Powered by Deep Web Technologies
Note: This page contains sample records for the topic "ventilation natural ventilation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Natural Ventilation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Ventilation Natural Ventilation Natural Ventilation May 30, 2012 - 7:56pm Addthis Opening a window is a simple natural ventilation strategy. | Credit: ©iStockphoto/Simotion Opening a window is a simple natural ventilation strategy. | Credit: ©iStockphoto/Simotion What does this mean for me? If you live in a part of the country with cool nights and breezes, you may be able to cool your house with natural ventilation. If you're building a new home, design it to take advantage of natural ventilation. Natural ventilation relies on the wind and the "chimney effect" to keep a home cool. Natural ventilation works best in climates with cool nights and regular breezes. The wind will naturally ventilate your home by entering or leaving windows, depending on their orientation to the wind. When wind blows against your

2

Ventilation Systems  

Energy.gov (U.S. Department of Energy (DOE))

Ventilation is the process of moving air into and out of an interior space by natural or mechanical means. Ventilation is necessary for the health and comfort of occupants of all buildings....

3

Natural ventilation : design for suburban houses in Thailand  

E-Print Network (OSTI)

Natural Ventilation is the most effective passive cooling design strategy for architecture in hot and humid climates. In Thailand, natural ventilation has been the most essential element in the vernacular architecture such ...

Tantasavasdi, Chalermwat, 1971-

1998-01-01T23:59:59.000Z

4

Review on Ventilation Rate Measuring and Modeling Techniques in Naturally  

NLE Websites -- All DOE Office Websites (Extended Search)

Review on Ventilation Rate Measuring and Modeling Techniques in Naturally Review on Ventilation Rate Measuring and Modeling Techniques in Naturally Ventilated Building Speaker(s): Sezin Eren Ozcan Date: May 16, 2006 - 12:00pm Location: Bldg. 90 Due to limited energy sources, countries are looking for alternative solutions to decrease energy needs. In that context, natural ventilation can be seen as a very attractive sustainable technique in building design. However, understanding of ventilation dynamics is needed to provide an efficient control. Ventilation rate has to be determined not only in terms of energy, but also for controlling indoor air quality and emissions. For these reasons, agricultural buildings (livestock houses, greenhouses, etc.), naturally ventilated industrial buildings, and residences require a reliable ventilation rate measuring technique. Measuring techniques suffer

5

Section 4.1.3 Natural Ventilation: Greening Federal Facilities...  

NLE Websites -- All DOE Office Websites (Extended Search)

in and through build- ings. These airflows may be used both for ventilation air and for passive cooling strategies. Natural ventila- tion is often strongly preferred by building...

6

Ventilative cooling  

E-Print Network (OSTI)

This thesis evaluates the performance of daytime and nighttime passive ventilation cooling strategies for Beijing, Shanghai and Tokyo. A new simulation method for cross-ventilated wind driven airflow is presented . This ...

Graa, Guilherme Carrilho da, 1972-

1999-01-01T23:59:59.000Z

7

Natural ventilation possibilities for buildings in the United States  

E-Print Network (OSTI)

In the United States, many of the commercial buildings built in the last few decades are completely mechanically air conditioned, without the capability to use natural ventilation. This habit has occurred in building designs ...

Dean, Brian N. (Brian Nathan), 1974-

2001-01-01T23:59:59.000Z

8

Low Energy Buildings: CFD Techniques for Natural Ventilation and Thermal  

NLE Websites -- All DOE Office Websites (Extended Search)

Low Energy Buildings: CFD Techniques for Natural Ventilation and Thermal Low Energy Buildings: CFD Techniques for Natural Ventilation and Thermal Comfort Prediction Speaker(s): Malcolm Cook Date: February 14, 2013 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Michael Wetter Malcolm's presentation will cover both his research and consultancy activities. This will cover the work he has undertaken during his time spent working with architects on low energy building design, with a particular focus on natural ventilation and passive cooling strategies, and the role computer simulation can play in this design process. Malcolm will talk about the simulation techniques employed, as well as the innovative passive design principles that have led to some of the UK's most energy efficient buildings. In addition to UK building projects, the talk will

9

Beyond blue and red arrows : optimizing natural ventilation in large buildings  

E-Print Network (OSTI)

Our growing understanding of technology and environment has expanded the complexities of producing large naturally ventilated buildings. While it may be argued that designing for natural ventilation is a straightforward, ...

Meguro, Wendy (Wendy Kei)

2005-01-01T23:59:59.000Z

10

Evaluating the performance of natural ventilation in buildings through simulation and on-site monitoring  

E-Print Network (OSTI)

Natural ventilation in buildings is capable of reducing energy consumption while maintaining a comfortable indoor at the same time. It is important that natural ventilation is taken into consideration in the early design ...

Cheng, Haofan

2013-01-01T23:59:59.000Z

11

A thermal comfort levels investigation of a naturally ventilated and air-conditioned office  

Science Conference Proceedings (OSTI)

The purpose of this study is to investigate thermal comfort levels of a naturally ventilated and air-conditioner office. Field experiments conducted in an office room in Universiti Putra Malaysia (UPM) used survey questionnaires and physical measurements. ... Keywords: PMV, mechanically ventilation, naturally ventilated, neutral temperature, objective study, subjective approach, thermal comfort

R. Daghigh; N. M. Adam; K. Sopian; A. Zaharim; B. B. Sahari

2008-09-01T23:59:59.000Z

12

Whole Building Ventilation Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Whole-Building Whole-Building Ventilation Systems for Existing Homes © 2011 Steven Winter Associates, Inc. All rights reserved. © 2011 Steven Winter Associates, Inc. All rights reserved. Home Performance / Weatherization  Addressing ventilation is the exception  Max tightness, e.g. BPI's "Building Airflow Standard" (BAS)  References ASHRAE 62-89  BAS = Max [0.35 ACH, 15 CFM/person], CFM50 eq.  If BD tests show natural infiltration below BAS...  Ventilation must be recommended or installed.  SO DON'T AIR SEAL TO MUCH! © 2011 Steven Winter Associates, Inc. All rights reserved. © 2011 Steven Winter Associates, Inc. All rights reserved. Ventilation Requirements Ventilation systems for existing homes that are:

13

Ventilation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Ventilation Ventilation Controlled ventilation keeps energy-efficient homes healthy and comfortable. Learn more about ventilation. Controlled ventilation keeps energy-efficient homes healthy and comfortable. Learn more about ventilation. When creating an energy-efficient, airtight home through air sealing, it's very important to consider ventilation. Unless properly ventilated, an airtight home can seal in indoor air pollutants. Ventilation also helps control moisture-another important consideration for a healthy, energy-efficient home. Featured Whole-House Ventilation A whole-house ventilation system with dedicated ducting in a new energy-efficient home. | Photo courtesy of ©iStockphoto/brebca. Tight, energy-efficient homes require mechanical -- usually whole-house --

14

Design and performance of a rule-based controller in a naturally ventilated room  

Science Conference Proceedings (OSTI)

The objective of this work is to design and implement a fuzzy controller for naturally ventilated buildings. The controller is implemented in a test room using MATLABTM. Initially the controller was validated using simulated data. Simulations ... Keywords: fuzzy logic control, naturally ventilated buildings, thermal comfort

M. Eftekhari; L. Marjanovic; P. Angelov

2003-08-01T23:59:59.000Z

15

Liquid ventilation  

E-Print Network (OSTI)

For 350 million years, fish have breathed liquid through gills. Mammals evolved lungs to breathe air. Rarely, circumstances can occur when a mammal needs to `turn back the clock' to breathe through a special liquid medium. This is particularly true if surface tension at the air-liquid interface of the lung is increased, as in acute lung injury. In this condition, surface tension increases because the pulmonary surfactant system is damaged, causing alveolar collapse, atelectasis, increased right-to-left shunt and hypoxaemia. 69 The aims of treatment are: (i) to offset increased forces causing lung collapse by applying mechanical ventilation with PEEP; (ii) to decrease alveolar surface tension with exogenous surfactant; (iii) to eliminate the air-liquid interface by filling the lung with a fluid in

U. Kaisers; K. P. Kelly; T. Busch

2003-01-01T23:59:59.000Z

16

Meeting Residential Ventilation Standards Through Dynamic Control...  

NLE Websites -- All DOE Office Websites (Extended Search)

Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems Title Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation...

17

Demand Controlled Ventilation and Classroom Ventilation  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Authors Fisk, William J., Mark J. Mendell, Molly Davies, Ekaterina Eliseeva, David Faulkner, Tienzen Hong, and Douglas P. Sullivan Publisher Lawrence Berkeley National Laboratory City Berkeley Keywords absence, building s, carbon dioxide, demand - controlled ventilation, energy, indoor air quality, schools, ventilation Abstract This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling. Major findings included:  The single-location carbon dioxide sensors widely used for demand controlled ventilation frequently have large errors and will fail to effectively control ventilation rates (VRs).  Multi-location carbon dioxide measurement systems with more expensive sensors connected to multi-location sampling systems may measure carbon dioxide more accurately.

18

Night-time naturally ventilated offices: Statistical simulations of window-use patterns from field monitoring  

Science Conference Proceedings (OSTI)

This paper investigates occupant behaviour of window-use in night-time naturally ventilated offices on the basis of a pilot field study, conducted during the summers of 2006 and 2007 in Cambridge, UK, and then demonstrates the effects of employing night-time ventilation on indoor thermal conditions using predictive models of occupant window-use. A longitudinal field study shows that occupants make good use of night-time natural ventilation strategies when provided with openings that allow secure ventilation, and that there is a noticeable time of day effect in window-use patterns (i.e. increased probability of action on arrival and departure). We develop logistic models of window-use for night-time naturally ventilated offices, which are subsequently applied to a behaviour algorithm, including Markov chains and Monte Carlo methods. The simulations using the behaviour algorithm demonstrate a good agreement with the observational data of window-use, and reveal how building design and occupant behaviour collectively affect the thermal performance of offices. They illustrate that the provision of secure ventilation leads to more frequent use of the window, and thus contributes significantly to the achievement of a comfortable indoor environment during the daytime occupied period. For example, the maximum temperature for a night-time ventilated office is found to be 3 C below the predicted value for a daytime-only ventilated office. (author)

Yun, Geun Young [Department of Architectural Engineering, Kyung Hee University, Yongin 446-701 (Korea); Steemers, Koen [Department of Architecture, University of Cambridge, 1-5 Scroope Terrace, Cambridge CB2 1PX (United Kingdom)

2010-07-15T23:59:59.000Z

19

VENTILATION NEEDS DURING CONSTRUCTION  

Science Conference Proceedings (OSTI)

The purpose of this analysis is to determine ventilation needs during construction and development of the subsurface repository and develop systems to satisfy those needs. For this analysis, construction is defined as pre-emplacement excavation and development is excavation that takes place simultaneously with emplacement. The three options presented in the ''Overall Development and Emplacement Ventilation Systems'' analysis (Reference 5.5) for development ventilation will be applied to construction ventilation in this analysis as well as adding new and updated ventilation factors to each option for both construction and development. The objective of this analysis is to develop a preferred ventilation system to support License Application Design. The scope of this analysis includes: (1) Description of ventilation conditions; (2) Ventilation factors (fire hazards, dust control, construction logistics, and monitoring and control systems); (3) Local ventilation alternatives; (4) Global ventilation options; and (5) Evaluation of options.

C.R. Gorrell

1998-07-23T23:59:59.000Z

20

Study of natural ventilation design by integrating the multi-zone model with CFD simulation  

E-Print Network (OSTI)

Natural ventilation is widely applied in sustainable building design because of its energy saving, indoor air qualify and indoor thermal environment improvement. It is important for architects and engineers to accurately ...

Tan, Gang, 1974-

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation natural ventilation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Natural ventilation: it's as easy as opening the windows, or is it  

DOE Green Energy (OSTI)

The research consisted of an evaluation of the existing technologies available for passive cooling with an emphasis on strategies related to the use of natural ventilation. A preliminary data base for the study was established by three major efforts: 1. An extensive literature search of the architectural press was undertaken to ascertain the degree to which passive cooling strategies in general and natural ventilation in particular are designed into buildings at the present time. 2. An investigation of existing building stock profiles was undertaken to identify the existing and potential obstacles or advantages to the implementation of natural ventilation as a passive cooling strategy. The EIA Nonresidential Buildings Energy Consumption Survey and two previous PNL studies were reviewed. 3. Components 1 and 2 were followed up with telephone interviews and site visits with the architects, building owners and operators of selected buildings from 1 and 2 above to gain more specific insights into the problems and pleasures typically associated with natural ventilation.

Siebein, G.W.

1984-10-01T23:59:59.000Z

22

Radiative Heating Errors in Naturally Ventilated Air Temperature Measurements Made from Buoys*  

Science Conference Proceedings (OSTI)

Solar radiative heating errors in buoy-mounted, naturally ventilated air temperature sensors are examined. Data from sensors with multiplate radiation shields and collocated, fan-aspirated air temperature sensors from three buoy deployments ...

Steven P. Anderson; Mark F. Baumgartner

1998-02-01T23:59:59.000Z

23

Recommendations for the analysis and design of naturally ventilated buildings in urban areas  

E-Print Network (OSTI)

The motivation behind this work was to obtain a better understanding of how a building's natural ventilation potential is affected by the complexities introduced by the urban environment. To this end, we have derived in ...

Truong, Phan Hue

2012-01-01T23:59:59.000Z

24

Ventilation System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation System Basics Ventilation System Basics Ventilation System Basics August 16, 2013 - 1:33pm Addthis Ventilation is the process of moving air into and out of an interior space by natural or mechanical means. Ventilation is necessary for the health and comfort of occupants of all buildings. Ventilation supplies air for occupants to breathe and removes moisture, odors, and indoor pollutants like carbon dioxide. Too little ventilation may result in poor indoor air quality, while too much may cause unnecessarily higher heating and cooling loads. Natural Ventilation Natural ventilation occurs when outdoor air is drawn inside through open windows or doors. Natural ventilation is created by the differences in the distribution of air pressures around a building. Air moves from areas of

25

Ventilation System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation System Basics Ventilation System Basics Ventilation System Basics August 16, 2013 - 1:33pm Addthis Ventilation is the process of moving air into and out of an interior space by natural or mechanical means. Ventilation is necessary for the health and comfort of occupants of all buildings. Ventilation supplies air for occupants to breathe and removes moisture, odors, and indoor pollutants like carbon dioxide. Too little ventilation may result in poor indoor air quality, while too much may cause unnecessarily higher heating and cooling loads. Natural Ventilation Natural ventilation occurs when outdoor air is drawn inside through open windows or doors. Natural ventilation is created by the differences in the distribution of air pressures around a building. Air moves from areas of

26

Ventilation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Ventilation Ventilation May 7, 2012 - 2:49pm Addthis This ventilation system in a tight, energy-efficient home ensures good indoor air quality. | Photo courtesy of ©iStockphoto.com/brebca. This ventilation system in a tight, energy-efficient home ensures good indoor air quality. | Photo courtesy of ©iStockphoto.com/brebca. What does this mean for me? After you've reduced air leakage in your home, adequate ventilation is critical for health and comfort. Depending on your climate, there are a number of strategies to ventilate your home. Ventilation is very important in an energy-efficient home. Air sealing techniques can reduce air leakage to the point that contaminants with known health effects such as formaldehyde, volatile organic compounds, and radon

27

Ventilation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Ventilation Ventilation May 7, 2012 - 2:49pm Addthis This ventilation system in a tight, energy-efficient home ensures good indoor air quality. | Photo courtesy of ©iStockphoto.com/brebca. This ventilation system in a tight, energy-efficient home ensures good indoor air quality. | Photo courtesy of ©iStockphoto.com/brebca. What does this mean for me? After you've reduced air leakage in your home, adequate ventilation is critical for health and comfort. Depending on your climate, there are a number of strategies to ventilate your home. Ventilation is very important in an energy-efficient home. Air sealing techniques can reduce air leakage to the point that contaminants with known health effects such as formaldehyde, volatile organic compounds, and radon

28

The Ventilated Ocean  

Science Conference Proceedings (OSTI)

Adiabatic theories of ocean circulation and density structure have a long tradition, from the concept of the ventilated thermocline to the notion that deep ocean ventilation is controlled by westerly winds over the Southern Ocean. This study ...

Patrick Haertel; Alexey Fedorov

2012-01-01T23:59:59.000Z

29

VENTILATION MODEL REPORT  

SciTech Connect

The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their postclosure analyses.

V. Chipman

2002-10-31T23:59:59.000Z

30

Ventilation Systems for Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Systems for Cooling Ventilation Systems for Cooling Ventilation Systems for Cooling May 30, 2012 - 6:19pm Addthis Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Ventilation is the least expensive and most energy-efficient way to cool buildings. Ventilation works best when combined with methods to avoid heat buildup in your home. In some cases, natural ventilation will suffice for cooling, although it usually needs to be supplemented with spot ventilation, ceiling fans, and window fans. For large homes, homeowners might want to investigate whole house fans. Interior ventilation is ineffective in hot, humid climates where

31

Ventilation Systems for Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Systems for Cooling Ventilation Systems for Cooling Ventilation Systems for Cooling May 30, 2012 - 6:19pm Addthis Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Ventilation is the least expensive and most energy-efficient way to cool buildings. Ventilation works best when combined with methods to avoid heat buildup in your home. In some cases, natural ventilation will suffice for cooling, although it usually needs to be supplemented with spot ventilation, ceiling fans, and window fans. For large homes, homeowners might want to investigate whole house fans. Interior ventilation is ineffective in hot, humid climates where

32

Building Science - Ventilation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Ventilation Joseph Lstiburek, Ph.D., P.Eng, ASHRAE Fellow www.buildingscience.com Build Tight - Ventilate Right Building Science Corporation Joseph Lstiburek 2 Build Tight - Ventilate Right How Tight? What's Right? Building Science Corporation Joseph Lstiburek 3 Air Barrier Metrics Material 0.02 l/(s-m2) @ 75 Pa Assembly 0.20 l/(s-m2) @ 75 Pa Enclosure 2.00 l/(s-m2) @ 75 Pa 0.35 cfm/ft2 @ 50 Pa 0.25 cfm/ft2 @ 50 Pa 0.15 cfm/ft2 @ 50 Pa Building Science Corporation Joseph Lstiburek 4 Getting rid of big holes 3 ach@50 Getting rid of smaller holes 1.5 ach@50 Getting German 0.6 ach@50 Building Science Corporation Joseph Lstiburek 5 Best As Tight as Possible - with - Balanced Ventilation Energy Recovery Distribution Source Control - Spot exhaust ventilation Filtration

33

ASHRAE and residential ventilation  

E-Print Network (OSTI)

conditioning Engineers. 2001. ASHRAE, Indoor Air QualityABOUT/IAQ_papr01.htm ASHRAE. Standard 62.2-2003:Ventilation Requirements. ASHRAE Journal, pp. 51- 55, June

Sherman, Max H.

2003-01-01T23:59:59.000Z

34

Measuring Residential Ventilation  

NLE Websites -- All DOE Office Websites (Extended Search)

measured. The local exhaust flows can be measured or can meet prescriptive ducting and fan labeling requirements that use ratings provided by the Home Ventilating Institute (HVI,...

35

Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems  

E-Print Network (OSTI)

Rudd. 2007. Review of residential ventilation technologies.2009. EISG Final Report: Residential Integrated VentilationDesign and Operation of Residential Cooling Systems. Proc.

Sherman, Max H.

2011-01-01T23:59:59.000Z

36

Methodology for the evaluation of natural ventilation in buildings using a reduced-scale air model  

E-Print Network (OSTI)

Commercial office buildings predominantly are designed to be ventilated and cooled using mechanical systems. In temperate climates, passive ventilation and cooling techniques can be utilized to reduce energy consumption ...

Walker, Christine E. (Christine Elaine)

2006-01-01T23:59:59.000Z

37

Why We Ventilate  

NLE Websites -- All DOE Office Websites (Extended Search)

Why We Ventilate Why We Ventilate Title Why We Ventilate Publication Type Conference Paper LBNL Report Number LBNL-5093E Year of Publication 2011 Authors Logue, Jennifer M., Phillip N. Price, Max H. Sherman, and Brett C. Singer Conference Name Proceedings of the 2011 32nd AIVC Conference and 1st Tightvent Conference Date Published October 2011 Conference Location Brussels, Belgium Keywords indoor environment department, resave, ventilation and air cleaning Abstract It is widely accepted that ventilation is critical for providing good indoor air quality (IAQ) in homes. However, the definition of "good" IAQ, and the most effective, energy efficient methods for delivering it are still matters of research and debate. This paper presents the results of work done at the Lawrence Berkeley National Lab to identify the air pollutants that drive the need for ventilation as part of a larger effort to develop a health-based ventilation standard. First, we present results of a hazard analysis that identified the pollutants that most commonly reach concentrations in homes that exceed health-based standards or guidelines for chronic or acute exposures. Second, we present results of an impact assessment that identified the air pollutants that cause the most harm to the U.S. population from chronic inhalation in residences. Lastly, we describe the implications of our findings for developing effective ventilation standards.

38

Multifamily Ventilation Retrofit Strategies  

SciTech Connect

In multifamily buildings, central ventilation systems often have poor performance, overventilating some portions of the building (causing excess energy use), while simultaneously underventilating other portions (causing diminished indoor air quality). BSC and Innova Services Corporation performed a series of field tests at a mid-rise test building undergoing a major energy audit and retrofit, which included ventilation system upgrades.

Ueno, K.; Lstiburek, J.; Bergey, D.

2012-12-01T23:59:59.000Z

39

Model for Naturally Ventilated Cavities on the Exteriors of Opaque Building Thermal Envelopes  

SciTech Connect

This paper describes a model for naturally ventilated cavities on the exterior of opaque building thermal envelopes that are formed by the presence of a lightweight baffle. The model can be used for building components that are slightly detached from the main envelope (but do not connect to the interior).

Griffith, B.

2006-11-01T23:59:59.000Z

40

Multifamily Ventilation - Best Practice?  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Multifamily Ventilation - Best Practice? Multifamily Ventilation - Best Practice? Dianne Griffiths April 29, 2013 Presentation Outline * Basic Objectives * Exhaust Systems * Make-up Air Systems Two Primary Ventilation Objectives 1) Providing Fresh Air - Whole-House 2) Removing Pollutants - Local Exhaust Our goal is to find the simplest solution that satisfies both objectives while minimizing cost and energy impacts. Common Solution: Align local exhaust with fresh air requirements (Ex: 25 Bath + 25 Kitchen) Exhaust-Driven Fresh Air Design * Exhaust slightly depressurizes the units * Outside air enters through leaks, cracks, or planned inlets * Widely used in the North Multifamily Ventilation Best Practice * Step 1: Understand ventilation requirements * Step 2: Select the simplest design that can

Note: This page contains sample records for the topic "ventilation natural ventilation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

SURVEY OF THE EXISTING APPROACHES TO ASSESS AND DESIGN NATURAL VENTILATION AND NEED FOR FURTHER DEVELOPMENTS  

E-Print Network (OSTI)

ventilation CIBSE (1986) proposes two analytical expressions for the calculation of the airflow rate for wind-sided ventilation: o Warren (1985) o Phaff & De Gids (1982) o Larsen (2006) Cross ventilation: o CIBSE (1986 and handbooks, as Allard (1996) and CIBSE (2005). Etheridge (2001) proposes the use of graphs and non

Paris-Sud XI, Université de

42

Review of Residential Ventilation Technologies.  

NLE Websites -- All DOE Office Websites (Extended Search)

Review of Residential Ventilation Technologies. Review of Residential Ventilation Technologies. Title Review of Residential Ventilation Technologies. Publication Type Journal Article LBNL Report Number LBNL-57730 Year of Publication 2007 Authors Russell, Marion L., Max H. Sherman, and Armin F. Rudd Journal HVAC&R Research Volume 13 Start Page Chapter Pagination 325-348 Abstract This paper reviews current and potential ventilation technologies for residential buildings in North America and a few in Europe. The major technologies reviewed include a variety of mechanical systems, natural ventilation, and passive ventilation. Key parameters that are related to each system include operating costs, installation costs, ventilation rates, heat recovery potential. It also examines related issues such as infiltration, duct systems, filtration options, noise, and construction issues. This report describes a wide variety of systems currently on the market that can be used to meet ASHRAE Standard 62.2. While these systems generally fall into the categories of supply, exhaust or balanced, the specifics of each system are driven by concerns that extend beyond those in the standard and are discussed. Some of these systems go beyond the current standard by providing additional features (such as air distribution or pressurization control). The market will decide the immediate value of such features, but ASHRAE may wish to consider modifications to the standard in the future.

43

Residential Ventilation & Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 Residential Ventilation & Energy Figure 1: Annual Average Ventilation Costs of the Current U.S. Single-Family Housing Stock ($/year/house). Infiltration and ventilation in dwellings is conventionally believed to account for one-third to one-half of space conditioning energy. Unfortunately, there is not a great deal of measurement data or analysis to substantiate this assumption. As energy conservation improvements to the thermal envelope continue, the fraction of energy consumed by the conditioning of air may increase. Air-tightening programs, while decreasing energy requirements, have the tendency to decrease ventilation and its associated energy penalty at the possible expense of adequate indoor air quality. Therefore, more energy may be spent on conditioning air.

44

Ventilation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(often required by building codes) will help to reduce your use of air conditioning, and attic fans may also help keep cooling costs down. Learn More Whole-House Ventilation...

45

Why We Ventilate  

SciTech Connect

It is widely accepted that ventilation is critical for providing good indoor air quality (IAQ) in homes. However, the definition of"good" IAQ, and the most effective, energy efficient methods for delivering it are still matters of research and debate. This paper presents the results of work done at the Lawrence Berkeley National Lab to identify the air pollutants that drive the need for ventilation as part of a larger effort to develop a health-based ventilation standard. First, we present results of a hazard analysis that identified the pollutants that most commonly reach concentrations in homes that exceed health-based standards or guidelines for chronic or acute exposures. Second, we present results of an impact assessment that identified the air pollutants that cause the most harm to the U.S. population from chronic inhalation in residences. Lastly, we describe the implications of our findings for developing effective ventilation standards.

Logue, Jennifer M.; Sherman, Max H.; Price, Phil N.; Singer, Brett C.

2011-09-01T23:59:59.000Z

46

Development of a Residential Integrated Ventilation Controller  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of a Residential Integrated Ventilation Controller Development of a Residential Integrated Ventilation Controller Title Development of a Residential Integrated Ventilation Controller Publication Type Report LBNL Report Number LBNL-5554E Year of Publication 2012 Authors Walker, Iain S., Max H. Sherman, and Darryl J. Dickerhoff Keywords ashrae standard 62,2, california title 24, residential ventilation, ventilation controller Abstract The goal of this study was to develop a Residential Integrated Ventilation Controller (RIVEC) to reduce the energy impact of required mechanical ventilation by 20%, maintain or improve indoor air quality and provide demand response benefits. This represents potential energy savings of about 140 GWh of electricity and 83 million therms of natural gas as well as proportional peak savings in California. The RIVEC controller is intended to meet the 2008 Title 24 requirements for residential ventilation as well as taking into account the issues of outdoor conditions, other ventilation devices (including economizers), peak demand concerns and occupant preferences. The controller is designed to manage all the residential ventilation systems that are currently available. A key innovation in this controller is the ability to implement the concept of efficacy and intermittent ventilation which allows time shifting of ventilation. Using this approach ventilation can be shifted away from times of high cost or high outdoor pollution towards times when it is cheaper and more effective. Simulations, based on the ones used to develop the new residential ventilation requirements for the California Buildings Energy code, were used to further define the specific criteria and strategies needed for the controller. These simulations provide estimates of the energy, peak power and contaminant improvement possible for different California climates for the various ventilation systems. Results from a field test of the prototype controller corroborate the predicted performance.

47

Project title: Natural ventilation, solar heating and integrated low-energy building design  

E-Print Network (OSTI)

of integrated low-energy building design. In Cambridge, research was conducted at the BP Institute - which was set up in 1999 with an endowment from BP to research some of the fundamental scientific challenges that the oil industry encounters. In the CMI... in building design. Summary of Intended Outcomes: The objectives of the project will be to develop designs and technologies to: reduce energy costs of maintaining a comfortable environment with buildings through use of solar power, natural ventilation...

2009-07-10T23:59:59.000Z

48

Transition dynamics between the multiple steady states in natural ventilation systems : from theories to applications in optimal controls  

E-Print Network (OSTI)

In this study, we investigated the multiple steady state behavior, an important observation in numerical and experimental studies in natural ventilation systems. The-oretical models are developed and their applications in ...

Yuan, Jinchao

2007-01-01T23:59:59.000Z

49

Summary of human responses to ventilation  

E-Print Network (OSTI)

low ventilation rates and increase in health problems:rate. As ventilation rates increase, benefits gained fordetermined that increases in ventilation rates above 10 Ls -

Seppanen, Olli A.; Fisk, William J.

2004-01-01T23:59:59.000Z

50

Infiltration in ASHRAE's Residential Ventilation Standards  

E-Print Network (OSTI)

Related to Residential Ventilation Requirements. Rudd, A. 2005. Review of Residential Ventilationand Matson N.E. , Residential Ventilation and Energy

Sherman, Max

2008-01-01T23:59:59.000Z

51

Design methods for displacement ventilation: Critical review.  

E-Print Network (OSTI)

Displacement Ventilation. ASHRAE Research project-RP-949.displacement ventilation. ASHRAE Transaction, 96 (1). Ar ???due to displacement ventilation. ASHRAE Transaction, 96 (1).

Schiavon, Stefano

2006-01-01T23:59:59.000Z

52

Measuring Residential Ventilation  

NLE Websites -- All DOE Office Websites (Extended Search)

Measuring Residential Ventilation Measuring Residential Ventilation System Airflows: Part 2 - Field Evaluation of Airflow Meter Devices and System Flow Verification J. Chris Stratton, Iain S. Walker, Craig P. Wray Environmental Energy Technologies Division October 2012 LBNL-5982E 2 Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any

53

Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems  

SciTech Connect

Existing ventilation standards, including American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE) Standard 62.2, specify continuous operation of a defined mechanical ventilation system to provide minimum ventilation, with time-based intermittent operation as an option. This requirement ignores several factors and concerns including: other equipment such as household exhaust fans that might incidentally provide ventilation, negative impacts of ventilation when outdoor pollutant levels are high, the importance of minimizing energy use particularly during times of peak electricity demand, and how the energy used to condition air as part of ventilation system operation changes with outdoor conditions. Dynamic control of ventilation systems can provide ventilation equivalent to or better than what is required by standards while minimizing energy costs and can also add value by shifting load during peak times and reducing intake of outdoor air contaminants. This article describes the logic that enables dynamic control of whole-house ventilation systems to meet the intent of ventilation standards and demonstrates the dynamic ventilation system control concept through simulations and field tests of the Residential Integrated Ventilation-Energy Controller (RIVEC).

Sherman, Max H.; Walker, Iain S.

2011-04-01T23:59:59.000Z

54

Passive ventilation for residential air quality control  

SciTech Connect

Infiltration has long served the residential ventilation needs in North America. In Northern Europe it has been augmented by purpose-provided natural ventilation systems--so-called passive ventilation systems--to better control moisture problems in dwellings smaller than their North American counterparts and in a generally wetter climate. The growing concern for energy consumption, and the environmental impacts associated with it, has however led to tighter residential construction standards on both continents and as a result problems associated with insufficient background ventilation have surfaced. Can European passive ventilation systems be adapted for use in North American dwellings to provide general background ventilation for air quality control? This paper attempts to answer this question. The configuration, specifications and performance of the preferred European passive ventilation system--the passive stack ventilation (PSV) system--will be reviewed; innovative components and system design strategies recently developed to improve the traditional PSV system performance will be outlined; and alternative system configurations will be presented that may better serve the climatic extremes and more urban contexts of North America. While these innovative and alternative passive ventilation systems hold great promise for the future, a rational method to size the components of these systems to achieve the control and precision needed to meet the conflicting constraints of new ventilation and air tightness standards has not been forthcoming. Such a method will be introduced in this paper and an application of this method will be presented.

Axley, J.

1999-07-01T23:59:59.000Z

55

Development of a Residential Integrated Ventilation Controller  

SciTech Connect

The goal of this study was to develop a Residential Integrated Ventilation Controller (RIVEC) to reduce the energy impact of required mechanical ventilation by 20percent, maintain or improve indoor air quality and provide demand response benefits. This represents potential energy savings of about 140 GWh of electricity and 83 million therms of natural gas as well as proportional peak savings in California. The RIVEC controller is intended to meet the 2008 Title 24 requirements for residential ventilation as well as taking into account the issues of outdoor conditions, other ventilation devices (including economizers), peak demand concerns and occupant preferences. The controller is designed to manage all the residential ventilation systems that are currently available. A key innovation in this controller is the ability to implement the concept of efficacy and intermittent ventilation which allows time shifting of ventilation. Using this approach ventilation can be shifted away from times of high cost or high outdoor pollution towards times when it is cheaper and more effective. Simulations, based on the ones used to develop the new residential ventilation requirements for the California Buildings Energy code, were used to further define the specific criteria and strategies needed for the controller. These simulations provide estimates of the energy, peak power and contaminant improvement possible for different California climates for the various ventilation systems. Results from a field test of the prototype controller corroborate the predicted performance.

Staff Scientist; Walker, Iain; Sherman, Max; Dickerhoff, Darryl

2011-12-01T23:59:59.000Z

56

Measure Guideline: Ventilation Cooling  

SciTech Connect

The purpose of this measure guideline on ventilation cooling is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

Springer, D.; Dakin, B.; German, A.

2012-04-01T23:59:59.000Z

57

Modeling buoyancy-driven airflow in ventilation shafts  

E-Print Network (OSTI)

Naturally ventilated buildings can significantly reduce the required energy for cooling and ventilating buildings by drawing in outdoor air using non-mechanical forces. Buoyancy-driven systems are common in naturally ...

Ray, Stephen D. (Stephen Douglas)

2012-01-01T23:59:59.000Z

58

ASHRAE and residential ventilation  

SciTech Connect

In the last quarter of a century, the western world has become increasingly aware of environmental threats to health and safety. During this period, people psychologically retreated away from outdoors hazards such as pesticides, smog, lead, oil spills, and dioxin to the seeming security of their homes. However, the indoor environment may not be healthier than the outdoor environment, as has become more apparent over the past few years with issues such as mold, formaldehyde, and sick-building syndrome. While the built human environment has changed substantially over the past 10,000 years, human biology has not; poor indoor air quality creates health risks and can be uncomfortable. The human race has found, over time, that it is essential to manage the indoor environments of their homes. ASHRAE has long been in the business of ventilation, but most of the focus of that effort has been in the area of commercial and institutional buildings. Residential ventilation was traditionally not a major concern because it was felt that, between operable windows and envelope leakage, people were getting enough outside air in their homes. In the quarter of a century since the first oil shock, houses have gotten much more energy efficient. At the same time, the kinds of materials and functions in houses changed in character in response to people's needs. People became more environmentally conscious and aware not only about the resources they were consuming but about the environment in which they lived. All of these factors contributed to an increasing level of public concern about residential indoor air quality and ventilation. Where once there was an easy feeling about the residential indoor environment, there is now a desire to define levels of acceptability and performance. Many institutions--both public and private--have interests in Indoor Air Quality (IAQ), but ASHRAE, as the professional society that has had ventilation as part of its mission for over 100 years, is the logical place to provide leadership. This leadership has been demonstrated most recently by the publication of the first nationally recognized standard on ventilation in homes, ASHRAE Standard 62.2-2003, which builds on work that has been part of ASHRAE for many years and will presumably continue. Homeowners and occupants, which includes virtually all of us, will benefit from the application of Standard 62.2 and use of the top ten list. This activity is exactly the kind of benefit to society that the founders of ASHRAE envisioned and is consistent with ASHRAE's mission and vision. ASHRAE members should be proud of their Society for taking leadership in residential ventilation.

Sherman, Max H.

2003-10-01T23:59:59.000Z

59

Simulating Natural Ventilation in and Around Buildings by Fast Fluid Mingang Jin1  

E-Print Network (OSTI)

ventilation, CIBSE [6] proposed analytical expressions separately for wind-driven and buoyancy- driven cross Review, vol. 4, no. 1, pp. 4­ 5, 1982. [6] CIBSE, Design data, in CIBSE Guid-Volum A, Chartered

Chen, Qingyan "Yan"

60

Infiltration in ASHRAE's Residential Ventilation Standards  

Science Conference Proceedings (OSTI)

The purpose of ventilation is to dilute or remove indoor contaminants that an occupant could be exposed to. It can be provided by mechanical or natural means. ASHRAE Standards including standards 62, 119, and 136 have all considered the contribution of infiltration in various ways, using methods and data from 20 years ago. The vast majority of homes in the United States and indeed the world are ventilated through natural means such as infiltration caused by air leakage. Newer homes in the western world are tight and require mechanical ventilation. As we seek to provide acceptable indoor air quality at minimum energy cost, it is important to neither over-ventilate norunder-ventilate. Thus, it becomes critically important to correctly evaluate the contribution infiltration makes to both energy consumption and equivalent ventilation. ASHRAE Standard 62.2 specifies how much mechanical ventilation is considered necessary to provide acceptable indoor air quality, but that standard is weak on how infiltration can contribute towards meeting the total requirement. In the past ASHRAE Standard 136 was used to do this, but new theoretical approaches and expanded weather data have made that standard out of date. This article will describe how to properly treat infiltration as an equivalent ventilation approach and then use new data and these new approaches to demonstrate how these calculations might be done both in general and to update Standard 136.

Sherman, Max

2008-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation natural ventilation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems  

E-Print Network (OSTI)

increased cost per unit of energy at times of peak demandminimizing energy costs and operation during peak timesenergy and cost impacts of ventilation vary with weather and time

Sherman, Max H.

2011-01-01T23:59:59.000Z

62

Ventilation and Work Performance in Office Work  

E-Print Network (OSTI)

A). When ventilation rate increases from V to V\\, the ratiowork when ventilation rates increase. Field studies withper 10 L/s person increase in ventilation rate and relative

Seppanen, Olli; Fisk, William J.; Lei, Q.H.

2005-01-01T23:59:59.000Z

63

VENTILATION (HVAC) FAILURE (BUILDING WIDE)  

E-Print Network (OSTI)

VENTILATION (HVAC) FAILURE (BUILDING WIDE) A failure or shutdown of the ventilation system will be signaled by cessation of the audible background "rumbling" sound of the building's HVAC system. As building durations. NOTE: Due to unpredictable pressure differentials in and around the labs during an HVAC failure

Strynadka, Natalie

64

RESIDENTIAL VENTILATION AND ENERGY CHARACTERISTICS*  

E-Print Network (OSTI)

while still providing ventilation for adequate indoor air quality. Various ASHRAE Standards (e.g., 62 to the ASHRAE Standard 119 levels while still providing adequate ventilation through infiltration or mechanical alternatives. Various ASHRAE Standards are used to assist us. ASHRAE Standard 119-19885 classifies the envelope

65

Transpired Air Collectors - Ventilation Preheating  

DOE Green Energy (OSTI)

Many commercial and industrial buildings have high ventilation rates. Although all that fresh air is great for indoor air quality, heating it can be very expensive. This short (2-page) fact sheet describes a technology available to use solar energy to preheat ventilation air and dramatically reduce utility bills.

Christensen, C.

2006-06-22T23:59:59.000Z

66

Innovative Energy Efficient Industrial Ventilation  

E-Print Network (OSTI)

This paper was written to describe an innovative on-demand industrial ventilation system for woodworking, metalworking, food processing, pharmaceutical, chemical, and other industries. Having analyzed existing industrial ventilation in 130 factories, we found striking dichotomy between the classical static design of ventilation systems and constantly changing workflow and business demands. Using data from real factories, we are able to prove that classical industrial ventilation design consumes 70 % more energy than necessary. Total potential electricity saving achieved by using on-demand systems instead of classically designed industrial ventilation in the U.S. could be 26 billion kWh. At the average electricity cost of 7 cents per kWh, this would represent $1.875 billion. Eighty such systems are already installed in the USA and European Union.

Litomisky, A.

2005-01-01T23:59:59.000Z

67

Why We Ventilate - Recent Advances  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WHY WE VENTILATE: WHY WE VENTILATE: Recent Advances Max Sherman BA Stakeholders meeting ASHRAE BIO  Distinguished Lecturer  Exceptional Service Award  Board of Directors; TechC  Chair of committees:  62.2; Standards Committee  TC 4.3; TC 2.5  Holladay Distinguished Fellow OVERVIEW QUESTIONS  What is Ventilation? What is IAQ?  What functions does it provide?  How much do we need? Why?  How should ventilations standards be made? LBL has working on these problems Who Are You?  Engineers (ASHRAE Members & not);  architects,  contractors,  reps,  builders,  vendors,  code officials WHAT IS VENTILATION  Medicine: To Exchange Air In the Lungs  Latin: Ventilare, "to expose to the wind"  Today: To Bring In Outdoor Air And Replace

68

Infiltration as ventilation: Weather-induced dilution  

NLE Websites -- All DOE Office Websites (Extended Search)

Infiltration as ventilation: Weather-induced dilution Title Infiltration as ventilation: Weather-induced dilution Publication Type Report LBNL Report Number LBNL-5795E Year of...

69

Equivalence in Ventilation and Indoor Air Quality  

NLE Websites -- All DOE Office Websites (Extended Search)

62) specify minimum ventilation rates without taking into account the impact of those rates on IAQ. Innovative ventilation management is often a desirable element of reducing...

70

Solar Ventilation Preheating Resources and Technologies | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Preheating Resources and Technologies Solar Ventilation Preheating Resources and Technologies October 7, 2013 - 11:50am Addthis Photo of a dark brown perforated metal...

71

Improving Ventilation and Saving Energy: Relocatable Classroom...  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving Ventilation and Saving Energy: Relocatable Classroom Field Study Interim Report Title Improving Ventilation and Saving Energy: Relocatable Classroom Field Study Interim...

72

Whole-House Ventilation | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

air quality. There are four basic mechanical whole-house ventilation systems -- exhaust, supply, balanced, and energy recovery. Comparison of Whole-House Ventilation Systems...

73

RESIDENTIAL INTEGRATED VENTILATION ENERGY CONTROLLER - Energy ...  

A residential controller is described which is used to manage the mechanical ventilation systems of a home, installed to meet whole-house ventilation requirements, at ...

74

Development of a Residential Integrated Ventilation Controller  

E-Print Network (OSTI)

Passive Ventilation by Constant Area Vents to Maintain Indoor Air Quality in Houses. Passive Ventilation by Constant Area Vents to Maintain Indoor Air Quality in Houses."

