National Library of Energy BETA

Sample records for ventilation enthalpy recovery

  1. Promising Technology: Energy Recovery Ventilation

    Broader source: Energy.gov [DOE]

    Energy recovery ventilation (ERV) systems exchange heat between outgoing exhaust air and the incoming outdoor air. Using exhaust air to pre-condition supply air can reduce the capacity of the heating and cooling system and save heating and cooling energy consumption.

  2. Energy recovery ventilator

    SciTech Connect (OSTI)

    Benoit, Jeffrey T.; Dobbs, Gregory M.; Lemcoff, Norberto O.

    2015-06-23

    An energy recovery heat exchanger (100) includes a housing (102). The housing has a first flowpath (144) from a first inlet (104) to a first outlet (106). The housing has a second flowpath (146) from a second inlet (108) to a second outlet (110). Either of two cores may be in an operative position in the housing. Each core has a number of first passageways having open first and second ends and closed first and second sides. Each core has a number of second such passageways interspersed with the first passageways. The ends of the second passageways are aligned with the sides of the first passageways and vice versa. A number of heat transfer member sections separate adjacent ones of the first and second passageways. An actuator is coupled to the carrier to shift the cores between first and second conditions. In the first condition, the first core (20) is in the operative position and the second core (220) is not. In the second condition, the second core is in the operative position and the first core is not. When a core is in the operative position, its first passageways are along the first flowpath and the second passageways are along the second flowpath.

  3. Development of a High Latent Effectiveness Energy Recovery Ventilator with Integration into Rooftop Package Equipment

    SciTech Connect (OSTI)

    Gregory M. Dobbs; Norberto O. Lemcoff; Frederick J. Cogswell; Jeffrey T. Benolt

    2006-03-01

    This Final Report covers the Cooperative Program carried out to design and optimize an enhanced flat-plate energy recovery ventilator and integrate it into a packaged unitary (rooftop) air conditioning unit. The project objective was to optimize the design of a flat plate energy recovery ventilator (ERV) core that compares favorably to flat plate air-to-air heat exchanger cores on the market and to cost wise to small enthalpy wheel devices. The benefits of an integrated unit incorporating an enhanced ERV core and a downsized heating/cooling unit were characterized and the design of an integrated unit considering performance and cost was optimized. Phase I was to develop and optimize the design of a membrane based heat exchanger core. Phase II was the creation and observation of a system integrated demonstrator unit consisting of the Enhanced Energy Recovery Ventilator (EERV) developed in Phase I coupled to a standard Carrier 50HJ rooftop packaged unitary air conditioning unit. Phase III was the optimization of the system prior to commercialization based on the knowledge gained in Phase II. To assure that the designs chosen have the possibility of meeting cost objectives, a preliminary manufacturability and production cost study was performed by the Center for Automation Technologies at RPI. Phase I also included a preliminary design for the integrated unit to be further developed in Phase II. This was to assure that the physical design of the heat exchanger designed in Phase I would be acceptable for use in Phase II. An extensive modeling program was performed by the Center for Building Performance & Diagnostics of CMU. Using EnergyPlus as the software, a typical office building with multiple system configurations in multiple climatic zones in the US was simulated. The performance of energy recovery technologies in packaged rooftop HVAC equipment was evaluated. The experimental program carried out in Phases II and III consisted of fabricating and testing a

  4. Comparison of freezing control strategies for residential air-to-air heat recovery ventilators

    SciTech Connect (OSTI)

    Phillips, E.G.; Bradley, L.C. ); Chant, R.E. ); Fisher, D.R.

    1989-01-01

    A comparison of the energy performance of defrost and frost control strategies for residential air-to-air heat recovery ventilators (HRV) has been carried out by using computer simulations for various climatic conditions. This paper discusses the results and conclusions from the comparisons and their implications for the heat recovery ventilator manufacturers and system designers.

  5. Ventilation

    Broader source: Energy.gov [DOE]

    Adequate ventilation is critical for health and home comfort. Check out Energy Saver advice on ways to maintain air flow and control moisture.

  6. Airflow reduction during cold weather operation of residential heat recovery ventilators

    SciTech Connect (OSTI)

    McGugan, C.A.; Edwards, P.F.; Riley, M.A.

    1987-06-01

    Laboratory measurements of the performance of residential heat recovery ventilators have been carried out for the R-2000 Energy Efficient Home Program. This work was based on a preliminary test procedure developed by the Canadian Standards Association, part of which calls for testing the HRV under cold weather conditions. An environmental chamber was used to simulate outdoor conditions. Initial tests were carried out with an outdoor temperature of -20/sup 0/C; subsequent tests were carried out at a temperature of -25/sup 0/C. During the tests, airflows, temperatures, and relative humidities of airstreams entering and leaving the HRV, along with electric power inputs, were monitored. Frost buildup in the heat exchangers and defrost mechanisms, such as fan shutoff or recirculation, led to reductions in airflows. The magnitude of the reductions is dependent on the design of the heat exchanger and the defrost mechanism used. This paper presents the results of tests performed on a number of HRVs commercially available in Canada at the time of the testing. The flow reductions for the various defrost mechanisms are discussed.

  7. Subcontracted R and D final report: SRC-I phase equilibrium and enthalpy data for coal liquefaction and solvent recovery areas. Vol. 3

    SciTech Connect (OSTI)

    Mehta, D.C.; Chu, I.C.; Kidnay, A.J.; Yesavage, V.F.

    1984-03-01

    The Enthalpy Program was a 20-month project initiated on January 18, 1982 by the International Coal Refining Company (ICRC) and under the technical direction of Professor Arthur J. Kidnay and Professor V.F. Yesavage at the Colorado School of Mines (CSM), Golden, Colorado. The objective of the program was to gather enthalpy data on representative pure model compounds, mixtures of model compounds, and selected coal-derived liquid samples furnished by ICRC. A copy of the technical agreement between ICRC and CSM is included in this report as Appendix A. This final report contains a complete description of the calorimeter and the experimental procedures used, separate data sections for each experimental task, and a copy of the technical agreement between ICRC and CSM. Data are presented for 11 coal liquid fractions. Each section of this report is organized to stand alone; thus, there are no general lists of references, tables of notation, or overall data tables.

  8. Enthalpy Diffusion in Multicomponent Flows

    SciTech Connect (OSTI)

    Cook, A W

    2008-11-12

    The enthalpy diffusion flux in the multicomponent energy equation is a well known yet frequently neglected term. It accounts for energy changes, associated with compositional changes, resulting from species diffusion. Enthalpy diffusion is important in flows where significant mixing occurs between species of dissimilar molecular weight. The term plays a critical role in preventing local violations of the entropy condition. In simulations of nonpremixed combustion, omission of the enthalpy flux can lead to anomalous temperature gradients, which may cause mixing regions to exceed ignition conditions. The term can also play a role in generating acoustic noise in turbulent mixing layers. Euler solvers that rely on numerical diffusion to mix fluids cannot accurately predict the temperature in mixed regions. On the other hand, Navier-Stokes solvers that incorporate enthalpy diffusion can provide much more accurate results.

  9. Ventilation Model

    SciTech Connect (OSTI)

    V. Chipman

    2002-10-05

    The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their post-closure analyses. The Ventilation Model report was initially developed to analyze the effects of preclosure continuous ventilation in the Engineered Barrier System (EBS) emplacement drifts, and to provide heat removal data to support EBS design. Revision 00 of the Ventilation Model included documentation of the modeling results from the ANSYS-based heat transfer model. The purposes of Revision 01 of the Ventilation Model are: (1) To validate the conceptual model for preclosure ventilation of emplacement drifts and verify its numerical application in accordance with new procedural requirements as outlined in AP-SIII-10Q, Models (Section 7.0). (2) To satisfy technical issues posed in KTI agreement RDTME 3.14 (Reamer and Williams 2001a). Specifically to demonstrate, with respect to the ANSYS ventilation model, the adequacy of the discretization (Section 6.2.3.1), and the downstream applicability of the model results (i.e. wall heat fractions) to initialize post

  10. Smart Ventilation - RIVEC

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Secondary Ventilation Activity Inputs Control Ventilation to Ensure Acceptable Indoor Air Quality Outputs ... * ASHRAE Standard 62.2 service to ensure smart ventilation ...

  11. Ventilation | Department of Energy

    Energy Savers [EERE]

    Spot ventilation can improve the effectiveness of natural and whole-house ventilation by removing indoor air pollution andor moisture at its source. Spot ventilation includes the ...

  12. Enthalpy of formation of gallium nitride

    SciTech Connect (OSTI)

    Ranade, M.R.; Tessier, F.; Navrotsky, A.; Leppert, V.J.; Risbud, S.H.; DiSalvo, F.J.; Balkas, C.M.

    2000-05-04

    A major discrepancy in the literature concerning the enthalpy of formation of GaN has been resolved using oxidative oxide melt solution calorimetry. Four samples of differing nitrogen contents were measured by dropping them into molten 3Na{sub 2}O{center_dot}4MoO{sub 3} in a calorimeter at 975 K with oxygen gas bubbling through the solvent. The samples were characterized by X-ray diffraction, chemical analysis, transmission electron microscopy, particle size analysis, and BET measurements. The enthalpy of drop solution (kJ/g) varied approximately linearly with nitrogen content. Extrapolated to stoichiometric GaN, the data yield a value of {minus}156.8 {+-} 16.0 kJ/mol for the standard enthalpy of formation from the elements at 298 K. The relatively large error reflects the deviation of individual points from the straight line rather than uncertainties in each set of data for a given sample. This new directly measured enthalpy of formation is in excellent agreement with that obtained from the temperature dependence of the equilibrium pressure of nitrogen over GaN, {minus}157.7 kJ/mol, measured by Madar et al. and Karpinski and Porowski. This value of {minus}156.8 kJ/mol should replace the commonly tabulated value of {minus}110 kJ/mol determined by Hahn and Juza using combustion calorimetry on an uncharacterized sample over 50 years ago.

  13. Ventilation | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    can improve the effectiveness of natural and whole-house ventilation by removing indoor air pollution andor moisture at its source. Spot ventilation includes the use of...

  14. Preliminary Results from Electric Arc Furnace Off-Gas Enthalpy Modeling

    SciTech Connect (OSTI)

    Nimbalkar, Sachin U; Thekdi, Arvind; Keiser, James R; Storey, John Morse

    2015-01-01

    This article describes electric arc furnace (EAF) off-gas enthalpy models developed at Oak Ridge National Laboratory (ORNL) to calculate overall heat availability (sensible and chemical enthalpy) and recoverable heat values (steam or power generation potential) for existing EAF operations and to test ORNL s new EAF waste heat recovery (WHR) concepts. ORNL s new EAF WHR concepts are: Regenerative Drop-out Box System and Fluidized Bed System. The two EAF off-gas enthalpy models described in this paper are: 1.Overall Waste Heat Recovery Model that calculates total heat availability in off-gases of existing EAF operations 2.Regenerative Drop-out Box System Model in which hot EAF off-gases alternately pass through one of two refractory heat sinks that store heat and then transfer it to another gaseous medium These models calculate the sensible and chemical enthalpy of EAF off-gases based on the off-gas chemical composition, temperature, and mass flow rate during tap to tap time, and variations in those parameters in terms of actual values over time. The models provide heat transfer analysis for the aforementioned concepts to confirm the overall system and major component sizing (preliminary) to assess the practicality of the systems. Real-time EAF off-gas composition (e.g., CO, CO2, H2, and H2O), volume flow, and temperature data from one EAF operation was used to test the validity and accuracy of the modeling work. The EAF off-gas data was used to calculate the sensible and chemical enthalpy of the EAF off-gases to generate steam and power. The article provides detailed results from the modeling work that are important to the success of ORNL s EAF WHR project. The EAF WHR project aims to develop and test new concepts and materials that allow cost-effective recovery of sensible and chemical heat from high-temperature gases discharged from EAFs.

  15. VENTILATION MODEL REPORT

    SciTech Connect (OSTI)

    V. Chipman

    2002-10-31

    The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their postclosure analyses.

  16. READ THIS: Before You Ventilate

    SciTech Connect (OSTI)

    2006-12-08

    This document reviews ventilation strategies for different climate zones and includes schematic drawings and photographs of various ventilation installations.

  17. Current Status of the high enthalpy conventional geothermal fields...

    Open Energy Info (EERE)

    Current Status of the high enthalpy conventional geothermal fields in Europe and the potential perspectives for their exploitation in terms of EGS Jump to: navigation, search...

  18. DNA Nanostructures as Models for Evaluating the Role of Enthalpy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the roles of enthalpy and entropy in the affinity of polyvalent DNA nanostructure interactions, which exhibit an intriguing compensating effect. Date of online publication: ...

  19. DEMAND CONTROLLED VENTILATION AND CLASSROOM VENTILATION

    SciTech Connect (OSTI)

    Fisk, William J.; Mendell, Mark J.; Davies, Molly; Eliseeva, Ekaterina; Faulkner, David; Hong, Tienzen; Sullivan, Douglas P.

    2014-01-06

    This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling. Major findings included: ? The single-location carbon dioxide sensors widely used for demand controlled ventilation frequently have large errors and will fail to effectively control ventilation rates (VRs).? Multi-location carbon dioxide measurement systems with more expensive sensors connected to multi-location sampling systems may measure carbon dioxide more accurately.? Currently-available optical people counting systems work well much of the time but have large counting errors in some situations. ? In meeting rooms, measurements of carbon dioxide at return-air grilles appear to be a better choice than wall-mounted sensors.? In California, demand controlled ventilation in general office spaces is projected to save significant energy and be cost effective only if typical VRs without demand controlled ventilation are very high relative to VRs in codes. Based on the research, several recommendations were developed for demand controlled ventilation specifications in the California Title 24 Building Energy Efficiency Standards.The research on classroom ventilation collected data over two years on California elementary school classrooms to investigate associations between VRs and student illness absence (IA). Major findings included: ? Median classroom VRs in all studied climate zones were below the California guideline, and 40percent lower in portable than permanent buildings.? Overall, one additional L/s per person of VR was associated with 1.6percent less IA. ? Increasing average VRs in California K-12 classrooms from the current average to the required level is estimated to decrease IA by 3.4percent, increasing State attendance-based funding to school districts by $33M, with $6.2 M in increased energy costs. Further VR increases would provide additional benefits

  20. Laboratory Evaluation of Energy Recovery Ventilators

    SciTech Connect (OSTI)

    Kosar, D.

    2013-05-01

    This document is no longer available. Please contact Stacey.Rothgeb@nrel.gov for further information.

  1. Ventilation Model Report

    SciTech Connect (OSTI)

    V. Chipman; J. Case

    2002-12-20

    The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their post-closure analyses. The Ventilation Model report was initially developed to analyze the effects of preclosure continuous ventilation in the Engineered Barrier System (EBS) emplacement drifts, and to provide heat removal data to support EBS design. Revision 00 of the Ventilation Model included documentation of the modeling results from the ANSYS-based heat transfer model. Revision 01 ICN 01 included the results of the unqualified software code MULTIFLUX to assess the influence of moisture on the ventilation efficiency. The purposes of Revision 02 of the Ventilation Model are: (1) To validate the conceptual model for preclosure ventilation of emplacement drifts and verify its numerical application in accordance with new procedural requirements as outlined in AP-SIII-10Q, Models (Section 7.0). (2) To satisfy technical issues posed in KTI agreement RDTME 3.14 (Reamer and Williams 2001a). Specifically to demonstrate, with respect to the ANSYS ventilation model, the adequacy of

  2. Building Science- Ventilation

    Broader source: Energy.gov [DOE]

    This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question "What are the best ventilation techniques"

  3. Ventilation | Department of Energy

    Office of Environmental Management (EM)

    uniformly. Natural ventilation depends on a home's airtightness, outdoor temperatures, wind, and other factors. During mild weather, some homes may lack sufficient natural...

  4. Guide to Home Ventilation

    SciTech Connect (OSTI)

    2010-10-01

    A fact sheet from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy: Ventilation refers to the exchange of indoor and outdoor air. Without proper ventilation, an otherwise insulated and airtight house will seal in harmful pollutants, such as carbon monoxide, and moisture that can damage a house.

  5. Multifamily Ventilation Retrofit Strategies

    SciTech Connect (OSTI)

    Ueno, K.; Lstiburek, J.; Bergey, D.

    2012-12-01

    In multifamily buildings, central ventilation systems often have poor performance, overventilating some portions of the building (causing excess energy use), while simultaneously underventilating other portions (causing diminished indoor air quality). BSC and Innova Services Corporation performed a series of field tests at a mid-rise test building undergoing a major energy audit and retrofit, which included ventilation system upgrades.

  6. Recommended Ventilation Strategies for Energy-Efficient Production Homes

    SciTech Connect (OSTI)

    Roberson, J.; Brown, R.; Koomey, J.; Warner, J.; Greenberg, S.

    1998-12-01

    This report evaluates residential ventilation systems for the U.S. Environmental Protection Agency's (EPA's) ENERGY STAR{reg_sign} Homes program and recommends mechanical ventilation strategies for new, low-infiltration, energy-efficient, single-family, ENERGY STAR production (site-built tract) homes in four climates: cold, mixed (cold and hot), hot humid, and hot arid. Our group in the Energy Analysis Department at Lawrence Berkeley National Lab compared residential ventilation strategies in four climates according to three criteria: total annualized costs (the sum of annualized capital cost and annual operating cost), predominant indoor pressure induced by the ventilation system, and distribution of ventilation air within the home. The mechanical ventilation systems modeled deliver 0.35 air changes per hour continuously, regardless of actual infiltration or occupant window-opening behavior. Based on the assumptions and analysis described in this report, we recommend independently ducted multi-port supply ventilation in all climates except cold because this strategy provides the safety and health benefits of positive indoor pressure as well as the ability to dehumidify and filter ventilation air. In cold climates, we recommend that multi-port supply ventilation be balanced by a single-port exhaust ventilation fan, and that builders offer balanced heat-recovery ventilation to buyers as an optional upgrade. For builders who continue to install forced-air integrated supply ventilation, we recommend ensuring ducts are airtight or in conditioned space, installing a control that automatically operates the forced-air fan 15-20 minutes during each hour that the fan does not operate for heating or cooling, and offering ICM forced-air fans to home buyers as an upgrade.

  7. Promising Technology: Demand Control Ventilation

    Broader source: Energy.gov [DOE]

    Demand control ventilation (DCV) measures carbon dioxide concentrations in return air or other strategies to measure occupancy, and accurately matches the ventilation requirement. This system reduces ventilation when spaces are vacant or at lower than peak occupancy. When ventilation is reduced, energy savings are accrued because it is not necessary to heat, cool, or dehumidify as much outside air.

  8. Why We Ventilate

    SciTech Connect (OSTI)

    Logue, Jennifer M.; Sherman, Max H.; Price, Phil N.; Singer, Brett C.

    2011-09-01

    It is widely accepted that ventilation is critical for providing good indoor air quality (IAQ) in homes. However, the definition of"good" IAQ, and the most effective, energy efficient methods for delivering it are still matters of research and debate. This paper presents the results of work done at the Lawrence Berkeley National Lab to identify the air pollutants that drive the need for ventilation as part of a larger effort to develop a health-based ventilation standard. First, we present results of a hazard analysis that identified the pollutants that most commonly reach concentrations in homes that exceed health-based standards or guidelines for chronic or acute exposures. Second, we present results of an impact assessment that identified the air pollutants that cause the most harm to the U.S. population from chronic inhalation in residences. Lastly, we describe the implications of our findings for developing effective ventilation standards.

  9. Ventilation technologies scoping study

    SciTech Connect (OSTI)

    Walker, Iain S.; Sherman, Max H.

    2003-09-30

    This document presents the findings of a scoping study commissioned by the Public Interest Energy Research (PIER) program of the California Energy Commission to determine what research is necessary to develop new residential ventilation requirements for California. This study is one of three companion efforts needed to complete the job of determining the needs of California, determining residential ventilation requirements, and determining appropriate ventilation technologies to meet these needs and requirements in an energy efficient manner. Rather than providing research results, this scoping study identifies important research questions along with the level of effort necessary to address these questions and the costs, risks, and benefits of pursuing alternative research questions. In approaching these questions and level of effort, feasibility and timing were important considerations. The Commission has specified Summer 2005 as the latest date for completing this research in time to update the 2008 version of California's Energy Code (Title 24).

  10. Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems

    SciTech Connect (OSTI)

    Sherman, Max H.; Walker, Iain S.

    2011-04-01

    Existing ventilation standards, including American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE) Standard 62.2, specify continuous operation of a defined mechanical ventilation system to provide minimum ventilation, with time-based intermittent operation as an option. This requirement ignores several factors and concerns including: other equipment such as household exhaust fans that might incidentally provide ventilation, negative impacts of ventilation when outdoor pollutant levels are high, the importance of minimizing energy use particularly during times of peak electricity demand, and how the energy used to condition air as part of ventilation system operation changes with outdoor conditions. Dynamic control of ventilation systems can provide ventilation equivalent to or better than what is required by standards while minimizing energy costs and can also add value by shifting load during peak times and reducing intake of outdoor air contaminants. This article describes the logic that enables dynamic control of whole-house ventilation systems to meet the intent of ventilation standards and demonstrates the dynamic ventilation system control concept through simulations and field tests of the Residential Integrated Ventilation-Energy Controller (RIVEC).

  11. Building America Webinar: Multifamily Ventilation Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Joe Lstiburek Building America Webinar: Multifamily Ventilation Strategies and ... of Energy Building America webinar, Multifamily Ventilation Strategies and ...

  12. Building America Webinar: Multifamily Ventilation Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sean Maxwell Building America Webinar: Multifamily Ventilation Strategies and ... of Energy Buildng America webinar, Multifamily Ventilation Strategies and ...

  13. Building America Webinar: Retrofit Ventilation Strategies in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retrofit Ventilation Strategies in Multifamily Buildings Webinar Building America Webinar: Retrofit Ventilation Strategies in Multifamily Buildings Webinar This webinar, presented ...

  14. The WIPP Underground Ventilation System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    , 2014 The WIPP Underground Ventilation System Since February, there has been considerable coverage about the WIPP Underground Ventilation System. On February 14, the ventilation system worked as designed, protecting human health and the environment. In normal exhaust mode, the ventilation system provides a continuous flow of fresh air to the underground tunnels and rooms that make up the disposal facility at WIPP. Air is supplied to the underground facility, located 2,150 feet below the

  15. Underground and Ventilation System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 2, 2014 Agenda * Introductions Guidelines - John Heaton (Moderator) * Opening Comments - Mayor Dale Janway * Recovery Plan Introduction - Frank Marcinowski * WIPP...

  16. Measure Guideline: Ventilation Cooling

    SciTech Connect (OSTI)

    Springer, D.; Dakin, B.; German, A.

    2012-04-01

    The purpose of this measure guideline on ventilation cooling is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  17. Underground and Ventilation System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    UPDATE ON RECENT EVENTS Joe Franco, CBFO Manager 3 Overview of Week's Activities * Power outage * Recovery strategy * Safety first * Planned and prioritized * Phased approach 4 ...

  18. Underground and Ventilation System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Joe Franco * Recovery Status - Tammy Reynolds * Audience Questions * In house * Internet * Closing Comments - Joe Franco 2 UPDATE ON CBFO AND WIPP ACTIVITIES Joe Franco, CBFO...

  19. Underground and Ventilation System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Results - Dr. Martin Simon & Susan Lucas Kamat * Closing Comments - Joe Franco * Audience Questions * One question at a time please OVERVIEW OF RECOVERY ACTIVITIES Joe...

  20. Underground and Ventilation System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ...EM 42 Preparations for Restart Jim Blankenhorn, NWP Recovery Manager ... not approved for use * Pre-fire plan walk downs * Required every 30 days during ...

  1. Ventilation in Multifamily Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program www.buildingamerica.gov Buildings Technologies Program Date: November 1, 2011 Ventilation in Multifamily Buildings Welcome to the Webinar! We will start at 2:00 PM Eastern Time Be sure that you are also dialed into the telephone conference call: Dial-in number: 888-324-9601; Pass code: 5551971 Download the presentation at: www.buildingamerica.gov/meetings.html Building Technologies Program eere.energy.gov Building America: Introduction November 1, 2011 Cheryn Engebrecht

  2. Variable Flow Exhaust Ventilation Cap for Local Exhaust Ventilation Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Energy Innovation Portal Building Energy Efficiency Building Energy Efficiency Find More Like This Return to Search Variable Flow Exhaust Ventilation Cap for Local Exhaust Ventilation Systems Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (212 KB) Technology Marketing Summary Local Exhaust Ventilations (LEV) are vital engineering control systems used to prevent exposure to harmful airborne contaminants in the workplace.

  3. Ventilation System Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ventilation System Basics Ventilation System Basics August 16, 2013 - 1:33pm Addthis Ventilation is the process of moving air into and out of an interior space by natural or mechanical means. Ventilation is necessary for the health and comfort of occupants of all buildings. Ventilation supplies air for occupants to breathe and removes moisture, odors, and indoor pollutants like carbon dioxide. Too little ventilation may result in poor indoor air quality, while too much may cause unnecessarily

  4. Ventilation in Multifamily Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ventilation in Multifamily Buildings Ventilation in Multifamily Buildings This webinar, hosted by Building America,was conducted on November 1, 2011, and describes ways to save energy in buildings through effective ventilation techniques. carb_ventilation_webinar.pdf (3.71 MB) More Documents & Publications Multifamily Ventilation - Best Practice? Critical Question #2: What are the Best Practices for Ventilation Specific to Multifamily Buildings? Building America Webinar: Multifamily

  5. Whole-House Ventilation | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    systems provide a controlled way of ventilating a home while minimizing energy loss. They reduce the costs of heating ventilated air in the winter by transferring heat...

  6. Infiltration in ASHRAE's Residential Ventilation Standards (Journal...

    Office of Scientific and Technical Information (OSTI)

    Ventilation Standards The purpose of ventilation is to dilute or remove indoor contaminants that an occupant could be exposed to. It can be provided by mechanical or natural...

  7. Building America Webinar: Ventilation in Multifamily Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ventilation in Multifamily Buildings Building America Webinar: Ventilation in Multifamily Buildings This webinar was presented by research team Consortium for Advanced Residential ...

  8. Retrofit Ventilation Strategies in Multifamily Buildings Webinar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retrofit Ventilation Strategies in Multifamily Buildings Webinar Retrofit Ventilation Strategies in Multifamily Buildings Webinar Slides from the Building America webinar on ...

  9. Ventilation by stratification and displacement

    SciTech Connect (OSTI)

    Skaaret, E.

    1983-03-01

    Ventilation effectiveness is not one single index which can be used for classifying ventilating systems. It is shown that a system has different effectivenesses depending on the characteristics of the pollution sources. A transient ventilation effectiveness can be used to generally characterize the system behavior during transient conditions. This index is, for a given system, dependent only on the thermal conditions. Using the different concepts of ventilation effectiveness and knowledge of the nature of the diffusion process it is concluded that the mixing principle in ventilation is not the best one. The displacement principle working vertical-up (air supply directly to the zone of occupation) is generally working much better. Density stratification improves the efficiency. Conditions for stable thermal stratification is dealt with. Room heating systems are concluded to be based on the radiant heating principle. A no recirculating displacement solution using a heat exchanger is claimed to be energy efficient. Research work which substantiated the different conclusions is referenced.

  10. Whole-House Ventilation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ventilation » Whole-House Ventilation Whole-House Ventilation A whole-house ventilation system with dedicated ducting in a new energy-efficient home. | Photo courtesy of ©iStockphoto/brebca. A whole-house ventilation system with dedicated ducting in a new energy-efficient home. | Photo courtesy of ©iStockphoto/brebca. Energy-efficient homes -- both new and existing -- require mechanical ventilation to maintain indoor air quality. There are four basic mechanical whole-house ventilation

  11. Equivalence in Ventilation and Indoor Air Quality

    SciTech Connect (OSTI)

    Sherman, Max; Walker, Iain; Logue, Jennifer

    2011-08-01

    We ventilate buildings to provide acceptable indoor air quality (IAQ). Ventilation standards (such as American Society of Heating, Refrigerating, and Air-Conditioning Enginners [ASHRAE] Standard 62) specify minimum ventilation rates without taking into account the impact of those rates on IAQ. Innovative ventilation management is often a desirable element of reducing energy consumption or improving IAQ or comfort. Variable ventilation is one innovative strategy. To use variable ventilation in a way that meets standards, it is necessary to have a method for determining equivalence in terms of either ventilation or indoor air quality. This study develops methods to calculate either equivalent ventilation or equivalent IAQ. We demonstrate that equivalent ventilation can be used as the basis for dynamic ventilation control, reducing peak load and infiltration of outdoor contaminants. We also show that equivalent IAQ could allow some contaminants to exceed current standards if other contaminants are more stringently controlled.

  12. Multifamily Ventilation - Best Practice? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multifamily Ventilation - Best Practice? Multifamily Ventilation - Best Practice? This presentation was delivered at the U.S. Department of Energy Building America Technical Update meeting on April 29-30, 2013, in Denver, Colorado. cq2_multifamily_ventilation_griffiths.pdf (2.78 MB) More Documents & Publications Critical Question #2: What are the Best Practices for Ventilation Specific to Multifamily Buildings? Ventilation in Multifamily Buildings Building America Technology Solutions for

  13. Multifamily Individual Heating and Ventilation Systems, Lawrence, Massachusetts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01

    The conversion of an older Massachusetts building into condominiums illustrates a safe, durable, and cost-effective solution for heating and ventilation systems that can potentially benefit millions of multifamily buildings. Merrimack Valley Habitat for Humanity (MVHfH) partnered with U.S. Department of Energy Building America team Building Science Corporation (BSC) to provide high performance affordable housing for 10 families in the retrofit of an existing mass masonry building (a former convent). The original ventilation design for the project was provided by a local engineer and consisted of a single large heat recovery ventilator (HRV) located in a mechanical room in the basement with a centralized duct system providing supply air to the main living space and exhausting stale air from the single bathroom in each apartment. This design was deemed to be far too costly to install and operate for several reasons: the large central HRV was oversized and the specified flows to each apartment were much higher than the ASHRAE 62.2 rate; an extensive system of ductwork, smoke and fire dampers, and duct chases were specified; ductwork required a significant area of dropped ceilings; and the system lacked individual ventilation control in the apartments

  14. Laboratories for the 21st Century: Best Practices; Energy Recovery in Laboratory Facilities (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-06-01

    This guide regarding energy recovery is one in a series on best practices for laboratories. It was produced by Laboratories for the 21st Century ('Labs 21'), a joint program of the U.S. Environmental Protection Agency and the U.S. Department of Energy. Laboratories typically require 100% outside air for ventilation at higher rates than other commercial buildings. Minimum ventilation is typically provided at air change per hour (ACH) rates in accordance with codes and adopted design standards including Occupational Safety and Health Administration (OSHA) Standard 1910.1450 (4 to 12 ACH - non-mandatory) or the 2011 American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) Applications Handbook, Chapter 16 - Laboratories (6 to 12 ACH). While OSHA states this minimum ventilation rate 'should not be relied on for protection from toxic substances released into the laboratory' it specifically indicates that it is intended to 'provide a source of air for breathing and for input to local ventilation devices (e.g., chemical fume hoods or exhausted bio-safety cabinets), to ensure that laboratory air is continually replaced preventing the increase of air concentrations of toxic substances during the working day, direct air flow into the laboratory from non-laboratory areas and out to the exterior of the building.' The heating and cooling energy needed to condition and move this outside air can be 5 to 10 times greater than the amount of energy used in most office buildings. In addition, when the required ventilation rate exceeds the airflow needed to meet the cooling load in low-load laboratories, additional heating energy may be expended to reheat dehumidified supply air from the supply air condition to prevent over cooling. In addition to these low-load laboratories, reheat may also be required in adjacent spaces such as corridors that provide makeup air to replace air being pulled into negative-pressure laboratories. Various types of energy recovery

  15. Residential ventilation standards scoping study

    SciTech Connect (OSTI)

    McKone, Thomas E.; Sherman, Max H.

