollutants from ozone reactions with ventilation filters and  

NLE Websites -- All DOE Office Websites (Extended Search)

Secondary pollutants from ozone reactions with ventilation filters and Secondary pollutants from ozone reactions with ventilation filters and degradation of filter media additives Title Secondary pollutants from ozone reactions with ventilation filters and degradation of filter media additives Publication Type Journal Article Year of Publication 2011 Authors Destaillats, Hugo, Wenhao Chen, Michael G. Apte, Nuan Li, Michael Spears, Jérémie Almosni, Gregory Brunner, Jianshun(Jensen) Zhang, and William J. Fisk Journal Atmospheric Environment Volume 45 Start Page 3561 Issue 21 Pagination 3561-3568 Keywords commercial building ventilation & indoor environmental quality group, commercial building ventilation and indoor environmental quality group, energy analysis and environmental impacts department, indoor environment department, indoor environment group

177

Ventilation and Energy Saving in Auto Manufacturing Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Ventilation and Energy Saving in Auto Manufacturing Plants Ventilation and Energy Saving in Auto Manufacturing Plants Speaker(s): Alexander M. Zhivov Date: April 3, 2002 - 12:00pm Location: Bldg. 90 Dr. Alexander Zhivov is currently the chairman of the International Task Force "Autovent International" focusing on environmental problems within the Automotive Industry. This Task Force was formed in 1997 to develop the "Ventilation Guide for Automotive Industry". The guide was to be seen as a building block within the EU sponsored "Industrial Ventilation Design Guide Book" project, covering both theory and applications. In his presentation, Dr. Zhivov will talk about his work with the automotive industry, describe major highlights from the "Ventilation Guide for Automotive Industry" and talk about building, process and HVAC

178

Total analysis of cooling effects of cross-ventilation affected by microclimate around a building  

Science Journals Connector (OSTI)

This study aims to develop a simulation system for evaluating the passive cooling effects, such as cross-ventilation, solar shading by trees, etc. Since the passive cooling effects are strongly affected by the spatial distributions of airflow, air temperature and radiative heat transports around a building, the microclimate around a building should be accurately predicted for this type of simulations. In this study, convective and radiative heat transports around buildings are analyzed by CFD (computational fluid dynamics) and radiation computations. Furthermore, the heat load calculation with the program TRNSYS was carried out, using the values of the cross-ventilation rates predicted by CFD computation and incoming solar radiation onto the building walls under the shade of trees obtained by the radiation computation as boundary conditions. Indoor velocity and indoor air temperature obtained by the simulation system developed here showed generally good agreement with measured data.

Akashi Mochida; Hiroshi Yoshino; Satoshi Miyauchi; Teruaki Mitamura

2006-01-01T23:59:59.000Z

179

Evergreen Sustainable Development Standard for Affordable Housing |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evergreen Sustainable Development Standard for Affordable Housing Evergreen Sustainable Development Standard for Affordable Housing Evergreen Sustainable Development Standard for Affordable Housing < Back Eligibility Low-Income Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Appliances & Electronics Construction Design & Remodeling Ventilation Heat Pumps Commercial Lighting Lighting Water Heating Solar Buying & Making Electricity Program Info State District of Columbia Program Type Green Building Incentive Provider Housing Trust Fund The Washington State Department of Commerce created the Evergreen Sustainable Development Standard, a set of green building criteria that is required for any affordable housing project applying for state funds

180

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Furnace Fans Furnace Fans Sign up for e-mail updates on regulations for this and other products Currently there are no energy conservation standards for residential furnace fans. A furnace fan is an electrically-powered device used in residential central heating, ventilation, and air conditioning (HVAC) systems for the purposes of circulating air through duct work. A furnace fan consists of a fan motor and its controls, a centrifugal impeller, and sheet metal housing. The Department of Energy (DOE) is currently conducting an energy conservation standard rulemaking for furnace fans. If any standard is established, its benefits will be explained in the final rule. Recent Updates | Standards | Test Procedures | Waiver, Exception, and Exemption Information | Statutory Authority | Historical Information | Contact Information

Note: This page contains sample records for the topic "ventilation rate standards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

FEMP-FS--Solar Ventilation Preheating  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Installing a "solar wall" to heat air before it enters a Installing a "solar wall" to heat air before it enters a building, called solar ventilation preheating, is one of the most efficient ways of reducing energy costs using clean and renewable energy. The system works by heating outside air with a south-facing solar collector-a dark-colored wall made of sheet metal and perforated with tiny holes. Outdoor air is drawn through the holes and heated as it absorbs the wall's warmth. The warm air rises in the space between the solar wall and the building wall and is moved into the air-duct system, usually by means of a fan, to heat the building. Any additional heating needed at night or on cloudy days is supplied by the build- ing's conventional heating system. During summer months, intake air bypasses the solar collector,

182

Heating, Ventilation and Air Conditioning Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Presented By: WALTER E. JOHNSTON, PE Presented By: WALTER E. JOHNSTON, PE CEM, CEA, CLEP, CDSM, CPE Ventilation and Air Conditioning (HVAC) system is to provide and maintain a comfortable environment within a building for the occupants or for the process being conducted Many HVAC systems were not designed with energy efficiency as one of the design factors 3 Air Air is the major conductor of heat. Lack of heat = air conditioning OR 4 Btu - Amount of heat required to raise one pound of water 1 F = 0.252 KgCal 1 Pound of Water = About 1 Pint of Water ~ 1 Large Glass 1 Kitchen Match Basics of Air Conditioning = 1 Btu 5 = 6 Low Cost Cooling Unit 7 8 Typical Design Conditions 75 degrees F temperature 50% relative humidity 30 - 50 FPM air movement

183

Energy Crossroads: Ventilation, Infiltration & Indoor Air Quality |  

NLE Websites -- All DOE Office Websites (Extended Search)

Ventilation, Infiltration & Indoor Air Quality Ventilation, Infiltration & Indoor Air Quality Suggest a Listing Air Infiltration and Ventilation Centre (AIVC) The AIVC fulfills its objectives by providing a range of services and facilities which include: Information, Technical Analysis, Technical Interchange, and Coordination. American Conference of Governmental Industrial Hygienists (ACGIH) The ACGIH offers high quality technical publications and learning opportunities. Americlean Services Corp. (ASC) ASC is a certified SBA 8(a) engineering/consulting firm specializing in HVAC contamination detection, abatement, and monitoring. In addition to highly professional ductwork cleaning and HVAC cleaning services, ASC offers a wide range of other engineering/ consulting/ management services

184

Kitchen Ventilation Should be High Performance (Not Optional)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kitchen Ventilation Kitchen Ventilation Should be High Performance (not Optional) Brett C. Singer Residential Building Systems & Indoor Environment Groups Lawrence Berkeley National Laboratory Building America Technical Update Denver, CO April 30, 2013 Acknowledgements PROGRAM SUPPORT *U.S. Department of Energy - Building America Program *U.S. Environmental Protection Agency - Indoor Environments Division *U.S. Department of Housing and Urban Development - Office of Healthy Homes & Lead Hazard Control *California Energy Commission - Public Interest Energy Research Program TECHNICAL CONTRIBUTIONS *Woody Delp, Tosh Hotchi, Melissa Lunden, Nasim Mullen, Chris Stratton, Doug Sullivan, Iain Walker Kitchen Ventilation Simplified PROBLEM: * Cooking burners & cooking produce odors, moisture

185

Momentum rate probe for use with two-phase flows S. G. Bush,a)  

E-Print Network (OSTI)

of flows including nuclear reactor coolant streams, refrigerants in heating-ventilating air flow rates of these flows span a wide range of values, from those in nuclear power plant cooling systems, through supercritical diesel fuel injection, heating-ventilating and air-conditioning HVAC

Panchagnula, Mahesh

186

Text-Alternative Version of Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements  

Energy.gov (U.S. Department of Energy (DOE))

Transcript of Building America webinar, "Multifamily Ventilation Strategies and Compartmentalization Requirements," held on Sept. 24, 2014.

187

Experimental and numerical VOC concentration field analysis from flooring material in a ventilated room  

E-Print Network (OSTI)

in "7th International Conference, Healthy Buildings 2003, Singapore : Singapore (2003)" #12;Ventilation

Paris-Sud XI, Université de

188

Technical Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Review for Technical Standards of Interest Legend: Red Technical Standards Program Activities and Responsibilities Blue Directives Program Activities and Responsibilities...

189

Model of ventilation flows during large tunnel fires  

Science Journals Connector (OSTI)

In order to describe the reduction in the longitudinal airflow velocity due to the fire and hot gases resistances in a large tunnel fire, a theoretical model, taking into consideration the pressure losses over the fire source and obstructions, the thermal stack effects, and the hydraulic resistance induced by the tunnel walls, fire protection boards and a HGV trailer mock-up, is developed and validated using the large-scale tests data from the fire tests performed in the Runehamar tunnel with longitudinal ventilation in Norway 2003. Two large mobile fan units were used to create a longitudinal flow within the tunnel and prevent smoke backlayering upstream of the fire. One fan was located outside the entrance of the tunnel and the other inside the tunnel. The fire load consisted of a mock-up simulating a heavy goods vehicle (HGV) trailer creating a maximum heat release rates in the range of 66202MW. Two methods of calculating the mean temperature related to the thermal expansion and stack effect are proposed and compared.

Haukur Ingason; Anders Lnnermark; Ying Zhen Li

2012-01-01T23:59:59.000Z

190

Analyzing Ventilation Effects of Different Apartment Styles by CFD  

E-Print Network (OSTI)

ICEBO2006, Shenzhen, China Renewable Renewable Energy Resources and a Greener Future Vol.VIII-3-5 Analyzing Ventilation Effects of Different Apartment Styles by CFD Xiaodong Li Lina Wang Zhixing Ye Associate Professor School...

Li, X.; Wang, L.; Ye, Z.

2006-01-01T23:59:59.000Z

191

Key Factors in Displacement Ventilation Systems for Better IAQ  

E-Print Network (OSTI)

ICEBO2006, Shenzhen, China Maximize Comfort: Temperature, Humidity and IAQ Vol.I-7-2 Key Factors in Displacement Ventilation Systems for Better IAQ1 Xiaotong Wang Junjun Chen Yike Li Zhiwei Wang Associate Professor...

Wang, X.; Chen, J.; Li, Y.; Wang, Z.

2006-01-01T23:59:59.000Z

192

Comparison of Two Ventilation Systems in a Chinese Commercial Kitchen  

E-Print Network (OSTI)

A numerical simulation of an indoor thermal environment in a Chinese commercial kitchen has been carried out using indoor zero-equation turbulence model. Two different ventilation systems in a Chinese commercial kitchen have been simulated...

Wan, X.; Yu, L.; Hou, H.

2006-01-01T23:59:59.000Z

193

Natural ventilation in buildings : modeling, control and optimization  

E-Print Network (OSTI)

Natural ventilation in buildings has the potential to reduce the energy consumption usually associated with mechanical cooling while maintaining thermal comfort and air quality. It is important to know how building parameters, ...

Ip Kiun Chong, Karine

2014-01-01T23:59:59.000Z

194

SURFACE CIRCULATION AND VENTILATION Lynne D. Talley(1)  

E-Print Network (OSTI)

of autonomous subsurface profiling to include oxygen and turbulence profiling, and implementation of local of subsurface circulation in the wind-driven gyres (section 2), and (2) ventilation/upwelling processes

Talley, Lynne D.

195

PART III DIVISION 15 PAGE 1 RUTGERS DESIGN STANDARDS MANUAL MAY 2007 DIVISION 15 MECHANICAL  

E-Print Network (OSTI)

) can be considered. 10. HVAC - Temperature Design Standards: a. The following inside design conditionsPART III DIVISION 15 PAGE 1 RUTGERS DESIGN STANDARDS MANUAL MAY 2007 DIVISION 15 ­ MECHANICAL be supplied to occupied spaces in accordance with the latest issue of ASHRAE Standard 62, Ventilation

196

Study on Influencing Factors of Night Ventilation in Office Rooms  

E-Print Network (OSTI)

& Environmental Engineering, Harbin Institute of Technology Harbin P.R.China, 150090 wzjw02@yahoo.com.cn Abstract: A mathematical and physical model on night ventilation is set up. The fields of indoor air temperature, air velocity and thermal comfort... & Environmental Engineering, Harbin Institute of Technology Harbin P.R.China, 150090 wzjw02@yahoo.com.cn Abstract: A mathematical and physical model on night ventilation is set up. The fields of indoor air temperature, air velocity and thermal comfort...

Wang, Z.; Sun, X.

2006-01-01T23:59:59.000Z

197

Brand Standards Brand StandardsBrand Standards  

E-Print Network (OSTI)

Brand Standards 6.6.11 #12;Brand StandardsBrand Standards VISUAL IDENTITY AND BRANDING INITIATIVE, the visual image presented to the public by the units of the University and UMMC often is confusing the organizations' public image under a cohesive, easily recognized visual identity that relies upon a common

Weber, David J.

198

Particle deposition in ventilation ducts: Connectors, bends anddeveloping flow  

SciTech Connect

In ventilation duct flow the turbulent flow profile is commonly disturbed or not fully developed and these conditions are likely to influence particle deposition to duct surfaces. Particle deposition rates at eight S-connectors, in two 90{sup o} duct bends and in two ducts where the turbulent flow profile was not fully developed were measured in a laboratory duct system with both galvanized steel and internally insulated ducts with hydraulic diameters of 15.2 cm. In the steel duct system, experiments with nominal particle diameters of 1, 3, 5, 9 and 16 {micro}m were conducted at each of three nominal air speeds: 2.2, 5.3 and 9.0 m/s. In the insulated duct system, deposition of particles with nominal diameters of 1, 3, 5, 8 and 13 {micro}m was measured at nominal air speeds of 2.2, 5.3 and 8.8 m/s. Fluorescent techniques were used to directly measure the deposition velocities of monodisperse fluorescent particles to duct surfaces. Deposition at S-connectors, in bends and in straight ducts with developing turbulence was often greater than deposition in straight ducts with fully developed turbulence for equal particle sizes, air speeds and duct surface orientations. Deposition rates at all locations were found to increase with an increase in particle size or air speed. High deposition rates at S-connectors resulted from impaction and these rates were nearly independent of the orientation of the S-connector. Deposition rates in the two 90{sup o} bends differed by more than an order of magnitude in some cases, probably because of the difference in turbulence conditions at the bend inlets. In straight steel ducts where the turbulent flow profile was developing, the deposition enhancement relative to fully developed turbulence generally increased with air speed and decreased with downstream distance from the duct inlet. This enhancement was greater at the duct ceiling and wall than at the duct floor. In insulated ducts, deposition enhancement was less pronounced overall than in steel ducts. Trends that were observed in steel ducts were present, but weaker, in insulated ducts.

Sippola, Mark R.; Nazaroff, William W.

2004-03-01T23:59:59.000Z

199

Standards, Ethics  

NLE Websites -- All DOE Office Websites (Extended Search)

Standards, Ethics Ombuds Standards and Ethics Committed to the fair and equitable treatment of all employees, contractors, and persons doing business with the Laboratory. Contact...

200

Microsoft Word - Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation_Final2.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

XXXXX | Logue et al., Evaluation of an Incremental Ventilation Energy Model for Estimating XXXXX | Logue et al., Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation 1 Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation Jennifer M. Logue, William J. N. Turner, Iain S. Walker, and Brett C. Singer Environmental Energy Technologies Division June 2012 LBNL-5796E LBNL-XXXXX | Logue et al., Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation 2 Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor

Note: This page contains sample records for the topic "ventilation rate standards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Radon entry rate analyses using in situ tracer gas method application  

Science Journals Connector (OSTI)

......indoor environment, standard methods of radon diagnosis...ventilation (specific modes of HVAC systems operation...for new houses given in standards. Table-5. Results...efforts to comply with the standard requirements on new buildings...services in buildings like HVAC systems, water and gas......

A. Fro?ka; K. Jlek

2014-07-01T23:59:59.000Z

202

Commissioning Residential Ventilation Systems: A Combined Assessment of  

NLE Websites -- All DOE Office Websites (Extended Search)

Commissioning Residential Ventilation Systems: A Combined Assessment of Commissioning Residential Ventilation Systems: A Combined Assessment of Energy and Air Quality Potential Values Title Commissioning Residential Ventilation Systems: A Combined Assessment of Energy and Air Quality Potential Values Publication Type Report LBNL Report Number LBNL-5969E Year of Publication 2012 Authors Turner, William J. N., Jennifer M. Logue, and Craig P. Wray Date Published 07/2012 Keywords commissioning, energy, health, indoor air quality, residential, valuation, ventilation Abstract Due to changes in building codes, whole-house mechanical ventilation systems are being installed in new California homes. Few measurements are available, but the limited data suggest that these systems don't always perform as code and forecasts predict. Such deficiencies occur because systems are usually field assembled without design specifications, and there is no consistent process to identify and correct problems. The value of such activities in terms of reducing energy use and improving indoor air quality (IAQ) is poorly understood. Commissioning such systems when they are installed or during subsequent building retrofits is a step towards eliminating deficiencies and optimizing the tradeoff between energy use and IAQ.

203

Interconnection Standards | Open Energy Information  

Open Energy Info (EERE)

Interconnection Standards Interconnection Standards Jump to: navigation, search Interconnection standards govern the technical and procedural process by which an electric customer connects an electric-generating system to the grid. Interconnection standards specify the technical, contractual, metering, and rate rules that system owners and utilities must abide by. Standards for systems interconnected at the distribution level are typically adopted by state public utility commissions, while the Federal Energy Regulatory Commission (FERC) has adopted standards for systems interconnected at the transmission level. Not all states have adopted interconnection standards, and some states’ standards apply only to investor-owned utilities – not to municipal utilities and electric cooperatives. [1]

204

Low Energy Buildings: CFD Techniques for Natural Ventilation and Thermal  

NLE Websites -- All DOE Office Websites (Extended Search)

Low Energy Buildings: CFD Techniques for Natural Ventilation and Thermal Low Energy Buildings: CFD Techniques for Natural Ventilation and Thermal Comfort Prediction Speaker(s): Malcolm Cook Date: February 14, 2013 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Michael Wetter Malcolm's presentation will cover both his research and consultancy activities. This will cover the work he has undertaken during his time spent working with architects on low energy building design, with a particular focus on natural ventilation and passive cooling strategies, and the role computer simulation can play in this design process. Malcolm will talk about the simulation techniques employed, as well as the innovative passive design principles that have led to some of the UK's most energy efficient buildings. In addition to UK building projects, the talk will

205

Building Air Quality & Ventilation Models: Review - Evaluation - Proposals  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Air Quality & Ventilation Models: Review - Evaluation - Proposals Building Air Quality & Ventilation Models: Review - Evaluation - Proposals Speaker(s): James Axley Date: March 12, 1999 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Richard Sextro Developments in mathematical models for building air quality and ventilation analysis have changed the way we idealize buildings for purposes of analysis, the way we form system equations to effect the analysis, and the way we solve these equations to realize the analysis. While much has been achieved more is possible. This presentation will review the current state of the art - the building idealizations used, the system equations formed, and the solution methods applied - critically evaluate the completeness, complexity and utility of the most advanced models, and present proposals for future development

206

Capture and Use of Coal Mine Ventilation-Air Methane  

NLE Websites -- All DOE Office Websites (Extended Search)

Capture and use of Coal Mine Capture and use of Coal Mine Ventilation - air Methane Background Methane emissions from coal mines represent about 10 percent of the U.S. anthropogenic methane released to the atmosphere. Methane-the second most important non-water greenhouse gas-is 21 times as powerful as carbon dioxide (CO 2 ) in its global warming potential. Ventilation-air methane (VAM)-the exhaust air from underground coal mines-is the largest source of coal mine methane, accounting for about half of the methane emitted from coal mines in the United States. Unfortunately, because of the low methane concentration (0.3-1.5 percent) in ventilation air, its beneficial use is difficult. However, oxidizing the methane to CO 2 and water reduces its global warming potential by 87 percent. A thermal

207

Honda Smart Home to Include Berkeley Lab Ventilation Controller  

NLE Websites -- All DOE Office Websites (Extended Search)

Honda Smart Home to Include Berkeley Lab Ventilation Controller Honda Smart Home to Include Berkeley Lab Ventilation Controller Honda smart home October 2013 October-November Special Focus: Energy Efficiency, Buildings, and the Electric Grid Honda Motor Company Inc is proceeding with plans to build a Smart Home in Davis, California, to demonstrate the latest in renewable energy technologies and energy efficiency. The home is expected to produce more energy than is consumed, demonstrating how the goal of "zero net energy" can be met in the near term future. A ventilation controller developed by researchers at Berkeley Lab's Environmental Energy Technologies Division (EETD) will be included in the smart home. EETD is currently working with the developers of the home control system to integrate its control algorithms.

208

Formaldehyde emissions from ventilation filters under different relative  

NLE Websites -- All DOE Office Websites (Extended Search)

Formaldehyde emissions from ventilation filters under different relative Formaldehyde emissions from ventilation filters under different relative humidity conditions Title Formaldehyde emissions from ventilation filters under different relative humidity conditions Publication Type Journal Article Refereed Designation Refereed Year of Publication 2013 Authors Sidheswaran, Meera A., Wenhao Chen, Agatha Chang, Robert Miller, Sebastian Cohn, Douglas P. Sullivan, William J. Fisk, Kazukiyo Kumagai, and Hugo Destaillats Journal Environmental Science and Technology Date Published 04/18/2013 Abstract A method combining life cycle assessment (LCA) and real options analyses is developed to predict project environmental and financial performance over time, under market uncertainties and decision-making flexibility. The method is applied to examine alternative uses for oil sands coke, a carbonaceous byproduct of processing the unconventional petroleum found in northern Alberta, Canada. Under uncertainties in natural gas price and the imposition of a carbon price, our method identifies that selling the coke to China for electricity generation by integrated gasification combined cycle is

209

Preoperational test report, primary ventilation condenser cooling system  

SciTech Connect

This represents the preoperational test report for the Primary Ventilation Condenser Cooling System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system uses a closed chilled water piping loop to provide offgas effluent cooling for tanks AY101, AY102, AZ1O1, AZ102; the offgas is cooled from a nominal 100 F to 40 F. Resulting condensation removes tritiated vapor from the exhaust stack stream. The piping system includes a package outdoor air-cooled water chiller with parallel redundant circulating pumps; the condenser coil is located inside a shielded ventilation equipment cell. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

Clifton, F.T.

1997-10-29T23:59:59.000Z

210

Section 38 - HVAC (Heating, Ventilation, Air Conditioning)  

Science Journals Connector (OSTI)

The term HVAC is an acronym for Heating, Ventilation (and) Air Conditioning, the industry term for any of various efforts to control conditions in a building or other enclosed area to improve comfort and efficiency. A closely related section is Refrigeration, which follows this one. Some contemporary HVAC techniques have ancient roots. Early forms of central heating and solar home heating were in use in Rome in the first century A.D. The earliest use of glass in windows (as opposed to a covering of wood, cloth, or hide, or simply an opening) is also attributed to the Romans at this same time. The first known use of solar-oriented building design in North America dates back to about the year 1050; i.e., the cliff dwellings built by the Anasazi (Ancient Pueblo) people of the Colorado Plateau area. Geothermal district heating was employed as early as the 1300s, in the Auvergne region of southern France. The foundation for modern central heating was established in the 1700s, first in England and then in France. The 1800s saw significant advances in the use of water heaters, especially the first automatic storage water heater (Edwin Ruud, 1889) and the first commercial solar water heater (Clarence Kemp, 1891). In comparison with heating, cooling technology was late in developing. The first successful method of producing ice occurred in 1851, and it was not until 1902 that Willis Haviland Carrier designed the first industrial air-conditioning system. His Carrier Air Conditioning Corporation would go on to develop air-conditioning systems for stores and theaters (1924) and for residential buildings (1928). Carrier remains the global leader in air conditioner production. The first air-conditioned automobile was produced by Packard in 1939. Recent entries in this section emphasize the use of alternative energy sources in heating and cooling, such as solar, photovoltaic, geothermal, and fuel cells. These advances include the ground-source heat pump, the Trombe wall, the heat pipe, and the PV/thermal hybrid system.

Cutler J. Cleveland; Christopher Morris

2014-01-01T23:59:59.000Z

211

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative Efficiency Determination Methods and Alternate Rating Methods Alternative Efficiency Determination Methods and Alternate Rating Methods Sign up for e-mail updates on regulations for this and other products The Department of Energy (DOE) is proposing to revise and expand its existing regulations governing the use of alternative efficiency determination methods (AEDM) and alternate rating methods (ARM) for covered products as alternatives to testing for the purpose of certifying compliance. Recent Updates | Public Meeting Information | Submitting Public Comments | Milestones and Documents | Related Rulemakings | Statutory Authority | Contact Information Recent Updates DOE published a final rule revising its existing regulations governing the use of particular methods as alternatives to testing for commercial heating, ventilating, air conditioning, water heating, and refrigeration equipment. 78 FR 79579 (December 31, 2013).

212

CO 2 - Based Demand-Controlled Ventilation Control Strategies for Multi-Zone HVAC Systems  

E-Print Network (OSTI)

CO 2-based demand-controlled ventilation DCV strategy offers a great opportunity to reduce energy consumption in HVAC systems while providing the required ventilation. However, implementing CO 2-based DCV under ASHRAE 62.1.2004 through 2010...

Nassif, N.

2011-01-01T23:59:59.000Z

213

Design and prototyping of a low-cost portable mechanical ventilator  

E-Print Network (OSTI)

This paper describes the design and prototyping of a low-cost portable mechanical ventilator for use in mass casualty cases and resource-poor environments. The ventilator delivers breaths by compressing a conventional ...