Walker, Iain

2013-01-01T23:59:59.000Z

75

Building Design and Operation for Improving Thermal Comfort in Naturally Ventilated Buildings in a Hot-Humid Climate  

E-Print Network (OSTI)

The goal of this research was to develop new techniques for designing and operating unconditioned buildings in a hot-humid climate that could contribute to an improvement of thermal performance and comfort condition. The recommendations proposed in this research will also be useful for facility managers on how to maintain unconditioned buildings in this climate. This study investigated two unconditioned Thai Buddhist temples located in the urban area of Bangkok, Thailand. One is a 100-year-old, high-mass temple. The other is a 5-year-old, lower-mass temple. The indoor measurements revealed that the thermal condition inside both temples exceed the ASHRAE-recommended comfort zone. Surprisingly, the older temple maintained a more comfortable indoor condition due to its thermal inertia, shading, and earth contacts. A baseline thermal and airflow model of the old temple was established using a calibrated computer simulation method. To accomplish this, HEATX, a 3-D Computational Fluid Dynamics (CFD) code, was coupled with the DOE-2 thermal simulation program. HEATX was used to calculate the airflow rate and the surface convection coefficients for DOE-2, and DOE-2 was used to provide physical input variables to form the boundary conditions for HEATX. In this way calibrated DOE-2/CFD simulation model was accomplished, and the baseline model was obtained. To investigate an improved design, four design options were studied: 1) a reflective or low-solar absorption roof, 2) R-30 ceiling insulation, 3) shading devices, and 4) attic ventilation. Each was operated using three modes of ventilation. The low-absorption roof and the R-30 ceiling insulation options were found to be the most effective options, whereas the shading devices and attic ventilation were less effective options, regardless of which ventilation mode was applied. All design options performed much better when nighttime-only ventilation was used. Based on this analysis, two prototype temples was proposed (i.e., low-mass and high-mass temples). From the simulation results of the two prototypes, design and operation guidelines are proposed, which consist of: 1) increased wall and ceiling insulation, 2) white-colored, low-absorption roof, 3) slab-on-ground floor, 4) shading devices, 5) nighttime-only ventilation, 6) attic ventilation, and 7) wider openings to increase the natural ventilation air flow windows, wing walls, and vertical fins.

Sreshthaputra, Atch

2007-11-29T23:59:59.000Z

76

Energy-saving strategies with personalized ventilation in cold climates  

E-Print Network (OSTI)

designs of personalized ventilation, International Journal of heating, Ventilation and Refrigeration

Schiavon, Stefano; Melikov, Arsen

2009-01-01T23:59:59.000Z

77

Ventilation in Multifamily Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, 2011 , 2011 Ventilation in Multifamily Buildings Welcome to the Webinar! We will start at 2:00 PM Eastern Time Be sure that you are also dialed into the telephone conference call: Dial-in number: 888-324-9601; Pass code: 5551971 Download the presentation at: www.buildingamerica.gov/meetings.html Building Technologies Program eere.energy.gov Building America: Introduction November 1, 2011 Cheryn Engebrecht Cheryn.engebrecht@nrel.gov Building Technologies Program Building Technologies Program eere.energy.gov * Reduce energy use in new and existing residential buildings * Promote building science and systems engineering / integration approach * "Do no harm": Ensure safety, health and durability are maintained or improved * Accelerate adoption of high performance technologies

78

Subsurface Ventilation System Description Document  

Science Conference Proceedings (OSTI)

The Subsurface Ventilation System supports the construction and operation of the subsurface repository by providing air for personnel and equipment and temperature control for the underground areas. Although the system is located underground, some equipment and features may be housed or located above ground. The system ventilates the underground by providing ambient air from the surface throughout the subsurface development and emplacement areas. The system provides fresh air for a safe work environment and supports potential retrieval operations by ventilating and cooling emplacement drifts. The system maintains compliance within the limits established for approved air quality standards. The system maintains separate ventilation between the development and waste emplacement areas. The system shall remove a portion of the heat generated by the waste packages during preclosure to support thermal goals. The system provides temperature control by reducing drift temperature to support potential retrieval operations. The ventilation system has the capability to ventilate selected drifts during emplacement and retrieval operations. The Subsurface Facility System is the main interface with the Subsurface Ventilation System. The location of the ducting, seals, filters, fans, emplacement doors, regulators, and electronic controls are within the envelope created by the Ground Control System in the Subsurface Facility System. The Subsurface Ventilation System also interfaces with the Subsurface Electrical System for power, the Monitored Geologic Repository Operations Monitoring and Control System to ensure proper and safe operation, the Safeguards and Security System for access to the emplacement drifts, the Subsurface Fire Protection System for fire safety, the Emplacement Drift System for repository performance, and the Backfill Emplacement and Subsurface Excavation Systems to support ventilation needs.

Eric Loros

2001-07-25T23:59:59.000Z

79

Subsurface Ventilation System Description Document  

Science Conference Proceedings (OSTI)

The Subsurface Ventilation System supports the construction and operation of the subsurface repository by providing air for personnel and equipment and temperature control for the underground areas. Although the system is located underground, some equipment and features may be housed or located above ground. The system ventilates the underground by providing ambient air from the surface throughout the subsurface development and emplacement areas. The system provides fresh air for a safe work environment and supports potential retrieval operations by ventilating and cooling emplacement drifts. The system maintains compliance within the limits established for approved air quality standards. The system maintains separate ventilation between the development and waste emplacement areas. The system shall remove a portion of the heat generated by the waste packages during preclosure to support thermal goals. The system provides temperature control by reducing drift temperature to support potential retrieval operations. The ventilation system has the capability to ventilate selected drifts during emplacement and retrieval operations. The Subsurface Facility System is the main interface with the Subsurface Ventilation System. The location of the ducting, seals, filters, fans, emplacement doors, regulators, and electronic controls are within the envelope created by the Ground Control System in the Subsurface Facility System. The Subsurface Ventilation System also interfaces with the Subsurface Electrical System for power, the Monitored Geologic Repository Operations Monitoring and Control System to ensure proper and safe operation, the Safeguards and Security System for access to the emplacement drifts, the Subsurface Fire Protection System for fire safety, the Emplacement Drift System for repository performance, and the Backfill Emplacement and Subsurface Excavation Systems to support ventilation needs.

NONE

2000-10-12T23:59:59.000Z

80

Does Mixing Make Residential Ventilation More Effective?  

E-Print Network (OSTI)

2009. ASHRAE Handbook of Fundamentals, Ventilation andleakage. The ASHRAE Handbook of fundamentals (ASHRAE 2009),

Sherman, Max

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation natural ventilation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Preoperational test report, vent building ventilation system  

Science Conference Proceedings (OSTI)

This represents a preoperational test report for Vent Building Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides Heating, Ventilation, and Air Conditioning (HVAC) for the W-030 Ventilation Building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

Clifton, F.T.

1997-11-04T23:59:59.000Z

82

On The Valuation of Infiltration towards Meeting Residential Ventilation Needs  

SciTech Connect

The purpose of ventilation is dilute or remove indoor contaminants that an occupant is exposed to. It can be provided by mechanical or natural means. In most homes, especially existing homes, infiltration provides the dominant fraction of the ventilation. As we seek to provide acceptable indoor air quality at minimum energy cost, it is important to neither over-ventilate nor under-ventilate. Thus, it becomes critically important to correctly evaluate the contribution infiltration makes to both energy consumption and equivalent ventilation. ASHRAE Standards including standards 62, 119, and 136 have all considered the contribution of infiltration in various ways, using methods and data from 20 years ago.

Sherman, Max H.

2008-09-01T23:59:59.000Z

83

Equivalence in Ventilation and Indoor Air Quality  

SciTech Connect

We ventilate buildings to provide acceptable indoor air quality (IAQ). Ventilation standards (such as American Society of Heating, Refrigerating, and Air-Conditioning Enginners [ASHRAE] Standard 62) specify minimum ventilation rates without taking into account the impact of those rates on IAQ. Innovative ventilation management is often a desirable element of reducing energy consumption or improving IAQ or comfort. Variable ventilation is one innovative strategy. To use variable ventilation in a way that meets standards, it is necessary to have a method for determining equivalence in terms of either ventilation or indoor air quality. This study develops methods to calculate either equivalent ventilation or equivalent IAQ. We demonstrate that equivalent ventilation can be used as the basis for dynamic ventilation control, reducing peak load and infiltration of outdoor contaminants. We also show that equivalent IAQ could allow some contaminants to exceed current standards if other contaminants are more stringently controlled.

Sherman, Max; Walker, Iain; Logue, Jennifer

2011-08-01T23:59:59.000Z

84

Demonstration of Demand Control Ventilation Technology  

Science Conference Proceedings (OSTI)

Demand Control Ventilation (DCV) is one of the control strategies that can be used modulate the amount of ventilation air for space conditioning in commercial buildings. DCV modulates the amount of ventilation air introduced into the heating, ventilation and air conditioning (HVAC) system based on carbon dioxide levels sensed in the areas served. The carbon dioxide level is a proxy for the number of people within the space, from which the required quantity of ventilation air is determined. By using this ...

2011-12-30T23:59:59.000Z

85

Ventilation Model and Analysis Report  

Science Conference Proceedings (OSTI)

This model and analysis report develops, validates, and implements a conceptual model for heat transfer in and around a ventilated emplacement drift. This conceptual model includes thermal radiation between the waste package and the drift wall, convection from the waste package and drift wall surfaces into the flowing air, and conduction in the surrounding host rock. These heat transfer processes are coupled and vary both temporally and spatially, so numerical and analytical methods are used to implement the mathematical equations which describe the conceptual model. These numerical and analytical methods predict the transient response of the system, at the drift scale, in terms of spatially varying temperatures and ventilation efficiencies. The ventilation efficiency describes the effectiveness of the ventilation process in removing radionuclide decay heat from the drift environment. An alternative conceptual model is also developed which evaluates the influence of water and water vapor mass transport on the ventilation efficiency. These effects are described using analytical methods which bound the contribution of latent heat to the system, quantify the effects of varying degrees of host rock saturation (and hence host rock thermal conductivity) on the ventilation efficiency, and evaluate the effects of vapor and enhanced vapor diffusion on the host rock thermal conductivity.

V. Chipman

2003-07-18T23:59:59.000Z

86

Review on Ventilation Rate Measuring and Modeling Techniques...  

NLE Websites -- All DOE Office Websites (Extended Search)

Bldg. 90 Due to limited energy sources, countries are looking for alternative solutions to decrease energy needs. In that context, natural ventilation can be seen as a very...

87

Classroom HVAC: Improving ventilation and saving energy -- field study plan  

E-Print Network (OSTI)

in this study. Classroom HVAC: Improving Ventilation andV8doc.sas.com/sashtml. Classroom HVAC: Improving VentilationBerkeley, CA 94720. Classroom HVAC: Improving Ventilation

Apte, Michael G.; Faulkner, David; Hodgson, Alfred T.; Sullivan, Douglas P.

2004-01-01T23:59:59.000Z

88

On The Valuation of Infiltration towards Meeting Residential Ventilation Needs  

E-Print Network (OSTI)

Literature Related to Residential Ventilation Requirements.A. 2005. Review of Residential Ventilation Technologies,M.H. and Matson N.E. , Residential Ventilation and Energy

Sherman, Max H.

2008-01-01T23:59:59.000Z

89

Residential Attic Ventilation In A Hot And Humid Climate: Effects Of Increased Ventilation On Thermal Performance And Moisture Control.  

E-Print Network (OSTI)

?? The reality of the effect of natural ventilation in a residential attic cavity has been the topic of many debates and scholarly reports since (more)

Atherton, Stanley Arthur

2011-01-01T23:59:59.000Z

90

Residential ventilation standards scoping study  

SciTech Connect

The goals of this scoping study are to identify research needed to develop improved ventilation standards for California's Title 24 Building Energy Efficiency Standards. The 2008 Title 24 Standards are the primary target for the outcome of this research, but this scoping study is not limited to that timeframe. We prepared this scoping study to provide the California Energy Commission with broad and flexible options for developing a research plan to advance the standards. This document presents the findings of a scoping study commissioned by the Public Interest Energy Research (PIER) program of the California Energy Commission to determine what research is necessary to develop new residential ventilation requirements for California. This study is one of three companion efforts needed to complete the job of determining the ventilation needs of California residences, determining the bases for setting residential ventilation requirements, and determining appropriate ventilation technologies to meet these needs and requirements in an energy efficient manner. Rather than providing research results, this scoping study identifies important research questions along with the level of effort necessary to address these questions and the costs, risks, and benefits of pursuing alternative research questions. In approaching these questions and corresponding levels of effort, feasibility and timing were important considerations. The Commission has specified Summer 2005 as the latest date for completing this research in time to update the 2008 version of California's Energy Code (Title 24).

McKone, Thomas E.; Sherman, Max H.

2003-10-01T23:59:59.000Z

91

Coupled urban wind flow and indoor natural ventilation modelling on a high-resolution grid: A case study for the Amsterdam ArenA stadium  

Science Conference Proceedings (OSTI)

Wind flow in urban environments is an important factor governing the dispersion of heat and pollutants from streets, squares and buildings. This paper presents a coupled CFD modelling approach for urban wind flow and indoor natural ventilation. A specific ... Keywords: Air exchange rate, Air quality, Computational Fluid Dynamics (CFD), Cross-ventilation, Full-scale measurements, Grid generation technique, Integrated model, Model validation and solution verification, Numerical simulation, Outdoor and indoor air flow, Sports stadium

T. van Hooff; B. Blocken

2010-01-01T23:59:59.000Z

92

Midlevel Ventilations Constraint on Tropical Cyclone Intensity  

Science Conference Proceedings (OSTI)

Midlevel ventilation, or the flux of low-entropy air into the inner core of a tropical cyclone (TC), is a hypothesized mechanism by which environmental vertical wind shear can constrain a tropical cyclones intensity. An idealized framework based ...

Brian Tang; Kerry Emanuel

2010-06-01T23:59:59.000Z

93

Whole-House Ventilation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Whole-House Ventilation Whole-House Ventilation Whole-House Ventilation May 30, 2012 - 2:37pm Addthis A whole-house ventilation system with dedicated ducting in a new energy-efficient home. | Photo courtesy of ©iStockphoto/brebca. A whole-house ventilation system with dedicated ducting in a new energy-efficient home. | Photo courtesy of ©iStockphoto/brebca. What does this mean for me? Whole-house ventilation is critical in an energy-efficient home to maintain adequate indoor air quality and comfort. The whole-house ventilation system you choose will depend upon your climate, budget, and the availability of experienced contractors in your area. Energy-efficient homes -- both new and existing -- require mechanical ventilation to maintain indoor air quality. There are four basic mechanical

94

Ventilation Controller for Improved Indoor Air Quality  

Iain Walker and colleagues at Berkeley Lab have developed a dynamic control system for whole-house ventilation fans that provides maximal air quality while reducing by 18-44% the energy spent on ventilation. The system, the Residential Integrated ...

95

Does Mixing Make Residential Ventilation More Effective?  

E-Print Network (OSTI)

under Contract No. DE-AC02-05CH11231. References ASHRAE.2009. ASHRAE Handbook of Fundamentals, Ventilation andChapter. Atlanta GA: ASHRAE. ASHRAE. 2007. Ventilation and

Sherman, Max

2011-01-01T23:59:59.000Z

96

May 1999 LBNL -42975 ASHRAE'S RESIDENTIAL VENTILATION  

E-Print Network (OSTI)

May 1999 LBNL - 42975 ASHRAE'S RESIDENTIAL VENTILATION STANDARD: EXEGESIS OF PROPOSED STANDARD 62 Berkeley National Laboratory Berkeley, CA 94720 April 1999 In January 1999 ASHRAE's Standard Project, approved ASHRAE's first complete standard on residential ventilation for public review

97

Ventilation Based on ASHRAE 62.2  

E-Print Network (OSTI)

Indoor Ventilation Based on ASHRAE 62.2 Arnold Schwarzenegger Governor California Energy Commission Ventilation (ASHRAE 62.2) Minimum Best Practices Guide - Exhaust-Only Ventilation Introduction: The California Energy Commission has created the following guide to provide assistance in complying with ANSI/ASHRAE

98

Ventilation problems in heritage buildings  

Science Conference Proceedings (OSTI)

The control of indoor conditions in heritage buildings, such as castles or museums, is of paramount importance for the proper preservation of the artworks kept in. As heritage buildings are often not equipped with HVAC systems, it is necessary to provide ... Keywords: CO2 concentration, IAQ, heritage buildings, ventilation

S. Costanzo; A. Cusumano; C. Giaconia; S. Mazzacane

2007-05-01T23:59:59.000Z

99

Effect of Ventilation Strategies on Residential Ozone Levels  

NLE Websites -- All DOE Office Websites (Extended Search)

Effect of Ventilation Strategies on Residential Ozone Levels Effect of Ventilation Strategies on Residential Ozone Levels Title Effect of Ventilation Strategies on Residential Ozone Levels Publication Type Journal Article LBNL Report Number LBNL-5889E Year of Publication 2012 Authors Walker, Iain S., and Max H. Sherman Journal Building and Environment Volume 59 Start Page 456 Pagination 456-465 Date Published 01/2013 Keywords ashrae standard 62,2, filtration, infiltration, mechanical ventilation, ozone, simulation Abstract Elevated outdoor ozone levels are associated with adverse health effects. Because people spend the vast majority of their time indoors, reduction in indoor levels of ozone of outdoor origin would lower population exposures and might also lead to a reduction in ozone---associated adverse health effects. In most buildings, indoor ozone levels are diminished with respect to outdoor levels to an extent that depends on surface reactions and on the degree to which ozone penetrates the building envelope. Ozone enters buildings from outdoors together with the airflows that are driven by natural and mechanical means, including deliberate ventilation used to reduce concentrations of indoor---generated pollutants. When assessing the effect of deliberate ventilation on occupant health one should consider not only the positive effects on removing pollutants of indoor origin but also the possibility that enhanced ventilation might increase indoor levels of pollutants originating outdoors. This study considers how changes in residential ventilation that are designed to comply with ASHRAE Standard 62.2 might influence indoor levels of ozone. Simulation results show that the building envelope can contribute significantly to filtration of ozone. Consequently, the use of exhaust ventilation systems is predicted to produce lower indoor ozone concentrations than would occur with balanced ventilation systems operating at the same air---exchange rate. We also investigated a strategy for reducing exposure to ozone that would deliberately reduce ventilation rates during times of high outdoor ozone concentration while still meeting daily average ventilation requirements.

100

Particle deposition in ventilation ducts  

SciTech Connect

Exposure to airborne particles is detrimental to human health and indoor exposures dominate total exposures for most people. The accidental or intentional release of aerosolized chemical and biological agents within or near a building can lead to exposures of building occupants to hazardous agents and costly building remediation. Particle deposition in heating, ventilation and air-conditioning (HVAC) systems may significantly influence exposures to particles indoors, diminish HVAC performance and lead to secondary pollutant release within buildings. This dissertation advances the understanding of particle behavior in HVAC systems and the fates of indoor particles by means of experiments and modeling. Laboratory experiments were conducted to quantify particle deposition rates in horizontal ventilation ducts using real HVAC materials. Particle deposition experiments were conducted in steel and internally insulated ducts at air speeds typically found in ventilation ducts, 2-9 m/s. Behaviors of monodisperse particles with diameters in the size range 1-16 {micro}m were investigated. Deposition rates were measured in straight ducts with a fully developed turbulent flow profile, straight ducts with a developing turbulent flow profile, in duct bends and at S-connector pieces located at duct junctions. In straight ducts with fully developed turbulence, experiments showed deposition rates to be highest at duct floors, intermediate at duct walls, and lowest at duct ceilings. Deposition rates to a given surface increased with an increase in particle size or air speed. Deposition was much higher in internally insulated ducts than in uninsulated steel ducts. In most cases, deposition in straight ducts with developing turbulence, in duct bends and at S-connectors at duct junctions was higher than in straight ducts with fully developed turbulence. Measured deposition rates were generally higher than predicted by published models. A model incorporating empirical equations based on the experimental measurements was applied to evaluate particle losses in supply and return duct runs. Model results suggest that duct losses are negligible for particle sizes less than 1 {micro}m and complete for particle sizes greater than 50 {micro}m. Deposition to insulated ducts, horizontal duct floors and bends are predicted to control losses in duct systems. When combined with models for HVAC filtration and deposition to indoor surfaces to predict the ultimate fates of particles within buildings, these results suggest that ventilation ducts play only a small role in determining indoor particle concentrations, especially when HVAC filtration is present. However, the measured and modeled particle deposition rates are expected to be important for ventilation system contamination.

Sippola, Mark R.

2002-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation natural ventilation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Opaque Ventilated Facades - Performance Simulation Method and Assessment of  

NLE Websites -- All DOE Office Websites (Extended Search)

Opaque Ventilated Facades - Performance Simulation Method and Assessment of Opaque Ventilated Facades - Performance Simulation Method and Assessment of Simulated Performance Speaker(s): Emanuele Naboni Date: May 29, 2007 - 12:00pm Location: 90-3122 Opaque ventilated façade systems are increasingly used in buildings, even though their effects on the overall thermal performance of buildings have not yet been fully understood. The research reported in this presentation focuses on the modeling of such systems with EnergyPlus. Ventilated façade systems are modeled in EnergyPlus with module "Exterior Naturally Vented Cavity." Not all façade systems can be modeled with this module; this research defined the types of systems that can be modeled, and the limitations of such simulation. The performance of a ventilated façade

102

Optimization of a Solar Chimney Design to Enhance Natural Ventilation in a Multi-Storey Office Building  

E-Print Network (OSTI)

Natural ventilation of buildings can be achieved with solar-driven , buoyancy-induced airflow through a solar chimney channel. Research on solar chimneys has covered a wide range of topics, yet study of the integration in multi-storey buildings has been performed in few numerical studies , where steady-state conditions were assumed. In practice, if the solar chimney is to be used in an actual building, dynamic performance simulations would be required for the specific building design and climate. This study explores the applicability of a solar chimney in a prototype multi-storey office building in the Netherlands. Sensitivity analysis and optimization of the design will be performed via dynamic performance simulations in ESP-r. The robustness of the optimized design will be tested at the final stage , against e.g. windows' opening by users. This is an ongoing project; calibration of the solar chimney model and preliminary sensitivity analysis results are presented here. .

Gontikaki, M.; Trcka, M.; Hensen, J.; Hoes, P. J.

2010-01-01T23:59:59.000Z

103

Available Technologies: Ventilation Controller for Improved Indoor ...  

Iain Walker and colleagues at Berkeley Lab have developed a dynamic control system for whole-house ventilation fans that provides maximal air quality while reducing ...

104

Case Study 1 - Ventilation in Manufactured Houses  

Science Conference Proceedings (OSTI)

... Ventilation in Manufactured Houses. ... fan operation, an outdoor air intake duct installed on the forced-air return, and whole house exhaust with and ...

105

Summary of human responses to ventilation  

E-Print Network (OSTI)

coils of commercial air-conditioning systems. Proceedings ofrefrigerating and air-conditioning engineers, inc. pp 601-for ventilation and air-conditioning systems - offices and

Seppanen, Olli A.; Fisk, William J.

2004-01-01T23:59:59.000Z

106

Mixed-Mode Ventilation and Building Retrofits  

E-Print Network (OSTI)

November 1994, ENTPE, Lyon. [CIBSE] Chartered Institution ofMixed-mode ventilation. CIBSE Applications Manual AM13.incorporated by the design. CIBSE, 2000 Mixed-mode

Brager, Gail; Ackerly, Katie

2010-01-01T23:59:59.000Z

107

Indoor Air Quality & Ventilation Group Staff Directory  

Science Conference Proceedings (OSTI)

Indoor Air Quality and Ventilation Group Staff. Staff Listing. Dr. Andrew K. Persily, Leader, Supervisory Mechanical Engineer, 301-975-6418. ...

2013-08-30T23:59:59.000Z

108

Ventilation measurements in large office buildings  

SciTech Connect

Ventilation rates were measured in nine office buildings using an automated tracer gas measuring system. The buildings range in size from a two-story federal building with a floor area of about 20,000 ft/sup 2/ (1900 m/sup 2/) to a 26-story office building with a floor area of 700,000 ft/sup 2/ (65,000 m/sup 2/). The ventilation rates were measured for about 100 hours in each building over a range of weather conditions. The results are presented and examined for variation with time and weather. In most cases, the ventilation rate of a building is similar for hot and cold weather. In mild weather, outdoor air is used to cool the building and the ventilation rate increases. In the buildings where infiltration is a significant portion of the total ventilation rate, this total rate exhibits a dependence on weather conditions. The measured ventilation rates are discussed in relation to the outdoor air intake strategy in each building. The ventilation rates are also compared to the design rates in the buildings and ventilation rates based on the ASHRAE Standard 62-81. Some of the buildings are at times operated at lower ventilation rates than recommended in Standard 62-81.

Persily, A.K.; Grot, R.A.

1985-01-01T23:59:59.000Z

109

Does Mixing Make Residential Ventilation More Effective?  

E-Print Network (OSTI)

Does Mixing Make Residential Ventilation More Effective? Maxmanufacturer, or otherwise, does not necessarily constitutethe University of California. Does Mixing Make Residential

Sherman, Max

2011-01-01T23:59:59.000Z

110

Analysis of Demand Controlled Ventilation Technology and ...  

Science Conference Proceedings (OSTI)

... The actual health, comfort, and productivity impacts of mechanical ventilation ... p strat i csp o ... in California and elsewhere is the impact of ambient air ...

2011-01-11T23:59:59.000Z

111

Quantitative relationship of sick building syndrome symptoms with ventilation rates  

E-Print Network (OSTI)

32%), and as ventilation rate increases from 10 to 25 L/s-0.85) as ventilation rate increases from 10 to 25 L/s-29% as ventilation rate increases from 10 to 25 L/s-person.

Fisk, William J.

2009-01-01T23:59:59.000Z

112

Review of Literature Related to Residential Ventilation Requirements  

E-Print Network (OSTI)

typical existing house. Designed passive ventilation systemsPassive Ventilation by Constant Area Vents to Maintain Indoor Air Quality in Houses."House Ventilation Rates Local Exhaust Rates Air Distribution and Duct Leakage Infiltration Windows and Passive

McWilliams, Jennifer; Sherman, Max

2005-01-01T23:59:59.000Z

113

Commissioning Ventilated Containment Systems in the Laboratory  

SciTech Connect

This Best Practices Guide focuses on the specialized approaches required for ventilated containment systems, understood to be all components that drive and control ventilated enclosures and local exhaust systems within the laboratory. Geared toward architects, engineers, and facility managers, this guide provides information about technologies and practices to use in designing, constructing, and operating operating safe, sustainable, high-performance laboratories.

Not Available

2008-08-01T23:59:59.000Z

114

Preoperational test report, primary ventilation system  

SciTech Connect

This represents a preoperational test report for Primary Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides vapor space filtered venting of tanks AY101, AY102, AZ101, AZ102. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

Clifton, F.T.

1997-11-04T23:59:59.000Z

115

Federal Energy Management Program: Solar Ventilation Preheating Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Ventilation Solar Ventilation Preheating Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Google Bookmark Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Delicious Rank Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on AddThis.com... Energy-Efficient Products

116

CO2 Monitoring for Demand Controlled Ventilation in Commercial...  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2 Monitoring for Demand Controlled Ventilation in Commercial Buildings Title CO2 Monitoring for Demand Controlled Ventilation in Commercial Buildings Publication Type Report Year...

117

Ventilation, temperature, and HVAC characteristics in small and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Ventilation, temperature, and HVAC characteristics in small and medium commercial buildings in California Title Ventilation, temperature, and HVAC characteristics in small and...

118

Association of Classroom Ventilation with Reduced Illness Absence...  

NLE Websites -- All DOE Office Websites (Extended Search)

Ventilation with Reduced Illness Absence: A Prospective Study in California Elementary Schools Title Association of Classroom Ventilation with Reduced Illness Absence: A...

119

Why We Ventilate Our Houses - An Historical Look  

NLE Websites -- All DOE Office Websites (Extended Search)

The knowledge of how to ventilate buildings, and how much ventilation is necessary for human health and comfort, has evolved over centuries of trial and error. Humans and...

120

Measuring Residential Ventilation System Airflows: Part 2 - Field...  

NLE Websites -- All DOE Office Websites (Extended Search)

Measuring Residential Ventilation System Airflows: Part 2 - Field Evaluation of Airflow Meter Devices and System Flow Verification Title Measuring Residential Ventilation System...

Note: This page contains sample records for the topic "ventilation natural ventilation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Improving Ventilation and Saving Energy: Final Report on Indoor...  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving Ventilation and Saving Energy: Final Report on Indoor Environmental Quality and Energy Monitoring in Sixteen Relocatable Classrooms Title Improving Ventilation and Saving...

122

Demand-Controlled Ventilation Using CO2 Sensors - Federal Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

fresh air in a building can be a problem. Over ventilation results in higher energy usage and costs than are necessary with appropriate ventilation while potentially increasing...

123

Modeling indoor exposures to VOCs and SVOCs as ventilation rates...  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling indoor exposures to VOCs and SVOCs as ventilation rates vary Title Modeling indoor exposures to VOCs and SVOCs as ventilation rates vary Publication Type Conference Paper...

124

Report on Applicability of Residential Ventilation Standards in California  

E-Print Network (OSTI)

but also because passive, whole-house ventilation systemsPassive Ventilation by Constant Area Vents to Maintain Indoor Air Quality in Houses",

Sherman, Max H.; McWilliam, Jennifer A.

2005-01-01T23:59:59.000Z

125

AEDG Implementation Recommendations: Ventilation | Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Ventilation Ventilation The Advanced Energy Design Guide (AEDG) for Small Office Buildings, 30% series, seeks to achieve 30% savings over ASHRAE Standard 90.1-1999. This guide focuses on improvements to small office buildings, less than 20,000ft2. The recommendations in this article are adapted from the implementation section of the guide and focus on ventilation air; exhaust air; control strategies; carbon dioxide sensors; economizers. Publication Date: Wednesday, May 13, 2009 air_ventilation.pdf Document Details Affiliation: DOE BECP Focus: Compliance Building Type: Commercial Code Referenced: ASHRAE Standard 90.1-1999 Document type: AEDG Implementation Recommendations Target Audience: Architect/Designer Builder Contractor Engineer State: All States Contacts Web Site Policies

126

Floor-supply displacement ventilation system  

E-Print Network (OSTI)

Research on indoor environments has received more attention recently because reports of symptoms and other health complaints related to indoor environments have been increasing. Heating, ventilating, and air-conditioning ...

Kobayashi, Nobukazu, 1967-

2001-01-01T23:59:59.000Z

127

Scale model studies of displacement ventilation  

E-Print Network (OSTI)

Displacement ventilation is an air conditioning method that provides conditioned air to indoor environments with the goal to improve air quality while reducing energy consumption. This study investigates the performance ...

Okutan, Galip Mehmet

1995-01-01T23:59:59.000Z

128

Midlevel Ventilation's Constraint on Tropical Cyclone Intensity  

E-Print Network (OSTI)

Midlevel ventilation, or the flux of low-entropy air into the inner core of a tropical cyclone (TC), is a hypothesized mechanism by which environmental vertical wind shear can constrain a tropical cyclones intensity. An ...

Tang, Brian Hong-An

129

A Ventilation Index for Tropical Cyclones  

E-Print Network (OSTI)

An important environmental control of both tropical cyclone intensity and genesis is vertical wind shear. One hypothesized pathway by which vertical shear affects tropical cyclones is midlevel ventilationor the flux of ...

Tang, Brian

130

Whole-House Ventilation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

into the house to be filtered to remove pollen and dust or dehumidified to provide humidity control Supply ventilation systems work best in hot or mixed climates. Because they...

131

Development of a Residential Integrated Ventilation Controller  

E-Print Network (OSTI)

Refrigerating, and Air-Conditioning Engineers, Atlanta, GA.Refrigerating, and Air-Conditioning Engineers, Atlanta, GA.of Ventilation and Air Conditioning: Is CERN up to Date With

Walker, Iain

2013-01-01T23:59:59.000Z

132

Cooling airflow design tool for displacement ventilation.  

E-Print Network (OSTI)

withEquation 7.4oftheASHRAEDesignGuidelinesforefficiency air diffusers. The ASHRAE method does not takeVentilation Atlanta: ASHRAE. Jiang, Z. , Chen, Q. , and

Schiavon, Stefano; Bauman, Fred

2009-01-01T23:59:59.000Z

133

Ventilation of the Subtropical North Pacific  

Science Conference Proceedings (OSTI)

The ventilation of the subtropical North Pacific is studied using a simple analytical model. The model is forced by winter mixed layer density and depth calculated from the Levitus climatology and wind stress curl from the Hellerman and ...

Rui Xin Huang; Sarah Russell

1994-12-01T23:59:59.000Z

134

Midlevel ventilation's constraint on tropical cyclone intensity  

E-Print Network (OSTI)

Midlevel ventilation, or the flux of low-entropy air into the inner core of a tropical cyclone (TC), is a hypothesized mechanism by which environmental vertical wind shear can constrain a TC's intensity. An idealized ...

Tang, Brian Hong-An

2010-01-01T23:59:59.000Z

135

Chlorofluorocarbon Constraints on North Atlantic Ventilation  

Science Conference Proceedings (OSTI)

The North Atlantic Ocean vigorously ventilates the ocean interior. Thermocline and deep water masses are exposed to atmospheric contact there and are sequestered in two principal classes: Subtropical Mode Water (STMW: 26.5 ? ?? ? 26.8) and ...

Thomas W. N. Haine; Kelvin J. Richards; Yanli Jia

2003-08-01T23:59:59.000Z

136

New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy  

SciTech Connect

Approximately ten percent of the energy consumed in U.S. commercial buildings is used by HVAC systems to condition outdoor ventilation air. Reducing ventilation rates would be a simple and broadly-applicable energy retrofit option, if practical counter measures were available that maintained acceptable concentrations of indoor-generated air pollutants. The two general categories of countermeasures are: 1) indoor pollutant source control, and 2) air cleaning. Although pollutant source control should be used to the degree possible, source control is complicated by the large number and changing nature of indoor pollutant sources. Particle air cleaning is already routinely applied in commercial buildings. Previous calculations indicate that particle filtration consumes only 10percent to 25percent of the energy that would otherwise be required to achieve an equivalent amount of particle removal with ventilation. If cost-effective air cleaning technologies for volatile organic compounds (VOCs) were also available, outdoor air ventilation rates could be reduced substantially and broadly in the commercial building stock to save energy. The research carried out in this project focuses on developing novel VOC air cleaning technologies needed to enable energy-saving reductions in ventilation rates. The minimum required VOC removal efficiency to counteract a 50percent reduction in ventilation rate for air cleaning systems installed in the HVAC supply airstream is modest (generally 20percent or less).

Sidheswaran, Meera; Destaillats, Hugo; Sullivan, Douglas P.; Fisk, William J.

2010-10-27T23:59:59.000Z

137

Performance Assessment of Photovoltaic Attic Ventilator Fans  

E-Print Network (OSTI)

Controlling summer attic heat gain is important to reducing air conditioning energy use in homes in hot-humid climates. Both heat transfer through ceilings and t attic duct systems can make up a large part of peak cooling demand, Attic ventilation has long been identified as a method to abate such heat gains. We present test results from using the photovoltaic (PV) attic ventilator fans in a test home to assess impact on attic and cooling energy performance.

Parker, D. S.; Sherwin, J. R.

2000-01-01T23:59:59.000Z

138

Sensor-based demand controlled ventilation  

SciTech Connect

In most buildings, occupancy and indoor pollutant emission rates vary with time. With sensor-based demand-controlled ventilation (SBDCV), the rate of ventilation (i.e., rate of outside air supply) also varies with time to compensate for the changes in pollutant generation. In other words, SBDCV involves the application of sensing, feedback and control to modulate ventilation. Compared to ventilation without feedback, SBDCV offers two potential advantages: (1) better control of indoor pollutant concentrations; and (2) lower energy use and peak energy demand. SBDCV has the potential to improve indoor air quality by increasing the rate of ventilation when indoor pollutant generation rates are high and occupants are present. SBDCV can also save energy by decreasing the rate of ventilation when indoor pollutant generation rates are low or occupants are absent. After providing background information on indoor air quality and ventilation, this report provides a relatively comprehensive discussion of SBDCV. Topics covered in the report include basic principles of SBDCV, sensor technologies, technologies for controlling air flow rates, case studies of SBDCV, application of SBDCV to laboratory buildings, and research needs. SBDCV appears to be an increasingly attractive technology option. Based on the review of literature and theoretical considerations, the application of SBDCV has the potential to be cost-effective in applications with the following characteristics: (a) a single or small number of dominant pollutants, so that ventilation sufficient to control the concentration of the dominant pollutants provides effective control of all other pollutants; (b) large buildings or rooms with unpredictable temporally variable occupancy or pollutant emission; and (c) climates with high heating or cooling loads or locations with expensive energy.

De Almeida, A.T. [Universidade de Coimbra (Portugal). Dep. Eng. Electrotecnica; Fisk, W.J. [Lawrence Berkeley National Lab., CA (United States)

1997-07-01T23:59:59.000Z

139

Shut-off mechanism for ventilation hose  

DOE Patents (OSTI)

A shut-off mechanism to provide automatic closure of a ventilation hose when the operation of drawing air through the hose is terminated. The mechanism includes a tube of light gauge metal inside of which are mounted a plurality of louver doors positioned in the closed position due to gravity when the ventilation unit is not operational. When the unit is operational, air flowing into the unit maintains the doors in the open position. 5 figs.

Huyett, J.D.; Meskanick, G.R.

1989-12-07T23:59:59.000Z

140

Tracer dating and ocean ventilation  

E-Print Network (OSTI)

The interpretation of transient tracer observations depends on difcult to obtain information on the evolution in time of the tracer boundary conditions and interior distributions. Recent studies have attempted to circumvent this problem by making use of a derived quantity, age, based on the simultaneous distribution of two complementary tracers, such as tritium and its daughter, helium 3. The age is defined with reference to the surface such that the boundary condition takes on a constant value of zero. We use a two-dimensional model to explore the circumstances under which such a combination of conservation equations for two complementary tracers can lead to a cancellation of the time derivative terms. An interesting aspect of this approach is that mixing can serve as a source or sink of tracer based age. We define an idealized "ventilation age tracer " that is conservative with respect to mixing, and we explore how its behavior compares with that of the tracer-based ages over a range of advective and diffusive parameters. 1.

G. Thiele; J. L. Sarmiento

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation natural ventilation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Pretest Predictions for Phase II Ventilation Tests  

SciTech Connect

The objective of this calculation is to predict the temperatures of the ventilating air, waste package surface, and concrete pipe walls that will be developed during the Phase II ventilation tests involving various test conditions. The results will be used as inputs to validating numerical approach for modeling continuous ventilation, and be used to support the repository subsurface design. The scope of the calculation is to identify the physical mechanisms and parameters related to thermal response in the Phase II ventilation tests, and describe numerical methods that are used to calculate the effects of continuous ventilation. The calculation is limited to thermal effect only. This engineering work activity is conducted in accordance with the ''Technical Work Plan for: Subsurface Performance Testing for License Application (LA) for Fiscal Year 2001'' (CRWMS M&O 2000d). This technical work plan (TWP) includes an AP-2.21Q, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', activity evaluation (CRWMS M&O 2000d, Addendum A) that has determined this activity is subject to the YMP quality assurance (QA) program. The calculation is developed in accordance with the AP-3.12Q procedure, ''Calculations''. Additional background information regarding this activity is contained in the ''Development Plan for Ventilation Pretest Predictive Calculation'' (DP) (CRWMS M&O 2000a).

Yiming Sun

2001-09-19T23:59:59.000Z

142

Thermal Comfort Study in a Naturally Ventilated Residential Building in a Tropical Hot-Humid Climate Region  

E-Print Network (OSTI)

This paper presents a thermal comfort study in a naturally ventilated residential building located in a tropical hot-humid climate region. The specific objective of this study is to investigate whether thermal comfort in this house can be achieved through a passive system only. The methods used in this study included conducting hourly monitoring of the temperature and relative humidity; measuring the air velocities; and assessing occupants' thermal sensations through questionnaires and interview. The data from the questionnaires were matched to the monitored data to assess the acceptable range of comfortable condition. Then using an hourly simulation program, some components of the building were also "modified" to investigate whether the building can be made "more comfortable". This study shows that it is possible to provide a thermally comfortable space in this region without using mechanical air-conditioning systems. The occupants' acceptable range of comfortable condition is different than that of people in the northern latitudes. The occupants sensed "neutrality" when the operative temperature in the house was about 27 degree Celsius (80F). The occupants could also tolerate slightly warm conditions, that is up to 29 degree Celsius (84OF), and still never wanted to install any air-conditioning systems. The simulation showed that using light wall materials would result in cooler indoor temperature at night but warmer during the day. If all windows were opened (25% the total floor area) the house could be more comfortable at night but less comfortable during the day. Findings of this study are important for architects and engineers in designing comfortable living spaces in these regions.

Soebarto, V. I.; Handjarinto, S.

1998-01-01T23:59:59.000Z

143

Carbon-dioxide-controlled ventilation study  

Science Conference Proceedings (OSTI)

The In-House Energy Management (IHEM) Program has been established by the U.S. Department of Energy to provide funds to federal laboratories to conduct research on energy-efficient technology. The Energy Sciences Department of Pacific Northwest Laboratory (PNL) was tasked by IHEM to research the energy savings potential associated with reducing outdoor-air ventilation of buildings. By monitoring carbon dioxide (CO{sub 2}) levels in a building, outdoor air provided by the heating, ventilating, and air-conditioning (HVAC) system can be reduced to the percentage required to maintain satisfactory CO{sub 2} levels rather than ventilating with a higher outdoor-air percentage based on an arbitrary minimum outdoor-air setting. During summer months, warm outdoor air brought into a building for ventilation must be cooled to meet the appropriate cooling supply-air temperature, and during winter months, cold outdoor air must be heated. By minimizing the amount of hot or cold outdoor air brought into the HVAC system, the supply air requires less cooling or heating, saving energy and money. Additionally, the CO{sub 2} levels in a building can be monitored to ensure that adequate outdoor air is supplied to a building to maintain air quality levels. The two main considerations prior to implementing CO{sub 2}-based ventilation control are its impact on energy consumption and the adequacy of indoor air quality (IAQ) and occupant comfort. To address these considerations, six portable CO{sub 2} monitors were placed in several Hanford Site buildings to estimate the adequacy of office/workspace ventilation. The monitors assessed the potential for reducing the flow of outdoor-air to the buildings. A candidate building was also identified to monitor various ventilation control strategies for use in developing a plan for implementing and assessing energy savings.

McMordie, K.L.; Carroll, D.M.

1994-05-01T23:59:59.000Z

144

Advanced Controls and Sustainable Systems for Residential Ventilation  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Controls and Sustainable Systems for Residential Ventilation Advanced Controls and Sustainable Systems for Residential Ventilation Title Advanced Controls and Sustainable Systems for Residential Ventilation Publication Type Report LBNL Report Number LBNL-5968E Year of Publication 2012 Authors Turner, William J. N., and Iain S. Walker Date Published 12/2012 Keywords ashrae standard 62,2, california title 24, passive ventilation, residential ventilation, ventilation controller Abstract Whole-house ventilation systems are becoming commonplace in new construction, remodeling/renovation, and weatherization projects, driven by combinations of specific requirements for indoor air quality (IAQ), health, and compliance with standards, such as ASHRAE 62.2. At the same time we wish to reduce the energy use in homes and therefore minimize the energy used to provide ventilation. This study examined several approaches to reducing the energy requirements of providing acceptable IAQ in residential buildings. Two approaches were taken. The first used RIVEC - the Residential Integrated VEntilation Controller - a prototype ventilation controller that aims to deliver whole-house ventilation rates that comply with ventilation standards, for the minimum use of energy. The second used passive and hybrid ventilation systems, rather than mechanical systems, to provide whole-house ventilation.