    2003-10-01

    The goals of this scoping study are to identify research needed to develop improved ventilation standards for California's Title 24 Building Energy Efficiency Standards. The 2008 Title 24 Standards are the primary target for the outcome of this research, but this scoping study is not limited to that timeframe. We prepared this scoping study to provide the California Energy Commission with broad and flexible options for developing a research plan to advance the standards. This document presents the findings of a scoping study commissioned by the Public Interest Energy Research (PIER) program of the California Energy Commission to determine what research is necessary to develop new residential ventilation requirements for California. This study is one of three companion efforts needed to complete the job of determining the ventilation needs of California residences, determining the bases for setting residential ventilation requirements, and determining appropriate ventilation technologies to meet these needs and requirements in an energy efficient manner. Rather than providing research results, this scoping study identifies important research questions along with the level of effort necessary to address these questions and the costs, risks, and benefits of pursuing alternative research questions. In approaching these questions and corresponding levels of effort, feasibility and timing were important considerations. The Commission has specified Summer 2005 as the latest date for completing this research in time to update the 2008 version of California's Energy Code (Title 24).

  16. Ventilation Systems for Cooling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat & Cool » Home Cooling Systems » Ventilation Systems for Cooling Ventilation Systems for Cooling Proper ventilation helps you save energy and money. | Photo courtesy of <a href="http://www.flickr.com/photos/jdhancock/3802136698/">JD Hancock</a>. Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Ventilation is the least expensive and most energy-efficient way to cool buildings. Ventilation works best when combined with methods to

  17. Insights on activation enthalpy for non-Schmid slip in body-centered cubic metals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hale, Lucas M.; Lim, Hojun; Zimmerman, Jonathan A.; Battaile, Corbett C.; Weinberger, Christopher R.

    2014-12-18

    We use insights gained from atomistic simulation to develop an activation enthalpy model for dislocation slip in body-centered cubic iron. Furthermore, using a classical potential that predicts dislocation core stabilities consistent with ab initio predictions, we quantify the non-Schmid stress-dependent effects of slip. The kink-pair activation enthalpy is evaluated and a model is identified as a function of the general stress state. Thus, our model enlarges the applicability of the classic Kocks activation enthalpy model to materials with non-Schmid behavior.

  18. Whole-House Ventilation | Department of Energy

    Office of Environmental Management (EM)

    - 2:37pm Addthis A whole-house ventilation system with dedicated ducting in a new energy-efficient home. | Photo courtesy of iStockphotobrebca. A whole-house ventilation...

  19. Heating Ventilation and Air Conditioning Efficiency

    Broader source: Energy.gov [DOE]

    This presentation covers common pitfalls that lead to wasted energy in industrial heating ventilation and air conditioning (HVAC) systems.

  20. Building America Webinar: Multifamily Ventilation Strategies and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compartmentalization Requirements - Joe Lstiburek | Department of Energy Joe Lstiburek Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements - Joe Lstiburek This presentation will be delivered at the U.S. Department of Energy Building America webinar, Multifamily Ventilation Strategies and Compartmentalization Requirements, on September 24, 2014. Joe Lstiburek, Building Science Corporation, will present various balanced ventilation options that

  1. Building America Webinar: Multifamily Ventilation Strategies and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compartmentalization Requirements | Department of Energy Multifamily Ventilation Strategies and Compartmentalization Requirements Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements This Building America webinar, held on Sept. 24, 2014, focused on key challenges in multifamily ventilation and strategies to address these challenges. Sean Maxwell, Consortium for Advanced Residential Buildings, discussed make-up air strategies in new construction

  2. Geological parameters used to determine the low enthalpy geothermal potential of sedimentary formations in France

    SciTech Connect (OSTI)

    Maget, Ph.; Housse, B.A.

    1985-01-01

    The determination of low enthalpy geothermal potential in sedimentary formations and its exploitation require the solution of two different problems, depending on whether the formations under consideration are calcareous or detrital.

  3. Summary of human responses to ventilation

    SciTech Connect (OSTI)

    Seppanen, Olli A.; Fisk, William J.

    2004-06-01

    The effects of ventilation on indoor air quality and health is a complex issue. It is known that ventilation is necessary to remove indoor generated pollutants from indoor air or dilute their concentration to acceptable levels. But, as the limit values of all pollutants are not known, the exact determination of required ventilation rates based on pollutant concentrations and associated risks is seldom possible. The selection of ventilation rates has to be based also on epidemiological research (e.g. Seppanen et al., 1999), laboratory and field experiments (e.g. CEN 1996, Wargocki et al., 2002a) and experience (e.g. ECA 2003). Ventilation may also have harmful effects on indoor air quality and climate if not properly designed, installed, maintained and operated as summarized by Seppdnen (2003). Ventilation may bring indoors harmful substances that deteriorate the indoor environment. Ventilation also affects air and moisture flow through the building envelope and may lead to moisture problems that deteriorate the structures of the building. Ventilation changes the pressure differences over the structures of building and may cause or prevent the infiltration of pollutants from structures or adjacent spaces. Ventilation is also in many cases used to control the thermal environment or humidity in buildings. Ventilation can be implemented with various methods which may also affect health (e.g. Seppdnen and Fisk, 2002, Wargocki et al., 2002a). In non residential buildings and hot climates, ventilation is often integrated with air-conditioning which makes the operation of ventilation system more complex. As ventilation is used for many purposes its health effects are also various and complex. This paper summarizes the current knowledge on positive and negative effects of ventilation on health and other human responses. The focus of the paper is on office-type working environment and residential buildings. In the industrial premises the problems of air quality are usually

  4. Models for prediction of temperature difference and ventilation effectiveness with displacement ventilation

    SciTech Connect (OSTI)

    Yuan, X.; Chen, Q.; Glicksman, L.R.

    1999-07-01

    Displacement ventilation may provide better indoor air quality than mixing ventilation. Proper design of displacement ventilation requires information concerning the air temperature difference between the head and foot level of a sedentary person and the ventilation effectiveness at the breathing level. This paper presents models to predict the air temperature difference and the ventilation effectiveness, based on a database of 56 cases with displacement ventilation. The database was generated by using a validated CFD program and covers four different types of US buildings: small offices, large offices with partitions, classrooms, and industrial workshops under different thermal and flow boundary conditions. Both the maximum cooling load that can be removed by displacement ventilation and the ventilation effectiveness are shown to depend on the heat source type and ventilation rate in a room.

  5. emergency recovery

    National Nuclear Security Administration (NNSA)

    basis.

    Recovery includes the evaluation of the incident to identify lessons learned and development of initiatives to mitigate the effects of future...

  6. Development of a Residential Integrated Ventilation Controller

    SciTech Connect (OSTI)

    Staff Scientist; Walker, Iain; Sherman, Max; Dickerhoff, Darryl

    2011-12-01

    The goal of this study was to develop a Residential Integrated Ventilation Controller (RIVEC) to reduce the energy impact of required mechanical ventilation by 20percent, maintain or improve indoor air quality and provide demand response benefits. This represents potential energy savings of about 140 GWh of electricity and 83 million therms of natural gas as well as proportional peak savings in California. The RIVEC controller is intended to meet the 2008 Title 24 requirements for residential ventilation as well as taking into account the issues of outdoor conditions, other ventilation devices (including economizers), peak demand concerns and occupant preferences. The controller is designed to manage all the residential ventilation systems that are currently available. A key innovation in this controller is the ability to implement the concept of efficacy and intermittent ventilation which allows time shifting of ventilation. Using this approach ventilation can be shifted away from times of high cost or high outdoor pollution towards times when it is cheaper and more effective. Simulations, based on the ones used to develop the new residential ventilation requirements for the California Buildings Energy code, were used to further define the specific criteria and strategies needed for the controller. These simulations provide estimates of the energy, peak power and contaminant improvement possible for different California climates for the various ventilation systems. Results from a field test of the prototype controller corroborate the predicted performance.

  7. Particle deposition in ventilation ducts

    SciTech Connect (OSTI)

    Sippola, Mark R.

    2002-09-01

    Exposure to airborne particles is detrimental to human health and indoor exposures dominate total exposures for most people. The accidental or intentional release of aerosolized chemical and biological agents within or near a building can lead to exposures of building occupants to hazardous agents and costly building remediation. Particle deposition in heating, ventilation and air-conditioning (HVAC) systems may significantly influence exposures to particles indoors, diminish HVAC performance and lead to secondary pollutant release within buildings. This dissertation advances the understanding of particle behavior in HVAC systems and the fates of indoor particles by means of experiments and modeling. Laboratory experiments were conducted to quantify particle deposition rates in horizontal ventilation ducts using real HVAC materials. Particle deposition experiments were conducted in steel and internally insulated ducts at air speeds typically found in ventilation ducts, 2-9 m/s. Behaviors of monodisperse particles with diameters in the size range 1-16 {micro}m were investigated. Deposition rates were measured in straight ducts with a fully developed turbulent flow profile, straight ducts with a developing turbulent flow profile, in duct bends and at S-connector pieces located at duct junctions. In straight ducts with fully developed turbulence, experiments showed deposition rates to be highest at duct floors, intermediate at duct walls, and lowest at duct ceilings. Deposition rates to a given surface increased with an increase in particle size or air speed. Deposition was much higher in internally insulated ducts than in uninsulated steel ducts. In most cases, deposition in straight ducts with developing turbulence, in duct bends and at S-connectors at duct junctions was higher than in straight ducts with fully developed turbulence. Measured deposition rates were generally higher than predicted by published models. A model incorporating empirical equations based on

  8. Enthalpies of formation of rare earth orthovanadates, REVO{sub 4}

    SciTech Connect (OSTI)

    Dorogova, M.; Navrotsky, A. Boatner, L.A.

    2007-03-15

    Rare earth orthovanadates, REVO{sub 4}, having the zircon structure, form a series of materials interesting for magnetic, optical, sensor, and electronic applications. Enthalpies of formation of REVO{sub 4} compounds (RE=Sc, Y, Ce-Nd, Sm-Tm, Lu) were determined by oxide melt solution calorimetry in lead borate (2PbO.2B{sub 2}O{sub 3}) solvent at 1075 K. The enthalpies of formation from oxide components become more negative with increasing RE ionic radius. This trend is similar to that obtained for the rare earth phosphates. - Graphical abstract: Comparison of enthalpies of formation from oxides at 298 K for REVO{sub 4} [this work] and REPO{sub 4} compounds [S.V. Ushakov, K.B. Helean, A. Navrotsky, L.A. Boatner, J. Mater. Res. 16(9) (2001) 2623] vs. RE{sup 3+} ionic radius. Filled symbols indicate scheelite structure, open symbols zircon structure.

  9. Building America Webinar: Multifamily Ventilation Strategies...

    Broader source: Energy.gov (indexed) [DOE]

    ASHRAE Standard 62.2-2013 ventilation requirements in multifamily buildings that are also constructed to LEED compartmentalization requirements of the currently proposed ASHRAE ...

  10. Ventilation Systems for Cooling | Department of Energy

    Energy Savers [EERE]

    it usually needs to be supplemented with spot ventilation, ceiling fans, and window fans. ... Also install window shades or other window treatments and close the shades. Shades will ...

  11. Infiltration in ASHRAE's Residential Ventilation Standards (Journal...

    Office of Scientific and Technical Information (OSTI)

    critically important to correctly evaluate the contribution infiltration makes to both energy consumption and equivalent ventilation. ASHRAE Standard 62.2 specifies how much...

  12. Building America Technology Solutions Case Study: Ventilation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Science Corporation tested the effectiveness of various ventilation systems at two unoccupied, single-family lab homes at the University of Texas at Tyler. The only ...

  13. Building America Technologies Solutions Case Study: Ventilation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    America team Building Science Corporation tested the effectiveness of various ventilation systems at two unoccupied, single-family lab homes at the University of Texas at Tyler. ...

  14. Recovery Act

    Broader source: Energy.gov [DOE]

    Recovery Act and Energy Department programs were designed to stimulate the economy while creating new power sources, conserving resources and aligning the nation to once again lead the global energy economy.

  15. Text-Alternative Version of Building America Webinar: Ventilation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategies for High Performance Homes, Part I: Application-Specific Ventilation Guidelines | Department of Energy Ventilation Strategies for High Performance Homes, Part I: Application-Specific Ventilation Guidelines Text-Alternative Version of Building America Webinar: Ventilation Strategies for High Performance Homes, Part I: Application-Specific Ventilation Guidelines August 26, 2015 Building America - Ventilation Strategies for High Performance Homes, Part I: Application-Specific

  16. Building America Webinar: Ventilation Strategies for High Performance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Homes, Part I: Application-Specific Ventilation Guidelines | Department of Energy Ventilation Strategies for High Performance Homes, Part I: Application-Specific Ventilation Guidelines Building America Webinar: Ventilation Strategies for High Performance Homes, Part I: Application-Specific Ventilation Guidelines This webinar, held on Aug. 26, 2015, covered what makes high-performance homes different from a ventilation perspective and how they might need to be treated differently than

  17. Preoperational test report, primary ventilation system

    SciTech Connect (OSTI)

    Clifton, F.T.

    1997-11-04

    This represents a preoperational test report for Primary Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides vapor space filtered venting of tanks AY101, AY102, AZ101, AZ102. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  18. Commissioning Ventilated Containment Systems in the Laboratory

    SciTech Connect (OSTI)

    Not Available

    2008-08-01

    This Best Practices Guide focuses on the specialized approaches required for ventilated containment systems, understood to be all components that drive and control ventilated enclosures and local exhaust systems within the laboratory. Geared toward architects, engineers, and facility managers, this guide provides information about technologies and practices to use in designing, constructing, and operating operating safe, sustainable, high-performance laboratories.

  19. DOE ZERH Webinar: Ventilation and Filtration Strategies with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ventilation and Filtration Strategies with Indoor airPLUS DOE ZERH Webinar: Ventilation and Filtration Strategies with Indoor airPLUS Watch the video or view the presentation ...

  20. Summer Infiltration/Ventilation Test Results from the FRTF Laboratory...

    Energy Savers [EERE]

    Summer InfiltrationVentilation Test Results from the FRTF Laboratory Summer InfiltrationVentilation Test Results from the FRTF Laboratory This presentation was delivered at the ...

  1. Building America Case Study: Selecting Ventilation Systems for...

    Energy Savers [EERE]

    Selecting Ventilation Systems for Existing Homes Selecting the Best System When determining the most practical ventilation system for an existing home, planning is crucial. Keep ...

  2. Ventilation System to Improve Savannah River Site's Liquid Waste...

    Office of Environmental Management (EM)

    Ventilation System to Improve Savannah River Site's Liquid Waste Operations Ventilation System to Improve Savannah River Site's Liquid Waste Operations August 28, 2014 - 12:00pm ...

  3. Effect Of Ventilation On Chronic Health Risks In Schools And...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Effect Of Ventilation On Chronic Health Risks In Schools And Offices Citation Details In-Document Search Title: Effect Of Ventilation On Chronic Health Risks In ...

  4. Does Mixing Make Residential Ventilation More Effective? (Conference...

    Office of Scientific and Technical Information (OSTI)

    Make Residential Ventilation More Effective? Ventilation dilutes or removes indoor contaminants to reduce occupant exposure. In a multi-zone environment such as a house, there...

  5. Effect of Ventilation Strategies on Residential Ozone Levels...

    Office of Scientific and Technical Information (OSTI)

    Effect of Ventilation Strategies on Residential Ozone Levels Citation Details In-Document Search Title: Effect of Ventilation Strategies on Residential Ozone Levels You are...

  6. Effect of Ventilation Strategies on Residential Ozone Levels...

    Office of Scientific and Technical Information (OSTI)

    Effect of Ventilation Strategies on Residential Ozone Levels Citation Details In-Document Search Title: Effect of Ventilation Strategies on Residential Ozone Levels Authors:...

  7. Houses are Dumb without Smart Ventilation (Technical Report)...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Houses are Dumb without Smart Ventilation Citation Details In-Document Search Title: Houses are Dumb without Smart Ventilation You are accessing a document ...

  8. Promising Technology: Variable-Air-Volume Ventilation System

    Broader source: Energy.gov [DOE]

    Variable-air-volume (VAV) ventilation saves energy compared to a constant-air-volume (CAV) ventilation system, mainly by reducing energy consumption associated with fans.

  9. Workers Remove Glove Boxes from Ventilation at Hanford's Plutonium...

    Broader source: Energy.gov (indexed) [DOE]

    processing area have been cleaned, allowing for their removal from ventilation used to control contamination. Addthis Related Articles Employees cut a ventilation duct attached...

  10. A critical review of displacement ventilation

    SciTech Connect (OSTI)

    Yuan, X.; Chen, Q.; Glicksman, L.R.

    1998-10-01

    This paper reviews several aspects of the performance of displacement ventilation: temperature distribution, flow distribution, contaminant distribution, comfort, energy and cost analysis, and design guidelines. Ventilation rate, cooling load, heat source, wall characteristics, space height, and diffuser type have major impacts on the performance of displacement ventilation. Some of the impacts can be estimated by simple equations, but many are still unknown. Based on current findings, displacement ventilation systems without cooled ceiling panels can be used for space with a cooling load up to 13 Btu/(h{center_dot}ft{sup 2}) (40 W/m{sup 2}). Energy consumed by HVAC systems depends on control strategies. The first costs of the displacement ventilation system are similar to those of a mixing ventilation system. The displacement system with cooled ceiling panels can remove a higher cooling load, but the first costs are higher as well. The design guidelines of displacement ventilation developed in Scandinavian countries need to be clarified and extended so that they can be used for US buildings. This paper outlines the research needed to develop design guidelines for US buildings.

  11. Interim Ventilation System Tie-in Completed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    , 2016 Interim Ventilation System Tie-in Completed Early this week sub-contractors at the Waste Isolation Pilot Plant (WIPP) completed the "tie in" of the new interim ventilation system (IVS) to the ductwork for the existing underground ventilation system. Following a series of operational tests, the IVS is expected to increase airflow in the WIPP underground by approximately 54,000 cubic feet per minute. The tie-in operation consisted of removal of sections of the existing ductwork

  12. Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements

    Office of Energy Efficiency and Renewable Energy (EERE)

    The webinar will focus on key challenges in multifamily ventilation and strategies to address these challenges.

  13. Building America Webinar: Ventilation in Multifamily Buildings | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Ventilation in Multifamily Buildings Building America Webinar: Ventilation in Multifamily Buildings This webinar was presented by research team Consortium for Advanced Residential Buildings (CARB), and discussed ventilation strategies for multifamily buildings, including how to successfully implement those strategies through smart design, specification, and construction techniques. webinar_ventilation_multifamily_20111101.wmv (22.17 MB) More Documents & Publications Building

  14. Ceilings and Attics: Install Insulation and Provide Ventilation

    SciTech Connect (OSTI)

    2000-02-01

    This document provides guidelines for installing insulation and managing ventilation through your attic.

  15. Using a Ventilation Controller to Optimize Residential Passive Ventilation For Energy and Indoor Air Quality

    SciTech Connect (OSTI)

    Turner, William; Walker, Iain

    2014-08-01

    One way to reduce the energy impact of providing residential ventilation is to use passive and hybrid systems. However, these passive and hybrid (sometimes called mixed-mode) systems must still meet chronic and acute health standards for ventilation. This study uses a computer simulation approach to examine the energy and indoor air quality (IAQ) implications of passive and hybrid ventilation systems, in 16 California climate zones. Both uncontrolled and flow controlled passive stacks are assessed. A new hybrid ventilation system is outlined that uses an intelligent ventilation controller to minimise energy use, while ensuring chronic and acute IAQ standards are met. ASHRAE Standard 62.2-2010 – the United States standard for residential ventilation - is used as the chronic standard, and exposure limits for PM2.5, formaldehyde and NO2 are used as the acute standards.The results show that controlled passive ventilation and hybrid ventilation can be used in homes to provide equivalent IAQ to continuous mechanical ventilation, for less use of energy.

  16. Ventilation System Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural ventilation is created by the differences in the distribution of air pressures around a building. Air moves from areas of high pressure to areas of low pressure, with ...

  17. Intergrating Magnetotellurics, Soil Gas Geochemistry and Structural Analysis to Identify Hidden, High Enthalpy, Extensional Geothermal Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrating Magnetotellurics, Soil Gas Geochemistry and Structural Analysis to Identify Hidden, High-Enthalpy, Extensional Geothermal Systems Principal Investigator: Philip E. Wannamaker University of Utah Energy & Geoscience Institute 423 Wakara Way, Ste 300 Salt Lake City, UT 84108 pewanna@egi.utah.edu April 24, 2013 This presentation does not contain any proprietary confidential, or otherwise restricted information. Track1: Geophysics McGinness Hills, NV October, 2011 2 | US DOE

  18. Sensor-based demand controlled ventilation

    SciTech Connect (OSTI)

    De Almeida, A.T.; Fisk, W.J.

    1997-07-01

    In most buildings, occupancy and indoor pollutant emission rates vary with time. With sensor-based demand-controlled ventilation (SBDCV), the rate of ventilation (i.e., rate of outside air supply) also varies with time to compensate for the changes in pollutant generation. In other words, SBDCV involves the application of sensing, feedback and control to modulate ventilation. Compared to ventilation without feedback, SBDCV offers two potential advantages: (1) better control of indoor pollutant concentrations; and (2) lower energy use and peak energy demand. SBDCV has the potential to improve indoor air quality by increasing the rate of ventilation when indoor pollutant generation rates are high and occupants are present. SBDCV can also save energy by decreasing the rate of ventilation when indoor pollutant generation rates are low or occupants are absent. After providing background information on indoor air quality and ventilation, this report provides a relatively comprehensive discussion of SBDCV. Topics covered in the report include basic principles of SBDCV, sensor technologies, technologies for controlling air flow rates, case studies of SBDCV, application of SBDCV to laboratory buildings, and research needs. SBDCV appears to be an increasingly attractive technology option. Based on the review of literature and theoretical considerations, the application of SBDCV has the potential to be cost-effective in applications with the following characteristics: (a) a single or small number of dominant pollutants, so that ventilation sufficient to control the concentration of the dominant pollutants provides effective control of all other pollutants; (b) large buildings or rooms with unpredictable temporally variable occupancy or pollutant emission; and (c) climates with high heating or cooling loads or locations with expensive energy.

  19. Retrofit Ventilation Strategies in Multifamily Buildings Webinar |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Retrofit Ventilation Strategies in Multifamily Buildings Webinar Retrofit Ventilation Strategies in Multifamily Buildings Webinar Slides from the Building America webinar on November 30, 2011. webinar_hybrid_insulation_20111130.pdf (3.78 MB) More Documents & Publications Building America Expert Meeting: Foundations Research Results Building America Expert Meeting: Interior Insulation Retrofit of Mass Masonry Wall Assemblies Building America Technology Solutions for

  20. Evaluating Ventilation Systems for Existing Homes

    SciTech Connect (OSTI)

    Aldrich, Robb; Arena, Lois

    2013-02-01

    In an effort to improve housing options near Las Vegas, Nevada, the Clark County Community Resources Division (CCCRD) performs substantial renovations to foreclosed homes. After dramatic energy, aesthetic, and health and safety improvements are made, homes are rented or sold to qualified residents. This report describes the evaluation and selection of ventilation systems for these homes, including key considerations when selecting an ideal system. The report then describes CCCRD’s decision process with respect to ventilation.

  1. Effects of partitioned enthalpy of mixing on glass-forming ability

    SciTech Connect (OSTI)

    Song, Wen-Xiong; Zhao, Shi-Jin

    2015-04-14

    We explore the inherent reason at atomic level for the glass-forming ability of alloys by molecular simulation, in which the effect of partitioned enthalpy of mixing is studied. Based on Morse potential, we divide the enthalpy of mixing into three parts: the chemical part (Δ E{sub nn}), strain part (Δ E{sub strain}), and non-bond part (Δ E{sub nnn}). We find that a large negative Δ E{sub nn} value represents strong AB chemical bonding in AB alloy and is the driving force to form a local ordered structure, meanwhile the transformed local ordered structure needs to satisfy the condition (Δ E{sub nn}/2 + Δ E{sub strain}) < 0 to be stabilized. Understanding the chemical and strain parts of enthalpy of mixing is helpful to design a new metallic glass with a good glass forming ability. Moreover, two types of metallic glasses (i.e., “strain dominant” and “chemical dominant”) are classified according to the relative importance between chemical effect and strain effect, which enriches our knowledge of the forming mechanism of metallic glass. Finally, a soft sphere model is established, different from the common hard sphere model.

  2. Recovery Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recovery Act - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  3. Ventilation efficiencies of a desk-edge-mounted task ventilation system

    SciTech Connect (OSTI)

    Faulkner, David; Fisk, William J.; Sullivan, Douglas P.; Lee, Seung Min

    2002-03-01

    In chamber experiments, we investigated the effectiveness of a task ventilation system with an air supply nozzle located underneath the front edge of a desk and directing air toward a heated mannequin seated at the desk. The task ventilation system provided outside air, while another ventilation system provided additional space cooling but no outside air. Test variables included the vertical angle of air supply (-15{sup o} to 45{sup o} from horizontal), and the supply flow rate of (3.5 to 6.5 L s{sup -1}). Using the tracer gas step-up and step-down procedures, the measured air change effectiveness (i.e., exhaust air age divided by age of air at the mannequin's face) ranged from 1.4 to 2.7, which is higher than typically reported for commercially available task ventilation or displacement ventilation systems.

  4. British architectural concepts of natural ventilation

    SciTech Connect (OSTI)

    Cook, J.

    1997-12-31

    Recent large buildings in Britain are reviewed for their demonstration of programmatic determinates and architectural concepts of natural ventilation, systems that reduce electric use because they use natural convection. In size they range from the 5,000 square feet of Darwin College at Cambridge to the Inland Revenue Center at Nottingham with 400,000 square feet. The mix of passive and conventional mechanical systems of Ionica Office Building, Cambridge suggests the newest strategy of deliberate redundancy in what might better be called assisted natural ventilation. Daylighting, a distinctly different technique is typically coincident. Among the programmatic concepts are unsealed buildings, displacement ventilation, and user preference for immediate environmental control and strong contact with the outdoor environment. Architectural concepts include atriums, exhaust towers, and exposed structural concrete ceilings. These applications reinforce green policies and involve leadership from prominent architects and clients.

  5. Estimated costs of ventilation systems complying with the HUD ventilation standard for manufactured homes

    SciTech Connect (OSTI)

    Miller, J.D.; Conner, C.C.

    1993-11-01

    At the request of the US Department of Housing and Urban Development (HUD), the Pacific Northwest Laboratory estimated the material, labor, and operating costs for ventilation equipment needed for compliance with HUD`s proposed revision to the ventilation standard for manufactured housing. This was intended to bound the financial impacts of the ventilation standard revision. Researchers evaluated five possible prototype ventilation systems that met the proposed ventilation requirements. Of those five, two systems were determined to be the most likely used by housing manufacturers: System 1 combines a fresh air duct with the existing central forced-air system to supply and circulate fresh air to conditioned spaces. System 2 uses a separate exhaust fan to remove air from the manufactured home. The estimated material and labor costs for these two systems range from $200 to $300 per home. Annual operating costs for the two ventilation systems were estimated for 20 US cities. The estimated operating costs for System 1 ranged from $55/year in Las Vegas, Nevada, to $83/year in Bismarck, North Dakota. Operating costs for System 2 ranged from a low of $35/year in Las Vegas to $63/year in Bismarck. Thus, HUD`s proposed increase in ventilation requirements will add less than $100/year to the energy cost of a manufactured home.

  6. Summer Infiltration/Ventilation Test Results from the FRTF Laboratory |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Summer Infiltration/Ventilation Test Results from the FRTF Laboratory Summer Infiltration/Ventilation Test Results from the FRTF Laboratory This presentation was delivered at the U.S. Department of Energy Building America Technical Update meeting on April 29-30, 2013, in Denver, Colorado. cq7_ventilation_hothumid_parker.pdf (7.06 MB) More Documents & Publications Critical Question #7: What are the Best Practices for Single-Family Ventilation in All Climate Regions?

  7. Microcalorimetric measurement of reaction enthalpies in solutions of uranium and neptunium compounds

    SciTech Connect (OSTI)

    Schreiner, F.; Friedman, A.M.; Richards, R.R.; Sullivan, J.C.

    1984-01-01

    The formation of complexes of uranyl and neptunyl(VI) ions with carbonate and hydrogen carbonate has been studied by titration microcalorimetry. The measurements were carried out with a computer-controlled microcalorimeter which is described in detail. Sample volumes are typically in the range of 1.5 to 2.5 ccm, containing about 0.05 millimole of the ionic species to be studied. The small volume renders the calorimeter useful for the measurement of uncommon and strongly radioactive substances. Enthalpies of reaction were obtained for the formation of the dicarbonato and the tricarbonato uranyl ions in a sulfate medium of ionic strength 1.6. The enthalpies are ..delta..H/sub 2/ = -39.6 +- 1 kJ/mol and -57.5 +- 1.5 kJ/mol, respectively. The titration data for the neptunyl(VI) - carbonate system yield a value of -50 +- 2 kJ/mol for the tricarbonato-neptunyl ion when interpreted in analogy to the uranyl system.

  8. CX-004912: Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    912: Categorical Exclusion Determination CX-004912: Categorical Exclusion Determination Architectural Applications -Innovative Building-Integrated Ventilation Enthalpy Recovery CX(s) Applied: B3.6 Date: 08/03/2010 Location(s): Berkeley, California Office(s): Advanced Research Projects Agency - Energy Funding will support laboratory research and bench and pilot-scale testing of a building-integrated, membrane-based enthalpy recovery ventilation system designed to increase the efficiency of vapor

  9. Effect of repository underground ventilation on emplacement drift temperature control

    SciTech Connect (OSTI)

    Yang, H.; Sun, Y.; McKenzie, D.G.; Bhattacharyya, K.K.

    1996-02-01

    The repository advanced conceptual design (ACD) is being conducted by the Civilian Radioactive Waste Management System, Management & Operating Contractor. Underground ventilation analyses during ACD have resulted in preliminary ventilation concepts and design methodologies. This paper discusses one of the recent evaluations -- effects of ventilation on emplacement drift temperature management.

  10. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act Recovery Act More Documents & Publications Overview of Recovery Act FAR Clauses Map Data: Recovery Act Funding DOE Policy Re Recovery Act Recipient Use of Recovery Act Logos on Signage

  11. Modeling particle loss in ventilation ducts

    SciTech Connect (OSTI)

    Sippola, Mark R.; Nazaroff, William W.

    2003-04-01

    Empirical equations were developed and applied to predict losses of 0.01-100 {micro}m airborne particles making a single pass through 120 different ventilation duct runs typical of those found in mid-sized office buildings. For all duct runs, losses were negligible for submicron particles and nearly complete for particles larger than 50 {micro}m. The 50th percentile cut-point diameters were 15 {micro}m in supply runs and 25 {micro}m in return runs. Losses in supply duct runs were higher than in return duct runs, mostly because internal insulation was present in portions of supply duct runs, but absent from return duct runs. Single-pass equations for particle loss in duct runs were combined with models for predicting ventilation system filtration efficiency and particle deposition to indoor surfaces to evaluate the fates of particles of indoor and outdoor origin in an archetypal mechanically ventilated building. Results suggest that duct losses are a minor influence for determining indoor concentrations for most particle sizes. Losses in ducts were of a comparable magnitude to indoor surface losses for most particle sizes. For outdoor air drawn into an unfiltered ventilation system, most particles smaller than 1 {micro}m are exhausted from the building. Large particles deposit within the building, mostly in supply ducts or on indoor surfaces. When filters are present, most particles are either filtered or exhausted. The fates of particles generated indoors follow similar trends as outdoor particles drawn into the building.

  12. Waste Heat Recovery

    Office of Environmental Management (EM)

    - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. ... 2 4 1.1. Introduction to Waste Heat Recovery ......

  13. Thermal dissociation behavior and dissociation enthalpies of methane-carbon dioxide mixed hydrates

    SciTech Connect (OSTI)

    Kwon, T.H.; Kneafsey, T.J.; Rees, E.V.L.