Powelson, Stephen K. (Stephen Kirby)

2010-01-01T23:59:59.000Z

214

A sweating model for the internal ventilation of a motorcycle Claudio Canutoa  

E-Print Network (OSTI)

A sweating model for the internal ventilation of a motorcycle helmet Claudio Canutoa , Flavio and optimization of the internal ventilation of a motorcycle hel- met, with the purpose of enhancing the comfort

Ceragioli, Francesca

215

Model for quantitative risk assessment on naturally ventilated metering-regulation stations for natural gas  

Science Journals Connector (OSTI)

Abstract The paper presents a model for quantitative risk assessment on metering stations and metering-regulation stations for natural gas with natural ventilation. The model enables the assessment of risk for people who live in the vicinity of these stations and complements the existing models for risk assessment on natural gas pipelines. It is based on risk assessment methods suggested in relevant guides, recommendations and standards. Explosion and jet fire are considered as major hazardous events and are modelled according to analytical models and empirical data. Local or other accessible databases are used for modelling of event frequencies and ignition probabilities. A case study on a sample station is carried out. For each hazardous event, fault tree and event tree analysis is performed. Results show influence of each hazardous event on the whole risk relative to the distance from the hazardous source. Ventilation is found to be a significant factor in determination of risk magnitude; its influence on individual risk is presented in a quantitative way. The model should be of use for pipeline operators as well as for environmental- and urban planners.

Tom Bajcar; Franc Cimerman; Brane irok

2014-01-01T23:59:59.000Z

216

An experimental investigation of an inclined passive wall solar chimney for natural ventilation  

Science Journals Connector (OSTI)

Abstract Ongoing investigations into solar chimney development have resulted in constantly evolving new designs. In this study, experiments are carried out with an inclined passive wall solar chimney (IPWSC) model with a uniform heat flux on the active (absorptive) wall. The effectiveness of this design has been examined for the heat flux range of 100W/m2500W/m2 with a fixed base air gap width of 0.1m and inclination angles of the passive wall in the range of 06 degrees. The experimental results show that the inclination angle of the passive wall has no significant effect on the temperature distribution across the air gap width and along the chimney height. On the other hand, the averaged air flow velocity across the air gap width is strongly affected by the inclination angle. The experimental results also show that the IPWSC with 0.7m absorber height and 0.1m air gap width at an inclination angle of 6 and input heat flux of 500W/m2 can produce sufficient ventilation for a 27m3 room based on ASHREA standards. Further, the present experimental results show that the IPWSC design can significantly improve the ventilation performance of a solar chimney in comparison to the conventional chimney design with vertical passive wall configuration. The experimental results are supported by flow visualization experiments and are consistent with scaling predictions.

Rakesh Khanal; Chengwang Lei

2014-01-01T23:59:59.000Z

217

Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements- Sean Maxwell  

Energy.gov (U.S. Department of Energy (DOE))

This presentation is included in the Building America webinar, Multifamily Ventilation Strategies and Compartmentalization Requirements, on September 24, 2014.

218

Multifamily Individual Heating and Ventilation Systems, Lawrence...  

Energy Savers (EERE)

each apartment were much higher than the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) 62.2 rate; an extensive system of ductwork, smoke and...

219

Microsoft Word - Ventilation System Sampling Results 1  

NLE Websites -- All DOE Office Websites (Extended Search)

are not broken down to identify isotopic make-up, i.e. how much is plutonium and americium. Both screening and laboratory values are shown as count rates, which provide a...

220

STEADY-STATE FLAMMABLE GAS RELEASE RATE CALCULATION AND LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE  

SciTech Connect

Assess the steady-state flammability level at normal and off-normal ventilation conditions. The methodology of flammability analysis for Hanford tank waste is developed. The hydrogen generation rate model was applied to calculate the gas generation rate for 177 tanks. Flammability concentrations and the time to reach 25% and 100% of the lower flammability limit, and the minimum ventilation rate to keep from 100 of the LFL are calculated for 177 tanks at various scenarios.

HU TA

2007-10-26T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation rate standards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Air flow and particle control with different ventilation systems in a classroom  

E-Print Network (OSTI)

Air flow and particle control with different ventilation systems in a classroom Sture Holmberg, Ph. For displacement ventilation systems, designers normally assume that all pollutants follow the buoyant air flow of the ventilation air flow are shown to play an important role in the control of air quality. Computer simulation

Chen, Qingyan "Yan"

222

Energy Saving Guidelines for Portland State University Heating and Ventilation  

E-Print Network (OSTI)

Energy Saving Guidelines for Portland State University Heating and Ventilation Conditioned spaces when a space is not being occupied and be selected with energy efficiency and safety as top priorities scheduling team to consolidate activities into energy efficient buildings on campus. Purchasing When

Caughman, John

223

Utilizing Passive Ventilation to Complement HVAC Systems in Enclosed Buildings  

E-Print Network (OSTI)

Utilizing Passive Ventilation to Complement HVAC Systems in Enclosed Buildings Tom Rogg REU Student to assist HVAC has the potential to significantly reduce life cycle cost and energy consumption and electrical system that will tie thermostats to controlled valves in the actual HVAC system. Based on results

Mountziaris, T. J.

224

Control of airborne infectious diseases in ventilated spaces  

Science Journals Connector (OSTI)

...Refrigerating and Air-Conditioning Engineers. Badeau, A. , A. Afshari, T. Goldsmith...control of SARS virus aerosols in indoor environment-transmission routes and ward ventilation...transmission of infectious agents in the built environment-a multidisciplinary systematic review...

2009-01-01T23:59:59.000Z

225

Ventilation Industrielle de Bretagne VIB | Open Energy Information  

Open Energy Info (EERE)

Ventilation Industrielle de Bretagne VIB Ventilation Industrielle de Bretagne VIB Jump to: navigation, search Name Ventilation Industrielle de Bretagne (VIB) Place Ploudalmezeau, France Zip 29839 Sector Geothermal energy, Solar Product Ploudalmezeau-based company producing and marketing energy efficient and ventilation products including air source heat pumps, geothermal water source heat pumps, efficient air filtration systems and solar products. Coordinates 48.540325°, -4.657904° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.540325,"lon":-4.657904,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

226

The Ventilation, Heating, and Management of Churches and Public Buildings  

Science Journals Connector (OSTI)

... THIS book is addressed chiefly to the architects, managers and caretakers of buildings, and its opening chapter deals with the physical principles bearing on ventilation. An interesting ... the writer makes the cryptic statement that "the friction caused by the wind passing over buildings is so great that it is scarcely possible to demonstrate it accurately,"and later ...

J. H. V.

1903-04-02T23:59:59.000Z

227

Experiments measuring particle deposition from fully developed turbulent flow in ventilation ducts  

SciTech Connect

Particle deposition in ventilation ducts influences particle exposures of building occupants and may lead to a variety of indoor air quality concerns. Experiments have been performed in a laboratory to study the effects of particle size and air speed on deposition rates of particles from turbulent air flows in galvanized steel and internally insulated ducts with hydraulic diameters of 15.2 cm. The duct systems were constructed of materials typically found in commercial heating, ventilating and air conditioning (HVAC) systems. In the steel duct system, experiments with nominal particle sizes of 1, 3, 5, 9 and 16 {micro}m were conducted at each of three nominal air speeds: 2.2, 5.3 and 9.0 m/s. In the insulated duct system, deposition rates of particles with nominal sizes of 1, 3, 5, 8 and 13 {micro}m were measured at nominal air speeds of 2.2, 5.3 and 8.8 m/s. Fluorescent techniques were used to directly measure the deposition velocities of monodisperse fluorescent particles to duct surfaces (floor, wall and ceiling) at two straight duct sections where the turbulent flow profile was fully developed. In steel ducts, deposition rates were higher to the duct floor than to the wall, which were, in turn, greater than to the ceiling. In insulated ducts, deposition was nearly the same to the duct floor, wall and ceiling for a given particle size and air speed. Deposition to duct walls and ceilings was greatly enhanced in insulated ducts compared to steel ducts. Deposition velocities to each of the three duct surface orientations in both systems were found to increase with increasing particle size or air velocity over the ranges studied. Deposition rates measured in the current experiments were in general agreement with the limited observations of similar systems by previous researchers.

Sippola, Mark R.; Nazaroff, William W.

2003-08-01T23:59:59.000Z

228

Reaerosolization of Fluidized Spores in Ventilation Systems  

Science Journals Connector (OSTI)

...investigators that resuspension increases to the power of wind speed or friction velocity where the power can range from 1.1 to 6.4. In Sehmels...the resuspension rate increased with wind speed to a power ranging from 3.4 to 13.8. In a more...

Paula Krauter; Arthur Biermann

2007-02-09T23:59:59.000Z

229

Functional Area Qualification Standards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Assistance » Federal Technical Capability Program » Services » Assistance » Federal Technical Capability Program » Functional Area Qualification Standards Functional Area Qualification Standards Qualification Standard Qualification Standard Number Approved Aviation Manager DOE-STD-1165-2003 (CN-1) 2009-12 Aviation Safety Officer DOE-STD-1164-2003 (CN-1) 2010-01 Chemical Processing DOE-STD-1176-2010 2010-02 Civil/Structural Engineering DOE-STD-1182-2004 2004-03 Confinement Ventilation and Process Gas Treatment DOE-STD-1168-2013 2013-10 Construction Management DOE-STD-1180-2004 2004-03 Criticality Safety DOE-STD-1173-2009 2009-04 Deactivation and Decommissioning DOE-STD-1166-2003 2003-09 Electrical Systems and Safety Oversight DOE-STD-1170-2007 2007-08 Emergency Management DOE-STD-1177-2004 2004-01

230

detonation rate  

Science Journals Connector (OSTI)

detonation rate, detonation velocity, velocity of detonation, V.O.D., detonating velocity, rate of detonation, detonating rate ? Detonationsgeschwindigkeit f

2014-08-01T23:59:59.000Z

231

Training Standardization  

SciTech Connect

The article describes the benefits of and required process and recommendations for implementing the standardization of training in the nuclear power industry in the United States and abroad. Current Information and Communication Technologies (ICT) enable training standardization in the nuclear power industry. The delivery of training through the Internet, Intranet and video over IP will facilitate this standardization and bring multiple benefits to the nuclear power industry worldwide. As the amount of available qualified and experienced professionals decreases because of retirements and fewer nuclear engineering institutions, standardized training will help increase the number of available professionals in the industry. Technology will make it possible to use the experience of retired professionals who may be interested in working part-time from a remote location. Well-planned standardized training will prevent a fragmented approach among utilities, and it will save the industry considerable resources in the long run. It will also ensure cost-effective and safe nuclear power plant operation.

Agnihotri, Newal

2003-09-01T23:59:59.000Z

232

Power corrections in the decay rate and distributions in B{r_arrow}X{sub s}scr(l){sup +}scr(l){sup {minus}} in the standard model  

SciTech Connect

We investigate the leading power corrections to the decay rates and distributions in the decay B{r_arrow}X{sub s}scr(l){sup +}scr(l){sup {minus}} in the standard model (SM) using heavy quark expansion (HQE) in (1/m{sub b}) and a phenomenological model implementing the Fermi motion effects of the b quark bound in the B hadron. In the HQE method, we find that including the leading power corrections the decay width {Gamma}(B{r_arrow}X{sub s}scr(l){sup +}scr(l){sup {minus}}) decreases by about 4{percent} and the branching ratio B(B{r_arrow}X{sub s}scr(l){sup +}scr(l){sup {minus}}) by about 1.5{percent} from their (respective) parton model values. The dilepton invariant mass spectrum is found to be stable against power corrections over a good part of this spectrum. However, near the high-mass end point this distribution becomes negative with the current value of the nonperturbative parameter {lambda}{sub 2} (the {lambda}{sub 1}-dependent corrections are found to be innocuous), implying the breakdown of the HQE method in this region. Our results are at variance with the existing ones in the literature in both the decay rate and the invariant dilepton mass distribution calculated in the HQE approach. As an alternative, we implement the nonperturbative effects in the decay B{r_arrow}X{sub s}scr(l){sup +}scr(l){sup {minus}} using a phenomenologically motivated Gaussian Fermi motion model. We find small corrections to the branching ratio, but the nonperturbative effects are perceptible in both the dilepton mass distribution and the forward-backward asymmetry in the high dilepton mass region. (Abstract Truncated)

Ali, A.; Hiller, G. [Deutsches Elektronen-Synchroton DESY, Notkestrasse 85, D-22603 Hamburg (Germany)] [Deutsches Elektronen-Synchroton DESY, Notkestrasse 85, D-22603 Hamburg (Germany); Handoko, L.T.; Morozumi, T. [Department of Physics, Hiroshima University, 1-3-1 Kagamiyama, Higashi Hiroshima - 739 (Japan)] [Department of Physics, Hiroshima University, 1-3-1 Kagamiyama, Higashi Hiroshima - 739 (Japan)

1997-04-01T23:59:59.000Z

233

FAQS Job Task Analyses - Confinement Ventillation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

For Expert, Working or Familiarity Level Competencies CVS/PGT FAQ Job Analysis Worksheet for Tasks Task Source Importance Frequency #1 Serves as SME D&R 5 4 #2 Reviews safety documentation D&R 4+ 3- #3 Participates in standards development and interpretation D&R 2 1 #4 Assesses contractor programs and implementation D&R 4 4 #5 Represents Site/DOE at CVS meetings/committees D&R 3 1 #6 Provides oversight of HEPA filter QA programs D&R 4 3+ #7 Evaluate designs D&R 4+ 2 #8 Maintain proficiency D&R 5 1 Importance Scale Frequency How important is this task to the job? How often is the task performed? 0 = Not Performed 0 = Not Performed 1 = Not Important 1 = Every few months to yearly 2 = Somewhat Important 2 = Every few weeks to monthly

234

Procedures and Standards for Residential Ventilation System Commissioning: An Annotated Bibliography  

E-Print Network (OSTI)

sound and vibration fundamentals and measurement. Concludesfan noise and vibration principle and measurement; and fan

Stratton, J. Chris

2014-01-01T23:59:59.000Z

235

Procedures and Standards for Residential Ventilation System Commissioning: An Annotated Bibliography  

E-Print Network (OSTI)

CA: California Energy Commission. Siegel, J. , I. Walker,CA: California Energy Commission. Wilcox, B. A. 2010. CA: California Energy Commission. CEC. 2011. 2013 Building

Stratton, J. Chris

2014-01-01T23:59:59.000Z

236

Ventilation Relevant Contaminants of Concern in Commercial Buildings Screening  

NLE Websites -- All DOE Office Websites (Extended Search)

Ventilation Relevant Contaminants of Ventilation Relevant Contaminants of Concern in Commercial Buildings Screening Process and Results Srinandini Parthasarathy, Thomas E. McKone, Michael G. Apte Environmental Energy Technologies Division Indoor Environment Department Lawrence Berkeley National Laboratory Berkeley, CA 94720 April 29, 2111 Prepared for the California Energy Commission, Public Interest Energy Research Program, Energy Related Environmental Research Program Legal Notice The Lawrence Berkeley National Laboratory is a national laboratory of the DOE managed by the University of California for the U.S. Department of Energy under Contract Number DE-AC02- 05CH11231. This report was prepared as an account of work sponsored by the Sponsor and pursuant to an M&O Contract with the United States Department of Energy (DOE). Neither the

237

Commissioning Residential Ventilation Systems: A Combined Assessment of  

NLE Websites -- All DOE Office Websites (Extended Search)

Commissioning Residential Ventilation Commissioning Residential Ventilation Systems: A Combined Assessment of Energy and Air Quality Potential Values William J.N. Turner, Jennifer M. Logue, Craig P. Wray Environmental Energy Technologies Division July 2012 LBNL-5969E Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein

238

Indoor Chemistry: Materials, Ventilation Systems, and Occupant Activities  

SciTech Connect

Chemical processes taking place in indoor environments can significantly alter the nature and concentrations of pollutants. Exposure to secondary contaminants generated in these reactions needs to be evaluated in association with many aspects of buildings to minimize their impact on occupant health and well-being. Focusing on indoor ozone chemistry, we describe alternatives for improving indoor air quality by controlling chemical changes related to building materials, ventilation systems, and occupant activities.

Morrison, G.C.; Corsi, R.L.; Destaillats, H.; Nazaroff, W.W.; Wells, J.R.

2006-05-01T23:59:59.000Z

239

Good seal construction and ventilation controls improve airflow  

SciTech Connect

As workings become deeper and more distant from the ventilation inlet, better seal construction technology is needed. Tekseal, a specially formulated pumpable grout which allows a seal to be erected quickly and safety, is Minova's answer to the limitations of traditional block seals. Its use is explained in this article. An alternative product is the Carbonfill range which comprises a two-component phenolic resin based foam generating by a pump. 3 photos.

NONE

2005-12-15T23:59:59.000Z

240

Find Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

-Safe Use of Optical Fiber Communication Systems Utilizing Laser Diode and LED Sources API ASCE ASHRAE ASME ASME-BPVC ASQ ASSE ASTM AWS CGA standards - contact Timothy Lopez...

Note: This page contains sample records for the topic "ventilation rate standards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Data Standards  

Science Journals Connector (OSTI)

Data standards are common terms and methods for sharing data and exchange of information, which are used uniformly. The World Health Organization has proposed : collection in specific data forms, in alogical...

2008-01-01T23:59:59.000Z

242

Polarimetric Standardization  

E-Print Network (OSTI)

The use of polarimetric techniques is nowadays widespread among solar and stellar astronomers. However, notwithstanding the recommandations that have often been made about the publication of polarimetric results in the astronomical literature, we are still far from having a standard protocol on which to conform. In this paper we review the basic definitions and the physical significance of the Stokes parameters, and we propose a standardization of the measurement of polarized radiation.

E. Landi Degl'Innocenti; S. Bagnulo; L. Fossati

2006-10-09T23:59:59.000Z

243

Acoustical Standards Play a Key Role in Optimized Solutions  

Science Journals Connector (OSTI)

Acoustical standards are important to heating ventilation and air conditioning (HVAC) system manufacturers. Our participation in developing standards helps us by: (1) getting the right information to our customers; (2) avoiding conflicts between manufacturers and other organizations; and (3) preparing for changing system requirements. Being active in standards work helps us to agree with our customers on what is the correct information to provide. Providing accurate appropriate acoustical information for our solutions helps to make sure the system is applied correctly and increases the likelihood that customers will be satisfied with our systems.

Stephen J. Lind

2012-01-01T23:59:59.000Z

244

Standard Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

Standard no es suficiente Standard no es suficiente Avanzar Volver Principal ESTOY PERDIDO!!! Si bien el Modelo Standard proporciona una descripción muy buena de los fenómenos observados en los experimentos, todavía es una teoría incompleta. El problema es que el Modelo Standard no puede explicar la causa por la que existen algunas partículas, del modo en que lo hacen. Por ejemplo, aún cuando los físicos conocían las masas de todos los quarks, a excepción de la del quark top desde hace muchos años, no podían simplemente predecir en forma exacta la masa del top, sin utilizar evidencia experimental, dado que el Modelo Standard carece de un modelo matemático para calcular el patrón que siguen los valores de las masas de las partículas. Otra cuestión está relacionada con el hecho que existen tres pares de

245

Ventilation for an enclosure of a gas turbine and related method  

DOE Patents (OSTI)

A ventilation scheme for a rotary machine supported on pedestals within an enclosure having a roof, end walls and side walls with the machine arranged parallel to the side walls, includes ventilation air inlets located in a first end wall of the enclosure; a barrier wall located within the enclosure, proximate the first end wall to thereby create a plenum chamber. The barrier wall is constructed to provide a substantially annular gap between the barrier wall and a casing of the turbine to thereby direct ventilation air axially along the turbine; one or more ventilation air outlets located proximate a second, opposite end wall on the roof of the enclosure. In addition, one or more fans are provided for pulling ventilating air into said plenum chamber via the ventilation air inlets.

Schroeder, Troy Joseph (Mauldin, SC); Leach, David (Simpsonville, SC); O'Toole, Michael Anthony (Greenfield Center, NY)

2002-01-01T23:59:59.000Z

246

Synchrophasor Standards  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development & Support Development & Support Kenneth Martin martin@electricpowergroup.com June 27-28, 2013 Washington, DC DOE/OE Transmission Reliability Program 2 Introduction  Synchrophasor measurement systems widely deployed  Enable a new generation of power system monitor & control capability - Improved power system analysis & system models - Wide area, high-resolution visibility - Basis for a new generation of controls  Research challenge - standards to enable interoperability - Measurement performance - Communications  Research focus - facilitate development, testing, and validation of standards to promote interoperability Basic phasor concept well known . A phasor is the complex form of the AC waveform √2 A cos (2 π ω 0 t + φ) A e

247

Low-Cost Ventilation in Production Housing- Building America Top Innovation  

Energy.gov (U.S. Department of Energy (DOE))

This Building America Innovations profile describes Building America research on simple whole-house ventilation systems that cost less than $350 to install and meet code requirements.

248

Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements- Joe Lstiburek  

Energy.gov (U.S. Department of Energy (DOE))

This presentation will be delivered at the U.S. Department of Energy Building America webinar, Multifamily Ventilation Strategies and Compartmentalization Requirements, on September 24, 2014. Joe...

249

THE IMPACT OF REDUCED VENTILATION ON INDOOR AIR QUALITY IN RESIDENTIAL BUILDINGS  

E-Print Network (OSTI)

carbon monoxide and nitrogen dioxide fron gas appliances;quality, infiltration, nitrogen dioxide, radon, ventilation.carbon monoxide (CO), nitrogen dioxide (N02) formaldehyde (

Berk, James V.

2013-01-01T23:59:59.000Z

250

E-Print Network 3.0 - air quality ventilation Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

search results for: air quality ventilation Page: << < 1 2 3 4 5 > >> 1 Healthy Zero Energy Buildings ENVIRONMENTAL AREA RESEARCH Summary: control strategy impacts on indoor air...

251

Internal combuston engine having separated cylinder head oil drains and crankcase ventilation passages  

DOE Patents (OSTI)

An internal combustion engine includes separated oil drain-back and crankcase ventilation passages. The oil drain-back passages extend from the cylinder head to a position below the top level of oil in the engine's crankcase. The crankcase ventilation passages extend from passages formed in the main bearing bulkheads from positions above the oil level in the crankcase and ultimately through the cylinder head. Oil dams surrounding the uppermost portions of the crankcase ventilation passages prevent oil from running downwardly through the crankcase ventilation passages.

Boggs, David Lee (Bloomfield Hills, MI); Baraszu, Daniel James (Plymouth, MI); Foulkes, David Mark (Erfstadt, DE); Gomes, Enio Goyannes (Ann Arbor, MI)

1998-01-01T23:59:59.000Z

252

Safety Standards  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

US DOE Workshop US DOE Workshop September 19-20, 2012 International perspective on Fukushima accident Miroslav Lipár Head, Operational Safety Section M.Lipar@iaea.org +43 1 2600 22691 2 Content * The IAEA before Fukushima -Severe accidents management * The IAEA actions after Fukushima * The IAEA Action plan on nuclear safety * Measures to improve operational safety * Conclusions THE IAEA BEFORE FUKUSHIMA 4 IAEA Safety Standards IAEA Safety Standards F undamental S afety Principles Safety Fundamentals f o r p ro te c ti n g p e o p l e a n d t h e e n v i ro n m e n t IAEA Safety Standards Regulations for the Safe Transport of Radioactive Material 2005 E dit ion Safety Requirements No. T S-R-1 f o r p ro te c ti n g p e o p l e a n d t h e e n v i ro n m e n t IAEA Safety Standards Design of the Reactor Core for Nuclear Power Plants

253

Quantification of the relationship between pulmonary ventilation rate and vapor contaminant concentration in exposure profiles  

E-Print Network (OSTI)

The Human Factor's Laboratory located on the garage level of the Zachry Engineering Center was used as the exposure chamber facility. It has an approximate volume of 107, 000 liters. Through the use of an elaborate environmental monitoring... The Human Factor's Laboratory located on the garage level of the Zachry Engineering Center was used as the exposure chamber facility. It has an approximate volume of 107, 000 liters. Through the use of an elaborate environmental monitoring...

Horbal, Terrence Myron

2012-06-07T23:59:59.000Z

254

INDOOR AIR QUALITY AND ENERGY EFFICIENT VENTILATION RATES AT A NEW YORK CITY ELEMENTARY SCHOOL  

E-Print Network (OSTI)

carbon monoxide, nitrogen dioxide, nitric oxide, ozone andppm) 10 mg/m 3 (9 ppm) Nitrogen dioxide EPA 100 M91m 3 (50and except for nitrogen dioxide in one of the classrooms.

Young, Rodger A.

2013-01-01T23:59:59.000Z

255

Effect of ventilation rates on indoor formaldehyde concentrations in Diana E. Hun1,*  

E-Print Network (OSTI)

and outdoor air were sampled. Formaldehyde Proceedings of Healthy Buildings 2009 Paper 695 #12;concentrations

Siegel, Jeffrey

256

Energy Standard  

Gasoline and Diesel Fuel Update (EIA)

Hall Hall October 2011 Analysis of Impacts of a Clean www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the U.S. Department of Energy or other Federal agencies. U.S. Energy Information Administration | Analysis of Impacts of a Clean Energy Standard as requested by Chairman Hall i Contacts This report, Analysis of Impacts of a Clean Energy Standard as requested by Chairman Hall, was prepared under the

257

Energy Standard  

Gasoline and Diesel Fuel Update (EIA)

Bingaman Bingaman November 2011 Analysis of Impacts of a Clean www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the U.S. Department of Energy or other Federal agencies. U.S. Energy Information Administration | Analysis of Impacts of a Clean Energy Standard as requested by Chairman Bingaman i Contacts This report, Analysis of Impacts of a Clean Energy Standard, as requested by Chairman Bingaman, was prepared

258

Evaluation of pulmonary ventilation in horses during methoxyflurane anesthesia  

E-Print Network (OSTI)

and venous pH, pCO2, p02, and HCO3 in evaluating pulmonary ventilation and the metabolic status of the horse. LITERATURE REVIEW 8oth methoxyflurane and halothane were first used in the early 1960's as inhalation anesthetics ' ' ' ' ' . These agents were... 7)12, 13, 15, 28&36 primarily responsible for the increase in popularity of gas anesthesia in veterinary medicine. Inhalation anesthesia with these agents pro- duced some long awaited advantages over intravenous long-acting bar- biturates...