145

WASTE HANDLING BUILDING VENTILATION SYSTEM DESCRIPTION DOCUMENT  

SciTech Connect

The Waste Handling Building Ventilation System provides heating, ventilation, and air conditioning (HVAC) for the contaminated, potentially contaminated, and uncontaminated areas of the Monitored Geologic Repository's (MGR) Waste Handling Building (WHB). In the uncontaminated areas, the non-confinement area ventilation system maintains the proper environmental conditions for equipment operation and personnel comfort. In the contaminated and potentially contaminated areas, in addition to maintaining the proper environmental conditions for equipment operation and personnel comfort, the contamination confinement area ventilation system directs potentially contaminated air away from personnel in the WHB and confines the contamination within high-efficiency particulate air (HEPA) filtration units. The contamination confinement areas ventilation system creates airflow paths and pressure zones to minimize the potential for spreading contamination within the building. The contamination confinement ventilation system also protects the environment and the public by limiting airborne releases of radioactive or other hazardous contaminants from the WHB. The Waste Handling Building Ventilation System is designed to perform its safety functions under accident conditions and other Design Basis Events (DBEs) (such as earthquakes, tornadoes, fires, and loss of the primary electric power). Additional system design features (such as compartmentalization with independent subsystems) limit the potential for cross-contamination within the WHB. The system provides status of important system parameters and equipment operation, and provides audible and/or visual indication of off-normal conditions and equipment failures. The Waste Handling Building Ventilation System confines the radioactive and hazardous material within the building such that the release rates comply with regulatory limits. The system design, operations, and maintenance activities incorporate ALARA (as low as is reasonably achievable) principles to maintain personnel radiation doses to all occupational workers below regulatory limits and as low as is reasonably achievable. The Waste Handling Building Ventilation System interfaces with the Waste Handling Building System by being located within the WHB and by maintaining specific pressures, temperatures, and humidity within the building. The system also depends on the WHB for water supply. The system interfaces with the Site Radiological Monitoring System for continuous monitoring of the exhaust air; the Waste Handling Building Fire Protection System for detection of fire and smoke; the Waste Handling Building Electrical System for normal, emergency, and standby power; and the Monitored Geologic Repository Operations Monitoring and Control System for monitoring and control of the system.

P.A. Kumar

2000-06-21T23:59:59.000Z

146

WASTE TREATMENT BUILDING VENTILATION SYSTEM DESCRIPTION DOCUMENT  

SciTech Connect

The Waste Treatment Building Ventilation System provides heating, ventilation, and air conditioning (HVAC) for the contaminated, potentially contaminated, and uncontaminated areas of the Monitored Geologic Repository's (MGR) Waste Treatment Building (WTB). In the uncontaminated areas, the non-confinement area ventilation system maintains the proper environmental conditions for equipment operation and personnel comfort. In the contaminated and potentially contaminated areas, in addition to maintaining the proper environmental conditions for personnel comfort and equipment operation, the contamination confinement area ventilation system directs potentially contaminated air away from personnel in the WTB and confines the contamination within high-efficiency particulate air (HEPA) filtration units. The contamination confinement area ventilation system creates airflow paths and pressure zones to minimize the potential for spreading contamination with the building. The contamination confinement ventilation system also protects the environment and the public by limiting airborne releases of radioactive or other hazardous contaminants from the WTB. The Waste Treatment Building Ventilation System confines the radioactive and hazardous material within the building such that the release rates comply with regulatory limits, The system design, operations, and maintenance activities incorporate ALARA (as low as is reasonably achievable) principles to maintain personnel radiation doses to all occupational workers below regulatory limits and as low as is reasonably achievable. The system provides status of important system parameters and equipment operation, and provides audible and/or visual indication of off-normal conditions and equipment failures. The Waste Treatment Building Ventilation System interfaces with the Waste Treatment Building System by being located in the WTB, and by maintaining specific pressure, temperature, and humidity environments within the building. The system also depends on the WTB for normal electric power supply and the required supply of water for heating, cooling, and humidification. Interface with the Waste Treatment Building System includes the WTB fire protection subsystem for detection of fire and smoke. The Waste Treatment Building Ventilation System interfaces with the Site Radiological Monitoring System for continuous monitoring of the exhaust air and key areas within the WTB, the Monitored Geologic Repository Operations Monitoring and Control System for monitoring and control of system operations, and the Site Generated Radiological Waste Handling System and Site Generated Hazardous, Non-Hazardous & Sanitary Waste Disposal System for routing of pretreated toxic, corrosive, and radiologically contaminated effluent from process equipment to the HEPA filter exhaust ductwork and air-cleaning unit.

P.A. Kumar

2000-06-22T23:59:59.000Z

147

Dehumidification and cooling loads from ventilation air  

SciTech Connect

The importance of controlling humidity in buildings is cause for concern, in part, because of indoor air quality problems associated with excess moisture in air-conditioning systems. But more universally, the need for ventilation air has forced HVAC equipment (originally optimized for high efficiency in removing sensible heat loads) to remove high moisture loads. To assist cooling equipment and meet the challenge of larger ventilation loads, several technologies have succeeded in commercial buildings. Newer technologies such as subcool/reheat and heat pipe reheat show promise. These increase latent capacity of cooling-based systems by reducing their sensible capacity. Also, desiccant wheels have traditionally provided deeper-drying capacity by using thermal energy in place of electrical power to remove the latent load. Regardless of what mix of technologies is best for a particular application, there is a need for a more effective way of thinking about the cooling loads created by ventilation air. It is clear from the literature that all-too-frequently, HVAC systems do not perform well unless the ventilation air loads have been effectively addressed at the original design stage. This article proposes an engineering shorthand, an annual load index for ventilation air. This index will aid in the complex process of improving the ability of HVAC systems to deal efficiently with the amount of fresh air the industry has deemed useful for maintaining comfort in buildings. Examination of typical behavior of weather shows that latent loads usually exceed sensible loads in ventilation air by at least 3:1 and often as much as 8:1. A designer can use the engineering shorthand indexes presented to quickly assess the importance of this fact for a given system design. To size those components after they are selected, the designer can refer to Chapter 24 of the 1997 ASHRAE Handbook--Fundamentals, which includes separate values for peak moisture and peak temperature.

Harriman, L.G. III [Mason-Grant, Portsmouth, NH (United States); Plager, D. [Quantitative Decision Support, Portsmouth, NH (United States); Kosar, D. [Gas Research Inst., Chicago, IL (United States)

1997-11-01T23:59:59.000Z

148

Formaldehyde emissions from ventilation filters under different relative  

NLE Websites -- All DOE Office Websites (Extended Search)

Formaldehyde emissions from ventilation filters under different relative Formaldehyde emissions from ventilation filters under different relative humidity conditions Title Formaldehyde emissions from ventilation filters under different relative humidity conditions Publication Type Journal Article Refereed Designation Refereed Year of Publication 2013 Authors Sidheswaran, Meera A., Wenhao Chen, Agatha Chang, Robert Miller, Sebastian Cohn, Douglas P. Sullivan, William J. Fisk, Kazukiyo Kumagai, and Hugo Destaillats Journal Environmental Science and Technology Date Published 04/18/2013 Abstract A method combining life cycle assessment (LCA) and real options analyses is developed to predict project environmental and financial performance over time, under market uncertainties and decision-making flexibility. The method is applied to examine alternative uses for oil sands coke, a carbonaceous byproduct of processing the unconventional petroleum found in northern Alberta, Canada. Under uncertainties in natural gas price and the imposition of a carbon price, our method identifies that selling the coke to China for electricity generation by integrated gasification combined cycle is

149

Breathing HRV by the Concept of AC Ventilation  

NLE Websites -- All DOE Office Websites (Extended Search)

Breathing HRV by the Concept of AC Ventilation Breathing HRV by the Concept of AC Ventilation Speaker(s): Hwataik Han Date: July 10, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Thomas McKone Heat recovery ventilators are frequently used to save heating/cooling loads of buildings for ventilation. There are several types of HRV's, including a parallel plate type, a rotary type, a capillary type, and a heat pipe type. The breathing HRV is a heat recovery ventilator of a new kind using the concept of alternating-current ventilation. The AC ventilation is the ventilation with the airflow directions reversed periodically. It has an advantage of using a single duct system, for both supply and exhaust purposes. In order to develop a breathing HRV system, the thermal recovery performance should be investigated depending on many parameters, such as

150

A scale model study of displacement ventilation with chilled ceilings  

E-Print Network (OSTI)

Displacement ventilation is a form of air-conditioning which provides good air quality and some energy savings. The air quality is better than for a conventional mixed ventilation system. The maximum amount of cooling that ...

Holden, Katherine J. A. (Katherine Joan Adrienne)

1995-01-01T23:59:59.000Z

151

Quantitative relationship of sick building syndrome symptoms with ventilation rates  

E-Print Network (OSTI)

at two outdoor air supply rates." Indoor Air 14 Suppl 8: 7-Miettinen (1995). "Ventilation rate in office buildings andAssociation of ventilation rates and CO 2 concentrations

Fisk, William J.

2009-01-01T23:59:59.000Z

152

Review: Effect of ventilator configuration on the distributed climate of greenhouses: A review of experimental and CFD studies  

Science Conference Proceedings (OSTI)

Ventilation processes inside the greenhouse strongly affect air renewal and internal climatic conditions, which themselves interact with the growth and homogeneity of the crop. Natural ventilation is often chosen since it is the most economic method ... Keywords: Buoyancy, Climate models, Convection, Navier-Stokes equations, Ventilation efficiency

Pierre-Emmanuel Bournet; Thierry Boulard

2010-11-01T23:59:59.000Z

153

Spot Ventilation: Source Control to Improve Indoor Air Quality  

SciTech Connect

Fact sheet for homeowners and contractors on how to employ spot ventilation in the home for comfort and safety.

2002-12-01T23:59:59.000Z

154

Whole-House Ventilation Systems: Improved Control of Air Quality  

SciTech Connect

Fact sheet for homeowners and contractors on how to employ spot ventilation in the home for comfort and safety.

2002-12-01T23:59:59.000Z

155

Project: Ventilation and Indoor Air Quality in Low-Energy ...  

Science Conference Proceedings (OSTI)

Ventilation and Indoor Air Quality in Low-Energy Buildings Project. Summary: NIST is developing tools and metrics to both ...

2012-12-27T23:59:59.000Z

156

Ventilation planning at Energy West's Deer Creek mine  

SciTech Connect

In 2004 ventilation planning was initiated to exploit a remote area of Deer Creek mine's reserve (near Huntington, Utah), the Mill Fork Area, located under a mountain. A push-pull ventilation system was selected. This article details the design process of the ventilation system upgrade, the procurement process for the new fans, and the new fan startup testing. 5 figs., 1 photo.

Tonc, L.; Prosser, B.; Gamble, G. [Pacific Corp., Huntington, UT (United States)

2009-08-15T23:59:59.000Z

157

A database of PFT ventilation measurements  

SciTech Connect

About five years ago, a method for measuring the ventilation flows of a building was developed at Brookhaven National Laboratory (BNL). This method is based on the use of a family of compounds known as perfluorocarbon tracers or PFTs. Since 1982, BNL has measured ventilation in more than 4000 homes, comprising about 100 separate research projects throughout the world. This measurement set is unique in that it is the only set of ventilation measurements that acknowledge and measure the multizone characteristics of residences. Other large measurement sets assume that a home can be treated as a single well-mixed zone. This report describes the creation of a database of approximately half of the PFT ventilation measurements made by BNL over the last five years. The PFT database is currently available for use on any IBM PC or Apple Macintosh based personal computer system. In addition to its utility in modeling indoor pollutant dispersion, this database may also be useful to those people studying energy conservation, thermal comfort and heating system design in residential buildings. 2 refs.

D' Ottavio, T.W.; Goodrich, R.W.; Spandau, D.J.; Dietz, R.N.

1988-08-01T23:59:59.000Z

158

A Ventilation Index for Tropical Cyclones  

Science Conference Proceedings (OSTI)

An important environmental control of both tropical cyclone intensity and genesis is vertical wind shear. One hypothesized pathway by which vertical shear affects tropical cyclones is midlevel ventilationor the flux of low-entropy air into the center of ...

Brian Tang; Kerry Emanuel

2012-12-01T23:59:59.000Z

159

Solar ventilation preheating: FEMP fact sheet  

DOE Green Energy (OSTI)

Installing a ''solar wall'' to heat air before it enters a building, called solar ventilation preheating, is one of the most efficient ways of reducing energy costs using clean and renewable energy. A solar wall can be designed as an integral part of a new building or it can be added in a retrofit project.

Clyne, R.

1999-09-30T23:59:59.000Z

160

Hysteresis effects in hybrid building ventilation  

E-Print Network (OSTI)

radiation, external wind forcing and internal heat gains e.g. due to electrical equipment or building chloride, etc. Developing world: By-products of cooking or heating fires Ghiaus & Allard (2005) · Exposure-breeze, displacement ventilation dissipate internal heat gains e.g. from kitchen stove · Wintertime: Spaces filled

Flynn, Morris R.

Note: This page contains sample records for the topic "ventilation natural ventilation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

SY Tank Farm ventilation isolation option risk assessment report  

DOE Green Energy (OSTI)

The safety of the 241-SY Tank Farm ventilation system has been under extensive scrutiny due to safety concerns associated with tank 101-SY. Hydrogen and other gases are generated and trapped in the waste below the liquid surface. Periodically, these gases are released into the dome space and vented through the exhaust system. This attention to the ventilation system has resulted in the development of several alternative ventilation system designs. The ventilation system provides the primary means of mitigation of accidents associated with flammable gases. This report provides an assessment of various alternatives ventilation system designs.

Powers, T.B.; Morales, S.D.

1994-03-01T23:59:59.000Z

162

Energy and air quality implications of passive stack ventilation in residential buildings  

SciTech Connect

Ventilation requires energy to transport and condition the incoming air. The energy consumption for ventilation in residential buildings depends on the ventilation rate required to maintain an acceptable indoor air quality. Historically, U.S. residential buildings relied on natural infiltration to provide sufficient ventilation, but as homes get tighter, designed ventilation systems are more frequently required particularly for new energy efficient homes and retrofitted homes. ASHRAE Standard 62.2 is used to specify the minimum ventilation rate required in residential buildings and compliance is normally achieved with fully mechanical whole-house systems; however, alternative methods may be used to provide the required ventilation when their air quality equivalency has been proven. One appealing method is the use of passive stack ventilation systems. They have been used for centuries to ventilate buildings and are often used in ventilation regulations in other countries. Passive stacks are appealing because they require no fans or electrical supply (which could lead to lower cost) and do not require maintenance (thus being more robust and reliable). The downside to passive stacks is that there is little control of ventilation air flow rates because they rely on stack and wind effects that depend on local time-varying weather. In this study we looked at how passive stacks might be used in different California climates and investigated control methods that can be used to optimize indoor air quality and energy use. The results showed that passive stacks can be used to provide acceptable indoor air quality per ASHRAE 62.2 with the potential to save energy provided that they are sized appropriately and flow controllers are used to limit over-ventilation.

Mortensen, Dorthe Kragsig; Walker, Iain S.; Sherman, Max

2011-01-01T23:59:59.000Z

163

Measured Air Distribution Effectiveness for Residential Mechanical Ventilation Systems  

SciTech Connect

The purpose of ventilation is dilute or remove indoor contaminants that an occupant is exposed to. In a multi-zone environment such as a house, there will be different dilution rates and different source strengths in every zone. Most US homes have central HVAC systems, which tend to mix the air thus the indoor conditions between zones. Different types of ventilation systems will provide different amounts of exposure depending on the effectiveness of their air distribution systems and the location of sources and occupants. This paper will report on field measurements using a unique multi-tracer measurement system that has the capacity to measure not only the flow of outdoor air to each zone, but zone-to-zone transport. The paper will derive seven different metrics for the evaluation of air distribution. Measured data from two homes with different levels of natural infiltration will be used to evaluate these metrics for three different ASHRAE Standard 62.2 compliant ventilation systems. Such information can be used to determine the effectiveness of different systems so that appropriate adjustments can be made in residential ventilation standards such as ASHRAE Standard 62.2.

Sherman, Max; Sherman, Max H.; Walker, Iain S.

2008-05-01T23:59:59.000Z

164

Indoor Chemistry: Materials, Ventilation Systems, and Occupant Activities  

Science Conference Proceedings (OSTI)

Chemical processes taking place in indoor environments can significantly alter the nature and concentrations of pollutants. Exposure to secondary contaminants generated in these reactions needs to be evaluated in association with many aspects of buildings to minimize their impact on occupant health and well-being. Focusing on indoor ozone chemistry, we describe alternatives for improving indoor air quality by controlling chemical changes related to building materials, ventilation systems, and occupant activities.

Morrison, G.C.; Corsi, R.L.; Destaillats, H.; Nazaroff, W.W.; Wells, J.R.

2006-05-01T23:59:59.000Z

165

New and Underutilized Technology: Carbon Dioxide Demand Ventilation Control  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Dioxide Demand Ventilation Carbon Dioxide Demand Ventilation Control New and Underutilized Technology: Carbon Dioxide Demand Ventilation Control October 4, 2013 - 4:23pm Addthis The following information outlines key deployment considerations for carbon dioxide (CO2) demand ventilation control within the Federal sector. Benefits Demand ventilation control systems modulate ventilation levels based on current building occupancy, saving energy while still maintaining proper indoor air quality (IAQ). CO2 sensors are commonly used, but a multiple-parameter approach using total volatile organic compounds (TVOC), particulate matter (PM), formaldehyde, and relative humidity (RH) levels can also be used. CO2 sensors control the outside air damper to reduce the amount of outside air that needs to be conditioned and supplied to the building when

166

Ventilation Effectiveness Research at UT-Typer Lab Houses  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Effectiveness Research Ventilation Effectiveness Research at UT-Tyler Lab Houses Source Of Outside Air, Distribution, Filtration Armin Rudd Twin (almost) Lab Houses at UT-Tyler House 2: Unvented attic, House 1: Vented attic lower loads + PV Ventilation Effectiveness Research 30 April 2013 2 * 1475 ft 2 , 3-bedroom houses * House 2 was mirrored plan * 45 cfm 62.2 ventilation rate * Garage connected to house on only one wall * Access to attic via pull-down stairs in garage * Further access to House 2 unvented attic through gasket sealed door Ventilation Effectiveness Research 30 April 2013 3 Testing Approach  Building enclosure and building mechanical systems characterization by measurement of building enclosure air leakage, central air distribution system airflows, and ventilation system airflows.

167

Residential pollutants and ventilation strategies: Moisture and combustion products  

SciTech Connect

This paper reviews literature that reports investigations of residential ventilation and indoor air quality. Two important residential pollutant classes, moisture and combustion pollutants, are examined. A companion paper examines volatile organic compounds and radon. Control strategies recommended from the review include appropriate building design to prevent or limit the sources of the pollutants within the space, proper operation and maintenance to prevent adverse conditions from developing during the building's life and appropriate use of ventilation. The characteristics of these pollutant sources suggest that ventilation systems in residences should have several properties. Moisture control puts significant restrictions on a ventilation system. The system should function continuously (averaged over days) and distribute ventilation throughout the habitable space. Combustion sources require task ventilation that functions reliably.

Hadlich, D.E.; Grimsrud, D.T.

1999-07-01T23:59:59.000Z

168

Summer Infiltration/Ventilation Test Results from the FRTF Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summer InfiltrationVentilation Test Results from the FRTF Laboratory Building America Technical Review Meeting April 29-30, 2013 A Research Institute of the University of Central...

169

Evaluation of design ventilation requirements for enclosed parking facilities  

SciTech Connect

This paper proposes a new design approach to determine the ventilation requirements for enclosed parking garages. The design approach accounts for various factors that affect the indoor air quality within a parking facility, including the average CO emission rate, the average travel time, the number of cars, and the acceptable CO level within the parking garage. This paper first describes the results of a parametric analysis based on the design method that was developed. Then the design method is presented to explain how the ventilation flow rate can be determined for any enclosed parking facility. Finally, some suggestions are proposed to save fan energy for ventilating parking garages using demand ventilation control strategies.

Ayari, A.; Krarti, M.

2000-07-01T23:59:59.000Z

170

New and Underutilized Heating, Ventilation, and Air Conditioning...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8, 2013 - 2:56pm Addthis The following heating, ventilation, and air conditioning (HVAC) technologies are underutilized within the Federal sector. These technologies have been...

171

Energy Impact of Residential Ventilation Norms in the United States  

E-Print Network (OSTI)

5% of the total space conditioning) and the intermittentsupply lead to greater space conditioning energy use. AnnualkWh Distribution Ventilation Space Conditioning Leaky House

Sherman, Max H.; Walker, Iain S.

2007-01-01T23:59:59.000Z

172

Energy Impacts of Envelope Tightening and Mechanical Ventilation...  

NLE Websites -- All DOE Office Websites (Extended Search)

or absolute standards along with mechanical ventilation throughout the U.S. housing stock. We used a physics-based modeling framework to simulate the impact of envelope...

173

Review of Literature Related to Residential Ventilation Requirements  

E-Print Network (OSTI)

Refrigerating, and Air -Conditioning Engineers, Atlanta, GRefrigerat ing, and Air-Conditioning Engineers, Atlanta, Gof Ventilation and Air Conditioning: Is C E R N up to Date

McWilliams, Jennifer; Sherman, Max

2005-01-01T23:59:59.000Z

174

Critical Question #2: What are the Best Practices for Ventilation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Specific to Multifamily Buildings? What is the best practice to address ASHRAE 62.2 Addendum J (multifamily)? Why is exhaust only (with supply in hallway) the...

175

Characterization of air recirculation in multiple fan ventilation systems.  

E-Print Network (OSTI)

??Booster fans, large underground fans, can increase the volumetric efficiency of ventilation systems by helping to balance the pressure and quantity distribution throughout a mine, (more)

Wempen, Jessica Michelle

2012-01-01T23:59:59.000Z

176

Ventilation and Solar Heat Storage System Offers Big Energy Savings  

Ventilation and Solar Heat Storage System Offers Big Energy Savings ... Heat is either reflected away from the building with radiant barriers, or heat is absorbed

177

Case Study 3 - Energy Impacts of Infiltration and Ventilation in ...  

Science Conference Proceedings (OSTI)

... the energy use in commercial buildings due to infiltration and ventilation airflows and to investigate the potential for energy savings that could be ...

178

Guide to Closing and Conditioning Ventilated Crawlspaces  

SciTech Connect

This how-to guide explains the issues and concerns with conventional ventilated crawlspaces and provides prescriptive measures for improvements that will create healthier and more durable spaces. The methods described in this guide are not the only acceptable ways to treat a crawlspace but represent a proven strategy that works in many areas of the United States. The designs discussed in this guide may or may not meet the local building codes and as such will need to be researched before beginning the project.

Dickson, B.

2013-01-01T23:59:59.000Z

179

ELECTRIC POWER AND VENTILATION SYSTEM OF SILOE  

SciTech Connect

The 15-kv electric power of Siloe is supplied from a central substation, which serves all the laboratories in the Center. The substation transforms primary 3-phase power from 15 kv to 380 to 220 v. Control installations are supplied from sets of rectifiers and batteries with 127 and 48 v direct current. If the normal electric power supply fails, a 12000 kva diesel driven generator is automatically started and in a very short time supplies power. The ventilation system supplies the whole building with conditioned air, holds the shell in negative pressure, and exhausts radioactive effluents. (auth)

Mitault, G.; Faudou, J.-C.

1963-12-01T23:59:59.000Z

180

A Bench Study of Intensive Care Unit Ventilators: New versus Old and Turbine-Based versus Compressed Gas-Based Ventilators  

E-Print Network (OSTI)

. Material: Four turbine- based ventilators and nine conventional servo-valve compressed-gas ventilators were1 A Bench Study of Intensive Care Unit Ventilators: New versus Old and Turbine-Based versus Compressed Gas-Based Ventilators Arnaud W. Thille,1 MD; Aissam Lyazidi,1 Biomed Eng MS; Jean-Christophe M

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "ventilation natural ventilation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Sensitivity of Tropical Cyclone Intensity to Ventilation in an Axisymmetric Model  

E-Print Network (OSTI)

The sensitivity of tropical cyclone intensity to ventilation of cooler, drier air into the inner core is examined using an axisymmetric tropical cyclone model with parameterized ventilation. Sufficiently strong ventilation ...

Tang, Brian

182

Quantification of the association of ventilation rates with sick building syndrome symptoms  

E-Print Network (OSTI)

42%) as ventilation rate increases from 10 to 25 L/s-person.0.85) as ventilation rate increases from 10 to 25 L/s-29% as ventilation rate increases from 10 to 25 L/s-person.

Fisk, William J.

2009-01-01T23:59:59.000Z

183

Sensitivity of Tropical Cyclone Intensity to Ventilation in an Axisymmetric Model  

Science Conference Proceedings (OSTI)

The sensitivity of tropical cyclone intensity to ventilation of cooler, drier air into the inner core is examined using an axisymmetric tropical cyclone model with parameterized ventilation. Sufficiently strong ventilation induces cooling of the ...

Brian Tang; Kerry Emanuel

2012-08-01T23:59:59.000Z

184

Minimum Energy Ventilation for Fast Food Restaurant Kitchens  

Science Conference Proceedings (OSTI)

Cooking equipment exhaust systems have a significant impact on the energy consumption of fast food restaurants. This research investigated issues that relate to the energy performance of commercial kitchen ventilation systems and demonstrated that significant energy and cost savings can be achieved by reducing ventilation rates.

1996-10-30T23:59:59.000Z

185

LBNL REPORT NUMBER 53776; OCTOBER 2003 ASHRAE &Residential Ventilation  

E-Print Network (OSTI)

LBNL REPORT NUMBER 53776; OCTOBER 2003 ASHRAE &Residential Ventilation Max Sherman Energy Performance of Buildings Group IED/EETD Lawrence Berkeley Laboratory1 MHSherman@lbl.gov ASHRAE, the American of heating, ventilating, air-conditioning and refrigeration (HVAC&R). ASHRAE has recently released a new

186

Absolute Glovebox Ventilation Filtration System with Unique Filter Replacement Feature  

SciTech Connect

A glovebox ventilation system was designed for a new plutonium-238 processing facility that provided 1) downdraft ventilation, 2) a leak tight seal around the High Efficiency Particulate Air (HEPA) filters, and 3) a method for changing the filters internally without risk of contaminating the laboratory.

Freeman, S. S.; Slusher, W. A.

1975-12-31T23:59:59.000Z

187

Secondary pollutants from ozone reactions with ventilation filters and  

NLE Websites -- All DOE Office Websites (Extended Search)

Secondary pollutants from ozone reactions with ventilation filters and Secondary pollutants from ozone reactions with ventilation filters and degradation of filter media additives Title Secondary pollutants from ozone reactions with ventilation filters and degradation of filter media additives Publication Type Journal Article Year of Publication 2011 Authors Destaillats, Hugo, Wenhao Chen, Michael G. Apte, Nuan Li, Michael Spears, Jérémie Almosni, Gregory Brunner, Jianshun(Jensen) Zhang, and William J. Fisk Journal Atmospheric Environment Volume 45 Start Page 3561 Issue 21 Pagination 3561-3568 Keywords commercial building ventilation & indoor environmental quality group, commercial building ventilation and indoor environmental quality group, energy analysis and environmental impacts department, indoor environment department, indoor environment group

188

Ventilation and Energy Saving in Auto Manufacturing Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Ventilation and Energy Saving in Auto Manufacturing Plants Ventilation and Energy Saving in Auto Manufacturing Plants Speaker(s): Alexander M. Zhivov Date: April 3, 2002 - 12:00pm Location: Bldg. 90 Dr. Alexander Zhivov is currently the chairman of the International Task Force "Autovent International" focusing on environmental problems within the Automotive Industry. This Task Force was formed in 1997 to develop the "Ventilation Guide for Automotive Industry". The guide was to be seen as a building block within the EU sponsored "Industrial Ventilation Design Guide Book" project, covering both theory and applications. In his presentation, Dr. Zhivov will talk about his work with the automotive industry, describe major highlights from the "Ventilation Guide for Automotive Industry" and talk about building, process and HVAC

189

Heating, Ventilation, and Air Conditioning Renovations | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating, Ventilation, and Air Conditioning Renovations Heating, Ventilation, and Air Conditioning Renovations Heating, Ventilation, and Air Conditioning Renovations October 16, 2013 - 4:49pm Addthis Renewable Energy Options for HVAC Renovations Geothermal Heat Pumps (GHP) Solar Water Heating (SWH) Biomass Passive Solar Heating Biomass Heating Solar Ventilation Air Preheating Federal building renovations that encompass the heating, ventilation, and air conditioning (HVAC) systems in a facility provide a range of renewable energy opportunities. The primary technology option for HVAC renovations is geothermal heat pumps (GHP). Other options include leveraging a solar water heating (SWH) system to offset heating load or using passive solar heating or a biomass-capable furnace or boiler. Some facilities may also take

190

Residential pollutants and ventilation strategies: Volatile organic compounds and radon  

SciTech Connect

This paper reviews literature that reports investigations of residential ventilation and indoor air quality. Two important residential pollutant classes, volatile organic compounds and radon, are examined. A companion paper examines moisture and combustion pollutants. Control strategies recommended from the review include appropriate building design to prevent or limit the sources of the pollutants within the space, proper operation and maintenance to prevent adverse conditions from developing during the building's life and appropriate use of ventilation. The characteristics of these pollutant sources suggest that ventilation systems in residences should have several properties. They should have the extra capacity available to reduce short bursts of pollution, be located close to the expected source of the contamination, and be inexpensive. Mitigation of radon is technically a major success using a form of task ventilation. Whole-house ventilation is, at best, a secondary form of control of excess radon in residences.

Grimsrud, D.T.; Hadlich, D.E.

1999-07-01T23:59:59.000Z

191

Ventilation Systems Operating Experience Review for Fusion Applications  

SciTech Connect

This report is a collection and review of system operation and failure experiences for air ventilation systems in nuclear facilities. These experiences are applicable for magnetic and inertial fusion facilities since air ventilation systems are support systems that can be considered generic to nuclear facilities. The report contains descriptions of ventilation system components, operating experiences with these systems, component failure rates, and component repair times. Since ventilation systems have a role in mitigating accident releases in nuclear facilities, these data are useful in safety analysis and risk assessment of public safety. An effort has also been given to identifying any safety issues with personnel operating or maintaining ventilation systems. Finally, the recommended failure data were compared to an independent data set to determine the accuracy of individual values. This comparison is useful for the International Energy Agency task on fusion component failure rate data collection.

L. C. Cadwallader

1999-12-01T23:59:59.000Z

192

Buoyancy-Driven Ventilation of Hydrogen from Buildings: Laboratory Test and Model Validation  

DOE Green Energy (OSTI)

Passive, buoyancy-driven ventilation is one approach to limiting hydrogen concentration. We explored the relationship between leak rate, ventilation design, and hydrogen concentrations.

Barley, C. D.; Gawlik, K.

2009-05-01T23:59:59.000Z

193

The impact of ventilation rate on the emission rates of volatile...  

NLE Websites -- All DOE Office Websites (Extended Search)

impact of ventilation rate on the emission rates of volatile organic compounds in residences Title The impact of ventilation rate on the emission rates of volatile organic...

194

Computer Simulation of Cooling Effect of Wind Tower on Passively Ventilated Building  

E-Print Network (OSTI)

Traditional buildings are cooled and ventilated by mechanically induced drafts. Natural ventilation aspires to cool and ventilate a building by natural means, such as cross ventilation or wind towers, without mechanical equipment. A simple computer program was developed to simulate airflow through a wind tower based on tower dimensions and air temperature. The program was compared to experimental results with reasonable agreement. Parametric analysis indicates that interior air temperature approaches outdoor air temperature asymptotically as tower height and cross-sectional area are increased, and that it may be more cost effective to increase the tower?s height than its cross sectional area. The program was then used to simulate hour-by-hour indoor air temperatures of an occupied auditorium in Dayton, OH. The results indicate that a large wind tower was able to keep the temperature of an occupied auditorium at a comfortable level year round.

Seryak, J.; Kissock, J. K.

2002-01-01T23:59:59.000Z

195

Airflow Simulation and Energy Analysis in Ventilated Room with a New Type of Air Conditioning  

E-Print Network (OSTI)

Airflow simulation in one ventilated room with radiant heating and natural ventilation has been carried out. Three cases are compared: the closed room, the room with full openings, and the room with small openings. The radiator heating room with small openings is recommended. The airflow and thermal comfort are discussed for the last case. It is suitable for two kinds of civil buildings, housing buildings and office buildings, which take up the largest part of all functional buildings.

Liu, D.; Tang, G.; Zhao, F.

2006-01-01T23:59:59.000Z

196

Heating, Ventilation and Air Conditioning Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Presented By: WALTER E. JOHNSTON, PE Presented By: WALTER E. JOHNSTON, PE CEM, CEA, CLEP, CDSM, CPE Ventilation and Air Conditioning (HVAC) system is to provide and maintain a comfortable environment within a building for the occupants or for the process being conducted Many HVAC systems were not designed with energy efficiency as one of the design factors 3 Air Air is the major conductor of heat. Lack of heat = air conditioning OR 4 Btu - Amount of heat required to raise one pound of water 1 F = 0.252 KgCal 1 Pound of Water = About 1 Pint of Water ~ 1 Large Glass 1 Kitchen Match Basics of Air Conditioning = 1 Btu 5 = 6 Low Cost Cooling Unit 7 8 Typical Design Conditions 75 degrees F temperature 50% relative humidity 30 - 50 FPM air movement

197

FEMP-FS--Solar Ventilation Preheating  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Installing a "solar wall" to heat air before it enters a Installing a "solar wall" to heat air before it enters a building, called solar ventilation preheating, is one of the most efficient ways of reducing energy costs using clean and renewable energy. The system works by heating outside air with a south-facing solar collector-a dark-colored wall made of sheet metal and perforated with tiny holes. Outdoor air is drawn through the holes and heated as it absorbs the wall's warmth. The warm air rises in the space between the solar wall and the building wall and is moved into the air-duct system, usually by means of a fan, to heat the building. Any additional heating needed at night or on cloudy days is supplied by the build- ing's conventional heating system. During summer months, intake air bypasses the solar collector,

198

Fire protection countermeasures for containment ventilation systems  

SciTech Connect

The goal of this project is to find countermeasures to protect High Efficiency Particulate Air (HEPA) filters, in exit ventilation ducts, from the heat and smoke generated by fire. Initially, methods were developed to cool fire-heated air by fine water spray upstream of the filters. It was recognized that smoke aerosol exposure to HEPA filters could also cause disruption of the containment system. Through testing and analysis, several methods to partially mitigate the smoke exposure to the HEPA filters were identified. A continuous, movable, high-efficiency prefilter using modified commercial equipment was designed. The technique is capable of protecting HEPA filters over the total time duration of the test fires. The reason for success involved the modification of the prefiltration media. Commercially available filter media has particle sorption efficiency that is inversely proportional to media strength. To achieve properties of both efficiency and strength, rolling filter media were laminated with the desired properties. The approach was Edisonian, but truncation in short order to a combination of prefilters was effective. The application of this technique was qualified, since it is of use only to protect HEPA filters from fire-generated smoke aerosols. It is not believed that this technique is cost effective in the total spectrum of containment systems, especially if standard fire protection systems are available in the space. But in areas of high-fire risk, where the potential fuel load is large and ignition sources are plentiful, the complication of a rolling prefilter in exit ventilation ducts to protect HEPA filters from smoke aerosols is definitely justified.

Alvares, N.; Beason, D.; Bergman, V.; Creighton, J.; Ford, H.; Lipska, A.

1980-08-25T23:59:59.000Z

199

Modeling study of ventilation, IAQ and energy impacts of residential mechanical ventilation  

SciTech Connect

This paper reports on a simulation study of indoor air quality, ventilation and energy impacts of several mechanical ventilation approaches in a single-family residential building. The study focused on a fictitious two-story house in Spokane, Washington and employed the multizone airflow and contaminant dispersal model CONTAM. The model of the house included a number of factors related to airflow including exhaust fan and forced-air system operation, duct leakage and weather effects, as well as factors related to contaminant dispersal including adsorption/desorption of water vapor and volatile organic compounds, surface losses of particles and nitrogen dioxide, outdoor contaminant concentrations, and occupant activities. The contaminants studied include carbon monoxide, carbon dioxide, nitrogen dioxide, water vapor, fine and coarse particles, and volatile organic compounds. One-year simulations were performed for four different ventilation approaches: a base case of envelope infiltration only, passive inlet vents in combination with exhaust fan operation, an outdoor intake duct connected to the forced-air system return balanced by exhaust fan operation, and a continuously-operated exhaust fan. Results discussed include whole building air change rates, air distribution within the house, heating and cooling loads, contaminants concentrations, and occupant exposure to contaminants.

Persily, A.K.

1998-05-01T23:59:59.000Z

200

Optimization of Occupancy Based Demand Controlled Ventilation in Residences  

SciTech Connect

Although it has been used for many years in commercial buildings, the application of demand controlled ventilation in residences is limited. In this study we used occupant exposure to pollutants integrated over time (referred to as 'dose') as the metric to evaluate the effectiveness and air quality implications of demand controlled ventilation in residences. We looked at air quality for two situations. The first is that typically used in ventilation standards: the exposure over a long term. The second is to look at peak exposures that are associated with time variations in ventilation rates and pollutant generation. The pollutant generation had two components: a background rate associated with the building materials and furnishings and a second component related to occupants. The demand controlled ventilation system operated at a low airflow rate when the residence was unoccupied and at a high airflow rate when occupied. We used analytical solutions to the continuity equation to determine the ventilation effectiveness and the long-term chronic dose and peak acute exposure for a representative range of occupancy periods, pollutant generation rates and airflow rates. The results of the study showed that we can optimize the demand controlled airflow rates to reduce the quantity of air used for ventilation without introducing problematic acute conditions.

Mortensen, Dorthe K.; Walker, Iain S.; Sherman, Max H.

2011-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation natural ventilation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Procedures and Standards for Residential Ventilation System Commissioning:  

NLE Websites -- All DOE Office Websites (Extended Search)

Procedures and Standards for Residential Ventilation System Commissioning: Procedures and Standards for Residential Ventilation System Commissioning: An Annotated Bibliography Title Procedures and Standards for Residential Ventilation System Commissioning: An Annotated Bibliography Publication Type Report LBNL Report Number LBNL-6142E Year of Publication 2013 Authors J. Chris Stratton, and Craig P. Wray Keywords ASHRAE 62.2, commissioning, procedures, residential, standards, ventilation Abstract Beginning with the 2008 version of Title 24, new homes in California must comply with ANSI/ASHRAE Standard 62.2-2007 requirements for residential ventilation. Where installed, the limited data available indicate that mechanical ventilation systems do not always perform optimally or even as many codes and forecasts predict. Commissioning such systems when they are installed or during subsequent building retrofits is a step towards eliminating deficiencies and optimizing the tradeoff between energy use and acceptable IAQ. Work funded by the California Energy Commission about a decade ago at Berkeley Lab documented procedures for residential commissioning, but did not focus on ventilation systems. Since then, standards and approaches for commissioning ventilation systems have been an active area of work in Europe. This report describes our efforts to collect new literature on commissioning procedures and to identify information that can be used to support the future development of residential-ventilation-specific procedures and standards. We recommend that a standardized commissioning process and a commissioning guide for practitioners be developed, along with a combined energy and IAQ benefit assessment standard and tool, and a diagnostic guide for estimating continuous pollutant emission rates of concern in residences (including a database that lists emission test data for commercially-available labeled products).

202

The Potential for Wind Induced Ventilation to Meet Occupant Comfort Conditions  

E-Print Network (OSTI)

This paper describes a simple graphic tool that enables a building designer to evaluate the potential for wind induced ventilation cooling in several climate zones. Long term weather data were analyzed to determine the conditions for which available wind speed can be used to meet occupant comfort conditions. By calculating the change in enthalpy produced by a typical residential air conditioner during those hours when an occupant is uncomfortable, we were able to estimate the impact of natural ventilation on building cooling load. The graphic presentation of the results allows a designer to determine the potential energy savings of increasing the ventilation air flow rate as well as the orientation of building openings that will maximize ventilation cooling of the building occupants.

Byrne, S. J.; Huang, Y. J.; Ritschard, R. L.; Foley, D. M.

1985-01-01T23:59:59.000Z

203

Assessment of Pollutant Spread from a Building Basement with three Ventilation Systems  

E-Print Network (OSTI)

Ventilation aims at providing a sufficient air renewal for ensuring a good indoor air quality (IAQ), yet building energy policies are leading to adapting various ventilation strategies minimising energy losses through air renewal. A recent IAQ evaluation campaign in French dwellings shows important pollution of living spaces by VOCs such as formaldehyde, acetaldehyde or hexanal, particularly in buildings equipped with a garage. Besides, radon emission from soil is a subject of concern in many countries. Several studies are done to understand its release mode and deal with the spread of this carcinogen gas. This paper aims to experimentally assess a contaminant spread from a house basement using mechanical exhaust and balanced ventilation systems, and natural ventilation.

Koffi, Juslin

2010-01-01T23:59:59.000Z

204

Kitchen Ventilation Should be High Performance (Not Optional)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kitchen Ventilation Kitchen Ventilation Should be High Performance (not Optional) Brett C. Singer Residential Building Systems & Indoor Environment Groups Lawrence Berkeley National Laboratory Building America Technical Update Denver, CO April 30, 2013 Acknowledgements PROGRAM SUPPORT *U.S. Department of Energy - Building America Program *U.S. Environmental Protection Agency - Indoor Environments Division *U.S. Department of Housing and Urban Development - Office of Healthy Homes & Lead Hazard Control *California Energy Commission - Public Interest Energy Research Program TECHNICAL CONTRIBUTIONS *Woody Delp, Tosh Hotchi, Melissa Lunden, Nasim Mullen, Chris Stratton, Doug Sullivan, Iain Walker Kitchen Ventilation Simplified PROBLEM: * Cooking burners & cooking produce odors, moisture

205

Energy Crossroads: Ventilation, Infiltration & Indoor Air Quality |  

NLE Websites -- All DOE Office Websites (Extended Search)

Ventilation, Infiltration & Indoor Air Quality Ventilation, Infiltration & Indoor Air Quality Suggest a Listing Air Infiltration and Ventilation Centre (AIVC) The AIVC fulfills its objectives by providing a range of services and facilities which include: Information, Technical Analysis, Technical Interchange, and Coordination. American Conference of Governmental Industrial Hygienists (ACGIH) The ACGIH offers high quality technical publications and learning opportunities. Americlean Services Corp. (ASC) ASC is a certified SBA 8(a) engineering/consulting firm specializing in HVAC contamination detection, abatement, and monitoring. In addition to highly professional ductwork cleaning and HVAC cleaning services, ASC offers a wide range of other engineering/ consulting/ management services

206

An assessment of a partial pit ventilation system to reduce emission under slatted floor - Part 1: Scale model study  

Science Conference Proceedings (OSTI)

Emissions of ammonia and greenhouse gases from naturally ventilated livestock houses cause contamination of the surrounding atmospheric environment. Requests to reduce ammonia emissions from livestock farms are growing in Denmark. It is assumed that ... Keywords: Livestock, Pit ventilation, Scale model, Slatted floor, Tracer gas, Wind tunnel

Wentao Wu; Peter Kai; Guoqiang Zhang

2012-04-01T23:59:59.000Z

207

Ventilation Rates Estimated from Tracers in the Presence of Mixing  

Science Conference Proceedings (OSTI)

The intimate relationship among ventilation, transit-time distributions, and transient tracer budgets is analyzed. To characterize the advectivediffusive transport from the mixed layer to the interior ocean in terms of flux we employ a ...