    2011-02-15

    Replacement of methane with carbon dioxide in hydrate has been proposed as a strategy for geologic sequestration of carbon dioxide (CO{sub 2}) and/or production of methane (CH{sub 4}) from natural hydrate deposits. This replacement strategy requires a better understanding of the thermodynamic characteristics of binary mixtures of CH{sub 4} and CO{sub 2} hydrate (CH{sub 4}-CO{sub 2} mixed hydrates), as well as thermophysical property changes during gas exchange. This study explores the thermal dissociation behavior and dissociation enthalpies of CH{sub 4}-CO{sub 2} mixed hydrates. We prepared CH{sub 4}-CO{sub 2} mixed hydrate samples from two different, well-defined gas mixtures. During thermal dissociation of a CH{sub 4}-CO{sub 2} mixed hydrate sample, gas samples from the head space were periodically collected and analyzed using gas chromatography. The changes in CH{sub 4}-CO{sub 2} compositions in both the vapor phase and hydrate phase during dissociation were estimated based on the gas chromatography measurements. It was found that the CO{sub 2} concentration in the vapor phase became richer during dissociation because the initial hydrate composition contained relatively more CO{sub 2} than the vapor phase. The composition change in the vapor phase during hydrate dissociation affected the dissociation pressure and temperature; the richer CO{sub 2} in the vapor phase led to a lower dissociation pressure. Furthermore, the increase in CO{sub 2} concentration in the vapor phase enriched the hydrate in CO{sub 2}. The dissociation enthalpy of the CH{sub 4}-CO{sub 2} mixed hydrate was computed by fitting the Clausius-Clapeyron equation to the pressure-temperature (PT) trace of a dissociation test. It was observed that the dissociation enthalpy of the CH{sub 4}-CO{sub 2} mixed hydrate lays between the limiting values of pure CH{sub 4} hydrate and CO{sub 2} hydrate, increasing with the CO{sub 2} fraction in the hydrate phase.

  14. Determination of enthalpies of formation of energetic molecules with composite quantum chemical methods

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Manaa, M. Riad; Fried, Laurence E.; Kuo, I-Feng W.

    2016-02-01

    We report gas-phase enthalpies of formation for the set of energetic molecules NTO, DADE, LLM-105, TNT, RDX, TATB, HMX, and PETN using the G2, G3, G4, and ccCA-PS3 quantum composite methods. Calculations for HMX and PETN hitherto represent the largest molecules attempted with these methods. G3 and G4 calculations are typically close to one another, with a larger difference found between these methods and ccCA-PS3. Furthermore there is significant uncertainty in experimental values, the mean absolute deviation between the average experimental value and calculations are 12, 6, 7, and 3 kcal/mol for G2, G3, G4, and ccCA-PS3, respectively.

  15. Ventilation efficiencies and thermal comfort results of a desk-edge-mounted task ventilation system

    SciTech Connect (OSTI)

    Faulkner, D.; Fisk, W.J.; Sullivan, D.P.; Lee, S.M.

    2003-09-01

    In chamber experiments, we investigated the ventilation effectiveness and thermal comfort of a task ventilation system with an air supply nozzle located underneath the front edge of a desk and directing air toward a heated mannequin or a human volunteer seated at the desk. The task ventilation system provided outside air, while another ventilation system provided additional space cooling but no outside air. Test variables included the vertical angle of air supply (-15{sup o} to 45{sup o} from horizontal), and the supply flow rate of (3.5 to 6.5 L s{sup -1}). Using the tracer gas step-up and step-down procedures, the measured air change effectiveness (i.e., exhaust air age divided by age of air in the breathing zone) in experiments with the mannequin ranged from 1.4 to 2.7 (median, 1.8), whereas with human subjects the air change effectiveness ranged from 1.3 to 2.3 (median, 1.6). The majority of the air change effectiveness values with the human subjects were less than values with the mannequin at comparable tests. Similarly, the tests run with supply air temperature equal to the room air temperature had lower air change effectiveness values than comparable tests with the supply air temperature lower ({approx}5 C) than the room air temperature. The air change effectiveness values are higher than typically reported for commercially available task ventilation or displacement ventilation systems. Based on surveys completed by the subjects, operation of the task ventilation system did not cause thermal discomfort.

  16. Performance Assessment of Photovoltaic Attic Ventilator Fans

    Broader source: Energy.gov [DOE]

    A case study of photovoltaic attic ventilator fans was conducted on an occupied single family home in Central Florida. Two fans were installed at mid-summer in an instrumented home where attic air temperature, meteorological conditions and space cooling electric power were measured. The home already had an attic radiant barrier, but still experienced attic air temperatures in excess of 130oF.

  17. Microsoft Word - Ventilation System Sampling Results 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ventilation System Sampling Results Air sampling results before and after the High Efficiency Particulate Air (HEPA) filters at WIPP are available here. Station A samples air before the filters and Station B samples air after passing through the filters. These samples were analyzed following the detection of airborne radioactivity on February 14, 2014. They are not environmental samples, and are not representative of the public or worker breathing zone air samples. They do provide assurance that

  18. Advanced Controls for Residential Whole-House Ventilation Systems

    SciTech Connect (OSTI)

    Turner, William; Walker, Iain; Sherman, Max

    2014-08-01

    Whole-house ventilation systems are becoming commonplace in new construction, remodeling/renovation, and weatherization projects, driven by combinations of specific requirements for indoor air quality (IAQ), health and compliance with standards, such as ASHRAE 62.2. Ventilation systems incur an energy penalty on the home via fan power used to drive the airflow, and the additional space-conditioning load associated with heating or cooling the ventilation air. Finding a balance between IAQ and energy use is important if homes are to be adequately ventilated while not increasing the energy burden. This study used computer simulations to examine RIVEC the Residential Integrated Ventilation Controller - a prototype ventilation controller that aims to deliver whole-house ventilation rates that comply with ventilation standards, for the minimum use of energy. Four different whole-house ventilation systems were simulated, both with and without RIVEC, so that the energy and IAQ results could be compared. Simulations were conducted for 13 US climate zones, three house designs, and three envelope leakage values. The results showed that the RIVEC controller could typically return ventilation energy savings greater than 40percent without compromising long-term chronic or short-term acute exposures to relevant indoor contaminants. Critical and average peak power loads were also reduced as a consequence of using RIVEC.

  19. Performance evaluation and design guidelines for displacement ventilation

    SciTech Connect (OSTI)

    Yuan, X.; Chen, Q.; Glicksman, L.R.

    1999-07-01

    This paper evaluates the performance of traditional displacement ventilation systems for small offices, large offices with partitions, classrooms, and industrial workshops under US thermal and flow boundary conditions, such as a high cooling load. With proper design, displacement ventilation can maintain a thermally comfortable environment that has a low air velocity, a small temperature difference between the head and foot level, and a low percentage of dissatisfied people. Compared with conventional mixing ventilation, displacement ventilation may provide better indoor air quality in the occupied zone when the contaminant sources are associated with the heat sources. The mean age of air is younger, and the ventilation effectiveness is higher. Based on results from Scandinavian countries and the authors' investigation of US buildings, this paper presents guidelines for designing displacement ventilation in the US.

  20. Research Shows Ventilated Auto Seats Improve Fuel Economy, Comfort - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL Research Shows Ventilated Auto Seats Improve Fuel Economy, Comfort March 2, 2006 Golden, Colo. - The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has demonstrated that ventilated automotive seats not only can improve passenger comfort but also a vehicle's fuel economy. That's because ventilated seats keep drivers and passengers cooler, so they need less air conditioning to be comfortable. NREL's Vehicle Ancillary Loads Reduction team has been

  1. Single-shell tank ventilation upgrades needs analysis report

    SciTech Connect (OSTI)

    Kriskovich, J.R., Fluor Daniel Hanford

    1997-02-03

    This report was written to comply with the objectives of the Hanford Federal Facility Agreement and Consent Order, Tri-Party Agreement Milestone M-43-03 Provide to the Washington State Department of Ecology and Department of Health the Results of the Single-Shell Tank Ventilation Upgrades Needs Analysis. The needs analysis consists of identifying the current type and status of each single-shell tank ventilation system, identifying current and projected authorization basis requirements, and identifying ventilation system compliance deficiencies.

  2. Case Study - The Challenge: Improving Ventilation System Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in a Textile Plant | Department of Energy Ventilation System Energy Efficiency in a Textile Plant Case Study - The Challenge: Improving Ventilation System Energy Efficiency in a Textile Plant This case study examines how Nisshinbo California, Inc. (NCI) worked with ADI Control Techniques Drives (ADI-CT) of Hayward, California, to improve ventilation system performance in its Fresno, California, textile plant. The company retrofitted 15 of the system's fan motors with variable frequency

  3. Microsoft Word - Determination of Class to Update Ventilation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Original Signatures on File Determination of Class Modification Update Ventilation Language for Consistency Waste Isolation Pilot Plant Carlsbad, New Mexico Permit...

  4. Ventilation Industrielle de Bretagne VIB | Open Energy Information

    Open Energy Info (EERE)

    Sector: Geothermal energy, Solar Product: Ploudalmezeau-based company producing and marketing energy efficient and ventilation products including air source heat pumps,...

  5. Natural Ventilation in California Offices: Estimated Health Effects...

    Office of Scientific and Technical Information (OSTI)

    Effects and Economic Consequences Citation Details In-Document Search Title: Natural Ventilation in California Offices: Estimated Health Effects and Economic Consequences ...

  6. Should Title 24 Ventilation Requirements Be Amended to include...

    Office of Scientific and Technical Information (OSTI)

    include an Indoor Air Quality Procedure? Citation Details In-Document Search Title: Should Title 24 Ventilation Requirements Be Amended to include an Indoor Air Quality Procedure? ...

  7. Optical People Counting for Demand Controlled Ventilation: A...

    Office of Scientific and Technical Information (OSTI)

    of Counter Performance Citation Details In-Document Search Title: Optical People Counting for Demand Controlled Ventilation: A Pilot Study of Counter Performance This pilot ...

  8. Radionuclide Releases During Normal Operations for Ventilated Tanks

    SciTech Connect (OSTI)

    Blunt, B.

    2001-09-24

    This calculation estimates the design emissions of radionuclides from Ventilated Tanks used by various facilities. The calculation includes emissions due to processing and storage of radionuclide material.

  9. Building America Case Study: Evaluation of Ventilation Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategies in New Construction Multifamily Buildings New York, New York PROJECT INFORMATION Project Name: Evaluation of Ventilation Strategies in New Construction Multifamily ...

  10. Analysis of Buoyancy-Driven Ventilation of Hydrogen from Buildings...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Buoyancy-Driven Ventilation of Hydrogen from Buildings C. Dennis Barley, Keith Gawlik, Jim Ohi, Russell Hewett National Renewable Laboratory U.S. DOE Hydrogen Safety, Codes & ...

  11. Case Study - The Challenge: Improving Ventilation System Energy...

    Broader source: Energy.gov (indexed) [DOE]

    examines how Nisshinbo California, Inc. (NCI) worked with ADI Control Techniques Drives (ADI-CT) of Hayward, California, to improve ventilation system performance in its Fresno, ...

  12. Low-Cost Ventilation in Production Housing - Building America...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Cost Ventilation in Production Housing (845.94 KB) More Documents & Publications Building America Whole-House Solutions for New Homes: Green Coast Enterprises, New Orleans, ...

  13. Indoor Air Quality and Ventilation in Residential Deep Energy...

    Office of Scientific and Technical Information (OSTI)

    The results indicate that DERs can provide adequate ventilation and IAQ, and that DERs should prioritize source control, particle filtration and well-designed local exhaust systems...

  14. Smart Ventilation (RIVEC) - 2014 BTO Peer Review | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-performance homes built with tight envelopes will benefit most from this technology. Their mechanical ventilation systems dominate for energy use; as the foundation, wall, and ...

  15. Energy and IAQ Implications of Residential Ventilation Cooling

    SciTech Connect (OSTI)

    Turner, William; Walker, Iain

    2014-08-01

    This study evaluates the energy, humidity and indoor air quality (IAQ) implications of residential ventilation cooling in all U.S. IECC climate zones. A computer modeling approach was adopted, using an advanced residential building simulation tool with airflow, energy and humidity models. An economizer (large supply fan) was simulated to provide ventilation cooling while outdoor air temperatures were lower than indoor air temperatures (typically at night). The simulations were performed for a full year using one-minute time steps to allow for scheduling of ventilation systems and to account for interactions between ventilation and heating/cooling systems.

  16. Computational Study of Bond Dissociation Enthalpies for Substituted $\\beta$-O-4 Lignin Model Compounds

    SciTech Connect (OSTI)

    Younker, Jarod M; Beste, Ariana; Buchanan III, A C

    2011-01-01

    The biopolymer lignin is a potential source of valuable chemicals. Phenethyl phenyl ether (PPE) is representative of the dominant $\\beta$-O-4 ether linkage. Density functional theory (DFT) is used to calculate the Boltzmann-weighted carbon-oxygen and carbon-carbon bond dissociation enthalpies (BDEs) of substituted PPE. These values are important in order to understand lignin decomposition. Exclusion of all conformers that have distributions of less than 5\\% at 298 K impacts the BDE by less than 1 kcal mol$^{-1}$. We find that aliphatic hydroxyl/methylhydroxyl substituents introduce only small changes to the BDEs (0-3 kcal mol$^{-1}$). Substitution on the phenyl ring at the $ortho$ position substantially lowers the C-O BDE, except in combination with the hydroxyl/methylhydroxyl substituents, where the effect of methoxy substitution is reduced by hydrogen bonding. Hydrogen bonding between the aliphatic substituents and the ether oxygen in the PPE derivatives has a significant influence on the BDE. CCSD(T)-calculated BDEs and hydrogen bond strengths of $ortho$-substituted anisoles when compared with M06-2X values confirm that the latter method is sufficient to describe the molecules studied and provide an important benchmark for lignin model compounds.

  17. ENTHALPY-BASED THERMAL EVOLUTION OF LOOPS. II. IMPROVEMENTS TO THE MODEL

    SciTech Connect (OSTI)

    Cargill, P. J.; Bradshaw, S. J.; Klimchuk, J. A.

    2012-06-20

    This paper develops the zero-dimensional (0D) hydrodynamic coronal loop model 'Enthalpy-based Thermal Evolution of Loops' (EBTEL) proposed by Klimchuk et al., which studies the plasma response to evolving coronal heating, especially impulsive heating events. The basis of EBTEL is the modeling of mass exchange between the corona and transition region (TR) and chromosphere in response to heating variations, with the key parameter being the ratio of the TR to coronal radiation. We develop new models for this parameter that now include gravitational stratification and a physically motivated approach to radiative cooling. A number of examples are presented, including nanoflares in short and long loops, and a small flare. The new features in EBTEL are important for accurate tracking of, in particular, the density. The 0D results are compared to a 1D hydro code (Hydrad) with generally good agreement. EBTEL is suitable for general use as a tool for (1) quick-look results of loop evolution in response to a given heating function, (2) extensive parameter surveys, and (3) situations where the modeling of hundreds or thousands of elemental loops is needed. A single run takes a few seconds on a contemporary laptop.

  18. Guide to Closing and Conditioning Ventilated Crawlspaces

    SciTech Connect (OSTI)

    Dickson, Bruce

    2013-01-01

    This how-to guide explains the issues and concerns with conventional ventilated crawlspaces and provides prescriptive measures for improvements that will create healthier and more durable spaces. The methods described in this guide are not the only acceptable ways to treat a crawlspace but represent a proven strategy that works in many areas of the United States. The designs discussed in this guide may or may not meet the local building codes and as such will need to be researched before beginning the project.

  19. C-106 tank process ventilation test

    SciTech Connect (OSTI)

    Bailey, J.W.

    1998-07-20

    Project W-320 Acceptance Test Report for tank 241-C-106, 296-C-006 Ventilation System Acceptance Test Procedure (ATP) HNF-SD-W320-012, C-106 Tank Process Ventilation Test, was an in depth test of the 296-C-006 ventilation system and ventilation support systems required to perform the sluicing of tank C-106. Systems involved included electrical, instrumentation, chiller and HVAC. Tests began at component level, moved to loop level, up to system level and finally to an integrated systems level test. One criteria was to perform the test with the least amount of risk from a radioactive contamination potential stand point. To accomplish this a temporary configuration was designed that would simulate operation of the systems, without being connected directly to the waste tank air space. This was done by blanking off ducting to the tank and connecting temporary ducting and an inlet air filter and housing to the recirculation system. This configuration would eventually become the possible cause of exceptions. During the performance of the test, there were points where the equipment did not function per the directions listed in the ATP. These events fell into several different categories. The first and easiest problems were field configurations that did not match the design documentation. This was corrected by modifying the field configuration to meet design documentation and reperforming the applicable sections of the ATP. A second type of problem encountered was associated with equipment which did not operate correctly, at which point an exception was written against the ATP, to be resolved later. A third type of problem was with equipment that actually operated correctly but the directions in the ATP were in error. These were corrected by generating an Engineering Change Notice (ECN) against the ATP. The ATP with corrected directions was then re-performed. A fourth type of problem was where the directions in the ATP were as the equipment should operate, but the design of

  20. Recovery Act Milestones

    ScienceCinema (OSTI)

    Rogers, Matt

    2013-05-29

    Every 100 days, the Department of Energy is held accountable for a progress report on the American Recovery and Reinvestment Act. Update at 200 days, hosted by Matt Rogers, Senior Advisor to Secretary Steven Chu for Recovery Act Implementation.

  1. WIPP Recovery Information

    Broader source: Energy.gov [DOE]

    At the March 26, 2014 Board meeting J. R. Stroble CBFO, Provided Information on Locations to Access WIPP Recovery Information.

  2. Waste tank ventilation rates measured with a tracer gas method

    SciTech Connect (OSTI)

    Huckaby, J.L.; Evans, J.C.; Sklarew, D.S.; Mitroshkov, A.V.

    1998-08-01

    Passive ventilation with the atmosphere is used to prevent accumulation of waste gases and vapors in the headspaces of 132 of the 177 high-level radioactive waste Tanks at the Hanford Site in Southeastern Washington State. Measurements of the passive ventilation rates are needed for the resolution of two key safety issues associated with the rates of flammable gas production and accumulation and the rates at which organic salt-nitrate salt mixtures dry out. Direct measurement of passive ventilation rates using mass flow meters is not feasible because ventilation occurs va multiple pathways to the atmosphere (i.e., via the filtered breather riser and unsealed tank risers and pits), as well as via underground connections to other tanks, junction boxes, and inactive ventilation systems. The tracer gas method discussed in this report provides a direct measurement of the rate at which gases are removed by ventilation and an indirect measurement of the ventilation rate. The tracer gas behaves as a surrogate of the waste-generated gases, but it is only diminished via ventilation, whereas the waste gases are continuously released by the waste and may be subject to depletion mechanisms other than ventilation. The fiscal year 1998 tracer studies provide new evidence that significant exchange of air occurs between tanks via the underground cascade pipes. Most of the single-shell waste tanks are connected via 7.6-cm diameter cascade pipes to one or two adjacent tanks. Tracer gas studies of the Tank U-102/U-103 system indicated that the ventilation occurring via the cascade line could be a significant fraction of the total ventilation. In this two-tank cascade, air evidently flowed from Tank U-103 to Tank U-102 for a time and then was observed to flow from Tank U-102 to Tank U-103.

  3. Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ............................................................................................... 2 4 1.1. Introduction to Waste Heat Recovery .......................................................................................... 2 5 1.2. Challenges and Barriers for Waste Heat Recovery ..................................................................... 13 6 1.3. Public

  4. Energy Auditor - Single Family 2.0: Mechanical Ventilation | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Auditor - Single Family 2.0: Mechanical Ventilation Energy Auditor - Single Family 2.0: Mechanical Ventilation Mechanical Ventilation - Complete (22.2 MB) Lesson Plan: Mechanical Ventilation (222.33 KB) PowerPoint: Mechanical Ventilation (22.61 MB) More Documents & Publications Weatherization Installer/Technician Fundamentals 2.0 - Mechanical Ventilation Rough-In Guidelines Energy Auditor - Single Family 2.0: Blower Door Basics Energy Auditor - Single Family 2.0: Mobile Home

  5. Hybrid Ventilation Optimization and Control Research and Development |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Hybrid Ventilation Optimization and Control Research and Development Hybrid Ventilation Optimization and Control Research and Development Credit: Massachusetts Institute of Technology Credit: Massachusetts Institute of Technology Lead Performer: Massachusetts Institute of Technology - Cambridge, MA Partners: -- Chongqing University - Chongqing, China -- Tongji University - Shanghai, China -- Tianjin University - Tianjin, China -- Chongqing Fu Tai Construction Group

  6. Buoyancy-Driven Ventilation of Hydrogen from Buildings: Laboratory Test and Model Validation

    SciTech Connect (OSTI)

    Barley, C. D.; Gawlik, K.

    2009-05-01

    Passive, buoyancy-driven ventilation is one approach to limiting hydrogen concentration. We explored the relationship between leak rate, ventilation design, and hydrogen concentrations.

  7. Measure Guideline: Selecting Ventilation Systems for Existing Homes

    SciTech Connect (OSTI)

    Aldrich, R.

    2014-02-01

    This document addresses adding -or improving - mechanical ventilation systems to existing homes. The purpose of ventilation is to remove contaminants from homes, and this report discusses where, when, and how much ventilation is appropriate in a home, including some discussion of relevant codes and standards. Advantages, disadvantages, and approximate costs of various system types are presented along with general guidelines for implementing the systems in homes. CARB intends for this document to be useful to decision makers and contractors implementing ventilation systems in homes. Choosing the "best" system is not always straightforward; selecting a system involves balancing performance, efficiency, cost, required maintenance, and several other factors. It is the intent of this document to assist contractors in making more informed decisions when selecting systems. Ventilation is an integral part of a high-performance home. With more air-sealed envelopes, a mechanical means of removing contaminants is critical for indoor environmental quality and building durability.

  8. Enhanced oil recovery

    SciTech Connect (OSTI)

    Fisher, W.G.

    1982-01-01

    The principal enhanced recovery technique is waterflooding, because water generally is inexpensive to obtain and inject into the reservoir and it works. With the shortage of conventional oil in Canada there is greater emphasis being placed on other recovery schemes in addition to or in place of waterflooding. Tertiary recovery is applicable to many of the existing projects and engineers must recognize those fields that are candidates for tertiary recovery applications. The application of tertiary recovery techniques to a specific reservoir requires consideration of all methods developed to select the one most suitable. A thorough understanding of waterflooding and the factors that affect recovery is necessary before a tertiary process is considered. Factors that affect oil recovery under waterflooding are areal and vertical sweep efficiency, contact factor and displacement efficiency.

  9. Battleground Energy Recovery Project

    SciTech Connect (OSTI)

    Daniel Bullock

    2011-12-31

    In October 2009, the project partners began a 36-month effort to develop an innovative, commercial-scale demonstration project incorporating state-of-the-art waste heat recovery technology at Clean Harbors, Inc., a large hazardous waste incinerator site located in Deer Park, Texas. With financial support provided by the U.S. Department of Energy, the Battleground Energy Recovery Project was launched to advance waste heat recovery solutions into the hazardous waste incineration market, an area that has seen little adoption of heat recovery in the United States. The goal of the project was to accelerate the use of energy-efficient, waste heat recovery technology as an alternative means to produce steam for industrial processes. The project had three main engineering and business objectives: Prove Feasibility of Waste Heat Recovery Technology at a Hazardous Waste Incinerator Complex; Provide Low-cost Steam to a Major Polypropylene Plant Using Waste Heat; and ? Create a Showcase Waste Heat Recovery Demonstration Project.

  10. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    SciTech Connect (OSTI)

    Rudd, Armin; Bergey, Daniel

    2014-02-01

    In this project, Building America research team Building Science Corporation tested the effectiveness of ventilation systems at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. This was because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four system factor categories: balance, distribution, outside air source, and recirculation filtration. Recommended system factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  11. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    SciTech Connect (OSTI)

    Rudd, A.; Bergey, D.

    2014-02-01

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. It was inferior because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  12. Optimization of Occupancy Based Demand Controlled Ventilation in Residences

    SciTech Connect (OSTI)

    Mortensen, Dorthe K.; Walker, Iain S.; Sherman, Max H.

    2011-05-01

    Although it has been used for many years in commercial buildings, the application of demand controlled ventilation in residences is limited. In this study we used occupant exposure to pollutants integrated over time (referred to as 'dose') as the metric to evaluate the effectiveness and air quality implications of demand controlled ventilation in residences. We looked at air quality for two situations. The first is that typically used in ventilation standards: the exposure over a long term. The second is to look at peak exposures that are associated with time variations in ventilation rates and pollutant generation. The pollutant generation had two components: a background rate associated with the building materials and furnishings and a second component related to occupants. The demand controlled ventilation system operated at a low airflow rate when the residence was unoccupied and at a high airflow rate when occupied. We used analytical solutions to the continuity equation to determine the ventilation effectiveness and the long-term chronic dose and peak acute exposure for a representative range of occupancy periods, pollutant generation rates and airflow rates. The results of the study showed that we can optimize the demand controlled airflow rates to reduce the quantity of air used for ventilation without introducing problematic acute conditions.

  13. Summary - Caustic Recovery Technology

    Office of Environmental Management (EM)

    Caustic Recovery Technology ETR Report Date: July 2007 ETR-7 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Caustic Recovery Technology Why DOE-EM Did This Review The Department of Energy (DOE) Environmental Management Office (EM-21) has been developing caustic recovery technology for application to the Hanford Waste Treatment Plant (WTP) to reduce the amount of Low Activity Waste (LAW) vitrified. Recycle of sodium hydroxide with an

  14. ARM - Recovery Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... In other Recovery Act news, the remote balloon launcher was ... new aerosols observation systems passed acceptance testing ... By moving to the fast-switching dual polarization technology...

  15. WIPP Recovery Progress

    Broader source: Energy.gov [DOE]

    At the March 25, 2015 Board meeting J. R. Stroble CBFO, Provided Information on the Status of the Recovery Effort at the WIPP Site.

  16. EM Recovery Act Performance

    Broader source: Energy.gov [DOE]

    The Office of Environmental Management's (EM) American Recovery and Reinvestment Act Program recently achieved 74 percent footprint reduction, exceeding the originally established goal of 40...

  17. Recovery Act Open House

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    light snacks for those attending. DOE ID Manager Rick Provencher discusses the non-cleanup work that was accomplished with Recovery Act funding. Editorial Date November 15, 2010...

  18. Does Mixing Make Residential Ventilation More Effective? (Conference...

    Office of Scientific and Technical Information (OSTI)

    Service, Springfield, VA at www.ntis.gov. Ventilation dilutes or removes indoor contaminants to reduce occupant exposure. In a multi-zone environment such as a house, there...

  19. Analysis of Buoyancy-Driven Ventilation of Hydrogen from Buildings...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis of Buoyancy-Driven Ventilation of Hydrogen from Buildings Preprint C.D. Barley, K. Gawlik, J. Ohi, and R. Hewett National Renewable Energy Laboratory To be presented at ...

  20. Advanced Controls for Residential Whole-House Ventilation Systems...

    Office of Scientific and Technical Information (OSTI)

    incur an energy penalty on the home via fan power used to drive the airflow, and the additional space-conditioning load associated with heating or cooling the ventilation air. ...

  1. Hybrid Ventilation Optimization and Control Research and Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    that come with it. The long-term goal is to reach the 1.6 billion market that includes design and architecture firms, hybrid ventilation equipment companies, and building...

  2. Impact of Infiltration and Ventilation on Measured Space Conditioning...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dur- ing cooler weather when the air conditioner is not running, lower air exchange levels can ... Test- ing suggested that "smart" ventilation control systems may be able to provide ...

  3. Measure Guideline: Selecting Ventilation Systems for Existing Homes

    SciTech Connect (OSTI)

    Aldrich, R.

    2014-02-01

    This report, developed by Building America research team CARB, addresses adding or improving mechanical ventilation systems to existing homes. The goal of this report is to assist decision makers and contractors in making informed decisions when selecting ventilation systems for homes. With more air-sealed envelopes, a mechanical means of removing contaminants is critical for indoor environmental quality and building durability. The purpose of ventilation is to remove contaminants from homes, and this report discusses where, when, and how much ventilation is appropriate in a home, including examination of relevant codes and standards. Choosing the "best" system is not always straightforward; selecting a system involves balancing performance, efficiency, cost, required maintenance, and several other factors.

  4. Air exchange effectiveness of conventional and task ventilation for offices

    SciTech Connect (OSTI)

    Fisk, W.J.; Faulkner, D.; Prill, R.J.

    1991-12-01

    Air quality and comfort complaints within large buildings are often attributed to air distribution problems. We define three air exchange effectiveness parameters related to air distribution. The first two indicate the indoor air flow pattern (i.e., the extent of short circuiting, mixing, or displacement flow) for an entire building or region. The third parameter is most useful for assessments of the spatial variability of ventilation. We also define the air diffusion effectiveness which indicates the air flow pattern within specific rooms or sections of buildings. The results of measurements of these parameters in US office buildings by the authors and other researchers are reviewed. Almost all measurements indicate very limited short circuiting or displacement flow between locations of air supply and removal. However, a moderate degree of short circuiting is evident from a few measurements in rooms with heated supply air. The results of laboratory-based measurements by the authors are consistent with the field data. Our measurements in office buildings do indicate that ventilation rates can vary substantially between indoor locations, probably due to variation in air supply rates between locations rather than variation in the indoor air flow patterns. One possible method of improving air distribution is to employ task ventilation with air supplied closer to the occupant`s breathing zone. We have evaluated two task ventilation systems in a laboratory setting. During most operating conditions, these systems did not provide a region of substantially increased ventilation where occupants breath. However, both systems are capable of providing substantially enhanced ventilation at the breathing zone under some operating conditions. Therefore, task ventilation is a potential option for using ventilation air more effectively.

  5. Air exchange effectiveness of conventional and task ventilation for offices

    SciTech Connect (OSTI)

    Fisk, W.J.; Faulkner, D.; Prill, R.J.

    1991-12-01

    Air quality and comfort complaints within large buildings are often attributed to air distribution problems. We define three air exchange effectiveness parameters related to air distribution. The first two indicate the indoor air flow pattern (i.e., the extent of short circuiting, mixing, or displacement flow) for an entire building or region. The third parameter is most useful for assessments of the spatial variability of ventilation. We also define the air diffusion effectiveness which indicates the air flow pattern within specific rooms or sections of buildings. The results of measurements of these parameters in US office buildings by the authors and other researchers are reviewed. Almost all measurements indicate very limited short circuiting or displacement flow between locations of air supply and removal. However, a moderate degree of short circuiting is evident from a few measurements in rooms with heated supply air. The results of laboratory-based measurements by the authors are consistent with the field data. Our measurements in office buildings do indicate that ventilation rates can vary substantially between indoor locations, probably due to variation in air supply rates between locations rather than variation in the indoor air flow patterns. One possible method of improving air distribution is to employ task ventilation with air supplied closer to the occupant's breathing zone. We have evaluated two task ventilation systems in a laboratory setting. During most operating conditions, these systems did not provide a region of substantially increased ventilation where occupants breath. However, both systems are capable of providing substantially enhanced ventilation at the breathing zone under some operating conditions. Therefore, task ventilation is a potential option for using ventilation air more effectively.

  6. WIPP Begins Preliminary Work on New Permanent Ventilation System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 28, 2016 WIPP Begins Preliminary Work on New Permanent Ventilation System The geotechnical investigation necessary for construction of a new Permanent Ventilation System (PVS), including a new filter building and a new exhaust shaft, is underway at the Waste Isolation Pilot Plant (WIPP). Investigation activities include drilling multiple bore holes and the collection of core samples at various depths. Analysis of the core samples will provide information for the building design team on

  7. Heating, Ventilation, and Air Conditioning Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heating, Ventilation, and Air Conditioning Projects Heating, Ventilation, and Air Conditioning Projects AS-IHP System Concept Sketch. Image credit: Oak Ridge National Laboratory Air-Source Integrated Heat Pump Lead Performer: Oak Ridge National Laboratory - Oak Ridge, TN Partner: Lennox Building-Integrated Heat & Moisture Exchange (SBIR Phase 2B) Lead Performer: Architectural Applications - Portland, Oregon Partner: Oregon State University - Corvallis, Oregon Left: Environmental chamber to

  8. Capture and Use of Coal Mine Ventilation Air Methane

    SciTech Connect (OSTI)

    Deborah Kosmack

    2008-10-31

    CONSOL Energy Inc., in conjunction with MEGTEC Systems, Inc., and the U.S. Department of Energy with the U.S. Environmental Protection Agency, designed, built, and operated a commercial-size thermal flow reversal reactor (TFRR) to evaluate its suitability to oxidize coal mine ventilation air methane (VAM). Coal mining, and particularly coal mine ventilation air, is a major source of anthropogenic methane emissions, a greenhouse gas. Ventilation air volumes are large and the concentration of methane in the ventilation air is low; thus making it difficult to use or abate these emissions. This test program was conducted with simulated coal mine VAM in advance of deploying the technology on active coal mine ventilation fans. The demonstration project team installed and operated a 30,000 cfm MEGTEC VOCSIDIZER oxidation system on an inactive coal mine in West Liberty, WV. The performance of the unit was monitored and evaluated during months of unmanned operation at mostly constant conditions. The operating and maintenance history and how it impacts the implementation of the technology on mine fans were investigated. Emission tests showed very low levels of all criteria pollutants at the stack. Parametric studies showed that the equipment can successfully operate at the design specification limits. The results verified the ability of the TFRR to oxidize {ge}95% of the low and variable concentration of methane in the ventilation air. This technology provides new opportunities to reduce greenhouse gas emissions by the reduction of methane emissions from coal mine ventilation air. A large commercial-size installation (180,000 cfm) on a single typical mine ventilation bleeder fan would reduce methane emissions by 11,000 to 22,100 short tons per year (the equivalent of 183,000 to 366,000 metric tonnes carbon dioxide).