McDonald, Don Reed

2012-06-07T23:59:59.000Z

259

December 2007 Standards Forum and Standards Actions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Standards Forum & Standards Actions Page 1 December 2007 The Standards Forum & Standards Actions Page 1 December 2007 Continued on next page Technical Standards Program Manager's Note 1 Teaching Standards Development- Inspiring the Next Generation 2 The EPA Radiation Standard for Spent-Fuel Storage in a Geological Repository 3 Expanded Access to Hydrogen Codes and Standards 4 Really Following the Building Code 6 Technical Standards Manager Spotlight 7

260

Economic Analysis and Optimization of Exterior Insulation Requirements for Ventilated Buildings at Power Generation Facilities with High Internal Heat Gain  

E-Print Network (OSTI)

Industrial buildings require a large amount of heating and ventilation equipment to maintain the indoor environment within acceptable levels for personnel protection and equipment protection. The required heating and ventilation equipment...

Hughes, Douglas E.

2010-12-17T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation rate standards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Effect of fluctuating wind direction on cross natural ventilation in buildings from large eddy simulation  

E-Print Network (OSTI)

wind direction, and the simulated results agree reasonably with the corresponding experimental data is the use of small-scale models in a wind tunnel to simulate natural ventilation. In general, the mean flow1 Effect of fluctuating wind direction on cross natural ventilation in buildings from large eddy

Chen, Qingyan "Yan"

262

Created: July, 2014 Laboratory Safety Design Guide Section 3 Laboratory Ventilation  

E-Print Network (OSTI)

Created: July, 2014 Laboratory Safety Design Guide Section 3 ­ Laboratory Ventilation 3-1 Section 3 ...................................................................................3-5 #12;Created: July, 2014 Laboratory Safety Design Guide Section 3 ­ Laboratory Ventilation 3-2 A without compromising safety or system integrity. The following should be included unless alternate design

Queitsch, Christine

263

Ventilation performance prediction for buildings: Model Assessment Qingyan Chena,b,*  

E-Print Network (OSTI)

1 Ventilation performance prediction for buildings: Model Assessment Qingyan Chena,b,* , Kisup Leeb building, but cannot provide detailed flow information in a room. The zonal model can be useful when a user ventilation systems for buildings requires a suitable model to assess system performance. The performance can

Chen, Qingyan "Yan"

264

ENERGY ANALYSISF FOR WORKSHOPS WITH FLOOR-SUPPLY DISPLACEMENT VENTILATION UNDER THE U.S. CLIMATES  

E-Print Network (OSTI)

use more fan and boiler energy but less chiller energy than the mixing ventilation system. The total in order to handle the high cooling loads found in U.S. buildings. Thus, the displacement ventilation, the chiller efficiency is increased. Besides, the

Chen, Qingyan "Yan"

265

The Improvement of Natural Ventilation in an Industrial Workshop by Solar Chimney  

Science Journals Connector (OSTI)

This paper presents a numerical simulation based on computational fluid dynamics (CFD) method on the enhancement of natural ventilation in an industrial workshop with heat source induced by solar chimney (SC). Four types of SC were designed to attach ... Keywords: natural ventilation, solar chimney, industrtial workshop, numerical simulation, thermal comfort

Yu-feng Xue; Ya-xin Su

2011-02-01T23:59:59.000Z

266

Ventilation and Air Quality in Indoor Ice Skating Arenas Chunxin Yang, Ph.D.1  

E-Print Network (OSTI)

Ventilation and Air Quality in Indoor Ice Skating Arenas Chunxin Yang, Ph.D.1 Philip Demokritou, and the operation strategy of the ventilation system are significant contributing factors to the indoor air quality contamination levels in the arenas. Keywords: Air distribution, health, skating rink, indoor air quality, space

Chen, Qingyan "Yan"

267

A case study of boundary layer ventilation by convection and coastal processes  

E-Print Network (OSTI)

of the pollution in the atmosphere originates from emissions in the atmospheric boundary layer, the region; published 12 September 2007. [1] It is often assumed that ventilation of the atmospheric boundary layer responsible for ventilation of the atmospheric boundary layer during a nonfrontal day that occurred on 9 May

Dacre, Helen

268

Modeling Coupled Evaporation and Seepage in Ventilated Cavities  

SciTech Connect

Cavities excavated in unsaturated geological formations are important to activities such as nuclear waste disposal and mining. Such cavities provide a unique setting for simultaneous occurrence of seepage and evaporation. Previously, inverse numerical modeling of field liquid-release tests and associated seepage into cavities were used to provide seepage-related large-scale formation properties by ignoring the impact of evaporation. The applicability of such models was limited to the narrow range of ventilation conditions under which the models were calibrated. The objective of this study was to alleviate this limitation by incorporating evaporation into the seepage models. We modeled evaporation as an isothermal vapor diffusion process. The semi-physical model accounts for the relative humidity, temperature, and ventilation conditions of the cavities. The evaporation boundary layer thickness (BLT) over which diffusion occurs was estimated by calibration against free-water evaporation data collected inside the experimental cavities. The estimated values of BLT were 5 to 7 mm for the open underground drifts and 20 mm for niches closed off by bulkheads. Compared to previous models that neglected the effect of evaporation, this new approach showed significant improvement in capturing seepage fluctuations into open cavities of low relative humidity. At high relative-humidity values (greater than 85%), the effect of evaporation on seepage was very small.

T. Ghezzehei; R. Trautz; S. Finsterle; P. Cook; C. Ahlers

2004-07-01T23:59:59.000Z

269

Overall Ventilation System Flow Network Calculation for Site Recommendation  

SciTech Connect

The scope of this calculation is to determine ventilation system resistances, pressure drops, airflows, and operating cost estimates for the Site Recommendation (SR) design as detailed in the ''Site Recommendation Subsurface Layout'' (BSC (Bechtel SAIC Company) 2001a). The statutory limit for emplacement of waste in Yucca Mountain is 70,000 metric tons of uranium (MTU) and is considered the base case for this report. The objective is to determine the overall repository system ventilation flow network for the monitoring phase during normal operations and to provide a basis for the system description document design descriptions. Any values derived from this calculation will not be used to support construction, fabrication, or procurement. The work scope is identified in the ''Technical Work Plan for Subsurface Design Section FY01 Work Activities'' (CRWMS M&O 2001, pp. 6 and 13). In accordance with the technical work plan this calculation was prepared in accordance with AP-3.12Q, ''Calculations'' and other procedures invoked by AP-3.12Q. It also incorporates the procedure AP-SI1.Q, ''Software Management''.

Jeff J. Steinhoff

2001-08-02T23:59:59.000Z

270

Rate Schedules  

Energy.gov (U.S. Department of Energy (DOE))

One of the major responsibilities of Southeastern is to design, formulate, and justify rate schedules. Repayment studies prepared by the agency determine revenue requirements and appropriate rate...

271

May 2007 Standards Actions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technical Technical Standards in Revision 1 DOE Technical Standards Posted in RevCom for TSP 1 DOE Technical Standards in Reaffirmation 1 DOE Technical Standards Change Notices 1 DOE Technical Standards Published 1 Non-Government Standards Actions 2

272

An overview of the TA-55, Building PF-4 ventilation system  

SciTech Connect

An overview of the TA-55, Building PF-4 ventilation system is provided in the following sections. Included are descriptions of the zone configurations, equipment-performance criteria, ventilation support systems, and the ventilation-system evaluation criteria. Section 4.2.1.1 provides a brief discussion of the ventilation system function. Section 4.2.1.2 provides details on the overall system configuration. Details of system interfaces and support systems are provided in Section 4.2.1.3. Section 4.2.1.4 describes instrumentation and control needed to operate the ventilation system. Finally, Sections 4.2.1.5 and 4.2.1.6 describe system surveillance/maintenance and Technical Safety Requirements (TSR) Limitations, respectively. Note that the numerical parameters included in this description are considered nominal; set points and other specifications actually fall within operational bands.

NONE

1994-02-22T23:59:59.000Z

273

Steady State Flammable Gas Release Rate Calculation and Lower Flammability Level Evaluation for Hanford Tank Waste  

SciTech Connect

This work is to assess the steady-state flammability level at normal and off-normal ventilation conditions in the tank dome space for 177 double-shell and single-shell tanks at Hanford. Hydrogen generation rate was calculated for 177 tanks using rate equation model developed recently.

HU, T.A.

2000-04-27T23:59:59.000Z

274

STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION AND LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE  

SciTech Connect

Assess the steady-state flammability level at normal and off-normal ventilation conditions. The hydrogen generation rate was calculated for 177 tanks using the rate equation model. Flammability calculations based on hydrogen, ammonia, and methane were performed for 177 tanks for various scenarios.

HU TA

2009-10-26T23:59:59.000Z

275

Functional Area Qualification Standard Job Task Analyses | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Assistance » Federal Technical Capability Program » Services » Assistance » Federal Technical Capability Program » Functional Area Qualification Standard Job Task Analyses Functional Area Qualification Standard Job Task Analyses DOE Aviation Manager DOE Aviation Safety Officer Chemical Processing Civil/Structural Engineering Confinement Ventilation and Process Gas Treatment Construction Management Deactivation and Decommissioning Electrical Systems and Safety Oversight Emergency Management Environmental Compliance Environmental Restoration Facility Representative Fire Protection Engineering General Technical Base Industrial Hygiene Instrument and Controls NNSA Package Certification Engineer Nuclear Explosive Safety Study Nuclear Safety Specialist Quality Assurance Radiation Protection Safeguards and Security Safeguards and Security General Technical Base

276

Functional Area Qualification Standard Qualification Cards | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Assistance » Federal Technical Capability Program » Services » Assistance » Federal Technical Capability Program » Functional Area Qualification Standard Qualification Cards Functional Area Qualification Standard Qualification Cards Note: 1. Save the document from the website onto your PC and close it. 2. Open the document on your PC. Answer "No" to the question regarding whether to open the documents as read only. Aviation Manager Aviation Safety Officer Chemical Processing Civil Structural Engineering Confinement Ventilation and Process Gas Treatment Construction Management Criticality Safety Deactivation and Decommissioning Electrical Systems and Safety Oversight Emergency Management Environmental Compliance Environmental Restoration Facility Maintenance Management Facility Representative Fire Protection

277

Standard-D hydrogen monitoring system, system design description  

SciTech Connect

During most of the year, it is assumed that the vapor space in the 177 radioactive waste tanks on the Hanford Project site contain a uniform mixture of gases. Several of these waste tanks (currently twenty-five, 6 Double Shell Tanks and 19 Single Shell Tanks) were identified as having the potential for the buildup of gasses to a flammable level. An active ventilation system in the Double Shell Tanks and a passive ventilation system in the Single Shell Tanks provides a method of expelling gasses from the tanks. A gas release from a tank causes a temporary rise in the tank pressure, and a potential for increased concentration of hydrogen gas in the vapor space. The gas is released via the ventilation systems until a uniform gas mixture in the vapor space is once again achieved. The Standard Hydrogen Monitoring System (SHMS) is designed to monitor and quantify the percent hydrogen concentration during these potential gas releases. This document describes the design of the Standard-D Hydrogen Monitoring System, (SHMS-D) and its components as it differs from the original SHMS.

Schneider, T.C.

1996-09-26T23:59:59.000Z

278

Entergy Texas - Residential and Small Commercial Standard Offer Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Entergy Texas - Residential and Small Commercial Standard Offer Entergy Texas - Residential and Small Commercial Standard Offer Program Entergy Texas - Residential and Small Commercial Standard Offer Program < Back Eligibility Commercial Construction Low-Income Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Other Ventilation Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Large Projects: 12.5% of total budget; or $237,500 (Residential); $162,500 for Hard-To-Reach A/C and Heat Pump Program: $40,000 Program Info State Texas Program Type Utility Rebate Program Rebate Amount Residential Standard Offer: $250/kW + $0.081/kWh Hard To Reach Standard Offer Program (all measures except CFL): $440/kW +

279

Rates - WAPA-137 Rate Order  

NLE Websites -- All DOE Office Websites (Extended Search)

WAPA-137 Rate Order WAPA-137 Rate Order 2009 CRSP Management Center Customer Rates Second Step Presentation from the June 25, 2009, Customer Meeting Handout Materials from the June 25, 2009, Customer Meeting Customer Comment Letters ATEA CREDA Farmington ITCA AMPUA Rate Adjustment Information The second step of WAPA-137 SLCA/IP Firm Power, CRSP Transmission and Ancillary Services rate adjustment. FERC Approval of Rate Order No. WAPA-137 Notice Of Filing for Rate Order No. WAPA-137 Published Final FRN for Rate Order No. WAPA-137 Letter to Customers regarding the published Notice of Extension of Public Process for Rate Order No. WAPA-137 Published Extension of Public Process for Rate Order No. WAPA-137 FRN Follow-up Public Information and Comment Forum Flier WAPA-137 Customer Meetings and Rate Adjustment Schedule

280

Effect of room air recirculation delay on the decay rate of tracer gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Effect of room air recirculation delay on the decay rate of tracer gas Effect of room air recirculation delay on the decay rate of tracer gas concentration Title Effect of room air recirculation delay on the decay rate of tracer gas concentration Publication Type Journal Article Year of Publication 2007 Authors Lorenzetti, David M., Astrid H. Kristoffersen, and Ashok J. Gadgil Journal Indoor Air Pagination 7 Keywords recirculating ventilation, tracer decay rate Abstract Tracer gas measurements are used to estimate the flow rate of fresh air into a room or building. These methods commonly account for the decay of tracer gas concentration as the result of ventilation air supply and infiltration, using a well-mixed model of the space. Some researchers also have considered the effect of leakage in the ventilation ductwork. This paper considers the effect of recirculation through ventilation ducts on the calculated fresh air supply rate. Transport delay in the ducts can significantly alter the time evolution of tracer concentration, and hence alter the estimated air change rate.

Note: This page contains sample records for the topic "ventilation rate standards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

The Standards Forum, June 2001  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

By Rick Serbu, Manager, Technical Standards Program, U.S. Department of Energy By Rick Serbu, Manager, Technical Standards Program, U.S. Department of Energy T his article provides some discussion and information on incorpo- rating DOE Orders in contracts in general, and DOE O 252.1 (Technical Standards Program) in particular. This information may be of use in making a realistic assessment, from both a business and a contractual per- spective, of whether or not a DOE site "needs" an Order. Much of this information is covered in DOE G 252.1-1 (Technical Standards Program Guide). In essence, the Technical Standards Program (TSP) provides the means for DOE (and its contractors) to comply with Federal law and policy, and it establishes the infrastructure for DOE to conduct standards-related business and implement commitments made by DOE in re-

282

March 2007 Standards Forum and Standards Actions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 2007 March 2007 Continued on next page TSP Manager's Notes 1 Domestic Programs (American National Standards) Overview 2 Aerospace Industry Advocates Standards Selection Based on Technical Merit, Not Semantics 3 Report Recommends Withdrawal of OMB Risk Assessment Bulletin 4 Technical Standards Manager Spotlight 5 Topical Committee Developments 6 Welcome Aboard the TSMC! 7 Standards Actions 8 DOE Standards Actions 8

283

Thermal Comfort of Neutral Ventilated Buildings in Different Cities  

E-Print Network (OSTI)

Although the ASHRAE 55-1992 and ISO 7730 Standards are used all over the world, many researchers have pointed out that it is impossible to maintain a uniform thermal comfort standard worldwide because of differing climate conditions. Two field...

Ye, X.; Zhou, Z.; Lian, Z.; Wen, Y.; Zhou, Z.; Jiang, C.

2006-01-01T23:59:59.000Z

284

September 2004 Standards Forum and Standards Actions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16 Cancellation in Progress - 3 Inside This Issue Visit the Technical Standards Program Web Site at http:tis.eh.doe.govtechstds September 2004 The Standards Forum and...

285

NREL: Technology Deployment - Standard Work Specifications for Home Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Standard Work Specifications for Home Energy Upgrades Standard Work Specifications for Home Energy Upgrades Online Tool Explore the Standard Work Specifications Online Tool now. The Standard Work Specifications (SWS) for Home Energy Upgrades is an industry resource developed under the U.S. Department of Energy's (DOE) Guidelines for Home Energy Professionals project. DOE chose NREL to drive the technical aspects of the project, along with the communication and outreach efforts. The SWS define the outcomes of quality work within the home energy upgrade industry, setting uniform expectations that can be leveraged in energy audits, scopes of work, quality control efforts, and training. The SWS reflect a whole-house approach to installing energy-efficiency measures and include ventilation, insulation, air sealing, and more. Safe work

286

A scaling investigation of the laminar convective flow in a solar chimney for natural ventilation  

Science Journals Connector (OSTI)

Abstract The flow behavior due to natural convection of air (with a Prandtl number less than 1) inside a solar chimney with an imposed heat flux on a vertical absorber wall is investigated by a scaling analysis and a corresponding numerical simulation. Three distinct flow regimes are identified, one with a distinct thermal boundary layer and the other two without a distinct thermal boundary layer, depending on the Rayleigh number. The two regimes without a distinct thermal boundary layer are further classified into low and medium Rayleigh number sub-regimes respectively. These sub-regimes are characterized by conduction dominance in which the thermal boundary layer grows to encompass the entire width of the channel before convection becomes important. Flow development in each of these flow regimes and sub-regimes is characterized through transient scaling, and scaling correlations are developed to describe the temperature, flow velocity and mass flow rate, which characterize the ventilation performance of the solar chimney. The scaling arguments are validated by the corresponding numerical data.

Rakesh Khanal; Chengwang Lei

2014-01-01T23:59:59.000Z

287

Air temperature effect on thermal models for ventilated dry-type transformers  

Science Journals Connector (OSTI)

The temperature of the air surrounding the windings of ventilated dry-type transformers is an important factor in the cooling of the windings since they are cooled only by the air. In particular, inner windings are sensitive to the air temperature in vertical cooling ducts. This study presents air temperature effect on the temperatures in foil-type inner winding for the dry-type transformers. A transformer rated at 2000kVA was selected for the research and temperature distribution was calculated under constant and varying air temperatures inside vertical ducts at three different loads. The 2-D transient heat diffusion equation was solved using the finite element method by coupling it with the vector potential equation due to non-uniformly generated heat caused by eddy currents in the foil winding. The calculated temperatures at constant and varying air temperatures are presented together with experimental values. The numerical and experimental results of this study showed that the air temperature affects the accuracy of temperatures in foil-type inner winding greatly.

Moonhee Lee; Hussein A. Abdullah; Jan C. Jofriet; Dhiru Patel; Murat Fahrioglu

2011-01-01T23:59:59.000Z

288

Rate schedule  

NLE Websites -- All DOE Office Websites (Extended Search)

Firm Power Service Provided by Rate/Charges Firm Power Service Provided by Rate/Charges Rate/Charges Effective Through (or until superceded) Firm Sales (SLIP-F9) Composite Rate SLIP 29.62 mills/kWh 9/30/2015 Demand Charge SLIP $5.18/kW-month 9/30/2015 Energy Charge SLIP 12.19 mills/kWh 9/30/2015 Cost Recovery Charge (CRC) SLIP 0 mills/kWh 9/30/2015 Transmission Service Provided by Current Rates effective10/12 - 9/15 (or until superceded) Rate Schedule Effective Through Firm Point-to-Point Transmission (SP-PTP7) CRSP $1.14 per kW-month $13.69/kW-year $0.00156/kW-hour $0.04/kW-day $0.26/kW-week 10/1/2008-9/30/2015 Network Integration Transmission (SP-NW3) CRSP see rate schedule 10/1/2008-9/30/2015 Non-Firm Point-to-Point Transmission (SP-NFT6) CRSP see rate schedule 10/1/2008-9/30/2015 Ancillary Services Provided by Rate Rate Schedule

289

May 2006 Standards Actions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Standards Actions 1 Standards Actions 1 New Projects and Technical Standards in Revision 1 DOE Technical Standards Posted in RevCom for TSP 1 DOE Technical Standards in Reaffirmation 1 DOE Technical Standards Change Notices 1 DOE Technical Standards Published 1 Non-Government Standards Actions 1 American National Standards Institute (ANSI) 1 American Society of Mechanical Engineers (ASME) 2 ASTM International 2 American Nuclear Society (ANS) 2 National Fire Protection Association (NFPA) 2

290

Are We Ready to Propose Guidelines for Health-Based Ventilation?  

NLE Websites -- All DOE Office Websites (Extended Search)

Are We Ready to Propose Guidelines for Health-Based Ventilation? Are We Ready to Propose Guidelines for Health-Based Ventilation? Speaker(s): Pawel Wargocki Date: October 14, 2013 - 12:00pm - 1:00pm Location: 90-3122 Seminar Host/Point of Contact: Mark Mendell Guidelines for health-based ventilation in Europe are proposed. They follow the premise of controlling exposures to indoor air pollutants of both indoor and outdoor origin. Exposures are controlled through a two-step sequential approach, in which source control is the primary strategy, while ventilation is the secondary strategy once all options for source control have been fully implemented. World Health Organization (WHO) air quality (AQ) guidelines are used to set the exposure limits. A decision diagram is created for guidance through the process of source control and to aid in

291

Building America Top Innovations Hall of Fame Profile … Low-Cost Ventilation in Production Housing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

simple, cost-effective techniques for providing fresh air throughout the home, including exhaust-only and central fan-integrated supply ventilation. Building America has refined simple whole-house ventilation systems that cost less than $350 to install. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.3 Assured Health, Safety, and Durability Low-Cost Ventilation in Production Housing As high-performance homes get more air-tight and better insulated, attention to good indoor air quality becomes essential. Building America has effectively guided the nation's home builders to embrace whole-house ventilation by developing low-cost options that adapt well to their production processes. When the U.S. Department of Energy's Building America research teams began

292

Influence of ventilation arrangements on particle removal in industrial cleanrooms with various tool coverage  

Science Journals Connector (OSTI)

This paper aims to investigate the influence of comparative ventilation arrangements (wall-return, locally balanced ceiling-return, and four-way ceiling-return) on the airflow distribution and particle fates w...

Yun-Chun Tung; Shih-Cheng Hu; Tengfang Xu; Ren-Huei Wang

2010-03-01T23:59:59.000Z

293

Behavior of a Nuclear Power Plant Ventilation Stack for Wind Loads  

Science Journals Connector (OSTI)

This paper describes behavior of self supporting tall reinforced concrete (RC) ventilation stack of a nuclear power plant (NPP) for wind loads. Since the static and equivalent dynamic wind loads are inter-dependa...

V. Venkatachalapathy

2012-05-01T23:59:59.000Z

294

Experimental Study of the Floor Radiant Cooling System Combined with Displacement Ventilation  

E-Print Network (OSTI)

ICEBO2006, Shenzhen, China HVAC Technologies for Energy Efficiency, Vol. IV-11-4 Experimental Study of the Floor Radiant Cooling System Combined with Displacement Ventilation Yanli Ren1, Deying Li2, Yufeng Zhang1 1...

Ren, Y.; Li, D.; Zhang, Y.

2006-01-01T23:59:59.000Z

295

Modeling Ventilation in Multifamily Buildings John Markley, University of California, Davis -Western Cooling Efficiency Center  

E-Print Network (OSTI)

Modeling Ventilation in Multifamily Buildings John Markley, University of California, Davis outlines the results from energy models of several multifamily building configurations to improve airflow component of multifamily building design due to its effects on occupant health and comfort. Though

California at Davis, University of

296

Workers Remove Glove Boxes from Ventilation at Hanfords Plutonium Finishing Plant  

Energy.gov (U.S. Department of Energy (DOE))

An employee at Hanfords Plutonium Finishing Plant uses a portable band saw to cut the last ventilation duct attached to glove boxes inside the facilitys former processing area.

297

Increasing ventilation in commercial cattle trailers to decrease shrink, morbidity, and mortality  

E-Print Network (OSTI)

moving livestock trailers, an experimental treatment that increased cross-ventilation within commercial cattle trailers by installing aluminum scoops to punch-hole trailers was evaluated. Environmental factors including temperature, ammonia and carbon...

Giguere, Nicole Marie

2009-06-02T23:59:59.000Z

298

Integrated Demand Controlled Ventilation for Single Duct VAV System with Conference Rooms  

E-Print Network (OSTI)

. This paper presents a new integrated demand controlled ventilation (IDCV) methodology which can ensure acceptable IAQ and energy savings with lower OA intake ratio. The requirement on hardware and software is simple and the implementation is easy. One office...

Yu, Y.; Liu, M.; Cho, Y.; Xu, K.

2007-01-01T23:59:59.000Z

299

The Potential for Wind Induced Ventilation to Meet Occupant Comfort Conditions  

E-Print Network (OSTI)

This paper describes a simple graphic tool that enables a building designer to evaluate the potential for wind induced ventilation cooling in several climate zones. Long term weather data were analyzed to determine the conditions for which available...