Timothy M. Hall; Thomas W. N. Haine; Darryn W. Waugh; Mark Holzer; Francesca Terenzi; Deborah A. LeBel

2007-11-01T23:59:59.000Z

208

Ventilation and Energy Saving in Auto Manufacturing Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Ventilation and Energy Saving in Auto Manufacturing Plants Speaker(s): Alexander M. Zhivov Date: April 3, 2002 - 12:00pm Location: Bldg. 90 Dr. Alexander Zhivov is currently the...

209

Issue #9: What are the Best Ventilation Techniques? | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

do we address ventilation in all climates? What is the best compromise between occupant health and safety and energy efficiency? issue9recommendashrae.pdf issue9ashrae622vent...

210

Evaluation of Existing Technologies for Meeting Residential Ventilation  

E-Print Network (OSTI)

) ........................................................................... 9 5. Central Fan Integrated (CFI) Supply with air inlet in return and continuously operating exhaust................................................................................................ 10 7. CFI with 7% Outside Air (OA), without continuous exhaust ­ not 62.2 compliant Ventilation from ACM........................................................................ 11

211

Simulations of Indoor Air Quality and Ventilation Impacts of ...  

Science Conference Proceedings (OSTI)

... lighting load from ASHRAE Standard 90.1 (ANSI/ASHRAE ... with a nonzero base ventilation rate, such ... and C-T24, will help to temper such exposure. ...

2006-10-03T23:59:59.000Z

212

Intelligent Control of Heating, Ventilating and Air Conditioning Systems  

Science Conference Proceedings (OSTI)

This paper proposed a simulation-optimization energy saving strategy for heating, ventilating and air conditioning (HVAC) systems' condenser water loop through intelligent control of single speed cooling towers' components. An analysis of system components ...

Patrick Low Kie; Lau Bee Theng

2009-07-01T23:59:59.000Z

213

CANCELLED: Mechanism of Human Responses to Ventilation Rates...  

NLE Websites -- All DOE Office Websites (Extended Search)

CANCELLED: Mechanism of Human Responses to Ventilation Rates and Air Temperature Speaker(s): Henry Willem Date: July 2, 2010 - 12:00pm Location: 90-3122 Seminar HostPoint of...

214

Formaldehyde as a basis for residential ventilation rates  

E-Print Network (OSTI)

large numbers of houses using passive monitoring techniques.rates by passive techniques in 61 occupied houses, half ofhouses in the U.S. have been ventilated by passive

Sherman, M.H.; Hodgson, A.T.

2002-01-01T23:59:59.000Z

215

Evaluation of an Incremental Ventilation Energy Model for Estimating  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of an Incremental Ventilation Energy Model for Estimating Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation Title Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation Publication Type Report LBNL Report Number LBNL-5796E Year of Publication 2012 Authors Logue, Jennifer M., William J. N. Turner, Iain S. Walker, and Brett C. Singer Date Published 06/2012 Abstract Changing the rate of airflow through a home affects the annual thermal conditioning energy.Large-scale changes to airflow rates of the housing stock can significantly alter the energy consumption of the residential energy sector. However, the complexity of existing residential energy models hampers the ability to estimate the impact of policy changes on a state or nationwide level. The Incremental Ventilation Energy (IVE) model developed in this study was designed to combine the output of simple airflow models and a limited set of home characteristics to estimate the associated change in energy demand of homes. The IVE model was designed specifically to enable modelers to use existing databases of home characteristics to determine the impact of policy on ventilation at a population scale. In this report, we describe the IVE model and demonstrate that its estimates of energy change are comparable to the estimates of a well-validated, complex residential energy model when applied to homes with limited parameterization. Homes with extensive parameterization would be more accurately characterized by complex residential energy models. The demonstration included a range of home types, climates, and ventilation systems that cover a large fraction of the residential housing sector.

216

Key Factors in Displacement Ventilation Systems for Better IAQ  

E-Print Network (OSTI)

This paper sets up a mathematical model of three-dimensional steady turbulence heat transfer in an air-conditioned room of multi-polluting heat sources. Numerical simulation helps identify key factors in displacement ventilation systems that affect air-quality in rooms of multi-polluting heat sources. Results show that it is very important to determine the suitable air-intemperature , air-inflow, and heat source quantity and dispersion, to obtain better displacement ventilation results.

Wang, X.; Chen, J.; Li, Y.; Wang, Z.

2006-01-01T23:59:59.000Z

217

Development of a Dedicated 100 Percent Ventilation Air Heat Pump  

Science Conference Proceedings (OSTI)

The concept of using dedicated 100 percent ventilation makeup air conditioning units to meet indoor air quality standards is attractive because of the inherent advantages. However, it is challenging to design and build direct expansion unitary equipment for this purpose. EPRI teamed with ClimateMaster to develop and test a prototype of a vapor compression heat pump to advance the state of the art in such equipment. The prototype unit provides deep dehumidification and cooling of ventilation air in the su...

2000-12-14T23:59:59.000Z

218

Capture and Use of Coal Mine Ventilation Air Methane  

Science Conference Proceedings (OSTI)

CONSOL Energy Inc., in conjunction with MEGTEC Systems, Inc., and the U.S. Department of Energy with the U.S. Environmental Protection Agency, designed, built, and operated a commercial-size thermal flow reversal reactor (TFRR) to evaluate its suitability to oxidize coal mine ventilation air methane (VAM). Coal mining, and particularly coal mine ventilation air, is a major source of anthropogenic methane emissions, a greenhouse gas. Ventilation air volumes are large and the concentration of methane in the ventilation air is low; thus making it difficult to use or abate these emissions. This test program was conducted with simulated coal mine VAM in advance of deploying the technology on active coal mine ventilation fans. The demonstration project team installed and operated a 30,000 cfm MEGTEC VOCSIDIZER oxidation system on an inactive coal mine in West Liberty, WV. The performance of the unit was monitored and evaluated during months of unmanned operation at mostly constant conditions. The operating and maintenance history and how it impacts the implementation of the technology on mine fans were investigated. Emission tests showed very low levels of all criteria pollutants at the stack. Parametric studies showed that the equipment can successfully operate at the design specification limits. The results verified the ability of the TFRR to oxidize {ge}95% of the low and variable concentration of methane in the ventilation air. This technology provides new opportunities to reduce greenhouse gas emissions by the reduction of methane emissions from coal mine ventilation air. A large commercial-size installation (180,000 cfm) on a single typical mine ventilation bleeder fan would reduce methane emissions by 11,000 to 22,100 short tons per year (the equivalent of 183,000 to 366,000 metric tonnes carbon dioxide).

Deborah Kosmack

2008-10-31T23:59:59.000Z

219

Laboratory Evaluation of Energy Recovery Ventilators  

SciTech Connect

As deep retrofit measures and new construction practices are realizing lower infiltration levels in increasingly tighter envelopes, performance issues can arise with water vapor intrusion in building envelopes and the operation of exhaust only appliances in a depressurized home. Unbalancing (reducing exhaust airflows) of an energy recovery ventilator (ERV) can provide a means to supply makeup air and reduce the level of home depressurization to mitigate these issues, helping realize exhaust-only appliance rated performance, achieve safe atmospherically vented combustion, and/or improve envelope durability. ERV balanced flow operation is well documented, but there is not public domain information available that empirically establishes the effect of unbalanced flow on sensible and latent exchange, especially in the now dominant membrane type ERV used in residential applications. This laboratory evaluation focused on unbalanced flow performance of a membrane type ERV delivering 200 standard cubic feet per minute (SCFM )of supply air. The dataset generated yielded a limited set of curve fit algorithms for unbalanced flow performance that can be used to supplement current modeling approaches in simulation tools like EnergyPlus. Building America BA teams can then utilize such models to analyze whole house effects and determine best practices associated with unbalanced ERV operations.

Kosar, D.

2013-05-01T23:59:59.000Z

220

CFD Simulation of Airflow in Ventilated Wall System Report #9  

DOE Green Energy (OSTI)

The objective of this report was to examine air movements in vinyl and brick ventilation cavities in detail, using a state of the art CFD commercial modeling tool. The CFD activity was planned to proceed the other activities in order to develop insight on the important magnitudes of scales occurring during ventilation air flow. This information generated by the CFD model was to be used to modify (if necessary) and to validate the air flow dynamics already imbedded in the hygrothermal model for the computer-based air flow simulation procedures. A comprehensive program of advanced, state-of-the-art hygrothermal modeling was then envisaged mainly to extend the knowledge to other wall systems and at least six representative climatic areas. These data were then to be used to provide the basis for the development of design guidelines. CFD results provided timely and much needed answers to many of the concerns and questions related to ventilation flows due to thermal buoyancy and wind-driven flow scenarios. The relative strength between these two mechanisms. Simple correlations were developed and are presented in the report providing the overall pressure drop, and flow through various cavities under different exterior solar and temperature scenarios. Brick Rainscreen Wall: It was initially expected that a 50 mm cavity would offer reduced pressure drops and increased air flow compared to a 19 mm cavity. However, these models showed that the size of the ventilation slots through the wall are the limiting factor rather than the cavity depth. Of course, once the slots are enlarged beyond a certain point, this could change. The effects of natural convection within the air cavities, driven by the temperature difference across the cavity, were shown to be less important than the external wind speed (for a wind direction normal to the wall surface), when wind action is present. Vinyl Rainscreen Wall: The CFD model of the vinyl rainscreen wall was simpler than that for the brick wall. Constant wall temperatures were used rather than conjugate heat transfer. Although this is appropriate for a thin surface with little heat capacity, it does mean that an empirical correlation between solar radiation (and perhaps wind speed) and vinyl temperature is required to use these results appropriately. The results developed from this CFD model were correlated to weather parameters and construction details so that they can be incorporated into ORNL s advanced hygrothermal models MOISTURE- EXPERT.

Stovall, Therese K [ORNL; Karagiozis, Achilles N [ORNL

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation natural ventilation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Quantitative troubleshooting of industrial exhaust ventilation systems  

SciTech Connect

This article proposes two troubleshooting tools that may allow precise and accurate assessment of changes to ventilation systems of any type. Both are useful in discovering and quantifying most modifications that affect the distribution of airflows among the branches and static pressures throughout the system. The approaches are derived from energy balance considerations, using power loss coefficients (X) computed for any contiguous section of the system from the duct velocities and static pressures measured at that section`s inlets and outlets. The value of X for a given portion of the system should be nearly constant with changes in airflow and with modifications to other portions of the system. Responsiveness to local modifications and insensitivity to changes elsewhere in the system - including gross changes in fan performance - make X coefficients a valuable troubleshooting tool. Static pressure ratios within a given branch are functionally related to ratios of X coefficients. Therefore, they vary with modifications to the branch and are highly insensitive to changes outside that branch. Unlike X coefficients, determination of static pressure ratios does not require velocity traverses, making them faster and easier to determine than X values. On the other hand, values of X are more universally applicable and have direct physical significance. Use of both static pressure ratios and X coefficients are described in a suggested troubleshooting procedure. Systematic measurement errors have surprisingly little impact on the usefulness of values of X or static pressure ratios. The major impediment to using either tool is the necessity for {open_quotes}baseline{close_quotes} measurements, which are often unavailable. On the other hand, a baseline for future comparisons can be created piecemeal, beginning at any time and extending over any period of time. 11 refs., 8 figs., 8 tabs.

Guffey, S.E. [Univ. of Washington, Seattle, WA (United States)

1994-04-01T23:59:59.000Z

222

Heating, ventilation and air conditioning systems  

DOE Green Energy (OSTI)

A study is made of several outstanding issues concerning the commercial development of environmental control systems for electric vehicles (EVs). Engineering design constraints such as federal regulations and consumer requirements are first identified. Next, heating and cooling loads in a sample automobile are calculated using a computer model available from the literature. The heating and cooling loads are then used as a basis for estimating the electrical consumption that is to be expected for heat pumps installed in EVs. The heat pump performance is evaluated using an automobile heat pump computer model which has been developed recently at Oak Ridge National Laboratory (ORNL). The heat pump design used as input to the model consists of typical finned-tube heat exchangers and a hermetic compressor driven by a variable-speed brushless dc motor. The simulations suggest that to attain reasonable system efficiencies, the interior heat exchangers that are currently installed as automobile air conditioning will need to be enlarged. Regarding the thermal envelope of the automobile itself, calculations are made which show that considerable energy savings will result if steps are taken to reduce {open_quote}hot soak{close_quote} temperatures and if the outdoor air ventilation rate is well controlled. When these changes are made, heating and cooling should consume less than 10% of the total stored electrical energy for steady driving in most U.S. climates. However, this result depends strongly upon the type of driving: The fraction of total power for heating and cooling ({open_quote}range penalty{close_quote}) increases sharply for driving scenarios having low average propulsion power, such as stop-and-go driving.

Kyle, D.M. [Oak Ridge National Lab., TN (United States); Sullivan, R.A. [Dept. of Energy, Washington, DC (United States)

1993-02-01T23:59:59.000Z

223

Effect of Outside Air Ventilation Rate on Volatile Organic Compound  

NLE Websites -- All DOE Office Websites (Extended Search)

Outside Air Ventilation Rate on Volatile Organic Compound Outside Air Ventilation Rate on Volatile Organic Compound Concentrations in a Call Center Title Effect of Outside Air Ventilation Rate on Volatile Organic Compound Concentrations in a Call Center Publication Type Journal Article Year of Publication 2003 Authors Hodgson, Alfred T., David Faulkner, Douglas P. Sullivan, Dennis L. DiBartolomeo, Marion L. Russell, and William J. Fisk Journal Atmospheric Environment Volume 37 Start Page Chapter Pagination 5517-5528 Abstract A study of the relationship between outside air ventilation rate and concentrations of volatile organic compounds (VOCs) generated indoors was conducted in a call center office building. The building, with two floors and a floor area of 4,600 m2, was located in the San Francisco Bay Area, CA. Ventilation rates were manipulated with the building's four air handling units (AHUs). VOC concentrations in the AHU returns were measured on seven days during a 13-week period. VOC emission factors were determined for individual zones on days when they were operating at near steady-state conditions. The emission factor data were subjected to principal component (PC) analysis to identify groups of co-varying compounds. Potential sources of the PC vectors were ascribed based on information from the literature supporting the associations. Two vectors with high loadings of compounds including formaldehyde, 2,2,4-trimethyl-1,3- pentanediol monoisobutyrate, decamethylcyclopentasiloxane (d5 siloxane), and isoprene likely identified occupant-related sources. One vector likely represented emissions from building materials. Another vector represented emissions of solvents from cleaning products. The relationships between indoor minus outdoor VOC concentrations and ventilation rate were qualitatively examined for eight VOCs. Of these, acetaldehyde and hexanal, which were likely associated with material sources, and d5 siloxane exhibited general trends of higher concentrations at lower ventilation rates. For other compounds, the operation of the building and variations in pollutant generation and removal rates apparently combined to obscure the inverse relationship between VOC concentrations and ventilation. This result emphasizes the importance of utilizing source control measures, in addition to adequate ventilation, to limit concentrations of VOCs of concern in office buildings

224

Ventilation, temperature, and HVAC characteristics in small and medium  

NLE Websites -- All DOE Office Websites (Extended Search)

Ventilation, temperature, and HVAC characteristics in small and medium Ventilation, temperature, and HVAC characteristics in small and medium commercial buildings in California Title Ventilation, temperature, and HVAC characteristics in small and medium commercial buildings in California Publication Type Journal Article Refereed Designation Refereed Year of Publication 2012 Authors Bennett, Deborah H., William J. Fisk, Michael G. Apte, X. Wu, Amber L. Trout, David Faulkner, and Douglas P. Sullivan Journal Indoor Air Volume 22 Issue 4 Pagination 309-20 Abstract This field study of 37 small and medium commercial buildings throughout California obtained information on ventilation rate, temperature, and heating, ventilating, and air-conditioning (HVAC) system characteristics. The study included seven retail establishments; five restaurants; eight offices; two each of gas stations, hair salons, healthcare facilities, grocery stores, dental offices, and fitness centers; and five other buildings. Fourteen (38%) of the buildings either could not or did not provide outdoor air through the HVAC system. The air exchange rate averaged 1.6 (s.d. = 1.7) exchanges per hour and was similar between buildings with and without outdoor air supplied through the HVAC system, indicating that some buildings have significant leakage or ventilation through open windows and doors. Not all buildings had sufficient air exchange to meet ASHRAE 62.1 Standards, including buildings used for fitness centers, hair salons, offices, and retail establishments. The majority of the time, buildings were within the ASHRAE temperature comfort range. Offices were frequently overcooled in the summer. All of the buildings had filters, but over half the buildings had a filter with a minimum efficiency reporting value rating of 4 or lower, which are not very effective for removing fine particles. PRACTICAL IMPLICATIONS: Most U.S. commercial buildings (96%) are small- to medium-sized, using nearly 18% of the country's energy, and sheltering a large population daily. Little is known about the ventilation systems in these buildings. This study found a wide variety of ventilation conditions, with many buildings failing to meet relevant ventilation standards. Regulators may want to consider implementing more complete building inspections at commissioning and point of sale.

225

Commissioning Residential Ventilation Systems: A Combined Assessment of  

NLE Websites -- All DOE Office Websites (Extended Search)

Commissioning Residential Ventilation Systems: A Combined Assessment of Commissioning Residential Ventilation Systems: A Combined Assessment of Energy and Air Quality Potential Values Title Commissioning Residential Ventilation Systems: A Combined Assessment of Energy and Air Quality Potential Values Publication Type Report LBNL Report Number LBNL-5969E Year of Publication 2012 Authors Turner, William J. N., Jennifer M. Logue, and Craig P. Wray Date Published 07/2012 Keywords commissioning, energy, health, indoor air quality, residential, valuation, ventilation Abstract Due to changes in building codes, whole-house mechanical ventilation systems are being installed in new California homes. Few measurements are available, but the limited data suggest that these systems don't always perform as code and forecasts predict. Such deficiencies occur because systems are usually field assembled without design specifications, and there is no consistent process to identify and correct problems. The value of such activities in terms of reducing energy use and improving indoor air quality (IAQ) is poorly understood. Commissioning such systems when they are installed or during subsequent building retrofits is a step towards eliminating deficiencies and optimizing the tradeoff between energy use and IAQ.

226

Ventilation Behavior and Household Characteristics in NewCalifornia Houses  

SciTech Connect

A survey was conducted to determine occupant use of windows and mechanical ventilation devices; barriers that inhibit their use; satisfaction with indoor air quality (IAQ); and the relationship between these factors. A questionnaire was mailed to a stratified random sample of 4,972 single-family detached homes built in 2003, and 1,448 responses were received. A convenience sample of 230 houses known to have mechanical ventilation systems resulted in another 67 completed interviews. Some results are: (1) Many houses are under-ventilated: depending on season, only 10-50% of houses meet the standard recommendation of 0.35 air changes per hour. (2) Local exhaust fans are under-utilized. For instance, about 30% of households rarely or never use their bathroom fan. (3) More than 95% of households report that indoor air quality is ''very'' or ''somewhat'' acceptable, although about 1/3 of households also report dustiness, dry air, or stagnant or humid air. (4) Except households where people cook several hours per week, there is no evidence that households with significant indoor pollutant sources get more ventilation. (5) Except households containing asthmatics, there is no evidence that health issues motivate ventilation behavior. (6) Security and energy saving are the two main reasons people close windows or keep them closed.

Price, Phillip N.; Sherman, Max H.

2006-02-01T23:59:59.000Z

227

Microsoft Word - Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation_Final2.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

XXXXX | Logue et al., Evaluation of an Incremental Ventilation Energy Model for Estimating XXXXX | Logue et al., Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation 1 Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation Jennifer M. Logue, William J. N. Turner, Iain S. Walker, and Brett C. Singer Environmental Energy Technologies Division June 2012 LBNL-5796E LBNL-XXXXX | Logue et al., Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation 2 Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor

228

Building Air Quality & Ventilation Models: Review - Evaluation - Proposals  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Air Quality & Ventilation Models: Review - Evaluation - Proposals Building Air Quality & Ventilation Models: Review - Evaluation - Proposals Speaker(s): James Axley Date: March 12, 1999 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Richard Sextro Developments in mathematical models for building air quality and ventilation analysis have changed the way we idealize buildings for purposes of analysis, the way we form system equations to effect the analysis, and the way we solve these equations to realize the analysis. While much has been achieved more is possible. This presentation will review the current state of the art - the building idealizations used, the system equations formed, and the solution methods applied - critically evaluate the completeness, complexity and utility of the most advanced models, and present proposals for future development

229

Capture and Use of Coal Mine Ventilation-Air Methane  

NLE Websites -- All DOE Office Websites (Extended Search)

Capture and use of Coal Mine Capture and use of Coal Mine Ventilation - air Methane Background Methane emissions from coal mines represent about 10 percent of the U.S. anthropogenic methane released to the atmosphere. Methane-the second most important non-water greenhouse gas-is 21 times as powerful as carbon dioxide (CO 2 ) in its global warming potential. Ventilation-air methane (VAM)-the exhaust air from underground coal mines-is the largest source of coal mine methane, accounting for about half of the methane emitted from coal mines in the United States. Unfortunately, because of the low methane concentration (0.3-1.5 percent) in ventilation air, its beneficial use is difficult. However, oxidizing the methane to CO 2 and water reduces its global warming potential by 87 percent. A thermal

230

Honda Smart Home to Include Berkeley Lab Ventilation Controller  

NLE Websites -- All DOE Office Websites (Extended Search)

Honda Smart Home to Include Berkeley Lab Ventilation Controller Honda Smart Home to Include Berkeley Lab Ventilation Controller Honda smart home October 2013 October-November Special Focus: Energy Efficiency, Buildings, and the Electric Grid Honda Motor Company Inc is proceeding with plans to build a Smart Home in Davis, California, to demonstrate the latest in renewable energy technologies and energy efficiency. The home is expected to produce more energy than is consumed, demonstrating how the goal of "zero net energy" can be met in the near term future. A ventilation controller developed by researchers at Berkeley Lab's Environmental Energy Technologies Division (EETD) will be included in the smart home. EETD is currently working with the developers of the home control system to integrate its control algorithms.

231

Ventilation/Perfusion Mismatch Caused by Positive Pressure Ventilatory Support  

E-Print Network (OSTI)

In a patient with lobar atelectasis who was on positive pressure ventilatorysupport, ventilationand perfusion images showed absent ventilationand normal perfusion (reverse mismatch) in the region of the atelectasis and normal ventilation and decreased perfusion (true mismatch) not caused by pulmonaryembolism in another lung zone. We report this case to emphasize that the lung scan findingsin patients on positive pressure ventilatorySUppOrt be carefullyinterpreted for the diagnosis of pulmonaryemboli. J NuciMed30:1268—1270, 1989 ulmonary embolism (PE) is often difficult to diag nose because the symptoms and signs can be nonspe cific or subtle. Lung ventilation/perfusion (V/P) scm tigraphy is the principal noninvasive imaging modality for its diagnosis. We report a case demonstrating both classical V/P mismatch (false positive for PE in this case) and reverse V/P mismatch (absent ventilation and normal perfusion, therefore negative for PE) in a patient

Chun K. Kim; Sydney Heyman

1988-01-01T23:59:59.000Z

232

Air Distribution Effectiveness for Different MechanicalVentilation Systems  

SciTech Connect

The purpose of ventilation is to dilute indoor contaminants that an occupant is exposed to. In a multi-zone environment such as a house, there will be different dilution rates and different source strengths in every zone. Most US homes have central HVAC systems, which tend to mix conditions between zones. Different types of ventilation systems will provide different amounts of dilution depending on the effectiveness of their air distribution systems and the location of sources and occupants. This paper will report on work being done to both model the impact of different systems and measurements using a new multi-tracer measurement system that has the capacity to measure not only the flow of outdoor air to each zone, but zone-to-zone transport. The ultimate objective of this project is to determine the effectiveness of different systems so that appropriate adjustments can be made in residential ventilation standards such as ASHRAE Standard 62.2.

Sherman, Max H.; Walker, Iain S.

2007-08-01T23:59:59.000Z

233

The Oceans Memory of the Atmosphere: Residence-Time and Ventilation-Rate Distributions of Water Masses  

Science Conference Proceedings (OSTI)

A conceptually new approach to diagnosing tracer-independent ventilation rates is developed. Tracer Green functions are exploited to partition ventilation rates according to the ventilated fluids residence time in the ocean interior and ...

Franois W. Primeau; Mark Holzer

2006-07-01T23:59:59.000Z

234

Measurements of waste tank passive ventilation rates using tracer gases  

Science Conference Proceedings (OSTI)

This report presents the results of ventilation rate studies of eight passively ventilated high-level radioactive waste tanks using tracer gases. Head space ventilation rates were determined for Tanks A-101, AX-102, AX-103, BY-105, C-107, S-102, U-103, and U-105 using sulfur hexafluoride (SF{sub 6}) and/or helium (He) as tracer gases. Passive ventilation rates are needed for the resolution of several key safety issues. These safety issues are associated with the rates of flammable gas production and ventilation, the rates at which organic salt-nitrate salt mixtures dry out, and the estimation of organic solvent waste surface areas. This tracer gas study involves injecting a tracer gas into the tank headspace and measuring its concentration at different times to establish the rate at which the tracer is removed by ventilation. Tracer gas injection and sample collection were performed by SGN Eurisys Service Corporation and/or Lockheed Martin Hanford Corporation, Characterization Project Operations. Headspace samples were analyzed for He and SF{sub 6} by Pacific Northwest National Laboratory (PNNL). The tracer gas method was first demonstrated on Tank S-102. Tests were conducted on Tank S-102 to verify that the tracer gas was uniformly distributed throughout the tank headspace before baseline samples were collected, and that mixing was sufficiently vigorous to maintain an approximately uniform distribution of tracer gas in the headspace during the course of the study. Headspace samples, collected from a location about 4 in away from the injection point and 15, 30, and 60 minutes after the injection of He and SF{sub 6}, indicated that both tracer gases were rapidly mixed. The samples were found to have the same concentration of tracer gases after 1 hour as after 24 hours, suggesting that mixing of the tracer gas was essentially complete within 1 hour.

Huckaby, J.L.; Olsen, K.B.; Sklarew, D.S.; Evans, J.C.; Remund, K.M.

1997-09-01T23:59:59.000Z

235

Water spray ventilator system for continuous mining machines  

DOE Patents (OSTI)

The invention relates to a water spray ventilator system mounted on a continuous mining machine to streamline airflow and provide effective face ventilation of both respirable dust and methane in underground coal mines. This system has two side spray nozzles mounted one on each side of the mining machine and six spray nozzles disposed on a manifold mounted to the underside of the machine boom. The six spray nozzles are angularly and laterally oriented on the manifold so as to provide non-overlapping spray patterns along the length of the cutter drum.

Page, Steven J. (Pittsburgh, PA); Mal, Thomas (Pittsburgh, PA)

1995-01-01T23:59:59.000Z

236

Building America Top Innovations Hall of Fame Profile … Outside Air Ventilation Controller  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

partner Davis Energy partner Davis Energy Group worked with Monley Cronin Construction to build 100 energy-efficient homes in Woodland, CA, with night- cooling ventilation systems. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.3 Assured Health, Safety, and Durability Outside Air Ventilation Controller Building America researchers developed technologies to harness the natural day-night temperature swings in the U.S. Southwest to cut cooling energy peak demand with no compromise in comfort. Building America research has shown that, in dry climates, the use of ventilation cooling can significantly reduce, delay, or completely eliminate air conditioner operation resulting in both energy savings and reduction of peak demand

237

Experimental Evaluation of Ventilation Systems in a Single-Family Dwelling  

E-Print Network (OSTI)

The French regulation on residential building ventilation relies on an overall and continuous air renewal. The fresh air should enter the building through the "habitable rooms" while the polluted air is extracted in the service rooms. In this way, internal air is drained from the lowest polluted rooms to the highest polluted ones. However, internal pressure equilibrium and air movements in buildings result from the combined effects ventilation system and parameters such as wind, temperature difference or doors opening. This paper aims to analyse the influence of these parameters on pollutant transfer within buildings. In so doing, experiments are carried out using tracer gas release for representing pollution sources in an experimental house. Mechanical exhaust, balanced and natural ventilation systems are thus tested. Results show the followings: - For all cases, internal doors' opening causes the most important pollutant spread. - When doors are closed, the best performances are obtained with balanced venti...

Koffi, Juslin; Akoua, Jean-Jacques

2010-01-01T23:59:59.000Z

238

An Overview of Residential Ventilation Activities in the Building America Program (Phase I)  

DOE Green Energy (OSTI)

This report provides an overview of issues involved in residential ventilation; provides an overview of the various ventilation strategies being evaluated by the five teams, or consortia, currently involved in the Building America Program; and identifies unresolved technical issues.

Barley, D.

2001-05-21T23:59:59.000Z

239

Benefits and costs of increasing ventilation rates in U.S. offices  

NLE Websites -- All DOE Office Websites (Extended Search)

Benefits and costs of increasing ventilation rates in U.S. offices Title Benefits and costs of increasing ventilation rates in U.S. offices Publication Type Conference Paper Year...

240

Design and prototyping of a low-cost portable mechanical ventilator  

E-Print Network (OSTI)

This paper describes the design and prototyping of a low-cost portable mechanical ventilator for use in mass casualty cases and resource-poor environments. The ventilator delivers breaths by compressing a conventional ...

Powelson, Stephen K. (Stephen Kirby)

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation natural ventilation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Ventilation Industrielle de Bretagne VIB | Open Energy Information  

Open Energy Info (EERE)

Ventilation Industrielle de Bretagne VIB Ventilation Industrielle de Bretagne VIB Jump to: navigation, search Name Ventilation Industrielle de Bretagne (VIB) Place Ploudalmezeau, France Zip 29839 Sector Geothermal energy, Solar Product Ploudalmezeau-based company producing and marketing energy efficient and ventilation products including air source heat pumps, geothermal water source heat pumps, efficient air filtration systems and solar products. Coordinates 48.540325°, -4.657904° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.540325,"lon":-4.657904,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

242

Utilizing Passive Ventilation to Complement HVAC Systems in Enclosed Buildings  

E-Print Network (OSTI)

Utilizing Passive Ventilation to Complement HVAC Systems in Enclosed Buildings Tom Rogg REU Student to assist HVAC has the potential to significantly reduce life cycle cost and energy consumption and electrical system that will tie thermostats to controlled valves in the actual HVAC system. Based on results

Mountziaris, T. J.

243

Energy Impact of Residential Ventilation Norms in the United States  

E-Print Network (OSTI)

-264 ­ 1.278. American Council for an Energy Efficient Economy, Washington, DC. 14. Gusdorf, J., Swinton, MLBNL 62341 Energy Impact of Residential Ventilation Norms in the United States Max H. Sherman and Iain S. Walker Environmental Energy Technologies Division February 2007 This work was supported

244

Multifamily Individual Heating and Ventilation Systems, Lawrence, Massachusetts (Fact Sheet)  

SciTech Connect

The conversion of an older Massachusetts building into condominiums illustrates a safe, durable, and cost-effective solution for heating and ventilation systems that can potentially benefit millions of multifamily buildings. Merrimack Valley Habitat for Humanity (MVHfH) partnered with U.S. Department of Energy Building America team Building Science Corporation (BSC) to provide high performance affordable housing for 10 families in the retrofit of an existing mass masonry building (a former convent). The original ventilation design for the project was provided by a local engineer and consisted of a single large heat recovery ventilator (HRV) located in a mechanical room in the basement with a centralized duct system providing supply air to the main living space and exhausting stale air from the single bathroom in each apartment. This design was deemed to be far too costly to install and operate for several reasons: the large central HRV was oversized and the specified flows to each apartment were much higher than the ASHRAE 62.2 rate; an extensive system of ductwork, smoke and fire dampers, and duct chases were specified; ductwork required a significant area of dropped ceilings; and the system lacked individual ventilation control in the apartments

Metzger, C.; Ueno, K.; Kerrigan, P.; Wytrykowska, H.; Van Straaten, R.

2013-11-01T23:59:59.000Z

245

Operational test report integrated system test (ventilation upgrade)  

Science Conference Proceedings (OSTI)

Operational Final Test Report for Integrated Systems, Project W-030 (Phase 2 test, RECIRC and HIGH-HEAT Modes). Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks, including upgraded vapor space cooling and filtered venting of tanks AY101, Ay102, AZ101, AZ102.

HARTY, W.M.

1999-10-05T23:59:59.000Z

246

702AZ aging waste ventilation facility year 2000 test procedure  

SciTech Connect

This test procedure was developed to determine if the 702AZ Tank Ventilation Facility system is Year 2000 Compliant. The procedure provides detailed instructions for performing the operations necessary and documenting the results. This verification procedure will document that the 702AZ Facility Systems are year 2000 compliant and will correctly meet the criteria established in this procedure.

Winkelman, W.D.

1998-07-22T23:59:59.000Z

247

Improving Ventilation and Saving Energy: Laboratory Study in a Modular  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving Ventilation and Saving Energy: Laboratory Study in a Modular Improving Ventilation and Saving Energy: Laboratory Study in a Modular Classroom Test Bed Title Improving Ventilation and Saving Energy: Laboratory Study in a Modular Classroom Test Bed Publication Type Report Year of Publication 2005 Authors Apte, Michael G., Ian S. Buchanan, David Faulkner, William J. Fisk, Chi-Ming Lai, Michael Spears, and Douglas P. Sullivan Publisher Lawrence Berkeley National Laboratory Abstract The primary goals of this research effort were to develop, evaluate, and demonstrate a practical HVAC system for classrooms that consistently provides classrooms with the quantity of ventilation in current minimum standards, while saving energy, and reducing HVAC-related noise levels. This research was motivated by several factors, including the public benefits of energy efficiency, evidence that many classrooms are under-ventilated, and public concerns about indoor environmental quality in classrooms. This project involved the installation and verification of the performance of an Improved Heat Pump Air Conditioning (IHPAC) system, and its comparison, a standard HVAC system having an efficiency of 10 SEER. The project included the verification of the physical characteristics suitable for direct replacement of existing 10 SEER systems, quantitative demonstration of improved energy efficiency, reduced acoustic noise levels, quantitative demonstration of improved ventilation control, and verification that the system would meet temperature control demands necessary for the thermal comfort of the occupants. Results showed that the IHPAC met these goals. The IHPAC was found to be a direct bolt-on replacement for the 10 SEER system. Calculated energy efficiency improvements based on many days of classroom cooling or heating showed that the IHPAC system is about 44% more efficient during cooling and 38% more efficient during heating than the 10 SEER system. Noise reduction was dramatic, with measured A-weighed sound level for fan only operation conditions of 34.3 dB(A), a reduction of 19 dB(A) compared to the 10 SEER system. Similarly, the IHPAC stage-1 and stage-2 compressor plus fan sound levels were 40.8 dB(A) and 42.7 dB(A), reductions of 14 and 13 dB(A), respectively. Thus, the IHPAC is 20 to 35 times quieter than the 10 SEER systems depending upon the operation mode. The IHPAC system met the ventilation requirements and was able to provide consistent outside air supply throughout the study. Indoor CO2 levels with simulated occupancy were maintained below 1000 ppm. Finally temperature settings were met and controlled accurately. The goals of the laboratory testing phase were met and this system is ready for further study in a field test of occupied classrooms

248

Association of Classroom Ventilation with Reduced Illness Absence: A  

NLE Websites -- All DOE Office Websites (Extended Search)

Association of Classroom Ventilation with Reduced Illness Absence: A Association of Classroom Ventilation with Reduced Illness Absence: A Prospective Study in California Elementary Schools Title Association of Classroom Ventilation with Reduced Illness Absence: A Prospective Study in California Elementary Schools Publication Type Journal Article Refereed Designation Refereed LBNL Report Number LBNL-6259E Year of Publication 2013 Authors Mendell, Mark J., Ekaterina Eliseeva, Morris G. Davies, Michael Spears, Agnes B. Lobscheid, William J. Fisk, and Michael G. Apte Journal Indoor Air Keywords carbon dioxide, Illness absence, indoor environmental quality, schools, ventilation Abstract Limited evidence associates inadequate classroom ventilation rates (VRs) with increased illness absence (IA). We investigated relationships between VRs and IA in Californiaelementary schools over two school years in 162 3rd-5th grade classrooms in 28 schools in three school districts: South Coast (SC), Bay Area (BA), and Central Valley (CV). We estimated relationships between daily IA and VR (estimated from real-time carbon dioxide) in zero-inflated negative binomial models. We also compared IA benefits and energy costs of increased VRs. All school districts had median VRs below the 7.1 L/sec-person California standard. For each additional 1 L/sec-person of VR, IA was reduced significantly (p<0.05) in models for combined districts (-1.6%) and for SC (-1.2%), and non-significantly for districts providing less data: BA (-1.5%) and CV (-1.0%). Assuming associations were causal and generalizable, increasing classroom VRs from the California average (4 L/sec-person) to the State standard would decrease IA by 3.4%, increase attendance-linked funding to schools by $33 million annually, and increase costs only $4 million. Further increasing VRs would provide additional benefits. These findings, while requiring confirmation, suggest that increasing classroom VRs above the State

249

Modeling attic humidity as a function of weather, building construction, and ventilation rates  

Science Conference Proceedings (OSTI)

A dynamic model for predicting attic relative humidity (RH) and roof-sheathing moisture content (MC) was developed for microcomputer application. The model accepts standard hourly weather data and building-design parameters as input. Model predictions gave good agreement with measured data from a house located in Madison, Wisconsin. Solar radiation varies with roof orientation and plays an important role in determining moisture transfer to and from the roof sheathing. Opposing roof surfaces must be differentiated in attic humidity models to account for the effect of solar radiation. The model described in this paper is capable of such differentiation. Snow accumulation on a roof can significantly alter the temperature and moisture conditions in an attic, but further research is needed to understand the effect of a snow layer on attic temperatures. Various scenarios were simulated with this model to determine the effect of building practice and ventilation strategies on roof sheathing MC. Direct control of RH in the living space by ventilation is very effective in lowering attic moisture conditions. Where natural ventilation is not adequate, a timer-controlled attic fan shows great promise for ensuring efficient and economical attic ventilation.

Gorman, T.M.

1987-01-01T23:59:59.000Z

250

Ventilation Relevant Contaminants of Concern in Commercial Buildings Screening  

NLE Websites -- All DOE Office Websites (Extended Search)

Ventilation Relevant Contaminants of Ventilation Relevant Contaminants of Concern in Commercial Buildings Screening Process and Results Srinandini Parthasarathy, Thomas E. McKone, Michael G. Apte Environmental Energy Technologies Division Indoor Environment Department Lawrence Berkeley National Laboratory Berkeley, CA 94720 April 29, 2111 Prepared for the California Energy Commission, Public Interest Energy Research Program, Energy Related Environmental Research Program Legal Notice The Lawrence Berkeley National Laboratory is a national laboratory of the DOE managed by the University of California for the U.S. Department of Energy under Contract Number DE-AC02- 05CH11231. This report was prepared as an account of work sponsored by the Sponsor and pursuant to an M&O Contract with the United States Department of Energy (DOE). Neither the

251

Commissioning Residential Ventilation Systems: A Combined Assessment of  

NLE Websites -- All DOE Office Websites (Extended Search)

Commissioning Residential Ventilation Commissioning Residential Ventilation Systems: A Combined Assessment of Energy and Air Quality Potential Values William J.N. Turner, Jennifer M. Logue, Craig P. Wray Environmental Energy Technologies Division July 2012 LBNL-5969E Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein

252

CANCELLED: Mechanism of Human Responses to Ventilation Rates and Air  

NLE Websites -- All DOE Office Websites (Extended Search)

CANCELLED: Mechanism of Human Responses to Ventilation Rates and Air CANCELLED: Mechanism of Human Responses to Ventilation Rates and Air Temperature Speaker(s): Henry Willem Date: July 2, 2010 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Max Sherman (THIS SEMINAR TO BE RESCHEDULED.) Sustainability of the built-environment must be achieved in parallel with the sustenance of occupants' health and comfort. Actions to conserve energy and resources require much forethought and careful consideration due to possible consequences on the human aspects. Thus, many extensive works in the recent decades have focused on identifying the associations between indoor environment and human responses. Results have shown moderate to strong implications of thermal and indoor air quality factors on the prevalence and intensity of sick

253

Dry Transfer Facility #1 - Ventilation Confinement Zoning Analysis  

Science Conference Proceedings (OSTI)

The purpose of this analysis is to establish the preliminary Ventilation Confinement Zone (VCZ) for the Dry Transfer Facility (DTF). The results of this document is used to determine the air quantities for each VCZ that will eventually be reflected in the development of the Ventilation Flow Diagrams. The calculations contained in this document were developed by D and E/Mechanical-HVAC and are intended solely for the use of the D and E/Mechanical-HVAC department in its work regarding the HVAC system for the Dry Transfer Facility. Yucca Mountain Project personnel from the D and E/Mechanical-HVAC department should be consulted before use of the calculation for purposes other than those stated herein or used by individuals other than authorized personnel in D and E/Mechanical-HVAC department.

K.D. Draper

2005-03-23T23:59:59.000Z

254

Mobile zone, spray booth ventilation system. Final report  

SciTech Connect

This concept endeavors to reduce the volume of air (to be treated) from spray paint booths, thereby increasing efficiency and improving air pollution abatement (VOC emissions especially). Most of the ventilation air is recycled through the booth to maintain laminar flow; the machinery is located on the supply side of the booth rather than on the exhaust side. 60 to 95% reduction in spray booth exhaust rate should result. Although engineering and production prototypes have been made, demand is low.