  9. Moisture and Ventilation Solutions in Hot, Humid Climates: Florida

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufactured Housing - Building America Top Innovation | Department of Energy Moisture and Ventilation Solutions in Hot, Humid Climates: Florida Manufactured Housing - Building America Top Innovation Moisture and Ventilation Solutions in Hot, Humid Climates: Florida Manufactured Housing - Building America Top Innovation Photo of workers on the roof of a home. This Top Innovation profile describes research by Building America Partnership for Improved Residential Construction team to diagnose

  10. Building America Webinar: Retrofit Ventilation Strategies in Multifamily

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Webinar | Department of Energy Retrofit Ventilation Strategies in Multifamily Buildings Webinar Building America Webinar: Retrofit Ventilation Strategies in Multifamily Buildings Webinar This webinar, presented by research team Building Science Corporation, discussed insulating foundations and controlling water leakage as a critical measure for reducing heating load in homes in cold climates. webinar_hybrid_insulation_20111130.wmv (19.21 MB) More Documents & Publications

  11. Hybrid ventilation optimization and control research and development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid ventilation optimization and control research and development 2014 Building Technologies Office Peer Review Alonso Dominguez, alonso@mit.edu Leon Glicksman, glicks@mit.edu Project Summary Timeline: Start date: August 2011 Planned end date: September 2015 Key Milestones 1. Enhanced CoolVent to simulate joint natural ventilation and air conditioning: illustrated energy savings for different US climates, building types (ASHRAE Winter Meeting 2014) 2. Obtained monitoring results for several

  12. Issue #9: What are the Best Ventilation Techniques? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: What are the Best Ventilation Techniques? Issue #9: What are the Best Ventilation Techniques? How do we address ventilation in all climates? What is the best compromise between occupant health and safety and energy efficiency? issue9_recommend_ashrae.pdf (3.05 MB) issue9_ashrae622_vent.pdf (2.32 MB) More Documents & Publications Building Science - Ventilation Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements - Joe Lstiburek ZERH Webinar:

  13. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy

    SciTech Connect (OSTI)

    Sidheswaran, Meera; Destaillats, Hugo; Sullivan, Douglas P.; Fisk, William J.

    2010-10-27

    Approximately ten percent of the energy consumed in U.S. commercial buildings is used by HVAC systems to condition outdoor ventilation air. Reducing ventilation rates would be a simple and broadly-applicable energy retrofit option, if practical counter measures were available that maintained acceptable concentrations of indoor-generated air pollutants. The two general categories of countermeasures are: 1) indoor pollutant source control, and 2) air cleaning. Although pollutant source control should be used to the degree possible, source control is complicated by the large number and changing nature of indoor pollutant sources. Particle air cleaning is already routinely applied in commercial buildings. Previous calculations indicate that particle filtration consumes only 10percent to 25percent of the energy that would otherwise be required to achieve an equivalent amount of particle removal with ventilation. If cost-effective air cleaning technologies for volatile organic compounds (VOCs) were also available, outdoor air ventilation rates could be reduced substantially and broadly in the commercial building stock to save energy. The research carried out in this project focuses on developing novel VOC air cleaning technologies needed to enable energy-saving reductions in ventilation rates. The minimum required VOC removal efficiency to counteract a 50percent reduction in ventilation rate for air cleaning systems installed in the HVAC supply airstream is modest (generally 20percent or less).

  14. The CPA Equation of State and an Activity Coefficient Model for Accurate Molar Enthalpy Calculations of Mixtures with Carbon Dioxide and Water/Brine

    SciTech Connect (OSTI)

    Myint, P. C.; Hao, Y.; Firoozabadi, A.

    2015-03-27

    Thermodynamic property calculations of mixtures containing carbon dioxide (CO2) and water, including brines, are essential in theoretical models of many natural and industrial processes. The properties of greatest practical interest are density, solubility, and enthalpy. Many models for density and solubility calculations have been presented in the literature, but there exists only one study, by Spycher and Pruess, that has compared theoretical molar enthalpy predictions with experimental data [1]. In this report, we recommend two different models for enthalpy calculations: the CPA equation of state by Li and Firoozabadi [2], and the CO2 activity coefficient model by Duan and Sun [3]. We show that the CPA equation of state, which has been demonstrated to provide good agreement with density and solubility data, also accurately calculates molar enthalpies of pure CO2, pure water, and both CO2-rich and aqueous (H2O-rich) mixtures of the two species. It is applicable to a wider range of conditions than the Spycher and Pruess model. In aqueous sodium chloride (NaCl) mixtures, we show that Duan and Suns model yields accurate results for the partial molar enthalpy of CO2. It can be combined with another model for the brine enthalpy to calculate the molar enthalpy of H2O-CO2-NaCl mixtures. We conclude by explaining how the CPA equation of state may be modified to further improve agreement with experiments. This generalized CPA is the basis of our future work on this topic.

  15. Getting the correct data. [Eros Data Center heat recovery system

    SciTech Connect (OSTI)

    Not Available

    1985-03-01

    The Eros Data Center Heat Recovery System is a merging of the computer room air conditioning system with the building heating, ventilation and air conditioning system in such a way as to utilize the heat off the computers to heat the building. The 6,000 sq. ft. computer room contains three computers and two high resolution film laser recorders. Computer room air conditioners are switched from free cooling chilled water cooling tower mode to compresser heat recovery, according to outside air temperature and the temperature of the condensing loop. Any excess heat in the condenser loop over 90 F is expelled by the computer, opening the outside air dampers, and lowering mixed air temperatures.

  16. Solvent recycle/recovery

    SciTech Connect (OSTI)

    Paffhausen, M.W.; Smith, D.L.; Ugaki, S.N.

    1990-09-01

    This report describes Phase I of the Solvent Recycle/Recovery Task of the DOE Chlorinated Solvent Substitution Program for the US Air Force by the Idaho National Engineering Laboratory, EG G Idaho, Inc., through the US Department of Energy, Idaho Operations Office. The purpose of the task is to identify and test recovery and recycling technologies for proposed substitution solvents identified by the Biodegradable Solvent Substitution Program and the Alternative Solvents/Technologies for Paint Stripping Program with the overall objective of minimizing hazardous wastes. A literature search to identify recycle/recovery technologies and initial distillation studies has been conducted. 4 refs.

  17. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    With the passage of the American Recovery and Reinvestment Act of 2009 (Recovery Act), the Department of Energy (Department) will have new responsibilities and receive ...

  18. American Recovery and Reinvestment Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    American Recovery and Reinvestment Act American Recovery and Reinvestment Act LANL was able to accelerate demolition and cleanup thanks to a 212 million award from the American...

  19. Enhanced Oil Recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Oil Recovery As much as two-thirds of conventional crude oil discovered in U.S. fields remains unproduced, left behind due to the physics of fluid flow. In addition, ...

  20. Recovery Act Milestones

    Broader source: Energy.gov [DOE]

    Every 100 days, the Department of Energy is held accountable for a progress report on the American Recovery and Reinvestment Act. Update at 200 days, hosted by Matt Rogers, Senior Advisor to...

  1. Exhaust Energy Recovery

    Broader source: Energy.gov [DOE]

    Exhaust energy recovery proposed to achieve 10% fuel efficiency improvement and reduce or eliminate the need for increased heat rejectioncapacity for future heavy duty engines in Class 8 Tractors

  2. Indoor Air Quality and Ventilation in Residential Deep Energy Retrofits

    SciTech Connect (OSTI)

    Less, Brennan; Walker, Iain

    2014-06-01

    Because airtightening is a significant part of Deep Energy Retrofits (DERs), concerns about ventilation and Indoor Air Quality (IAQ) have emerged. To investigate this, ventilation and IAQ were assessed in 17 non-smoking California Deep Energy Retrofit homes. Inspections and surveys were used to assess household activities and ventilation systems. Pollutant sampling performed in 12 homes included six-day passive samples of nitrogen dioxide (NO2), formaldehyde and air exchange rate (AER); time-resolved data loggers were used to measure particle counts. Half of the homes provided continuous mechanical ventilation. Despite these homes being twice as airtight (3.0 and 7.6 ACH50, respectively), their median AER was indistinguishable from naturally vented homes (0.36 versus 0.37 hr--1). Numerous problems were found with ventilation systems; however, pollutant levels did not reach levels of concern in most homes. Ambient NO2 standards were exceeded in some gas cooking homes that used legacy ranges with standing pilots, and in Passive House-style homes without range hoods exhausted to outside. Cooking exhaust systems were installed and used inconsistently. The majority of homes reported using low-emitting materials, and formaldehyde levels were approximately half those in conventional new CA homes (19.7 versus 36 ?g/m3), with emissions rates nearly 40percent less (12.3 versus 20.6 ?g/m2/hr.). Presence of air filtration systems led to lower indoor particle number concentrations (PN>0.5: 8.80E+06 PN/m3 versus 2.99E+06; PN>2.5: 5.46E+0.5 PN/m3 versus 2.59E+05). The results indicate that DERs can provide adequate ventilation and IAQ, and that DERs should prioritize source control, particle filtration and well-designed local exhaust systems, while still providing adequate continuous ventilation.

  3. Ventilation Behavior and Household Characteristics in NewCalifornia Houses

    SciTech Connect (OSTI)

    Price, Phillip N.; Sherman, Max H.

    2006-02-01

    A survey was conducted to determine occupant use of windows and mechanical ventilation devices; barriers that inhibit their use; satisfaction with indoor air quality (IAQ); and the relationship between these factors. A questionnaire was mailed to a stratified random sample of 4,972 single-family detached homes built in 2003, and 1,448 responses were received. A convenience sample of 230 houses known to have mechanical ventilation systems resulted in another 67 completed interviews. Some results are: (1) Many houses are under-ventilated: depending on season, only 10-50% of houses meet the standard recommendation of 0.35 air changes per hour. (2) Local exhaust fans are under-utilized. For instance, about 30% of households rarely or never use their bathroom fan. (3) More than 95% of households report that indoor air quality is ''very'' or ''somewhat'' acceptable, although about 1/3 of households also report dustiness, dry air, or stagnant or humid air. (4) Except households where people cook several hours per week, there is no evidence that households with significant indoor pollutant sources get more ventilation. (5) Except households containing asthmatics, there is no evidence that health issues motivate ventilation behavior. (6) Security and energy saving are the two main reasons people close windows or keep them closed.

  4. Activation energy and enthalpy of decomposition for the Fe{sub 17}Sm{sub 2} nitride

    SciTech Connect (OSTI)

    Cabral, F.A.; Gama, S.; Ribeiro, C.A.

    1997-04-01

    Decomposition studies of the Fe{sub 17}Sm{sub 2}N{sub 3} compound were done using a Calvet-type microcalorimeter and a simultaneous gravimetric and differential thermal analyzer (DTA). The results show that the decomposition has onset temperature of 570{degree}C and proceeds up to 900{degree}C, and presents only one well determined exothermic thermal event. The calorimetric measurement shows that the enthalpy associated with the decomposition is 69 kJ/mol. The activation energy of the process was also determined using the Kissinger method applied to the DTA signal. It was observed that there was only one activation energy for the decomposition process, with a value of 339 kJ/mol. {copyright} {ital 1997 American Institute of Physics.}

  5. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act Recovery Act Center Map PERFORMANCE The Department estimates the $6 billion Recovery Act investment will allow us to complete work now that would cost approximately $13 billion in future years, saving $7 billion. As Recovery Act work is completed through the cleanup of contaminated sites, facilities, and material disposition, these areas will becoming available for potential reuse by other entities. Recovery Act funding is helping the Department reach our cleanup goals faster.

  6. Ventilation and occupant behavior in two apartment buildings

    SciTech Connect (OSTI)

    Diamond, R.C.; Modera, M.P.; Feustel, H.E.

    1986-10-01

    In this paper we approach the subject of ventilation and occupant behavior in multifamily buildings by asking three questions: (1) why and how do occupants interact with ventilation in an apartment building, (2) how does the physical environment (i.e., building characteristics and climate) affect the ventilation in an apartment, and (3) what methods can be used to answer the first two questions. To investigate these and related questions, two apartment buildings in Chicago were monitored during the 1985-1986 heating season. In addition to collecting data on energy consumption, outdoor temperature, wind speed, and indoor apartment temperatures, we conducted diagnostic measurements and occupant surveys in both buildings. The diagnostic tests measured leakage areas of the individual apartments, both through the exterior envelope and to other apartments. The measured leakage areas are used in conjunction with a multizone air flow model to simulate infiltration and internal air flows under different weather conditions. The occupants were questioned about their attitudes and behavior regarding the comfort, air quality, ventilation, and energy use of their apartments. This paper describes each of the research methods utilized, the results of these efforts, and conclusions that can be drawn about ventilation-occupant interactions in these apartment buildings. We found that there was minimal window opening during the winter, widespread use of auxiliary heating to control thermal comfort, and that the simulations show little outside air entry in the top-floor apartments during periods of low wind speeds. The major conclusion of this work is that a multi-disciplinary approach is required to understand or predict occupant-ventilation interactions. Such an approach must take into account the physical characteristics of the building and the climate, as well as the preferences and available options of the occupants.

  7. Solvent recovery targeting

    SciTech Connect (OSTI)

    Ahmad, B.S.; Barton, P.I.

    1999-02-01

    One of the environmental challenges faced by the pharmaceutical and specialty chemical industries is the widespread use of organic solvents. With a solvent-based chemistry, the solvent necessarily has to be separated from the product. Chemical species in waste-solvent streams typically form multicomponent azeotropic mixtures, and this often complicates separation and, hence, recovery of solvents. A design approach is presented whereby process modifications proposed by the engineer to reduce the formation of waste-solvent streams can be evaluated systematically. This approach, called solvent recovery targeting, exploits a recently developed algorithm for elucidating the separation alternatives achievable when applying batch distillation to homogeneous multicomponent mixtures. The approach places the composition of the waste-solvent mixture correctly in the relevant residue curve map and computes the maximum amount of pure material that can be recovered via batch distillation. Solvent recovery targeting is applied to two case studies derived from real industrial processes.

  8. Water spray ventilator system for continuous mining machines

    DOE Patents [OSTI]

    Page, Steven J.; Mal, Thomas

    1995-01-01

    The invention relates to a water spray ventilator system mounted on a continuous mining machine to streamline airflow and provide effective face ventilation of both respirable dust and methane in underground coal mines. This system has two side spray nozzles mounted one on each side of the mining machine and six spray nozzles disposed on a manifold mounted to the underside of the machine boom. The six spray nozzles are angularly and laterally oriented on the manifold so as to provide non-overlapping spray patterns along the length of the cutter drum.

  9. Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements- Sean Maxwell

    Broader source: Energy.gov [DOE]

    This presentation is included in the Building America webinar, Multifamily Ventilation Strategies and Compartmentalization Requirements, on September 24, 2014.

  10. Recovery of EUVL substrates

    SciTech Connect (OSTI)

    Vernon, S.P.; Baker, S.L.

    1995-01-19

    Mo/Si multilayers, were removed from superpolished zerodur and fused silica substrates with a dry etching process that, under suitable processing conditions, produces negligible change in either the substrate surface figure or surface roughness. Full recovery of the initial normal incidence extreme ultra-violet (EUV) reflectance response has been demonstrated on reprocessed substrates.

  11. Formation enthalpies and heat capacities of rear earth titanates: RE{sub 2}TiO{sub 5} (RE=La, Nd and Gd)

    SciTech Connect (OSTI)

    Hayun, Shmuel; Navrotsky, Alexandra

    2012-03-15

    The formation enthalpies and heat capacities of orthorhombic rare earth titanates, RE{sub 2}TiO{sub 5} (RE=La, Nd and Gd), have been studied by high temperature differential scanning calorimetry (300-1473 K) and oxide-melt solution calorimetry. The RE{sub 2}TiO{sub 5} samples are stable in enthalpy with respect to their oxides and the pyrochlore RE{sub 2}Ti{sub 2}O{sub 7} phase. The general trend that has been demonstrated in other RE-ternary systems; decreasing thermodynamic stability with decreasing R{sub A}/R{sub B} was found to be valid for the RE{sub 2}TiO{sub 5}, and their enthalpies of formation from oxides become more negative with increasing RE{sup 3+} ionic radius. - Graphical abstract: Normalized enthalpy of formation for one RE{sup 3+} cation from the oxides for several RE ternary oxide systems vs. the cation radius ratio R{sub A}/R{sub B} (A=RE, B=Ti, Zr, P). All the RE ternary oxide systems are stable relative to constituent oxides, with increasing stability as R{sub A}/R{sub B} increases. The Roman numerals above the cations represent the coordination number. Highlights: Black-Right-Pointing-Pointer Formation enthalpies and heat capacities of RE{sub 2}TiO{sub 5} (RE=La, Nd and Gd) were determined. Black-Right-Pointing-Pointer Enthalpies of formation of RE{sub 2}TiO{sub 5} from oxides become more negative with increasing RE{sup 3+} ionic radius. Black-Right-Pointing-Pointer RE{sub 2}TiO{sub 5} phases are stable in enthalpy with respect to their oxides and the pyrochlore RE{sub 2}Ti{sub 2}O{sub 7} phases. Black-Right-Pointing-Pointer Thermodynamic stability of orthorhombic RE{sub 2}TiO{sub 5} decrease with increasing R{sub B} to R{sub A} ratio.

  12. Radioactive waste tank ventilation system incorporating tritium control

    SciTech Connect (OSTI)

    Rice, P.D.

    1997-08-01

    This paper describes the development of a ventilation system for radioactive waste tanks at the U.S. Department of Energy`s (DOE) Hanford Site in Richland, Washington. The unique design of the system is aimed at cost-effective control of tritiated water vapor. The system includes recirculation ventilation and cooling for each tank in the facility and a central exhaust air clean-up train that includes a low-temperature vapor condenser and high-efficiency mist eliminator (HEME). A one-seventh scale pilot plant was built and tested to verify predicted performance of the low-temperature tritium removal system. Tests were conducted to determine the effectiveness of the removal of condensable vapor and soluble and insoluble aerosols and to estimate the operating life of the mist eliminator. Definitive design of the ventilation system relied heavily on the test data. The unique design features of the ventilation system will result in far less release of tritium to the atmosphere than from conventional high-volume dilution systems and will greatly reduce operating costs. NESHAPs and TAPs NOC applications have been approved, and field construction is nearly complete. Start-up is scheduled for late 1996. 3 refs., 4 figs., 2 tabs.

  13. Building America Top Innovations 2012: Outside Air Ventilation Controller

    SciTech Connect (OSTI)

    none,

    2013-01-01

    venThis Building America Top Innovations profile describes Building America research showing how automated night ventilation can reduce cooling energy costs up to 40% and peak demand up to 50% in California’s hot-dry central valley climates and can eliminate the need for air conditioning altogether in the coastal marine climate.

  14. Outside Air Ventilation Controller- Building America Top Innovation

    Broader source: Energy.gov [DOE]

    This Building America Innovations profile describes Building America research showing automated night ventilation can reduce cooling energy costs up to 40% and peak demand up to 50% in California’s hot-dry central valley climates and can eliminate the need for air conditioning altogether in the coastal marine climate.

  15. Technology Solutions Case Study: Selecting Ventilation Systems for Existing Homes

    SciTech Connect (OSTI)

    2014-12-01

    In multifamily buildings, particularly in the Northeast, exhaust ventilation strategies are the norm as a means of meeting both local exhaust and whole-unit mechanical ventilation rates. The issue of where the "fresh" air is coming from is gaining significance as air-tightness standards for enclosures become more stringent, and the normal leakage paths through the building envelope disappear. Researchers from the Consortium for Advanced Residential Buildings (CARB) found that the majority of high performance, new construction, multifamily housing in the Northeast use one of four general strategies for ventilation: continuous exhaust only with no designated supply or make-up air source, continuous exhaust with ducted make-up air to apartments, continuous exhaust with supply through a make-up air device integral to the unit HVAC, and continuous exhaust with supply through a passive inlet device, such as a trickle vent. Insufficient information is available to designers on how these various systems are best applied. In this project, the CARB team evaluated the four different strategies for providing make-up air to multifamily residential buildings and developed guidelines to help contractors and building owners choose the best ventilation systems.

  16. Measured Air Distribution Effectiveness for Residential Mechanical Ventilation Systems

    SciTech Connect (OSTI)

    Sherman, Max; Sherman, Max H.; Walker, Iain S.

    2008-05-01

    The purpose of ventilation is dilute or remove indoor contaminants that an occupant is exposed to. In a multi-zone environment such as a house, there will be different dilution rates and different source strengths in every zone. Most US homes have central HVAC systems, which tend to mix the air thus the indoor conditions between zones. Different types of ventilation systems will provide different amounts of exposure depending on the effectiveness of their air distribution systems and the location of sources and occupants. This paper will report on field measurements using a unique multi-tracer measurement system that has the capacity to measure not only the flow of outdoor air to each zone, but zone-to-zone transport. The paper will derive seven different metrics for the evaluation of air distribution. Measured data from two homes with different levels of natural infiltration will be used to evaluate these metrics for three different ASHRAE Standard 62.2 compliant ventilation systems. Such information can be used to determine the effectiveness of different systems so that appropriate adjustments can be made in residential ventilation standards such as ASHRAE Standard 62.2.

  17. Study on the applicability of the desk displacement ventilation concept

    SciTech Connect (OSTI)

    Loomans, M.G.L.C.

    1999-07-01

    This paper summarizes an experimental and numerical study into a ventilation concept that combines displacement ventilation with task conditioning, the so-called desk displacement ventilation (DDV) concept. The study uses steady-state and transient results to discuss the applicability of the DDV concept for standard office room configurations. The evaluation of the concept focuses on the micro/macroclimate and thermal comfort. Results show that the separation between micro- and macroclimate, a characteristic of task conditioning, is less pronounced. Furthermore, the thermal comfort conditions at the desk limit the cooling capacity of a DDV system. Finally, the transient characteristics of the concept do not conform to stated requirements for task conditioning systems. The main conclusion, therefore, is that there is no particular advantage in sitting close to a displacement ventilation unit. An improvement of the DDV system is proposed by incorporating a parallel system that provides the fresh air near head level. The improvement of the combined system has been investigated using computational fluid dynamics.

  18. Evaluation of Ventilation Strategies in New Construction Multifamily Buildings

    SciTech Connect (OSTI)

    Maxwell, S.; Berger, D.; Zuluaga, M.

    2014-07-01

    In multifamily buildings, particularly in the Northeast, exhaust ventilation strategies are the norm as a means of meeting both local exhaust and whole-unit mechanical ventilation rates. The issue of where the "fresh" air is coming from is gaining significance as air-tightness standards for enclosures become more stringent. CARB researchers have found that most new high performance, multifamily housing in the Northeast use one of four strategies for ventilation: continuous exhaust only with no designated supply or make-up air source, continuous exhaust with ducted make-up air to apartments, continuous exhaust with supply through a make-up air device integral to the unit HVAC, and continuous exhaust with supply through a passive inlet device, such as a trickle vent. Insufficient information is available to designers on how these various systems are best applied. Product performance data are based on laboratory tests, but there is no guarantee that those conditions will exist consistently in the finished building. In this research project, CARB evaluated the four ventilation strategies in the field to validate system performance.

  19. Recovery Act: State Assistance for Recovery Act Related Electricity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Policies | Department of Energy Act: State Assistance for Recovery Act Related Electricity Policies Recovery Act: State Assistance for Recovery Act Related Electricity Policies $44 Million for State Public Utility Commissions State public utility commissions (PUCs), which regulate and oversee electricity projects in their states, will be receiving more than $44.2 million in Recovery Act funding to hire new staff and retrain existing employees to ensure they have the capacity to quickly and

  20. New York Recovery Act Snapshot

    Broader source: Energy.gov [DOE]

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in New York are supporting a...

  1. DOE Recovery Act Field Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act Field Projects DOE Recovery Act Field Projects DOE Recovery Act Field Projects

  2. Pulmonary Ventilation Imaging Based on 4-Dimensional Computed Tomography: Comparison With Pulmonary Function Tests and SPECT Ventilation Images

    SciTech Connect (OSTI)

    Yamamoto, Tokihiro; Kabus, Sven; Lorenz, Cristian; Mittra, Erik; Hong, Julian C.; Chung, Melody; Eclov, Neville; To, Jacqueline; Diehn, Maximilian; Loo, Billy W.; Keall, Paul J.

    2014-10-01

    Purpose: 4-dimensional computed tomography (4D-CT)-based pulmonary ventilation imaging is an emerging functional imaging modality. The purpose of this study was to investigate the physiological significance of 4D-CT ventilation imaging by comparison with pulmonary function test (PFT) measurements and single-photon emission CT (SPECT) ventilation images, which are the clinical references for global and regional lung function, respectively. Methods and Materials: In an institutional review board–approved prospective clinical trial, 4D-CT imaging and PFT and/or SPECT ventilation imaging were performed in thoracic cancer patients. Regional ventilation (V{sub 4DCT}) was calculated by deformable image registration of 4D-CT images and quantitative analysis for regional volume change. V{sub 4DCT} defect parameters were compared with the PFT measurements (forced expiratory volume in 1 second (FEV{sub 1}; % predicted) and FEV{sub 1}/forced vital capacity (FVC; %). V{sub 4DCT} was also compared with SPECT ventilation (V{sub SPECT}) to (1) test whether V{sub 4DCT} in V{sub SPECT} defect regions is significantly lower than in nondefect regions by using the 2-tailed t test; (2) to quantify the spatial overlap between V{sub 4DCT} and V{sub SPECT} defect regions with Dice similarity coefficient (DSC); and (3) to test ventral-to-dorsal gradients by using the 2-tailed t test. Results: Of 21 patients enrolled in the study, 18 patients for whom 4D-CT and either PFT or SPECT were acquired were included in the analysis. V{sub 4DCT} defect parameters were found to have significant, moderate correlations with PFT measurements. For example, V{sub 4DCT}{sup HU} defect volume increased significantly with decreasing FEV{sub 1}/FVC (R=−0.65, P<.01). V{sub 4DCT} in V{sub SPECT} defect regions was significantly lower than in nondefect regions (mean V{sub 4DCT}{sup HU} 0.049 vs 0.076, P<.01). The average DSCs for the spatial overlap with SPECT ventilation defect regions were only moderate (V

  3. [Waste water heat recovery system

    SciTech Connect (OSTI)

    Not Available

    1993-04-28

    The production capabilities for and field testing of the heat recovery system are described briefly. Drawings are included.

  4. Recovery Act State Memos Tennessee

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act State Memos Tennessee For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  5. Recovery Act State Memos Alabama

    Broader source: Energy.gov (indexed) [DOE]

    Updated July 2010 | Department of Energy Chart listing projects selected for Smart Grid Investment Grants under American Recovery and Reinvestment Act. There is a November 2011 Update to the "Recovery Act Selections for Smart Grid Investment Grant Awards - By Category" file. Recovery Act Selections for Smart Grid Invesment Grant Awards- By Category (461.59 KB) More Documents & Publications FINAL Combined SGIG Selections - By Category for Press -AOv10.xls Recovery Act Selections

  6. American Recovery and Reinvestment Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    American Recovery and Reinvestment Act American Recovery and Reinvestment Act LANL was able to accelerate demolition and cleanup thanks to a $212 million award from the American Recovery and Reinvestment Act. August 1, 2013 Excavation trench and enclosure at TA-21. To protect air quality, MDA B is excavated under a dome. By September 2011, all projects were complete. In 2010 and 2011, LANL received $212 million in funding from the American Recovery and Reinvestment Act to complete three

  7. Recovery Act State Memos Illinois

    Broader source: Energy.gov (indexed) [DOE]

    ......... 13 RECOVERY ACT SUCCESS STORIES - ENERGY EMPOWERS * Retooled machines bring new green jobs to Illinois ......15 * County partners ...

  8. Huntington Resource Recovery Facility Biomass Facility | Open...

    Open Energy Info (EERE)

    Resource Recovery Facility Biomass Facility Jump to: navigation, search Name Huntington Resource Recovery Facility Biomass Facility Facility Huntington Resource Recovery Facility...

  9. Metal recovery from porous materials (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Metal recovery from porous materials Title: Metal recovery from porous materials The present invention relates to recovery of metals. More specifically, the present invention ...

  10. Elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, M.; Zhicheng Hu.

    1993-09-07

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO[sub 2] in the regenerator off gas stream to elemental sulfur in the presence of a catalyst. 4 figures.

  11. URANIUM RECOVERY PROCESS

    DOE Patents [OSTI]

    Stevenson, J.W.; Werkema, R.G.

    1959-07-28

    The recovery of uranium from magnesium fluoride slag obtained as a by- product in the production of uranium metal by the bomb reduction prccess is presented. Generally the recovery is accomplished by finely grinding the slag, roasting ihe ground slag air, and leaching the roasted slag with a hot, aqueous solution containing an excess of the sodium bicarbonate stoichiometrically required to form soluble uranium carbonate complex. The roasting is preferably carried out at between 425 and 485 deg C for about three hours. The leaching is preferably done at 70 to 90 deg C and under pressure. After leaching and filtration the uranium may be recovered from the clear leach liquor by any desired method.

  12. Elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, Maria; Hu, Zhicheng

    1993-01-01

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO.sub.2 -containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO.sub.2 to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO.sub.2 in the regenerator off gas stream to elemental sulfur in the presence of a catalyst.

  13. Process for LPG recovery

    SciTech Connect (OSTI)

    Khan, Sh. A.; Haliburton, J.

    1985-03-26

    An improved process is described for the separation and recovery of substantially all the propane and heavier hydrocarbon components in a hydrocarbon gaseous feedstream. In this process, the vapor stream from a deethanizer is cooled to liquefaction and contacted with a vapor phase from the hydrocarbon gaseous feedstream. The contact takes place within a direct heat exchanger, and the resulting vapor fraction, which is essentially ethane and methane, is the gaseous product of the process.

  14. The American Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    American Recovery and Reinvestment Act Smart Grid Highlights Jumpstarting a Modern Grid October 2014 2 The Office of Electricity Delivery and Energy Reliability (OE) provides national leadership to ensure that the nation's energy delivery system is secure, resilient, and reliable. OE works to develop new technologies to improve the infrastructure that brings electricity into our homes, offices, and factories in partnership with industry, other federal agencies, and state and local governments.

  15. Experimental study on the floor-supply displacement ventilation system

    SciTech Connect (OSTI)

    Akimoto, Takashi; Nobe, Tatsuo; Takebayashi, Yoshihisa

    1995-12-31

    These results are presented from a research project to investigate the effects of a floor-supply displacement ventilation system with practical indoor heat loads. The experiments were performed in an experimental chamber (35.2 m{sup 2}) located in a controlled environment chamber. Temperature distributions were measured at seven heights throughout the experimental chamber for each test condition. Data were analyzed to observe thermal stratification as affected by lighting, occupants, and heat loads (personal computers), and its disruption caused by walking and change of air volume. In addition, airflow characteristics and ventilation efficiencies were investigated using a smoke machine, tobacco smoke, dust for industrial testing, and a tracer gas (CO{sub 2}) step-up procedure.

  16. Are Ventilation Filters Degrading Indoor Air Quality in California Classrooms?

    SciTech Connect (OSTI)

    Fisk, William J.; Destaillats, H.; Apte, M.G.; Destaillats,, Hugo; Fisk, Michael G. Apte and William J.

    2008-10-01

    Heating, ventilating, and cooling classrooms in California consume substantial electrical energy. Indoor air quality (IAQ) in classrooms affects studenthealth and performance. In addition to airborne pollutants that are emitted directly by indoor sources and those generated outdoors, secondary pollutants can be formed indoors by chemical reaction of ozone with other chemicals and materials. Filters are used in nearly all classroom heating, ventilation and air?conditioning (HVAC) systems to maintain energy-efficient HVAC performance and improve indoor air quality; however, recent evidence indicates that ozone reactions with filters may, in fact, be a source of secondary pollutants. This project quantitatively evaluated ozone deposition in HVAC filters and byproduct formation, and provided a preliminary assessment of the extent towhich filter systems are degrading indoor air quality. The preliminary information obtained will contribute to the design of subsequent research efforts and the identification of energy efficient solutions that improve indoor air quality in classrooms and the health and performance of students.