Byrne, S. J.; Huang, Y. J.; Ritschard, R. L.; Foley, D. M.

1985-01-01T23:59:59.000Z

300

A Method for Evaluating the Application of Variable Frequency Drives with Coal Mine Ventilation Fans.  

E-Print Network (OSTI)

??The adjustable-pitch setting on an axial-flow fan is the most common method of controlling airflow for primary coal mine ventilation. With this method, the fan (more)

Murphy, Tyson M.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation rate standards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Control of the microclimate around the head with opposing jet local ventilation  

E-Print Network (OSTI)

ventilation application. Healthy Buildings 2003, Singapore.21 (1996) 427-436. Healthy Buildings 2009, September 13-17,distance is 1.20m. Healthy Buildings 2009, September 13-17,

Liu, Chonghui; Higuchi, Hiroshi; Arens, Edward; Zhang, Hui Ph.D

2009-01-01T23:59:59.000Z

302

Energy and air quality implications of passive stack ventilation in residential buildings  

E-Print Network (OSTI)

scaling the passive stack diameter with house size (floora single-story house ventilated by a passive stack with andTable 1: Passive stack diameters scaling with house size

Mortensen, Dorthe Kragsig

2011-01-01T23:59:59.000Z

303

Interconnection Standards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Interconnection Standards Interconnection Standards < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Water Solar Wind Program Info State Iowa Program Type Interconnection Provider Iowa Utilities Board Different rules govern the interconnection of distributed generation facilities in Iowa, depending on whether or not the interconnection is with a utility whose rates are regulated by the Iowa Utilities Board (IUB). Rate regulated utilities include only the state's two investor-owned utilities -- MidAmerican Energy and Interstate Power and Light (IPL) -- and Linn

304

September 2006 Standards Forum/Standards Actions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 2006 September 2006 TSP Manager's Notes 1 TEN YEARS AFTER THE NTTAA: 1996-2006 2 Committee on Nuclear Fuel Cycle Approves Two New Standards 4 Renewable Portfolio Standards Help Wind Industry to Sail 5 Technical Standards Manager Spotlight 5 World Standards Day 2006 in

305

FEDERAL INFORMATION PROCESSING STANDARD  

E-Print Network (OSTI)

March 2004 FEDERAL INFORMATION PROCESSING STANDARD (FIPS) 199, STANDARDS FOR SECURITY Information Technology Laboratory National Institute of Standards and Technology A new Federal Information Processing Standard (FIPS), recently approved by the Secretary of Commerce, will help federal agencies

306

April 2006 Standards Actions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 New Projects and Technical Standards in Revision 1 DOE Technical Standards Posted in RevCom for TSP 1 DOE Technical Standards in Reaffirmation 1 DOE Technical Standards Change Notices 1 DOE Technical Standards Published 1 Non-Government Standards Actions 1 American National Standards Institute (ANSI) 1 American Society of Mechanical Engineers (ASME) 2 ASTM International 2 American Nuclear Society (ANS) 2 National Fire Protection Association (NFPA) 2 DOE Technical Standards Program Document Status

307

Cervical Cancer Rates in Allegheny County Communities.  

E-Print Network (OSTI)

??Aggregated cervical cancer rates for the 21 year period 1985 through 2005 were age-adjusted and standardized for each neighborhood and municipality in Allegheny County, Pennsylvania. (more)

Assenat, Mary Margaret

2012-01-01T23:59:59.000Z

308

Robust efficiency and actuator saturation explain healthy heart rate control and variability  

Science Journals Connector (OSTI)

...treated as compliant vessels, modeled in the form...iv) the metabolic consumption M; (v...multitasking, alcohol consumption, fatigue, or poor...signals (e.g., fuel or air rates, braking...ventilation V ? E , oxygen consumption V ? O 2 and carbon...

Na Li; Jerry Cruz; Chenghao Simon Chien; Somayeh Sojoudi; Benjamin Recht; David Stone; Marie Csete; Daniel Bahmiller; John C. Doyle

2014-01-01T23:59:59.000Z

309

October 2005 Standards Actions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Standards Actions 1 Standards Actions 1 New Projects and DOE Technical Standards in Revision 1 DOE Technical Standards Posted in RevCom for TSP 1 DOE Technical Standards in Reaffirmation 1 DOE Technical Standards Change Notices 1 DOE Technical Standards Recently Published 1 Non-Government Standards Actions 1 American National Standards Institute (ANSI) 1 American Society of Mechanical Engineers (ASME) 2 ASTM International 2 American Nuclear Society (ANS) 2 American Nuclear Society (ANS) 2 National Fire Protection Association (NFPA) 2 DOE Technical Standards Program

310

November 2005 Standards Actions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Technical DOE Technical Standards in Revision 1 DOE Technical Standards Posted in RevCom for TSP 1 DOE Technical Standards in Reaffirmation 1 DOE Technical Standards Change Notices 1 DOE Technical Standards Revisions 1 Non-Government Standards Actions 1 American National Standards Institute (ANSI) 1 American Society of Mechanical Engineers (ASME) 2 ASTM International 2 American Nuclear Society (ANS) 2 National Fire Protection Association

311

April 2007 Standards Actions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Projects and Technical Standards in Revision 1 DOE Technical Standards Posted in RevCom for TSP 1 DOE Technical Standards in Reaffirmation 1 DOE Technical Standards Change Notices 1 Technical Standards Published 2 Non-Government Standards Actions 2 American National Standards Institute (ANSI) 2 American Society of Mechanical Engineers (ASME) 2 ASTM International 2 American Nuclear Society (ANS) 2 National Fire Protection Association (NFPA) 2 DOE Technical

312

DOE Zero Energy Ready Home: Ventilation and Filtration Strategies with Indoor airPLUS Webinar (Text Version)  

Energy.gov (U.S. Department of Energy (DOE))

Below is the text version of the webinar, DOE Zero Energy Ready Home: Ventilation and Filtration Strategies with Indoor airPLUS, presented in August 2014.

313

Design of double skin (envelope) as a solar chimney: adapting natural ventilation in double envelope for mild or warm climates.  

E-Print Network (OSTI)

??In United States, space heating, space cooling and ventilation of buildings consume 33% of the annual building energy consumption and 15% of the total annual (more)

Wang, Lutao

2010-01-01T23:59:59.000Z

314

September 2005 Standards Forum and Standards Actions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Page September 2005 Page September 2005 TSP Manager's Notes 1 The Halo Effect: American National Standards and the rest 2 Standards Development for Report- ing of Declarable Substances 5 Technical Standards Manager Spotlight 8 DOE Revises "Integration of Environment, Safety, and Health

315

The Standard Model Beyond the Standard Model  

E-Print Network (OSTI)

physics with top quark Search for Extra-dimensions Conclusions 1 The Standard Model Building block quark Search for Extra-dimensions Conclusions Building block The particles and forces The Standard Model the Standard Model New physics with top quark Search for Extra-dimensions Conclusions Building block

316

December 2006 Standards Forum and Standards Actions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 2006 December 2006 TSP Manager's Notes 1 Meeting In The Middle 2 Plain Talk for a New Generation 3 Licensing New Nuclear Power Plants 4 ANSI Government Affairs Overview 5 Technical Standards Manager Spotlight 7 Topical Committee Developments 8 Welcome Aboard the TSMC! 8 Standards Actions 9 DOE Standards Actions 9

317

Ventilator-Associated Pneumonia: Diagnosis, Treatment, and Prevention  

Science Journals Connector (OSTI)

...analysis of a gold standard. Chest 112: 458-465...patients: systematic review of randomised controlled...Cochrane systematic review and meta-analysis...health care. This article reviews the literature with regard...approaches, treatment plans, and prevention strategies...

Steven M. Koenig; Jonathon D. Truwit

2006-10-01T23:59:59.000Z

318

Preconditioning Outside Air: Cooling Loads from Building Ventilation  

E-Print Network (OSTI)

of the standard. To mitigate or nullify these additional weather loads, outdoor air preconditioning technologies are being promoted in combination with conventional HVAC operations downstream as a means to deliver the required fresh air and control humidity...

Kosar, D.

1998-01-01T23:59:59.000Z

319

Standards Actions, July 2002  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Standards Program Document Status 07-01-2002 Activity Summary In Conversion - 4 In Preparation - 46 Out for Comment - 14 Published this Month - 2 5-year Review Status Revision in Progress - 11 Reaffirmation in Progress - 12 Cancellation Pending - 7 Cancellation in Progress - 1 No Current Action - 19 Inside this issue: DOE Technical Standards Projects Initiated 1 DOE Technical Standards Re- cently Sent for Coordination 1 DOE Technical Standards Re- cently Published 1 American National Standards Institute 2 American Society for Testing and Materials International 4 Visit the Technical Standards Program Web Site at http://tis.eh.doe.gov/techstds/. Standards Actions- July 2002 Standards Actions DOE Technical Standards Projects Initiated

320

Standards Actions, May 2001  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30-2001 30-2001 Activity Summary In Conversion - 4 In Preparation - 39 Out for Comment - 19 Published this Month - 0 5-year Review Status Revision in Progress - 4 Reaffirmation in Progress - 23 Cancellation Pending - 9 Cancellation in Progress - 18 No Current Action - 12 Inside this issue: DOE Technical Standards Projects Initiated 1 DOE Technical Standards Proposed for Reaffirmation 1 Proposed Cancellation of DOE Technical Standards 2 Published DOE Technical Standards 3 American National Standards Institute 3 American National Standards 6 American Society for Testing and Materials 6 Visit the Technical Standards Program Web Site at http://tis.eh.doe.gov/techstds/. May 2001 Standards Actions DOE Technical Standards Projects Initiated

Note: This page contains sample records for the topic "ventilation rate standards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

DOE Technical Standards Program Standards Actions Newsletter  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

* * New DOE Standard, Communicating Waste Characterization and DOT Hazard Classification Requirements * Workshops and Events * The Annual Energy Facility Contractors Group Safety Analysis Workshop * 2012 Chemical Safety and Life Cycle Management Workshop * Nuclear Safety- Related Standards Activity INSIDE THIS ISSUE April 2012 Standards Actions Technical Standards Program Newsletter www.hss.energy.gov/nuclearsafety/ns/techstds/ New DOE Standard, Communicating Waste Characterization and DOT Hazard Classification Requirements The Department of Energy (DOE) Office of Environmental Management (EM) has a challenging mission to solve many problems posed by the legacy of the Cold War, including the transportation of unprecedented amounts of contaminated waste,

322

May 2005 Standards Actions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Notices 1 DOE Technical Standards Revisions 1 DOE Technical Standards Projects Initiated 1 Non-Government Standards Actions 1 American National Standards Institute (ANSI) 1 American Society of Mechanical Engineers (ASME) 2 ASTM International 2 American Nuclear Society (ANS) 2 National Fire Protection Association (NFPA) 2 DOE Technical Standards Program Document Status 04-27-2005 Activity Summary In Conversion - 4 In Preparation - 25

323

DOE Approved Technical Standards  

Energy.gov (U.S. Department of Energy (DOE))

The DOE Technical Standards Program promotes the use of voluntary consensus standards at DOE, manages and facilitates DOE's efforts to develop and maintain necessary technical standards, and communicates information on technical standards activities to people who develop or use technical standards in DOE.

324

Cleanup and Dismantling of Highly Contaminated Ventilation Systems Using Robotic Tools - 13162  

SciTech Connect

The UP1 plant reprocessed nearly 20,000 tons of used natural uranium gas cooled reactor fuel coming from the first generation of civil nuclear reactors in France. Following operating incidents in the eighties, the ventilation system of the continuous dissolution line facility was shut down and replaced. Two types of remote controlled tool carriers were developed to perform the decontamination and dismantling operations of the highly contaminated ventilation duct network. The first one, a dedicated small robot, was designed from scratch to retrieve a thick powder deposit within a duct. The robot, managed and confined by two dedicated glove boxes, was equipped for intervention inside the ventilation duct and used for carrying various cleanup and inspection tools. The second type, consisting of robotic tools developed on the base of an industrial platform, was used for the clean-up and dismantling of the ventilation duct system. Depending on the type of work to be performed, on the shape constraints of the rooms and any equipment to be dismantled, different kinds of robotic tools were developed and installed on a Brokk 40 carrier. After more than ten years of ventilation duct D and D operations at the UP1 plant, a lot of experience was acquired about remote operations. The three main important lessons learned in terms of remote controlled operation are: characterizing the initial conditions as much as reasonably possible, performing non-radioactive full scale testing and making it as simple and modular as possible. (authors)

Chambon, Frederic [AREVA FEDERAL SERVICES, Columbia MD (United States)] [AREVA FEDERAL SERVICES, Columbia MD (United States); CIZEL, Jean-Pierre [AREVA BE/NV, Marcoule (France)] [AREVA BE/NV, Marcoule (France); Blanchard, Samuel [CEA DEN/DPAD, Marcoule (France)] [CEA DEN/DPAD, Marcoule (France)

2013-07-01T23:59:59.000Z

325

An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique  

SciTech Connect

In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s (18.0 l/min) for the mono-directional sensor and a measurement range of {+-}3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s ({+-}18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono-directional configuration, the coefficient of determination r{sup 2} is equal to 0.997; for the bi-directional configuration, the coefficient of determination r{sup 2} is equal to 0.990 for positive flows (inspiration) and 0.988 for negative flows (expiration). Measurement uncertainty {delta}Q of air flow rate has been evaluated by means of the propagation of distributions and the percentage error in the arrangement of bi-directional sensor ranges from a minimum of about 0.5% at -18.0 l/min to a maximum of about 9% at -12.0 l/min.

Battista, L.; Sciuto, S. A.; Scorza, A. [Department of Engineering, ROMA TRE University, via della Vasca Navale 79/81, Rome (Italy)

2013-03-15T23:59:59.000Z

326

Environmental Standardization for Sustainability  

E-Print Network (OSTI)

Environmental Standardization for Sustainability by Professor John W. Bagby College of Information that environmental controls are expressed as environmental standards, a traditional driver of investment in pollution control. Environmental standards spur investment in green technologies that promise to stimulate

Bagby, John

327

February 2007 Standards Actions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Technical Standards Posted in RevCom for TSP 1 DOE Technical Standards in Reaffirmation 1 DOE Technical Standards Change Notices 1 DOE Technical Standards Published1 Non-Government Standards Actions 2 American National Standards Institute (ANSI) 2 American Society of Mechanical Engineers (ASME) 2 ASTM International 2 American Nuclear Society (ANS) 2 National Fire Protection Association (NFPA) 2 Publication Staff Roster 2

328

Energy Efficiency Standard | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency Standard Efficiency Standard Energy Efficiency Standard < Back Eligibility Investor-Owned Utility Municipal Utility Retail Supplier Rural Electric Cooperative Utility Savings Category Other Program Info State Iowa Program Type Energy Efficiency Resource Standard Provider Iowa Utilities Board In 2008, Iowa enacted S.B. 2386, which requires the Iowa Utilities Board (IUB) to create energy savings standards (electricity and natural gas) for all rate-regulated utilities. The IUB ordered utilities to reduce retail sales by 1.5% of average sales for the previous 3 years by December 31, 2011.* Utilities that are not rate-regulated (municipal and cooperative utilities) were required to establish their own energy efficiency goals. These goals were filed in December 2009. All utilities (rate-regulated and

329

Building America Top Innovations Hall of Fame Profile … Outside Air Ventilation Controller  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

partner Davis Energy partner Davis Energy Group worked with Monley Cronin Construction to build 100 energy-efficient homes in Woodland, CA, with night- cooling ventilation systems. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.3 Assured Health, Safety, and Durability Outside Air Ventilation Controller Building America researchers developed technologies to harness the natural day-night temperature swings in the U.S. Southwest to cut cooling energy peak demand with no compromise in comfort. Building America research has shown that, in dry climates, the use of ventilation cooling can significantly reduce, delay, or completely eliminate air conditioner operation resulting in both energy savings and reduction of peak demand

330

April 2011 Standards Actions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3009 3009 Revision * DOE Standard 1066 Revision * New DOE Standards Projects * Incidents of Security Concern Technical Standard * Explosives Safety * Operations Assessment Field Handbook * Reporting of Radioactive Sealed Sources Program * Occurrence Reporting Causal Analysis Guide * Nuclear Safety-Related Standards Activity INSIDE THIS ISSUE April 2011 Standards Actions Technical Standards Program Newsletter www.hss.energy.gov/nuclearsafety/ns/techstds/ DOE Standard 3009 Revision The Office of Nuclear Safety Policy and Assistance (HS-21), within the Office of Health, Safety and Security (HSS), conducted workshops in January and March to support a major revision of Department of Energy (DOE) Standard 3009, Preparation Guide for U.S. Department of Energy Nonreactor

331

Codes and Standards  

Energy.gov (U.S. Department of Energy (DOE))

Currently, thirteen U.S. and two international standards development organizations (SDOs) are developing and publishing the majority of the voluntary domestic codes and standards. These...

332

ADMINISTRATIVE AND ENGINEERING CONTROLS FOR THE OPERATION OF VENTILATION SYSTEMS FOR UNDERGROUND RADIOACTIVE WASTE STORAGE TANKS  

SciTech Connect

Liquid radioactive wastes from the Savannah River Site are stored in large underground carbon steel tanks. The majority of the waste is confined in double shell tanks, which have a primary shell, where the waste is stored, and a secondary shell, which creates an annular region between the two shells, that provides secondary containment and leak detection capabilities should leakage from the primary shell occur. Each of the DST is equipped with a purge ventilation system for the interior of the primary shell and annulus ventilation system for the secondary containment. Administrative flammability controls require continuous ventilation to remove hydrogen gas and other vapors from the waste tanks while preventing the release of radionuclides to the atmosphere. Should a leak from the primary to the annulus occur, the annulus ventilation would also serve this purpose. The functionality of the annulus ventilation is necessary to preserve the structural integrity of the primary shell and the secondary. An administrative corrosion control program is in place to ensure integrity of the tank. Given the critical functions of the purge and annulus ventilation systems, engineering controls are also necessary to ensure that the systems remain robust. The system consists of components that are constructed of metal (e.g., steel, stainless steel, aluminum, copper, etc.) and/or polymeric (polypropylene, polyethylene, silicone, polyurethane, etc.) materials. The performance of these materials in anticipated service environments (e.g., normal waste storage, waste removal, etc.) was evaluated. The most aggressive vapor space environment occurs during chemical cleaning of the residual heels by utilizing oxalic acid. The presence of NO{sub x} and mercury in the vapors generated from the process could potentially accelerate the degradation of aluminum, carbon steel, and copper. Once identified, the most susceptible materials were either replaced and/or plans for discontinuing operations are executed.

Wiersma, B.; Hansen, A.

2013-11-13T23:59:59.000Z

333

Software Verification & Validation Report for the 244-AR Vault Interim Stabilization Ventilation System  

SciTech Connect

This document reports on the analysis, testing and conclusions of the software verification and validation for the 244-AR Vault Interim Stabilization ventilation system. Automation control system will use the Allen-Bradley software tools for programming and programmable logic controller (PLC) configuration. The 244-AR Interim Stabilization Ventilation System will be used to control the release of radioactive particles to the environment in the containment tent, located inside the canyon of the 244-AR facility, and to assist the waste stabilization efforts. The HVAC equipment, ducts, instruments, PLC hardware, the ladder logic executable software (documented code), and message display terminal are considered part of the temporary ventilation system. The system consists of a supply air skid, temporary ductwork (to distribute airflow), and two skid-mounted, 500-cfm exhausters connected to the east filter building and the vessel vent system. The Interim Stabilization Ventilation System is a temporary, portable ventilation system consisting of supply side and exhaust side. Air is supplied to the containment tent from an air supply skid. This skid contains a constant speed fan, a pre-filter, an electric heating coil, a cooling coil, and a constant flow device (CFD). The CFD uses a passive component that allows a constant flow of air to pass through the device. Air is drawn out of the containment tent, cells, and tanks by two 500-cfm exhauster skids running in parallel. These skids are equipped with fans, filters, stack, stack monitoring instrumentation, and a PLC for control. The 500CFM exhaust skids were fabricated and tested previously for saltwell pumping activities. The objective of the temporary ventilation system is to maintain a higher pressure to the containment tent, relative to the canyon and cell areas, to prevent contaminants from reaching the containment tent.

YEH, T.

2002-11-20T23:59:59.000Z

334

May 2009 Standards Actions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 2009 May 2009 U.S. Department of Energy Technical Standards Program (http://www.hss.energy.gov/nuclearsafety/ns/techstds/) Standards Actions 1.0 DOE STANDARDS ACTIONS The Department of Energy (DOE) Technical Standards Program (TSP) publishes Standards Actions on a monthly basis to provide DOE headquarters and field elements with current information on DOE and select non-government standards activities. The complete list of all DOE Technical Standards projects and their status is available on the TSP web page at: http://www.hss.energy.gov/nuclearsafety/ns/techstds/. To access these standards, go to our web page, click on "DOE Technical Standards," then choose Projects, Approved Standards, Recently Approved Standards, or Drafts for Review, as

335

February 2009 Standards Actions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 2009 February 2009 U.S. Department of Energy Technical Standards Program (http://www.hss.energy.gov/nuclearsafety/ns/techstds/) Standards Actions 1.0 DOE STANDARDS ACTIONS The Department of Energy (DOE) Technical Standards Program (TSP) publishes Standards Actions on a monthly basis to provide DOE headquarters and field elements with current information on DOE and select non-government standards activities. The complete list of all DOE Technical Standards projects and their status is available on the TSP web page at: http://www.hss.energy.gov/nuclearsafety/ns/techstds/. To access these standards, go to our web page, click on "DOE Technical Standards," then choose Projects, Approved Standards, Recently Approved Standards, or Drafts for Review, as

336

July 2009 Standards Actions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 2009 U.S. Department of Energy Technical Standards Program (http://www.hss.energy.gov/nuclearsafety/ns/techstds/) Standards Actions 1.0 DOE STANDARDS ACTIONS The Department of Energy (DOE) Technical Standards Program (TSP) publishes Standards Actions on a monthly basis to provide DOE headquarters and field elements with current information on DOE and select non-government standards activities. The complete list of all DOE Technical Standards projects and their status is available on the TSP web page at: http://www.hss.energy.gov/nuclearsafety/ns/techstds/. To access these standards, go to our web page, click on "DOE Technical Standards," then choose Projects, Approved Standards, Recently Approved Standards, or Drafts for Review, as

337

May 2010 Standards Actions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 2010 U.S. Department of Energy Technical Standards Program (http://www.hss.energy.gov/nuclearsafety/ns/techstds/) Standards Actions 1.0 DOE STANDARDS ACTIONS The Department of Energy (DOE) Technical Standards Program (TSP) publishes Standards Actions on a monthly basis to provide DOE headquarters and field elements with current information on DOE and select non-government standards activities. The complete list of all DOE Technical Standards projects and their status is available on the TSP web page at: http://www.hss.energy.gov/nuclearsafety/ns/techstds/. To access these standards, go to our web page, click on "DOE Technical Standards," then choose Projects, Approved Standards, Recently Approved Standards, or Drafts for Review, as

338

Greenhouse Ventilation1 Dennis E . Buffington, Ray A. Bucklin, Richard W. Henley and Dennis B. McConnell2  

E-Print Network (OSTI)

high temperatures during the summer caused by the influx of solar radiation, to maintain relative VENTILATION A heating system with adequate capacity is needed in the winter to maintain environmental of the winter, when the heating system is running at full capacity, some ventilation is still required

Watson, Craig A.

339

Microsoft Word - Draft Pier Final Report DCV and Classroom ventilation 05-11-12  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Controlled Ventilation and Classroom Ventilation William J. Fisk, Mark J. Mendell, Molly Davies, Ekaterina Eliseeva, David Faulkner, Tienzen Hong, Douglas P. Sullivan Indoor Environment Group Energy Analysis and Environmental Impacts Department Lawrence Berkeley National Laboratory Berkeley, CA 94720 May 2012 This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Building Technologies Program of the U.S. Department of Energy under contract DE-AC02- 05CH11231. LBNL-6258E Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither

340

Consideration of air jet angle in open surface tank push-pull ventilation system design  

E-Print Network (OSTI)

CONSIDERATION OF AIR JET ANGLE IN OPEN SURFACE TANK PUSH-PULL VENTILATION SYSTEM DESIGN A Thesis by WAI-HUNG DAVID CHAN Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree o... MASTER OF SCIENCE May 1983 Major Subjeot: Industrial Hygiene CONSIDERATION OF AIR JET ANGLE IN OPEN SURFACE TANK PUSH-PULL VENTILATION STSTEM DESIGN A Thesis by WAI-HUNG DAVID CHAN Approved as to style and content by: (C an of mmittee) J. Suggs...