1994-04-26T23:59:59.000Z

255

Classroom HVAC: Improving ventilation and saving energy -- field study plan  

SciTech Connect

The primary goals of this research effort are to develop, evaluate, and demonstrate a very practical HVAC system for classrooms that consistently provides classrooms (CRs) with the quantity of ventilation in current minimum standards, while saving energy, and reducing HVAC-related noise levels. This research is motivated by the public benefits of energy efficiency, evidence that many CRs are under-ventilated, and public concerns about indoor environmental quality in CRs. This document provides a summary of the detailed plans developed for the field study that will take place in 2005 to evaluate the energy and IAQ performance of a new classroom HVAC technology. The field study will include measurements of HVAC energy use, ventilation rates, and IEQ conditions in 10 classrooms with the new HVAC technology and in six control classrooms with a standard HVAC system. Energy use and many IEQ parameters will be monitored continuously, while other IEQ measurements will be will be performed seasonally. Continuously monitored data will be remotely accessed via a LonWorks network. Instrument calibration plans that vary with the type of instrumentation used are established. Statistical tests will be employed to compare energy use and IEQ conditions with the new and standard HVAC systems. Strengths of this study plan include the collection of real time data for a full school year, the use of high quality instrumentation, the incorporation of many quality control measures, and the extensive collaborations with industry that limit costs to the sponsors.

Apte, Michael G.; Faulkner, David; Hodgson, Alfred T.; Sullivan, Douglas P.

2004-10-14T23:59:59.000Z

256

Effect of attic ventilation on the performance of radiant barriers  

Science Conference Proceedings (OSTI)

The objective of the experiments was to quantify how attic ventilation would affect the performance of a radiant barrier. Ceiling heat flux and space cooling load were both measured. Results of side-by-side radiant barrier experiments using two identical 13.38 m[sup 2] (nominal) test houses are presented in this paper. The test houses responded similarly to weather variations. Indoor temperatures of the test houses were controlled to within 0.2 [degrees] C. Ceiling heat fluxes and space cooling load were within a 2.5 percent difference between both test houses. The results showed that a critical attic ventilation flow rate of 1.3 (1/sec)/m[sup 2] of the attic floor existed after which the percentage reduction in ceiling heat fluxes produced by the radiant barriers did not change with increasing attic airflow rates. The ceiling heat flux reductions produced by the radiant barriers were between 25 and 35 percent, with 28 percent being the percent reduction observed most often in the presence of attic ventilation. The space-cooling load reductions observed were between two to four percent. All results compiled in this paper were for attics with unfaced fiberglass insulation with a resistance level of 3.35 m[sup 2]K/W (nominal) and for a perforated radiant barrier with low emissivities (less than 0.05) on both sides.

Medina, M.A.; O'Neal, D.L. (Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering); Turner, W.D. (Texas A and M Univ., College Station, TX (United States). Coll. of Engineering)

1992-11-01T23:59:59.000Z

257

Ventilation for an enclosure of a gas turbine and related method  

SciTech Connect

A ventilation scheme for a rotary machine supported on pedestals within an enclosure having a roof, end walls and side walls with the machine arranged parallel to the side walls, includes ventilation air inlets located in a first end wall of the enclosure; a barrier wall located within the enclosure, proximate the first end wall to thereby create a plenum chamber. The barrier wall is constructed to provide a substantially annular gap between the barrier wall and a casing of the turbine to thereby direct ventilation air axially along the turbine; one or more ventilation air outlets located proximate a second, opposite end wall on the roof of the enclosure. In addition, one or more fans are provided for pulling ventilating air into said plenum chamber via the ventilation air inlets.

Schroeder, Troy Joseph (Mauldin, SC); Leach, David (Simpsonville, SC); O' Toole, Michael Anthony (Greenfield Center, NY)

2002-01-01T23:59:59.000Z

258

Dust and Ventilation Effects on Radiant Barriers: Cooling Season Energy Measurements  

Science Conference Proceedings (OSTI)

This study on the effects of attic ventilation area and type and dust buildup on horizontal and truss radiant barriers in insulated homes can help utilities reduce cooling season electric energy requirements. Increasing the ventilation area ratio and changing ventilation types had little effect on radiant barrier performance. Dust did degrade performance, but insulated homes with radiant barriers still had lower energy requirements than those without radiant barriers.

1990-05-15T23:59:59.000Z

259

Design of a ventilation system for carbon dioxide reduction in two gym rooms.  

E-Print Network (OSTI)

?? This project is mainly focused on the improving and design of the ventilation system of two rooms at different levels of a gym (Friskis (more)

Barroeta, Ander

2013-01-01T23:59:59.000Z

260

Internal combuston engine having separated cylinder head oil drains and crankcase ventilation passages  

DOE Patents (OSTI)

An internal combustion engine includes separated oil drain-back and crankcase ventilation passages. The oil drain-back passages extend from the cylinder head to a position below the top level of oil in the engine's crankcase. The crankcase ventilation passages extend from passages formed in the main bearing bulkheads from positions above the oil level in the crankcase and ultimately through the cylinder head. Oil dams surrounding the uppermost portions of the crankcase ventilation passages prevent oil from running downwardly through the crankcase ventilation passages.

Boggs, David Lee (Bloomfield Hills, MI); Baraszu, Daniel James (Plymouth, MI); Foulkes, David Mark (Erfstadt, DE); Gomes, Enio Goyannes (Ann Arbor, MI)

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation natural ventilation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Infiltration Effects on Residential Pollutant Concentrations for Continuous and Intermittent Mechanical Ventilation Approaches  

E-Print Network (OSTI)

Analyzing a database of residential air leakage in theTechnical Note AIVC 57: Residential Ventilation. Brussels,in personal samples and residential indoor, outdoor and

Sherman, Max

2010-01-01T23:59:59.000Z

262

Improving Ventilation and Saving Energy: Relocatable Classroom Field Study Interim Report  

E-Print Network (OSTI)

potentially enhancing the energy savings beyond the break-order to maximize the energy savings potential of the IHPACImproving Ventilation and Saving Energy Field Study Plan,

2005-01-01T23:59:59.000Z

263

Preconditioning Outside Air: Cooling Loads from Building Ventilation  

E-Print Network (OSTI)

HVAC equipment manufacturers, specifiers and end users interacting in the marketplace today are only beginning to address the series of issues promulgated by the increased outside air requirements in ASHRAE Standard 62- 1989, "Ventilation for Acceptable Indoor Air Quality", that has cascaded into building codes over the early to mid 1990's. There has been a twofold to fourfold increase in outside air requirements for many commercial building applications, compared to the 1981 version of the standard. To mitigate or nullify these additional weather loads, outdoor air preconditioning technologies are being promoted in combination with conventional HVAC operations downstream as a means to deliver the required fresh air and control humidity indoors. Preconditioning is the term applied for taking outside air to the indoor air setpoint (dry bulb temperature and relative humidity). The large humidity loads from outside air can now be readily recognized and quantified at cooling design point conditions using the extreme humidity ratios/dew points presented in the ASHRAE Handbook of Fundamentals Chapter 26 "Climatic Design Information". This paper presents an annual index called the Ventilation Load Index (VLI), recently developed by the Gas Research Institute (GRI) that measures the magnitude of latent (and sensible) loads for preconditioning outside air to indoor space conditions over the come of an entire year. The VLI has units of ton-hrs/scfm of outside air. The loads are generated using new weather data binning software called ~BinMaker, also from GRI, that organizes the 239 city, 8760 hour by hour, TMY2 weather data into user selected bidtables. The VLI provides a simple methodology for accessing the cooling load impact of increased ventilation air volumes and a potential basis for defining a "humid" climate location.

Kosar, D.

1998-01-01T23:59:59.000Z

264

Confinement Ventilation and Process Gas Treatment Functional Area Qualification Standard  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

. . NOT MEASUREMENT SENSITIVE DOE-STD-1168-2013 October 2013 DOE STANDARD CONFINEMENT VENTILATION AND PROCESS GAS TREATMENT FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1168-2013 This document is available on the Department of Energy Technical Standards Program Website at http://energy.gov/hss/information-center/department-energy-technical-standards-program ii DOE-STD-1168-2013 INTENTIONALLY BLANK iv DOE-STD-1168-2013 TABLE OF CONTENTS ACKNOWLEDGMENT...................................................................................................................vii

265

Operating experience review - Ventilation systems at Department of Energy Facilities  

Science Conference Proceedings (OSTI)

The Office of Special Projects (DP-35), formerly Office of Self-Assessment (DP-9), analyzed occurrences caused by problems with equipment and material and recommended the following systems for an in-depth study: (1) Selective Alpha Air Monitor (SAAM), (2) Emergency Diesel Generator, (3) Ventilation System, (4) Fire Alarm System. Further, DP-35 conducted an in-depth review of the problems associated with SAAM and with diesel generators, and made several recommendations. This study focusses on ventilation system. The intent was to determine the causes for the events related to these system that were reported in the Occurrence Reporting and Processing System (ORPS), to identify components that failed, and to provide technical information from the commercial and nuclear industries on the design, operation, maintenance, and surveillance related to the system and its components. From these data, sites can develop a comprehensive program of maintenance management, including surveillance, to avoid similar occurrences, and to be in compliance with the following DOE orders.

Not Available

1994-05-01T23:59:59.000Z

266

Lower-Temperature Subsurface Layout and Ventilation Concepts  

Science Conference Proceedings (OSTI)

This analysis combines work scope identified as subsurface facility (SSF) low temperature (LT) Facilities System and SSF LT Ventilation System in the Technical Work Plan for Subsurface Design Section FY 01 Work Activities (CRWMS M&O 2001b, pp. 6 and 7, and pp. 13 and 14). In accordance with this technical work plan (TWP), this analysis is performed using AP-3.10Q, Analyses and Models. It also incorporates the procedure AP-SI.1Q, Software Management. The purpose of this analysis is to develop an overall subsurface layout system and the overall ventilation system concepts that address a lower-temperature operating mode for the Monitored Geologic Repository (MGR). The objective of this analysis is to provide a technical design product that supports the lower-temperature operating mode concept for the revision of the system description documents and to provide a basis for the system description document design descriptions. The overall subsurface layout analysis develops and describes the overall subsurface layout, including performance confirmation facilities (also referred to as Test and Evaluation Facilities) for the Site Recommendation design. This analysis also incorporates current program directives for thermal management.

Christine L. Linden; Edward G. Thomas

2001-06-20T23:59:59.000Z

267

Modeling Coupled Evaporation and Seepage in Ventilated Cavities  

SciTech Connect

Cavities excavated in unsaturated geological formations are important to activities such as nuclear waste disposal and mining. Such cavities provide a unique setting for simultaneous occurrence of seepage and evaporation. Previously, inverse numerical modeling of field liquid-release tests and associated seepage into cavities were used to provide seepage-related large-scale formation properties by ignoring the impact of evaporation. The applicability of such models was limited to the narrow range of ventilation conditions under which the models were calibrated. The objective of this study was to alleviate this limitation by incorporating evaporation into the seepage models. We modeled evaporation as an isothermal vapor diffusion process. The semi-physical model accounts for the relative humidity, temperature, and ventilation conditions of the cavities. The evaporation boundary layer thickness (BLT) over which diffusion occurs was estimated by calibration against free-water evaporation data collected inside the experimental cavities. The estimated values of BLT were 5 to 7 mm for the open underground drifts and 20 mm for niches closed off by bulkheads. Compared to previous models that neglected the effect of evaporation, this new approach showed significant improvement in capturing seepage fluctuations into open cavities of low relative humidity. At high relative-humidity values (greater than 85%), the effect of evaporation on seepage was very small.

T. Ghezzehei; R. Trautz; S. Finsterle; P. Cook; C. Ahlers

2004-07-01T23:59:59.000Z

268

Transpired Solar Collector at NREL's Waste Handling Facility Uses Solar Energy to Heat Ventilation Air  

Energy.gov (U.S. Department of Energy (DOE))

Revised fact sheet describes the transpired solar collector that was installed on NREL's Waste handling Facility (WHF) in 1990 to preheat ventilation air. The electrically heated WHF was an ideal candidate for this technology - requiring a ventilation rate of 3,000 cubic feet per meter to maintain safe indoor conditions.

269

Infiltration Effects on Residential Pollutant Concentrations for Continuous and Intermittent Mechanical Ventilation Approaches  

SciTech Connect

The prevailing residential ventilation standard in North America, American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Standard 62.2, specifies volumetric airflow requirements as a function of the overall size of the home and the number of bedrooms, assumes a fixed, minimal amount of infiltration, and requires mechanical ventilation to achieve the remainder. The standard allows for infiltration credits and intermittent ventilation patterns that can be shown to provide comparable performance. Whole-house ventilation methods have a substantial effect on time-varying indoor pollutant concentrations. If alternatives specified by Standard 62.2, such as intermittent ventilation, are used, short-term pollutant concentrations could exceed acute health standards even if chronic health standards are met.The authors present a methodology for comparing ASHRAE- and non-ASHRAE-specified ventilation scenarios on relative indoor pollutant concentrations. We use numerical modeling to compare the maximum time-averaged concentrations for acute exposure relevant (1-hour, 8-hour, 24-hour ) and chronic exposure relevant (1-year) time periods for four different ventilation scenarios in six climates with a range of normalized leakage values. The results suggest that long-term concentrations are the most important metric for assessing the effectiveness of whole-house ventilation systems in meeting exposure standards and that, if chronic health exposure standards are met, acute standards will also be met.

Sherman, Max; Logue, Jennifer; Singer, Brett

2010-06-01T23:59:59.000Z

270

Commercial Kitchen Ventilation Performance Report: Gas Underfired Broiler Under Wall-Mounted Canopy Hood  

Science Conference Proceedings (OSTI)

This report documents testing of ventilation requirements for a gas underfired broiler under a wall-mounted canopy hood. This appliance and hood combination is one of a series undertaken to provide electric utilities and the foodservice industry with data to optimize the design of commercial kitchen ventilation systems and integrate exhaust requirements with space conditioning design.

1997-11-14T23:59:59.000Z

271

Commercial Kitchen Ventilation Performance Report: Two Gas Pressure Fryers Under Wall-Mounted Canopy Hood  

Science Conference Proceedings (OSTI)

This report documents testing of ventilation requirements two gas pressure fryers under a wall-mounted canopy hood. This appliance and hood combination is one of a series undertaken to provide electric utilities and the foodservice industry with data to optimize the design of commercial kitchen ventilation systems and integrate exhaust requirements with space conditioning design.

1997-10-31T23:59:59.000Z

272

Commercial Kitchen Ventilation Performance Report: Electric Combination Oven Under Wall-Mounted Canopy Hood  

Science Conference Proceedings (OSTI)

This report documents testing of ventilation requirements for an electric combination oven under an exhaust-only canopy hood. This appliance and hood combination is one of a series undertaken to provide electric utilities and the foodservice industry with data to optimize the design of commercial kitchen ventilation systems and integrate exhaust requirements with space conditioning design.

1997-11-14T23:59:59.000Z

273

Commercial Kitchen Ventilation Performance Report: Electric Underfired Broiler Under Wall-Mounted Canopy Hood  

Science Conference Proceedings (OSTI)

This report documents testing of ventilation requirements for a three-foot electric underfired broiler positioned under an exhaust-only canopy hood. This appliance and hood combination is one of a series undertaken to provide electric utilities and the foodservice industry with data to optimize the design of commercial kitchen ventilation systems and integrate exhaust requirements with space conditioning design.

1997-05-13T23:59:59.000Z

274

Commercial Kitchen Ventilation Performance Report: Two Electric Pressure Fryers Under Wall-Mounted Canopy Hood  

Science Conference Proceedings (OSTI)

This report documents testing of ventilation requirements for two electric pressure fryers under a wall-mounted canopy hood. This appliance and hood combination is one of a series undertaken to provide electric utilities and the foodservice industry with data to optimize the design of commercial kitchen ventilation systems and integrate exhaust requirements with space conditioning design.

1997-09-17T23:59:59.000Z

275

Commercial Kitchen Ventilation Performance Report: Gas Combination Oven Under Wall-Mounted Canopy Hood  

Science Conference Proceedings (OSTI)

This report documents testing of ventilation requirements for a gas combination oven under an exhaust-only canopy hood. This appliance and hood combination is one of a series undertaken to provide electric utilities and the foodservice industry with data to optimize the design of commercial kitchen ventilation systems and integrate exhaust requirements with space conditioning design.

1997-11-14T23:59:59.000Z

276

An overview of the TA-55, Building PF-4 ventilation system  

Science Conference Proceedings (OSTI)

An overview of the TA-55, Building PF-4 ventilation system is provided in the following sections. Included are descriptions of the zone configurations, equipment-performance criteria, ventilation support systems, and the ventilation-system evaluation criteria. Section 4.2.1.1 provides a brief discussion of the ventilation system function. Section 4.2.1.2 provides details on the overall system configuration. Details of system interfaces and support systems are provided in Section 4.2.1.3. Section 4.2.1.4 describes instrumentation and control needed to operate the ventilation system. Finally, Sections 4.2.1.5 and 4.2.1.6 describe system surveillance/maintenance and Technical Safety Requirements (TSR) Limitations, respectively. Note that the numerical parameters included in this description are considered nominal; set points and other specifications actually fall within operational bands.

NONE

1994-02-22T23:59:59.000Z

277

Assessment of Energy Savings Potential from the Use of Demand Control Ventilation Systems in General Office Spaces in California  

E-Print Network (OSTI)

Nonresidential ACM Manual 2.0.3OutdoorAirVentilationACM Manual 3 Table 4 Minimum Outdoor Air

Hong, Tianzhen

2010-01-01T23:59:59.000Z

278

Effect of building airtightness and fan size on the performance of mechanical ventilation systems in new U.S. houses: a critique of ASHRAE standard 62.2-2003  

E-Print Network (OSTI)

and Infiltration. Handbook: Fundamentals. American Societyand Ventilation. Handbook: Fundamentals. American Society ofand Ventilation. Handbook: Fundamentals. American Society of

Roberson, J.

2004-01-01T23:59:59.000Z

279

Formadehyde in New Homes: Ventilation vs. Source Control  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

at at Building America Residential Energy Efficiency Stakeholder Meeting March 1, 2012 Austin, Texas Formaldehyde in New Homes --- Ventilation vs. Source Control Brett C. Singer and Henry Willem Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Acknowledgments * Funding - U.S. Department of Energy - Building America Program - U.S. EPA - Indoor Environments Division - U.S. HUD - Office of Healthy Homes and Lead Hazard Control - Cal. Energy Commission Public Interest Environmental Research * Technical Contributions - Fraunhofer - Ibacos - IEE-SF * LBNL Team - Sherman, Hotchi, Russell, Stratton, and Others Background 1  Formaldehyde is an irritant and a carcinogen  Odor threshold: about 800 ppb  Widely varying health standards  US HUD (8-h): 400 ppb

280

Ventilation and air-conditioning concept for CNGS underground areas  

E-Print Network (OSTI)

The aim of the CNGS project is to prove the existence of neutrino oscillation by generating an intense neutrino beam from CERN in the direction of the Gran Sasso laboratory in Italy, where two large neutrino detectors are built to detect the neutrinos. All the components for producing the neutrino beam will be situated in the underground tunnels, service galleries and chambers. The ventilation and air-conditioning systems installed in these underground areas have multiple tasks. Depending on the operating mode and structure to be air-conditioned, the systems are required to provide fresh air, cool the machine, dehumidify areas housing sensible equipment or assure the smoke removal in a case of a fire. This paper presents the technical solutions foreseen to meet these requirements.

Lindroos, J

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation natural ventilation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Energy Impact of Residential Ventilation Norms in the UnitedStates  

SciTech Connect

The first and only national norm for residential ventilation in the United States is Standard 62.2-2004 published by the American Society of Heating, Refrigerating and Air-conditioning Engineers (ASHRAE). This standard does not by itself have the force of regulation, but is being considered for adoption by various jurisdictions within the U.S. as well as by various voluntary programs. The adoption of 62.2 would require mechanical ventilation systems to be installed in virtually all new homes, but allows for a wide variety of design solutions. These solutions, however, may have a different energy costs and non-energy benefits. This report uses a detailed simulation model to evaluate the energy impacts of currently popular and proposed mechanical ventilation approaches that are 62.2 compliant for a variety of climates. These results separate the energy needed to ventilate from the energy needed to condition the ventilation air, from the energy needed to distribute and/or temper the ventilation air. The results show that exhaust systems are generally the most energy efficient method of meeting the proposed requirements. Balanced and supply systems have more ventilation resulting in greater energy and their associated distribution energy use can be significant.

Sherman, Max H.; Walker, Iain S.

2007-02-01T23:59:59.000Z

282

Are We Ready to Propose Guidelines for Health-Based Ventilation?  

NLE Websites -- All DOE Office Websites (Extended Search)

Are We Ready to Propose Guidelines for Health-Based Ventilation? Are We Ready to Propose Guidelines for Health-Based Ventilation? Speaker(s): Pawel Wargocki Date: October 14, 2013 - 12:00pm - 1:00pm Location: 90-3122 Seminar Host/Point of Contact: Mark Mendell Guidelines for health-based ventilation in Europe are proposed. They follow the premise of controlling exposures to indoor air pollutants of both indoor and outdoor origin. Exposures are controlled through a two-step sequential approach, in which source control is the primary strategy, while ventilation is the secondary strategy once all options for source control have been fully implemented. World Health Organization (WHO) air quality (AQ) guidelines are used to set the exposure limits. A decision diagram is created for guidance through the process of source control and to aid in

283

Building America Top Innovations Hall of Fame Profile … Low-Cost Ventilation in Production Housing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

simple, cost-effective techniques for providing fresh air throughout the home, including exhaust-only and central fan-integrated supply ventilation. Building America has refined simple whole-house ventilation systems that cost less than $350 to install. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.3 Assured Health, Safety, and Durability Low-Cost Ventilation in Production Housing As high-performance homes get more air-tight and better insulated, attention to good indoor air quality becomes essential. Building America has effectively guided the nation's home builders to embrace whole-house ventilation by developing low-cost options that adapt well to their production processes. When the U.S. Department of Energy's Building America research teams began

284

Analysis of Buoyancy-Driven Ventilation of Hydrogen from Buildings (Presentation)  

DOE Green Energy (OSTI)

The scope of work for this project includes safe building design, vehicle leak in residential garage, continual slow leak, passive, buoyancy-driven ventilation (versus mechanical), and steady-state concentration of hydrogen versus vent size.

Barley, C. D.; Gawlik, K.; Ohi, J.; Hewett, R.

2007-09-11T23:59:59.000Z

285

Internal Microclimate Resulting From Ventilated Attics in Hot and Humid Regions  

E-Print Network (OSTI)

Ventilated spaces in the built environment create unique and beneficial microclimates. While the current trends in building physics suggest sealing attics and crawlspaces, comprehensive research still supports the benefits of the ventilated microclimate. Data collected at the University of Florida Energy Park show the attic environment of asphalt shingled roofs to be typically hotter than the outdoor conditions, but when properly ventilated sustains a much lower relative humidity. The hot, humid regions of the United States can utilize this internally convective, exchanging air mass to provide stable moisture levels within attic spaces. Positioning the buildings primary boundary at the ceiling deck allows for utilization of this buffer climate to minimize moisture trapping in insulation and maximize the insulations thermal benefits. This investigation concludes the conditions in a ventilated attic are stable through seasonal changes and promotes cost effective, energy efficient climate control of unconditioned spaces in hot, humid regions.

Mooney, B. L.; Porter, W. A.

2010-08-01T23:59:59.000Z

286

Early Morning Ventilation of a Gaseous Tracer from a Mountain Valley  

Science Conference Proceedings (OSTI)

An important component of a joint Environmental Protection AgencyDepartment of Energy field experiment in Brush Creek Valley, Colorado in JulyAugust 1982, was an aircraft sampling task to help verify the early morning ventilation of a gaseous ...

Montie M. Orgill

1989-07-01T23:59:59.000Z

287

Ventilation and Transformation of Labrador Sea Water and Its Rapid Export in the Deep Labrador Current  

Science Conference Proceedings (OSTI)

A model of the subpolar North Atlantic Ocean is used to study different aspects of ventilation and water mass transformation during a year with moderate convection intensity in the Labrador Sea. The model realistically describes the salient ...

Peter Brandt; Andreas Funk; Lars Czeschel; Carsten Eden; Claus W. Bning

2007-04-01T23:59:59.000Z

288

Sensitivity of the Ventilation Process in the North Pacific to Eddy-Induced Tracer Transport  

Science Conference Proceedings (OSTI)

A coarse-resolution isopycnal model coupled with a bulk mixed layer model is used to examine the effect of isopycnal thickness diffusion, which parameterizes the subgrid-scale eddy-induced tracer transport, on ventilation of the North Pacific ...

Takahiro Endoh; Yanli Jia; Kelvin J. Richards

2006-10-01T23:59:59.000Z

289

The Role of Finite Mixed-Layer Thickness in the Structure of the Ventilated Thermocline  

Science Conference Proceedings (OSTI)

A model of the ventilated thermocline consisting of three adiabatic layers surmounted by a mixed layer of finite thickness is presented. The mixed-layer depth density increase continuously northward, and these attributes of the mixed layer are ...

Joseph Pedlosky; Paul Robbins

1991-07-01T23:59:59.000Z

290

ASHRAE's Residential Ventilation Standard: Exegesis of Proposed Standard 62.2  

E-Print Network (OSTI)

In February 2000, ASHRAE's Standard Project Committee on "Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings", SPC 62.2P7 recommended ASHRAE's first complete standard on residential ventilation for public review. The standard is an attempt by the Society to address concerns over indoor air quality in dwellings and to set minimum standards that would allow for energy efficiency measures to be evaluated. The standard has requirements for whole-house ventilation, local exhaust ventilation, and source control. In addition to code-intended requirements, the standard also contains guidance information for the designer and/or user of the standard. This report summarizes the draft standard and attempts to address questions and concerns that those potentially affected by the standard might have. This report may also be of use to those considering public review comments on the draft standard.

Sherman, M.

2000-01-01T23:59:59.000Z

291

Sensitivity of Ventilation Rates and Radiocarbon Uptake to Subgrid-Scale Mixing in Ocean Models  

Science Conference Proceedings (OSTI)

The sensitivity of ventilation timescales and radiocarbon (14C) uptake to subgrid-scale mixing parameterization is studied in a global ocean model. Seven experiments are examined that are identical in every manner except their representation of ...

Matthew H. England; Stefan Rahmstorf

1999-11-01T23:59:59.000Z

292

Energy and air quality implications of passive stack ventilation in residential buildings  

E-Print Network (OSTI)

scaling the passive stack diameter with house size (floora single-story house ventilated by a passive stack with andTable 1: Passive stack diameters scaling with house size

Mortensen, Dorthe Kragsig

2011-01-01T23:59:59.000Z

293

HVAC Technology Report: A Review of Heating, Ventilation and Air Conditioning Technology and Markets  

Science Conference Proceedings (OSTI)

For many of us, roughly 95 percent of our time is spent indoors. To enable humans to spend this much time inside, mechanical equipment is necessary to provide space conditioning to control the temperature (heating and cooling), ventilation, humidity, and indoor air quality. This report introduces the heating, ventilation, and air-conditioning (HVAC) industry to EPRI member utility employees. The document describes the most common technologies and applications and provides an overview of industry statisti...

2000-12-14T23:59:59.000Z

294

Analysis of Energy Recovery Ventilator Savings for Texas Buildings  

E-Print Network (OSTI)

This analysis was conducted to identify the energy cost savings from retrofitting Texas buildings with air-to-air ERV (Energy Recovery Ventilator) systems. This analysis applied ERV and psychrometric equations in a bin-type procedure to determine the energy and costs required to condition outside air to return-air conditions. This analysis does not consider interactions with the air-handling system; therefore the effects of economizers, reheat schemes, variable flow rates and other adaptive components were not considered. This analysis demonstrates that ERV cost-effectiveness is largely dependent upon the building location in Texas (i.e., climate conditions) and outside air fraction: For a typical laboratory building that requires 100% outside air, an ERV could save roughly $1.00 to $1.50 per cubic foot per minute (CFM) of outside air during a one year period. For a typical office building that only requires 10% outside air, an ERV could save up to $1.00 per CFM of outside air over the period of one year.

Christman, K. D.; Haberl, J. S.; Claridge, D. E.

2009-11-01T23:59:59.000Z

295

Ventilating system for reprocessing of nuclear fuel rods  

Science Conference Proceedings (OSTI)

In a nuclear facility such as a reprocessing plant for nuclear fuel rods, the central air cleaner discharging ventilating gas to the atmosphere must meet preselected standards not only as to the momentary concentration of radioactive components, but also as to total quantity per year. In order to comply more satisfactorily with such standards, reprocessing steps are conducted by remote control in a plurality of separate compartments. The air flow for each compartment is regulated so that the air inventory for each compartment has a slow turnover rate of more than a day but less than a year, which slow rate is conveniently designated as quasihermetic sealing. The air inventory in each such compartment is recirculated through a specialized processing unit adapted to cool and/or filter and/or otherwise process the gas. Stale air is withdrawn from such recirculating inventory and fresh air is injected (eg., By the less than perfect sealing of a compartment) into such recirculating inventory so that the air turnover rate is more than a day but less than a year. The amount of air directed through the manifold and duct system from the reprocessing units to the central air cleaner is less than in reprocessing plants of conventional design.

Szulinski, M.J.

1981-07-07T23:59:59.000Z

296

Effect of outside air ventilation rate on VOC concentrations and emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Effect of outside air ventilation rate on VOC concentrations and emissions Effect of outside air ventilation rate on VOC concentrations and emissions in a call center Title Effect of outside air ventilation rate on VOC concentrations and emissions in a call center Publication Type Conference Proceedings Year of Publication 2002 Authors Hodgson, Alfred T., David Faulkner, Douglas P. Sullivan, Dennis L. DiBartolomeo, Marion L. Russell, and William J. Fisk Conference Name Proceedings of the Indoor Air 2002 Conference, Monterey, CA Volume 2 Pagination 168-173 Publisher Indoor Air 2002, Santa Cruz, CA Abstract A study of the relationship between outside air ventilation rate and concentrations of VOCs generated indoors was conducted in a call center. Ventilation rates were manipulated in the building's four air handling units (AHUs). Concentrations of VOCs in the AHU returns were measured on 7 days during a 13- week period. Indoor minus outdoor concentrations and emission factors were calculated. The emission factor data was subjected to principal component analysis to identify groups of co-varying compounds based on source type. One vector represented emissions of solvents from cleaning products. Another vector identified occupant sources. Direct relationships between ventilation rate and concentrations were not observed for most of the abundant VOCs. This result emphasizes the importance of source control measures for limiting VOC concentrations in buildings

297

Energy Efficient Ventilation for Maintaining Indoor Air Quality in Large Buildings  

E-Print Network (OSTI)

this paper was presented at the 3rd International Conference on Cold Climate Heating, Ventilating and Air-conditioning, Sapporo, Japan, November 2000 C. Y. Shaw Rsum Institute for Research in Construction, National Research Council Canada Achieving good indoor air quality in large residential and commercial buildings continues to be a top priority for owners, designers, building managers and occupants alike. Large buildings present a greater challenge in this regard than do smaller buildings and houses. The challenge is greater today because there are many new materials, furnishings, products and processes used in these buildings that are potential sources of air contaminants. There are three strategies for achieving acceptable indoor air quality: ventilation (dilution), source control and air cleaning/filtration. Of the three, the most frequently used strategy, and in most cases the only one available to building operators, is ventilation. Ventilation is the process of supplying outdoor air to an enclosed space and removing stale air from this space. It can control the indoor air quality by both diluting the indoor air with less contaminated outdoor air and removing the indoor contaminants with the exhaust air. Ventilation costs money because the outdoor air needs to be heated in winter and cooled in summer. To conserve energy, care must be taken to maximize the efficiency of the ventilation system. In this regard, a number of factors come into play

C. Y. Shaw; C. Y. Shaw Rsum

2000-01-01T23:59:59.000Z

298

Numerical Analysis of the Channel Wheel Fresh Air Ventilator Under Frosting Conditions  

E-Print Network (OSTI)

As new equipment, the channel wheel fresh air ventilator has become increasingly popular in recent years. However, when such equipment is operated under low ambient temperature in the freezing area in winter, the formation of frost on the outdoor waste air surface becomes problematic, leading to the degradation of the channel wheel fresh air ventilator's performance or even the shutdown of equipment. Therefore, it is necessary to have a detailed investigation on the operational characteristics of the channel wheel fresh air ventilator under frosting in order to guide its application. This paper first reports on the development of a detailed model for the channel wheel heat exchanger, which is the core part of the channel wheel fresh air ventilator under frosting conditions. The model developed, first seen in open literature, consists of a frosting sub-model and a channel wheel heat exchanger sub-model. This is followed by reporting an evaluation of the operational characteristics of a frosted channel wheel heat exchanger under different ambient conditions using the model developed. These include frost formation on the surface of the channel wheel heat exchanger, and impacts on the operational performance of the channel wheel fresh air ventilator. Furthermore, the interval of defrosting is obtained, which provides the basis for the adoption of effective defrosting measures, and thus increasing the channel wheel fresh air ventilator's energy efficiency and operating reliability.

Gao, B.; Dong, Z.; Cheng, Z.; Luo, E.

2006-01-01T23:59:59.000Z

299

Air Distribution Effectiveness for Residential Mechanical Ventilation: Simulation and Comparison of Normalized Exposures  

SciTech Connect

The purpose of ventilation is to dilute indoor contaminants that an occupant is exposed to. Even when providing the same nominal rate of outdoor air, different ventilation systems may distribute air in different ways, affecting occupants' exposure to household contaminants. Exposure ultimately depends on the home being considered, on source disposition and strength, on occupants' behavior, on the ventilation strategy, and on operation of forced air heating and cooling systems. In any multi-zone environment dilution rates and source strengths may be different in every zone and change in time, resulting in exposure being tied to occupancy patterns.This paper will report on simulations that compare ventilation systems by assessing their impact on exposure by examining common house geometries, contaminant generation profiles, and occupancy scenarios. These simulations take into account the unsteady, occupancy-tied aspect of ventilation such as bathroom and kitchen exhaust fans. As most US homes have central HVAC systems, the simulation results will be used to make appropriate recommendations and adjustments for distribution and mixing to residential ventilation standards such as ASHRAE Standard 62.2.This paper will report on work being done to model multizone airflow systems that are unsteady and elaborate the concept of distribution matrix. It will examine several metrics for evaluating the effect of air distribution on exposure to pollutants, based on previous work by Sherman et al. (2006).

Petithuguenin, T.D.P.; Sherman, M.H.

2009-05-01T23:59:59.000Z

300

ACT sup 2 project report: Ventilation and air tightness measurement of the Sunset Building  

Science Conference Proceedings (OSTI)

This report presents the results of ventilation and air tightness measurements made on the test section of the Sunset Building as part of the ACT{sup 2} project. Real-time measurements were made over a two-week period in July 1991 to determine the building's performance; most of the results derive from intensive measurements made during (unoccupied) weekend periods. The ventilation rate of the entire building was measured to be about 2 air changes per hour of outdoor air which exceeds ASHRAE Standard 62-1989 design requirements by over a factor of two. Ventilation in all specific locations was found to be adequate, except for conference rooms -- some of which were significantly under ventilated. Opportunities exist for energy savings with better control of the ventilation. Ventilation efficiency was measured for the test section and selected sub-sections as well. In order to account for interzonal and intrazonal interactions, axillary information was collected and used to adjust the data. The implications of this data may be important for future interpretation of the building's performance.

Sherman, M.; Dickerhoff, D.

1991-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation natural ventilation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

ACT{sup 2} project report: Ventilation and air tightness measurement of the Sunset Building  

Science Conference Proceedings (OSTI)

This report presents the results of ventilation and air tightness measurements made on the test section of the Sunset Building as part of the ACT{sup 2} project. Real-time measurements were made over a two-week period in July 1991 to determine the building`s performance; most of the results derive from intensive measurements made during (unoccupied) weekend periods. The ventilation rate of the entire building was measured to be about 2 air changes per hour of outdoor air which exceeds ASHRAE Standard 62-1989 design requirements by over a factor of two. Ventilation in all specific locations was found to be adequate, except for conference rooms -- some of which were significantly under ventilated. Opportunities exist for energy savings with better control of the ventilation. Ventilation efficiency was measured for the test section and selected sub-sections as well. In order to account for interzonal and intrazonal interactions, axillary information was collected and used to adjust the data. The implications of this data may be important for future interpretation of the building`s performance.

Sherman, M.; Dickerhoff, D.

1991-10-01T23:59:59.000Z

302

Natural vs. mechanical ventilation and cooling.  

E-Print Network (OSTI)

to a hybrid approach to space conditioning that uses aconditioning control strategies, usually in terms of whether they exist in different spaces (

Brager, Gail; Alspach, Peter; Nall, Daniel H.

2011-01-01T23:59:59.000Z

303

Natural vs. mechanical ventilation and cooling.  

E-Print Network (OSTI)

cant and well-docu- mented. ASHRAE Standard 55 prescribes aless comfortable. ASHRAE Standard 55-2004 includes an adap-and standards, includ- ing ASHRAE Standard 90.1. Mechanical

Brager, Gail; Alspach, Peter; Nall, Daniel H.

2011-01-01T23:59:59.000Z

304

Room ventilation and its influence on the performance of fume cupboards: A parametric numerical study  

Science Conference Proceedings (OSTI)

The three-dimensional turbulent flow in a typical chemical laboratory containing two fume cupboards and furniture is investigated numerically in order to obtain detailed information needed for the improved design of ventilating systems for such rooms. The flow inside the two fume cupboards is simulated simultaneously with the room flow, and its dependence on the flow structure in the room is shown. The flow inside the cupboards and in the vicinity of their sash openings has been found to be essentially three-dimensional. Several room parameters are varied, and a quantitative evaluation of their influence on the flow, the comfort characteristics, and the ventilation efficiency is given. Additional ceiling-mounted openings, which extract room air outside the fume cupboards, can affect the capture efficiency of the cupboards, as well as the quality of the air in the room. It has been found also that small changes in the position of the radial inlet ceiling-mounted diffuser can influence the air quality of the room and at the same time the draught risk. These effects are shown for a given room arrangement. To accommodate the complex geometry, the elliptical nature of the mathematical problem, and the use of a turbulence model, a multigrid acceleration method with 245,000 control volumes is used, allowing CPU times on a workstation to become acceptable.

Denev, J.A.; Durst, F.; Mohr, B. [Friedrich Alexander Univ. Erlangen-Nuernberg, Erlangen (Germany)] [Friedrich Alexander Univ. Erlangen-Nuernberg, Erlangen (Germany)

1997-02-01T23:59:59.000Z

305

Changing Ventilation Rates in U.S. Offices: Implications for Health, Work  

NLE Websites -- All DOE Office Websites (Extended Search)

Changing Ventilation Rates in U.S. Offices: Implications for Health, Work Changing Ventilation Rates in U.S. Offices: Implications for Health, Work Performance, Energy, and Associated Economics Title Changing Ventilation Rates in U.S. Offices: Implications for Health, Work Performance, Energy, and Associated Economics Publication Type Journal Article Refereed Designation Refereed LBNL Report Number LBNL-5035E Year of Publication 2012 Authors Fisk, William J., Douglas R. Black, and Gregory Brunner Journal Building and Environment Volume 47 Pagination 368-372 Date Published 01/2012 Keywords cost-benefit analysis, economizer, health, office, ventilation rate, work performance Abstract This paper provides quantitative estimates of benefits and costs of providing different amounts of outdoor air ventilation in U.S. offices. For four scenarios that modify ventilation rates, we estimated changes in sick building syndrome (SBS) symptoms, work performance, short-term absence, and building energy consumption. The estimated annual economic benefits were $13 billion from increasing minimum ventilation rates (VRs) from 8 to 10 L/s per person, $38 billion from increasing minimum VRs from 8 to 15 L/s per person, and $33 billion from increasing VRs by adding outdoor air economizers for the 50% of the office floor area that currently lacks economizers. The estimated $0.04 billion in annual energy-related benefits of decreasing minimum VRs from 8 to 6.5 L/s per person are very small compared to the projected annual costs of $12 billion. Benefits of increasing minimum VRs far exceeded energy costs while adding economizers yielded health, performance, and absence benefits with energy savings.

306

Guide to Energy-Efficient Ventilation Methods for Acceptable Levels of Indoor Air Quality Levels in Commercial Buildings  

Science Conference Proceedings (OSTI)

Indoor air quality is important in commercial buildings to maintain employee health, well-being, and productivity and avoid employer liability. The most common method to improve indoor air quality in commercial buildings is to use outside ventilation air for dilution of the inside air. Unfortunately, the conditioning of outdoor ventilation air may result in increased energy use for cooling, dehumidification, and heating; and humid outdoor ventilation air also can degrade indoor air quality. Some commerci...

2007-12-17T23:59:59.000Z

307

Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation  

Science Conference Proceedings (OSTI)

Intake of chemical air pollutants in residences represents an important and substantial health hazard. Sealing homes to reduce air infiltration can save space conditioning energy, but can also increase indoor pollutant concentrations. Mechanical ventilation ensures a minimum amount of outdoor airflow that helps reduce concentrations of indoor emitted pollutants while requiring some energy for fan(s) and thermal conditioning of the added airflow. This work demonstrates a physics based, data driven modeling framework for comparing the costs and benefits of whole-house mechanical ventilation and applied the framework to new California homes. The results indicate that, on a population basis, the health benefits from reduced exposure to indoor pollutants in New California homes are worth the energy costs of adding mechanical ventilation as specified by ASHRAE Standard 62.2.This study determines the health burden for a subset of pollutants in indoor air and the costs and benefits of ASHRAE's mechanical ventilation standard (62.2) for new California homes. Results indicate that, on a population basis, the health benefits of new home mechanical ventilation justify the energy costs.

Logue, J.M.; Price, P.N.; Sherman, M.H.; Singer, B.C.

2011-07-01T23:59:59.000Z

308

Effect of building airtightness and fan size on the performance of mechanical ventilation systems in new U.S. houses: a critique of ASHRAE standard 62.2-2003  

E-Print Network (OSTI)

as sizing a fan to deliver the design ventilation rate (fans and natural infiltration, in order to properly designfans should be as small as necessary to deliver the effective design

Roberson, J.

2004-01-01T23:59:59.000Z

309

Test Plan to Evaluate the Relationship Among IAQ, Comfort, Moisture, and Ventilation in Humid Climates  

Science Conference Proceedings (OSTI)

This experimental plan describes research being conducted by Pacific Northwest National Laboratory (PNNL), in coordinatation with Florida Solar Energy Center (FSEC), Florida HERO, and Lawrence Berkeley National Laboratory (LBNL) to evaluate the impact of ventilation rate on interior moisture levels, temperature distributions, and indoor air contaminant concentrations. Specifically, the research team will measure concentrations of indoor air contaminants, ventilation system flow rates, energy consumption, and temperature and relative humidity in ten homes in Gainesville, FL to characterize indoor pollutant levels and energy consumption associated with the observed ventilation rates. PNNL and FSEC have collaboratively prepared this experimental test plan, which describes background and context for the proposed study; the experimental design; specific monitoring points, including monitoring equipment, and sampling frequency; key research questions and the associated data analysis approach; experimental logistics, including schedule, milestones, and team member contact information; and clearly identifies the roles and responsibilities of each team in support of project objectives.