  17. VARIABLE FLOW EXHAUST VENTILATION CAP FOR LEV SYSTEMS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    VARIABLE FLOW EXHAUST VENTILATION CAP FOR LEV SYSTEMS Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2016-7687 M Patent Pending Technology Readiness Level: 7/8 Actual technology completed and qualified through test and demonstration TECHNOLOGY DESCRIPTION Local Exhaust

  18. Funding Opportunity Announcement: Recovery Act ? Energy Efficiency...

    Office of Environmental Management (EM)

    Funding Opportunity Announcement: Recovery Act Energy Efficiency and Conversation Block Grants Formula Grants Funding Opportunity Announcement: Recovery Act Energy...

  19. Waste Heat Recovery Opportunities for Thermoelectric Generators...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Opportunities for Thermoelectric Generators Waste Heat Recovery Opportunities for Thermoelectric Generators Thermoelectrics have unique advantages for ...

  20. Incorporating Energy Efficiency into Disaster Recovery Efforts...

    Energy Savers [EERE]

    Disaster Recovery Efforts Incorporating Energy Efficiency into Disaster Recovery Efforts Better Buildings Residential Network Program Sustainability Peer Exchange Call Series: ...

  1. Clinical Validation of 4-Dimensional Computed Tomography Ventilation With Pulmonary Function Test Data

    SciTech Connect (OSTI)

    Brennan, Douglas; Schubert, Leah; Diot, Quentin; Castillo, Richard; Castillo, Edward; Guerrero, Thomas; Martel, Mary K.; Linderman, Derek; Gaspar, Laurie E.; Miften, Moyed; Kavanagh, Brian D.; Vinogradskiy, Yevgeniy

    2015-06-01

    Purpose: A new form of functional imaging has been proposed in the form of 4-dimensional computed tomography (4DCT) ventilation. Because 4DCTs are acquired as part of routine care for lung cancer patients, calculating ventilation maps from 4DCTs provides spatial lung function information without added dosimetric or monetary cost to the patient. Before 4DCT-ventilation is implemented it needs to be clinically validated. Pulmonary function tests (PFTs) provide a clinically established way of evaluating lung function. The purpose of our work was to perform a clinical validation by comparing 4DCT-ventilation metrics with PFT data. Methods and Materials: Ninety-eight lung cancer patients with pretreatment 4DCT and PFT data were included in the study. Pulmonary function test metrics used to diagnose obstructive lung disease were recorded: forced expiratory volume in 1 second (FEV1) and FEV1/forced vital capacity. Four-dimensional CT data sets and spatial registration were used to compute 4DCT-ventilation images using a density change–based and a Jacobian-based model. The ventilation maps were reduced to single metrics intended to reflect the degree of ventilation obstruction. Specifically, we computed the coefficient of variation (SD/mean), ventilation V20 (volume of lung ≤20% ventilation), and correlated the ventilation metrics with PFT data. Regression analysis was used to determine whether 4DCT ventilation data could predict for normal versus abnormal lung function using PFT thresholds. Results: Correlation coefficients comparing 4DCT-ventilation with PFT data ranged from 0.63 to 0.72, with the best agreement between FEV1 and coefficient of variation. Four-dimensional CT ventilation metrics were able to significantly delineate between clinically normal versus abnormal PFT results. Conclusions: Validation of 4DCT ventilation with clinically relevant metrics is essential. We demonstrate good global agreement between PFTs and 4DCT-ventilation, indicating that 4DCT-ventilation

  2. Evaluation of Ventilation Strategies in New Construction Multifamily Buildings

    SciTech Connect (OSTI)

    Maxwell, S.; Berger, D.; Zuluaga, M.

    2014-07-01

    In multifamily buildings, particularly in the Northeast, exhaust ventilation strategies are the norm as a means of meeting both local exhaust and whole-unit mechanical ventilation rates. The issue of where the 'fresh' air is coming from is gaining significance as air-tightness standards for enclosures become more stringent, and the 'normal leakage paths through the building envelope' disappear. CARB researchers have found that the majority of high performance, new construction, multifamily housing in the Northeast use one of four general strategies for ventilation: continuous exhaust only with no designated supply or make-up air source, continuous exhaust with ducted make-up air to apartments, continuous exhaust with supply through a make-up air device integral to the unit HVAC, and continuous exhaust with supply through a passive inlet device, such as a trickle vent. Insufficient information is available to designers on how these various systems are best applied. Product performance data are based on laboratory tests, and the assumption is that products will perform similarly in the field. Proper application involves matching expected performance at expected building pressures, but there is no guarantee that those conditions will exist consistently in the finished building. This research effort, which included several weeks of building pressure monitoring, sought to provide field validation of system performance. The performance of four substantially different strategies for providing make-up air to apartments was evaluated.

  3. Classroom HVAC: Improving ventilation and saving energy -- field study plan

    SciTech Connect (OSTI)

    Apte, Michael G.; Faulkner, David; Hodgson, Alfred T.; Sullivan, Douglas P.

    2004-10-14

    The primary goals of this research effort are to develop, evaluate, and demonstrate a very practical HVAC system for classrooms that consistently provides classrooms (CRs) with the quantity of ventilation in current minimum standards, while saving energy, and reducing HVAC-related noise levels. This research is motivated by the public benefits of energy efficiency, evidence that many CRs are under-ventilated, and public concerns about indoor environmental quality in CRs. This document provides a summary of the detailed plans developed for the field study that will take place in 2005 to evaluate the energy and IAQ performance of a new classroom HVAC technology. The field study will include measurements of HVAC energy use, ventilation rates, and IEQ conditions in 10 classrooms with the new HVAC technology and in six control classrooms with a standard HVAC system. Energy use and many IEQ parameters will be monitored continuously, while other IEQ measurements will be will be performed seasonally. Continuously monitored data will be remotely accessed via a LonWorks network. Instrument calibration plans that vary with the type of instrumentation used are established. Statistical tests will be employed to compare energy use and IEQ conditions with the new and standard HVAC systems. Strengths of this study plan include the collection of real time data for a full school year, the use of high quality instrumentation, the incorporation of many quality control measures, and the extensive collaborations with industry that limit costs to the sponsors.

  4. Recovery of organic acids

    DOE Patents [OSTI]

    Verser, Dan W. (Golden, CO); Eggeman, Timothy J. (Lakewood, CO)

    2009-10-13

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  5. URANIUM RECOVERY PROCESS

    DOE Patents [OSTI]

    Bailes, R.H.; Long, R.S.; Olson, R.S.; Kerlinger, H.O.

    1959-02-10

    A method is described for recovering uranium values from uranium bearing phosphate solutions such as are encountered in the manufacture of phosphate fertilizers. The solution is first treated with a reducing agent to obtain all the uranium in the tetravalent state. Following this reduction, the solution is treated to co-precipitate the rcduced uranium as a fluoride, together with other insoluble fluorides, thereby accomplishing a substantially complete recovery of even trace amounts of uranium from the phosphate solution. This precipitate usually takes the form of a complex fluoride precipitate, and after appropriate pre-treatment, the uranium fluorides are leached from this precipitate and rccovered from the leach solution.

  6. Recovery of organic acids

    DOE Patents [OSTI]

    Verser, Dan W. (Menlo Park, CA); Eggeman, Timothy J. (Lakewood, CO)

    2011-11-01

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  7. Heat recovery casebook

    SciTech Connect (OSTI)

    Lawn, J.

    1980-10-01

    Plants and factories could apply a great variety of sources and uses for valuable waste heat. Applications may be evaluated on the basis of real use for a specific waste heat, high-enough temperature and quality of work, and feasibility of mechanical heat transfer method. Classification may be by temperature, application, heat-transfer equipment, etc. Many buildings and industrial processes lend themselves well to heat-recovery strategies. Five case histories describe successful systems used by the Continental Corporation Data Center; Nabisco, Inc.; Kasper Foundry Company; Seven Up Bottling Company of Indiana; and Lehr Precision Tool company. (DCK)

  8. Pyrolysis with staged recovery

    DOE Patents [OSTI]

    Green, Norman W.; Duraiswamy, Kandaswamy; Lumpkin, Robert E.; Winter, Bruce L.

    1979-03-20

    In a continuous process for recovery of values contained in a solid carbonaceous material, the carbonaceous material is comminuted and then subjected to flash pyrolysis in the presence of a particulate heat source fed over an overflow weir to form a pyrolysis product stream containing a carbon containing solid residue and volatilized hydrocarbons. After the carbon containing solid residue is separated from the pyrolysis product stream, values are obtained by condensing volatilized hydrocarbons. The particulate source of heat is formed by oxidizing carbon in the solid residue.

  9. Sulfur recovery process

    SciTech Connect (OSTI)

    Hise, R.E.; Cook, W.J.

    1991-06-04

    This paper describes a method for recovering sulfur from a process feed stream mixture of gases comprising sulfur-containing compounds including hydrogen sulfide using the Claus reaction to convert sulfur-containing compounds to elemental sulfur and crystallization to separate sulfur-containing compounds from a tail gas of the Claus reaction for further processing as a recycle stream. It comprises: providing a Claus feed stream containing a stoichiometric excess of hydrogen sulfide, the Claus feed stream including the process feed stream and the recycles stream; introducing the Claus feed stream and an oxidizing agent into a sulfur recovery unit for converting sulfur-containing compounds in the Claus feed stream to elemental sulfur; withdrawing the tail gas from the sulfur recovery unit; separating water from the tail gas to producing a dehydrated tail gas; separating sulfur-containing compounds including carbonyl sulfide from the dehydrated tail gas as an excluded material by crystallization and withdrawing an excluded material-enriched output from the crystallization to produce the recycle stream; and combining the recycle stream with the process feed stream to produce the Claus feed stream.

  10. Resource Recovery Opportunities at America's Water Resource Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at America's Water Resource Recovery Facilities Todd Williams, Deputy Leader for Wastewater Infrastructure Practice, CH2M HILL williamsbiomass2014.pdf (1.26 MB) More ...

  11. Recovery Act State Memos Alaska

    Broader source: Energy.gov (indexed) [DOE]

    Alaska For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  12. Recovery Act State Memos Arizona

    Broader source: Energy.gov (indexed) [DOE]

    Arizona For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  13. Recovery Act State Memos Arkansas

    Broader source: Energy.gov (indexed) [DOE]

    Arkansas For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  14. Recovery Act State Memos California

    Broader source: Energy.gov (indexed) [DOE]

    California For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  15. Recovery Act State Memos Colorado

    Broader source: Energy.gov (indexed) [DOE]

    Colorado For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  16. Recovery Act State Memos Connecticut

    Broader source: Energy.gov (indexed) [DOE]

    Connecticut For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  17. Recovery Act State Memos Delaware

    Broader source: Energy.gov (indexed) [DOE]

    Delaware For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  18. Recovery Act State Memos Florida

    Broader source: Energy.gov (indexed) [DOE]

    Florida For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  19. Recovery Act State Memos Georgia

    Broader source: Energy.gov (indexed) [DOE]

    Georgia For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  20. Recovery Act State Memos Guam

    Broader source: Energy.gov (indexed) [DOE]

    Guam For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  1. Recovery Act State Memos Hawaii

    Broader source: Energy.gov (indexed) [DOE]

    Hawaii For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  2. Recovery Act State Memos Idaho

    Broader source: Energy.gov (indexed) [DOE]

    Idaho For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  3. Recovery Act State Memos Indiana

    Broader source: Energy.gov (indexed) [DOE]

    Indiana For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  4. Recovery Act State Memos Iowa

    Broader source: Energy.gov (indexed) [DOE]

    Iowa For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  5. Recovery Act State Memos Kansas

    Broader source: Energy.gov (indexed) [DOE]

    Kansas For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  6. Recovery Act State Memos Kentucky

    Broader source: Energy.gov (indexed) [DOE]

    Kentucky For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  7. Recovery Act State Memos Louisiana

    Broader source: Energy.gov (indexed) [DOE]

    Louisiana For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  8. Recovery Act State Memos Maine

    Broader source: Energy.gov (indexed) [DOE]

    Maine For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  9. Recovery Act State Memos Maryland

    Broader source: Energy.gov (indexed) [DOE]

    Maryland For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  10. Recovery Act State Memos Massachusetts

    Broader source: Energy.gov (indexed) [DOE]

    Massachusetts For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  11. Recovery Act State Memos Michigan

    Broader source: Energy.gov (indexed) [DOE]

    Michigan For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  12. Recovery Act State Memos Minnesota

    Broader source: Energy.gov (indexed) [DOE]

    Minnesota For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  13. Recovery Act State Memos Mississippi

    Broader source: Energy.gov (indexed) [DOE]

    Mississippi For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  14. Recovery Act State Memos Montana

    Broader source: Energy.gov (indexed) [DOE]

    Montana For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  15. Recovery Act State Memos Nebraska

    Broader source: Energy.gov (indexed) [DOE]

    Nebraska For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  16. Recovery Act State Memos Ohio

    Broader source: Energy.gov (indexed) [DOE]

    Ohio For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  17. Recovery Act State Memos Oklahoma

    Broader source: Energy.gov (indexed) [DOE]

    Oklahoma For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  18. Recovery Act State Memos Oregon

    Broader source: Energy.gov (indexed) [DOE]

    Oregon For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  19. Recovery Act State Memos Texas

    Broader source: Energy.gov (indexed) [DOE]

    Tennessee For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  20. Recovery Act State Memos Utah

    Broader source: Energy.gov (indexed) [DOE]

    Utah For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  1. Recovery Act State Memos Vermont

    Broader source: Energy.gov (indexed) [DOE]

    Vermont For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  2. Recovery Act State Memos Virginia

    Broader source: Energy.gov (indexed) [DOE]

    Virginia For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  3. Recovery Act State Memos Washington

    Broader source: Energy.gov (indexed) [DOE]

    Washington For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  4. Recovery Act State Memos Wyoming

    Broader source: Energy.gov (indexed) [DOE]

    Wyoming For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  5. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Financial Opportunities » Past Opportunities » Recovery Act Recovery Act Pie chart diagram shows the breakdown of how cost-sharing funds relatedto the American Recovery and Reinvestment Act from industry participants,totaling $54 million (for a grand total of $96 million), are allocatedwithin the Fuel Cell Technologies Office, updated September 2010. Thediagram shows that $18.5 million is allocated to backup power, $9.7million is allocated to lift truck, $7.6 million is allocated to

  6. Technology Solutions Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    SciTech Connect (OSTI)

    A. Rudd and D. Bergey

    2015-08-01

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs.

  7. Ventilation for an enclosure of a gas turbine and related method

    DOE Patents [OSTI]

    Schroeder, Troy Joseph; Leach, David; O'Toole, Michael Anthony

    2002-01-01

    A ventilation scheme for a rotary machine supported on pedestals within an enclosure having a roof, end walls and side walls with the machine arranged parallel to the side walls, includes ventilation air inlets located in a first end wall of the enclosure; a barrier wall located within the enclosure, proximate the first end wall to thereby create a plenum chamber. The barrier wall is constructed to provide a substantially annular gap between the barrier wall and a casing of the turbine to thereby direct ventilation air axially along the turbine; one or more ventilation air outlets located proximate a second, opposite end wall on the roof of the enclosure. In addition, one or more fans are provided for pulling ventilating air into said plenum chamber via the ventilation air inlets.

  8. Recovery Newsletters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Newsletters Recovery Newsletters RSS October 1, 2011 2011 ARRA Newsletters December 1, 2010 2010 ARRA Newsletters November 1, 2009 2009 ARRA Newsletters

  9. Recovery Act | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    to increase our supply of clean, renewable energy. July 11, 2013 Demand Response: Lessons Learned with an Eye to the Future Under the Recovery Act, the Energy Department...

  10. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RECIPIENTS Smart Grid Investment Grant 3,482,831,000 99 ... Transmission Planning 80,000,000 6 State Assistance for Recovery Act Related Electricity Policies ...

  11. Register file soft error recovery

    DOE Patents [OSTI]

    Fleischer, Bruce M.; Fox, Thomas W.; Wait, Charles D.; Muff, Adam J.; Watson, III, Alfred T.

    2013-10-15

    Register file soft error recovery including a system that includes a first register file and a second register file that mirrors the first register file. The system also includes an arithmetic pipeline for receiving data read from the first register file, and error detection circuitry to detect whether the data read from the first register file includes corrupted data. The system further includes error recovery circuitry to insert an error recovery instruction into the arithmetic pipeline in response to detecting the corrupted data. The inserted error recovery instruction replaces the corrupted data in the first register file with a copy of the data from the second register file.

  12. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere: Electric Vehicle Benefits Recovery Act Plug-in electric vehicles (also known as electric cars or EVs) are connected, fun, and practical. They can reduce emissions, ...

  13. Energy and air quality implications of passive stack ventilation in residential buildings

    SciTech Connect (OSTI)

    Mortensen, Dorthe Kragsig; Walker, Iain S.; Sherman, Max

    2011-01-01

    Ventilation requires energy to transport and condition the incoming air. The energy consumption for ventilation in residential buildings depends on the ventilation rate required to maintain an acceptable indoor air quality. Historically, U.S. residential buildings relied on natural infiltration to provide sufficient ventilation, but as homes get tighter, designed ventilation systems are more frequently required particularly for new energy efficient homes and retrofitted homes. ASHRAE Standard 62.2 is used to specify the minimum ventilation rate required in residential buildings and compliance is normally achieved with fully mechanical whole-house systems; however, alternative methods may be used to provide the required ventilation when their air quality equivalency has been proven. One appealing method is the use of passive stack ventilation systems. They have been used for centuries to ventilate buildings and are often used in ventilation regulations in other countries. Passive stacks are appealing because they require no fans or electrical supply (which could lead to lower cost) and do not require maintenance (thus being more robust and reliable). The downside to passive stacks is that there is little control of ventilation air flow rates because they rely on stack and wind effects that depend on local time-varying weather. In this study we looked at how passive stacks might be used in different California climates and investigated control methods that can be used to optimize indoor air quality and energy use. The results showed that passive stacks can be used to provide acceptable indoor air quality per ASHRAE 62.2 with the potential to save energy provided that they are sized appropriately and flow controllers are used to limit over-ventilation.

  14. Critical Question #2: What are the Best Practices for Ventilation Specific

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Multifamily Buildings? | Department of Energy 2: What are the Best Practices for Ventilation Specific to Multifamily Buildings? Critical Question #2: What are the Best Practices for Ventilation Specific to Multifamily Buildings? What is the best practice to address ASHRAE 62.2 Addendum J (multifamily)? Why is exhaust only (with supply in hallway) the current standard practice? Are there options to avoid air exchange with neighbors? How do stack and wind pressures affect ventilation

  15. Energy recovery system

    DOE Patents [OSTI]

    Moore, Albert S.; Verhoff, Francis H.

    1980-01-01

    The present invention is directed to an improved wet air oxidation system and method for reducing the chemical oxygen demand (COD) of waste water used from scrubbers of coal gasification plants, with this COD reduction being sufficient to effectively eliminate waste water as an environmental pollutant. The improvement of the present invention is provided by heating the air used in the oxidation process to a temperature substantially equal to the temperature in the oxidation reactor before compressing or pressurizing the air. The compression of the already hot air further heats the air which is then passed in heat exchange with gaseous products of the oxidation reaction for "superheating" the gaseous products prior to the use thereof in turbines as the driving fluid. The superheating of the gaseous products significantly minimizes condensation of gaseous products in the turbine so as to provide a substantially greater recovery of mechanical energy from the process than heretofore achieved.

  16. Speech recovery device

    DOE Patents [OSTI]

    Frankle, Christen M.

    2004-04-20

    There is provided an apparatus and method for assisting speech recovery in people with inability to speak due to aphasia, apraxia or another condition with similar effect. A hollow, rigid, thin-walled tube with semi-circular or semi-elliptical cut out shapes at each open end is positioned such that one end mates with the throat/voice box area of the neck of the assistor and the other end mates with the throat/voice box area of the assisted. The speaking person (assistor) makes sounds that produce standing wave vibrations at the same frequency in the vocal cords of the assisted person. Driving the assisted person's vocal cords with the assisted person being able to hear the correct tone enables the assisted person to speak by simply amplifying the vibration of membranes in their throat.

  17. Enhanced oil recovery system

    DOE Patents [OSTI]

    Goldsberry, Fred L.

    1989-01-01

    All energy resources available from a geopressured geothermal reservoir are used for the production of pipeline quality gas using a high pressure separator/heat exchanger and a membrane separator, and recovering waste gas from both the membrane separator and a low pressure separator in tandem with the high pressure separator for use in enhanced oil recovery, or in powering a gas engine and turbine set. Liquid hydrocarbons are skimmed off the top of geothermal brine in the low pressure separator. High pressure brine from the geothermal well is used to drive a turbine/generator set before recovering waste gas in the first separator. Another turbine/generator set is provided in a supercritical binary power plant that uses propane as a working fluid in a closed cycle, and uses exhaust heat from the combustion engine and geothermal energy of the brine in the separator/heat exchanger to heat the propane.

  18. Internal combuston engine having separated cylinder head oil drains and crankcase ventilation passages

    DOE Patents [OSTI]

    Boggs, David Lee; Baraszu, Daniel James; Foulkes, David Mark; Gomes, Enio Goyannes

    1998-01-01

    An internal combustion engine includes separated oil drain-back and crankcase ventilation passages. The oil drain-back passages extend from the cylinder head to a position below the top level of oil in the engine's crankcase. The crankcase ventilation passages extend from passages formed in the main bearing bulkheads from positions above the oil level in the crankcase and ultimately through the cylinder head. Oil dams surrounding the uppermost portions of the crankcase ventilation passages prevent oil from running downwardly through the crankcase ventilation passages.

  19. Internal combuston engine having separated cylinder head oil drains and crankcase ventilation passages

    DOE Patents [OSTI]

    Boggs, D.L.; Baraszu, D.J.; Foulkes, D.M.; Gomes, E.G.

    1998-12-29

    An internal combustion engine includes separated oil drain-back and crankcase ventilation passages. The oil drain-back passages extend from the cylinder head to a position below the top level of oil in the engine`s crankcase. The crankcase ventilation passages extend from passages formed in the main bearing bulkheads from positions above the oil level in the crankcase and ultimately through the cylinder head. Oil dams surrounding the uppermost portions of the crankcase ventilation passages prevent oil from running downwardly through the crankcase ventilation passages. 4 figs.

  20. Building America Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts, Tyler, Texas

    SciTech Connect (OSTI)

    2015-08-01

    ?Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy.

  1. Building America Top Innovations 2012: Low-Cost Ventilation in Production Housing

    SciTech Connect (OSTI)

    none,

    2013-01-01

    This Building America Top Innovations profile describes Building America research on simple whole-house ventilation systems that cost less than $350 to install and meet code requirements.

  2. Ventilation Effectiveness Research at UT-Typer Lab Houses | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Ventilation Effectiveness Research at UT-Typer Lab Houses Ventilation Effectiveness Research at UT-Typer Lab Houses This presentation was delivered at the U.S. Department of Energy Building America Technical Update meeting on April 29-30, 2013, in Denver, Colorado. cq7_ventilation_lab_houses_rudd.pdf (1.46 MB) More Documents & Publications Critical Question #7: What are the Best Practices for Single-Family Ventilation in All Climate Regions? Building America Technology Solutions

  3. Low-Cost Ventilation in Production Housing- Building America Top Innovation

    Broader source: Energy.gov [DOE]

    This Building America Innovations profile describes Building America research on simple whole-house ventilation systems that cost less than $350 to install and meet code requirements.

  4. CO2 MONITORING FOR DEMAND CONTROLLED VENTILATION IN COMMERCIAL BUILDINGS

    SciTech Connect (OSTI)

    Fisk, William J.; Sullivan, Douglas P.; Faulkner, David; Eliseeva, Ekaterina

    2010-03-17

    Carbon dioxide (CO{sub 2}) sensors are often deployed in commercial buildings to obtain CO{sub 2} data that are used, in a process called demand-controlled ventilation, to automatically modulate rates of outdoor air ventilation. The objective is to keep ventilation rates at or above design specifications and code requirements and also to save energy by avoiding excessive ventilation rates. Demand controlled ventilation is most often used in spaces with highly variable and sometime dense occupancy. Reasonably accurate CO{sub 2} measurements are needed for successful demand controlled ventilation; however, prior research has suggested substantial measurement errors. Accordingly, this study evaluated: (a) the accuracy of 208 CO{sub 2} single-location sensors located in 34 commercial buildings, (b) the accuracy of four multi-location CO{sub 2} measurement systems that utilize tubing, valves, and pumps to measure at multiple locations with single CO{sub 2} sensors, and (c) the spatial variability of CO{sub 2} concentrations within meeting rooms. The field studies of the accuracy of single-location CO{sub 2} sensors included multi-concentration calibration checks of 90 sensors in which sensor accuracy was checked at multiple CO{sub 2} concentrations using primary standard calibration gases. From these evaluations, average errors were small, -26 ppm and -9 ppm at 760 and 1010 ppm, respectively; however, the averages of the absolute values of error were 118 ppm (16%) and 138 ppm (14%), at concentrations of 760 and 1010 ppm, respectively. The calibration data are generally well fit by a straight line as indicated by high values of R{sup 2}. The Title 24 standard specifies that sensor error must be certified as no greater than 75 ppm for a period of five years after sensor installation. At 1010 ppm, 40% of sensors had errors greater than {+-}75 ppm and 31% of sensors has errors greater than {+-}100 ppm. At 760 ppm, 47% of sensors had errors greater than {+-}75 ppm and 37% of

  5. Biomass Program Recovery Act Factsheet

    SciTech Connect (OSTI)

    2010-03-01

    The Biomass Program has awarded about $718 million in American Recovery and Reinvestment Act (Recovery Act) funds. The projects the Program is supporting are intended to: Accelerate advanced biofuels research, development, and demonstration; Speed the deployment and commercialization of advanced biofuels and bioproducts; Further the U.S. bioindustry through market transformation and creating or saving a range of jobs.

  6. Metal recovery from porous materials

    DOE Patents [OSTI]

    Sturcken, E.F.

    1991-01-01

    The present invention relates to recovery of metals. More specifically, the present invention relates to the recovery of plutonium and other metals from porous materials using microwaves. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  7. The impact of demand-controlled and economizer ventilation strategies on energy use in buildings

    SciTech Connect (OSTI)

    Brandemuehl, M.J.; Braun, J.E.

    1999-07-01

    The overall objective of this work was to evaluate typical energy requirements associated with alternative ventilation control strategies for constant-air-volume (CAV) systems in commercial buildings. The strategies included different combinations of economizer and demand-controlled ventilation, and energy analyses were performed for four typical building types, eight alternative ventilation systems, and twenty US climates. Only single-zone buildings were considered so that simultaneous heating and cooling did not exist. The energy savings associated with economizer and demand-controlled ventilation strategies were found to be very significant for both heating and cooling. In general, the greatest savings in electrical usage for cooling with the addition of demand-controlled ventilation occur in situations where the opportunities for economizer cooling are less. This is true for warm and humid climates and for buildings that have relatively low internal gains (i.e., low occupant densities). As much as 20% savings in electrical energy for cooling were possible with demand-controlled ventilation. The savings in heating energy associated with demand-controlled ventilation were generally much larger but were strongly dependent upon the building type and occupancy schedule. Significantly greater savings were found for buildings with highly variable occupancy schedules and large internal gains (i.e., restaurants) as compared with office buildings. In some cases, the primary heating energy was virtually eliminated by demand-controlled ventilation as compared with fixed ventilation rates. For both heating and cooling, the savings associated with demand-controlled ventilation are dependent on the fixed minimum ventilation rate of the base case at design conditions.

  8. URANIUM RECOVERY PROCESS

    DOE Patents [OSTI]

    Hyman, H.H.; Dreher, J.L.

    1959-07-01

    The recovery of uranium from the acidic aqueous metal waste solutions resulting from the bismuth phosphate carrier precipitation of plutonium from solutions of neutron irradiated uranium is described. The waste solutions consist of phosphoric acid, sulfuric acid, and uranium as a uranyl salt, together with salts of the fission products normally associated with neutron irradiated uranium. Generally, the process of the invention involves the partial neutralization of the waste solution with sodium hydroxide, followed by conversion of the solution to a pH 11 by mixing therewith sufficient sodium carbonate. The resultant carbonate-complexed waste is contacted with a titanated silica gel and the adsorbent separated from the aqueous medium. The aqueous solution is then mixed with sufficient acetic acid to bring the pH of the aqueous medium to between 4 and 5, whereby sodium uranyl acetate is precipitated. The precipitate is dissolved in nitric acid and the resulting solution preferably provided with salting out agents. Uranyl nitrate is recovered from the solution by extraction with an ether such as diethyl ether.

  9. Refrigerant recovery system

    SciTech Connect (OSTI)

    Abraham, A.W.

    1991-08-20

    This patent describes improvement in a refrigerant recovery apparatus of the type having inlet means for connecting to a refrigerant air system to withdraw refrigerant from the system, expansion means for converting refrigerant received from the system in liquid phase to a gaseous refrigerant, a compressor having a suction chamber with a suction inlet for receiving and pressurizing the gaseous refrigerant, the compressor having a housing containing oil for lubricating the compressor, a condenser for receiving the pressurized gaseous refrigerant and condensing it to liquid refrigerant, and a storage chamber for storing the liquid refrigerant. The improvement comprises in combination: oil separator means mounted exterior of the housing to one end of an inlet line, which has another end connected to the suction inlet of the compressor for receiving the flow of refrigerant from the refrigerated air system for separating out oil mixed with the refrigerant being received from the refrigerated air system prior to the refrigerant entering the suction inlet of the compressor; and the oil separator means being mounted at a lower elevation than the suction inlet of the compressor, the inlet line being unrestricted for allowing refrigerant flow to the compressor and oil from the compressor for draining oil in the housing of the compressor above the suction inlet back through the inlet line into the oil separator means when the compressor is not operating.

  10. Wastewater heat recovery apparatus

    DOE Patents [OSTI]

    Kronberg, J.W.

    1992-09-01

    A heat recovery system is described with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature. 6 figs.

  11. Wastewater heat recovery apparatus

    DOE Patents [OSTI]

    Kronberg, James W.

    1992-01-01

    A heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

  12. Lower-Temperature Subsurface Layout and Ventilation Concepts

    SciTech Connect (OSTI)

    Christine L. Linden; Edward G. Thomas

    2001-06-20

    This analysis combines work scope identified as subsurface facility (SSF) low temperature (LT) Facilities System and SSF LT Ventilation System in the Technical Work Plan for Subsurface Design Section FY 01 Work Activities (CRWMS M&O 2001b, pp. 6 and 7, and pp. 13 and 14). In accordance with this technical work plan (TWP), this analysis is performed using AP-3.10Q, Analyses and Models. It also incorporates the procedure AP-SI.1Q, Software Management. The purpose of this analysis is to develop an overall subsurface layout system and the overall ventilation system concepts that address a lower-temperature operating mode for the Monitored Geologic Repository (MGR). The objective of this analysis is to provide a technical design product that supports the lower-temperature operating mode concept for the revision of the system description documents and to provide a basis for the system description document design descriptions. The overall subsurface layout analysis develops and describes the overall subsurface layout, including performance confirmation facilities (also referred to as Test and Evaluation Facilities) for the Site Recommendation design. This analysis also incorporates current program directives for thermal management.

  13. Ventilation assessment of an infectious disease ward housing TB patients

    SciTech Connect (OSTI)

    Crandall, M.S.; Hughes, R.T.

    1996-05-01

    The National Institute for Occupational Safety and Health (NIOSH) assisted the National Center for Infectious Diseases and the National Center for Prevention Services, Centers for Disease Control (CDC), in their investigation of nosocomial transmission of tuberculosis (TB) at a Veterans Administration Medical Center. NIOSH was asked to determine whether ventilation requirements expected of TB patient isolation facilities were being met. In the Infectious Disease ward (513), 24 staff were given a tuberculin skin test (TST) in the summer of 1991. Eleven (46%) were positive then, and 13 were negative. Ten of the 13 testing negative in 1991 were retested within a year, and 5 (50%) converted to a positive TST. NIOSH investigators made ventilation measurements on Ward 5B, an infectious diseases ward housing patients with acquired immune deficiency syndrome (AIDS), two of them with infectious TB, to determine the status of the systems serving the area. Airflow measurements showed that in all the single-patient rooms, exhaust airflow was essentially zero. The average supply airflow varied above and below the designed value. These rooms were all positively pressurized, which would be recommended for the isolation of infectious patients. Based on the measurements made during this evaluation, it was recommended that a separate isolation facility be constructed in the hospital to house infectious patients. Interim corrective measures for the systems in place were also recommended.