Chan, Wai-Hung David

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation rate standards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

FAQS Job Task Analyses- Confinement Ventilation and Process Gas Treatment  

Energy.gov (U.S. Department of Energy (DOE))

FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

342

Beyond the Standard Model  

SciTech Connect

'BSM physics' is a phrase used in several ways. It can refer to physical phenomena established experimentally but not accommodated by the Standard Model, in particular dark matter and neutrino oscillations (technically also anything that has to do with gravity, since gravity is not part of the Standard Model). 'Beyond the Standard Model' can also refer to possible deeper explanations of phenomena that are accommodated by the Standard Model but only with ad hoc parameterizations, such as Yukawa couplings and the strong CP angle. More generally, BSM can be taken to refer to any possible extension of the Standard Model, whether or not the extension solves any particular set of puzzles left unresolved in the SM. In this general sense one sees reference to the BSM 'theory space' of all possible SM extensions, this being a parameter space of coupling constants for new interactions, new charges or other quantum numbers, and parameters describing possible new degrees of freedom or new symmetries. Despite decades of model-building it seems unlikely that we have mapped out most of, or even the most interesting parts of, this theory space. Indeed we do not even know what is the dimensionality of this parameter space, or what fraction of it is already ruled out by experiment. Since Nature is only implementing at most one point in this BSM theory space (at least in our neighborhood of space and time), it might seem an impossible task to map back from a finite number of experimental discoveries and measurements to a unique BSM explanation. Fortunately for theorists the inevitable limitations of experiments themselves, in terms of resolutions, rates, and energy scales, means that in practice there are only a finite number of BSM model 'equivalence classes' competing at any given time to explain any given set of results. BSM phenomenology is a two-way street: not only do experimental results test or constrain BSM models, they also suggest - to those who get close enough to listen - new directions for BSM model building. Contrary to popular shorthand jargon, supersymmetry (SUSY) is not a BSM model: it is a symmetry principle characterizing a BSM framework with an infinite number of models. Indeed we do not even know the full dimensionality of the SUSY parameter space, since this presumably includes as-yet-unexplored SUSY-breaking mechanisms and combinations of SUSY with other BSM principles. The SUSY framework plays an important role in BSM physics partly because it includes examples of models that are 'complete' in the same sense as the Standard Model, i.e. in principle the model predicts consequences for any observable, from cosmology to b physics to precision electroweak data to LHC collisions. Complete models, in addition to being more explanatory and making connections between diverse phenomena, are also much more experimentally constrained than strawman scenarios that focus more narrowly. One sometimes hears: 'Anything that is discovered at the LHC will be called supersymmetry.' There is truth behind this joke in the sense that the SUSY framework incorporates a vast number of possible signatures accessible to TeV colliders. This is not to say that the SUSY framework is not testable, but we are warned that one should pay attention to other promising frameworks, and should be prepared to make experimental distinctions between them. Since there is no formal classification of BSM frameworks I have invented my own. At the highest level there are six parent frameworks: (1) Terascale supersymmetry; (2) PNGB Higgs; (3) New strong dynamics; (4) Warped extra dimensions; (5) Flat extra dimensions; and (6) Hidden valleys. Here is the briefest possible survey of each framework, with the basic idea, the generic new phenomena, and the energy regime over which the framework purports to make comprehensive predictions.

Lykken, Joseph D.; /Fermilab

2010-05-01T23:59:59.000Z

343

December 2005 Standards Forum  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Page December 2005 Page December 2005 TSP Manager's Notes 1 Overview of the U.S. Standardization System 2 A Call for Greater Collaboration 5 Technical Standards Manager Spotlight 6 Topical Committee Developments 7 Welcome Aboard the TSMC! 8 DOE Standards Actions 9 Non-Government Standards

344

CR TELECOMMUNICATIONS STANDARDS TELECOMMUNICATIONS  

E-Print Network (OSTI)

CR TELECOMMUNICATIONS STANDARDS TELECOMMUNICATIONS STANDARDS Published JANUARY 2002 January 2002 Page 1 of 137 #12;CR TELECOMMUNICATIONS STANDARDS January 2002 Page 2 of 137 FOREWARD Approval to CR Telecommunications Standards. · The format of this document has been changed to resemble

California at Davis, University of

345

Technical Standards Program  

Directives, Delegations, and Requirements

The Technical Standards Program (TSP) promotes the use of voluntary consensus standards by the Department of Energy (DOE), provides DOE with the means to develop needed technical standards, and manages overall technical standards information, activities, issues, and interactions. Cancels DOE O 1300.2A. Canceled by DOE O 252.1A

1999-11-19T23:59:59.000Z

346

Facilities Management CAD Standards  

E-Print Network (OSTI)

Facilities Management CAD Standards 2011 #12;Facilities Management CAD Standards Providing: Layering Standards 2.1 Layer Name Format 2.2 Layer Name Modifiers 2.3 Layer Attributes 2.4 Special Layer of PDF and DWG Files APPENDIX A: DAL FM CAD Standard Layers APPENDIX B: DAL FM CAD Special Layers

Brownstone, Rob

347

Environmental Services Standard Tasks  

E-Print Network (OSTI)

1 Environmental Services Operations Standard Tasks The primary function of Environmental Services developed and implemented standard custodial tasks that meet industry standards. The standards are as follows: Exterior Building Cleaning Daily Clean ash urns Clean entry area glass Clean steps and remove

348

Technical Standards Program  

Directives, Delegations, and Requirements

The Order promotes DOE's use of Voluntary Consensus Standards (VCS) as the primary method for application of technical standards and establishes and manages the DOE Technical Standards Program (TSP) including technical standards development, information, activities, issues, and interactions. Admin Chg 1 dated 3-12-13.

2011-02-23T23:59:59.000Z

349

ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality in Low- Rise Residential Buildings- Building America Top Innovation  

Energy.gov (U.S. Department of Energy (DOE))

This 2014 Top Innovation describes Building America research and support in developing and gaining adoption of ASHRAE 62.2.

350

HOSPITAL VENTILATION STANDARDS AND ENERGY CONSERVATION: A SUMMARY OF THE LITERATURE WITH CONCLUSIONS AND RECOMMENDATIONS, FY 78 FINAL REPORT  

E-Print Network (OSTI)

Nasal staphylococci and sepsis in hospital patients. Britishin the surgical suite. Hospitals, 35: 46-50, 1961. BERNARD,Laminar airflow rooms. Hospitals, DRURY, M. and V. E. SKEEG.

DeRoos, R.L.

2011-01-01T23:59:59.000Z

351

HOSPITAL VENTILATION STANDARDS AND ENERGY CONSERVATION: A SUMMARY OF THE LITERATURE WITH CONCLUSIONS AND RECOMMENDATIONS, FY 78 FINAL REPORT  

E-Print Network (OSTI)

TLV (EEm) ACGIH Vinyl Chloride (Monomer) 5 mg/m ACGIH NPPainters - Solvent Vinyl Chloride (Monomer) Engineering -IUPAC Naming System Vinyl Chloride (monomer) Route of Entry:

DeRoos, R.L.

2011-01-01T23:59:59.000Z

352

HOSPITAL VENTILATION STANDARDS AND ENERGY CONSERVATION: A SUMMARY OF THE LITERATURE WITH CONCLUSIONS AND RECOMMENDATIONS, FY 78 FINAL REPORT  

E-Print Network (OSTI)

ultraviolet. Architecture Environmental Health, 22: 551-553,in rooms. Architecture Environmental Health, 22: 200-207,effectiveness. Architecture Environmental Health. 22: 208-

DeRoos, R.L.

2011-01-01T23:59:59.000Z

353

March 2006 Standards Forum and Standards Actions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 March 2006 1 March 2006 TSP Manager's Notes 1 New ISO Policy Provides International Solutions to Market Needs 2 Plain Talk for a New Generation 5 The Use of Voluntary Consensus Standards within the Department of Energy 7 Two Change Notices for DOE Standard 1104 8

354

February 2013 Standards Actions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 Standards Actions Technical Standards Program Newsletter U . S . D E PA R T M E N T O F O ffi ce O f nuclear SaFety ENERGY inSide thiS iSSue * Featured DOE Technical Standards Activities * DOE Technical Standards Cost- Savings and Access Improvement Initiative * Domestic and International Nuclear Energy Voluntary Consensus Standards Needs * Nuclear Safety- Related Standards Activity Featured dOe technical StandardS activitieS DOE Technical Standards Cost-Savings and Access Improvement Initiative By Helen Todosow, Brookhaven National Laboratory The Department of Energy (DOE) Technical Standards Managers (TSM) are actively exploring ways to save the government and tax payers' money while at the same time significantly improving efficiencies in access and use of voluntary consensus

355

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Computer Room Air Conditioners Computer Room Air Conditioners Sign up for e-mail updates on regulations for this and other products The Department of Energy (DOE) has regulated the energy efficiency level of computer room air conditioners (CRACs) since 2012. A CRAC is a device that monitors and maintains the temperature, air distribution, and humidity in a network room or data center and is rated as a computer room air conditioner in accordance with 10 CFR 431.96. Recent Updates | Standards | Test Procedures | Waiver, Exception, and Exemption Information | Statutory Authority | Historical Information | Contact Information Recent Updates There are no recent updates for this product. Standards for Computer Room Air Conditioners The following content summarizes the energy conservation standards for CRACs. The text is not an official reproduction of the Code of Federal Regulations and should not be used for legal research or citation.

356

standards | OpenEI Community  

Open Energy Info (EERE)

9 9 Varnish cache server Home Groups Community Central Green Button Applications Developer Utility Rate FRED: FRee Energy Database More Public Groups Private Groups Features Groups Blog posts Content Stream Documents Discussions Polls Q & A Events Notices My stuff Energy blogs 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142235199 Varnish cache server standards Home Graham7781's picture Submitted by Graham7781(2002) Super contributor 30 August, 2012 - 15:16 Historic Fuel Standards auto fuel efficiency obama standards vehicle White House On Tuesday, Ray Lahood, Secretary of the U.S. Department of Transportation, and Lisa P. Jackson, Environmental Protection Agency Administrator, unveiled the joint effort, along with the Obama Administration, to create

357

NETL Publication Standards Manual  

NLE Websites -- All DOE Office Websites (Extended Search)

Standards NETL Publication Standards Manual Publication Standards Manual Click on topic below to view Click "Contents" in the bookmarks panel at the left of your screen to return to this page Introduction * Overview * About This Manual - Point of Contact - Download Files - Permission - Signage - Special Applications Publication Standards * Design Elements * Fact Sheets * Font (Typeface) * Full-Size Brochures * Logo * Presentations * Report Covers NETL Publication Standards Manual Overview For over 60 years, we have been at the forefront

358

Surface Water Quality Standards  

E-Print Network (OSTI)

SURFACE WATER QUALITY STANDARDS AAs part of the ongoing program to manage Texaswater quality, the Texas Commission onEnvironmental Quality (TCEQ) is currently review- ing the Texas Surface Water Quality Standards, including the standards... for contact recreation use. Preliminary public comment plus input from the Surface Water Quality Standards Advisory Work Group have provided guidance on options available for revising the standards, said Jim Davenport, leader of the TCEQ Water Quality...

Wythe, Kathy

2007-01-01T23:59:59.000Z

359

Performance of standard rate trickling filters at various depths  

E-Print Network (OSTI)

of '. he filter media+ The relathnship between removals snd applied loads for each of the units is Unearth they are represented in figso 8 to 15? The action inside each filter is somewhat s axzey The zeduction of suspended solids was satisfaoto... triokling filters . at ths Sewage Treat3sent Plant of' k and 5 College of Tax@st The criteria used for detsrsLining filter performance were reseval of' applied S, O. D?, renoval of suspended, solids, and rsaoval of volatile natter+ Ts; ts wsrs na;. 's...

Peralta-Rojas, Andres

1955-01-01T23:59:59.000Z

360

NUMERICAL ANALYSIS OF VENTILATION TEMPERATURES REGULATION BY ENERGY STORAGE IN PHASE CHANGE  

E-Print Network (OSTI)

NUMERICAL ANALYSIS OF VENTILATION TEMPERATURES REGULATION BY ENERGY STORAGE IN PHASE CHANGE, the use of thermal energy storage (TES) systems receives increasing interest. To allow high or low temperature thermal energy to be stored for later use, a heat or cool storage with PCM could be designed; Zhu

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "ventilation rate standards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Simulating Natural Ventilation in and Around Buildings by Fast Fluid Mingang Jin1  

E-Print Network (OSTI)

]. It is preferred over mechanical ventilation for sustainable building design. However, the design of natural is a sustainable building technology that can provide a good indoor environment and save energy [1]. These factors should be thoroughly considered at the early stage of building design in order to achieve good

Chen, Qingyan "Yan"

362

Building ventilation : a pressure airflow model computer generation and elements of  

E-Print Network (OSTI)

Building ventilation : a pressure airflow model computer generation and elements of validation H - design #12;1- Introduction Regarding the number of airflow network models found in building publications Abstract : The calculation of airflows is of great importance for detailed building thermal simulation

Paris-Sud XI, Université de

363

HEAT TRANSFERS IN A DOUBLE SKIN ROOF VENTILATED BY NATURAL CONVECTION IN SUMMER TIME  

E-Print Network (OSTI)

1 HEAT TRANSFERS IN A DOUBLE SKIN ROOF VENTILATED BY NATURAL CONVECTION IN SUMMER TIME P. H or in tropical and arid countries. In this work, radiation, convection and conduction heat transfers-dimensional numerical simulation of the heat transfers through the double skin reveals the most important parameters

Boyer, Edmond

364

SURVEY OF THE EXISTING APPROACHES TO ASSESS AND DESIGN NATURAL VENTILATION AND NEED FOR FURTHER DEVELOPMENTS  

E-Print Network (OSTI)

DEVELOPMENTS Marcello Caciolo, Dominique Marchio, Pascal Stabat Ecole des Mines de Paris- Center for Energy their attention to natural ventilation, due to the potential benefits in terms of energy consumption related - Difference ° Incidence angle of the wind from normal kg / m3 Density Indexes B Buoyancy in Indoor out Outdoor

Boyer, Edmond

365

UC Berkeley Heat/Ventilation Curtailment Period DECEMBER 24, 2011 through JANUARY 1, 2012  

E-Print Network (OSTI)

and January 1, 2012 in order to conserve energy, most campus buildings will be closed and heat and ventilation that a building be exempt from energy curtailment. If you would like to request that your building be exempt from. Technical questions or concerns about energy curtailment can be directed to Gilbert Escobar at 3

California at Irvine, University of

366

Particle transport in low-energy ventilation systems. Part 1: theory of steady states  

E-Print Network (OSTI)

of the global population. According to the Energy Information Administration (http://www.eia.doe.gov/) the US of this energy is spent on ventilation of buildings with summer time cooling account for almost 10% of the US total energy budget. To reduce energy consumption various low-energy systems such as displacement

Bolster, Diogo

367

Direct ventilation of the North Pacific did not reach the deep ocean during the last deglaciation  

E-Print Network (OSTI)

of Lund et al. [2011] suggest that the waters at 2710 m were actually very poorly ventilated (i.e., 14 C-depleted reservoirs at this time. [4] Here we present new sedimentary uranium (U) con- centration data from 2393 m

Long, Bernard

368

Experimental evaluation of a naturally ventilated PV double-skin building envelope in real operating conditions  

E-Print Network (OSTI)

-4Mar2014 Author manuscript, published in "Solar Energy 103 (2014) 223-241" DOI : 10.1016/j.solener.2014. Keywords: Building integrated photovoltaic system; Natural ventilation; Chimney effect; Monitoring 1 fallen by 50%. To these ends, significant investments are being made into solar energy, which is seen

Paris-Sud XI, Université de

369

Inventory and Ventilation Efficiency of Nonnative and Native Phragmites australis (Common Reed) in Tidal  

E-Print Network (OSTI)

NOTE Inventory and Ventilation Efficiency of Nonnative and Native Phragmites australis (Common Reed: 3 July 2012 # Coastal and Estuarine Research Federation 2012 Abstract Nonnative Phragmites is among the most in- vasive plants in the U.S. Atlantic coast tidal wetlands, whereas the native Phragmites has

370

August 2001 Standards Actions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7-31-2001 7-31-2001 Activity Summary In Conversion-4 In Preparation-43 Out for Comment-17 Published this Month-0 5-year Review Status Revision in Progress-6 Reaffirmation in Progress-23 Cancellation Pending-4 Cancellation in Progress-12 Proposed for Cancellation-13 No Current Action-11 Inside this issue: DOE Technical Standards Project Initiated 1 DOE Technical Standards Recently Sent for Coordination 1 DOE Technical Standard Recently Reaffirmed 1 DOE Technical Standards Recently Published 2 American National Standards Institute 2 American National Standards 4 American Society for Testing and Materials 5 Visit the Technical Standards Program Web Site at http://tis.eh.doe.gov/techstds/. Standards Actions- August 2001 Standards

371

November 2000 Standards Actions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 2000 November 2000 Standards Technical Standards Program Document Status Visit the Technical Standards Program Web Site: http://tis.eh.doe.gov/techstds/ DOE Technical Standards Projects Initiated If you have any questions or are interested in participating in the development of these standards, please contact the representatives listed below. Complete listings of all DOE Technical Standards projects and their status are given on the Technical Standards Pro- gram (TSP) Web Site referenced at the bottom of this page. To access these lists from the home page, click on “DOE Technical Standards,” then click on “Projects” in the left- hand frame to show the links to the project lists. The following DOE Technical Standards projects were recently initiated: • Radiological Control Programs for Special Tritium Compounds, Project Number OCSH-

372

Standards Actions, February 2004  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 DOE Technical Standards Recently Sent for Coordination 1 DOE Technical Standards Recently Published 1 Non-Government Standards 2 American National Standards Institute (ANSI) 2 American Society of Mechanical Engineers (ASME) 5 American Society for Testing and Materials (ASTM) 6 American Nuclear Society (ANS) 11 National Fire Protection Association (NFPA) 12 DOE Technical Standards Program Document Status 01-23-2004 Activity Summary In Conversion - 4 In Preparation - 36 Out for Comment - 23 Published in January - 3 5-year Review Status Revision in Progress - 13 Reaffirmation in Progress - 26 Cancellation Pending - 1 Cancellation in Progress - 3 No Current Action - 0 Inside This Visit the Technical Standards Program

373

July 2005 Standards Actions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Technical Standards in Reaffirmation 1 DOE Technical Standards Change Notices 1 DOE Technical Standards Recently Published 1 Non-Government Standards Actions 2 American National Standards Institute (ANSI) 2 American Society of Mechanical Engineers (ASME) 2 ASTM International 2 American Nuclear Society (ANS) 2 National Fire Protection Association (NFPA) 2 DOE Technical Standards Program Document Status 06-28-2005 Activity Summary In Conversion - 4 In Preparation - 21 Out for Comment - 10 Published in June - 2 5-year Review Status Proposed for Revision-6 Revision in Progress-3

374

Combining HVAC energy conservation measures to achieve energy savings over standard requirements  

Science Journals Connector (OSTI)

Abstract This paper presents the energy savings over the minimum American Society of Heating Refrigeration and Air-Conditioning Engineers (ASHRAE) Standard 90.1-2010 requirements due to the combination of two or three HVAC energy conservation measures using EnergyPlus simulation software. Prototype commercial building models, which satisfy the requirements of ASHRAE Standard 90.1-2010 were used as base-cases. Five prototype commercial buildings, eight HVAC systems, and eight climate zones were considered. Four cases were studied for the combination: energy recovery ventilation (ERV) and demand control ventilation (DCV); ERV and Multiple-zone variable air volume (VAV) System Ventilation Optimization (VentOpt); ERV, DCV and VentOpt; and Single Zone VAV controls, and kitchen transfer air. Of the four cases studied, the integration of ERV and DCV, which was applied to primary school and standalone retail prototype buildings, provided a maximum savings of 1.93% and 8.10% respectively compared to the base-cases.

Teshome Edae Jiru

2014-01-01T23:59:59.000Z

375

Nucleic Acid Standards - Standard Ref. Frame  

NLE Websites -- All DOE Office Websites (Extended Search)

Standard Reference Standard Reference Standard Reference Frame Supplemental Information Ideal Geometries X-PLOR Parameters Valence Geometries RNA Ontology Consortium mmCIF Resources PDBML Resources A Standard Reference Frame for the Description of Nucleic Acid Base-pair Geometry A common point of reference is needed to describe the three-dimensional arrangements of bases and base pairs in nucleic acid structures. [1]. For example, parts of a structure, which appear "normal" according to one computational scheme, may be highly unusual according to another and vice versa. It is thus difficult to carry out comprehensive comparisons of nucleic acid structures and to pinpoint unique conformational features in individual structures. In order to resolve these issues, a group of

376

GUIDELINE FOR THE WITHDRAWAL OF MECHANICAL VENTILATION/LIFE SUPPORT  

E-Print Network (OSTI)

and then assess. 6. Discontinue any unnecessary infusions or any other therapies that do not directly contribute Or Start opiod infusion and anxiolytic if needed. Assess after 10 minutes using objective markers - Upward Adjustment needed? YES NO · Repeat bolus, increase infusing rate · Reassess after 10 minutes · If adjustment

Acton, Scott

377

Natural ventilation of the Paintings Room in the Altamira cave  

Science Journals Connector (OSTI)

... Radon-222 is a noble gas of the radioactive series of 238U, an element that ... per 106). Because of its gaseous nature and its greater concentration within the Earth, radon escapes through the interstices of the soil to the atmosphere, with an exhalation rate ...

P. L. Fernndez; I. Gutierrez; L. S. Quinds; J. Soto; E. Villar

1986-06-05T23:59:59.000Z

378

CAPTURE AND USE OF COAL MINE VENTILATION AIR METHANE  

SciTech Connect

This is the second semi-annual Technical Progress report under the subject agreement. During the second six months of the project the following items were accomplished: (1) the detailed engineering design was started by MEGTEC Systems, (2) a pre-investigation meeting was held with Mine Safety and Health Administration (MSHA) to discuss the allegations in the 101(c) Petition for Modification of Application of Mandatory Safety Standard, (3) the 101(c) Petition for Modification was withdrawn, although negotiations continue with MSHA, and (4) detailed engineering was started by CONSOL Energy. These aspects of the project, as well as progress on public communications are discussed in detail in this report.

Deborah A. Kosmack

2003-10-01T23:59:59.000Z

379

Standards Actions, July 2001  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6-27-2001 6-27-2001 Activity Summary In Conversion - 4 In Preparation - 42 Out for Comment - 15 Published this Month - 1 5-year Review Status Revision in Progress - 4 Reaffirmation in Progress - 2 Supersedure in Progress - 6 Cancellation Pending - 8 Cancellation in Progress - 2 No Current Action - 35 Inside this issue: DOE Technical Standards Project Initiated 1 DOE Technical Standard Recently Sent for Coordination 1 DOE Technical Standard Recently Published 1 American National Standards Institute 2 American National Standards 3 American Society for Testing and Materials 4 Visit the Technical Standards Program Web Site at http://tis.eh.doe.gov/techstds/. July 2001 Standards Actions DOE Technical Standards Projects Initiated

380

Standards Actions - April 2002  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3-28-2002 3-28-2002 Activity Summary In Conversion - 4 In Preparation - 44 Out for Comment - 13 Published this Month - 2 5-year Review Status Revision in Progress - 4 Reaffirmation in Progress - 2 Supersedure in Progress - 6 Cancellation Pending - 8 Cancellation in Progress - 2 No Current Action - 35 Inside this issue: DOE Technical Standards Project Canceled 1 DOE Technical Standard Recently Sent for Coordination 1 DOE Technical Standards Re- cently Published 2 American National Standards Institute 2 American Society for Testing and Materials International 4 Visit the Technical Standards Program Web Site at http://tis.eh.doe.gov/techstds/. Standards Actions- April 2002 Standards Actions DOE Technical Standards Project Canceled

Note: This page contains sample records for the topic "ventilation rate standards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

February 2005 Standards Actions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technical Technical Standards Program Document Status 1-18-2005 Activity Summary In Conversion - 4 In Preparation - 25 Out for Comment - 10 Published in January - 3 5-year Review Status Proposed for Revision-6 Revision in Progress-4 Proposed for Reaffirmation-3 Reaffirmation in Progress-21 Cancellation Pending-16 Cancellation in Progress-0 Visit the Technical Standards Program Web Site at http://tis.eh.doe.gov/techstds/ February 2005 Standards Actions 1.0 DOE Standards Actions The complete list of all DOE Technical Standards projects and their status is available on the Technical Standards Program (TSP) web page at http://tis.eh.doe.gov/techstds/. To access these standards, go to our web page, click on "DOE Technical Standards," then choose Projects,

382

July 2006 Standards Actions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Technical DOE Technical Standards Program Document Status 06-28-2006 Activity Summary In Conversion - 4 In Preparation - 23 Out for Comment - 14 Published in June - 0 5-year Review Status Proposed for Revision-5 Revision in Progress-6 Proposed for Reaffirmation-1 Reaffirmation in Progress-21 Cancellation Pending-9 Cancellation in Progress-0 Inside This Issue Visit the Technical Standards Program Web Site at http://www.eh.doe.gov/ techstds/ July 2006 Standards Actions 1.0 DOE Standards Actions The complete list of all DOE Technical Standards projects and their status is available on the Technical Standards Program (TSP) web page at http://www.eh.doe.gov/techstds/. To access these standards, go to our web page, click on "DOE Technical Standards," then choose Projects,

383

January 2012 Standards Actions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

* DOE Conduct of Operations Standards Revisions * New DOE Standards Projects * DOE Handbook of Operational Safety and Analysis Techniques * Nuclear Safety- Related Standards Activity INSIDE THIS ISSUE January 2012 Standards Actions Technical Standards Program Newsletter www.hss.energy.gov/nuclearsafety/ns/techstds/ DOE Conduct of Operations Standards Revisions In the early 1990s, the Department of Energy (DOE) developed 17 technical standards to support DOE Order 5480.19, Conduct of Operations Requirements for DOE Facilities. The standards (STDs), listed below, provided examples, good practices, and expanded explanations of the topics in each chapter of the Order. In June 2010, the Order was revised and issued as DOE Order 422.1, Conduct of Operations. The

384

Detailed Information Standard  

E-Print Network (OSTI)

The purpose of this standard is to increase the required information that must accompany any parts submitted to the Registry of Standard Biological Parts. This will give users of the parts better assurance of their ...