Widder, Sarah H.; Martin, Eric

2013-03-15T23:59:59.000Z

310

Ventilation rates calculated from hydrogen release data in tanks equipped with standard hydrogen monitoring systems (SHMS)  

DOE Green Energy (OSTI)

This report describes a method for estimating the ventilation rates of the high-level radioactive waste tank headspaces at the Hanford Site in Southeastern Washington state. The method, using hydrogen concentration data, is applied to all passively ventilated and selected mechanically ventilated tanks equipped with Standard Hydrogen Monitoring Systems (SHMS) and covers the time period from when the SHMS were installed through July 12, 1998. Results of the analyses are tabulated and compared with results from tracer gas studies and similar analyses of SHMS data. The method relies on instances of above-normal hydrogen releases and assumes the rate at which hydrogen is released by the waste is otherwise approximately constant. It also assumes that hydrogen is uniformly distributed in the tank headspace, so that at any given time the concentration of hydrogen in the effluent is approximately equal to the average headspace concentration and that measured by the SHMS. In general, the greatest single source of error in the method is the determination of the baseline hydrogen concentration, which in this study has been estimated by visual inspection of plotted data. Uncertainties in the calculated ventilation rates due to inaccurate baseline measurements are examined by performing a sensitivity analysis with upper and lower bounding values for the baseline concentration (in addition to the best estimate). A table lists the tanks considered in this report and the range of estimated ventilation rates obtained for each tank. When multiple events of above-normal hydrogen releases were observed, the range of estimated ventilation rates is given. Resulting values and their variability are consistent with those determined using tracer gases.

Sklarew, D.S.; Huckaby, J.L.

1998-09-01T23:59:59.000Z

311

Microsoft Word - Draft Pier Final Report DCV and Classroom ventilation 05-11-12  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Controlled Ventilation and Classroom Ventilation William J. Fisk, Mark J. Mendell, Molly Davies, Ekaterina Eliseeva, David Faulkner, Tienzen Hong, Douglas P. Sullivan Indoor Environment Group Energy Analysis and Environmental Impacts Department Lawrence Berkeley National Laboratory Berkeley, CA 94720 May 2012 This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Building Technologies Program of the U.S. Department of Energy under contract DE-AC02- 05CH11231. LBNL-6258E Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither

312

New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy ? FY11 Final Report  

Science Conference Proceedings (OSTI)

The research carried out in this project focuses on developing novel volatile organic compounds (VOCs) air cleaning technologies needed to enable energy-saving reductions in ventilation rates. we targeted a VOC air cleaning system that could enable a 50% reduction in ventilation rates. In a typical commercial HVAC system that provides a mixture of recirculated and outdoor air, a VOC air cleaner in the supply airstream must have a 15% to 20% VOC removal efficiency to counteract a 50% reduction in outdoor air supply.

Sidheswaran, Meera; Destaillats, Hugo; Cohn, Sebastian; Sullivan, Douglas P.; Fisk, William J.

2011-10-31T23:59:59.000Z

313

Commercial Kitchen Ventilation Performance Report: Six-Element Electric Range Top Under Wall-Mounted Canopy Hood  

Science Conference Proceedings (OSTI)

This report documents testing of ventilation requirements for a six-element electric range positioned under an exhaust-only canopy hood. This appliance and hood combination is one of a series undertaken to provide electric utilities and the food service industry with data to optimize the design of commercial kitchen ventilation systems and integrate exhaust requirements with space conditioning design.

1997-07-16T23:59:59.000Z

314

Commercial Kitchen Ventilation Performance Report: Six-Burner Gas Range Top Under Wall-Mounted Canopy Hood  

Science Conference Proceedings (OSTI)

This report documents testing of ventilation requirements for a six-element gas range positioned under an exhaust-only canopy hood. This appliance and hood combination is one of a series undertaken to provide electric utilities and the foodservice industry with data to optimize the design of commercial kitchen ventilation systems and integrate exhaust requirements with space conditioning design.

1997-09-17T23:59:59.000Z

315

In vivo evaluation of a new method for chemical analysis of volatile components in the respiratory gas of mechanically ventilated patients  

Science Conference Proceedings (OSTI)

Using the volatile anaesthetic isoflurane as a marker substance a gas chromatographic method for analysis of exhaled gas in mechanically ventilated patients was evaluated. Twelve patients with and 10 patients without preceding isoflurane exposure ... Keywords: breath analysis, isoflurane, mechanical ventilation

J. K. Schubert; I. Esteban-Loos; K. Geiger; J. Guttmann

1999-03-01T23:59:59.000Z

316

The Histoty of Ventilation and Air Conditioning is CERN Up to Date with the latest Technological Developments?  

E-Print Network (OSTI)

The invention of ventilation cannot be ascribed to a certain date. It started with simple aeration when man brought fire into his abode and continued through different stages including air cooling using ice to finally arrive at the time when ventilation and air conditioning has become an essential part of our life and plays an important role in human evolution. This paper presents the history of ventilation and air conditioning, explains the key constraints over the centuries, and shows its influence on everyday life. Some examples of previous air-conditioning plants are described and different approaches to the way of calculation of ventilation systems discussed. It gives an overview of the Heating, Ventilation and Air Conditioning (HVAC) installations at CERN and points out their particularities. It also compares them with the latest technological developments in the field as well as showing the new trends that are being applied at CERN.

Khnl-Kinel, J

2000-01-01T23:59:59.000Z

317

Indoor Humidity Analysis of an Integrated Radiant Cooling and Desiccant Ventilation System  

E-Print Network (OSTI)

Radiant cooling is credited with improving energy efficiency and enhancing the comfort level as an alternative method of space cooling in mild and dry climates, according to recent research. Since radiant cooling panels lack the capability to remove latent heat, they normally are used in conjunction with an independent ventilation system, which is capable of decoupling the space sensible and latent loads. Condensation concerns limit the application of radiant cooling. This paper studies the dehumidification processes of solid desiccant systems and investigates the factors that affect the humidity levels of a radiantly cooled space. Hourly indoor humidity is simulated at eight different operating conditions in a radiantly cooled test-bed office. The simulation results show that infiltration and ventilation flow rates are the main factors affecting indoor humidity level and energy consumption in a radiantly cooled space with relatively constant occupancy. It is found that condensation is hard to control in a leaky office operated with the required ventilation rate. Slightly pressurizing the space is recommended for radiant cooling. The energy consumption simulation shows that a passive desiccant wheel can recover about 50% of the ventilation load.

Gong, X.; Claridge, D. E.

2006-01-01T23:59:59.000Z

318

An ASAE/CSAE Meeting Presentation Paper Number: 044177 Comparison of Direct vs. Indirect Ventilation Rate  

E-Print Network (OSTI)

An ASAE/CSAE Meeting Presentation Paper Number: 044177 Comparison of Direct vs. Indirect. Direct measurement of ventilation rate in livestock housing can be a formidable task due of a commercial laying hen house with manure belt (manure removed daily) obtained from direct measurement based

Kentucky, University of

319

Environmental Evaluation on Atmosphere Radioactive Pollution of Uranium Mine Shaft Ventilation Exhausts  

Science Conference Proceedings (OSTI)

A study on calculation and evaluation on atmosphere radioactive pollution of uranium mine well ventilation exhaust gas is presented in this paper. Neutral atmosphere conditions were taken into consideration. Nuclear industry standards on safety protection ... Keywords: atmosphere pollution, radiation protection, environmental evaluation, control methods

Dong Xie; Zehua Liu; Jun Xiong; Jianxiang Liu

2012-03-01T23:59:59.000Z

320

Controllability and invariance of monotone systems for robust ventilation automation in buildings  

E-Print Network (OSTI)

[2] and control [3] of Heating, Ventilating and Air Conditioning (HVAC) systems leads to an improved on these matters [4]. Various paths have already been explored for the control of HVAC systems in intelligent and energy saving [7], a model-predictive strategy [8], or a fuzzy logic controller [9]. The notion of Robust

Note: This page contains sample records for the topic "ventilation natural ventilation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Faade apertures optimization: integrating cross-ventilation performance analysis in fluid dynamics simulation  

Science Conference Proceedings (OSTI)

Performance-oriented design has as a primary aim to introduce spaces that achieve acceptable levels of human comfort. Wind-induced airflow plays a significant role in the improving occupants' comfort in a building. This paper explores the extent to which ... Keywords: building performance simulation, generative design, multiple criteria optimization, parametric design, wind-induced ventilation

Chrysanthi (Sandy) Karagkouni; Ava Fatah gen Schieck; Martha Tsigkari; Angelos Chronis

2013-04-01T23:59:59.000Z

322

TNKVNT: A model of the Tank 48 purge/ventilation exhaust system. Revision 1  

DOE Green Energy (OSTI)

The waste tank purge ventilation system for Tank 48 is designed to prevent dangerous concentrations of hydrogen or benzene from accumulating in the gas space of the tank. Fans pull the gas/water vapor mixture from the tank gas space and pass it sequentially through a demister, a condenser, a reheater, and HEPA filters before discharging to the environment. Proper operation of the HEPA filters requires that the gas mixture passing through them has a low relative humidity. The ventilation system has been modified by increasing the capacity of the fans and changing the condenser from a two-pass heat exchanger to a single-pass heat exchanger. It is important to understand the impact of these modifications on the operation of the system. A hydraulic model of the ventilation exhaust system has been developed. This model predicts the properties of the air throughout the system and the flowrate through the system, as functions of the tank gas space and environmental conditions. This document serves as a Software Design Report, a Software Coding report, and a User`s Manual. All of the information required for understanding and using this code is herein contained: the governing equations are fully developed, the numerical algorithms are described in detail, and an extensively commented code listing is included. This updated version of the code models the entire purge ventilation system, and is therefore more general in its potential applications.

Shadday, M.A. Jr.

1996-04-01T23:59:59.000Z

323

Analysis of Buoyancy-Driven Ventilation of Hydrogen from Buildings: Preprint  

DOE Green Energy (OSTI)

When hydrogen gas is used or stored within a building, as with a hydrogen-powered vehicle parked in a residential garage, any leakage of unignited H2 will mix with indoor air and may form a flammable mixture. One approach to safety engineering relies on buoyancy-driven, passive ventilation of H2 from the building through vents to the outside.

Barley, C. D.; Gawlik, K.; Ohi, J.; Hewett, R.

2007-08-01T23:59:59.000Z

324

Design Analysis Report for 244-AR Interim Stabilization Exhaust Ventilation Ducting  

SciTech Connect

This report documents the design analysis performed for the exhaust ducting associated with the 244-AR Interim Stabilization Project. The exhaust ducting connects portable exhausters PORO5 and PORO6 to the existing east dog house of the 291-AR filter vault and the vessel ventilation system. This analysis examines loads on the ductwork and ductwork supports.

RUTHERFORD, J.

2002-11-21T23:59:59.000Z

325

Cooling season energy measurements of dust and ventilation effects on radiant barriers  

Science Conference Proceedings (OSTI)

Cooling season tests were conducted in three unoccupied ranch-style houses in Karns, Tennessee, to determine the effects on attic radiant barrier performance incurred by changes in attic ventilation area ratio, attic ventilation type, and the buildup of dust on horizontal radiant barriers. All three houses had R-19 fiberglass batt insulation in their attics. Horizontal radiant barriers were artificially dusted and the dusted barriers showed measurable performance degradations, although the dusted barriers were still superior to no radiant barriers. Dust loadings of 0.34 and 0.74 mg/cm{sup 2} reduced a clean radiant barrier surface emissivity of 0.055 to 0.125 and 0.185, respectively. Total house cooling load increases amounted to 2.3 and 8.4% compared to house loads with clean horizontal barriers, respectively. When compared to R-19 with no horizontal radiant barrier conditions, the dusted horizontal radiant barriers reduced cooling loads by about 7%. Testing showed that increasing the attic ventilation area ratio from the minimum recommended of 1/300 (1 ft{sup 2} of effective ventilation area per 300 ft{sup 2} of attic area) to 1/150 had little if any effect on the house cooling load with either truss or horizontal barriers present in the attics. Radiant barriers, however, still reduced the house cooling load. 18 refs., 17 figs., 26 tabs.

Levins, W.P.; Karnitz, M.A. (Oak Ridge National Lab., TN (USA)); Hall, J.A. (Tennessee Valley Authority, Chattanooga, TN (USA))

1990-03-01T23:59:59.000Z

326

Dust and ventilation effects on radiant barriers: Cooling season energy measurements  

Science Conference Proceedings (OSTI)

Cooling season tests were conducted in three unoccupied ranch-style houses in Karns, Tennessee, to determine the effects on attic radiant barrier performance incurred by changes in attic ventilation area ratio, attic ventilation type, and the buildup of dust on horizontal radiant barriers. All three houses had R-19 fiberglass batt insulation in their attics. Horizontal radiant barriers were artificially dusted and the dusted barriers showed measurable performance degradations, although the dusted barriers were still superior to no radiant barriers. Dust loadings of 0.34 and 0.74 mg/cm{sup 2} reduced a clean radiant barrier surface emissivity of 0.055 to 0.125 and 0.185, respectively. Total house cooling load increases amounted to 2.3 and 8.4% compared to house loads with clean horizontal barriers, respectively. When compared to R-19 with no horizontal radiant barrier conditions, the dusted horizontal radiant barriers reduced cooling loads by about 7%. Testing showed that increasing the attic ventilation area ratio from the minimum recommended of 1/300 to 1/150 had little if any effect on the house cooling load with either truss or horizontal barriers present in the attics. Radiant barriers, however, still reduced the house cooling load. There was essentially no difference in house cooling load reduction between either ridge/soffit or gable/soffit vent type with a truss radiant barrier, as both reduced cooling loads by about 8% when compared to no radiant barrier conditions. The attic-ventilation-type testing was done with a ventilation area ratio of 1/150.

Levins, W.P.; Karnitz, M.A. (Oak Ridge National Lab., TN (USA)); Hall, J.A. (Tennessee Valley Authority, Knoxville, TN (USA))

1990-05-01T23:59:59.000Z

327

System Performance Measurement Supports Design Recommendations for Solar Ventilation Preheat System (Brochure), Federal Energy Management Program (FEMP)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

System Performance System Performance Measurement Supports Design Recommendations for Solar Ventilation Preheat System The U.S. Department of Energy's (DOE) Federal Energy Management Program (FEMP) sponsored the installation of a data monitoring system to analyze the efficiency and performance of a large solar ventilation preheat (SVP) system. The system was installed at a Federal installation to reduce energy consumption and costs and to help meet Federal energy goals and mandates. SVP systems draw ventilation air in through a perforated metal solar collector with a dark color on the south side of a build-

328

Recommended Changes to Specifications for Demand Controlled Ventilation in California's Title 24 Building Energy Efficiency Standards  

SciTech Connect

In demand-controlled ventilation (DCV), rates of outdoor air ventilation are automatically modulated as occupant density varies. The objective is to keep ventilation rates at or above design specifications and code requirements and also to save energy by avoiding excessive ventilation rates. DCV is most often used in spaces with highly variable and sometime dense occupancy. In almost all cases, carbon dioxide (CO{sub 2}) sensors installed in buildings provide the signal to the ventilation rate control system. People produce and exhale CO{sub 2} as a consequence of their normal metabolic processes; thus, the concentrations of CO{sub 2} inside occupied buildings are higher than the concentrations of CO{sub 2} in the outdoor air. The magnitude of the indoor-outdoor CO{sub 2} concentration difference decreases as the building's ventilation rate per person increases. The difference between the indoor and outdoor CO{sub 2} concentration is also a proxy for the indoor concentrations of other occupant-generated bioeffluents, such as body odors. Reviews of the research literature on DCV indicate a significant potential for energy savings, particularly in buildings or spaces with a high and variable occupancy. Based on modeling, cooling energy savings from applications of DCV are as high as 20%. With support from the California Energy Commission and the U.S. Department of Energy, the Lawrence Berkeley National Laboratory has performed research on the performance of CO{sub 2} sensing technologies and optical people counters for DCV. In addition, modeling was performed to evaluate the potential energy savings and cost effectiveness of using DCV in general office spaces within the range of California climates. The above-described research has implications for the specifications pertaining to DCV in section 121 of the California Title 24 Standard. Consequently, this document suggests possible changes in these specifications based on the research findings. The suggested changes in specifications were developed in consultation with staff from the Iowa Energy Center who evaluated the accuracy of new CO{sub 2} sensors in laboratory-based research. In addition, staff of the California Energy Commission, and their consultants in the area of DCV, provided input for the suggested changes in specifications.

Fisk, William J.; Sullivan, Douglas P.; Faulkner, David

2010-04-08T23:59:59.000Z

329

Energy and first costs analysis of displacement and mixing ventilation systems for U.S. buildings and climates  

E-Print Network (OSTI)

In the past two decades, displacement ventilation has been increasingly used in Scandinavia and Western Europe to improve indoor air quality and to save energy. By using a detailed computer simulation method, this study ...

Hu, ShiPing, 1970-

1999-01-01T23:59:59.000Z

330

Proposed Design for a Coupled Ground-Source Heat Pump/Energy Recovery Ventilator System to Reduce Building Energy Demand.  

E-Print Network (OSTI)

??The work presented in this thesis focuses on reducing the energy demand of a residential building by using a coupled ground-source heat pump/energy recovery ventilation (more)

McDaniel, Matthew Lee

2011-01-01T23:59:59.000Z

331

The Role of North Atlantic Deep Water Formation in an OGCMs Ventilation and Thermohaline Circulation  

Science Conference Proceedings (OSTI)

Two coarse-resolution model experiments are carried out on an OGCM to examine the effects of North Atlantic Deep Water (NADW) formation on the thermohaline circulation (THC) and ventilation timescales of the abyssal ocean. An idealized age tracer ...

Paul J. Goodman

1998-09-01T23:59:59.000Z

332

The Importance of Lateral Diffusion for the Ventilation of the Lower Thermocline in the Subtropical North Atlantic  

Science Conference Proceedings (OSTI)

An analysis of the physical mechanisms contributing to the ventilation of the lower subtropical thermocline (26.5 < ?? < 27.3) of the North Atlantic is presented. Examination of the surface forcing suggests that this density range in the Atlantic ...

Paul E. Robbins; James F. Price; W. Brechner Owens; William J. Jenkins

2000-01-01T23:59:59.000Z

333

New generation of software? Modeling of energy demands for residential ventilation with HTML interface  

SciTech Connect

The paper presents an interactive on-line package for calculation of energy and cost demands for residential infiltration and ventilation, with input and output data entry through a web browser. This is a unique tool. It represents a new kind of approach to developing software employing user (client) and server (package provider) computers. The main program, servicing {open_quotes}intelligent{close_quotes} CGI (Common Gateway Interface) calls, resides on the server and dynamically handles the whole package performance and the procedure of calculations. The {open_quotes}computing engine{close_quotes} consists of two parts: RESVENT - the previously existing program for ventilation calculations and ECONOMICS - for heating and cooling system energy and cost calculations. The user interface is designed in such a way, that it allows simultaneous access by many users from all over the world.

Forowicz, T.

1997-06-01T23:59:59.000Z

334

Evaluation of cracking in the 241-AZ tank farm ventilation line at the Hanford Site  

Science Conference Proceedings (OSTI)

In the period from April to October of 1988, a series of welding operations on the outside of the AZ Tank Farm ventilation line piping at the Hanford Site produced unexpected and repeated cracking of the austenitic stainless steel base metal and of a seam weld in the pipe. The ventilation line is fabricated from type 304L stainless steel pipe of 24 inch diameter and 0.25 inch wall thickness. The pipe was wrapped in polyethylene bubble wrap and buried approximately 12 feet below grade. Except for the time period between 1980 and 1987, impressed current cathodic protection has been applied to the pipe since its installation in 1974. The paper describes the history of the cracking of the pipe, the probable cracking mechanisms, and the recommended future action for repair/replacement of the pipe.

ANANTATMULA, R.P.

1999-10-20T23:59:59.000Z

335

A field demonstration of automatic restroom ventilation control to reduce energy consumption  

SciTech Connect

This report documents the motion sensor evaluation task for the Hanford Energy Management Committee (HEMC) performed by Pacific Northwest Laboratory (PNL) to support the energy reduction mission. The study included installing automatic exhaust ventilation controls in the restrooms of the 1103 Building, 100N area. The goal of this task was to measure the benefit of automatically controlling exhaust ventilation in restrooms of an office building on the Hanford Site. The HEMC belief is that the value of controlling the fans is not limited to the power consumed by the fans, but also includes the value invested to condition (heat or cool) the makeup air. The air exhausted to the exterior of the building must ultimately be replaced by unconditioned air from the outside. This outside air must then by conditioned to maintain the comfort of building occupants. 6 figs., 1 tab.

Doggett, W.H.; Merrick, S.B.; Richman, E.E.

1989-09-01T23:59:59.000Z

336

Effects of Radiant Barrier Systems on Ventilated Attics in a Hot and Humid Climate  

E-Print Network (OSTI)

Results of side-by-side radiant barrier experiments using two identical 144 ft2 (nominal) test houses are presented. The test houses responded very similarly to weather variations prior to the retrofit. The temperatures of the test houses were controlled to within 0.3F. Ceiling heat fluxes were within 2 percent for each house. The results showed that a critical attic ventilation flow rate (0.25 CFM/ft2 ) existed after which the percentage reduction produced by the radiant barrier systems was not sensitive to increased airflows. The ceiling heat flux reductions produced by the radiant barrier systems were between 25 and 34 percent, with 28 percent being the reduction observed most often in the presence of attic ventilation. All results presented in this paper were for attics with R-19 unfaced fiberglass insulation and for a perforated radiant barrier with low emissivities on both sides.

Medina, M. A.; O'Neal, D. L.; Turner, W. D.

1992-05-01T23:59:59.000Z

337

Test report of evaluation of primary exhaust ventilation flowmeters for double shell hydrogen watch list tanks  

DOE Green Energy (OSTI)

This document reports the results of testing four different flowmeters for use in the primary exhaust ventilation ducts of Double Shell Tanks on the hydrogen watch list that do not already have this capability. This currently includes tanks 241-AW-101,241-AN- 103, 241-AN-104, 241-AN-105 and 241-SY-103. The anticipated airflow velocity in these tanks range from 0.25 m/s(50 ft/min) to 1/78 m/s (350 ft/min). Past experiences at Hanford have forced the evaluation and selection of instruments to be used at the low flow and relatively high humidity conditions found in these tanks. Based on the results of this test, a flow meter has been chosen for installation in the primary exhaust ventilation ducts of the above mentioned waste tanks.

Willingham, W.E., Westinghouse Hanford

1996-09-03T23:59:59.000Z

338

Nuclear Maintenance Applications Center: Heating, Ventilating, and Air Conditioning Specialist Guide  

Science Conference Proceedings (OSTI)

The people responsible for heating, ventilating, and air conditioning (HVAC) in the nuclear power industry are known by various titles--HVAC specialist, HVAC component engineer, HVAC system manager, and HVAC system engineer, to name a few. Although HVAC duties and responsibilities are often spread across several departments, such as maintenance, operations, engineering, and procurement, it is up to the HVAC specialist to ensure that HVAC system and component health and reliability are maintained. This re...

2011-11-28T23:59:59.000Z

339

Definition and means of maintaining the ventilation system confinement portion of the PFP safety envelope  

Science Conference Proceedings (OSTI)

The Plutonium Finishing Plant Heating Ventilation and Cooling system provides for the confinement of radioactive releases to the environment and provides for the confinement of radioactive contamination within designated zones inside the facility. This document identifies the components and procedures necessary to ensure the HVAC system provides these functions. Appendices E through J provide a snapshot of non-safety class HVAC equipment and need not be updated when the remainder of the document and Appendices A through D are updated.

Dick, J.D.; Grover, G.A.; O`Brien, P.M., Fluor Daniel Hanford

1997-03-05T23:59:59.000Z

340

Automated CO2 and VOC-Based Control of Ventilation Systems Under Real-Time Pricing  

Science Conference Proceedings (OSTI)

The potential for shedding or shifting building electric loads in response to real-time prices (RTP) can be significant. Such a strategy provides cost reduction opportunities for commercial building customers as well as load reduction opportunities for electric utilities. This report describes the successful demonstration of an integrated RTP sensor/control system designed to increase the energy efficiency of building ventilation systems, while maintaining indoor air quality via CO2 and volatile organic ...

1998-11-02T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation natural ventilation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Engineering study and conceptual design report for primary ventilation duct flow monitoring  

DOE Green Energy (OSTI)

The objective of this engineering study is to develop the preferred method and concepts for measurement of the primary exhaust ventilation flow rates in Double Shell Tanks (DSTs) on the hydrogen watch list. This includes tanks 101-AW, 103, 104, and 105-AN, and 103-SY. A systems engineering approach is utilized to weight the desired characteristics of the flow monitoring system, and then select the best alternative

Hertelendy, N.A.

1995-10-31T23:59:59.000Z

342

A genetic rule weighting and selection process for fuzzy control of heating, ventilating and air conditioning systems  

Science Conference Proceedings (OSTI)

In this paper, we propose the use of weighted linguistic fuzzy rules in combination with a rule selection process to develop accurate fuzzy logic controllers dedicated to the intelligent control of heating, ventilating and air conditioning systems concerning ... Keywords: BEMS, building energy management system, FLC, fuzzy logic controller, Fuzzy logic controllers, GA, genetic algorithm, Genetic algorithms, HVAC systems, HVAC, heating, ventilating, and air conditioning, KB, knowledge base, PMV, predicted mean vote index for thermal comfort, Rule selection, Weighted fuzzy rules

Rafael Alcal; Jorge Casillas; Oscar Cordn; Antonio Gonzlez; Francisco Herrera

2005-04-01T23:59:59.000Z

343

EVALUATION OF BEST AVAILABLE CONTROL TECHNOLOGY FOR TOXICS -TBACT- DOUBLE SHELL TANK FARMS PRIMARY VENTILATION SYSTEMS SUPPORTING WASTE TRANSFER OPERATIONS  

Science Conference Proceedings (OSTI)

This report is an evaluation of Best Available Control Technology for Toxics (tBACT) for installation and operation of the Hanford double shell (DST) tank primary ventilation systems. The DST primary ventilation systems are being modified to support Hanford's waste retrieval, mixing, and delivery of single shell tank (SST) and DST waste through the DST storage system to the Waste Treatment and Immobilizaiton Plant (WTP).

HAAS CC; KOVACH JL; KELLY SE; TURNER DA

2010-06-24T23:59:59.000Z

344

EVALUATION OF BEST AVAILABLE CONTROL TECHNOLOGY FOR TOXICS (TBACT) DOUBLE SHELL TANK FARMS PRIMARY VENTILATION SYSTEM SUPPORTING WASTE TRANSFER OPERATIONS  

Science Conference Proceedings (OSTI)

This report is an evaluation of Best Available Control Technology for Toxics (tBACT) for installation and operation of the Hanford double shell (DST) tank primary ventilation systems. The DST primary ventilation systems are being modified to support Hanford's waste retrieval, mixing, and delivery of single shell tank (SST) and DST waste throught the DST storage system to the Waste Treatment and Immobilization Plant (WTP).

KELLY SE; HAASS CC; KOVACH JL; TURNER DA

2010-06-03T23:59:59.000Z

345

Enthalpy Wheels Come of Age: Applying Energy Recovery Ventilation to Hospitality Venues in Hot, Humid Climate  

E-Print Network (OSTI)

Energy recovery ventilation systems, including rotary heat exchangers or enthalpy wheels, utilize mature technologies that are routinely applied in commercial buildings. Energy recovery is particularly important in buildings with significant outdoor air intake requirements and has recently become widely accepted in applications such as schools and theatres. Hospitality applications including restaurants, bars, casinos and similar settings also stand to benefit from application of the technology, however, there is a lack of experience and therefore of accepted guidance in these applications. Furthermore, the unique challenges inherent in the variety of hospitality venues may limit appropriate use of the technology. Applying energy recovery ventilation to hospitality venues in hot, humid climates need not be complex. This paper proposes guidelines that can facilitate application of the technology by specifiers or other construction professionals. These guidelines address evaluation of typical projects for the suitability of energy recovery, selection of appropriate energy recovery ventilation technology, and criteria for successful application of enthalpy wheels. Examples of applications developed for different mechanical systems and building types are provided. The literature describing the opportunities and limitations associated with enthalpy wheels is summarized and referenced. Installation, operation, and maintenance insights are presented, derived from the body of industry experience with enthalpy wheels.

Wellford, B. W.

2000-01-01T23:59:59.000Z

346

Experimental Study of the Floor Radiant Cooling System Combined with Displacement Ventilation  

E-Print Network (OSTI)

As a comfortable and energy-efficient air conditioning system, the application of floor radiant heating system is used increasingly greatly in the north of China. As a result, the feasibility of floor radiant cooling has gained more attention. To examine the thermodynamic performance of the floor radiant cooling system, we measured the operational conditions including the minimum floor surface temperature, the cooling capacity, and the indoor temperature field distribution under different outdoor temperatures in Beijing. Because the ground temperature changes with the mean temperature of the supplied and returned water and room temperature, the mean temperature of the supplied and retuned water was obtained. Finally, we analyzed the phenomenon of dewing and developed measures for preventing it. The dry air layer near the floor formed by a displacement ventilation system can effectively prevent dews on the surface of the floor in the wet and hot days in summer. In addition, for the sake of the displacement ventilation system, the heat transfer effect between floor and space is enhanced. Our analysis pointed out that floor radiant cooling system combined with displacement ventilation ensures good comfort and energy efficiency.

Ren, Y.; Li, D.; Zhang, Y.

2006-01-01T23:59:59.000Z

347

Experimental Evaluation of a Downsized Residential Air Distribution System: Comfort and Ventilation Effectiveness  

SciTech Connect

Good air mixing not only improves thermal comfort Human thermal comfort is the state of mind that expresses satisfaction with the surrounding environment, according to ASHRAE Standard 55. Achieving thermal comfort for most occupants of buildings or other enclosures is a goal of HVAC design engineers. but also enhances ventilation effectiveness by inducing uniform supply-air diffusion. In general, the performance of an air distribution system in terms of comfort and ventilation effectiveness is influenced by the supply air temperature, velocity, and flow rate, all of which are in part dictated by the HVAC (Heating Ventilation Air Conditioning) In the home or small office with a handful of computers, HVAC is more for human comfort than the machines. In large datacenters, a humidity-free room with a steady, cool temperature is essential for the trouble-free system as well as the thermal load attributes. Any potential deficiencies associated with these design variables can be further exacerbated by an improper proximity of the supply and return outlets with respect to the thermal and geometrical characteristics of the indoor space. For high-performance houses, the factors influencing air distribution performance take on an even greater significance because of a reduced supply-air design flow rate resulting from downsized HVAC systems.

Jalalzadeh-Azar, A. A.

2007-01-01T23:59:59.000Z

348

Improving Ventilation and Saving Energy: Relocatable ClassroomField Study Interim Report  

Science Conference Proceedings (OSTI)

The primary goals of this research effort are to develop, evaluate, and demonstrate a very practical HVAC system for classrooms that consistently provides classrooms with the quantity of ventilation in current minimum standards, while saving energy, and reducing HVAC-related noise levels. This research is motivated by the public benefits of energy efficiency, evidence that many classrooms are under-ventilated, and public concerns about indoor environmental quality in classrooms. This report presents an interim status update and preliminary findings from energy and indoor environmental quality (IEQ) measurements in sixteen relocatable classrooms in California. The field study includes measurements of HVAC energy use, ventilation rates, and IEQ conditions. Ten of the classrooms were equipped with a new HVAC technology and six control classrooms were equipped with a standard HVAC system. Energy use and many IEQ parameters have been monitored continuously, while unoccupied acoustic measurements were measured in one of four planned seasonal measurement campaigns. Continuously monitored data are remotely accessed via a LonWorks{reg_sign} network and stored in a relational database at LBNL. Preliminary results are presented here.

Apte, Michael G.; Buchanan, Ian S.; Faulkner, David; Hotchi,Toshifumi; Spears,Michael; Sullivan, Douglas P.; Wang, Duo

2005-09-01T23:59:59.000Z

349

Assessment of Energy Savings Potential from the Use of Demand Controlled Ventilation in General Office Spaces in California  

Science Conference Proceedings (OSTI)

A prototypical office building meeting the prescriptive requirements of the 2008 California building energy efficiency standards (Title 24) was used in EnergyPlus simulations to calculate the energy savings potential of demand controlled ventilation (DCV) in five typical California climates per three design occupancy densities and two minimum ventilation rates. The assumed minimum ventilation rates in offices without DCV, based on two different measurement methods employed in a large survey, were 38 and 13 L/s per occupant. The results of the life cycle cost analysis show DCV is cost effective for office spaces if the typical minimum ventilation rate without DCV is 38 L/s per person, except at the low design occupancy of 10.8 people per 100 m2 in climate zones 3 (north coast) and 6 (south Coast). DCV was not found to be cost effective if the typical minimum ventilation rate without DCV is 13 L/s per occupant, except at high design occupancy of 21.5 people per 100 m2 in climate zones 14 (desert) and 16 (mountains). Until the large uncertainties about the base case ventilation rates in offices without DCV are reduced, the case for requiring DCV in general office spaces will be a weak case. Under the Title 24 Standards office occupant density of 10.8 people per 100 m2, DCV becomes cost effective when the base case minimum ventilation rate is greater than 42.5, 43.0, 24.0, 19.0, and 18.0 L/s per person for climate zone 3, 6, 12, 14, and 16 respectively.

Hong, Tianzhen; Fisk, William

2010-01-01T23:59:59.000Z

350

Proposal for the award of a contract for the design, supply, installation and commissioning of Heating, Ventilation and Air-Conditioning (HVAC) systems for the PS accelerator infrastructure  

E-Print Network (OSTI)

Proposal for the award of a contract for the design, supply, installation and commissioning of Heating, Ventilation and Air-Conditioning (HVAC) systems for the PS accelerator infrastructure

2012-01-01T23:59:59.000Z

351

Proposal for the award of a contract for dismantling, removal and packaging of the existing Heating, Ventilation and Air-Conditioning (HVAC) systems in the PS tunnel  

E-Print Network (OSTI)

Proposal for the award of a contract for dismantling, removal and packaging of the existing Heating, Ventilation and Air-Conditioning (HVAC) systems in the PS tunnel

2012-01-01T23:59:59.000Z

352

Business reasons for utilizing renewable energy applications in facilities to assist in extending the life of the heating ventilation and air conditioning systems .  

E-Print Network (OSTI)

??This research is intended to discover business reasons for utilizing renewable energy applications in buildings to help extend the life of the heating, ventilation and (more)

Thompson, Glendon Raymond

2008-01-01T23:59:59.000Z

353

Engineering work plan and design basis for 241-SY ventilation improvements  

DOE Green Energy (OSTI)

There are three tanks in the 241-SY tank farm. Tank 241-SY101 and 241-SY-103 are flammable gas watch list tanks. Tank 241-SY-102 is included in the ventilation improvement process in an effort to further control air flow in the tank farm. This tank farm has only one outlet ventilation port for all three tanks. Flammable gas is released (may be steady and/or periodic) from the waste in the primary tank vapor space. The gas is removed from the tank by an active ventilation system. However, maintaining consistent measurable flow through the tank can be problematic due to the poor control capabilities of existing equipment. Low flow through the tank could allow flammable gas to build up in the tank and possibly exceed the lower flammability limit (LFL), prevent the most rapid removal of flammable gas from the tank after a sudden gas release, and/or cause high vacuum alarms to sound. Using the inlet and outlet down stream butterfly valves performs the current method of controlling flow in tank farm 241-SY. A filter station is installed on the inlet of each tank, but controlling air flow with its 12 inch butterfly valve is difficult. There is also in-leakage through pump and valve pits. Butterfly valves on the downstream side of each tank could also be used to control air flow. However, their large size and the relatively low air velocity make this control method also ineffective. The proposed method of optimizing tank air flow and pressure control capability is to install an air flow controller on the inlet of each existing filter station in SY farm, and seal as best as practical all other air leakage paths. Such air flow controllers have been installed on 241-AN and 241-AW tanks (see drawing H-2-85647).

Andersen, J.A.

1997-05-19T23:59:59.000Z

354

How refrigeration, heating, ventilation, and air conditioning service technicians learn from troubleshooting (Dissertation ABstract)  

E-Print Network (OSTI)

The purpose of this study was to understand how refrigeration, heating, ventilation, and air conditioning (RHVAC) service technicians (techs) learned from troubleshooting. This understanding resulted in instructional and curricular strategies designed to help community colleges prepare vocational students to learn more effectively from informal workplace learning. RHVAC techs were studied because they increasingly learn their trade skills through a combination of formal schooling and informal workplace learning, though many still learn their trade almost exclusively in the workplace. Even those with formal training require considerable workplace experience to become fully competent. Troubleshooting is a major job function for RHVAC service techs, and troubleshooting

Denis F. H. Green

2006-01-01T23:59:59.000Z

355

Improving Ventilation and Saving Energy: Laboratory Study in aModular Classroom Test Bed  

SciTech Connect

The primary goals of this research effort were to develop, evaluate, and demonstrate a practical HVAC system for classrooms that consistently provides classrooms with the quantity of ventilation in current minimum standards, while saving energy, and reducing HVAC-related noise levels. This research was motivated by several factors, including the public benefits of energy efficiency, evidence that many classrooms are under-ventilated, and public concerns about indoor environmental quality in classrooms. This project involved the installation and verification of the performance of an Improved Heat Pump Air Conditioning (IHPAC) system, and its comparison, a standard HVAC system having an efficiency of 10 SEER. The project included the verification of the physical characteristics suitable for direct replacement of existing 10 SEER systems, quantitative demonstration of improved energy efficiency, reduced acoustic noise levels, quantitative demonstration of improved ventilation control, and verification that the system would meet temperature control demands necessary for the thermal comfort of the occupants. Results showed that the IHPAC met these goals. The IHPAC was found to be a direct bolt-on replacement for the 10 SEER system. Calculated energy efficiency improvements based on many days of classroom cooling or heating showed that the IHPAC system is about 44% more efficient during cooling and 38% more efficient during heating than the 10 SEER system. Noise reduction was dramatic, with measured A-weighed sound level for fan only operation conditions of 34.3 dB(A), a reduction of 19 dB(A) compared to the 10 SEER system. Similarly, the IHPAC stage-1 and stage-2 compressor plus fan sound levels were 40.8 dB(A) and 42.7 dB(A), reductions of 14 and 13 dB(A), respectively. Thus, the IHPAC is 20 to 35 times quieter than the 10 SEER systems depending upon the operation mode. The IHPAC system met the ventilation requirements and was able to provide consistent outside air supply throughout the study. Indoor CO2 levels with simulated occupancy were maintained below 1000 ppm. Finally temperature settings were met and controlled accurately. The goals of the laboratory testing phase were met and this system is ready for further study in a field test of occupied classrooms.

Apte, Michael G.; Buchanan, Ian S.; Faulkner, David; Fisk,William J.; Lai, Chi-Ming; Spears, Michael; Sullivan, Douglas P.

2005-08-01T23:59:59.000Z

356

Transpired Collectors (Solar Preheaters for Outdoor Ventilation Air)--023385m FTA collectors  

Energy.gov (U.S. Department of Energy (DOE))

Federal Technology Alert describes transpired collectors or solar preheaters for outdoor ventilation air. The President's Million Solar Roofs Initiative aims to install 1 million solar energy systems on residential, commercial, and public-sector buildings by 2010. In support of the Initiative, and as part of a continual effort to ensure U.S. buildings are energy efficient and environmentally sustainable, the U.S. Department of Energy's Federal Energy Management Program (FEMP) will help install those solar systems targeted for the federal sector.

357

Turbulent particle deposition in a rectangular chamber: Study of the effect of particle size and ventilation regimes  

SciTech Connect

The interaction of aerosol particles with wall surfaces is important in modeling their behavior. This interaction is usually represented in theoretical models as a loss term. The loss rate is the rate at which particles deposit or react with the surfaces. This loss term is important in many branches of aerosol science including human health and indoor air quality. Increased surface deposition usually means lower concentrations of airborne particles and hence, lower exposure to the inhabitants. If the efficiency of the particle deposition is influenced by factors other than the particle size, such as a natural convection of the air, this has to be taken into account to evaluate the results. In this research, test aerosol sized from 15 nm to 3 {micro}m are produced by several different aerosol generators; the gas burner, the Collison nebulizer, the condensation aerosol generator, the orifice atomizer and the Vibrating Orifice Aerosol Generator (VOAG). A rectangular chamber whose dimensions are 75 x 75 x 180 cm{sup 3} was used in this study. The particles were injected into the chamber, with a known ventilation and the concentration decay was monitored by the Ultrafine Condensation Particle Counter (UCPC) and Optical Particle Counter (OPC). During the measurement, the air inside the chamber is moved by natural convection and ventilation effect. The results shows that the particle loss rate under the higher air exchange rate is larger and this is not only due to air exchange itself but also the wall deposition. The theoretical model presented by Benes and Holub (1996) agree with the experimental data better than the Crump and Seinfield (1981) model with the hypothesis of Plandtl`s mixing length. 118 refs.

Nomura, Yoshio

1996-04-01T23:59:59.000Z

358

Indoor environmental quality and ventilation in U.S. office buildings: A view of current issues  

Science Conference Proceedings (OSTI)

Much of the current focus on indoor environmental quality and ventilation in US office buildings is a response to sick building syndrome and occupant complaints about building-related health symptoms, poor indoor air quality, and thermal discomfort. The authors know that serious ``sick-building`` problems occur in a significant number of US office buildings and that a significant proportion of the occupants in many normal (non-sick) buildings report building-related health symptoms. Concerns about the health effects of environmental tobacco smoke have also focused attention on the indoor environment. The major responses of industry and governments, underway at the present time, are to restrict smoking in offices, to attempt to reduce the emissions of indoor pollutants, and to improve the operation of heating, ventilating and air conditioning (HVAC) systems. Better air filtration, improved HVAC commissioning and maintenance, and increased provisions for individual control of HVAC are some of the improvements in HVAC that are currently being, evaluated. In the future, the potential for improved productivity and reduced airborne transmission of infectious disease may become the major driving force for improved indoor environments.

Fisk, W.J.

1994-11-01T23:59:59.000Z

359

Cooling season energy measurements of dust and ventilation effects on radiant barriers  

Science Conference Proceedings (OSTI)

Cooling season tests were conducted in three unoccupied ranch-style houses in Karns, Tennessee, to determine the effects on attic radiant barrier performance incurred by changes in attic ventilation area ratio, attic ventilation type, and the buildup of dust on horizontal radiant barriers. All three houses had R-19 fiberglass batt insulation in their attics. Horizontal radiant barriers were artificially dusted and the dusted barriers showed measurable performance degradations, although the dusted barriers were still superior to no radiant barriers. Dust loadings of 0.34 and 0.74 mg/cm{sup 2} reduced a clean radiant barrier surface emissivity of 0.055 to 0.125 and 0.185, respectively. Total house cooling load increases amounted to 2.3 and 8.4% compared to house loads with clean horizontal barriers, respectively. When compared to R-19 with no horizontal radiant barrier conditions, the dusted horizontal radiant barriers reduced cooling loads by about 7%. 18 refs., 18 figs., 30 tabs.