  14. Operating experience review - Ventilation systems at Department of Energy Facilities

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    The Office of Special Projects (DP-35), formerly Office of Self-Assessment (DP-9), analyzed occurrences caused by problems with equipment and material and recommended the following systems for an in-depth study: (1) Selective Alpha Air Monitor (SAAM), (2) Emergency Diesel Generator, (3) Ventilation System, (4) Fire Alarm System. Further, DP-35 conducted an in-depth review of the problems associated with SAAM and with diesel generators, and made several recommendations. This study focusses on ventilation system. The intent was to determine the causes for the events related to these system that were reported in the Occurrence Reporting and Processing System (ORPS), to identify components that failed, and to provide technical information from the commercial and nuclear industries on the design, operation, maintenance, and surveillance related to the system and its components. From these data, sites can develop a comprehensive program of maintenance management, including surveillance, to avoid similar occurrences, and to be in compliance with the following DOE orders.

  15. Night-time naturally ventilated offices: Statistical simulations of window-use patterns from field monitoring

    SciTech Connect (OSTI)

    Yun, Geun Young; Steemers, Koen

    2010-07-15

    This paper investigates occupant behaviour of window-use in night-time naturally ventilated offices on the basis of a pilot field study, conducted during the summers of 2006 and 2007 in Cambridge, UK, and then demonstrates the effects of employing night-time ventilation on indoor thermal conditions using predictive models of occupant window-use. A longitudinal field study shows that occupants make good use of night-time natural ventilation strategies when provided with openings that allow secure ventilation, and that there is a noticeable time of day effect in window-use patterns (i.e. increased probability of action on arrival and departure). We develop logistic models of window-use for night-time naturally ventilated offices, which are subsequently applied to a behaviour algorithm, including Markov chains and Monte Carlo methods. The simulations using the behaviour algorithm demonstrate a good agreement with the observational data of window-use, and reveal how building design and occupant behaviour collectively affect the thermal performance of offices. They illustrate that the provision of secure ventilation leads to more frequent use of the window, and thus contributes significantly to the achievement of a comfortable indoor environment during the daytime occupied period. For example, the maximum temperature for a night-time ventilated office is found to be 3 C below the predicted value for a daytime-only ventilated office. (author)

  16. Infiltration Effects on Residential Pollutant Concentrations for Continuous and Intermittent Mechanical Ventilation Approaches

    SciTech Connect (OSTI)

    Sherman, Max; Logue, Jennifer; Singer, Brett

    2010-06-01

    The prevailing residential ventilation standard in North America, American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Standard 62.2, specifies volumetric airflow requirements as a function of the overall size of the home and the number of bedrooms, assumes a fixed, minimal amount of infiltration, and requires mechanical ventilation to achieve the remainder. The standard allows for infiltration credits and intermittent ventilation patterns that can be shown to provide comparable performance. Whole-house ventilation methods have a substantial effect on time-varying indoor pollutant concentrations. If alternatives specified by Standard 62.2, such as intermittent ventilation, are used, short-term pollutant concentrations could exceed acute health standards even if chronic health standards are met.The authors present a methodology for comparing ASHRAE- and non-ASHRAE-specified ventilation scenarios on relative indoor pollutant concentrations. We use numerical modeling to compare the maximum time-averaged concentrations for acute exposure relevant (1-hour, 8-hour, 24-hour ) and chronic exposure relevant (1-year) time periods for four different ventilation scenarios in six climates with a range of normalized leakage values. The results suggest that long-term concentrations are the most important metric for assessing the effectiveness of whole-house ventilation systems in meeting exposure standards and that, if chronic health exposure standards are met, acute standards will also be met.

  17. Transpired Solar Collector at NREL's Waste Handling Facility Uses Solar Energy to Heat Ventilation Air

    SciTech Connect (OSTI)

    2010-09-08

    The transpired solar collector was installed on NREL's Waste handling Facility (WHF) in 1990 to preheat ventilation air. The electrically heated WHF was an ideal candidate for the this technology - requiring a ventilation rate of 3,000 cubic feet per meter to maintain safe indoor conditions.

  18. The impact of demand-controlled ventilation on energy use in buildings

    SciTech Connect (OSTI)

    Braun, J.E.; Brandemuehl, M.J.

    1999-07-01

    The overall objective of this work was to evaluate typical energy requirements associated with alternative ventilation control strategies. The strategies included different combinations of economizer and demand-controlled ventilation controls and energy analyses were performed for a range of typical buildings, systems, and climates. Only single zone buildings were considered, so that simultaneous heating and cooling did not exist. The energy savings associated with economizer and demand-controlled ventilation strategies were found to be very significant for both heating and cooling. In general, the greatest savings in electrical usage for cooling with the addition of demand-controlled ventilation occur in situations where the opportunities for economizer cooling are less. This is true for warm and humid climates, and for buildings that have low relative internal gains (i.e., low occupant densities). As much as 10% savings in electrical energy for cooling were possible with demand-controlled ventilation. The savings in heating energy associated with demand-controlled ventilation were generally much larger, but were strongly dependent upon the occupancy schedule. Significantly greater savings were found for buildings with highly variable occupancy schedules (e.g., stores and restaurants) as compared with office buildings. In some cases, the primary heating energy was reduced by a factor of 10 with demand-controlled ventilation as compared with fixed ventilation rates.

  19. Sealed Crawl Spaces with Integrated Whole-House Ventilation in a Cold Climate

    SciTech Connect (OSTI)

    Zoeller, William; Williamson, James; Puttafunta, Srikanth

    2015-07-30

    One method of code-compliance for crawlspaces is to seal and insulate the crawlspace, rather than venting to the outdoors. However, codes require mechanical ventilation; either via conditioned supply air from the HVAC system, or a continuous exhaust ventilation strategy. As the CARB's building partner, Ithaca Neighborhood Housing Services, intended to use the unvented crawlspace in a recent

  20. Comparison of energy consumption between displacement and mixing ventilation systems for different U.S. buildings and climates

    SciTech Connect (OSTI)

    Hu, S.; Chen, Q.; Glicksman, L.R.

    1999-07-01

    A detailed computer simulation method was used to compare the energy consumption of a displacement ventilation system with that of a mixing ventilation system for three types of US buildings: a small office, a classroom, and an industrial workshop. The study examined five typical climatic regions as well as different building zones. It was found that a displacement ventilation system may use more fan energy and less chiller and boiler energy than a mixing ventilation system. The total energy consumption is slightly less using a displacement ventilation system. Both systems can use a similarly sized boiler. However, a displacement ventilation system requires a larger air-handling unit and a smaller chiller than the mixing ventilation system. The overall first costs are lower for the displacement ventilation if the system is applied for the core region of a building.

  1. Building America Technology Solutions Case Study: Sealed Crawled Spaces with Integrated Whole-House Ventilation in a Cold Climate

    Broader source: Energy.gov [DOE]

    The Building America team Consortium for Advanced Residential Buildings (CARB) investigated a hybrid ventilation method that included the exhaust air from the crawl space as part of an ASHRAE 62.2-compliant whole-house ventilation strategy.

  2. Recovery Act: State Assistance for Recovery Act Related Electricity Policies

    Broader source: Energy.gov [DOE]

    State public utility commissions (PUCs), which regulate and oversee electricity projects in their states, will be receiving more than $44.2 million in Recovery Act funding to hire new staff and retrain existing employees to ensure they have the capacity to quickly and effectively review proposed electricity projects. The funds will help the individual state PUCs accelerate reviews of the large number of electric utility requests that are expected under the Recovery Act.

  3. Radiant heating and cooling, displacement ventilation with heat recovery and storm water cooling: An environmentally responsible HVAC system

    SciTech Connect (OSTI)

    Carpenter, S.C.; Kokko, J.P.

    1998-12-31

    This paper describes the design, operation, and performance of an HVAC system installed as part of a project to demonstrate energy efficiency and environmental responsibility in commercial buildings. The systems installed in the 2180 m{sup 2} office building provide superior air quality and thermal comfort while requiring only half the electrical energy of conventional systems primarily because of the hydronic heating and cooling system. Gas use for the building is higher than expected because of longer operating hours and poor performance of the boiler/absorption chiller.

  4. Hanford Information Related to the American Recovery and Reinvestment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Font Size Recovery.gov Banner Recovery Work Updates Recovery Act Jobs Recovery.gov Prime Contractor plus Subcontractor Jobs 1 Lives Touched2 DOE Richland Operations Office...

  5. Impact of Residential Mechanical Ventilation on Energy Cost and Humidity Control

    SciTech Connect (OSTI)

    Martin, Eric

    2014-01-01

    Optimizing whole house mechanical ventilation as part of the Building Ameerica program's systems engineered approach to constructing housing has been an important subject of the program's research. Ventilation in residential buildings is one component of an effective, comprehensive strategy for creation and maintenance of a comfortable and healthy indoor air environment. The study described in this report is based on building energy modeling with an important focus on the indoor humidity impacts of ventilation. The modeling tools used were EnergyPlus version 7.1 (E+) and EnergyGauge USA (EGUSA). Twelve U.S. cities and five climate zones were represented. A total of 864 simulations (2*2*3*3*12= 864) were run using two building archetypes, two building leakage rates, two building orientations, three ventilation systems, three ventilation rates, and twelve climates.

  6. Building America Case Study: Selecting Ventilation Systems for Existing Homes (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-12-01

    This document addresses adding -or improving - mechanical ventilation systems to existing homes. The purpose of ventilation is to remove contaminants from homes, and this report discusses where, when, and how much ventilation is appropriate in a home, including some discussion of relevant codes and standards. Advantages, disadvantages, and approximate costs of various system types are presented along with general guidelines for implementing the systems in homes. CARB intends for this document to be useful to decision makers and contractors implementing ventilation systems in homes. Choosing the "best" system is not always straightforward; selecting a system involves balancing performance, efficiency, cost, required maintenance, and several other factors. It is the intent of this document to assist contractors in making more informed decisions when selecting systems. Ventilation is an integral part of a high-performance home. With more air-sealed envelopes, a mechanical means of removing contaminants is critical for indoor environmental quality and building durability.

  7. Impact of Residential Mechanical Ventilation on Energy Cost and Humidity Control

    SciTech Connect (OSTI)

    Martin, E.

    2014-01-01

    The DOE Building America program has been conducting research leading to cost effective high performance homes since the early 1990's. Optimizing whole house mechanical ventilation as part of the program's systems engineered approach to constructing housing has been an important subject of the program's research. Ventilation in residential buildings is one component of an effective, comprehensive strategy for creation and maintenance of a comfortable and healthy indoor air environment. The study described in this white paper is based on building energy modeling with an important focus on the indoor humidity impacts of ventilation. The modeling tools used were EnergyPlus version 7.1 (E+) and EnergyGauge USA (EGUSA). Twelve U.S. cities and five climate zones were represented. A total of 864 simulations (2*2*3*3*12= 864) were run using two building archetypes, two building leakage rates, two building orientations, three ventilation systems, three ventilation rates, and twelve climates.

  8. Sealed Crawl Spaces with Integrated Whole-House Ventilation in a Cold Climate

    SciTech Connect (OSTI)

    Zoeller, William; Williamson, James; Puttagunta, Srikanth

    2015-07-01

    One method of code-compliance for crawlspaces is to seal and insulate the crawlspace, rather than venting to the outdoors. However, codes require mechanical ventilation; either via conditioned supply air from the HVAC system, or a continuous exhaust ventilation strategy. As the CARB's building partner, Ithaca Neighborhood Housing Services, intended to use the unvented crawlspace in a recent development, CARB was interested in investigating a hybrid ventilation method that includes the exhaust air from the crawlspace as a portion of an ASHRAE 62.2 compliant whole-house ventilation strategy. This hybrid ventilation method was evaluated through a series of long-term monitoring tests that observed temperature, humidity, and pressure conditions through the home and crawlspace.

  9. Enhanced Oil Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhanced Oil Recovery Enhanced Oil Recovery Thanks in part to innovations supported by the Office of Fossil Energy's National Energy Technology Laboratory over the past 30 years, ...

  10. Gas Recovery Systems | Open Energy Information

    Open Energy Info (EERE)

    Systems Jump to: navigation, search Name: Gas Recovery Systems Place: California Zip: 94550 Product: Turnkey landfill gas (LFG) energy extraction systems. References: Gas Recovery...

  11. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate...

  12. Energy Positive Water Resource Recovery Workshop Presentations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Positive Water Resource Recovery Workshop Presentations Energy Positive Water Resource Recovery Workshop Presentations Presentations: Keynote 1: Energy-Positive Water ...

  13. Energy Recovery Inc | Open Energy Information

    Open Energy Info (EERE)

    global developer and manufacturer of energy recovery devices utilized in the water desalination industry. References: Energy Recovery Inc1 This article is a stub. You can help...

  14. Energy Recovery Linacs for Commercial Radioisotope Production...

    Office of Scientific and Technical Information (OSTI)

    Energy Recovery Linacs for Commercial Radioisotope Production Citation Details In-Document Search Title: Energy Recovery Linacs for Commercial Radioisotope Production Photonuclear ...

  15. Clean Cities Recovery Act: Vehicle & Infrastructure Deployment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act: Vehicle & Infrastructure Deployment Clean Cities Recovery Act: Vehicle & Infrastructure Deployment 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit...

  16. Recovery Act Recipient Data | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion (CS) Determination, Office of Electricity Delivery and Energy Reliability (OE): American Recovery and Reinvestment Act of 2009 (Recovery Act) Smart Grid Investment ...

  17. COLORADO RECOVERY ACT SNAPSHOT | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Colorado are ...

  18. DELAWARE RECOVERY ACT SNAPSHOT | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Delaware are ...

  19. IOWA RECOVERY ACT SNAPSHOT | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Iowa are ...

  20. ARKANSAS RECOVERY ACT SNAPSHOT | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Arkansas are ...

  1. GUAM RECOVERY ACT SNAPSHOT | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Guam are ...

  2. CONNECTICUT RECOVERY ACT SNAPSHOT | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Connecticut are ...

  3. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate ...

  4. Enhancing Heat Recovery for Thermoelectric Devices | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Recovery for Thermoelectric Devices Enhancing Heat Recovery for Thermoelectric Devices Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research ...

  5. Energy Positive Water Resource Recovery Workshop Presentations...

    Office of Environmental Management (EM)

    Energy Positive Water Resource Recovery Workshop Presentations Energy Positive Water Resource Recovery Workshop Presentations Presentations: Keynote 1: Energy-Positive Water...

  6. Bonneville Power Administration Program Specific Recovery Plan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bonneville Power Administration Program Specific Recovery Plan Bonneville Power Administration Program Specific Recovery Plan PDF icon Microsoft Word - PSRP May 15 2009 BPA ...

  7. Western Area Power Administration Borrowing Authority, Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Western Area Power Administration Borrowing Authority, Recovery Act Western Area Power Administration Borrowing Authority, Recovery Act PDF icon Microsoft Word - PSRP May 15 2009 ...

  8. Monitoring EERE's Recovery Act Portfolio

    SciTech Connect (OSTI)

    2011-01-01

    Performance monitoring of Recovery Act projects within EERE has been an ongoing effort. Project recipients have been reporting technical and financial progress to project officers on a quarterly basis.

  9. One Woman's Road to Recovery

    Broader source: Energy.gov [DOE]

    Rebecca Bivens applied at Argonne and was hired in April 2009, four months after she lost her second job. She now works in safety and procurement. Her job is funded by the American Recovery and Reinvestment Act.

  10. Recovery Act Funding Opportunities Webcast

    Broader source: Energy.gov [DOE]

    As a result of the 2009 American Reinvestment and Recovery Act, the Geothermal Technologies Office (GTO) has four open Funding Opportunity Announcements (FOAs) totaling $484 million for cost-shared...

  11. Olefin recovery via chemical absorption

    SciTech Connect (OSTI)

    Barchas, R.

    1998-06-01

    The recovery of fight olefins in petrochemical plants has generally been accomplished through cryogenic distillation, a process which is very capital and energy intensive. In an effort to simplify the recovery process and reduce its cost, BP Chemicals has developed a chemical absorption technology based on an aqueous silver nitrate solution. Stone & Webster is now marketing, licensing, and engineering the technology. The process is commercially ready for recovering olefins from olefin derivative plant vent gases, such as vents from polyethylene, polypropylene, ethylene oxide, and synthetic ethanol units. The process can also be used to debottleneck C{sub 2} or C{sub 3} splinters, or to improve olefin product purity. This paper presents the olefin recovery imp technology, discusses its applications, and presents economics for the recovery of ethylene and propylene.

  12. Recovery and purification of ethylene

    SciTech Connect (OSTI)

    Reyneke, Rian; Foral, Michael J.; Lee, Guang-Chung; Eng, Wayne W. Y.; Sinclair, Iain; Lodgson, Jeffery S.

    2008-10-21

    A process for the recovery and purification of ethylene and optionally propylene from a stream containing lighter and heavier components that employs an ethylene distributor column and a partially thermally coupled distributed distillation system.

  13. LANL exceeds Early Recovery Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exceeds Early Recovery Act recycling goals March 8, 2010 More than 136 tons of metal saved from demolished buildings LOS ALAMOS, New Mexico, March 9, 2009-Los Alamos National Laboratory announced today that Lab demolition projects under the American Recovery and Reinvestment Act have recovered more than 136 tons of recyclable metal since work began last year, largely due to the skill of heavy equipment operators and efforts to gut the buildings before they come down. Some 106 tons of metal came

  14. Developing a Regional Recovery Framework

    SciTech Connect (OSTI)

    Lesperance, Ann M.; Olson, Jarrod; Stein, Steven L.; Clark, Rebecca; Kelly, Heather; Sheline, Jim; Tietje, Grant; Williamson, Mark; Woodcock, Jody

    2011-09-01

    Abstract A biological attack would present an unprecedented challenge for local, state, and federal agencies; the military; the private sector; and individuals on many fronts ranging from vaccination and treatment to prioritization of cleanup actions to waste disposal. To prepare the Seattle region to recover from a biological attack, the Seattle Urban Area Security Initiative (UASI) partners collaborated with military and federal agencies to develop a Regional Recovery Framework for a Biological Attack in the Seattle Urban Area. The goal was to reduce the time and resources required to recover and restore wide urban areas, military installations, and other critical infrastructure following a biological incident by providing a coordinated systems approach. Based on discussions in small workshops, tabletop exercises, and interviews with emergency response agency staff, the partners identified concepts of operation for various areas to address critical issues the region will face as recovery progresses. Key to this recovery is the recovery of the economy. Although the Framework is specific to a catastrophic, wide-area biological attack using anthrax, it was designed to be flexible and scalable so it could also serve as the recovery framework for an all-hazards approach. The Framework also served to coalesce policy questions that must be addressed for long-term recovery. These questions cover such areas as safety and health, security, financial management, waste management, legal issues, and economic development.

  15. Measurements and computations of room airflow with displacement ventilation

    SciTech Connect (OSTI)

    Yuan, X.; Chen, Q.; Glicksman, L.R.; Hu, Y.; Yang, X.

    1999-07-01

    This paper presents a set of detailed experimental data of room airflow with displacement ventilation. These data were obtained from a new environmental test facility. The measurements were conducted for three typical room configurations: a small office, a large office with partitions, and a classroom. The distributions of air velocity, air velocity fluctuation, and air temperature were measured by omnidirectional hot-sphere anemometers, and contaminant concentrations were measured by tracer gas at 54 points in the rooms. Smoke was used to observe airflow. The data also include the wall surface temperature distribution, air supply parameters, and the age of air at several locations in the rooms. A computational fluid dynamics (CFD) program with the Re-Normalization Group (RNG) {kappa}-{epsilon} model was also used to predict the indoor airflow. The agreement between the computed results and measured data of air temperature and velocity is good. However, some discrepancies exist in the computed and measured concentrations and velocity fluctuation.

  16. Energy Impact of Residential Ventilation Norms in the UnitedStates

    SciTech Connect (OSTI)

    Sherman, Max H.; Walker, Iain S.

    2007-02-01

    The first and only national norm for residential ventilation in the United States is Standard 62.2-2004 published by the American Society of Heating, Refrigerating and Air-conditioning Engineers (ASHRAE). This standard does not by itself have the force of regulation, but is being considered for adoption by various jurisdictions within the U.S. as well as by various voluntary programs. The adoption of 62.2 would require mechanical ventilation systems to be installed in virtually all new homes, but allows for a wide variety of design solutions. These solutions, however, may have a different energy costs and non-energy benefits. This report uses a detailed simulation model to evaluate the energy impacts of currently popular and proposed mechanical ventilation approaches that are 62.2 compliant for a variety of climates. These results separate the energy needed to ventilate from the energy needed to condition the ventilation air, from the energy needed to distribute and/or temper the ventilation air. The results show that exhaust systems are generally the most energy efficient method of meeting the proposed requirements. Balanced and supply systems have more ventilation resulting in greater energy and their associated distribution energy use can be significant.

  17. Caustic Recovery Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Caustic Recovery Technology Caustic Recovery Technology Full Document and Summary Versions are available for download Caustic Recovery Technology (416.33 KB) Summary - Caustic Recovery Technology (53.85 KB) More Documents & Publications System Planning for Low-Activity Waste at Hanford 2013 Peer Review Presentations-Heat-Power and Biodeisel CX-003496: Categorical Exclusion Determination

  18. TECHNICAL BASIS FOR VENTILATION REQUIREMENTS IN TANK FARMS OPERATING SPECIFICATIONS DOCUMENTS

    SciTech Connect (OSTI)

    BERGLIN, E J

    2003-06-23

    This report provides the technical basis for high efficiency particulate air filter (HEPA) for Hanford tank farm ventilation systems (sometimes known as heating, ventilation and air conditioning [HVAC]) to support limits defined in Process Engineering Operating Specification Documents (OSDs). This technical basis included a review of older technical basis and provides clarifications, as necessary, to technical basis limit revisions or justification. This document provides an updated technical basis for tank farm ventilation systems related to Operation Specification Documents (OSDs) for double-shell tanks (DSTs), single-shell tanks (SSTs), double-contained receiver tanks (DCRTs), catch tanks, and various other miscellaneous facilities.

  19. Cummins Waste Heat Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Cummins Waste Heat Recovery Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). deer07_nelson.pdf (295.89 KB) More Documents & Publications Exhaust Energy Recovery Exhaust Energy Recovery Exhaust Energy Recovery

  20. Secondary recovery development in Ecuador

    SciTech Connect (OSTI)

    Arteaga, L.; Endara, J.; Alduja, F.

    1981-03-01

    The oil activity in Ecuador goes back to 1920 when the oil-bearing structures were discovered in the Peninsula of Santa Elena in the Ecuatorian coast. Since that time 2,700 oil wells have been drilled; at the present time, only 650 wells are still producing. Oil production has been decreasing in spite of artificial producing systems (sucker rod pumping, and gas lift). During the period of 1966 to 1969 a total of 8 pilot projects was performed to evaluate the possibility of using secondary recovery methods (waterflooding) in 3 different oil-bearing formations from 5 areas, and utilizing different injection patterns. The results from numerical simulation and pilot projects showed the convenience and easibility of the implmentation of secondary recovery systems (waterflooding) in the Shushufindi-Aguarico field. A detailed description is presented of the development of the secondary recovery methods in Ecuador - antecedents, pilot projects, results, etc.

  1. Road to Recovery: Bringing Recovery to Small Town America

    ScienceCinema (OSTI)

    Nettamo, Paivi

    2012-06-14

    The Recovery Act hits the road to reach out to surrounding towns of the Savannah River Site that are struggling with soaring unemployment rates. This project helps recruit thousands of people to new jobs in environmental cleanup at the Savannah River Site.

  2. ARM and the Recovery Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Updates/Announcements Thu, 01 Sep 2011 00:00:00 +0000 http://www.arm.gov en September 2011 Thu, 01 Sep 2011 00:00:00 +0000 aa3f1e269969d96bd7b30dd7a408d745 &#60;/p&#62; &#60;p&#62;&#60;strong&#62;Final Recovery Act Milestone Complete! &#60;/strong&#62; This month, ARM celebrates the delivery of the last few instruments for its Recovery Act investment and reports its final FY11 milestone - &#34;Infrastructure Enhancements Complete.&#34; This closes out the

  3. ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality...

    Broader source: Energy.gov (indexed) [DOE]

    a 50% reduction in building energy consumption. ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings (890.97 KB) More Documents & ...

  4. Workers Remove Glove Boxes from Ventilation at Hanford’s Plutonium Finishing Plant

    Broader source: Energy.gov [DOE]

    An employee at Hanford’s Plutonium Finishing Plant uses a portable band saw to cut the last ventilation duct attached to glove boxes inside the facility’s former processing area.

  5. Building America Technologies Solutions Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    Broader source: Energy.gov [DOE]

    In this study, the Building America team Building Science Corporation tested the effectiveness of various ventilation systems at two unoccupied, single-family lab homes at the University of Texas at Tyler.

  6. Economizer system cost effectiveness: Accounting for the influence of ventilation rate on sick leave

    SciTech Connect (OSTI)

    Fisk, William J.; Seppanen, Olli; Faulkner, David; Huang, Joe

    2003-06-01

    This study estimated the health, energy, and economic benefits of an economizer ventilation control system that increases outside air supply during mild weather to save energy. A model of the influence of ventilation rate on airborne transmission of respiratory illnesses was used to extend the limited data relating ventilation rate with illness and sick leave. An energy simulation model calculated ventilation rates and energy use versus time for an office building in Washington, DC with fixed minimum outdoor air supply rates, with and without an economizer. Sick leave rates were estimated with the disease transmission model. In the modeled 72-person office building, our analyses indicate that the economizer reduces energy costs by approximately $2000 and, in addition, reduces sick leave. The financial benefit of the decrease in sick leave is estimated to be between $6,000 and $16,000. This modelling suggests that economizers are much more cost effective than currently recognized.

  7. Mechanical ventilation in HUD-code manufactured housing in the Pacific Northwest

    SciTech Connect (OSTI)

    Lubliner, M.; Stevens, D.T.; Davis, B.

    1997-12-31

    Electric utilities in the Pacific Northwest have spent more than $100 million to support energy-efficiency improvements in the Housing and Urban Development (HUD) code manufactured housing industry in the Pacific Northwest over the past several years. More than 65,000 manufactured housing units have been built since 1991 that exceed the new HUD standards for both thermal performance and mechanical ventilation that became effective in October 1994. All of these units included mechanical ventilation systems that were designed to meet or exceed the requirements of ASHRAE Standard 62-1989. This paper addresses the ventilation solutions that were developed and compares the comfort and energy considerations of the various strategies that have evolved in the Pacific Northwest and nationally. The use and location of a variety of outside air inlets will be addressed, as will the acceptance by the occupants of the ventilation strategy.

  8. DOE ZERH Webinar: Ventilation and Filtration Strategies with Indoor airPLUS (Text Version)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Below is the text version of the webinar, DOE Zero Energy Ready Home: Ventilation and Filtration Strategies with Indoor airPLUS, presented in August 2014. Watch the presentation.

  9. Alternatives generation and analysis for double-shell tank primary ventilation systems emissions control and monitoring

    SciTech Connect (OSTI)

    SEDERBURG, J.P.

    1999-09-30

    This AGA addresses the question: ''What equipment upgrades, operational changes, and/or other actions are required relative to the DST tanks farms' ventilation systems to support retrieval, staging (including feed sampling), and delivery of tank waste to the Phase I private contractor?'' Issues and options for the various components within the ventilation subsystem affect each other. Recommended design requirements are presented and the preferred alternatives are detailed.

  10. Analysis of Buoyancy-Driven Ventilation of Hydrogen from Buildings (Presentation)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Buoyancy-Driven Ventilation of Hydrogen from Buildings C. Dennis Barley, Keith Gawlik, Jim Ohi, Russell Hewett National Renewable Laboratory U.S. DOE Hydrogen Safety, Codes & Standards Program Presented at 2 nd ICHS, San Sebastián, Spain September 11, 2007 NREL/PR-550-42289 Scope of Work * Safe building design * Vehicle leak in residential garage * Continual slow leak * Passive, buoyancy-driven ventilation (vs. mechanical) * Steady-state concentration of H 2 vs. vent size Prior Work *

  11. Biosurfactant and enhanced oil recovery

    DOE Patents [OSTI]

    McInerney, Michael J.; Jenneman, Gary E.; Knapp, Roy M.; Menzie, Donald E.

    1985-06-11

    A pure culture of Bacillus licheniformis strain JF-2 (ATCC No. 39307) and a process for using said culture and the surfactant lichenysin produced thereby for the enhancement of oil recovery from subterranean formations. Lichenysin is an effective surfactant over a wide range of temperatures, pH's, salt and calcium concentrations.

  12. Air Distribution Effectiveness for Residential Mechanical Ventilation: Simulation and Comparison of Normalized Exposures

    SciTech Connect (OSTI)

    Petithuguenin, T.D.P.; Sherman, M.H.

    2009-05-01

    The purpose of ventilation is to dilute indoor contaminants that an occupant is exposed to. Even when providing the same nominal rate of outdoor air, different ventilation systems may distribute air in different ways, affecting occupants' exposure to household contaminants. Exposure ultimately depends on the home being considered, on source disposition and strength, on occupants' behavior, on the ventilation strategy, and on operation of forced air heating and cooling systems. In any multi-zone environment dilution rates and source strengths may be different in every zone and change in time, resulting in exposure being tied to occupancy patterns.This paper will report on simulations that compare ventilation systems by assessing their impact on exposure by examining common house geometries, contaminant generation profiles, and occupancy scenarios. These simulations take into account the unsteady, occupancy-tied aspect of ventilation such as bathroom and kitchen exhaust fans. As most US homes have central HVAC systems, the simulation results will be used to make appropriate recommendations and adjustments for distribution and mixing to residential ventilation standards such as ASHRAE Standard 62.2.This paper will report on work being done to model multizone airflow systems that are unsteady and elaborate the concept of distribution matrix. It will examine several metrics for evaluating the effect of air distribution on exposure to pollutants, based on previous work by Sherman et al. (2006).

  13. DOE Policy Re Recovery Act Recipient Use of Recovery Act Logos on Signage |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Policy Re Recovery Act Recipient Use of Recovery Act Logos on Signage DOE Policy Re Recovery Act Recipient Use of Recovery Act Logos on Signage U.S. Department of Energy ("DOE") policy regarding use of the Recovery Act logo by Recovery Act recipients and subgrantees. DOE Policy Re Recovery Act Recipient Use of Recovery Act Logos on Signage (51.58 KB) More Documents & Publications Better Buildings Neighborhood Program Grant Recipient Management Handbook EV

  14. ARM - ARM Recovery Act Project FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plan, contact Jimmy Voyles, ARM's Recovery Act Project Manager, at jimmy-dot-voyles-at-pnl-dot-gov. Public Q&A If you have a question about our Recovery Act efforts, send it to...

  15. Z-Bed Recovery Water Disposal

    Office of Environmental Management (EM)

    Z-Bed Recovery Water Disposal Tritium Programs Engineering Louis Boone Josh Segura ... detailed explanation of the plan to capture and dispose of Z-Bed Recovery (ZR) water. ...

  16. American Recovery & Reinvestment Act Newsletter - Issue 16

    Office of Environmental Management (EM)

    ... Sub-Project Director Jhon Carilli. As of the end of July 2010, more than 1.8 million cubic feet of Recovery Act waste has been accepted at NNSS. The Recovery Act forecast calls ...

  17. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate the potential of storing carbon dioxide in depleted oil fields while simultaneously maximizing oil production. January 8, 2014 Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery. Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery.

  18. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate the potential of storing carbon dioxide in depleted oil fields while simultaneously maximizing oil production. January 8, 2014 Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery. Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery.

  19. Settlers Hill Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Settlers Hill Gas Recovery Biomass Facility Jump to: navigation, search Name Settlers Hill Gas Recovery Biomass Facility Facility Settlers Hill Gas Recovery Sector Biomass Facility...