Culviner, Peter

2010-12-05T23:59:59.000Z

385

Clothing Quality Standards  

E-Print Network (OSTI)

Clothing construction is a creative skill with certain standards for appearance and construction. This publication describes the standards that apply to general construction techniques such as preparing the fabric, creating darts and gathers...

2006-05-01T23:59:59.000Z

386

MODEL CONSERVATION STANDARD INTRODUCTION  

E-Print Network (OSTI)

RESIDENTIAL AND COMMERCIAL BUILDINGS The region should acquire all electric energy conservation measure designed model conservation standards to produce all electricity savings that are cost, architectural styles, and so forth) found in typical buildings constructed before the first standards were

387

November 2006 Standards Actions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Notices 1 DOE Technical Standards Published 1 Non-Government Standards Actions 2 American National Standards Institute (ANSI) 2 American Society of Mechanical Engineers (ASME) 2 ASTM International 2 American Nuclear Society (ANS) 2 National Fire Protection Association (NFPA) 2 Publication Staff Roster 2 DOE Technical Standards Program Document Status 10-25-2006 Activity Summary In Conversion - 4 In Preparation - 23 Out for Comment - 16 Published in September - 0 5-year Review Status Proposed for Revision-5 Revision in Progress-6

388

SORORITY LIFE COMMUNITY STANDARDS  

E-Print Network (OSTI)

& FRATERNITY SORORITY LIFE COMMUNITY STANDARDS & GREEK JUDICIAL BOARD HANDBOOK 2013 OFFICE Judicial Board Handbook 2 I. COMMUNITY STANDARDS Fraternity & Sorority Life is one of the most rewarding Councils have standards of conduct for all chapters and their members. It is the responsibilty of every

Hone, James

389

System Performance Measurement Supports Design Recommendations for Solar Ventilation Preheat System (Brochure), Federal Energy Management Program (FEMP)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

System Performance System Performance Measurement Supports Design Recommendations for Solar Ventilation Preheat System The U.S. Department of Energy's (DOE) Federal Energy Management Program (FEMP) sponsored the installation of a data monitoring system to analyze the efficiency and performance of a large solar ventilation preheat (SVP) system. The system was installed at a Federal installation to reduce energy consumption and costs and to help meet Federal energy goals and mandates. SVP systems draw ventilation air in through a perforated metal solar collector with a dark color on the south side of a build-

390

Rates & Repayment  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Review-NEPA Financial Data Operations Planning & Projects Power Marketing Rates Rate Adjustments Transmission Ancillary Services Rates WAPA-137 Rate Order Environmental Review-NEPA Financial Data Operations Planning & Projects Power Marketing Rates Rate Adjustments Transmission Ancillary Services Rates WAPA-137 Rate Order Rates and Repayment Services Rates Current and Historical Rate Information Collbran Power Rates CRSP Power Rates CRSP Transmission System Rates CRSP Management Center interest rates Falcon-Amistad Power Rates Provo River Power Rates Rio Grande Power Rates Seedskadee Power Rates SLCA/IP Power Rates Rate Schedules & Supplemental Rate Information Current Rates for Firm Power, Firm & Non-firm Transmission Service, & Ancillary Services Current Transmission & Ancillary Services Rates Tariffs Components of the SLCA/IP Existing Firm Power Rate Cost Recovery Charge (CRC) Page MOA Concerning the Upper Colorado River Basin

391

THE EFFECTS OF ENERGY-EFFICIENT VENTILATION RATES ON INDOOR AIR QUALITY AT AN OHIO ELEMENTARY SCHOOL  

E-Print Network (OSTI)

indoor concentration of nitrogen dioxide was approximatelyof carbon monoxide~ nitrogen dioxide as well as on theL5 pg/m Lead (Pb) Nitrogen dioxide (N0 ) 11g/m year (50

Berk, J.V.

2013-01-01T23:59:59.000Z

392

Worker productivity and ventilation rate in a call center: Analyses of time-series data for a group of workers  

E-Print Network (OSTI)

room. Proceedings of Healthy Buildings 2000, vol. 1. , pprenovation of schools. Proc. Healthy Buildings / IAQ 1997.1: 81-86. Healthy Buildings / IAQ 1997. Washington, DC.

2002-01-01T23:59:59.000Z

393

April 2004 Standards Actions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 DOE Technical Standards recently sent for coordination 1 DOE Technical Standards Recently Published 1 Non-Government Standards 2 American National Standards Institute (ANSI) 2 American Society of Mechanical Engineers (ASME) 7 American Society for Testing and Materials (ASTM) 8 American Nuclear Society (ANS) 12 National Fire Protection Association 12 ry DOE Technical Standards Program Document Status 03-26-2004 Activity Summary In Conversion - 4 In Preparation - 37 Out for Comment - 21 Published in March - 2 5-Year Review Status Revision in Progress - 13 Reaffirmation inProgress - 26 Cancellation Pending - 1

394

Standards Actions - August 2000  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Standards Standards Technical Standards Program Document Status (2000-07-31) (2000-07-31) (2000-07-31) (2000-07-31) (2000-07-31) Activity Summary In Conversion – 4 In Preparation – 32 Out for Comment – 15 Published this Month – 1 5-year Reviews Revisions in Progress – 3 Reaffirmations in Progress – 0 Supersedures in Progress – 6 Cancellations Pending – 8 Cancellations in Progress – 2 No Current Action – 35 Visit the Technical Standards Program Web Site: http://tis.eh.doe.gov/techstds/ DOE Technical Standards Project Initiated If you have any questions or are interested in participating in the development of this standard, please contact the person listed below. Complete listings of all DOE Technical Standards projects and their status are given in the Web Site referenced at the bottom of this page. To access these

395

April 2008 Standards Actions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3-27-2008 3-27-2008 Activity Summary In Conversion - 4 In Preparation - 24 Out for Comment - 26 Published in March - 0 Five Year Review status Proposed for Revision-4 Revision in Progress-3 Proposed for Reaffirmation-0 Reaffirmation in Progress-20 Cancellations Pending-6 Cancellations in Progress-0 Inside This Issue Visit the Technical Standards Program Web Site at http://www.hss.energy.gov/nuclear safety/techstds/ April 2008 Standards Actions 1.0 DOE Standards Actions The complete list of all DOE Technical Standards projects and their status is available on the Technical Standards Program (TSP) web page at http://hss.energy.gov/nuclear safetytechstds/. To access these standards, go to our web page, click on "DOE Technical Standards," then choose

396

Appliance Efficiency Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 Appliance Efficiency Standards Part 2 of 2: Policy process and consumer gains Part 1 of this article (CBS News, Spring 1995) discussed LBNL's role in setting federal appliance efficiency standards and presented an overview of the net national benefits of standards. Here, we examine the broader policy context for appliance standards and consumer benefits. Policy Context Appliance efficiency standards provide a minimum requirement for energy efficiency at the point of manufacture (or import). These standards seek to overcome market failures-including price distortions and transaction costs-that have historically given rise to a gap between observed and attainable product efficiencies. In this way, appliance standards complement information programs, utility DSM and other incentive programs,

397

July 2007 Standards Actions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6-27-2007 6-27-2007 Activity Summary In Conversion - 4 In Preparation - 27 Out for Comment - 24 Published in June - 0 5-year Review status Proposed for Revision-5 Revision in Progress-6 Proposed forReaffirmation-1 Reaffirmation in Progress-21 Cancellations Pending-9 Cancellations in Progress-0 Inside This Issue Visit the Technical Standards Program Web Site at http://hss.energy.gov/nuclear safetytechstds/ July 2007 Standards Actions 1.0 DOE Standards Actions The complete list of all DOE Technical Standards projects and their status is available on the Technical Standards Program (TSP) web page at http://hss.energy.gov/nuclear safetytechstds/. To access these standards, go to our web page, click on "DOE Technical Standards," then choose

398

IHS Standards Expert  

NLE Websites -- All DOE Office Websites (Extended Search)

Standards » Standards » IHS IHS Standards Expert1354608000000IHS Standards ExpertLANL researchers can access IHS Standards from offsite via Remote Access./No/Question? 667-5809library@lanl.gov IHS Standards Expert LANL researchers can access IHS Standards from offsite via Remote Access. Login For each collection (society), one person may access pdfs at a time, per the Library's subscription license. Please free up the collection for another user when finished: download or print your pdf, then Log Out. FAQs How do I use IHS? IHS Basic Tutorial (pdf) - see more on the "Training & Support" tab within IHS Contact IHS Customer support, 800-447-3352 (our Customer Support ID Number is 5926584) Contact the Research Library at 7-5809 or library@lanl.gov What if full-text is not available?

399

OSHA: Standards and Recordkeeping  

NLE Websites -- All DOE Office Websites (Extended Search)

OSHA: Standards & OSHA: Standards & Record keeping Frances E. Humphrey, CRNP, COHN-5/CM DOE Headquarters January 17, 2002 .. DOL Organizational Chart History of OSHA +11/14n8: Lead Standard Published * 5/23/80: Medical & Exposure Records Standard Finalized * 7/2/82: Voluntary Protection Programs (VPP) Created +11/25/83: HazCom Standard Promulgated * 9/1/89: Lockout/Tagout Standard Issued OSHA Mission Statement * "The mission of the Occupational Safety and Health Administration is to save lives, prevent injuries and protect the health of America's workers" {OSHA, 2001) History of OSHA +12/29nO: President Nixon signed Occupational Safety and Health Act of 1970 * 5129n1: First Standards Adopted * 1/17n2: OSHA Training Institute Established * Nov-Dec 1972: First State Plans Approved

400

Derived Concentration Technical Standard  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

196-2011 196-2011 April 2011 DOE STANDARD DERIVED CONCENTRATION TECHNICAL STANDARD U.S. Department of Energy AREA ENVR Washington, D.C. 20585 Not Measurement Sensitive This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.doe.gov/nuclearsafety/ns/techstds/standard/standard.html DOE-STD-1196-2011 ACKNOWLEDGEMENTS This Derived Concentration Technical Standard was a collaborative effort sponsored by the DOE Office of Environmental Policy and Assistance, with support from Department subject matter experts (SMEs) in the field of radiation protection. This standard, which complements DOE Order (O) 458.1, Radiation Protection of the Public and the Environment, was developed taking

Note: This page contains sample records for the topic "ventilation rate standards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Standards Actions, May 2002  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4-29-2002 4-29-2002 Activity Summary In Conversion - 4 In Preparation - 47 Out for Comment - 12 Published this Month - 6 5-year Review Status Revision in Progress - 10 Reaffirmation in Progress - 12 Supersedure in Progress - 0 Cancellation Pending - 7 Cancellation in Progress - 1 No Current Action - 20 Inside this issue: DOE Technical Standards Proposed for Reaffirmation 1 DOE Technical Standards Re- cently Published 1 American National Standards Institute 2 American Society for Testing and Materials International 4 Visit the Technical Standards Program Web Site at http://tis.eh.doe.gov/techstds/. Standards Actions- May 2002 Standards Actions DOE Technical Standards Proposed for Reaffirmation The following documents are currently being reevaluated under the 5-year

402

May 2008 Standards Actions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4-25-2008 4-25-2008 Activity Summary In Conversion - 4 In Preparation - 24 Out for Comment - 26 Published in April - 2 Five Year Review status Proposed for Revision-4 Revision in Progress-3 Proposed for Reaffirmation-0 Reaffirmation in Progress-20 Cancellations Pending-6 Cancellations in Progress-0 Inside This Issue Visit the Technical Standards Program Web Site at http://www.hss.energy.gov/nuclear safety/techstds/ May 2008 Standards Actions 1.0 DOE Standards Actions The complete list of all DOE Technical Standards projects and their status is available on the Technical Standards Program (TSP) web page at http://hss.energy.gov/nuclear safetytechstds/. To access these standards, go to our web page, click on "DOE Technical Standards," then choose

403

Standards Actions - August 2000  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Standards Standards Technical Standards Program Document Status (2000-07-31) (2000-07-31) (2000-07-31) (2000-07-31) (2000-07-31) Activity Summary In Conversion – 4 In Preparation – 32 Out for Comment – 15 Published this Month – 1 5-year Reviews Revisions in Progress – 3 Reaffirmations in Progress – 0 Supersedures in Progress – 6 Cancellations Pending – 8 Cancellations in Progress – 2 No Current Action – 35 Visit the Technical Standards Program Web Site: http://tis.eh.doe.gov/techstds/ DOE Technical Standards Project Initiated If you have any questions or are interested in participating in the development of this standard, please contact the person listed below. Complete listings of all DOE Technical Standards projects and their status are given in the Web Site referenced at the bottom of this page. To access these

404

Eco Design and the Optimization of Passive Cooling Ventilation for Energy Saving in the Buildings: A Framework for Prediction of Wind Environment and Natural Ventilation in Different Neighborhood Patterns  

Science Journals Connector (OSTI)

The idea of utilizing natural ventilation for passive cooling and hence reducing the energy for air conditioning systems of buildings has increasingly attracted the attention of researchers. In urban areas how...

Mohammad Reza Masnavi; Hasan-Ali Laghai

2012-01-01T23:59:59.000Z

405

Standard and non-standard primordial neutrinos  

E-Print Network (OSTI)

The standard cosmological model predicts the existence of a cosmic neutrino background with a present density of about 110 cm^{-3} per flavour, which affects big-bang nucleosynthesis, cosmic microwave background anisotropies, and the evolution of large scale structures. We report on a precision calculation of the cosmic neutrino background properties including the modification introduced by neutrino oscillations. The role of a possible neutrino-antineutrino asymmetry and the impact of non-standard neutrino-electron interactions on the relic neutrinos are also briefly discussed.

P. D. Serpico

2006-08-14T23:59:59.000Z

406

Commercial Building Asset Rating Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 eere.energy.gov 1 eere.energy.gov Commercial Building Asset Rating Program August 23, 2011 12 p.m. ET, 9 a.m. PT Presenter: Cody Taylor PRE-DECISIONAL Information included in this document is for discussion purposes and does not constitute the final program design. FOR INFORMATION ONLY 2 eere.energy.gov Outline * Goals * Scope & schedule * Guiding principles * Program design issues - Metrics - Rating method - Rating scale - Opportunities for efficiency improvement - Quality assurance Please submit clarifying questions during today's webinar via the Q&A function of Live Meeting. 3 eere.energy.gov National Building Rating Program Goals * Facilitate cost-effective investment in energy efficiency and reduce energy use in the commercial building sector * Establish a national standard for voluntary commercial building asset rating

407

Energy and first costs analysis of displacement and mixing ventilation systems for U.S. buildings and climates  

E-Print Network (OSTI)

In the past two decades, displacement ventilation has been increasingly used in Scandinavia and Western Europe to improve indoor air quality and to save energy. By using a detailed computer simulation method, this study ...

Hu, ShiPing, 1970-

1999-01-01T23:59:59.000Z

408

The Role of North Atlantic Deep Water Formation in an OGCMs Ventilation and Thermohaline Circulation  

Science Journals Connector (OSTI)

Two coarse-resolution model experiments are carried out on an OGCM to examine the effects of North Atlantic Deep Water (NADW) formation on the thermohaline circulation (THC) and ventilation timescales of the abyssal ocean. An idealized age tracer ...

Paul J. Goodman

1998-09-01T23:59:59.000Z

409

H.N. Knudsen, P. Wargocki and J. Vondruskova (2006) "Effect of ventilation on perceived quality of air polluted  

E-Print Network (OSTI)

quality of air polluted by building materials ­ a summary of reported data", Proceedings of Healthy Buildings 2006, Vol. 1, 57-62. #12;#12;Effect of ventilation on perceived quality of air polluted

410

Wind- Chimney (Integrating the Principles of a Wind-Catcher and a Solar-Chimney to Provide Natural Ventilation).  

E-Print Network (OSTI)

?? WIND-CHIMNEY Integrating the principles of a wind-catcher and a solar chimney to provide natural ventilation Fereshteh Tavakolinia Abstract This paper suggests using a wind-catcher (more)

Tavakolinia, Fereshteh

2011-01-01T23:59:59.000Z

411

Transition dynamics between the multiple steady states in natural ventilation systems : from theories to applications in optimal controls  

E-Print Network (OSTI)

In this study, we investigated the multiple steady state behavior, an important observation in numerical and experimental studies in natural ventilation systems. The-oretical models are developed and their applications in ...

Yuan, Jinchao

2007-01-01T23:59:59.000Z

412

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Warm Air Furnaces Commercial Warm Air Furnaces Sign up for e-mail updates on regulations for this and other products The Department of Energy (DOE) has regulated the energy efficiency level of commercial warm air furnaces since 1994. Commercial warm air furnaces are self-contained oil-fired or gas-fired furnaces that are designed to supply heated air through ducts to spaces that require it. Commercial warm air furnaces are industrial equipment and have a maximum rated input capacity of 225,000 British thermal units (Btu) an hour or more. Recent Updates | Standards | Test Procedures | Waiver, Exception, and Exemption Information | Statutory Authority | Historical Information | Contact Information Recent Updates DOE published a request for information regarding energy conservation standards for commercial warm air furnaces. 78 FR 25627 (May 2, 2013). For more information, please see the rulemaking webpage.

413

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book (EERE)

3 3 Residential Boiler Efficiencies (1) Gas-Fired Boilers Oil-Fired Boilers Average shipped in 1985 (2): 74% AFUE Average shipped in 1985 (2): 79% AFUE Best Available in 1981: 81% AFUE Best Available in 1981: 86% AFUE Best Available in 2007: 96% AFUE Best Available in 2007: 89% AFUE Note(s): Source(s): 1) Federal appliance standards effective Jan. 1, 1992, require a minimum of 80% AFUE (except gas-fired steam boiler, which must have a 75% AFUE or higher). 2) Includes furnaces. GAMA, Consumer's Directory of Certified Efficiency Ratings for Residential Heating and Water Heating Equipment, Aug. 2005, p. 88 and 106 for best- available AFUE; and GAMA for 1985 average AFUEs; GAMA Tax Credit Eligible Equipment: Gas- and Oil-Fired Boilers 95% AFUE or Greater, May 2007; and GAMA Consumer's Directory of Certified Efficiency Ratings for Heating and Water Heating Equipment, May 2007

414

Rating of Solar Energy Devices (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

The Public Utility Commission has regulatory authority over solar energy devices installed and used in the state of Texas. The Commission can choose to adopt standards pertaining to the rating of...

415

CAD Standards Guideline rev July 28, 2011 CAD Standards Guideline  

E-Print Network (OSTI)

CAD Standards Guideline rev July 28, 2011 1 CAD Standards;CAD Standards Guideline rev July 28, 2011 2 TABLE OF CONTENTS INTRODUCTION (pg.3) CAD Standards Survey/GIS Standards Design Standards 1.0.0 CAD STANDARDS CHECKLIST (pg.4) 2.0.0 CAD

Hanson, Stephen José

416

A genetic rule weighting and selection process for fuzzy control of heating, ventilating and air conditioning systems  

Science Journals Connector (OSTI)

In this paper, we propose the use of weighted linguistic fuzzy rules in combination with a rule selection process to develop accurate fuzzy logic controllers dedicated to the intelligent control of heating, ventilating and air conditioning systems concerning ... Keywords: BEMS, building energy management system, FLC, fuzzy logic controller, Fuzzy logic controllers, GA, genetic algorithm, Genetic algorithms, HVAC systems, HVAC, heating, ventilating, and air conditioning, KB, knowledge base, PMV, predicted mean vote index for thermal comfort, Rule selection, Weighted fuzzy rules

Rafael Alcal; Jorge Casillas; Oscar Cordn; Antonio Gonzlez; Francisco Herrera

2005-04-01T23:59:59.000Z

417

Evaluation of cracking in the 241-AZ tank farm ventilation line at the Hanford Site  

SciTech Connect

In the period from April to October of 1988, a series of welding operations on the outside of the AZ Tank Farm ventilation line piping at the Hanford Site produced unexpected and repeated cracking of the austenitic stainless steel base metal and of a seam weld in the pipe. The ventilation line is fabricated from type 304L stainless steel pipe of 24 inch diameter and 0.25 inch wall thickness. The pipe was wrapped in polyethylene bubble wrap and buried approximately 12 feet below grade. Except for the time period between 1980 and 1987, impressed current cathodic protection has been applied to the pipe since its installation in 1974. The paper describes the history of the cracking of the pipe, the probable cracking mechanisms, and the recommended future action for repair/replacement of the pipe.

ANANTATMULA, R.P.

1999-10-20T23:59:59.000Z

418

Standards Actions, October 2000  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Initiated Project Initiated If you have any questions or are interested in participating in the development of this standard, please contact the representatives listed below. Complete listings of all DOE Technical Standards projects and their status are given in the Technical Standards Pro- gram (TSP) Web Site referenced at the bottom of this page. To access these lists from the home page, click on “DOE Technical Standards,” then click on “Projects” in the left- hand frame to show the links to the project lists. The following DOE Technical Standards project was recently initiated: • Hoisting and Rigging Standard, Project Number SAFT-0077. This project is being pre- pared by the Hoisting and Rigging Technical Advisory Committee (HRTAC). If you de- sire to participate in this project, please contact your site representative to the HRTAC

419

October 2006 Standards Actions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Publication Staff Roster 2 Publication Staff Roster 2 DOE Technical Standards Program Document Status 09-26-2006 Activity Summary In Conversion - 4 In Preparation - 24 Out for Comment - 16 Published in September - 1 5-year Review Status Proposed for Revision-5 Revision in Progress-6 Proposed for reaffirmation-1 Reaffirmation in Progress-21 Cancellation Pending-9 Cancellation in Progress-0 Inside This Issue Visit the Technical Standards Program Web Site at http://www.eh.doe.gov/ techstds/ October 2006 Standards Actions 1.0 DOE Standards Actions The complete list of all DOE Technical Standards projects and their status is available on the Technical Standards Program (TSP) web page at http://www.eh.doe.gov/techstds/. To access

420

Jenseits des Standard Modells  

NLE Websites -- All DOE Office Websites (Extended Search)

The Standard Model The Standard Model Unngelöste Rätsel Jenseits des Standard Modells Das Standard Modell gibt auf viele Fragen, über Struktur und Stabilität der Materie eine Antwort. Dazu braucht es nur die sechs Sorten von Quarks und Leptonen und die vier fundamentalen Kräfte. Aber das Standard Modell ist nicht vollständig; es gibt noch viele unbeantwortete Fragen. Eigentlich sollten wir aus Gründen der Symmetrie im Weltraum gleichviel Materie wie Antimaterie beobachten. Wir finden aber praktisch nur normale Materie! Warum? Woraus besteht die "Dunkle Materie", die wir nicht sehen können, die aber im Universum sichtbare Gravitationswirkungen zeigt? Warum kann das Standard Modell die Massen der Teilchen nicht vorhersagen? Sind Quarks and Leptonen wirklich fundamentae Teilchen, oder sind sie aus noch elementareren Partikeln aufgebaut?

Note: This page contains sample records for the topic "ventilation rate standards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

February 2001 Standards Actions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Standards Technical Standards Program Document Status Visit the Technical Standards Program Web Site: http://tis.eh.doe.gov/techstds/ Activity Summary In Conversion - 4 In Preparation - 35 Out for Comment - 18 Published this Month - 1 FY 2001 5-year Reviews Revisions in Progress - 2 Reaffirmations in Progress - 2 Supersedures in Progress - 6 Cancellations Pending - 11 Cancellations in Progress - 33 No Current Action - 16 DOE Technical Standards Project Canceled If you have any questions about this action, please contact the person listed be- low. The following DOE Technical Standards project was recently canceled: * EM Facility Hazard Categorization, Project Number SAFT-0029; EM Technical Standards Manager, John Serocki, 301-903-7999, John.Serocki@em.doe.gov, or Tom Wright, 301-903-3661, Tom.Wright@em.doe.gov. The need for this

422

Literature review supporting assessment of potential radionuclides in the 291-Z exhaust ventilation  

SciTech Connect

This literature review was prepared to support a study conducted by Pacific Northwest Laboratory to assess the potential deposition and resuspension of radionuclides in the 291-Z ventilation exhaust building located in the 200 West Area of the US Department of Energy`s Hanford Project near Richland, Washington. The filtered ventilation air from three of the facilities at the Plutonium Finishing Plant (PFP) complex are combined together in the 291-Z building before discharge through a common stack. These three facilities contributing filtered exhaust air to the discharge stream are (1) the PFP, also known as the Z-Plant or 234-5Z, (2) the Plutonium Reclamation Facility (PRF or 236-Z), and (3), the Waste Incinerator Building (WIB or 232-Z). The 291-Z building houses the exhaust fans that pull air from the 291-Z central collection plenum and exhausts the air to the stack. Section 2.0 of this report is a description of the physical characteristic of the ventilation system from the High Efficiency Particulate Air (HEPA) filters to the exhaust stack. A description of the processes performed in the facilities that are vented through 291-Z is given in Section 3.0. The description focuses on the chemical and physical forms of potential aerosols given off from the unit operations. A timeline of the operations and events that may have affected the deposition of material in the ventilation system is shown. Aerosol and radiation measurements taken in previous studies are also discussed. Section 4.0 discusses the factors that influence particle deposition and adhesion. Mechanisms of attachment and resuspension are covered with specific attention to the PFP ducts. Conclusions and recommendations are given in Section 5.0.

Mahoney, L.A.; Ballinger, M.Y.; Jette, S.J.; Thomas, L.M. Glissmeyer, J.A. [Pacific Northwest Lab., Richland, WA (United States); Davis, W.E. [Westinghouse Hanford Co., Richland, WA (United States)

1994-08-01T23:59:59.000Z

423

CONVERSION OF DOE TECHNICAL STANDARDS TO NON-GOVERNMENT STANDARDS  

Energy.gov (U.S. Department of Energy (DOE))

PurposeThis procedure provides guidance on the conversion of DOE Technical Standards to Voluntary Consensus Standards (VCSs), also referred to as non-Government standards.