Levins, W.P.; Karnitz, M.A. (Oak Ridge National Lab., TN (USA)); Hall, J.A. (Tennessee Valley Authority, Knoxville, TN (USA))

1990-02-01T23:59:59.000Z

360

Improving Ventilation and Saving Energy: Final Report on Indoor Environmental Quality and Energy Monitoring in Sixteen Relocatable Classrooms  

NLE Websites -- All DOE Office Websites (Extended Search)

03E 03E Improving Ventilation and Saving Energy: Final Report on Indoor Environmental Quality and Energy Monitoring in Sixteen Relocatable Classrooms Michael G. Apte, Bourassa Norman*, David Faulkner, Alfred T. Hodgson, Toshfumi Hotchi, Michael Spears, Douglas P. Sullivan, and Duo Wang 4 April 2008 Indoor Environment Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory *Now with the California Energy Commission PIER Program, Sacramento CA. This research was sponsored by the California Energy Commission through the Public Interest Energy Research program as the Lawrence Berkeley National Laboratory Classroom HVAC: Improving Ventilation and Saving Energy research project, CEC Contract Number 500-03-041.

Note: This page contains sample records for the topic "ventilation natural ventilation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

A multi-objective evolutionary algorithm for an effective tuning of fuzzy logic controllers in heating, ventilating and air conditioning systems  

Science Conference Proceedings (OSTI)

This paper focuses on the use of multi-objective evolutionary algorithms to develop smartly tuned fuzzy logic controllers dedicated to the control of heating, ventilating and air conditioning systems, energy performance, stability and indoor comfort ... Keywords: Fuzzy logic controllers, Genetic tuning, HVAC systems, Heating, ventilating, and air conditioning systems, Linguistic 2-tuples representation, Multi-objective evolutionary algorithms, Rule selection

Mara Jos Gacto; Rafael Alcal; Francisco Herrera

2012-03-01T23:59:59.000Z

362

Ventilation of the Deep Western Boundary Current and Abyssal Western North Atlantic: Estimates from Tritium and 3He Distributions  

Science Conference Proceedings (OSTI)

The tritium and excess 3He data from the 1981 TTO/NAS program are used to study the time scales for the ventilation of the deep western basin by recently formed North Atlantic Deep Water (NADW). The large-scale distributions of tritium and 3He in ...

Scott C. Doney; William J. Jenkins

1994-03-01T23:59:59.000Z

363

Independent Oversight Review of Hanford Tank Farms Safety Basis Amendment for Double-Shell Tank Ventilation System Upgrades, November 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Tank Farms Safety Basis Amendment for Double-Shell Tank Ventilation System Upgrades November 2011 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Table of Contents 1.0 Purpose ................................................................................................................................................... 1 2.0 Background ............................................................................................................................................ 1 3.0 Scope and Approach .............................................................................................................................. 2

364

Numerical Simulation of a Displacement Ventilation System with Multi-heat Sources and Analysis of Influential Factors  

E-Print Network (OSTI)

Displacement ventilation (DV) is a promising ventilation concept due to its high ventilation efficiency. In this paper, the application of the CFD method, the velocity and temperature fields of three-dimensional displacement ventilation systems with double heat sources are numerically simulated. The model is verified by experimental data. The results of the study show that thermal stratification characteristics exist in indoor temperature fields. The paper also analyzes the influence of different influential factors, e.g., the distance between heat sources, temperature of heat source, heat characteristics of the wall and outdoor temperature. It was found that the human requirement for comfort is satisfied easily when the distance between heat sources is long. Under the conditions simulated in this paper, when the distance was more than 0.8m, the temperature distribution tended to be average and steady, and it did not change as the distance changed. Second, the temperature change of the thermal current has a large influence on the indoor temperature. The rise in thermal current temperature makes the vertical temperature gradient in the room increase. The upper temperature of the room becomes higher, as does the height of the high temperature air level that lies in the upper part of the room. Finally, both the heat loss of the surrounding structure and the change in outdoor temperature have a large influence on indoor temperature. However, it does not influence the thermal stratification characteristics of DV. The only thing that has changed is the thermal stratification height.

Wu, X.; Gao, J.; Wu, W.

2006-01-01T23:59:59.000Z

365

HOW THE LEED VENTILATION CREDIT IMPACTS ENERGY CONSUMPTION OF GSHP SYSTEMS A CASE STUDY FOR PRIMARY SCHOOLS  

Science Conference Proceedings (OSTI)

This paper presents a study on the impacts of increased outdoor air (OA) ventilation on the performance of ground-source heat pump (GSHP) systems that heat and cool typical primary schools. Four locations Phoenix, Miami, Seattle, and Chicago are selected in this study to represent different climate zones in the United States. eQUEST, an integrated building and HVAC system energy analysis program, is used to simulate a typical primary school and the GSHP system at the four locations with minimum and 30% more than minimum OA ventilation. The simulation results show that, without an energy recovery ventilator, the 30% more OA ventilation results in an 8.0 13.3% increase in total GSHP system energy consumption at the four locations. The peak heating and cooling loads increase by 20.2 30% and 14.9 18.4%, respectively, at the four locations. The load imbalance of the ground heat exchanger is increased in hot climates but reduced in mild and cold climates.

Liu, Xiaobing [ORNL

2011-01-01T23:59:59.000Z

366

Research on Automatically Identification of Diagonal Air-flow Branches of Complex Ventilation System of Coal Mines  

Science Conference Proceedings (OSTI)

air-flow branches identification and stability analysis is one of the core contents of stability and reliability theory of mine ventilation system. This current paper takes deeply research on diagonal air-flow branches. Limitations of the path method ... Keywords: diagonal air-flow branch, path collection, path method, node-position method

Feng Cai, Zegong Liu

2012-07-01T23:59:59.000Z

367

Genetic lateral and amplitude tuning with rule selection for fuzzy control of heating, ventilating and air conditioning systems  

Science Conference Proceedings (OSTI)

In this work, we propose the use of a new post-processing method for the lateral and amplitude tuning of membership functions combined with a rule selection to develop accurate fuzzy logic controllers dedicated to the control of heating, ventilating ...

R. Alcal; J. Alcal-Fdez; F. J. Berlanga; M. J. Gacto; F. Herrera

2006-06-01T23:59:59.000Z

368

The role of the US Department of Energy in indoor air quality and building ventilation policy development  

SciTech Connect

Building ventilation consumes about 5.8 exajoules of energy each year in the US The annual cost of this energy, used for commercial building fans (1.6 exajoules) and the heating and cooling of outside air (4.2 exajoules), is about $US 33 billion per year. Energy conservation measures that reduce heating and cooling season ventilation rates 15 to 35% in commercial and residential buildings can result in a national savings of about 0.6 to 1.5 exajoules ($US 3-8 billion) per year assuming no reduction of commercial building fan energy use. The most significant adverse environmental impact of reduced ventilation and infiltration is the potential degradation of the buildings indoor air quality. Potential benefits to the US from the implementation of sound indoor air quality and building ventilation reduction policies include reduced building-sector energy consumption; reduced indoor, outdoor, and global air pollution; reduced product costs; reduced worker absenteeism; reduced health care costs; reduced litigation; increased worker well-being and productivity; and increased product quality and competitiveness.

Traynor, G.W. [Lawrence Berkeley Lab., CA (United States); Talbott, J.M.; Moses, D.O. [USDOE, Washington, DC (United States)

1993-07-01T23:59:59.000Z

369

The estimation of wind pressures at ventilation inlets and outlets on buildings  

Science Conference Proceedings (OSTI)

Two example calculations illustrate the application of information provided in chapter 14 of the 1989 ASHRAE Fundamentals to the estimation of wind pressures at ventilation inlets and outlets on the exteriors of buildings. Wind pressures are calculated using the local estimated reference mean wind speeds at the building site and pressure coefficients selected from figures provided in Chapter 14 of the handbook. Calculations include estimation of wind speeds at building sites located significant distance from airport weather data recording stations in a variety of terrains using the power law mean wind speed profile equation. Wind frequency data are used to calculate the relative probability of occurrence of wind speed and direction events. Wind tunnel studies are recommended as the best source of wind pressure coefficients for applications where consequences of wind effects could be critical.

Aynsley, R.M (Georgia Inst. of Technology, Atlanta, GA (US))

1989-01-01T23:59:59.000Z

370

Development of an Integrated Residential Heating, Ventilation, Cooling, and Dehumidification System for Residences  

SciTech Connect

The Need and the Opportunity Codes such as ASHRAE 90.2 and IECC, and programs such as Energy Star and Builders Challenge, are causing new homes to be built to higher performance standards. As a result sensible cooling loads in new homes are going down, but indoor air quality prerogatives are causing ventilation rates and moisture loads to increase in humid climates. Conventional air conditioners are unable to provide the low sensible heat ratios that are needed to efficiently cool and dehumidify homes since dehumidification potential is strongly correlated with cooling system operating hours. The project team saw an opportunity to develop a system that is at least as effective as a conventional air conditioner plus dehumidifier, removes moisture without increasing the sensible load, reduces equipment cost by integrating components, and simplifies installation. Project Overview Prime contractor Davis Energy Group led a team in developing an Integrated Heating, Ventilation, Cooling, and Dehumidification (I-HVCD) system under the DOE SBIR program. Phase I and II SBIR project activities ran from July 2003 through December 2007. Tasks included: (1) Mechanical Design and Prototyping; (2) Controls Development; (3) Laboratory and Field Testing; and (4) Commercialization Activities Technology Description. Key components of the prototype I-HVCD system include an evaporator coil assembly, return and outdoor air damper, and controls. These are used in conjunction with conventional components that include a variable speed air handler or furnace, and a two-stage condensing unit. I-HVCD controls enable the system to operate in three distinct cooling modes to respond to indoor temperature and relative humidity (RH) levels. When sensible cooling loads are high, the system operates similar to a conventional system but varies supply airflow in response to indoor RH. In the second mode airflow is further reduced, and the reheat coil adds heat to the supply air. In the third mode, the reheat coil adds additional heat to maintain the supply air temperature close to the return air temperature (100% latent cooling). Project Outcomes Key Phase II objectives were to develop a pre-production version of the system and to demonstrate its performance in an actual house. The system was first tested in the laboratory and subsequently underwent field-testing at a new house in Gainesville, Florida. Field testing began in 2006 with monitoring of a 'conventional best practices' system that included a two stage air conditioner and Energy Star dehumidifier. In September 2007, the I-HVCD components were installed for testing. Both systems maintained uniform indoor temperatures, but indoor RH control was considerably better with the I-HVCD system. The daily variation from average indoor humidity conditions was less than 2% for the I-HVCD vs. 5-7% for the base case system. Data showed that the energy use of the two systems was comparable. Preliminary installed cost estimates suggest that production costs for the current I-HVCD integrated design would likely be lower than for competing systems that include a high efficiency air conditioner, dehumidifier, and fresh air ventilation system. Project Benefits This project verified that the I-HVCD refrigeration compacts are compact (for easy installation and retrofit) and can be installed with air conditioning equipment from a variety of manufacturers. Project results confirmed that the system can provide precise indoor temperature and RH control under a variety of climate conditions. The I-HVCD integrated approach offers numerous benefits including integrated control, easier installation, and reduced equipment maintenance needs. Work completed under this project represents a significant step towards product commercialization. Improved indoor RH control and fresh air ventilation are system attributes that will become increasingly important in the years ahead as building envelopes improve and sensible cooling loads continue to fall. Technologies like I-HVCD will be instrumental in meeting goals set by Building America

Hoeschele, M.A.; D.A. Springer

2008-06-18T23:59:59.000Z

371

Utilization of ventilation air methane as a supplementary fuel at a circulating fluidized bed combustion boiler  

Science Conference Proceedings (OSTI)

Ventilation air methane (VAM) accounts for 60-80% of the total emissions from underground coal mining activities in China, which is of serious greenhouse gas concerns as well as a waste of valuable fuel sources. This contribution evaluates the use of the VAM utilization methods as a supplementary fuel at a circulating fluidized bed combustion boiler. The paper describes the system design and discusses some potential technical challenges such as methane oxidation rate, corrosion, and efficiency. Laboratory experimentation has shown that the VAM can be burnt completely in circulated fluidized bed furnaces, and the VAM oxidation does not obviously affect the boiler operation when the methane concentration is less than 0.6%. The VAM decreased the incomplete combustion loss for the circulating fluidized bed combustion furnace. The economic benefit from the coal saving insures that the proposed system is more economically feasible. 17 refs., 3 figs., 1 tab.

Changfu You; Xuchang Xu [Tsinghua University, Beijing (China). Key Laboratory for Thermal Science and Power Engineering of Ministry of Education

2008-04-01T23:59:59.000Z

372

Energy Conservation Through Improved Industrial Ventilation in Small and Medium-Sized Industrial Plants  

E-Print Network (OSTI)

This paper discusses energy conservation projects in the area of industrial ventilation that have been recommended by the Texas A&M University Energy Analysis and Diagnostic Center (EADQ to small and medium-sized industries in Texas. The projects recommended include reducing blower operating time/speed and static pressure for dust collectors, installing radiation shield on ovens, and using outside air for cooling. The projects were recommended to different kinds of industries including wood fabrication, frozen food, primary metals, plastics and insulation products. These projects are predicted to save up to 8% of the plants' utility bills with average simple payback periods of less than three years. Projects that involved blowers (fans) speed/operation time reduction resulted in most savings.

Saman, N. F.; Nutter, D. W.

1994-04-01T23:59:59.000Z

373

Development of an Integrated Residential Heating, Ventilation, Cooling, and Dehumidification System for Residences  

Science Conference Proceedings (OSTI)

The Need and the Opportunity Codes such as ASHRAE 90.2 and IECC, and programs such as Energy Star and Builders Challenge, are causing new homes to be built to higher performance standards. As a result sensible cooling loads in new homes are going down, but indoor air quality prerogatives are causing ventilation rates and moisture loads to increase in humid climates. Conventional air conditioners are unable to provide the low sensible heat ratios that are needed to efficiently cool and dehumidify homes since dehumidification potential is strongly correlated with cooling system operating hours. The project team saw an opportunity to develop a system that is at least as effective as a conventional air conditioner plus dehumidifier, removes moisture without increasing the sensible load, reduces equipment cost by integrating components, and simplifies installation. Project Overview Prime contractor Davis Energy Group led a team in developing an Integrated Heating, Ventilation, Cooling, and Dehumidification (I-HVCD) system under the DOE SBIR program. Phase I and II SBIR project activities ran from July 2003 through December 2007. Tasks included: (1) Mechanical Design and Prototyping; (2) Controls Development; (3) Laboratory and Field Testing; and (4) Commercialization Activities Technology Description. Key components of the prototype I-HVCD system include an evaporator coil assembly, return and outdoor air damper, and controls. These are used in conjunction with conventional components that include a variable speed air handler or furnace, and a two-stage condensing unit. I-HVCD controls enable the system to operate in three distinct cooling modes to respond to indoor temperature and relative humidity (RH) levels. When sensible cooling loads are high, the system operates similar to a conventional system but varies supply airflow in response to indoor RH. In the second mode airflow is further reduced, and the reheat coil adds heat to the supply air. In the third mode, the reheat coil adds additional heat to maintain the supply air temperature close to the return air temperature (100% latent cooling). Project Outcomes Key Phase II objectives were to develop a pre-production version of the system and to demonstrate its performance in an actual house. The system was first tested in the laboratory and subsequently underwent field-testing at a new house in Gainesville, Florida. Field testing began in 2006 with monitoring of a 'conventional best practices' system that included a two stage air conditioner and Energy Star dehumidifier. In September 2007, the I-HVCD components were installed for testing. Both systems maintained uniform indoor temperatures, but indoor RH control was considerably better with the I-HVCD system. The daily variation from average indoor humidity conditions was less than 2% for the I-HVCD vs. 5-7% for the base case system. Data showed that the energy use of the two systems was comparable. Preliminary installed cost estimates suggest that production costs for the current I-HVCD integrated design would likely be lower than for competing systems that include a high efficiency air conditioner, dehumidifier, and fresh air ventilation system. Project Benefits This project verified that the I-HVCD refrigeration compacts are compact (for easy installation and retrofit) and can be installed with air conditioning equipment from a variety of manufacturers. Project results confirmed that the system can provide precise indoor temperature and RH control under a variety of climate conditions. The I-HVCD integrated approach offers numerous benefits including integrated control, easier installation, and reduced equipment maintenance needs. Work completed under this project represents a significant step towards product commercialization. Improved indoor RH control and fresh air ventilation are system attributes that will become increasingly important in the years ahead as building envelopes improve and sensible cooling loads continue to fall. Technologies like I-HVCD will be instrumental in meeting goals set by Building America

Hoeschele, M.A.; D.A. Springer

2008-06-18T23:59:59.000Z

374

Review Article Ventilation/Perfusion SPECT for Diagnosis of Pulmonary Embolism and Other Diseases  

E-Print Network (OSTI)

License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. V/PSPECT has the potential to become a first hand tool for diagnosis of pulmonary embolism based on standardized technology and new holistic interpretation criteria. Pretest probability helps clinicians choose the most appropriate objective test for diagnosis or exclusion of PE. Interpretation should also take into account all ventilation and perfusion patterns allowing diagnosis of other cardiopulmonary diseases than PE. In such contexts, V/PSPECT has excellent sensitivity and specificity. Nondiagnostic reports are ?3%. V/PSPECT has no contraindication; it is noninvasive and has very low radiation exposure. Moreover, acquisition time for V/PSPECT is only 20 minutes. It allows quantification of PE extension which has an impact on individual treatment. It is uniquely useful for followup and research. 1.

Marika Bajc; Bjrn Jonson

2010-01-01T23:59:59.000Z

375

Improving Ventilation and Saving Energy: Final Report on Indoor Environmental Quality and Energy Monitoring in Sixteen Relocatable Classrooms  

Science Conference Proceedings (OSTI)

An improved HVAC system for portable classrooms was specified to address key problems in existing units. These included low energy efficiency, poor control of and provision for adequate ventilation, and excessive acoustic noise. Working with industry, a prototype improved heat pump air conditioner was developed to meet the specification. A one-year measurement-intensive field-test of ten of these IHPAC systems was conducted in occupied classrooms in two distinct California climates. These measurements are compared to those made in parallel in side by side portable classrooms equipped with standard 10 SEER heat pump air conditioner equipment. The IHPAC units were found to work as designed, providing predicted annual energy efficiency improvements of about 36 percent to 42 percent across California's climate zones, relative to 10 SEER units. Classroom ventilation was vastly improved as evidenced by far lower indoor minus outdoor CO2 concentrations. TheIHPAC units were found to provide ventilation that meets both California State energy and occupational codes and the ASHRAE minimum ventilation requirements; the classrooms equipped with the 10 SEER equipment universally did not meet these targets. The IHPAC system provided a major improvement in indoor acoustic conditions. HVAC system generated background noise was reduced in fan-only and fan and compressor modes, reducing the nose levels to better than the design objective of 45 dB(A), and acceptable for additional design points by the Collaborative on High Performance Schools. The IHPAC provided superior ventilation, with indoor minus outdoor CO2 concentrations that showed that the Title 24 minimum ventilation requirement of 15 CFM per occupant was nearly always being met. The opposite was found in the classrooms utilizing the 10 SEER system, where the indoor minus outdoor CO2 concentrations frequently exceeded levels that reflect inadequate ventilation. Improved ventilation conditions in the IHPAC lead to effective removal of volatile organic compounds and aldehydes, on average lowering the concentrations by 57 percent relative to the levels in the 10 SEER classrooms. The average IHPAC to 10 SEER formaldehyde ratio was about 67 percent, indicating only a 33 percent reduction of this compound in indoor air. The IHPAC thermal control system provided less variability in occupied classroom temperature than the 10 SEER thermostats. The average room temperatures in all seasons tended to be slightly lower in the IHPAC classrooms, often below the lower limit of the ASHRAE 55 thermal comfort band. State-wide and national energy modeling provided conservative estimates of potential energy savings by use of the IHPAC system that would provide payback a the range of time far lower than the lifetime of the equipment. Assuming electricity costs of $0.15/kWh, the perclassroom range of savings is from about $85 to $195 per year in California, and about $89 to $250 per year in the U.S., depending upon the city. These modelsdid not include the non-energy benefits to the classrooms including better air quality and acoustic conditions that could lead to improved health and learning in school. Market connection efforts that were part of the study give all indication that this has been a very successful project. The successes include the specification of the IHPAC equipment in the CHPS portable classroom standards, the release of a commercial product based on the standards that is now being installed in schools around the U.S., and the fact that a public utility company is currently considering the addition of the technology to its customer incentive program. These successes indicate that the IHPAC may reach its potential to improve ventilation and save energy in classrooms.

Michael G. Apte, Bourassa Norman, David Faulkner, Alfred T. Hodgson,; Toshfumi Hotchi, Michael Spears, Douglas P. Sullivan, and Duo Wang; Apte, Michael; Apte, Michael G.; Norman, Bourassa; Faulkner, David; Hodgson, Alfred T.; Hotchi, Toshfumi; Spears, Michael; Sullivan, Douglas P.; Wang, Duo

2008-04-04T23:59:59.000Z

376

Etude d'un systme combin de ventilation et de chauffage au bois dans les btiments basse consommation d'nergie.  

E-Print Network (OSTI)

??Ce travail porte sur ltude et le dveloppement dun systme innovant de ventilation et de chauffage au bois dans les habitations basse consommation dnergie, (more)

Peign, Pierre

2012-01-01T23:59:59.000Z

377

Low Energy Buildings: CFD Techniques for Natural Ventilation...  

NLE Websites -- All DOE Office Websites (Extended Search)

projects, the talk will include work Malcolm completed as part of the design of the LEED Gold award winning Harm A. Weber Academic Center at Judson University, in Elgin, near...

378

Air Temperature Measurement Errors in Naturally Ventilated Radiation Shields  

Science Conference Proceedings (OSTI)

Two sources of systematic errors are considered for estimating air temperature. The first source is ambiguity of the definition of the standardized measurement height over vegetated surfaces of varying heights. Without such a standardization, ...

Reina Nakamura; L. Mahrt

2005-07-01T23:59:59.000Z

379

WINDOW OPENING BEHAVIOUR IN A NATURALLY VENTILATED SCHOOL  

E-Print Network (OSTI)

Several studies have highlighted the significant disparities between the predicted performance of new buildings and their post occupancy measured performance. Occupant window opening behaviour has been shown to have a significant impact on both classroom indoor air quality and building energy use; and is currently poorly represented in building simulation tools. A post occupancy assessment of a new primary school was performed over a period of over one year. Concurrent measurement of window open state, CO2 concentration, temperature, and exterior environmental conditions were taken at a frequency of two minutes. In addition, classroom daily occupancy levels and monthly building energy usage were recorded. A probabilistic model of the proportion of windows open throughout the day as the occupants interact with the windows was developed based on the results of multinomial logistic regression analysis. The model was used to schedule window opening in the EnergyPlus simulation program. Predictions of both CO2 concentration and building energy performance, using the occupant behaviour model, were shown to give more accurate predictions than a model based on temperature set points.

Spencer Dutton; Li Shao

2010-01-01T23:59:59.000Z

380

Descriptions and diagrams of the primary and annulus ventilation systems of the double-shell tank farms as of January 1988  

Science Conference Proceedings (OSTI)

This document is a compilation of information describing the ventilation systems of the Double-Shell Tank farms (214-AN, -AP, -AW, -AW, -AY, -AZ, and -SY). A general description of the primary tank and annulus ventilation systems is given along with specific information on the high efficiency particulate air (HEPA) filters, condensers, preheaters, exhaust fans, and piping. This information is considered to be current as of January 1988. 38 refs, 20 figs, 30 tabs.

Blackman, A.E.; Waters, E.D.

1994-12-28T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation natural ventilation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Changing ventilation rates in U.S. offices: Implications for health, work performance, energy, and associated economics  

SciTech Connect

This paper provides quantitative estimates of benefits and costs of providing different amounts of outdoor air ventilation in U.S. offices. For four scenarios that modify ventilation rates, we estimated changes in sick building syndrome (SBS) symptoms, work performance, short-term absence, and building energy consumption. The estimated annual economic benefits were $13 billion from increasing minimum ventilation rates (VRs) from 8 to 10 L/s per person, $38 billion from increasing minimum VRs from 8 to 15 L/s per person, and $33 billion from increasing VRs by adding outdoor air economizers for the 50% of the office floor area that currently lacks economizers. The estimated $0.04 billion in annual energy-related benefits of decreasing minimum VRs from 8 to 6.5 L/s per person are very small compared to the projected annual costs of $12 billion. Benefits of increasing minimum VRs far exceeded energy costs while adding economizers yielded health, performance, and absence benefits with energy savings.

Fisk, William; Black, Douglas; Brunner, Gregory

2011-07-01T23:59:59.000Z

382

Waste tank 241-SY-101 dome airspace and ventilation system response to a flammable gas plume burn  

SciTech Connect

A series of flammable gas plume burn and transient pressure analyses have been completed for a nuclear waste tank (241-SY-101) and associated tank farm ventilation system at the U.S. Department of Energy`s Hanford facility. The subject analyses were performed to address issues concerning the effects of transient pressures resulting from igniting a small volume of concentrated flammable gas just released from the surface of the waste as a plume and before the flammable gas concentration could be reduced by mixing with the dome airspace by local convection and turbulent diffusion. Such a condition may exist as part of an in progress episode gas release (EGR) or gas plume event. The analysis goal was to determine the volume of flammable gas that if burned within the dome airspace would result in a differential pressure, after propagating through the ventilation system, greater than the current High Efficiency Particulate Filter (HEPA) limit of 2.49 KPa (10 inches of water or 0. 36 psi). Such a pressure wave could rupture the tank ventilation system inlet and outlet HEPA filters leading to a potential release of contaminants to the environment

Heard, F.J.

1995-11-01T23:59:59.000Z

383

Study on Energy Saving of the Interlayer Ventilation Walla Used in Clean Operation Rooms  

E-Print Network (OSTI)

Recovery energy of the exhaust in air conditioning is very important to clean operating rooms. In disinfected operating rooms, we often use completely fresh air conditioning system in order to maintain cleanliness. All the return air of the air conditioning must be discharged. For recovering the exhaust energy, whole heat exchangers are used, and they may bring cross-infection in clean operating rooms. Cross-infection would negatively affect cleanness. This paper puts forward an air layer inside of a building's external wall that acts as a passageway for air conditioning exhaust, and also providing a place for the thermal exchange of the air conditioning exhaust. This kind of envelope is named an interlayer ventilation wall. There are two advantages. First, it will recover and reutilize the energy that the air conditioning exhaust takes, avoid cross-infection between the fresh air and the exhaust. Second, it will lower the energy loss of the heat exchange through the envelope. The energy saving effect will be very significant in clean operating rooms.

Feng, J.; Lian, Z.; Hou, Z.

2006-01-01T23:59:59.000Z

384

Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems  

DOE Green Energy (OSTI)

This paper presents a freely available Modelica library for building heating, ventilation and air conditioning systems. The library is based on the Modelica.Fluid library. It has been developed to support research and development of integrated building energy and control systems. The primary applications are controls design, energy analysis and model-based operation. The library contains dynamic and steady-state component models that are applicable for analyzing fast transients when designing control algorithms and for conducting annual simulations when assessing energy performance. For most models, dimensional analysis is used to compute the performance for operating points that differ from nominal conditions. This allows parameterizing models in the absence of detailed geometrical information which is often impractical to obtain during the conceptual design phase of building systems. In the first part of this paper, the library architecture and the main classes are described. In the second part, an example is presented in which we implemented a model of a hydronic heating system with thermostatic radiator valves and thermal energy storage.

Wetter, Michael

2009-06-17T23:59:59.000Z

385

Outdoor Air, Heat Wheels and JCPenney: A New Approach to Retail Ventilation  

E-Print Network (OSTI)

JCPenney Construction Services department is responsible for the construction of new stores, takeover of existing facilities to create a new store, repairs to existing JCPenney facilities and the expansion and modernization of stores across the nation and the world. Each year, JCPenney Construction Services handles approximately 50 projects along these lines. After the implementation of ASHRAE 62- 1989 by JCPenney and many major building codes, including BOCA, mechanical engineers at JCPenney noticed a sharp increase in the percentage of cooling capacity required to cool the outdoor ventilation air. In an effort to limit this impact, both in first cost and in operational costs, JCPenney is beginning to make an effort to use enthalpy heat wheels in the hot and humid climate areas where it is economically feasible. This paper discusses the efforts of JCPenney to implement this option to the treatment of outdoor air in a store in Baton Rouge, LA while maintaining indoor air quality requirements as stated in ASHRAE Standard 62-1989 and maintaining energy efficiency. This paper also discusses the projected energy savings and operations of this alternative to the standard treatment of outdoor air.

Smith, C. S.; Bartlett, T. A.

1998-01-01T23:59:59.000Z

386

Calculation note: project W-320 primary ventilation air flowrequirements for mitigation of steady state flammable gasconcentrations in the headspaces of tanks 241-C-106 and 241-AY-102  

DOE Green Energy (OSTI)

This calculation note analyzes headspace concentrations of hydrogen dependent upon assumed ventilation flow rates provided for tanks 241-C-106 and 241-AY-102. The analyses are based on measured or estimated steady state hydrogen release rates. Tank 241-C-106 is analyzed prior to sluicing; tank 241-AY-102 is analyzed both prior to and after completion of sluicing. Specific analyses, using both best estimated and bounding hydrogen generation rates, include the minimum primary ventilation flow rates required in the tanks to ensure that the steady state hydrogen concentration in the respective tank headspace does not exceed 25% and 100% of the LFL. The headspace hydrogen concentration as a function of time as well as the time required to reach 25% and 100% of LFL upon complete loss of active ventilation, starting from the steady state hydrogen concentration based on a 200 CFM minimum flow rate in tank 241-C-106 and a 100 CFM minimum flow rate in tank241-AY-102. The headspace hydrogen concentration as a function of thee following partial loss of active ventilation (i.e., step changes to l60, l20, 80, and 40 CFM ventilation flow rates) in tank 241-C-106, staffing from a 200 CFM flow rate and the corresponding steady state hydrogen concentration based on the 200 CFM flow rate. The headspace hydrogen concentration as a function of the following partial loss of active ventilation i.e., step changes to 80, 60, 40, and 20 CFM ventilation flow rates) in tank 241-AY-102, starting from a 100 CFM flow rate and the corresponding steady state hydrogen concentration based on the 100 CFM flow rate.

Estey, S.D.

1997-06-04T23:59:59.000Z

387

A survey and critical review of the literature on indoor air quality, ventilation and health symptoms in schools  

Science Conference Proceedings (OSTI)

A survey and critical review were undertaken of existing published literature and reports on indoor air quality (IAQ), ventilation, and IAQ- and building-related health problems in schools, including California schools. Over 450 relevant publications were obtained and reviewed, including papers published in the archival peer-reviewed scientific literature, proceedings of scientific meetings, government reports, 77 NIOSH Health Hazard Evaluation Reports (HHER) and 70 reports on investigations of problem schools in California. Most of the reviewed literature was for complaint or problem schools. The types of health symptoms reported in schools were very similar to those defined as sick building syndrome (SBS) symptoms, although this may be due, at least in part, to the type of health symptom questionnaires used. Some of the symptoms, e.g., wheezing, are indicative of asthma. In the studies in which complaint and noncomplaint buildings or areas were compared, complaint buildings generally had higher rates of health symptoms.

Daisey, J.M. [Lawrence Berkeley National Lab., CA (United States). Energy and Environment Div.; Angell, W.J. [Univ. of Minnesota, St. Paul, MN (United States)

1998-03-01T23:59:59.000Z

388

Building America Top Innovations Hall of Fame Profile … Moisture and Ventilation Solutions in Hot, Humid Climates: Florida Manufactured Housing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Duct leakage was a key factor in moisture Duct leakage was a key factor in moisture damage in manufactured homes in humid climates. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 2. House-as-a-System Solutions 2.1 New Homes with Whole-House Packages Moisture and Ventilation Solutions in Hot, Humid Climates: Florida Manufactured Housing Research by Building America diagnosed the causes and prescribed a cure that dramatically reduced moisture problems in manufactured housing in Florida. In the late 1990s, Building America researchers at the Florida Solar Energy Center (FSEC) worked with manufactured home builders to diagnose moisture problems in homes in Florida. Moisture issues were so severe that in some homes researchers could push their fingers through the saturated drywall. Using a

389

Advanced control strategies for heating, ventilation, air-conditioning, and refrigeration systemsAn overview: Part I: Hard control  

SciTech Connect

A chronological overview of the advanced control strategies for heating, ventilation, air-conditioning, and refrigeration (HVAC&R) is presented in this article. The overview focuses on hard-computing or control techniques, such as proportional-integral-derivative, optimal, nonlinear, adaptive, and robust; soft-computing or control techniques, such as neural networks, fuzzy logic, genetic algorithms; and on the fusion or hybrid of hard- and soft-control techniques. Thus, it is to be noted that the terminology hard and soft computing/control has nothing to do with the hardware and software that is being generally used. Part I of a two-part series focuses on hard-control strategies, and Part II focuses on softand fusion-control in addition to some future directions in HVAC&R research. This overview is not intended to be an exhaustive survey on this topic, and any omission of other works is purely unintentional.

D. Subbaram Naidu; Craig G. Rieger

2011-02-01T23:59:59.000Z

390

Effect of radiant barriers and attic ventilation on residential attics and attic duct systems: New tools for measuring and modeling  

Science Conference Proceedings (OSTI)

A simple duct system was installed in an attic test module for a large scale climate simulator at a US national laboratory. The goal of the tests and subsequent modeling was to develop an accurate method of assessing duct system performance in the laboratory, enabling limiting conditions to be imposed at will and results to be applied to residential attics with attic duct systems. Steady-state tests were done at a severe summer and a mild winter condition. In all tests the roof surface was heated above ambient air temperatures by infrared lights. The attic test module first included then did not include the duct system. Attic ventilation from eave vents to a ridge vent was varied from none to values achievable by a high level of power ventilation. A radiant barrier was attached to the underside of the roof deck, both with and without the duct system in place. Tests were also done without the radiant barrier, both with and without the duct system. When installed, the insulated ducts ran along the floor of the attic, just above the attic insulation and along the edge of the attic near the eaves and one gable. These tests in a climate simulator achieved careful control and reproducibility of conditions. This elucidated dependencies that would otherwise be hidden by variations in uncontrolled variables. Based on the comparisons with the results of the tests at the mild winter condition and the severe summer condition, model predictions for attic air and insulation temperatures should be accurate within {+-} 10 F ({+-} 6 C). This is judged adequate for design purposes and could be better when exploring the effect of changes in attic and duct parameters at fixed climatic conditions.

Petrie, T.W.; Childs, P.W.; Christian, J.E.; Wilkes, K.E.

1998-07-01T23:59:59.000Z

391

Proposal for the award of a contract for the design, supply, installation and commissioning of a Heating, Ventilation and Air-Conditioning (HVAC) system for the computer room of the CERN Control Centre  

E-Print Network (OSTI)

Proposal for the award of a contract for the design, supply, installation and commissioning of a Heating, Ventilation and Air-Conditioning (HVAC) system for the computer room of the CERN Control Centre

2012-01-01T23:59:59.000Z

392

Proposal for the award of a contract for the design, supply, installation and commissioning of a Heating Ventilation and Air Conditioning (HVAC) system for the HIE-ISOLDE infrastructure  

E-Print Network (OSTI)

Proposal for the award of a contract for the design, supply, installation and commissioning of a Heating Ventilation and Air Conditioning (HVAC) system for the HIE-ISOLDE infrastructure

2012-01-01T23:59:59.000Z

393

Effect of building airtightness and fan size on the performance of mechanical ventilation systems in new U.S. houses: a critique of ASHRAE standard 62.2-2003  

E-Print Network (OSTI)

2002. When Does a House Need Passive Air Inlets? June. VolStudy on Passive Ventilation in Airtight Houses in Coldsupply. Because houses are so tight, passive vents are a

Roberson, J.

2004-01-01T23:59:59.000Z

394

Multifamily Individual Heating and Ventilation Systems, Lawrence, Massachusetts (Fact Sheet), Building America Case Study: Efficient Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Multifamily Individual Heating Multifamily Individual Heating and Ventilation Systems Lawrence, Massachusetts PROJECT INFORMATION Construction: Retrofit Type: Multifamily, affordable Builder: Merrimack Valley Habitat for Humanity (MVHfH) www.merrimackvalleyhabitat.org Size: 840 to 1,170 ft 2 units Price Range: $125,000-$130,000 Date completed: Slated for 2014 Climate Zone: Cold (5A) PERFORMANCE DATA HERS Index Range: 48 to 63 Projected annual energy cost savings: $1,797 Incremental cost of energy efficiency measures: $3,747 Incremental annual mortgage: $346 Annual cash flow: $1,451 Billing data: Not available The conversion of an older Massachusetts building into condominiums illustrates a safe, durable, and cost-effective solution for heating and ventilation systems that can potentially benefit millions of multifamily buildings. Merrimack Valley

395

Transpired Solar Collector at NREL's Waste Handling Facility Uses Solar Energy to Heat Ventilation Air (Fact Sheet) (Revised), Federal Energy Management Program (FEMP)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Highlights Highlights System Size 300 ft 2 transpired solar collector Energy Production About 125 Btu/hr/ft 2 (400 W/m 2 ) of heat delivery under ideal conditions (full sun) Installation Date 1990 Motivation Provide solar-heated ventilation air to offset some of the heating with conventional electric resistance heaters Annual Savings 14,310 kWh (49 million Btu/yr) or about 26% of the energy required to heat the facility's ventilation air System Details Components Black, 300 ft 2 corrugated aluminum transpired solar collector with a porosity of 2%; bypass damper; two-speed 3000 CFM vane axial supply fan; electric duct heater; thermostat controller Storage None Loads 188 million Btu/year (55,038 kWh/year) winter average to heat 1,300 ft 2 Waste Handling Facility

396

Transpired Solar Collector at NREL's Waste Handling Facility Uses Solar Energy to Heat Ventilation Air (Fact Sheet) (Revised), Federal Energy Management Program (FEMP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Highlights Highlights System Size 300 ft 2 transpired solar collector Energy Production About 125 Btu/hr/ft 2 (400 W/m 2 ) of heat delivery under ideal conditions (full sun) Installation Date 1990 Motivation Provide solar-heated ventilation air to offset some of the heating with conventional electric resistance heaters Annual Savings 14,310 kWh (49 million Btu/yr) or about 26% of the energy required to heat the facility's ventilation air System Details Components Black, 300 ft 2 corrugated aluminum transpired solar collector with a porosity of 2%; bypass damper; two-speed 3000 CFM vane axial supply fan; electric duct heater; thermostat controller Storage None Loads 188 million Btu/year (55,038 kWh/year) winter average to heat 1,300 ft 2 Waste Handling Facility

397

Physical features of small disperse coal dust fraction transportation and structurization processes in iodine air filters of absorption type in ventilation systems at nuclear power plants  

E-Print Network (OSTI)

The research on the physical features of transportation and structurization processes by the air-dust aerosol in the granular filtering medium with the cylindrical coal adsorbent granules in an air filter of the adsorption type in the heating ventilation and cooling (HVAC) system at the nuclear power plant is completed. The physical origins of the coal dust masses distribution along the absorber with the granular filtering medium with the cylindrical coal granules during the air-dust aerosol intake process in the near the surface layer of absorber are researched. The quantitative technical characteristics of air filtering elements, which have to be considered during the optimization of air filters designs for the application in the ventilation systems at the nuclear power plants, are obtained.

Ledenyov, Oleg P; Poltinin, P Ya; Fedorova, L I

2012-01-01T23:59:59.000Z

398

Task Plan for the selection and evaluation of flow monitoring instrumentation to be used on the primary exhaust ventilation in Double Shell Hydrogen Watch List Tanks  

DOE Green Energy (OSTI)

This Task Plan outlines the activities required to select and evaluate flow measuring devices to be used in the primary exhaust ventilation ducts for Double Shell Tanks (DST) on the hydrogen watch list that don`t already have this capability. This currently includes tanks 101-AW, 103-AN, 104-AN, and 105-AN. The continuous measurement and recording of this flow is necessary to quantify the amount of hydrogen being off-gased by these tanks for further mitigation studies.

Hertelendy, N.A.

1995-12-01T23:59:59.000Z

399

A numerical approach to evaluating what percentage of a living space is well-ventilated, for the assessment of thermal comfort  

E-Print Network (OSTI)

A bioclimatic approach to designing comfortable buildings in hot and humid tropical regions requires, firstly, some preliminary, important work on the building envelope to limit the energy contributions, and secondly, an airflow optimization of the building. For the first step, tools such as nodal or zonal models have been largely implemented. For the second step, the assessment of air velocities, in three dimensions and in a large space, can only be performed through the use of detailed models such as with CFD. This paper deals with the improvement of thermal comfort by ventilating around the occupants. For this purpose, the average velocity coefficient definition is modified to be adapted to CFD and the areas involving movement or the living spaces. We propose a new approach based on the derivation of a new quantity: the well-ventilated percentage of a living space. The well-ventilated percentage of a space allows a time analysis of the aeraulic behaviour of the building in its environment. These percentages can be over a period such as one day, a season or a year. These kinds of results are helpful for an architect to configure the rooms of a house according to their uses, the environment, the architectural choices and the constraints related to the design of bioclimatic buildings.

Alain Bastide; Alfred Jean Philippe Lauret; Franois Garde; Harry Boyer

2012-12-18T23:59:59.000Z

400

Improving Ventilation and Saving Energy: Final Report on Indoor Environmental Quality and Energy Monitoring in Sixteen Relocatable Classrooms  

NLE Websites -- All DOE Office Websites (Extended Search)

LBNL-203E LBNL-203E Improving Ventilation and Saving Energy: Final Report on Indoor Environmental Quality and Energy Monitoring in Sixteen Relocatable Classrooms Appendix Michael G. Apte, Bourassa Norman*, David Faulkner, Alfred T. Hodgson, Toshfumi Hotchi, Michael Spears, Douglas P. Sullivan, and Duo Wang 4 April 2008 A-1 Tables Table A-1. Thermal Comfort Results - May 2005, September 2005, November 2005 Room 13 - 9/19/2005 AM/PM Time Period Operative T and RH Acceptable (% of time) Operative T and RH, and Air Velocity acceptable (% of time) Average Indoor Air T (°C) Average Indoor Air RH (%) AM AM1 66.7 0.0 21.3 67.1 PM PM1 40.0 0.0 24.9 46.8 Room 13 - 5/16/2005 AM AM1 0.0 0.0 21.1 0.4 PM PM1 0.0 0.0 20.8 55.5 Room 13 - 12/1/2005 AM AM1 0.0% 0.0% 17.8 38.5

Note: This page contains sample records for the topic "ventilation natural ventilation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Modeling, design and thermal performance of a BIPV/T system thermally coupled with a ventilated concrete slab in a low energy solar house: Part 2, ventilated concrete slab  

Science Conference Proceedings (OSTI)

This paper is the second of two papers that describe the modeling and design of a building-integrated photovoltaic-thermal (BIPV/T) system thermally coupled with a ventilated concrete slab (VCS) adopted in a prefabricated, two-storey detached, low energy solar house and their performance assessment based on monitored data. The VCS concept is based on an integrated thermal-structural design with active storage of solar thermal energy while serving as a structural component - the basement floor slab ({proportional_to}33 m{sup 2}). This paper describes the numerical modeling, design, and thermal performance assessment of the VCS. The thermal performance of the VCS during the commissioning of the unoccupied house is presented. Analysis of the monitored data shows that the VCS can store 9-12 kWh of heat from the total thermal energy collected by the BIPV/T system, on a typical clear sunny day with an outdoor temperature of about 0 C. It can also accumulate thermal energy during a series of clear sunny days without overheating the slab surface or the living space. This research shows that coupling the VCS with the BIPV/T system is a viable method to enhance the utilization of collected solar thermal energy. A method is presented for creating a simplified three-dimensional, control volume finite difference, explicit thermal model of the VCS. The model is created and validated using monitored data. The modeling method is suitable for detailed parametric study of the thermal behavior of the VCS without excessive computational effort. (author)

Chen, Yuxiang; Galal, Khaled; Athienitis, A.K. [Dept. of Building, Civil and Environmental Engineering, Concordia University, 1455 De Maisonneuve West, EV6.139, Montreal, Quebec (Canada)

2010-11-15T23:59:59.000Z

402

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation...  