  20. DFW Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    DFW Gas Recovery Biomass Facility Jump to: navigation, search Name DFW Gas Recovery Biomass Facility Facility DFW Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  1. Lake Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Gas Recovery Biomass Facility Jump to: navigation, search Name Lake Gas Recovery Biomass Facility Facility Lake Gas Recovery Sector Biomass Facility Type Landfill Gas Location Cook...

  2. Prairie View Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    View Gas Recovery Biomass Facility Jump to: navigation, search Name Prairie View Gas Recovery Biomass Facility Facility Prairie View Gas Recovery Sector Biomass Facility Type...

  3. Woodland Landfill Gas Recovery Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Landfill Gas Recovery Biomass Facility Jump to: navigation, search Name Woodland Landfill Gas Recovery Biomass Facility Facility Woodland Landfill Gas Recovery Sector Biomass...

  4. Greene Valley Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Valley Gas Recovery Biomass Facility Jump to: navigation, search Name Greene Valley Gas Recovery Biomass Facility Facility Greene Valley Gas Recovery Sector Biomass Facility Type...

  5. CID Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    CID Gas Recovery Biomass Facility Jump to: navigation, search Name CID Gas Recovery Biomass Facility Facility CID Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  6. Olinda Landfill Gas Recovery Plant Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Olinda Landfill Gas Recovery Plant Biomass Facility Jump to: navigation, search Name Olinda Landfill Gas Recovery Plant Biomass Facility Facility Olinda Landfill Gas Recovery Plant...

  7. Recovery Act: Smart Grid Investment Grants | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Center Recovery Act Recovery Act: Smart Grid Investment Grants Recovery Act: Smart Grid Investment Grants Smart Grid Investment Grant Awards Recipients by State ...

  8. CSL Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    CSL Gas Recovery Biomass Facility Jump to: navigation, search Name CSL Gas Recovery Biomass Facility Facility CSL Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  9. BJ Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    BJ Gas Recovery Biomass Facility Jump to: navigation, search Name BJ Gas Recovery Biomass Facility Facility BJ Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  10. Southeast Resource Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Resource Recovery Biomass Facility Jump to: navigation, search Name Southeast Resource Recovery Biomass Facility Facility Southeast Resource Recovery Sector Biomass Facility Type...

  11. Metro Methane Recovery Facility Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Methane Recovery Facility Biomass Facility Jump to: navigation, search Name Metro Methane Recovery Facility Biomass Facility Facility Metro Methane Recovery Facility Sector Biomass...

  12. Penobscot Energy Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Energy Recovery Biomass Facility Jump to: navigation, search Name Penobscot Energy Recovery Biomass Facility Facility Penobscot Energy Recovery Sector Biomass Facility Type...

  13. Puente Hills Energy Recovery Biomass Facility | Open Energy Informatio...

    Open Energy Info (EERE)

    Puente Hills Energy Recovery Biomass Facility Jump to: navigation, search Name Puente Hills Energy Recovery Biomass Facility Facility Puente Hills Energy Recovery Sector Biomass...

  14. Microsoft Word - Attachment 3 Recovery Act notification | Department...

    Energy Savers [EERE]

    Microsoft Word - Attachment 3 Recovery Act notification Microsoft Word - Attachment 3 Recovery Act notification More Documents & Publications Microsoft Word - Attachment 3 Recovery...

  15. Recovery Act Investment Moves EM Past Milestone of 100 Project...

    Office of Environmental Management (EM)

    in place quickly to accomplish the Recovery Act Program goals." Recovery Act Investment Moves EM Past Milestone of 100 Project Completions Below: Recovery Act workers...

  16. Michigan Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    Michigan Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery ...

  17. Delaware Recovery Act State Memo | Department of Energy

    Office of Environmental Management (EM)

    Delaware Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery ...

  18. Vermont Recovery Act State Memo | Department of Energy

    Office of Environmental Management (EM)

    Vermont Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery ...

  19. Ohio Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    Ohio Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act ...

  20. Optimization of Ventilation Energy Demands and Indoor Air Quality in High-Performance Homes

    SciTech Connect (OSTI)

    Hun, Diana E; Jackson, Mark C; Shrestha, Som S

    2014-01-01

    High-performance homes require that ventilation energy demands and indoor air quality (IAQ) be simultaneously optimized. We attempted to bridge these two areas by conducting tests in a research house located in Oak Ridge, TN, that was 20 months old, energy-efficient (i.e., expected to consume 50% less energy than a house built per the 2006 IRC), tightly-built (i.e., natural ventilation rate ~0.02 h-1), unoccupied, and unfurnished. We identified air pollutants of concern in the test home that could generally serve as indicators of IAQ, and conduced field experiments and computer simulations to determine the effectiveness and energy required by various techniques that lessened the concentration of these contaminants. Formaldehyde was selected as the main pollutant of concern among the contaminants that were sampled in the initial survey because it was the only compound that showed concentrations that were greater than the recommended exposure levels. Field data indicate that concentrations were higher during the summer primarily because emissions from sources rise with increases in temperature. Furthermore, supply ventilation and gas-phase filtration were effective means to reduce formaldehyde concentrations; however, exhaust ventilation had minimal influence on this pollutant. Results from simulations suggest that formaldehyde concentrations obtained while ventilating per ASHRAE 62.2-2010 could be decreased by about 20% from May through September through three strategies: 1) increasing ASHRAE supply ventilation by a factor of two, 2) reducing the thermostat setpoint from 76 to 74 F, or 3) running a gas-phase filtration system while decreasing supply ventilation per ASHRAE by half. In the mixed-humid climate of Oak Ridge, these strategies caused increases in electricity cost of ~$5 to ~$15/month depending on outdoor conditions.

  1. State Agency Recovery Act Funding

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agency Recovery Act Funding .Alabama Alabama Public Service Commission $868,824 .Alaska Regulatory Commission of Alaska $767,493 .Arizona Arizona Corporation Commission $915,679 .Arkansas Arkansas Public Service Commission $822,779 .California California Public Utilities Commission $1,686,869 .Colorado The Public Utilities Commission of the State of Colorado $875,899 .Connecticut Connecticut Department of Public Utility Control $839,241 .Delaware Delaware Public Service Commission $772,254

  2. Overpulse railgun energy recovery circuit

    DOE Patents [OSTI]

    Honig, Emanuel M.

    1989-01-01

    In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, an overpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  3. Counterpulse railgun energy recovery circuit

    DOE Patents [OSTI]

    Honig, Emanuel M.

    1986-01-01

    In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, a counterpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  4. Anelastic Strain Recovery Analysis Code

    Energy Science and Technology Software Center (OSTI)

    1995-04-05

    ASR4 is a nonlinear least-squares regression of Anelastic Strain Recovery (ASR) data for the purpose of determining in situ stress orientations and magnitudes. ASR4 fits the viscoelastic model of Warpinski and Teufel to measure ASR data, calculates the stress orientations directly, and stress magnitudes if sufficient input data are available. The code also calculates the stress orientation using strain-rosette equations, and it calculates stress magnitudes using Blanton''s approach, assuming sufficient input data are available.

  5. Technology Solutions Case Study: Sealed Crawl Space with Integrated Whole-House Ventilation in a Cold Climate

    SciTech Connect (OSTI)

    W. Zoeller, J. Williamson, and S. Puttagunta

    2015-09-01

    The Building America team Consortium for Advanced Residential Buildings (CARB) investigated a hybrid ventilation method that included the exhaust air from the crawl space as part of an ASHRAE 62.2-compliant whole-house ventilation strategy. The CARB team evaluated this hybrid ventilation method through long-term field monitoring of temperature, humidity, and pressure conditions within the crawl spaces of two homes (one occupied and one unoccupied) in New York state.

  6. Current longwall ventilation problems and implications for thick seam longwalls. Final technical report. [133 references

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    The objective of this investigation was to identify, analyze and suggest solutions to ventilation problems of the following mining systems proposed for use in western thick seams; multiple lift longwall; single pass longwall with face height in the range of 12 to 19 feet; longwall sublevel caving. To reach this objective, background information on the regulations and ventilation practices relevant to the three methods was reviewed. This was followed by an identification of ventilation problems including the sources and quantities of methane emissions, respirable coal dust, self ignition and self heating. The problems were then analyzed to determine the probability of occurrence, the cause of the problem, and its consequences. Having analyzed these problems, solutions were described to the problems. The major finding of this effort was that, while certain ventilation difficulties can be isolated peculiar to these three moethods, in general, seam specific conditions have a larger role in determining the success of ventilation than does the method used. The major difficulties to be faced by these novel methods are the same as those to be faced by conventional longwalls. Research efforts should proceed on that basis.

  7. Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation

    SciTech Connect (OSTI)

    Logue, J.M.; Price, P.N.; Sherman, M.H.; Singer, B.C.

    2011-07-01

    Intake of chemical air pollutants in residences represents an important and substantial health hazard. Sealing homes to reduce air infiltration can save space conditioning energy, but can also increase indoor pollutant concentrations. Mechanical ventilation ensures a minimum amount of outdoor airflow that helps reduce concentrations of indoor emitted pollutants while requiring some energy for fan(s) and thermal conditioning of the added airflow. This work demonstrates a physics based, data driven modeling framework for comparing the costs and benefits of whole-house mechanical ventilation and applied the framework to new California homes. The results indicate that, on a population basis, the health benefits from reduced exposure to indoor pollutants in New California homes are worth the energy costs of adding mechanical ventilation as specified by ASHRAE Standard 62.2.This study determines the health burden for a subset of pollutants in indoor air and the costs and benefits of ASHRAE's mechanical ventilation standard (62.2) for new California homes. Results indicate that, on a population basis, the health benefits of new home mechanical ventilation justify the energy costs.

  8. Should Title 24 Ventilation Requirements Be Amended to include an Indoor Air Quality Procedure?

    SciTech Connect (OSTI)

    Dutton, Spencer M.; Mendell, Mark J.; Chan, Wanyu R.

    2013-05-13

    Minimum outdoor air ventilation rates (VRs) for buildings are specified in standards, including California?s Title 24 standards. The ASHRAE ventilation standard includes two options for mechanically-ventilated buildings ? a prescriptive ventilation rate procedure (VRP) that specifies minimum VRs that vary among occupancy classes, and a performance-based indoor air quality procedure (IAQP) that may result in lower VRs than the VRP, with associated energy savings, if IAQ meeting specified criteria can be demonstrated. The California Energy Commission has been considering the addition of an IAQP to the Title 24 standards. This paper, based on a review of prior data and new analyses of the IAQP, evaluates four future options for Title 24: no IAQP; adding an alternate VRP, adding an equivalent indoor air quality procedure (EIAQP), and adding an improved ASHRAE-like IAQP. Criteria were established for selecting among options, and feedback was obtained in a workshop of stakeholders. Based on this review, the addition of an alternate VRP is recommended. This procedure would allow lower minimum VRs if a specified set of actions were taken to maintain acceptable IAQ. An alternate VRP could also be a valuable supplement to ASHRAE?s ventilation standard.

  9. Drain-Water Heat Recovery | Department of Energy

    Energy Savers [EERE]

    Heat & Cool Water Heating Drain-Water Heat Recovery Drain-Water Heat Recovery Diagram of a drain water heat recovery system. Diagram of a drain water heat recovery system. ...

  10. Particle deposition in ventilation ducts: Connectors, bends anddeveloping flow

    SciTech Connect (OSTI)

    Sippola, Mark R.; Nazaroff, William W.

    2004-03-01

    In ventilation duct flow the turbulent flow profile is commonly disturbed or not fully developed and these conditions are likely to influence particle deposition to duct surfaces. Particle deposition rates at eight S-connectors, in two 90{sup o} duct bends and in two ducts where the turbulent flow profile was not fully developed were measured in a laboratory duct system with both galvanized steel and internally insulated ducts with hydraulic diameters of 15.2 cm. In the steel duct system, experiments with nominal particle diameters of 1, 3, 5, 9 and 16 {micro}m were conducted at each of three nominal air speeds: 2.2, 5.3 and 9.0 m/s. In the insulated duct system, deposition of particles with nominal diameters of 1, 3, 5, 8 and 13 {micro}m was measured at nominal air speeds of 2.2, 5.3 and 8.8 m/s. Fluorescent techniques were used to directly measure the deposition velocities of monodisperse fluorescent particles to duct surfaces. Deposition at S-connectors, in bends and in straight ducts with developing turbulence was often greater than deposition in straight ducts with fully developed turbulence for equal particle sizes, air speeds and duct surface orientations. Deposition rates at all locations were found to increase with an increase in particle size or air speed. High deposition rates at S-connectors resulted from impaction and these rates were nearly independent of the orientation of the S-connector. Deposition rates in the two 90{sup o} bends differed by more than an order of magnitude in some cases, probably because of the difference in turbulence conditions at the bend inlets. In straight steel ducts where the turbulent flow profile was developing, the deposition enhancement relative to fully developed turbulence generally increased with air speed and decreased with downstream distance from the duct inlet. This enhancement was greater at the duct ceiling and wall than at the duct floor. In insulated ducts, deposition enhancement was less pronounced overall

  11. Toward Local Failure Local Recovery (LFLR) Resilience Model Using...

    Office of Scientific and Technical Information (OSTI)

    Motivation for Local Failure-Local Recovery (LFLR) Architecture for LFLR Application Recovery Results Discussion Conclusions Sandia Motivation for ...

  12. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound ...

  13. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound ...

  14. Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound ...

  15. Energy Positive Water Resource Recovery Workshop Related Documents...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Related Documents Energy Positive Water Resource Recovery Workshop Related Documents ... Workshop Report Energy-Positive Water Resource Recovery Workshop Report ...

  16. Opportunities and Challenges of Thermoelectrlic Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Development of Thermoelectric Technology for Automotive Waste Heat Recovery Develop Thermoelectric Technology for Automotive Waste Heat Recovery ...

  17. Analysis and consequences of fire inside the ventilation ducts of a nuclear facility

    SciTech Connect (OSTI)

    Briand, A.R.; Laborde, J.C. ); Savornin, J.H.; Tessier, J.L. )

    1989-01-01

    Accident events involving fire are rather frequent and could have a severe effect on the safety of nuclear facilities. Among the fires that have broken out in nuclear plants, several have resulted from ignition of dust deposited inside the ventilation ducts and on the high-efficiency particulate air (HEPA) filters. The BEATRICE test facility has been designed and built at a French nuclear studies center to enable the analysis and consequences of these types of fires to be evaluated. The associated experimental program is aimed at characterizing the fire (fire spread, aerosols formed), determining and simulating the temperature profiles along the duct (thermal losses evaluation by the pipette code), and evaluating the challenge and behavior of the associated HEPA filters (efficiency, contamination release, etc.). The tests performed in this study contributed to improvements in the basic knowledge about fires inside ventilation ducts and define the associated strategies (ventilation control, filters protection, etc.).

  18. Test Plan to Evaluate the Relationship Among IAQ, Comfort, Moisture, and Ventilation in Humid Climates

    SciTech Connect (OSTI)

    Widder, Sarah H.; Martin, Eric

    2013-03-15

    This experimental plan describes research being conducted by Pacific Northwest National Laboratory (PNNL), in coordinatation with Florida Solar Energy Center (FSEC), Florida HERO, and Lawrence Berkeley National Laboratory (LBNL) to evaluate the impact of ventilation rate on interior moisture levels, temperature distributions, and indoor air contaminant concentrations. Specifically, the research team will measure concentrations of indoor air contaminants, ventilation system flow rates, energy consumption, and temperature and relative humidity in ten homes in Gainesville, FL to characterize indoor pollutant levels and energy consumption associated with the observed ventilation rates. PNNL and FSEC have collaboratively prepared this experimental test plan, which describes background and context for the proposed study; the experimental design; specific monitoring points, including monitoring equipment, and sampling frequency; key research questions and the associated data analysis approach; experimental logistics, including schedule, milestones, and team member contact information; and clearly identifies the roles and responsibilities of each team in support of project objectives.

  19. CFD-based design of the ventilation system for the PHENIX detector

    SciTech Connect (OSTI)

    Parietti, L.; Martin, R.A.; Gregory, W.S.

    1996-10-01

    The three-dimensional flow and thermal fields surrounding the large PHENIX sub-atomic particle detector enclosed in the Major Facility Hall are simulated numerically in this study using the CFX finite volume, commercial, computer code. The predicted fields result from the interaction of an imposed downward ventilation system cooling flow and a buoyancy-driven thermal plume rising from the warm detector. An understanding of the thermal irregularities on the surface of the detector and in the flow surrounding is needed to assess the potential for adverse thermal expansion effects in detector subsystems, and to prevent ingestion of electronics cooling air from hot spots. With a computational model of the thermal fields on and surrounding the detector, HVAC engineers can evaluate and improve the ventilation system design prior to the start of construction. This paper summarizes modeling and results obtained for a conceptual MFH ventilation scheme.

  20. Counterpulse railgun energy recovery circuit

    DOE Patents [OSTI]

    Honig, E.M.

    1984-09-28

    The invention presented relates to a high-power pulsing circuit and more particularly to a repetitive pulse inductive energy storage and transfer circuit for an electromagnetic launcher. In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, a counterpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  1. Overpulse railgun energy recovery circuit

    DOE Patents [OSTI]

    Honig, E.M.

    1984-09-28

    The invention presented relates to a high-power pulsing circuit and more particularly to a repetitive pulse inductive energy storage and transfer circuit for an electromagnetic launcher. In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, an overpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  2. The Hanford Story: Recovery Act

    Broader source: Energy.gov [DOE]

    This is the third chapter of The Hanford Story. This chapter is a tribute to the thousands of workers and representatives of regulatory agencies, neighboring states, Tribes, stakeholders, and surrounding communities who came together to put stimulus funding to work at Hanford. The video describes how the Department of Energy and its contractors turned a nearly $2 billion investment of American Recovery and Reinvestment Act funding in 2009 into nearly $4 billion worth of environmental cleanup work over the past two years. At the same time, Hanford workers have reduced the cleanup footprint of the Hanford Site by more than half (586 square miles to 241 sq. mi. through August -- 59 percent).

  3. ADMINISTRATIVE AND ENGINEERING CONTROLS FOR THE OPERATION OF VENTILATION SYSTEMS FOR UNDERGROUND RADIOACTIVE WASTE STORAGE TANKS

    SciTech Connect (OSTI)

    Wiersma, B.; Hansen, A.

    2013-11-13

    Liquid radioactive wastes from the Savannah River Site are stored in large underground carbon steel tanks. The majority of the waste is confined in double shell tanks, which have a primary shell, where the waste is stored, and a secondary shell, which creates an annular region between the two shells, that provides secondary containment and leak detection capabilities should leakage from the primary shell occur. Each of the DST is equipped with a purge ventilation system for the interior of the primary shell and annulus ventilation system for the secondary containment. Administrative flammability controls require continuous ventilation to remove hydrogen gas and other vapors from the waste tanks while preventing the release of radionuclides to the atmosphere. Should a leak from the primary to the annulus occur, the annulus ventilation would also serve this purpose. The functionality of the annulus ventilation is necessary to preserve the structural integrity of the primary shell and the secondary. An administrative corrosion control program is in place to ensure integrity of the tank. Given the critical functions of the purge and annulus ventilation systems, engineering controls are also necessary to ensure that the systems remain robust. The system consists of components that are constructed of metal (e.g., steel, stainless steel, aluminum, copper, etc.) and/or polymeric (polypropylene, polyethylene, silicone, polyurethane, etc.) materials. The performance of these materials in anticipated service environments (e.g., normal waste storage, waste removal, etc.) was evaluated. The most aggressive vapor space environment occurs during chemical cleaning of the residual heels by utilizing oxalic acid. The presence of NO{sub x} and mercury in the vapors generated from the process could potentially accelerate the degradation of aluminum, carbon steel, and copper. Once identified, the most susceptible materials were either replaced and/or plans for discontinuing operations

  4. A multiscale MDCT image-based breathing lung model with time-varying regional ventilation

    SciTech Connect (OSTI)

    Yin, Youbing, E-mail: youbing-yin@uiowa.edu [Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States) [Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States); IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Department of Radiology, The University of Iowa, Iowa City, IA 52242 (United States); Choi, Jiwoong, E-mail: jiwoong-choi@uiowa.edu [Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States) [Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States); IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Hoffman, Eric A., E-mail: eric-hoffman@uiowa.edu [Department of Radiology, The University of Iowa, Iowa City, IA 52242 (United States); Department of Biomedical Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242 (United States); Tawhai, Merryn H., E-mail: m.tawhai@auckland.ac.nz [Auckland Bioengineering Institute, The University of Auckland, Auckland (New Zealand); Lin, Ching-Long, E-mail: ching-long-lin@uiowa.edu [Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States) [Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States); IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242 (United States)

    2013-07-01

    A novel algorithm is presented that links local structural variables (regional ventilation and deforming central airways) to global function (total lung volume) in the lung over three imaged lung volumes, to derive a breathing lung model for computational fluid dynamics simulation. The algorithm constitutes the core of an integrative, image-based computational framework for subject-specific simulation of the breathing lung. For the first time, the algorithm is applied to three multi-detector row computed tomography (MDCT) volumetric lung images of the same individual. A key technique in linking global and local variables over multiple images is an in-house mass-preserving image registration method. Throughout breathing cycles, cubic interpolation is employed to ensure C{sub 1} continuity in constructing time-varying regional ventilation at the whole lung level, flow rate fractions exiting the terminal airways, and airway deformation. The imaged exit airway flow rate fractions are derived from regional ventilation with the aid of a three-dimensional (3D) and one-dimensional (1D) coupled airway tree that connects the airways to the alveolar tissue. An in-house parallel large-eddy simulation (LES) technique is adopted to capture turbulent-transitional-laminar flows in both normal and deep breathing conditions. The results obtained by the proposed algorithm when using three lung volume images are compared with those using only one or two volume images. The three-volume-based lung model produces physiologically-consistent time-varying pressure and ventilation distribution. The one-volume-based lung model under-predicts pressure drop and yields un-physiological lobar ventilation. The two-volume-based model can account for airway deformation and non-uniform regional ventilation to some extent, but does not capture the non-linear features of the lung.

  5. Optimization of Ventilation Energy Demands and Indoor Air Quality in the ZEBRAlliance Homes

    SciTech Connect (OSTI)

    Hun, D.; Jackson, M.; Shrestha, S.

    2013-09-01

    High-performance homes require that ventilation energy demands and indoor air quality (IAQ) be simultaneously optimized. In this project, Oak Ridge National Laboratory researchers attempted to bridge these two areas by conducting tests in research houses located in Oak Ridge, TN, that were less than 2 years old, energy-efficient (i.e., expected to consume 50% less energy than a house built per the 2006 IRC), tightly-built, unoccupied, and unfurnished. The team identified air pollutants of concern in the test homes that could generally serve as indicators of IAQ, and conduced field experiments and computer simulations to determine the effectiveness and energy required by various techniques that lessened the concentration of these contaminants. Formaldehyde was selected as the main pollutant of concern from initial air sampling surveys. Field data indicate that concentrations were higher during the summer primarily because emissions from sources rise with increases in temperature. Furthermore, supply ventilation and gas-phase filtration were effective means to reduce formaldehyde concentrations; however, exhaust ventilation had minimal influence on this pollutant. Results from simulations suggest that formaldehyde concentrations obtained while ventilating per ASHRAE 62.2-2010 could be decreased by about 20% from May through September through three strategies: 1) increasing ASHRAE supply ventilation by a factor of two, 2) reducing the thermostat setpoint from 76 to 74°F, or 3) running a gas-phase filtration system while decreasing supply ventilation per ASHRAE by half. In the mixed-humid climate of Oak Ridge, these strategies caused minimal to modest increases in electricity cost of ~$5 to ~$15/month depending on outdoor conditions.

  6. Development of an Outdoor Temperature Based Control Algorithm for Residential Mechanical Ventilation Control

    SciTech Connect (OSTI)

    Less, Brennan; Walker, Iain; Tang, Yihuan

    2014-08-01

    The Incremental Ventilation Energy (IVE) model developed in this study combines the output of simple air exchange models with a limited set of housing characteristics to estimate the associated change in energy demand of homes. The IVE model was designed specifically to enable modellers to use existing databases of housing characteristics to determine the impact of ventilation policy change on a population scale. The IVE model estimates of energy change when applied to US homes with limited parameterisation are shown to be comparable to the estimates of a well-validated, complex residential energy model.

  7. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy ? FY11 Final Report

    SciTech Connect (OSTI)

    Sidheswaran, Meera; Destaillats, Hugo; Cohn, Sebastian; Sullivan, Douglas P.; Fisk, William J.

    2011-10-31

    The research carried out in this project focuses on developing novel volatile organic compounds (VOCs) air cleaning technologies needed to enable energy-saving reductions in ventilation rates. we targeted a VOC air cleaning system that could enable a 50% reduction in ventilation rates. In a typical commercial HVAC system that provides a mixture of recirculated and outdoor air, a VOC air cleaner in the supply airstream must have a 15% to 20% VOC removal efficiency to counteract a 50% reduction in outdoor air supply.

  8. Brushing up on oil recovery

    SciTech Connect (OSTI)

    Mackey, J.

    1995-12-01

    To be prepared for a range of oil spills, emergency response organizations must have an arsenal of powerful and adaptable equipment. Around the coastal United States, a network of oil spill cooperatives and emergency response organizations stand ready with the technology and the know-how to respond to the first sign of an oil spill. When the telephone rings, they may be required to mop up 200 gallons of oil that leaked off the deck of a ship or to contain and skim 2,000 gallons of oil from a broken hose at a loading terminal. In a few cases each year, they may find themselves responding to a major pollution incident, one that involves hundreds of people and tons of equipment. To clean an oil spill at a New Jersey marine terminal, the local cooperative used the Lundin Oil Recovery Inc. (LORI) skimming system to separate the oil and water and the lift the oil out of the river. The LORI skimming technology is based on sound principles of fluid management - using the natural movement of water instead of trying to fight against it. A natural feeding mechanism delivers oily water through the separation process, and a simple mechanical separation and recovery device - a brush conveyor - removes the pollutants from the water.

  9. Transpired Solar Collector at NREL's Waste Handling Facility Uses Solar Energy to Heat Ventilation Air (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01

    The transpired solar collector was installed on NREL's Waste handling Facility (WHF) in 1990 to preheat ventilation air. The electrically heated WHF was an ideal candidate for the this technology - requiring a ventilation rate of 3,000 cubic feet per meter to maintain safe indoor conditions.

  10. Recovery from chemical, biological, and radiological incidents :

    SciTech Connect (OSTI)

    Franco, David Oliver; Yang, Lynn I.; Hammer, Ann E.

    2012-06-01

    To restore regional lifeline services and economic activity as quickly as possible after a chemical, biological or radiological incident, emergency planners and managers will need to prioritize critical infrastructure across many sectors for restoration. In parallel, state and local governments will need to identify and implement measures to promote reoccupation and economy recovery in the region. This document provides guidance on predisaster planning for two of the National Disaster Recovery Framework Recovery Support Functions: Infrastructure Systems and Economic Recovery. It identifies key considerations for infrastructure restoration, outlines a process for prioritizing critical infrastructure for restoration, and identifies critical considerations for promoting regional economic recovery following a widearea disaster. Its goal is to equip members of the emergency preparedness community to systematically prioritize critical infrastructure for restoration, and to develop effective economic recovery plans in preparation for a widearea CBR disaster.

  11. Los Alamos plants willows for flood recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plants willows Los Alamos plants willows for flood recovery The Laboratory's Corrective Actions Program (CAP) planted nearly 10,000 willows to help preserve the Pueblo Canyon wetland after damage from September 2013 floods. June 18, 2014 In a flood recovery effort designed to stop further erosion in Pueblo Canyon, in April, Los Alamos planted nearly 10,000 willows along the stream banks surrounding the wetland. In a flood recovery effort designed to stop further erosion in Pueblo Canyon, Los

  12. Recovery Act State Memos American Samoa

    Broader source: Energy.gov (indexed) [DOE]

    American Samoa For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  13. Recovery Act State Memos Mariana Islands

    Broader source: Energy.gov (indexed) [DOE]

    Mariana Islands For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  14. Recovery Act State Memos New Hampshire

    Broader source: Energy.gov (indexed) [DOE]

    Hampshire For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  15. Recovery Act State Memos New Jersey

    Broader source: Energy.gov (indexed) [DOE]

    Jersey For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  16. Recovery Act State Memos New Mexico

    Broader source: Energy.gov (indexed) [DOE]

    Mexico For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  17. Recovery Act State Memos North Carolina

    Broader source: Energy.gov (indexed) [DOE]

    Carolina For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  18. Recovery Act State Memos North Dakota

    Broader source: Energy.gov (indexed) [DOE]

    Dakota For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  19. Recovery Act State Memos Puerto Rico

    Broader source: Energy.gov (indexed) [DOE]

    Puerto Rico For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  20. Recovery Act State Memos Rhode Island

    Broader source: Energy.gov (indexed) [DOE]

    Rhode Island For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  1. Recovery Act State Memos South Carolina

    Broader source: Energy.gov (indexed) [DOE]

    Carolina For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  2. Recovery Act State Memos South Dakota

    Broader source: Energy.gov (indexed) [DOE]

    Dakota For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  3. Recovery Act State Memos Virgin Islands

    Broader source: Energy.gov (indexed) [DOE]

    Virgin Islands For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  4. Recovery Act State Memos Washington, DC

    Broader source: Energy.gov (indexed) [DOE]

    Washington, DC For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  5. Recovery Act State Memos West Virginia

    Broader source: Energy.gov (indexed) [DOE]

    West Virginia For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  6. Ohio Celebrates Recovery Act Weatherization Program Performance |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Ohio Celebrates Recovery Act Weatherization Program Performance Ohio Celebrates Recovery Act Weatherization Program Performance June 10, 2010 - 12:41pm Addthis Ohio Celebrates Recovery Act Weatherization Program Performance Joshua DeLung What are the key facts? More than 10,000 Ohio homes have been weatherized, making the state one of the national leaders in helping income-eligible families become more energy-efficient. Ohio has reached a milestone in the clean energy

  7. Enhanced Oil Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhanced Oil Recovery Enhanced Oil Recovery Cross-section illustrating how carbon dioxide and water can be used to flush residual oil from a subsurface rock formation between wells. Cross-section illustrating how carbon dioxide and water can be used to flush residual oil from a subsurface rock formation between wells. Crude oil development and production in U.S. oil reservoirs can include up to three distinct phases: primary, secondary, and tertiary (or enhanced) recovery. During primary

  8. LANL exceeds Early Recovery Act recycling goals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL exceeds Early Recovery Act recycling goals LANL exceeds Early Recovery Act recycling goals Lab demolition projects under the American Recovery and Reinvestment Act have recovered more than 136 tons of recyclable metal since work began last year. March 8, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma

  9. LANL sponsors Recovery Act Job Fair

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recovery Act Job Fair LANL sponsors Recovery Act Job Fair The fair was aimed at filling current and future positions with subcontractors working on environmental cleanup under the American Recovery and Reinvestment Act. October 30, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

  10. Waste Isolation Pilot Plant Recovery Plan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Isolation Pilot Plant Recovery Plan Revision 0 September 30, 2014 [This page left blank.] EXECUTIVE SUMMARY Overview This Recovery Plan provides a safe and compliant approach to resuming operations at the Waste Isolation Pilot Plant (WIPP), the repository for disposal of the nation's defense transuranic (TRU) waste. The U.S. Department of Energy (DOE) is committed to resuming operations by the first quarter of calendar year 2016, and this Recovery Plan outlines the Department's approach to

  11. First-principles studies of structural stabilities and enthalpies of formation of refractory intermetallics: TM and TM3 (T = Ti, Zr, Hf; M = Ru, Rh, Pd, Os, Ir, Pt)

    SciTech Connect (OSTI)

    Xing, Weiwei; Chen, X.; Li, Dianzhong; Li, Y. Y.; Fu, Chong Long; Meschel, S.

    2012-01-01

    Using first-principles local density functional approach, we have calculated the ground-state structural phase stabilities and enthalpies of formation of thirty-six binary transition-metal refractory TM and TM3 compounds formed by Group IV elements T (T = Ti, Zr, Hf) and platinum group elements M (M = Ru, Rh, Pd, Os, Ir, Pt) . We compared our results with the available experimental data and found good agreement between theory and experiment in both the trends of structural stabilities and the magnitudes of formation enthalpies. Moreover, based on our calculated results, an empirical relationship between cohesive energies ( E) and melting temperatures (Tm) was derived as Tm = 0.0292 E/kB (where kB is the Boltzmann constant) for both TM and TM3 compounds.