424

Approved DOE Technical Standards  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

approved-doe-technical-standards Forrestal Building approved-doe-technical-standards Forrestal Building 1000 Independence Avenue, SW Washington, DC 205851.800.dial.DOE en DOE-STD-1150-2013 http://energy.gov/hss/downloads/doe-std-1150-2013 DOE-STD-1150-2013

425

August 2007 Standards Actions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Non-Government Standards Actions 1 American National Standards Institute (ANSI) 1 American Society of Mechanical Engineers (ASME) 2 ASTM International 2 American Nuclear Society (ANS) 2 National Fire Protection Association (NFPA) 2 Publication Staff Roster 2 DOE Technical Standards Program Document Status 07-27-2007 Activity Summary In Conversion - 4 In Preparation - 27 Out for Comment - 24 Published in June - 0 5-year Review status Proposed for Revision-5 Revision in Progress-6 Proposed for Reaffirmation-1 Reaffirmation in Progress-21 Cancellations Pending-9 Cancellations in Progress-0 Inside This Issue Visit the Technical Standards Program Web Site at

426

October 2007 Standards Actions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Non-Government Standards Actions 1 American National Standards Institute (ANSI) 1 American Society of Mechanical Engineers (ASME) 2 ASTM International 2 American Nuclear Society (ANS) 2 National Fire Protection Association (NFPA) 2 Publication Staff Roster 2 DOE Technical Standards Program Document Status 09-27-2007 Activity Summary In Conversion - 4 In Preparation - 26 Out for Comment - 27 Published in September - 0 5-year Review status Proposed for Revision-5 Revision in Progress-6 Proposed for Reaffirmation-1 Reaffirmation in Progress-21 Cancellations Pending-9 Cancellations in Progress-0 Inside This Issue Visit the Technical Standards Program Web Site at

427

April 2005 Standards Actions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Notices 1 Non-Government Standards Actions 1 American National Standards Institute (ANSI) 1 American Society of Mechanical Engineers (ASME) 1 ASTM International 2 American Nuclear Society (ANS) 2 National Fire Protection Association (NFPA) 2 DOE Technical Standards Program Document Status 3-28-2005 Activity Summary In Conversion - 4 In Preparation - 25 Out for Comment - 11 Published in March - 0 5-year Review Status Proposed for Revision-6 Revisions in Progress-4 Proposed for Reaffirmation-3 Reaffirmations in Progress-24 Cancellations Pending-11 Cancellations in Progress-0 Inside This Issue Visit the Technical Standards

428

Codes and Standards Activities  

Energy.gov (U.S. Department of Energy (DOE))

TheFuel Cell Technologies Office works with code development organizations, code officials, industry experts, and national laboratory scientists to draft new model codes and equipment standards...

429

Appliance Standards Resources  

Energy.gov (U.S. Department of Energy (DOE))

The federal government, and some states, have established minimum efficiency standards for certain appliances and equipment, such as refrigerators and clothes washers.

430

National Certification Standard  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Standard for the Geothermal Heat Pump Industry Principal Investigator John Kelly Geothermal Heat Pump Consortium GSHP Demonstration Projects May 18, 2010 This...

431

State Building Energy Standards  

Energy.gov (U.S. Department of Energy (DOE))

In June 2007, South Carolina enacted legislation (the Energy Independence and Sustainable Construction Act of 2007) to promote effective energy and environmental standards for construction,...

432

August 2006 Standards Actions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Notices 1 DOE Technical Standards Published 1 Non-Government Standards Actions 2 American National Standards Institute (ANSI) 2 American Society of Mechanical Engineers (ASME) 2 ASTM International 2 American Nuclear Society (ANS) 2 National Fire Protection Association (NFPA) 2 DOE Technical Standards Program Document Status 07-26-2006 Activity Summary In Conversion - 4 In Preparation - 22 Out for Comment - 16 Published in July - 2 5-year Review Status Proposed for Revision-5 Revision in Progress-6 Proposed for reaffirmation-1 Reaffirmation in Progress-21 Cancellation Pending-9 Cancellation in Progress-0

433

ANSI/ASHRAE/IES Standard 90.1-2010 | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

IES Standard 90.1-2010 IES Standard 90.1-2010 The materials for this course may be used for in-person training purposes. The presentation slides focus on the envelope; heating, ventilation, and air conditioning; power and lighting; and scope and application requirements of ASHRAE Standard 90.1-2010. Presenters: Course materials originally published by the DOE Building Energy Codes Program, April, 2011. Course Type: Training Materials In-person Downloads: Presentation Slides -- Scope and Application Presentation Slides -- Envelope Presentation Slides -- HVAC Presentation Slides -- Power and Lighting Building Type: Commercial Focus: Compliance Code Version: ASHRAE Standard 90.1-2010 Target Audience: Architect/Designer Builder Code Official Contractor Engineer State Official Contacts Web Site Policies

434

Aerodynamic efficiency of smoke ventilators in light streets and shed-type roofs  

Science Journals Connector (OSTI)

Low-rise industrial buildings in continental Europe have usually no or very little window area in the sidewalls. To provide the necessary daylight, translucent surfaces are fitted in the roof. Well known examples are shed roofs or curved and shed-type light streets in flat roofs. For economic reasons smoke ventilators are then integrated into the light surfaces. This paper gives typical examples of smoke ventilators installed in shed roofs and in curved or shed-type light streets. The measurement of the aerodynamic free areas on full scale apparatus is not possible due to the large dimensions of the relevant roof surfaces. Therefore, tests have to be conducted in model scale. The relevant similarity considerations for such model tests are discussed and the applicability of model scale tests is demonstrated. Finally, the most important parameters influencing the aerodynamic efficiency of typical ventilator installations in shed-roofs and curved or shed-type light streets are described for the cases without and with side wind.

H.J. Gerhardt; C. Kramer

1993-01-01T23:59:59.000Z

435

Nucleic Acid Standards - Standard Ref. Frame  

NLE Websites -- All DOE Office Websites (Extended Search)

A Standard Reference Frame for the Description A Standard Reference Frame for the Description of Nucleic Acid Base-pair Geometry Supplementary Material The report is available at Journal of Molecular Biology (2001) 313: 229 - 237 and The Nucleic Acid Cartesian coordinates for A, C, G, T, and U in the optimized reference frame Adenine, Cytosine, Guanine, Thymine, Uracil Standard chemical structures taken from Clowney et al. (1996), J. Am. Chem. Soc., 118, 509-518). These data do not include C1' atoms, which are placed here in the least-squares plane of the base atoms, with the purine C1'-N9 bond length and C1'-N9-C4 valence angle set respectively to 1.46 Å and 126.5° and the pyrimidine C1'-N1 bond and C1-N1-C2 angle to 1.47 Å and 118.1°. These distances and angles are based on the average glycosyl

436

June 2006 Standards Actions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Page 1 June 2006 Page 1 June 2006 Technical Standards Program Manager's Note 1 Safety for Electrical Workers 2 Significant Federal Laws and Policies 3 Clearance of Solid Materials from Nuclear Facilities 5 Technical Standards Manager Spotlight 6 Topical Committee Developments 7 From the ANSI Web site 8 Don't Get "Board" With

437

Keeping up standards  

Science Journals Connector (OSTI)

......24 Two major security standards have been revised to...2:2002 introduces a plan-docheck-act cycle...each section are: ? Plan: define the scope of...implemented controls, review the levels of residual...This became a British Standard in 1995 (BS 7799......

Willie List

2002-09-01T23:59:59.000Z

438

Universal software safety standard  

Science Journals Connector (OSTI)

This paper identifies the minimum subset required for a truly universal safety-critical software standard. This universal software standard could be used in but is not limited to the following application domains: commercial, military and space ... Keywords: software safety, system safety, validation, verification

P. V. Bhansali

2005-09-01T23:59:59.000Z

439

Introduction Format Proprietaire -Standard  

E-Print Network (OSTI)

Code for Information Interchange) 4. Unicode IFT-1215 Stefan Monnier 7 #12;BCD IFT-1215 Stefan MonnierSOMMAIRE Introduction Format Propri´etaire -Standard Code Alphanum´erique Entr´ee Alphanum : !, ?, ", (, . . . · Caract`eres sp´eciaux : *, $, ¿, . . . Quelques standards utilis´es pour les coder en binaires 1. BCD

Monnier, Stefan

440

Helical Tomotherapy Planning for Lung Cancer Based on Ventilation Magnetic Resonance Imaging  

SciTech Connect

To investigate the feasibility of lung ventilation-based treatment planning, computed tomography and hyperpolarized (HP) helium-3 (He-3) magnetic resonance imaging (MRI) ventilation images of 6 subjects were coregistered for intensity-modulated radiation therapy planning in Tomotherapy. Highly-functional lungs (HFL) and less-functional lungs (LFL) were contoured based on their ventilation image intensities, and a cylindrical planning-target-volume was simulated at locations adjacent to both HFL and LFL. Annals of an anatomy-based plan (Plan 1) and a ventilation-based plan (Plan 2) were generated. The following dosimetric parameters were determined and compared between the 2 plans: percentage of total/HFL volume receiving {>=}20 Gy, 15 Gy, 10 Gy, and 5 Gy (TLV{sub 20}, HFLV{sub 20}, TLV{sub 15}, HFLV{sub 15}, TLV{sub 10}, HFLV{sub 10}, TLV{sub 5}, HFLV{sub 5}), mean total/HFL dose (MTLD/HFLD), maximum doses to all organs at risk (OARs), and target dose conformality. Compared with Plan 1, Plan 2 reduced mean HFLD (mean reduction, 0.8 Gy), MTLD (mean reduction, 0.6 Gy), HFLV{sub 20} (mean reduction, 1.9%), TLV{sub 20} (mean reduction, 1.5%), TLV{sub 15} (mean reduction, 1.7%), and TLV{sub 10} (mean reduction, 2.1%). P-values of the above comparisons are less than 0.05 using the Wilcoxon signed rank test. For HFLV{sub 15}, HFLV{sub 10}, TLV{sub 5}, and HTLV{sub 5}, Plan 2 resulted in lower values than plan 1 but the differences are not significant (P-value range, 0.063-0.219). Plan 2 did not significantly change maximum doses to OARs (P-value range, 0.063-0.563) and target conformality (P = 1.000). HP He-3 MRI of patients with lung disease shows a highly heterogeneous ventilation capacity that can be utilized for functional treatment planning. Moderate but statistically significant improvements in sparing functional lungs were achieved using helical tomotherapy plans.

Cai Jing; McLawhorn, Robert [Department of Radiation Oncology, University of Virginia, Charlottesville, VA (United States); Altes, Tallisa A.; Lange, Eduard de [Department of Radiology, University of Virginia, Charlottesville, VA (United States); Read, Paul W.; Larner, James M.; Benedict, Stanley H. [Department of Radiation Oncology, University of Virginia, Charlottesville, VA (United States); Sheng Ke, E-mail: ks2mc@virginia.edu [Department of Radiation Oncology, University of Virginia, Charlottesville, VA (United States)

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation rate standards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Hydrogen Codes and Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Codes and Standards Codes and Standards James Ohi National Renewable Energy Laboratory 1617 Cole Blvd. Golden, CO 80401 Background The development and promulgation of codes and standards are essential if hydrogen is to become a significant energy carrier and fuel because codes and standards are critical to establishing a market-receptive environment for commercializing hydrogen-based products and systems. The Hydrogen, Fuel Cells, and Infrastructure Technologies Program of the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL), with the help of the National Hydrogen Association (NHA) and other key stakeholders, are coordinating a collaborative national effort by government and industry to prepare, review, and promulgate hydrogen codes and standards needed to expedite hydrogen infrastructure development. The

442

Maintaining Standards: Differences between the Standard Deviation and Standard Error, and  

E-Print Network (OSTI)

Maintaining Standards: Differences between the Standard Deviation and Standard Error, and When to Use Each David L Streiner, PhD1 Many people confuse the standard deviation (SD) and the standard error of the findings. (Can J Psychiatry 1996;41:498­502) Key Words: statistics, standard deviation, standard error

California at Santa Cruz, University of

443

Health Relevant Outdoor Air Change Rates in Homes  

NLE Websites -- All DOE Office Websites (Extended Search)

Health Relevant Outdoor Air Change Rates in Homes Health Relevant Outdoor Air Change Rates in Homes Speaker(s): Jan Sundell Date: February 6, 2003 - 12:00pm Location: Bldg. 90 The Damp Building and Health (DBH) study started as a cross-sectional questionnaire study of all 14000 children, 1-6 years of age in Värmland, Sweden. The response rate on the questionnaire (year 2001) was 79%, meaning that basic data exists on almost 12,000 children and their homes. In a second step a case-control study on 200 sick (wheezing, asthma, excema), and 200 healthy children, extensive measurements in the home, as well as clinical examinations of the children has been conducted during 2002. Ventilation has been measured with a passive tracer gas method during one week. The results will be presented in this seminar-- seemingly sick

444

The Standards Forum and Standards Actions - June 2001 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Standards Forum and Standards Actions - June 2001 The Standards Forum and Standards Actions - June 2001 The Standards Forum and Standards Actions - June 2001 The Standards Forum and Standards Actions - June 2001 Inside this issue: Should DOE Organizations Include DOE O 252.1 in their Contracts?....................................................... 1 Metrology/Accreditation Personnel and Nuclear Weapons Complex Managers Take Action Addressing Current Issues at Joint Annual Meeting........................................................................ 1 A Note from the Manager........................................................................................................................ 2 Welcome Aboard the TSMC!..................................................................................................................

445

January 2008 Standards Actions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 American National Standards Institute (ANSI) 1 American Society of Mechanical Engineers (ASME) 2 ASTM International 2 American Nuclear Society (ANS) 2 National Fire Protection Association (NFPA) 2 Publication Staff Roster 2 DOE Technical Standards Program Document Status 12-27-2007 Activity Summary In Conversion - 4 In Preparation - 22 Out for Comment - 26 Published in December - 4 5-year Review status Proposed for Revision-5 Revision in Progress-6 Proposed for Reaffirmation-1 Reaffirmation in Progress-21 Cancellations Pending-9 Cancellations in Progress-0 Inside This Issue Visit the Technical Standards Program Web Site at http://www.hss.energy.gov/nuclear safety/techstds/

446

November 2007 Standards Actions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 American National Standards Institute (ANSI) 1 American Society of Mechanical Engineers (ASME) 2 ASTM International 2 American Nuclear Society (ANS) 2 National Fire Protection Association (NFPA) 2 Publication Staff Roster 2 DOE Technical Standards Program Document Status 10-29-2007 Activity Summary In Conversion - 4 In Preparation - 24 Out for Comment - 30 Published in October - 0 5-year Review status Proposed for Revision-5 Revision in Progress-6 Proposed for Reaffirmation-1 Reaffirmation in Progress-21 Cancellations Pending-9 Cancellations in Progress-0 Inside This Issue Visit the Technical Standards Program Web Site at http://hss.energy.gov/nuclear safetytechstds/

447

Mechanical Systems Qualification Standard  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

61-2008 61-2008 June 2008 DOE STANDARD MECHANICAL SYSTEMS QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1161-2008 ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ DOE-STD-1161-2008 iv INTENTIONALLY BLANK DOE-STD-1161-2008 v TABLE OF CONTENTS ACKNOWLEDGMENT................................................................................................................ vii PURPOSE ....................................................................................................................................1

448

February 2008 Standards Actions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 American National Standards Institute (ANSI) 2 American Society of Mechanical Engineers (ASME) 2 ASTM International 2 American Nuclear Society (ANS) 2 National Fire Protection Association (NFPA) 2 Publication Staff Roster 2 DOE Technical Standards Program Document Status 01-28-2008 Activity Summary In Conversion - 4 In Preparation - 22 Out for Comment - 24 Published in January - 3 5-year Review status Proposed for Revision-5 Revision in Progress-6 Proposed for Reaffirmation-1 Reaffirmation in Progress-21 Cancellations Pending-9 Cancellations in Progress-0 Inside This Issue Visit the Technical Standards Program Web Site at http://www.hss.energy.gov/nuclear safety/techstds/

449

Sonication standard laboratory module  

DOE Patents (OSTI)

A standard laboratory module for automatically producing a solution of cominants from a soil sample. A sonication tip agitates a solution containing the soil sample in a beaker while a stepper motor rotates the sample. An aspirator tube, connected to a vacuum, draws the upper layer of solution from the beaker through a filter and into another beaker. This beaker can thereafter be removed for analysis of the solution. The standard laboratory module encloses an embedded controller providing process control, status feedback information and maintenance procedures for the equipment and operations within the standard laboratory module.

Beugelsdijk, Tony (Los Alamos, NM); Hollen, Robert M. (Los Alamos, NM); Erkkila, Tracy H. (Los Alamos, NM); Bronisz, Lawrence E. (Los Alamos, NM); Roybal, Jeffrey E. (Santa Fe, NM); Clark, Michael Leon (Menan, ID)

1999-01-01T23:59:59.000Z

450

Standards Development Support  

Energy.gov (U.S. Department of Energy (DOE))

CALiPER test results and analyses are used to support the development of standards and test procedures for SSL especially those related to complex areas such as flicker, dimming, power quality, and long-term performance. In addition, DOE hosts annual CALiPER roundtables attended by representatives from industry, independent test laboratories, and key standards-setting groups to solicit input on test results and procedures and additional testing needs for SSL. The roundtable meetings provide an opportunity for these diverse groups to gather and discuss complex issues and standards development efforts related to SSL testing, and these targeted working sessions have paid off in the form of accelerated progress.

451

Proposal for the award of a contract for the design, supply, installation and commissioning of an HVAC (Heating, Ventilation and Air Conditioning) system for Building 3862  

E-Print Network (OSTI)

Proposal for the award of a contract for the design, supply, installation and commissioning of an HVAC (Heating, Ventilation and Air Conditioning) system for Building 3862

2014-01-01T23:59:59.000Z

452

Proposal for the award of a contract for the design, supply, installation and commissioning of Heating, Ventilation and Air-Conditioning (HVAC) systems for the PS accelerator infrastructure  

E-Print Network (OSTI)

Proposal for the award of a contract for the design, supply, installation and commissioning of Heating, Ventilation and Air-Conditioning (HVAC) systems for the PS accelerator infrastructure

2012-01-01T23:59:59.000Z

453

Proposal for the award of a contract for dismantling, removal and packaging of the existing Heating, Ventilation and Air-Conditioning (HVAC) systems in the PS tunnel  

E-Print Network (OSTI)

Proposal for the award of a contract for dismantling, removal and packaging of the existing Heating, Ventilation and Air-Conditioning (HVAC) systems in the PS tunnel

2012-01-01T23:59:59.000Z

454

USE OF VOLUNTARY CONSENSUS STANDARDS AND INTERACTION WITH STANDARDS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

USE OF VOLUNTARY CONSENSUS STANDARDS AND INTERACTION WITH STANDARDS USE OF VOLUNTARY CONSENSUS STANDARDS AND INTERACTION WITH STANDARDS DEVELOPMENT ORGANIZATIONS USE OF VOLUNTARY CONSENSUS STANDARDS AND INTERACTION WITH STANDARDS DEVELOPMENT ORGANIZATIONS Purpose This procedure identifies the process by which DOE adopts Voluntary Consensus Standards (VCSs) and provides guidance for the interaction of DOE and contractor employees with Standards Development Organizations (SDOs). Use of Voluntary Consensus Standards and Interaction with Standards Development Organizations (TSPP-03) More Documents & Publications DOE-TSPP-3, Use of Voluntary Consensus Standards and Interaction with Standards Development Organizations - August 1, 2000 DOE-TSPP-3, Use of Non-Government Standards and Interaction with Non-Government Standards Bodies - July 1, 2009

455

Low Carbon Fuel Standards  

E-Print Network (OSTI)

S O N I A YE H Low Carbon Fuel Standards The most direct andalternative transportation fuels is to spur innovation withstandard for upstream fuel producers. hen it comes to energy

Sperling, Dan; Yeh, Sonia

2009-01-01T23:59:59.000Z

456

International Standards for Telecommunications  

Science Journals Connector (OSTI)

...research-article International Standards for Telecommunications M. B. Williams As soon as telegraph...surprising that the International Telecommunications Union, the forum for world-wide...and evolution of all branches of telecommunications. Increasingly, the distinction...

M. B. Williams

1978-01-01T23:59:59.000Z

457

Technical Standards Program  

Directives, Delegations, and Requirements

The order establishes the DOE Technical Standards Program. Cancels DOE O 252.1 and DOE G 252.1-1. Admin Chg 1, dated 3-12-13 cancels DOE O 252.1A.

2011-02-23T23:59:59.000Z

458

NETL Focused Standards List  

NLE Websites -- All DOE Office Websites (Extended Search)

Safeguards and Security Program DOE Order 3750.1, Workforce Discipline DOE Order 5480.19, Conduct of Operations Requirements for DOE Facilities DOE Standard 1030-96, Guide to Good...

459

FREIGHT CONTAINER LIFTING STANDARD  

SciTech Connect

This standard details the correct methods of lifting and handling Series 1 freight containers following ISO-3874 and ISO-1496. The changes within RPP-40736 will allow better reading comprehension, as well as correcting editorial errors.

POWERS DJ; SCOTT MA; MACKEY TC

2010-01-13T23:59:59.000Z

460

Approved DOE Technical Standards  

Office of Environmental Management (EM)

ehss908241 Approved DOE Technical Standards en DOE-STD-3009-2014 http:energy.govehssdownloadsdoe-std-3009-2014

Note: This page contains sample records for the topic "ventilation rate standards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Reliability Standards Owner  

Energy.gov (U.S. Department of Energy (DOE))

This position is located in the Internal Operations and Asset Management group of Planning and Asset Management (TP). A successful candidate in this position will serve as the Reliability Standards...

462

Title Standards 2001  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Standards 2001 Standards 2001 A guide for the preparation of title evidence in land acquisitions by the United States of America. Quick links to Contents: Table of Contents / Why Title Standards 2001, and who uses it? / Evidence of title / Abstract of Title Supplemental and Supporting Title Evidence / Title Insurance Policies and Certificates of Title / Final Title Evidence Title Evidence for Condemnations / The Deed to the United States / Special Standards for Texas / Sample Forms U.S. Department of Justice Environment and Natural Resources Division Land Acquisition Section Washington, D.C. 20530 December 29, 2000 (reprint March 23, 2001) [Editor's Note: The reprint of March 23, 2001, added page numbers to the table of contents; added a new item "3" to part B of Form # 1 of the Certificate of Inspection and Possession,

463

Standard costs for labor  

E-Print Network (OSTI)

STANDARD COSTS FOR LABOR A Thesis By MD. NURUL ABSAR KHAN Submitted to the Graduate School of the Agricultural and Mechanical College of Texms in partial fulfillment of the requirements for the degree of MASTER OF BUSINESS ADMINISTRATION... Administration and the government of East Pakistan. CONTENTS Chapter Page I. Introduction and Prelisd. nary Discussion II. Installation and Accounting Aspects of Standard Costs for Labor III, Recording~ Analysing and Reporting of Labor Vaxlances . 45 IV...

Khan, Mohammed Nurul Absar

2012-06-07T23:59:59.000Z

464

ORISE: Inter-rater Reliability brings Standardization to Scientific Peer  

NLE Websites -- All DOE Office Websites (Extended Search)

Standardization of Scientific Peer Reviews Standardization of Scientific Peer Reviews IRR: A New Initiative Aims to Bring Standardization to ORISE Scientific Peer Reviews In some peer reviews, clear instructions on the basis for rating proposals may not be given to reviewers. As a result, the reviewers' final ratings can leave much room for interpretation thanks to varying degrees of reviewer knowledge and experience... all of which contribute to the final rating number. For instance, the rating scale for a particular review is 1 to 5 (with 1 being the highest). One reviewer rates the proposal a 2, and a second reviewer rates the same proposal a 4 but notes "this is the best proposal" he's ever seen. If the proposal was the best ever, why didn't he rate the proposal a 1? And, was the range in their scores due

465

Chlorite Dissolution Rates  

SciTech Connect

Spreadsheets provides measured chlorite rate data from 100 to 300C at elevated CO2. Spreadsheet includes derived rate equation.

Carroll, Susan

2013-07-01T23:59:59.000Z

466

Chlorite Dissolution Rates  

DOE Data Explorer (OSTI)

Spreadsheets provides measured chlorite rate data from 100 to 300C at elevated CO2. Spreadsheet includes derived rate equation.

Carroll, Susan

467

Power Rate Cases (pbl/rates)  

NLE Websites -- All DOE Office Websites (Extended Search)

Choices (2003-06) Power Function Review (PFR) Firstgov Power Rate Cases BPA's wholesale power rates are set to recover its costs and repay the U.S. Treasury for the Federal...

468

SAE Standards Development  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

intense sensitivities to: - Higher speeds - Higher acceleration rates High energy use at high speeds actual lower electric consumption per unit distance (lowering...