Buildings Energy Data Book (EERE)

2005 Natural Gas 56% 57% 55% 46% 45% 45% 45% Electricity 8% 18% 26% 36% 42% 42% 43% Fuel Oil 14% 10% 7% 5% 2% 2% 2% LPG 5% 3% 2% 5% 6% 8% 8% Other (1) 17% 12% 10% 8% 4% 3% 2% Total...

403

System Performance Measurement Supports Design Recommendations for Solar Ventilation Preheat System (Brochure)  

DOE Green Energy (OSTI)

Technical briefing to report the outcomes of a data monitoring effort to determine the nature of solar vent preheat system performance problems at a U.S. military installation. The analysis reports up-to-date research and findings regarding system design, helping to clarify the issue as a factor of system design, rather than a shortcoming of SVP systems.

Not Available

2011-08-01T23:59:59.000Z

404

Thermally-induced ventilation in atria: an atrium classification scheme and promising test sites  

DOE Green Energy (OSTI)

In establishing the atrium classification scheme, specific attention was given to: climate (hot-arid, warm-humid, and temperate), atrium configuration (open, closed, and adjustable tops), and thermal mechanism (natural convection, radiative cooling, shading, and others). Application of the resulting three-dimensional (three-coordinate) matrix was considered and tested. Although the testing was for purposes of checking scheme application, the procedure indicated that most of the atria examined were of the adjustable-top configuration with daylighting the principal functional mode. However, it was noted that thermally-induced air flow was present in many of the atria classified. In the identification of promising test sites it was noted that there appears to be a shortage of buildings which meet the atrium definition. Consequently, prospective test sites were categorized as follows based upon anticipated value to the study: commercial atria already constructed, commercial atria planned or under construction, and residential atria already constructed.

Not Available

1981-06-01T23:59:59.000Z

405

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book (EERE)

1 1 Main Residential Heating Equipment as of 1987, 1993, 1997, 2001, and 2005 (Percent of Total Households) Equipment Type 1987 1993 1997 2001 2005 Natural Gas 55% 53% 53% 55% 52% Central Warm-Air Furnace 35% 36% 38% 42% 40% Steam or Hot-Water System 10% 9% 7% 7% 7% Floor/Wall/Pipeless Furnace 6% 4% 4% 3% 2% Room Heater/Other 4% 3% 4% 3% 3% Electricity 20% 26% 29% 29% 30% Central Warm-Air Furnace 8% 10% 11% 12% 14% Heat Pump 5% 8% 10% 10% 8% Built-In Electric Units 6% 7% 7% 6% 5% Other 1% 1% 2% 2% 1% Fuel Oil 12% 11% 9% 7% 7% Steam or Hot-Water System 7% 6% 5% 4% 4% Central Warm-Air Furnace 4% 5% 4% 3% 3% Other 1% 0% 0% 0% 0% Other 13% 11% 9% 8% 10% Total 100% 100% 100% 100% 100% Note(s): Source(s): Other equipment includes wood, LPG, kerosene, other fuels, and none. EIA, A Look at Residential Consumption in 2005, June 2008, Table HC2-4; EIA, A Look at Residential Energy Consumption in 2001, Apr. 2004, 'Table HC3-

406

US Department of Energys Regulatory Negotiations Convening on Commercial Certification for Heating, Ventilating, Air-Conditioning, and Refrigeration Equipment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

US Department of Energy's Regulatory Negotiations Convening on US Department of Energy's Regulatory Negotiations Convening on Commercial Certification for Heating, Ventilating, Air-Conditioning, and Refrigeration Equipment Public Information for Convening Interviews I. What are the substantive issues DOE seeks to address? Strategies for grouping various basic models for purposes of certification; Identification of non-efficiency attributes, which do not impact the measured consumption of the equipment as tested by DOE's test procedure; The information that is certified to the Department; The timing of when the certification should be made relative to distribution in commerce; and Alterations to a basic model that would impact the certification.

407

International Energy Agency Building Energy Simulation Test and Diagnostic Method for Heating, Ventilating, and Air-Conditioning Equipment Models (HVAC BESTEST); Volume 1: Cases E100-E200  

DOE Green Energy (OSTI)

This report describes the Building Energy Simulation Test for Heating, Ventilating, and Air-Conditioning Equipment Models (HVAC BESTEST) project conducted by the Tool Evaluation and Improvement International Energy Agency (IEA) Experts Group. The group was composed of experts from the Solar Heating and Cooling (SHC) Programme, Task 22, Subtask A. The current test cases, E100-E200, represent the beginning of work on mechanical equipment test cases; additional cases that would expand the current test suite have been proposed for future development.

Neymark, J.; Judkoff, R.

2002-01-01T23:59:59.000Z

408

The Trade-off between Solar Reflectance and Above-Sheathing Ventilation for Metal Roofs on Residential and Commercial Buildings  

Science Conference Proceedings (OSTI)

An alternative to white and cool-color roofs that meets prescriptive requirements for steep-slope (residential and non-residential) and low-slope (non-residential) roofing has been documented. Roofs fitted with an inclined air space above the sheathing (herein termed above-sheathing ventilation, or ASV), performed as well as if not better than high-reflectance, high-emittance roofs fastened directly to the deck. Field measurements demonstrated the benefit of roofs designed with ASV. A computer tool was benchmarked against the field data. Testing and benchmarks were conducted at roofs inclined at 18.34 ; the roof span from soffit to ridge was 18.7 ft (5.7 m). The tool was then exercised to compute the solar reflectance needed by a roof equipped with ASV to exhibit the same annual cooling load as that for a direct-to-deck cool-color roof. A painted metal roof with an air space height of 0.75 in. (0.019 m) and spanning 18.7 ft (5.7 m) up the roof incline of 18.34 needed only a 0.10 solar reflectance to exhibit the same annual cooling load as a direct-to-deck cool-color metal roof (solar reflectance of 0.25). This held for all eight ASHRAE climate zones complying with ASHRAE 90.1 (2007a). A dark heat-absorbing roof fitted with 1.5 in. (0.038 m) air space spanning 18.7 ft (5.7 m) and inclined at 18.34 was shown to have a seasonal cooling load equivalent to that of a conventional direct-to-deck cool-color metal roof. Computations for retrofit application based on ASHRAE 90.1 (1980) showed that ASV air spaces of either 0.75 or 1.5 in. (0.019 and 0.038 m) would permit black roofs to have annual cooling loads equivalent to the direct-to-deck cool roof. Results are encouraging, and a parametric study of roof slope and ASV aspect ratio is needed for developing guidelines applicable to all steep- and low-slope roof applications.

Desjarlais, Andre Omer [ORNL] [ORNL; Kriner, Scott [Metal Construction Association, Glenview, IL] [Metal Construction Association, Glenview, IL; Miller, William A [ORNL] [ORNL

2013-01-01T23:59:59.000Z

409

Ventilation of porous media  

DOE Patents (OSTI)

Methods for distributing gases throughout the interstices of porous materials and removing volatile substances from the interstices of porous materials. Continuous oscillation of pressures and flows results in increased penetration of the interstices by flowing gases and increased transport of gaseous components out of the interstices. The invention is particularly useful in soil vapor extraction.

Neeper, D.A.

1992-12-31T23:59:59.000Z

410

Ventilation of porous media  

DOE Patents (OSTI)

Methods are presented for distributing gases throughout the interstices of porous materials and removing volatile substances from the interstices of porous materials. Continuous oscillation of pressures and flows results in increased penetration of the interstices by flowing gases and increased transport of gaseous components out of the interstices. The invention is particularly useful in soil vapor extraction. 10 figures.

Neeper, D.A.

1994-02-22T23:59:59.000Z

411

Ventilating Beta Plane Leases  

Science Conference Proceedings (OSTI)

The theory of warm water lenses on beta planes is extended to include heat exchange between the lenses and their environment. The motivation for this study comes from recent observations of Gulf Stream warm core rings, which clearly show that ...

William K. Dewar

1988-08-01T23:59:59.000Z

412

Energy Basics: Ventilation Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

building through the roof, walls, and windows. Heat-reflecting roofs, insulation, and energy efficient windows will help to reduce that heat conduction. Radiation is heat...

413

Positive Pressure Ventilation  

Science Conference Proceedings (OSTI)

... to the fire and can increase the rate of heat and energy being released. ... of vents open were altered to examine capability and optimization of each. ...

2013-07-16T23:59:59.000Z

414

Performance and Impact from Duct Repair and Ventilation Modifications of Two Newly Constructed Manufactured Houses Located in a Hot and Humid Climate  

E-Print Network (OSTI)

Two nearly identical houses situated next to each other in Bossier City, Louisiana were studied in an effort to better understand moisture and cooling energy related problems in manufactured houses with low thermostat set-points during the cooling season. By design, the major difference between houses was the type of air conditioning units. House A had a standard split air conditioner and House B had a twospeed split air conditioner. In an effort to make the buildings more similar, the building airtightness was adjusted until it was the same in each house, and duct leaks were sealed so that the ducts were tight and there was equal tightness in both houses. A ventilation system was also added at the same time of duct repair. Duct repair and the ventilation modifications resulted in significant impacts on the cooling energy, temperature, relative humidity, and building pressures. Cooling energy decreased 37% in House A and 18% in House B, while the floor space dewpoint increased significantly. It is estimated that 35 % savings was due solely to duct repair in House A and 17% in House B. The primary cause of House A savings being twice House B is attributed to House A operating at nearly twice the capacity most of the time and had more duct leakage repaired. This resulted in higher system pressures and therefore greater duct leakage than in House B. Before building modifications, House A used 15.4 kWh per day (32%) more than House B and 3.4 kWh per day (11%) more after modifications. A method of characterizing interstitial spaces using dewpoint measurement is presented and shows that the belly space became 2.6 times more like outdoor conditions after repairs in House A and 2.0 times more in House B.

Withers, C.; Moyer, N.; Chasar, D.; Chandra, S.

2002-01-01T23:59:59.000Z

415

Climate, comfort, & natural ventilation: a new adaptive comfort standard for ASHRAE standard 55  

E-Print Network (OSTI)

ASHRAE began funding a series of field studies of thermal comfort in office buildings in four different climate zones.

Brager, G. S.; de Dear, R.

2001-01-01T23:59:59.000Z

416

Thermal comfort in naturally ventilated buildings: revisions to ASHRAE Standard 55  

E-Print Network (OSTI)

ASHRAE began funding a series of field studies of thermal comfort in office buildings spread across four different climate zones.

de Dear, Richard; Brager, Gail

2002-01-01T23:59:59.000Z

417

Effects of Natural Ventilation and Solar Radiation on the Performance of Pyrgeometers  

Science Conference Proceedings (OSTI)

In this work the authors present the results of field experiments carried out in Almera (36.83N, 2.42W), a seashore location in southeastern Spain, in order to evaluate the performance of Eppley precision infrared radiometer (PIR) ...

M. Prez; L. Alados-Arboledas

1999-01-01T23:59:59.000Z

418

Predicting natural ventilation in residential buildings in the context of urban environments  

E-Print Network (OSTI)

Wind Induced Ventila- tion in Shielded Buildings. Report, Central Building Research Institute, Roorkee, India.

Sharag-Eldin, A.

1998-01-01T23:59:59.000Z

419

Climate, comfort, & natural ventilation: a new adaptive comfort standard for ASHRAE standard 55  

E-Print Network (OSTI)

Guidelines for Comfort. ASHRAE Journal, vol 42, no. 8,Comfort in Office Buildings, ASHRAE Transactions, Vol. 94,System in Office Buildings. ASHRAE Transactions, Vol 104 (

Brager, G. S.; de Dear, R.

2001-01-01T23:59:59.000Z

420

Thermal comfort in naturally ventilated buildings: revisions to ASHRAE Standard 55  

E-Print Network (OSTI)

G.S. Brager, R.J. de Dear, ASHRAE Journal 42 (10) (2000) 21M. Fountain, T. Doherty, ASHRAE Transactions 94 (2) (M.E. Fountain, C. Huizenga, ASHRAE Journal 38 (9) (1996) 39

de Dear, Richard; Brager, Gail

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation natural ventilation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Infiltration and Natural Ventilation Model for Whole-Building Energy Simulation of Residential Buildings: Preprint  

DOE Green Energy (OSTI)

The infiltration term in the building energy balance equation is one of the least understood and most difficult to model. For many residential buildings, which have an energy performance dominated by the envelope, it can be one of the most important terms. There are numerous airflow models; however, these are not combined with whole-building energy simulation programs that are in common use in North America. This paper describes a simple multizone nodal airflow model integrated with the SUNREL whole-building energy simulation program.

Deru, M.; Burns, P.

2003-03-01T23:59:59.000Z

422

Errors of Naturally Ventilated Air Temperature Measurements in a Spatial Observation Network  

Science Conference Proceedings (OSTI)

A spatial network of 25 air temperature sensors was deployed over an area of 3.5 km 3.5 km of agricultural land, aiming to calculate the sensible heat flux by spatial averaging instead of temporal averaging. Since temperature sensors in ...

Matthias Mauder; R. L. Desjardins; Zhiling Gao; Ronald van Haarlem

2008-11-01T23:59:59.000Z

423

Improving the Fanger model's thermal comfort predictions for naturally ventilated spaces  

E-Print Network (OSTI)

The Fanger model is the official thermal comfort model in U.S. and international standards and is based on the heat balance of the human body with the environment. This investigation focuses on re-specifying the parameters ...

Truong, Phan Hue

2010-01-01T23:59:59.000Z

424

Buoyancy and stratification in Boussinesq flow with applications to natural ventilation and intrusive gravity currents  

E-Print Network (OSTI)

heating or air conditioning systems, as discussed by Woodsheating on simple household stoves using unpro- cessed solid fuels [most often wood

Flynn, Morris R.

2006-01-01T23:59:59.000Z

425

Final Report Balancing energy conservation and occupant needs in ventilation rate standards for Big Box stores in California: predicted indoor air quality and energy consumption using a matrix of ventilation scenarios  

E-Print Network (OSTI)

commercial rooftop constant-air-volume direct expansion (DX) cooling units, with natural gas heat. Independent compressor/condenser

Apte, Michael G.

2013-01-01T23:59:59.000Z

426

Changes in Global Function and Regional Ventilation and Perfusion on SPECT During the Course of Radiotherapy in Patients With Non-Small-Cell Lung Cancer  

Science Conference Proceedings (OSTI)

Purpose: This study aimed to (1) examine changes in dyspnea, global pulmonary function test (PFT) results, and functional activity on ventilation (V)/perfusion (Q) single-photon emission computerized tomography (SPECT) scans during the course of radiation (RT), and (2) factors associated with the changes in patients with non-small-cell lung cancer (NSCLC). Methods and Materials: Fifty-six stage I to III NSCLC patients treated with definitive RT with or without chemotherapy were enrolled prospectively. Dyspnea was graded according to Common Terminology Criteria for Adverse Events version 3.0 prior to and weekly during RT. V/Q SPECT-computed tomography (CT) and PFTs were performed prior to and during RT at approximately 45 Gy. Functions of V and Q activities were assessed using a semiquantitative scoring of SPECT images. Results: Breathing improved significantly at the third week (mean dyspnea grade, 0.8 vs. 0.6; paired t-test p = 0.011) and worsened during the later course of RT (p > 0.05). Global PFT results did not change significantly, while regional lung function on V/Q SPECT improved significantly after {approx}45 Gy. The V defect score (DS) was 4.9 pre-RT versus 4.3 during RT (p = 0.01); Q DS was 4.3 pre-RT versus 4.0 during RT (p < 0.01). Improvements in V and Q functions were seen primarily in the ipsilateral lung (V DS, 1.9 pre-RT versus 1.4 during RT, p < 0.01; Q DS, 1.7 pre-RT versus 1.5 during RT, p < 0.01). Baseline primary tumor volume was significantly correlated with pre-RT V/Q DS (p < 0.01). Patients with central lung tumors had greater interval changes in V and Q than those with more peripheral tumors (p <0.05 for both V and Q DS). Conclusions: Regional ventilation and perfusion improved during RT at 45 Gy. This suggests that adaptive planning based on V/Q SPECT during RT may allow sparing of functionally recoverable lung tissue.

Yuan Shuanghu [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Department of Radiation Oncology, Shaexamndong Cancer Hospital and Institute, Jinan (China); Frey, Kirk A.; Gross, Milton D. [Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States); Hayman, James A. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Arenberg, Doug [Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan (United States); Cai Xuwei [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Ramnath, Nithya; Hassan, Khaled [Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan (United States); Moran, Jean; Eisbruch, Avraham; Ten Haken, Randall K. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Kong Fengming, E-mail: fengkong@med.umich.edu [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Radiation Oncology, Veterans' Affairs Health Center, Ann Arbor, Michigan (United States)

2012-03-15T23:59:59.000Z

427

Value impact analysis of Generic Issue 143, Availability of Heating, Ventilation, Air Conditioning (HVAC) and Chilled Water Systems  

Science Conference Proceedings (OSTI)

This study evaluates the values (benefits) and impacts (costs) associated with potential resolutions to Generic Issue 143, ``Availability of HVAC and Chilled Water Systems.`` The study identifies vulnerabilities related to failures of HVAC, chilled water, and room cooling systems; develops estimates of room heatup rates and safety-related equipment vulnerabilities following losses of HVAC/room cooler systems; develops estimates of the core damage frequencies and public risks associated with failures of these systems; develops three proposed resolution strategies to this generic issue; and performs a value/impact analysis of the proposed resolutions. Existing probabilistic risk assessments for four representative plants, including one plant from each vendor, form the basis for the core damage frequency and public risk calculations. Both internal and external events were considered. It was concluded that all three proposed resolution strategies exceed the $1,000/person-rem cost-effectiveness ratio. Additional evaluations were performed to develop ``generic`` insights on potential design-related and configuration-related vulnerabilities and potential high-frequency ({approximately}1E-04/RY) accident sequences that involve failures of HVAC/room cooling functions. It was concluded that, although high-frequency accident sequences may exist at some plants, these high-frequency sequences are plant-specific in nature or have been resolved through hardware and/or operational changes. The plant-specific Individual Plant Examinations are an effective vehicle for identification and resolution of these plant-specific anomalies and hardware configurations.

Daling, P.M.; Marler, J.E.; Vo, T.V.; Phan, H.; Friley, J.R. [Pacific Northwest Lab., Richland, WA (United States)

1993-11-01T23:59:59.000Z

428

Residential ventilation standards scoping study  

E-Print Network (OSTI)

of new residences. The Hawaii Model Energy Code (HMEC) is aHawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Residential Energy Code

McKone, Thomas E.; Sherman, Max H.

2003-01-01T23:59:59.000Z

429

Particle deposition in ventilation ducts  

E-Print Network (OSTI)

aerosol transport systems. NUREG/GR-0006, Washington DC:rate in turbulent flows. NUREG/CR-1262, BMI-2041, as cited

Sippola, Mark R.

2002-01-01T23:59:59.000Z

430

CONTAM Applications - Airflow and Ventilation  

Science Conference Proceedings (OSTI)

... rates, CONTAM provides a rich set of tools to analyze ... is not a formal fan-sizing tool, it does ... paths to take advantage of prevailing weather conditions ...

431

Ventilation Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

is important in understanding cooling strategies for homes and buildings. Principles of Heat Transfer Heat is transferred to and from objects via three processes: conduction,...

432

For natural ventilation to work, solar gains through the facade needed to be reduced by approximately 80% from  

E-Print Network (OSTI)

to minimize movement from the wind. airflow pathway4 A simple, single-zone air flow model provided preliminary during summer months; b.) A wind actuated turbine at the top of the stack (with backup electric power to turn the turbine when wind is not available); c.) Additional louvers to open when there is no wind

Anderson, Richard

433

Evaluation of Various CFD Modelling Strategies in Predicting Airflow and Temperature in a Naturally Ventilated Double Skin Faade  

E-Print Network (OSTI)

insulation, to shade solar radiation and to provide suitabledouble skin is shown. The solar radiation was not directlyas different values of solar radiation. Nomenclature u i,j,k

Pasut, Wilmer; De Carli, Michele

2012-01-01T23:59:59.000Z

434

STATE OF CALIFORNIA --NATURAL RESOURCES AGENCY ARNOLD SCHWARZENEGGER, Governor CALIFORNIA ENERGY COMMISSION  

E-Print Network (OSTI)

: · Lighting systems · Heating, ventilating and air conditioning systems · Light emitting diode (LED) traffic

435

Modeling, design and thermal performance of a BIPV/T system thermally coupled with a ventilated concrete slab in a low energy solar house: Part 1, BIPV/T system and house energy concept  

SciTech Connect

This paper is the first of two papers that describe the modeling, design, and performance assessment based on monitored data of a building-integrated photovoltaic-thermal (BIPV/T) system thermally coupled with a ventilated concrete slab (VCS) in a prefabricated, two-storey detached, low energy solar house. This house, with a design goal of near net-zero annual energy consumption, was constructed in 2007 in Eastman, Quebec, Canada - a cold climate area. Several novel solar technologies are integrated into the house and with passive solar design to reach this goal. An air-based open-loop BIPV/T system produces electricity and collects heat simultaneously. Building-integrated thermal mass is utilized both in passive and active forms. Distributed thermal mass in the direct gain area and relatively large south facing triple-glazed windows (about 9% of floor area) are employed to collect and store passive solar gains. An active thermal energy storage system (TES) stores part of the collected thermal energy from the BIPV/T system, thus reducing the energy consumption of the house ground source heat pump heating system. This paper focuses on the BIPV/T system and the integrated energy concept of the house. Monitored data indicate that the BIPV/T system has a typical efficiency of about 20% for thermal energy collection, and the annual space heating energy consumption of the house is about 5% of the national average. A thermal model of the BIPV/T system suitable for preliminary design and control of the airflow is developed and verified with monitored data. (author)

Chen, Yuxiang; Athienitis, A.K.; Galal, Khaled [Dept. of Building, Civil and Environmental Engineering, Concordia University, 1455 De Maisonneuve West, EV6.139, Montreal, Quebec (Canada)

2010-11-15T23:59:59.000Z

436

Retrofit Ventilation Strategies in Multifamily Buildings Webinar  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Foundation Retrofits Foundation Retrofits Building America Webinar November 30, 2011 Kohta Ueno Hybrid Foundation Retrofits 2 Background Hybrid Foundation Retrofits 3 Background  Space conditioning energy use for basements  Known moisture-safe solutions (previous research)  Persistent bulk water (leakage) issues  Retrofits of existing foundations  Especially uneven wall (rubble stone) foundations  "Hybrid" insulation and bulk water control assemblies Hybrid Foundation Retrofits 4 Foundations w. bulk water issues  Severe and rapid damage to interior insulation and finishes due to bulk water intrusion Hybrid Foundation Retrofits 5 Insulation Location Choices * Retrofits: interior insulation is often the only

437

Infiltration in ASHRAE's Residential Ventilation Standards  

E-Print Network (OSTI)

Engineers,Atlanta,GA. (1993) ASTM,StandardE1827?96,StandardTestMethodsforDeterminingAirtightnessofDoor, ASTM Book of Standards, American Society of

Sherman, Max

2008-01-01T23:59:59.000Z

438

Opaque Ventilated Facades - Performance Simulation Method and...  

NLE Websites -- All DOE Office Websites (Extended Search)

thermal behavior. Problems are encountered when the faade system includes a "massive baffle" (i.e. when baffle material is heavy and has high heat capacity) or a composite baffle...

439

FAQS Job Task Analyses - Confinement Ventillation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

For Expert, Working or Familiarity Level Competencies CVS/PGT FAQ Job Analysis Worksheet for Tasks Task Source Importance Frequency #1 Serves as SME D&R 5 4 #2 Reviews safety documentation D&R 4+ 3- #3 Participates in standards development and interpretation D&R 2 1 #4 Assesses contractor programs and implementation D&R 4 4 #5 Represents Site/DOE at CVS meetings/committees D&R 3 1 #6 Provides oversight of HEPA filter QA programs D&R 4 3+ #7 Evaluate designs D&R 4+ 2 #8 Maintain proficiency D&R 5 1 Importance Scale Frequency How important is this task to the job? How often is the task performed? 0 = Not Performed 0 = Not Performed 1 = Not Important 1 = Every few months to yearly 2 = Somewhat Important 2 = Every few weeks to monthly

440

A Continuously Stratified Nonlinear Ventilated Thermocline  

Science Conference Proceedings (OSTI)

Three exact, closed-form analytical solutions for the subtropical gyre are presented for the ideal fluid thermocline equations. Specifically, the flow is exactly geostrophic, hydrostatic, and mass and buoyancy conserving. Ekman pumping and ...

Peter D. Killworth

1987-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation natural ventilation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Microsoft Word - Association of Classroom Ventilation  

NLE Websites -- All DOE Office Websites (Extended Search)

production among unemployed caregivers at 51 daily. The overall averaged value of household production among families with employed or unemployed caregivers was 55.2+15.8 ...

442

Analysis of Demand Controlled Ventilation Technology and ...  

Science Conference Proceedings (OSTI)

... the adoption of the Alaska Building Energy Efficiency Standard ... the methanol-fueled vehicle until warm, then parking it in the garage and shutting ...

2005-10-07T23:59:59.000Z

443

Evaluating Ventilation Systems for Existing Homes  

SciTech Connect

During the course of this project, an affordable and high performance ductwork system to directly address the problems of thermal losses, poor efficiency, and air leakage was designed. To save space and enable direct connections between different floors of the building, the ductwork system was designed in such a way that it occupied interior or exterior frame wall cavities. The ductwork system satisfied building regulations for structural support when bridging multiple floors, the spread of fire and smoke, and insulation to reduce the heat flow into or out of the building. Retrofits of urban residential buildings will be the main focus for the application of this ductwork system. Highly reflective foils and insulating materials were used to aid in the increase of the overall R-value of the ductwork itself and the wall assembly. It is expected that the proposed system will increase the efficiency of the HVAC system and the thermal resistance of the building envelope. The performance of the proposed ductwork design was numerically evaluated in a number of different ways. Our results indicate that the duct method is a very cost attractive alternative to the conventional method.

Aldrich, R.; Arena, L.

2013-02-01T23:59:59.000Z

444

Development of a Residential Integrated Ventilation Controller  

E-Print Network (OSTI)

Although geographically in Climate Zone 3, the weather inMoraga is more like Climate Zone 12 so the CZ 12 weatherin three California climate zones. Climate The study focuses

Walker, Iain

2013-01-01T23:59:59.000Z

445

A Passive Ventilation Device for Hydrogen Control  

DOE Green Energy (OSTI)

Pump pit tanks are employed at the Savannah River Site to facilitate the transfer of radioactive liquid waste between generation locations and waste tanks and among waste tanks.

Blanchard, A. [Westinghouse Savannah River Company, AIKEN, SC (United States); Thomas, J.K.

1998-07-01T23:59:59.000Z

446

Infiltration in ASHRAE's Residential Ventilation Standards  

E-Print Network (OSTI)

intheASHRAEHandbookofFundamentals. (WhilewecouldReferences ASHRAE Handbook of Fundamentals, Ch 27,

Sherman, Max

2008-01-01T23:59:59.000Z

447

Energy and Ventilation Research in Highrise Apartments  

NLE Websites -- All DOE Office Websites (Extended Search)

the percent of household income spent for energy-is several times higher for these households than for single-family households. Historically, multifamily buildings have been the...

448

Development of a Residential Integrated Ventilation Controller  

E-Print Network (OSTI)

weightavg_rates.html California Energy Commission. 2005. of Regulations: California's Energy Efficiency Standards forBuildings. California Energy Commission, Sacramento, CA.

Walker, Iain

2013-01-01T23:59:59.000Z

449

Formaldehyde emissions from ventilation filters under different...  

NLE Websites -- All DOE Office Websites (Extended Search)

and decision-making flexibility. The method is applied to examine alternative uses for oil sands coke, a carbonaceous byproduct of processing the unconventional petroleum found...

450

NISTIR 7244 Initial Evaluation of Displacement Ventilation ...  

Science Conference Proceedings (OSTI)

... temperature of 32.2 C. The schedule for the thermostat settings differs ... Boiler 3.70E+06 3.84E+06 1.41E+06 1.86E ... "Achieving Dry Outside Air in an ...

2006-10-03T23:59:59.000Z

451

Evaluating Ventilation Systems for Existing Homes  

SciTech Connect

During the course of this project, an affordable and high performance ductwork system to directly address the problems of thermal losses, poor efficiency, and air leakage was designed. To save space and enable direct connections between different floors of the building, the ductwork system was designed in such a way that it occupied interior or exterior frame wall cavities. The ductwork system satisfied building regulations for structural support when bridging multiple floors, the spread of fire and smoke, and insulation to reduce the heat flow into or out of the building. Retrofits of urban residential buildings will be the main focus for the application of this ductwork system. Highly reflective foils and insulating materials were used to aid in the increase of the overall R-value of the ductwork itself and the wall assembly. It is expected that the proposed system will increase the efficiency of the HVAC system and the thermal resistance of the building envelope. The performance of the proposed ductwork design was numerically evaluated in a number of different ways. Our results indicate that the aerogel duct method is a very cost attractive alternative to the conventional method.

Aldrich, R.; Arena, L.

2013-02-01T23:59:59.000Z

452

Mixed-Mode Ventilation and Building Retrofits  

E-Print Network (OSTI)

minimizing the use of air-conditioning A research reportComfort without air -conditioning in refurbished offices projects. Whether air conditioning is being reduced or

Brager, Gail; Ackerly, Katie

2010-01-01T23:59:59.000Z

453

Development of a Residential Integrated Ventilation Controller  

E-Print Network (OSTI)

together with measured solar radiation in the weather data.simulations were as follows: Direct solar radiation (W/ m )Total horizontal solar radiation (W/m 2 ) Outdoor air dry-

Walker, Iain

2013-01-01T23:59:59.000Z

454

Development of a Residential Integrated Ventilation Controller  

E-Print Network (OSTI)

Assessments on Noise. Energy and Buildings. Vol. 27. pp.Distribution Systems. Energy and Buildings. Vol. 20. pp.W.J. Fisk. 1994. Energy and Buildings vol. 21 (1). pp.15-22.

Walker, Iain

2013-01-01T23:59:59.000Z

455

Infiltration as Ventilation: Weather-Induced Dilution  

E-Print Network (OSTI)

........................................................................................................................5 ASHRAE Standards ............................................................................................................................... 21 Implications for ASHRAE Standards

456

Infiltration in ASHRAE's Residential Ventilation Standards  

E-Print Network (OSTI)

AssessingIndoorAirQuality,ASHRAETrans. 97(2),pp896?IndoorAirQuality ASHRAETrans. pp93?101Vol. 111(I)Energy Characteristics, ASHRAE Transactions,Vol.103(

Sherman, Max

2008-01-01T23:59:59.000Z

457

Mixed-Mode Ventilation and Building Retrofits  

E-Print Network (OSTI)

October 1991). Energy Consumption Guide 19, Bordass, W.programme. Energy Consumption Guide 19, Energy W. 1991. Energy Efficiency in Offices: A Technical Guide for

Brager, Gail; Ackerly, Katie

2010-01-01T23:59:59.000Z

458

Development of a Residential Integrated Ventilation Controller  

E-Print Network (OSTI)

air heat transmission due to thermal conductance and the difference in indoor and outdoor temperatures) was taken from ACM

Walker, Iain

2013-01-01T23:59:59.000Z

459

Cooling airflow design tool for displacement ventilation.  

E-Print Network (OSTI)

zone. HeatloadfromheatconductionthroughtheroomTotalheatloadfromheatconductionthroughtheroomthe heat gain from heat conduction through the room envelope

Schiavon, Stefano; Bauman, Fred

2009-01-01T23:59:59.000Z

460

Fluid Dynamics of Oceanic Thermocline Ventilation  

Science Conference Proceedings (OSTI)

A flux form of the Potential vorticity (PV) equation is applied to study the creation and transport of potential vorticity in an ocean gyre; generalized PV fluxes (J vectors) and the associated PV flux fines are used to map the creation, by ...

John C. Marshall; A. J. George Nurser

1992-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation natural ventilation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

A Numerical Model of the Ventilated Thermocline  

Science Conference Proceedings (OSTI)

A steady state numerical solution is found for an idealized, rectangular ocean basin driven by wind and surface buoyancy flux. A three-dimensional primitive equation model is used. In agreement with recent analytical modeling, the thermocline in ...

Michael D. Cox; Kirk Bryan

1984-04-01T23:59:59.000Z

462

Numerical study of a ventilated facade panel  

Science Conference Proceedings (OSTI)

An energy-saving facade panel for non-residential buildings has been numerically investigated. Structured like a composite Trombe-Michel wall, the panel consists of a glazing, an absorber plate and insulation and contains a dead air space between glazing and absorber, as well as a convection channel between absorber and insulation. The influence of convection channel spacing on both recovery of solar energy during sunshine periods and on heat losses during night hours has been assessed. Two different options have been considered. First, the total panel thickness was maintained, which involves an increase of channel spacing having to be compensated by a corresponding decrease of the insulation thickness. Then, this constraint was removed so that an increase in channel spacing was allowed to entail an equivalent increase of the total panel thickness. The results indicate that large spacing favors energy recovery during sunshine periods for both options and reduces, although only slightly, heat losses during night hours for the second option. In the case of the first option, however, these losses tend to grow when channel spacing increases. 15 refs., 5 figs.

Mootz, F.; Bezian, J.J. [Centre d`Energetique de l`Ecole des Mines de Paris (France)

1996-07-01T23:59:59.000Z

463

Residential- Integrated- Ventilation- Controller-(RIVEC)-  

individual-home,-taking-into-account-size,-number-of-rooms-and- climate.-Field- tests- have- demonstrated- that- RIVEC- can-

464

BUILDING VENTILATION AND INDOOR AIR QUALITY  

E-Print Network (OSTI)

foam insulation, and radon from building gas context of withbuilding envelope to reduce exfiltration and infiltration, improving insulation,

Hollowell, C.D.

2012-01-01T23:59:59.000Z

465

Retrofit Ventilation Strategies in Multifamily Buildings Webinar...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Slides from the Building America webinar on November 30, 2011. webinarhybridinsulation20111130.pdf...

466

Elaboration Of Global Quality Standards For Natural And Low Energy Cooling In French  

E-Print Network (OSTI)

water heaters. We evaluated, with the aid of an airflow and thermal building simulation software of passive cooling architectural components, natural ventilation and energy efficient systems such as solar water which has led to the haphazard installation of instant electrical hot water boilers and badly

Paris-Sud XI, Université de

467

Measured Natural Cooling Enhancement of a While House Fan  

E-Print Network (OSTI)

An experimental study was carried out in the summer of 1991 to investigate the natural cooling potential of use of a whole house fan in Central Florida's hot and humid climate. The residential building, in Cocoa Beach, FL, is typical of much of the existing housing stock in Florida: a concrete block structure with R-11 ceiling insulation. The building was ventilated with all windows open during the three month summer test period (June- August). Air temperatures and relative humidity inside the home interior along with exterior meteorological conditions (insolation, wind speed, air temperature, relative humidity) were scanned every five seconds with integrated averages recorded on a multi-channel data logger every 15- minutes. The house was naturally ventilated during the first half of summer. After a significant period of pre-retrofit summer data had been collected characterizing the building's thermal response, a 24" whole house fan was installed. The house was then force ventilated during evening hours for the remainder of the summer to establish potential of whole-house fans to improve interior comfort conditions. The electrical consumption of the fan was measured at both available fan speeds. Measurements revealed that the building interior was 3 - 6F cooler during the evening hours after the whole house fan was operated. However, data also showed that nighttime humidity levels rose: relative humidity increased from 74% to 83% during the nighttime period where fan-powered ventilation was used. Using the data results, an analysis was performed using Orlando, Florida TMY data to see how limits to whole house ventilation based on humidity and temperature conditions would affect the potential of such a cooling strategy.

Parker, D. S.

1994-01-01T23:59:59.000Z

468

Cascade Natural Gas - Conservation Incentives for New Homes | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cascade Natural Gas - Conservation Incentives for New Homes Cascade Natural Gas - Conservation Incentives for New Homes Cascade Natural Gas - Conservation Incentives for New Homes < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Sealing Your Home Ventilation Heating Appliances & Electronics Water Heating Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount High Efficiency Natural Gas Furnace: $150 High Efficiency Natural Gas Hearth: $70 Conventional Natural Gas Water Heater: $40 Condensing Tankless Water Heater: $200 Combined Domestic Water/Hydronic Space Heating System (usingTankless Water Heater): $800 Energy Star Certified Home: $350 Energy Star Certified Plus Home: $750

469

Expansion and user study of CoolVent : inclusion of thermal comfort models in an early-design natural ventilation tool  

E-Print Network (OSTI)

CoolVent, a software design tool for architects, has been improved. The work of Maria- Alejandra Menchaca-B. and colleagues has been improved to include a more robust and intuitive building and window dimensioning scheme, ...

Rich, Rebecca E. (Rebecca Eileen)

2011-01-01T23:59:59.000Z

470

Atmos Energy - Natural Gas and Weatherization Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Atmos Energy - Natural Gas and Weatherization Efficiency Program Atmos Energy - Natural Gas and Weatherization Efficiency Program Atmos Energy - Natural Gas and Weatherization Efficiency Program < Back Eligibility Low-Income Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Sealing Your Home Construction Commercial Weatherization Design & Remodeling Ventilation Appliances & Electronics Water Heating Windows, Doors, & Skylights Program Info State Kentucky Program Type Utility Rebate Program Rebate Amount Forced Air Furnace: $250 - $400 Boiler: $250 High Efficiency Tank Water Heater: $200 - $300 Tankless Model: $400 Programmable Thermostat: $25 Weatherization Assistance: Up to $3,000 Provider Atmos Energy Kentucky Rebate Offer Atmos Energy provides rebates to residential and commercial for natural gas

471

Connecticut Natural Gas - Energy Conservation Program for State...  

Open Energy Info (EERE)

Technologies Water Heaters, Furnaces, Boilers, Heat pumps, Central Air conditioners, Energy Mgmt. SystemsBuilding Controls, CustomOthers pending approval, Ventilation Active...

472

Attachment 2 Prerequisite/  

E-Print Network (OSTI)

Institution of Building Services Engineers (CIBSE) Applications Manual 10: 2005, Natural ventilation in non meets the recommendations set forth in the CIBSE Applications Manual 10: 2005, Natural ventilation

Ohta, Shigemi

473

Energy saving strategies with personalized ventilation in tropics  

E-Print Network (OSTI)

Energy Agency, Solar Heating and Cooling Programme, (2003).through the IEA solar heating and cooling programme, Task

Schiavon, Stefano; Melikov, Arsen; Chandra Sekhar, Chandra Sekhar

2010-01-01T23:59:59.000Z

474

Energy saving strategies with personalized ventilation in tropics  

E-Print Network (OSTI)

Building Energy Analysis Tools, Comparative Evaluation Tests, IEAInternational Energy Agency, Solar Heating

Schiavon, Stefano; Melikov, Arsen; Chandra Sekhar, Chandra Sekhar

2010-01-01T23:59:59.000Z

475

Report on Applicability of Residential Ventilation Standards in California  

E-Print Network (OSTI)

Annual Book of ASTM Standards. Vol. 04.11. American SocietyCalifornia's Energy Efficiency Standards for Residential andSystems" Canadian Standards Association, Mississauga,

Sherman, Max H.; McWilliam, Jennifer A.

2005-01-01T23:59:59.000Z

476

Ventilation Control of Volatile Organic Compounds in New U  

NLE Websites -- All DOE Office Websites (Extended Search)

methods were used for VOC concentration measurements, and passive perfluorocarbon tracer gas emitters with active sampling were used to determine the overall air exchange rate...

477

THE MECHANICS OF LUNG TISSUE UNDER HIGH-FREQUENCY VENTILATION  

E-Print Network (OSTI)

Pi(5.11) Ur = Wr(5.12) Ui = Wi(5.13) Wr = CrKi + CiKr |C|2|K|2 - Cr |C|2 Vr + CrKr - CiKi |C|2|K|2 + Ci |C|2 Vi(5.14) + CiKi - CrKr |C|2|K|2 + Ci |C|2 + Ci |C|2 Ur - CrKi + CiKr |C|2|K|2 + Cr |C|2 + Cr |C|2 Ui Wi = CrKr - CiKi |C|2|K|2 + Ci |C|2 Vr + CrKi + CiKr |C|2|K|2 - Cr |C|2 Vi(5.15) - Cr

478

THE MECHANICS OF LUNG TISSUE UNDER HIGH-FREQUENCY VENTILATION  

E-Print Network (OSTI)

of the critical infrastructure and key resources (CIKR) of the United States. Pursuant to Section 18.d, DHS and the HSPD-7 requirement to protect the Nation's CIKR, it is advisable to conduct a systematic preliminary the Nation's critical infrastructure and key resources (CIKR), it is necessary to conduct a systematic

Lewis, Mark

479

Classroom HVAC: Improving ventilation and saving energy -- field study plan  

E-Print Network (OSTI)

and Saving Energy (IVSE) Field Study Plan Glossary SpecificEnergy (IVSE) Field Study Plan Table of Contents Table of Contents.i Glossary..

Apte, Michael G.; Faulkner, David; Hodgson, Alfred T.; Sullivan, Douglas P.

2004-01-01T23:59:59.000Z

480

Residential Heating, Ventilating, and Air Conditioning Research Workshop  

Science Conference Proceedings (OSTI)

The residential HVAC load contributes $23 billion to electric utility energy sales and significantly to peak demands. Participants at this 1986 workshop identified fifteen areas of research needed to improve HVAC components, systems, and applications.

1987-09-18T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation natural ventilation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.