  12. Supercritical Recovery Systems LLC | Open Energy Information

    Open Energy Info (EERE)

    Recovery Systems LLC Place: Clayton, Missouri Zip: 63105 Product: Holder of various biofuel processing technologies. Deeveloping an ethanol plant in Lacassine, Louisiana....

  13. Recovery Act Progress Update: Reactor Closure Feature

    SciTech Connect (OSTI)

    Cody, Tom

    2010-01-01

    A Recovery Act Progress Update. Decommissioning of two nuclear reactor sites at the Department of Energy's facilities has been approved and is underway.

  14. NREL: Technology Deployment - Disaster Recovery and Rebuilding

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recovery and Rebuilding NREL provides expertise, tools, and innovative solutions to private industry; federal, state, and local governments; nonprofit organizations; and ...

  15. American Recovery & Reinvestment Act Newsletter - Issue 29

    Office of Environmental Management (EM)

    ... af- forded them this opportunity." Former Recovery Act engineers are now with Babcock & Wilcox Conversion Services, which op- erates a Paducah Site facility to convert depleted ...

  16. Faces of the Recovery Act: 1366 Technologies

    Broader source: Energy.gov [DOE]

    LEXINGTON, MA - At 1366 Technologies, Ely Sachs and Frank van Mierlo are using ARPA-E Recovery Act funding to dramatically reduce the costs of solar panel production.

  17. Recovery Act SGDP | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 25, 2013: Assistant Secretary Patricia Hoffman to Deliver Keynote Address at IEEE PES Conference on Innovative Smart Grid Technologies Blogs October 5, 2015: Recovery ...

  18. Feed Resource Recovery | Open Energy Information

    Open Energy Info (EERE)

    search Name: Feed Resource Recovery Place: Wellesley, Massachusetts Product: Start-up planning to convert waste to fertilizer and biomethane gas. Coordinates: 42.29776,...

  19. Carbon sequestration with enhanced gas recovery: Identifying...

    Office of Scientific and Technical Information (OSTI)

    studies, we propose a field test of the Carbon Sequestration with Enhanced Gas Recovery (CSEGR) process. The objective of the field test is to evaluate the feasibility of ...

  20. Recovery Act Workforce Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Act Workforce Development Recovery Act Workforce Development Map of Smart Grid Workforce Development Map of Smart Grid Workforce Development 19 Awards Read more Map of Workforce ...

  1. Energy Recovery Associates | Open Energy Information

    Open Energy Info (EERE)

    - NY NJ CT PA Area Sector: Biofuels Product: Landfill Gas, Digester Gas, mixed methane and Greenhouse gases recovery and utilization equipment and projects. Number of...

  2. Bioelectrochemical Integration of Waste Heat Recovery, Waste...

    Broader source: Energy.gov (indexed) [DOE]

    Air Products and Chemicals, Inc. - Allentown, PA A microbial reverse electrodialysis technology ... Bio-Electrochemical Integration of Waste Heat Recovery, Waste-To-Energy Conversion, ...

  3. Cost Recovery | OpenEI Community

    Open Energy Info (EERE)

    Cost Recovery Home Kyoung's picture Submitted by Kyoung(150) Contributor 9 July, 2013 - 20:57 GRR 3rd Quarter - Stakeholder Update Meeting Alaska analysis appropriations...

  4. Modified Accelerated Cost-Recovery System (MACRS)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Under the federal Modified Accelerated Cost-Recovery System (MACRS), businesses may recover investments in certain property through depreciation deductions. The MACRS establishes a set of class...

  5. OE Recovery Act Blog | Department of Energy

    Energy Savers [EERE]

    November is National Critical Infrastructure Security and Resilience Month, and our Office of Electricity (OE) is hard at work safeguarding the power grid. October 5, 2015 Recovery ...

  6. Incorporating Energy Efficiency into Disaster Recovery Efforts

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Program Sustainability Peer Exchange Call Series: Incorporating Energy Efficiency into Disaster Recovery Efforts, Call Slides and Discussion Summary, October 9, 2014.

  7. Performance Engineering Research Center and RECOVERY. Performance...

    Office of Scientific and Technical Information (OSTI)

    Performance Engineering Research Center and RECOVERY. Performance Engineering Research Institution SciDAC-e Augmentation. Performance enhancement Citation Details In-Document ...

  8. Energy Positive Water Resource Recovery Workshop Presentations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentations Energy Positive Water Resource Recovery Workshop Presentations ...ositiveWorkshopReuse.pdf (2.28 MB) NearyWaterResourceWorkshoppresentaion2015.pdf ...

  9. Weatherization Formula Grants - American Recovery and Reinvestment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Microsoft Word - nDE-FOA-0000051.rtf Weatherization Formula Grants - American Recovery and Reinvestment Act (ARRA) WPN 10-9: Amendment to ...

  10. Hillsborough County Resource Recovery Biomass Facility | Open...

    Open Energy Info (EERE)

    Facility Hillsborough County Resource Recovery Sector Biomass Facility Type Municipal Solid Waste Location Hillsborough County, Florida Coordinates 27.9903597, -82.3017728...

  11. Award Selections for Industrial Technologies Program Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A chart detailling Award Selections for Industrial Technologies Program Recovery Act Funding Energy Efficient Information and Communication Technology (ICT) PDF icon Award ...

  12. Faces of the Recovery Act: Sun Catalytix

    Broader source: Energy.gov [DOE]

    At the Massachusetts Institute of Technology, Dan Nocera talks about Sun Catalytix, the next generation of solar energy, and ARPA-E funding through the Recovery Act.

  13. IDAHO RECOVERY ACT SNAPSHOT | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Idaho has substantial natural resources, including wind, geothermal, and hydroelectric power .The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on ...

  14. ARIZONA RECOVERY ACT SNAPSHOT | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Arizona has substantial natural resources, including coal, solar, and hydroelectric resources. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment ...

  15. GEORGIA RECOVERY ACT SNAPSHOT | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Georgia has substantial natural resources, including biomass and hydroelectric power .The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the ...

  16. Recovery Act Progress Update: Reactor Closure Feature

    ScienceCinema (OSTI)

    Cody, Tom

    2012-06-14

    A Recovery Act Progress Update. Decommissioning of two nuclear reactor sites at the Department of Energy's facilities has been approved and is underway.

  17. Method for enhanced oil recovery

    DOE Patents [OSTI]

    Comberiati, Joseph R.; Locke, Charles D.; Kamath, Krishna I.

    1980-01-01

    The present invention is directed to an improved method for enhanced recovery of oil from relatively "cold" reservoirs by carbon dioxide flooding. In oil reservoirs at a temperature less than the critical temperature of 87.7.degree. F. and at a pore pressure greater than the saturation pressure of carbon dioxide at the temperature of the reservoir, the carbon dioxide remains in the liquid state which does not satisfactorily mix with the oil. However, applicants have found that carbon dioxide can be vaporized in situ in the reservoir by selectively reducing the pore pressure in the reservoir to a value less than the particular saturated vapor pressure so as to greatly enhance the mixing of the carbon dioxide with the oil.

  18. Resource recovery from coal residues

    SciTech Connect (OSTI)

    Jones, G. Jr.; Canon, R.M.

    1980-01-01

    Several processes are being developed to recover metals from coal combustion and conversion residues. Methods to obtain substantial amounts of aluminum, iron, and titanium from these wastes are presented. The primary purpose of our investigation is to find a process that is economically sound or one that at least will partially defray the costs of waste processing. A cursory look at the content of fly ash enables one to see the merits of recovery of these huge quantities of valuable resources. The major constituents of fly ash of most interest are aluminum (14.8%), iron (7.5%), and titanium (1.0%). If these major elements could be recovered from the fly ash produced in the United States (60 million tons/year), bauxite would not have to be imported, iron ore production could be increased, and titanium production could be doubled.

  19. Aerobic microbial enhanced oil recovery

    SciTech Connect (OSTI)

    Torsvik, T.; Gilje, E.; Sunde, E.

    1995-12-31

    In aerobic MEOR, the ability of oil-degrading bacteria to mobilize oil is used to increase oil recovery. In this process, oxygen and mineral nutrients are injected into the oil reservoir in order to stimulate growth of aerobic oil-degrading bacteria in the reservoir. Experiments carried out in a model sandstone with stock tank oil and bacteria isolated from offshore wells showed that residual oil saturation was lowered from 27% to 3%. The process was time dependent, not pore volume dependent. During MEOR flooding, the relative permeability of water was lowered. Oxygen and active bacteria were needed for the process to take place. Maximum efficiency was reached at low oxygen concentrations, approximately 1 mg O{sub 2}/liter.

  20. High efficiency shale oil recovery

    SciTech Connect (OSTI)

    Adams, D.C.

    1992-01-01

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical (heating, mixing) conditions exist in both systems. The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed and is reported on this quarter: (1) A software routine was written to eliminate intermittently inaccurate temperature readings. (2) We completed the quartz sand calibration runs, resolving calibration questions from the 3rd quarter. (3) We also made low temperature retorting runs to identify the need for certain kiln modifications and kiln modifications were completed. (4) Heat Conductance data on two Pyrolysis runs were completed on two samples of Occidental oil shale.

  1. Shell boosts recovery at Kernridge

    SciTech Connect (OSTI)

    Moore, S.

    1984-01-01

    Since acquiring the Kernridge property in December 1979, Shell Oil Co. has drilled more than 1,800 wells and steadily increased production from 42,000 to 89,000 b/d of oil. Currently, the Kernridge Production Division of Shell California Production Inc. (SCPI), a newly formed subsidiary of Shell Oil Co., is operator for the property. The property covers approximately 35,000 mostly contiguous net acres, with production concentrated mainly on about 5,500 net acres. SCPI's four major fields in the area are the North and South Belridge, Lost Hills, and Antelope Hills. Most of the production comes from the North and South Belridge fields, which were previously held by the Belridge Oil Co. Productive horizons in the fields are the Tulare, Diatomite, Brown Shale, Antelope Shale, 64 Zone, and Agua sand. The Tulare and Diatomite are the two major reservoirs SCPI is developing. The Tulare, encountered between 400 and 1,300 ft, is made up of fine- to coarse-grained, unconsolidated sands with interbedded shales and silt stones and contains 13 /sup 0/ API oil. Using steam drive as the main recovery method, SCPI estimates an ultimate recovery from the Tulare formation of about 60% of the original 1 billion barrels in place. The Diatomite horizon, found between 800 and 3,500 ft and containing light, 28 /sup 0/ API oil, has high porosity (more than 60%), low permeability (less than 1 md), and natural fractures. Because of the Diatomite's low permeability, fracture stimulation is being used to increase well productivity. SCPI anticipates that approximately 5% of the almost 2 billion barrels of oil originally in place will be recovered by primary production.

  2. Evaluate fundamental approaches to longwall dust control: Subprogram E, Longwall application of ventilation curtains

    SciTech Connect (OSTI)

    Babbitt, C.; Ruggieri, S.

    1990-05-01

    There are a number of applications on longwall faces where Brattice curtains they can improve face ventilation and dust control in coal mines. This report describes the laboratory development and/or field evaluation of several longwall ventilation curtains, including: wing curtains: The headgate cut-out'' provides a source of extreme dust concentrations for shearer operators. A wing curtain in the headgate, which shields the headgate drum from the ventilation airstream as the drum cuts out, can reduce the operator's dust exposures during the cutout by 50 to 60%; Gob curtains: a significant amount of ventilating air can be lost to the gob in the headgate area. A gob curtain between the first shield and the chain pillar rib can block much of the leakage and increase the volume of air supplied to the face by approximately 10%; walkway curtains: curtains in the walkway, perpendicular to the airflow, were evaluated for their potential to reduce the migration of dusty face air into the walkway. Unfortunately they proved ineffective; and Extended spillplate: a vertical extension to the existing spillplate was evaluated for its potential to partition the clean and contaminated airflow. Unfortunately, only a full-height spillplate (impractical for actual application), showed appreciable reductions in walkway dust levels. 30 figs., 3 tabs.

  3. Model for Naturally Ventilated Cavities on the Exteriors of Opaque Building Thermal Envelopes

    SciTech Connect (OSTI)

    Griffith, B.

    2006-11-01

    This paper describes a model for naturally ventilated cavities on the exterior of opaque building thermal envelopes that are formed by the presence of a lightweight baffle. The model can be used for building components that are slightly detached from the main envelope (but do not connect to the interior).

  4. Analysis of Buoyancy-Driven Ventilation of Hydrogen from Buildings: Preprint

    SciTech Connect (OSTI)

    Barley, C. D.; Gawlik, K.; Ohi, J.; Hewett, R.

    2007-08-01

    When hydrogen gas is used or stored within a building, as with a hydrogen-powered vehicle parked in a residential garage, any leakage of unignited H2 will mix with indoor air and may form a flammable mixture. One approach to safety engineering relies on buoyancy-driven, passive ventilation of H2 from the building through vents to the outside.

  5. Building America Technology Solutions Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    Broader source: Energy.gov [DOE]

    Building Science Corporation tested the effectiveness of various ventilation systems at two unoccupied, single-family lab homes at the University of Texas at Tyler. The only difference was that House 1 had a vented attic and House 2 had an unvented attic assembly.

  6. Faces of the Recovery Act: Sun Catalytix

    ScienceCinema (OSTI)

    Nocera, Dave

    2013-05-29

    BOSTON- At the Massachusetts Institute of Technology, Dan Nocera talks about Sun Catalytix, the next generation of solar energy, and ARPA-E funding through the Recovery Act. To learn about more ARPA-E projects through the Recovery Act: http://arpa-e.energy.gov/FundedProjects.aspx

  7. Use of 4-Dimensional Computed Tomography-Based Ventilation Imaging to Correlate Lung Dose and Function With Clinical Outcomes

    SciTech Connect (OSTI)

    Vinogradskiy, Yevgeniy, E-mail: yevgeniy.vinogradskiy@ucdenver.edu [Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado (United States)] [Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado (United States); Castillo, Richard [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Castillo, Edward [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States) [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Computational and Applied Mathematics, Rice University, Houston, Texas (United States); Tucker, Susan L. [Departments of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Departments of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Liao, Zhongxing [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Guerrero, Thomas [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States) [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Computational and Applied Mathematics, Rice University, Houston, Texas (United States); Martel, Mary K. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2013-06-01

    Purpose: Four-dimensional computed tomography (4DCT)-based ventilation is an emerging imaging modality that can be used in the thoracic treatment planning process. The clinical benefit of using ventilation images in radiation treatment plans remains to be tested. The purpose of the current work was to test the potential benefit of using ventilation in treatment planning by evaluating whether dose to highly ventilated regions of the lung resulted in increased incidence of clinical toxicity. Methods and Materials: Pretreatment 4DCT data were used to compute pretreatment ventilation images for 96 lung cancer patients. Ventilation images were calculated using 4DCT data, deformable image registration, and a density-change based algorithm. Dosevolume and ventilation-based dose function metrics were computed for each patient. The ability of the dosevolume and ventilation-based dosefunction metrics to predict for severe (grade 3+) radiation pneumonitis was assessed using logistic regression analysis, area under the curve (AUC) metrics, and bootstrap methods. Results: A specific patient example is presented that demonstrates how incorporating ventilation-based functional information can help separate patients with and without toxicity. The logistic regression significance values were all lower for the dosefunction metrics (range P=.093-.250) than for their dosevolume equivalents (range, P=.331-.580). The AUC values were all greater for the dosefunction metrics (range, 0.569-0.620) than for their dosevolume equivalents (range, 0.500-0.544). Bootstrap results revealed an improvement in model fit using dosefunction metrics compared to dosevolume metrics that approached significance (range, P=.118-.155). Conclusions: To our knowledge, this is the first study that attempts to correlate lung dose and 4DCT ventilation-based function to thoracic toxicity after radiation therapy. Although the results were not significant at the .05 level, our data suggests that

  8. Californium Recovery from Palladium Wire

    SciTech Connect (OSTI)

    Burns, Jon D.

    2014-08-01

    The recovery of 252Cf from palladium-252Cf cermet wires was investigated to determine the feasibility of implementing it into the cermet wire production operation at Oak Ridge National Laboratorys Radiochemical Engineering Development Center. The dissolution of Pd wire in 8 M HNO3 and trace amounts of HCl was studied at both ambient and elevated temperatures. These studies showed that it took days to dissolve the wire at ambient temperature and only 2 hours at 60C. Adjusting the ratio of the volume of solvent to the mass of the wire segment showed little change in the kinetics of dissolution, which ranged from 0.176 mL/mg down to 0.019 mL/mg. A successful chromatographic separation of 153Gd, a surrogate for 252Cf, from Pd was demonstrated using AG 50x8 cation exchange resin with a bed volume of 0.5 mL and an internal diameter of 0.8 cm.

  9. Recommended Changes to Specifications for Demand Controlled Ventilation in California's Title 24 Building Energy Efficiency Standards

    SciTech Connect (OSTI)

    Fisk, William J.; Sullivan, Douglas P.; Faulkner, David

    2010-04-08

    In demand-controlled ventilation (DCV), rates of outdoor air ventilation are automatically modulated as occupant density varies. The objective is to keep ventilation rates at or above design specifications and code requirements and also to save energy by avoiding excessive ventilation rates. DCV is most often used in spaces with highly variable and sometime dense occupancy. In almost all cases, carbon dioxide (CO{sub 2}) sensors installed in buildings provide the signal to the ventilation rate control system. People produce and exhale CO{sub 2} as a consequence of their normal metabolic processes; thus, the concentrations of CO{sub 2} inside occupied buildings are higher than the concentrations of CO{sub 2} in the outdoor air. The magnitude of the indoor-outdoor CO{sub 2} concentration difference decreases as the building's ventilation rate per person increases. The difference between the indoor and outdoor CO{sub 2} concentration is also a proxy for the indoor concentrations of other occupant-generated bioeffluents, such as body odors. Reviews of the research literature on DCV indicate a significant potential for energy savings, particularly in buildings or spaces with a high and variable occupancy. Based on modeling, cooling energy savings from applications of DCV are as high as 20%. With support from the California Energy Commission and the U.S. Department of Energy, the Lawrence Berkeley National Laboratory has performed research on the performance of CO{sub 2} sensing technologies and optical people counters for DCV. In addition, modeling was performed to evaluate the potential energy savings and cost effectiveness of using DCV in general office spaces within the range of California climates. The above-described research has implications for the specifications pertaining to DCV in section 121 of the California Title 24 Standard. Consequently, this document suggests possible changes in these specifications based on the research findings. The suggested changes

  10. American Recovery and Reinvestment Act Payments Surge Past $4 Billion

    Broader source: Energy.gov [DOE]

    EM has made more than $4 billion in Recovery Act payments, or 32 percent of the DOE's $12.4 billion in Recovery Act payments. DOE received $35.2 billion from the Recovery Act, and EM's portion of...

  11. Uranium at Y-12: Recovery | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recovery Uranium at Y-12: Recovery Posted: July 22, 2013 - 3:44pm | Y-12 Report | Volume 10, Issue 1 | 2013 Recovery involves reclaiming uranium from numerous sources and ...

  12. Drain-Water Heat Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat & Cool Water Heating Drain-Water Heat Recovery ... Diagram of a drain water heat recovery system. Any hot water ... Drain-water (or greywater) heat recovery systems capture ...

  13. Enterprise Assessments Operational Awareness Record of Observations of the Design and Modification Progress of the Waste Isolation Pilot Plant Underground Interim Ventilation System and Supplemental Ventilation System November 2015

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WIPP-IVS/SVS-2015-11-15 Site: Waste Isolation Pilot Plant (WIPP) Subject: Observations of the design and modification progress of the WIPP Underground Interim Ventilation System and Supplemental Ventilation System Dates of Activity: 11/15/2015 - 11/19/2015 Report Preparer: Jeff Snook Activity Description / Purpose: The Office of Environment, Safety and Health Assessments within the Office of Enterprise Assessments (EA) is reviewing the design, installation, and startup of the WIPP Interim

  14. Final Report Balancing energy conservation and occupant needs in ventilation rate standards for Big Box stores in California. Predicted indoor air quality and energy consumption using a matrix of ventilation scenarios

    SciTech Connect (OSTI)

    Apte, Michael G.; Mendell, Mark J.; Sohn, Michael D.; Dutton, Spencer M.; Berkeley, Pam M.; Spears, Michael

    2011-02-01

    Through mass-balance modeling of various ventilation scenarios that might satisfy the ASHRAE 62.1 Indoor Air Quality (IAQ) Procedure, we estimate indoor concentrations of contaminants of concern (COCs) in California “big box” stores, compare estimates to available thresholds, and for selected scenarios estimate differences in energy consumption. Findings are intended to inform decisions on adding performance-based approaches to ventilation rate (VR) standards for commercial buildings. Using multi-zone mass-balance models and available contaminant source rates, we estimated concentrations of 34 COCs for multiple ventilation scenarios: VRmin (0.04 cfm/ft2 ), VRmax (0.24 cfm/ft2 ), and VRmid (0.14 cfm/ft2 ). We compared COC concentrations with available health, olfactory, and irritant thresholds. We estimated building energy consumption at different VRs using a previously developed EnergyPlus model. VRmax did control all contaminants adequately, but VRmin did not, and VRmid did so only marginally. Air cleaning and local ventilation near strong sources both showed promise. Higher VRs increased indoor concentrations of outdoor air pollutants. Lowering VRs in big box stores in California from VRmax to VRmid would reduce total energy use by an estimated 6.6% and energy costs by 2.5%. Reducing the required VRs in California’s big box stores could reduce energy use and costs, but poses challenges for health and comfort of occupants. Source removal, air cleaning, and local ventilation may be needed at reduced VRs, and even at current recommended VRs. Also, alternative ventilation strategies taking climate and season into account in ventilation schedules may provide greater energy cost savings than constant ventilation rates, while improving IAQ.

  15. Recovery News Flashes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    News Flashes Recovery News Flashes RSS January 29, 2013 "TRU" Success: SRS Recovery Act Prepares to Complete Shipment of More Than 5,000 Cubic Meters of Nuclear Waste to WIPP With the American Recovery and Reinvestment Act funding, Savannah River Site (SRS) continues to safely treat and dispose of radioactive waste created while producing materials for nuclear weapons throughout the Cold War. The DOE site in Aiken, S.C., is safely, steadily, and cost-effectively making progress to

  16. Insurance recovery for manufactured gas plant liabilities

    SciTech Connect (OSTI)

    Koch, G.S.; Wise, K.T.; Hanser, P.

    1997-04-15

    This article addresses insurance and liability issues arising from former manufactured gas plant sites. Three issues are discussed in detail: (1) how to place a value on a potential insurance recovery or damage award, (2) how to maximize recovery through litigation or settlement, and (3) how to mediate coverage disputes to avoid litigation. The first issue, valuing potential recovery, is discussed in the most detail. An approach is outlined which includes organizing policy data, evaluating site facts relevant to coverage, estimating site costs, estimating coverage likelihoods, and assessing the expected value of litigation. Probability and cost estimate data is provided to aid in assessments.

  17. Recovery Progress Has WIPP Poised to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Demonstration Program (SGDP) Recovery Act: Smart Grid Demonstration Program (SGDP) View a Map Showing Energy Storage Projects by State View a Map Showing Energy Storage Projects by State Read more View a Map Showing Smart Grid Energy Demo Projects by State View a Map Showing Smart Grid Energy Demo Projects by State Read more View a map which combines the above two maps View the full list of selected projects The American Recovery and Reinvestment Act of 2009 (Recovery Act) - which

  18. Alternative Fuels Data Center: CNG Fleets Aid in Superstorm Recovery

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    CNG Fleets Aid in Superstorm Recovery to someone by E-mail Share Alternative Fuels Data Center: CNG Fleets Aid in Superstorm Recovery on Facebook Tweet about Alternative Fuels Data Center: CNG Fleets Aid in Superstorm Recovery on Twitter Bookmark Alternative Fuels Data Center: CNG Fleets Aid in Superstorm Recovery on Google Bookmark Alternative Fuels Data Center: CNG Fleets Aid in Superstorm Recovery on Delicious Rank Alternative Fuels Data Center: CNG Fleets Aid in Superstorm Recovery on Digg

  19. Subject: Calculation of Job Creating Through Recovery Act Funding |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Subject: Calculation of Job Creating Through Recovery Act Funding Subject: Calculation of Job Creating Through Recovery Act Funding Subject: Calculation of Job Creating Through Recovery Act Funding (192.64 KB) More Documents & Publications WPN 10-14a: Calculation of Job Creation through DOE Recovery Act Funding - Updated Calculation of Job Creation Through DOE Recovery Act Funding WPN 10-14: Calculation of Job Creation through DOE Recovery Act Funding

  20. Legacy Guidance: The Buy American Provision of the Recovery Act |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Legacy Guidance: The Buy American Provision of the Recovery Act Legacy Guidance: The Buy American Provision of the Recovery Act Projects funded by the American Recovery and Reinvestment Act of 2009 (Recovery Act) were required to follow the Buy American Provision. This guidance only applied to Funding Opportunity Announcements (FOAs) associated with the Recovery Act. If the FOA received another source of funding-not from the Recovery Act-then the Buy America provision

  1. Development of a computer code to predict a ventilation requirement for an underground radioactive waste storage tank

    SciTech Connect (OSTI)

    Lee, Y.J.; Dalpiaz, E.L.

    1997-08-01

    Computer code, WTVFE (Waste Tank Ventilation Flow Evaluation), has been developed to evaluate the ventilation requirement for an underground storage tank for radioactive waste. Heat generated by the radioactive waste and mixing pumps in the tank is removed mainly through the ventilation system. The heat removal process by the ventilation system includes the evaporation of water from the waste and the heat transfer by natural convection from the waste surface. Also, a portion of the heat will be removed through the soil and the air circulating through the gap between the primary and secondary tanks. The heat loss caused by evaporation is modeled based on recent evaporation test results by the Westinghouse Hanford Company using a simulated small scale waste tank. Other heat transfer phenomena are evaluated based on well established conduction and convection heat transfer relationships. 10 refs., 3 tabs.

  2. National Weatherization Assistance Program Impact Evaluation: Impact of Exhaust-Only Ventilation on Radon and Indoor Humidity - A Field Investigation

    SciTech Connect (OSTI)

    Pigg, Scott

    2014-09-01

    The study described here sought to assess the impact of exhaust-only ventilation on indoor radon and humidity in single-family homes that had been treated by the Weatherization Assistance Program (WAP).

  3. Fracture mapping in the ventilation drift at Stripa: procedures and results

    SciTech Connect (OSTI)

    Rouleau, A.; Gale, J.E.; Baleshta, J.

    1981-03-01

    Detail maps of the fracture system in the ventilation drift at the Stripa mine have been prepared. The procedures used in preparing the maps of the floor and walls of the ventilation drift are documented in this report. The fracture data presented in the detailed maps are heavily supplemented by a coded data file. Each discrete fracture, vein, or fracture zone has been identified by a number on the map and this number has been used to link the map to the data file. This approach permits maximum use of the fracture data by other researchers interpreting completed and on-going experiments or as an aid in planning and interpreting future experiments. 9 refs., 7 figs., 2 tabs.

  4. Evaluation of cracking in the 241-AZ tank farm ventilation line at the Hanford Site

    SciTech Connect (OSTI)

    ANANTATMULA, R.P.

    1999-10-20

    In the period from April to October of 1988, a series of welding operations on the outside of the AZ Tank Farm ventilation line piping at the Hanford Site produced unexpected and repeated cracking of the austenitic stainless steel base metal and of a seam weld in the pipe. The ventilation line is fabricated from type 304L stainless steel pipe of 24 inch diameter and 0.25 inch wall thickness. The pipe was wrapped in polyethylene bubble wrap and buried approximately 12 feet below grade. Except for the time period between 1980 and 1987, impressed current cathodic protection has been applied to the pipe since its installation in 1974. The paper describes the history of the cracking of the pipe, the probable cracking mechanisms, and the recommended future action for repair/replacement of the pipe.

  5. Test report of evaluation of primary exhaust ventilation flowmeters for double shell hydrogen watch list tanks

    SciTech Connect (OSTI)

    Willingham, W.E., Westinghouse Hanford

    1996-09-03

    This document reports the results of testing four different flowmeters for use in the primary exhaust ventilation ducts of Double Shell Tanks on the hydrogen watch list that do not already have this capability. This currently includes tanks 241-AW-101,241-AN- 103, 241-AN-104, 241-AN-105 and 241-SY-103. The anticipated airflow velocity in these tanks range from 0.25 m/s(50 ft/min) to 1/78 m/s (350 ft/min). Past experiences at Hanford have forced the evaluation and selection of instruments to be used at the low flow and relatively high humidity conditions found in these tanks. Based on the results of this test, a flow meter has been chosen for installation in the primary exhaust ventilation ducts of the above mentioned waste tanks.

  6. President Obama Announces Over $467 Million in Recovery Act Funding...

    Office of Environmental Management (EM)

    Over 467 Million in Recovery Act Funding for Geothermal and Solar Energy Projects President Obama Announces Over 467 Million in Recovery Act Funding for Geothermal and Solar ...

  7. Successful Sequestration and Enhanced Oil Recovery Project Could...

    Energy Savers [EERE]

    Successful Sequestration and Enhanced Oil Recovery Project Could Mean More Oil and Less CO2 Emissions Successful Sequestration and Enhanced Oil Recovery Project Could Mean More Oil ...

  8. Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing...

    Office of Environmental Management (EM)

    Injection Project Aimed at Enhanced Oil Recovery, Testing Important Geologic CO2 Storage Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing Important Geologic CO2 ...

  9. LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM 02/11/2014...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM 02112014 LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM 02112014 mineral-webinar.pdf (3.45 MB) More Documents & ...

  10. DOE Recovery Field Projects and State Memos | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    DOE Recovery Field Projects and State Memos Click on a state to download the recovery memo for that state. View All Maps Addthis...

  11. Toward Local Failure Local Recovery (LFLR) Resilience Model Using...

    Office of Scientific and Technical Information (OSTI)

    Toward Local Failure Local Recovery (LFLR) Resilience Model Using MPI-ULFM. Citation Details In-Document Search Title: Toward Local Failure Local Recovery (LFLR) Resilience Model ...

  12. Ethanol Oil Recovery Systems EORS | Open Energy Information

    Open Energy Info (EERE)

    Systems EORS Jump to: navigation, search Name: Ethanol Oil Recovery Systems (EORS) Place: Clayton, Georgia Product: Ethanol Oil Recovery Systems (EORS), a green technology...

  13. Recovery Act ? An Interdisciplinary Program for Education and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    tiarravt037anderson2010o.pdf More Documents & Publications Recovery Act An Interdisciplinary Program for Education and Outreach in Transportation Electrification Recovery...

  14. Recovery Act: Clean Coal Power Initiative | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    A report detailling the Clean Coal Power initiative funded under the American Recovery and Renewal Act of 2009. Recovery Act: Clean Coal Power Initiative More Documents &...

  15. Battleground Energy Recovery Project - Presentation by the Houston...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battleground Energy Recovery Project - Presentation by the Houston Advanced Research Center, June 2011 Battleground Energy Recovery Project - Presentation by the Houston Advanced ...

  16. FOIA Frequently Requested Documents: DE-EE0002884 Recovery Act...

    Office of Environmental Management (EM)

    84 Recovery Act - Integrated Algal Biorefinery (IABR) FOIA Frequently Requested Documents: DE-EE0002884 Recovery Act - Integrated Algal Biorefinery (IABR) FOIA Frequently Requested...

  17. Secretary Chu Announces $93 Million from Recovery Act to Support...

    Energy Savers [EERE]

    Secretary Chu Announces 93 Million from Recovery Act to Support Wind Energy Projects Secretary Chu Announces 93 Million from Recovery Act to Support Wind Energy Projects April ...

  18. Integration of a "Passive Water Recovery" MEA into a Portable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a "Passive Water Recovery" MEA into a Portable DMFC Power Supply Integration of a "Passive Water Recovery" MEA into a Portable DMFC Power Supply Download slides from the ...

  19. Planet Resource Recovery Inc formerly American Biodiesel Fuels...

    Open Energy Info (EERE)

    Planet Resource Recovery Inc formerly American Biodiesel Fuels Corp Jump to: navigation, search Name: Planet Resource Recovery, Inc. (formerly American Biodiesel Fuels Corp.)...

  20. Secretary Chu Announces Nearly $800 Million from Recovery Act...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act to Accelerate Biofuels Research and Commercialization Secretary Chu Announces Nearly 800 Million from Recovery Act to Accelerate Biofuels Research and ...