469

IX. Standards for Student Organizations Standards of all Student Organizations  

E-Print Network (OSTI)

1 of 8 IX. Standards for Student Organizations Standards of all Student Organizations As stated to the same standards of conduct to which students are held on an individual basis. Standards for Fraternities on February 25, 1976 - the University has developed the following standards for fraternity/sorority life

Marsh, David

470

Technical Standards, Style Guide- August 1, 2000  

Energy.gov (U.S. Department of Energy (DOE))

Style Guide for the Preparation of DOE Technical Standards (Standards, Handbooks, and Technical Standards Lists)

471

CO2 tracer gas concentration decay method for measuring air change rate  

Science Journals Connector (OSTI)

Abstract The measure of air change rate (ACR) in building is a difficult and usually expensive task. The tracer gas method is the reference technique but its implementation is difficult and the interpretation of results is not straightforward. In the present work, the concentration decay method by multiple CO2 transmitters is experimentally validated in the case of cross-ventilation. It is observed that in-situ CO2 transmitters lead to ACR values in good agreement with reference measurements obtained from mechanically controlled values. Whereas multiple transmitters in different sampling positions show the imperfect mixing, a sensor located at the outlet or an averaged value of all sensors can provide an accurate measure of the ACR. Moreover, the spatial variation of CO2 concentration can be used to assess the ventilation efficiency in the test chamber. Different measures and calculation methods are discussed, and the uncertainty analysis of each method is carried out.

Shuqing Cui; Michal Cohen; Pascal Stabat; Dominique Marchio

2015-01-01T23:59:59.000Z

472

Beyond the Standard Model  

NLE Websites -- All DOE Office Websites (Extended Search)

allá del Modelo Standard allá del Modelo Standard Avanzar Volver Principal ESTOY PERDIDO!!! El modelo standard explica muchas de las preguntas acerca de la estructura y la estabilidad de la materia, con sus seis tipos de quarks, sus seis tipos de leptones, y sus cuatro fuerzas fundamentales. Sin embargo, el modelo standard es una teoría incompleta porque todavía no puede explicar la naturaleza del mundo en forma completa. ¿Por qué hay tres generaciones de quarks y leptones? ¿Los quarks y leptones son realmente fundamentales, o están constituidos a su vez por partículas aún más fundamentales? ¿Por qué no puede el modelo standard predecir la masa de una partícula? De acuerdo con nuestros experimentos, las cantidades de materia y antimateria en el universo deberían ser iguales; pero, ¿por qué hemos

473

The Standard Cosmological Model  

E-Print Network (OSTI)

The Standard Model of Particle Physics (SMPP) is an enormously successful description of high energy physics, driving ever more precise measurements to find "physics beyond the standard model", as well as providing motivation for developing more fundamental ideas that might explain the values of its parameters. Simultaneously, a description of the entire 3-dimensional structure of the present-day Universe is being built up painstakingly. Most of the structure is stochastic in nature, being merely the result of the particular realisation of the "initial conditions" within our observable Universe patch. However, governing this structure is the Standard Model of Cosmology (SMC), which appears to require only about a dozen parameters. Cosmologists are now determining the values of these quantities with increasing precision in order to search for "physics beyond the standard model", as well as trying to develop an understanding of the more fundamental ideas which might explain the values of its parameters. Although it is natural to see analogies between the two Standard Models, some intrinsic differences also exist, which are discussed here. Nevertheless, a truly fundamental theory will have to explain both the SMPP and SMC, and this must include an appreciation of which elements are deterministic and which are accidental. Considering different levels of stochasticity within cosmology may make it easier to accept that physical parameters in general might have a non-deterministic aspect.

Douglas Scott

2005-10-26T23:59:59.000Z

474

Acute effects of a sarin-like organophosphorus agent, bis(isopropyl methyl)phosphonate, on cardiovascular parameters in anaesthetized, artificially ventilated rats  

SciTech Connect

The organophosphorus compound sarin irreversibly inhibits acetylcholinesterase. We examined the acute cardiovascular effects of a sarin-like organophosphorus agent, bis(isopropyl methyl)phosphonate (BIMP), in anaesthetized, artificially ventilated rats. Intravenous administration of BIMP (0.8 mg/kg; the LD50 value) induced a long-lasting increase in blood pressure and tended to increase heart rate. In rats pretreated with the non-selective muscarinic-receptor antagonist atropine, BIMP significantly increased both heart rate and blood pressure. In atropine-treated rats, hexamethonium (antagonist of ganglionic nicotinic receptors) greatly attenuated the BIMP-induced increase in blood pressure without changing the BIMP-induced increase in heart rate. In rats treated with atropine plus hexamethonium, intravenous phentolamine (non-selective ?-adrenergic receptor antagonist) plus propranolol (non-selective ?-adrenergic receptor antagonist) completely blocked the BIMP-induced increases in blood pressure and heart rate. In atropine-treated rats, the reversible acetylcholinesterase inhibitor neostigmine (1 mg/kg) induced a transient increase in blood pressure, but had no effect on heart rate. These results suggest that in anaesthetized rats, BIMP induces powerful stimulation of sympathetic as well as parasympathetic nerves and thereby modulates heart rate and blood pressure. They may also indicate that an action independent of acetylcholinesterase inhibition contributes to the acute cardiovascular responses induced by BIMP. - Highlights: A sarin-like agent BIMP markedly increased blood pressure in anaesthetized rats. Muscarinic receptor blockade enhanced the BIMP-induced increase in blood pressure. Ganglionic nicotinic receptor blockade attenuated the BIMP-induced response. Blockade of ?- as well as ?-receptors attenuated the BIMP-induced response.

Watanabe, Yoshimasa [Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya (Japan); Itoh, Takeo, E-mail: titoh@med.nagoya-cu.ac.jp [Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya (Japan); Shiraishi, Hiroaki [Department of Forensic Medicine, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima (Japan); Maeno, Yoshitaka [Department of Forensic Medical Science, Graduate School of Medical Sciences, Nagoya City University, Nagoya (Japan); Arima, Yosuke; Torikoshi, Aiko; Namera, Akira [Department of Forensic Medicine, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima (Japan); Makita, Ryosuke [Department of Nursing, Faculty of Health Sciences, Hiroshima Cosmopolitan University, Hiroshima (Japan); Yoshizumi, Masao [Department of Cardiovascular Physiology and Medicine, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima (Japan); Nagao, Masataka [Department of Forensic Medicine, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima (Japan)

2013-10-01T23:59:59.000Z

475

Standards Actions, October 1999  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

projects were recently ini- projects were recently ini- tiated. If you have any questions or are interested in participating in the development of these standards, please contact the per- sons listed below. • Work Smart Standards Users Handbook, Project Number MGMT-0002; Maggie Sturdivant, EH-31; 301-903-0077, FAX 301- 903-0557, Maggie.Sturdivant @eh.doe.gov. • Criteria for Preparing and Pack- aging Plutonium Metals and Oxides for Long-term Storage, Project Number PACK-0013 (re- vision of DOE-STD-3013-96); Ray Cooperstein, 301-903- 5353, 301-903-7065, Raymond .Cooperstein@dp.doe.gov. • Industrial Hygiene Functional Area Qualifications, Project Number TRNG-0012; M. Norman Schwartz, EH-31; 301- 903-2996, FAX 301-903-4594, Norm.Schwartz@eh.doe.gov. DOE Technical Standards Recently Sent for Coordination

476

Site Lead TQP Standard  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Qualification Standard for the Qualification Standard for the Office of Safety and Emergency Management Evaluations Site Lead Program May 2011 Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy 1 Qualification Standard for the Office of Safety and Emergency Management Evaluations Site Lead Program A Site Lead is an individual, normally at a senior General Schedule (GS) level or Excepted Service, who is assigned the responsibility to assess and evaluate management systems, safety and health programs, and technical activities associated with U.S. Department of Energy (DOE) nuclear and non-nuclear facilities. Typically, a Site Lead has previously qualified as a Nuclear Safety Specialist or a Senior Technical Safety Manager. For exceptionally qualified individuals,

477

Standard Model Holdout INSIDE  

NLE Websites -- All DOE Office Websites (Extended Search)

May 2, 1997 May 2, 1997 Number 9 f Searching for the Standard Model Holdout INSIDE 2 University Close-Up: Pisa 5 Facilities Managers' Meeting 6 Birth of a Bison Photo by Reidar Hahn An international collaboration at Fermilab sets out to observe the elusive tau neutrino. by Donald Sena, Office of Public Affairs When two collaborations announced the discovery of the top quark at Fermi National Accelerator Laboratory in 1995, many news outlets erroneously reported that the last remaining piece of the current theory of matter and energy, known as the Standard Model, had been found. What reporters and even a few physicists forgot is that the elusive tau neutrino, while firmly entrenched in the Standard Model, has never been directly observed. In the early 1980s, there was one minor attempt to find the tau neutrino

478

Standards Actions - May 2000  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Canceled Project Canceled The following DOE Technical Standards project was recently canceled. If you have any questions about this action, please contact the person listed below. • Equipment Qualification Program for DOE-Owned Nuclear Facilities and Operations, Project Number FACR-0012; Samuel Rosenbloom, EH-31; 301-903-5749, Fax 301-903- 8693, Samuel.Rosenbloom@eh.doe.gov. The need for this document no longer ex- ists. DOE Technical Standards Recently Published The following DOE Technical Standard has recently been published: • DOE-STD-1063-2000, Facility Representatives, March 2000. This document updates and supersedes DOE-STD-1063-97, October 1997. DOE employees and DOE contractors may obtain copies from the ES&H Technical Infor- mation Services, U.S. Department of Energy; 1-800-473-4375, Fax 301-903-9823.

479

August 1999 Standards Actions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

this document is available on the this document is available on the Technical Standards Program (TSP) Internet Site at the URL shown at the bottom of this page. If you wish to comment on this document, please notify your TSM. * Design Criteria Standard for Electronic Records Manage- ment Software, Project Number INFT-0001; Carol Blackston, MA-42; 301-903-4294, FAX 301- 903-4101; Carol.Blackston @hq.doe.gov. Comments are due August 30, 1999. This stan- dard was adapted from the De- partment of Defense standard 5015.2 and tailored for specific DOE use. DOE Documents Recently Published The following DOE document has recently been published: * DOE-HDBK-3027-99, Integrated Safety Management Systems (ISMS) Verification - Team Leader's Handbook, June 1999. DOE employees and DOE contractors may obtain copies from the

480

Standard Report Templates  

NLE Websites -- All DOE Office Websites (Extended Search)

ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü Metrics Included in Every Report "How To" Series Standard Report Templates EPA's Portfolio Manager offers you eight standard reports with key metrics and information you can use to easily assess your portfolio's performance and progress, and thereby make informed business decisions. This document lists the metrics included in each of the eight reports so you can see what each report offers. Standard Reports Performance Highlights Energy Performance Emissions Performance Water Performance Fuel Performance ENERGY STAR Certification Status

Note: This page contains sample records for the topic "ventilation rate standards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Standard Review Plan Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technical Framework for EM Projects Critical Decision (CD) Technical Framework for EM Projects Critical Decision (CD) Milestones Review & Approval Standard Review Plan (SRP) E n v i r o n m e n t a l M a n a g e m e n t DOE - EM - SRP - 2010 2nd Edition Overview March 2010 This page intentionally left blank. Standard Review Plan, 2 nd Edition, March 2010 1 Standard Review Plan Overview Technical Framework for EM Projects Critical Decision Milestones Review and Approval The Office of Environmental Management (EM) is responsible for managing the design, construction, operation, and eventual disposition of mission-critical projects/facilities. Coupled with this ongoing mission is the added responsibility for EM to diligently leverage and apply American Recovery and Reinvestment Act (ARRA) funds to accelerate the completion of its

482

Standards Actions - January 2000  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Projects Initiated Projects Initiated The following DOE Technical Standards projects were recently initiated. If you have any questions or are interested in participating in the development of these stan- dards, please contact the per- sons listed below. • Establishing and Maintaining a Facility Representative Pro- gram at DOE Facilities , Project Number MGMT-0003 (revision of DOE-STD-1063-97); David Compton, S-3.1, 202-586-1034, Fax 202-586-3472, David .Compton@hq.doe.gov. • Nuclear Explosive Safety Study Process, Project Number SAFT- 0074 (Revision of DOE-STD- 3015-97); Helmut Filacchione, DP-21, 301-903-7519, Fax 301- 903-8628, Helmut.Filacchione @hq.doe.gov. DOE Technical Standards Project Canceled The following DOE Technical Standards project was recently can- celed. If you have any questions about this action, please contact

483

ORISE: Work Smart Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Work Smart Standards Work Smart Standards ORISE Work Smart Standards Set for Environment, Safety, and Health Revision #1, March 21, 2000 Revision #2, Sept. 29, 2000 Revision #3, June 28, 2001 Revision #4, Nov. 9, 2001 Revision #5, Nov. 30, 2001 Revision #6, Jan. 31, 2002 Revision #7, June 28, 2002 Revision #8, Oct. 17, 2002 Revision #9, Nov. 21, 2002 Revision #10, Feb. 28, 2003 Revision #11, May 23, 2003 Revision #12, May 30, 2003 Revision #13, Oct. 30, 2003 Revision #14, Jan. 21, 2004 Revision #15, May 24, 2004 Revision #16, Aug. 17, 2004 Revision #17, Aug. 27, 2004 Revision #18, Oct. 14, 2004 Revision #19, March 28, 2005 Revision #20, May 31, 2005 Revision #21, Aug. 24, 2005 Revision #22, Feb. 17, 2006 Revision #23, March 22, 2006 Revision #24, May 19, 2006 Revision #25, July 26, 2006 Revision #26, Nov. 28, 2006

484

CID Standard Reports  

Office of Environmental Management (EM)

CID Reports > Standard CID Reports > Standard Reports Central Internet Database CID Photo Banner Standard Reports Radioactive Waste WIMS-1: WASTE STREAM DISPOSITION FORECAST REPORT Adobe PDF Document Detailed waste stream disposition report by reporting site and disposition site that provides forecasted waste disposition volumes. Go directly to WIMS Exit CID Website to generate custom reports. Although WIMS Exit CID Website is a public site you will need to register and provide contact information the first time you enter WIMS Exit CID Website . Contaminated Groundwater GW-1: CONTAMINATED GROUNDWATER REPORTS A link to the DOE Groundwater Database web site. This site provides detailed information about groundwater plumes at DOE sites. Information includes contaminants, hydrogeology, and cleanup technologies.

485

Hydrogen Purity Standard  

NLE Websites -- All DOE Office Websites (Extended Search)

Compressed Gas Association Compressed Gas Association Roger A. Smith Technical Director April 26, 2004 Hydrogen Purity Standard Compressed Gas Association 2 Compressed Gas Association ‹ 150 Members „ Industrial Gas Companies „ Equipment Manufacturers „ Other Gas Industry Associations „ Other SDOs ‹ Manufacturers, Fillers, Distributors, and Transporters of Industrial and Medical Gases Compressed Gas Association 3 Hydrogen Activities ‹ Committees „ Hydrogen Fuel Technology „ Bulk Distribution Equipment „ Hazardous Materials Codes „ Gas Specifications „ Cylinders, Valves & PRD's ‹ International „ Europe (EIGA) „ Japan (JIGA) „ Asia (AIGA) „ United Nations Compressed Gas Association 4 Hydrogen Purity Standard ‹ Draft hydrogen purity standard for stationary fuel cells and ICE's in 10 months

486

Building Technologies Program: About Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

About Standards to About Standards to someone by E-mail Share Building Technologies Program: About Standards on Facebook Tweet about Building Technologies Program: About Standards on Twitter Bookmark Building Technologies Program: About Standards on Google Bookmark Building Technologies Program: About Standards on Delicious Rank Building Technologies Program: About Standards on Digg Find More places to share Building Technologies Program: About Standards on AddThis.com... About Standards & Test Procedures Implementation, Certification & Enforcement Rulemakings & Notices Further Guidance ENERGY STAR® Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Learn More. Warming Up to Pump Heat. Learn More. Cut Refrigerator Energy Use to Save Money. Learn More.

487

Definition: Equipment Rating | Open Energy Information  

Open Energy Info (EERE)

Rating Rating Jump to: navigation, search Dictionary.png Equipment Rating The maximum and minimum voltage, current, frequency, real and reactive power flows on individual equipment under steady state, short-circuit and transient conditions, as permitted or assigned by the equipment owner.[1] Also Known As Standard current ratings Related Terms reactive power, smart grid References ↑ Glossary of Terms Used in Reliability Standards An i LikeLike UnlikeLike You like this.Sign Up to see what your friends like. nline Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Equipment_Rating&oldid=502535" Categories: Definitions ISGAN Definitions What links here Related changes Special pages Printable version Permanent link Browse properties

488

New State Standards  

E-Print Network (OSTI)

.-State-Funded Buildings ?TAC Rules: ?19.31/?19.32/?19.33/?19.34 ? Chapter 388-TX Health & Safety Code ?Texas Building Energy Performance Stds. ?TAC Rules: ?19.53 ? IECC-IRC 2012 ? SECO Resources ?Q&A 2 CATEE-Dallas 11-09-2011 Texas Design Standards... Chapter 447.004-TX Gov. Code ? State that SECO shall establish and publish mandatory energy and water conservation design standards for each new state building or major renovation project ? SECO shall define ?major renovation project? and shall...

Lopez, F. A.

2011-01-01T23:59:59.000Z

489

Technical Standards,DOE Standards and Corresponding Directives...  

Energy Savers (EERE)

More Documents & Publications Technical Standards, DOE Orders and Applicable CFRsDEAR Crosswalk - February 2, 2002 DOE-STD-1037-93 All Active DOE Technical Standards Document...

490

A. Buonomano, M. Sherman, USA: Analysis of residential hybrid ventilation performance in U.S. climates 1 Intern. Symposium on Building and Ductwork Air tightness  

E-Print Network (OSTI)

A. Buonomano, M. Sherman, USA: Analysis of residential hybrid ventilation performance in U Laboratory, 1 Cyclotron Road, Berkeley 94720, CA, USA. (phone:+1 510 486 4022, fax: +1 510 486 6658, email on analysis methods for hybrid ventilation system is limited. #12;2 A. Buonomano, M. Sherman, USA: Analysis

491

Flexible Residential Test Facility: Impact of Infiltration and Ventilation on Measured Cooling Season Energy and Moisture Levels  

SciTech Connect

Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC has conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.

Parker, D.; Kono, J.; Vieira, R.; Fairey, P.; Sherwin, J.; Withers, C.; Hoak, D.; Beal, D.

2014-05-01T23:59:59.000Z

492

Evaluation of a Ventilation Strategy to Prevent Barotrauma in Patients at High Risk for Acute Respiratory Distress Syndrome  

Science Journals Connector (OSTI)

...site classified the primary cause of deaths in the intensive care units as respiratory failure (due to profound hypoxemia), multiple-organ failure (three or more organs), sepsis, cardiac arrhythmia, or withdrawal of life support from a patient because of an irreversible chronic condition. Secondary outcomes... A strategy of mechanical ventilation that places limits on airway pressure and tidal volume has been recommended for patients with the acute respiratory distress syndrome.14 This recommendation is based on the observation that mechanical ventilation, ...

Stewart T.E.; Meade M.O.; Cook D.J.

1998-02-05T23:59:59.000Z

493

Improving Ventilation and Saving Energy: Final Report on Indoor Environmental Quality and Energy Monitoring in Sixteen Relocatable Classrooms  

NLE Websites -- All DOE Office Websites (Extended Search)

03E 03E Improving Ventilation and Saving Energy: Final Report on Indoor Environmental Quality and Energy Monitoring in Sixteen Relocatable Classrooms Michael G. Apte, Bourassa Norman*, David Faulkner, Alfred T. Hodgson, Toshfumi Hotchi, Michael Spears, Douglas P. Sullivan, and Duo Wang 4 April 2008 Indoor Environment Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory *Now with the California Energy Commission PIER Program, Sacramento CA. This research was sponsored by the California Energy Commission through the Public Interest Energy Research program as the Lawrence Berkeley National Laboratory Classroom HVAC: Improving Ventilation and Saving Energy research project, CEC Contract Number 500-03-041.

494

Exergyeconomic evaluation of heat recovery device in mechanical ventilation system  

Science Journals Connector (OSTI)

Abstract The paper presents new approach in evaluation of heat recovery devices in mechanical ventilation system. The evaluation is based on exergy balance equation and economic analysis, what requires application of one of multicriteria decision aid methodsweighted sum method. The proposed set of evaluation criteria consists of: driving exergy, simple payback time and investment cost. The proposed method is applied to compare the four variants of heat recovery device in inlet-exhaust mechanical ventilation system of the capacity of 10,000m3/h installed in residential part of hotel. The analysis is performed for four preference models. The results of the multicriteria evaluation indicate that counter flow plate heat exchanger and the rotating heat/mass regenerator are better solutions comparing with water loop heat exchanger and heat pipe heat exchanger. Counter flow plate heat exchanger is the most compromise solution for the two preference models PREF_00 (based on statistic approach) and PREF_03 (investment cost priority preference model). Rotating heat/mass regenerator is the most compromise solution for the preference model 01 (driving exergy priority preference model). The proposed method can be helpful in the choice of the most compromise solution of the heat recovery device in pre-design phase.

Tomasz M. Mrz; Anna Dutka

2015-01-01T23:59:59.000Z

495

Phase-change wallboard and mechanical night ventilation in commercial buildings: Potential for HVAC system downsizing  

SciTech Connect

As thermal storage media, phase-change materials (PCMs) such as paraffin, eutectic salts, etc. offer an order-of-magnitude increase in thermal storage capacity, and their discharge is almost isothermal. By embedding PCMs in dypsum board, plaster, or other wall-covering materials, the building structure acquires latent storage properties. Structural elements containing PCMs can store large amounts of energy while maintaining the indoor temperature within a relatively narrow range. As heat storage takes place inside the building where the loads occur, rather than at a central exterior location, the internal loads are removed without the need for additional transport energy. Distributed latent storage can thus be used to reduce the peak power demand of a building, downsize the cooling system, and/or switch to low-energy cooling sources. The authors used RADCOOL, a thermal building simulation program based on the finite difference approach, to numerically evaluate the thermal performance of PCM wallboard coupled with mechanical night ventilation in office buildings offers the opportunity for system downsizing in climates where the outside air temperature drops below 18 C at night. In climates where the outside air temperature remains above 19 C at night, the use of PCM wallboard should be coupled with discharge mechanisms other than mechanical night ventilation with outside air.

Stetiu, C.; Feustel, H.E.

1998-07-01T23:59:59.000Z

496

Effect of room air recirculation delay on the decay rate of tracer gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Effect of room air recirculation delay on the decay rate of tracer gas Effect of room air recirculation delay on the decay rate of tracer gas Title Effect of room air recirculation delay on the decay rate of tracer gas Publication Type Conference Proceedings Year of Publication 2004 Authors Kristoffersen, Astrid H., Ashok J. Gadgil, and David M. Lorenzetti Conference Name 9th International Conference on Air Distribution in Rooms - RoomVent 2004, Pagination pp 6 Date Published September 5-8, 2 Conference Location Coimbra, Portugal Abstract Tracer gas measurements are commonly used to estimate the fresh air exchange rate in a room or building. Published tracer decay methods account for fresh air supply, infiltration, and leaks in ductwork. However, the time delay associated with a ventilation system recirculating tracer back to the room also affects the decay rate. We present an analytical study of tracer gas decay in a well-mixed, mechanically-ventilated room with recirculation. The analysis shows that failing to account for delays can lead to under- or over-estimates of the fresh air supply, depending on whether the decay rate calculation includes the duct volume

497

Technical Standards Newsletters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- October 1999 The Standards Forum and Standards Actions - October 1999 February 12, 2013 Technical Standards Newsletter - February 2013 The Standards Forum and Standards...

498

Das Standard Modell  

NLE Websites -- All DOE Office Websites (Extended Search)

Model Model Was ist fundamental? Das Standard Modell Physiker haben eine Theorie - Das Standard Modell - entwickelt, welche erklärt, woraus die Welt besteht und was sie zusammenhält. Es ist eine einfache und überzeugende Theorie, welche hunderte von Teilchen und ihre gegenseitigen Wechselwirkungen erklärt. Dazu braucht sie nur wenige elementare Teilchen : 6 Quarks. 6 Leptonen. Das bekannteste Lepton ist das Elektron. Wir reden gleich von Leptonen. Kraft-Träger Teilchen, wie z.B. das Photon. Wir werden später über diese Teilchen reden. Alle bekannten materiellenTeilchen sind aus Quarks und Leptonen zusammengesetzt und sie wechselwirken untereinander durch den Austausch von Kraft-Träger Teilchen. Das Standard Modell ist eine gute Theorie. Eine grosse Zahl von Experimenten haben ihre Voraussagen mit unglaublicher Präzision bestätigt und alle Teilchen, welche die Theorie bis heute vorausgesagt hat, wurden auch gefunden. Aber die Theorie kann nicht alles erklären. Die Schwerkraft zum Beispiel ist nicht im Standard Modell eingeschlossen.

499

Standard Model Summary  

NLE Websites -- All DOE Office Websites (Extended Search)

del Modelo Standard del Modelo Standard Volver Principal ESTOY PERDIDO!!! Ahora que usted ha visto las distintas partes que forman la teoría del Modelo Standard, es el momento de una explicación más completa, sobre las partículas fundamentales y sus interacciones. Para resumir, los físicos creen que pueden explicar todos los tipos de materia observados utilizando seis tipos de quarks y seis tipos de leptones. Atribuyen todas las fuerzas observadas a cuatro fuerzas fundamentales, cada una de las cuales tiene asociada su partícula mediadora. El Modelo Standard también incluye la teoría cuántica de las interacciones fuertes (Quantum chromodynamics, o QCD), y la de las interacciones electro-débiles unificadas (débiles y electromagnéticas, QED). Todavía no se sabe cómo hacer una teoría cuántica de la

500

The Standard Model  

Science Journals Connector (OSTI)

...that at current LHC energies (7TeV), all Standard...about 21 of data. A discovery would require rather...off each other at high energies. In the absence of...of or prediction for dark matter, or dark energy. It does not explain...

2012-01-01T23:59:59.000Z