Powered by Deep Web Technologies
Note: This page contains sample records for the topic "ventilation building 773-a" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Building Science - Ventilation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Ventilation Joseph Lstiburek, Ph.D., P.Eng, ASHRAE Fellow www.buildingscience.com Build Tight - Ventilate Right Building Science Corporation Joseph Lstiburek 2 Build Tight - Ventilate Right How Tight? What's Right? Building Science Corporation Joseph Lstiburek 3 Air Barrier Metrics Material 0.02 l/(s-m2) @ 75 Pa Assembly 0.20 l/(s-m2) @ 75 Pa Enclosure 2.00 l/(s-m2) @ 75 Pa 0.35 cfm/ft2 @ 50 Pa 0.25 cfm/ft2 @ 50 Pa 0.15 cfm/ft2 @ 50 Pa Building Science Corporation Joseph Lstiburek 4 Getting rid of big holes 3 ach@50 Getting rid of smaller holes 1.5 ach@50 Getting German 0.6 ach@50 Building Science Corporation Joseph Lstiburek 5 Best As Tight as Possible - with - Balanced Ventilation Energy Recovery Distribution Source Control - Spot exhaust ventilation Filtration

2

Whole Building Ventilation Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Whole-Building Whole-Building Ventilation Systems for Existing Homes © 2011 Steven Winter Associates, Inc. All rights reserved. © 2011 Steven Winter Associates, Inc. All rights reserved. Home Performance / Weatherization  Addressing ventilation is the exception  Max tightness, e.g. BPI's "Building Airflow Standard" (BAS)  References ASHRAE 62-89  BAS = Max [0.35 ACH, 15 CFM/person], CFM50 eq.  If BD tests show natural infiltration below BAS...  Ventilation must be recommended or installed.  SO DON'T AIR SEAL TO MUCH! © 2011 Steven Winter Associates, Inc. All rights reserved. © 2011 Steven Winter Associates, Inc. All rights reserved. Ventilation Requirements Ventilation systems for existing homes that are:

3

Building 773-A, Lab F003 Glovebox Project Radiological Design Summary Report  

SciTech Connect

Engineering Standards present the radiological design criteria and requirements, which must be satisfied for all SRS facility designs. The radiological design criteria and requirements specified in the standard are based on the Code of Federal Regulations, DOE Orders, Site manuals, other applicable standards, and various DOE guides and handbooks. This report contains top-level requirements for the various areas of radiological protection for workers. For the purposes of demonstrating compliance with these requirements, the designer must examine the requirement for the design and either incorporate or provide a technical justification as to why the requirement is not incorporated. This document reports a radiological design review for the STREAK lab glovebox upgrades of inlet ventilation, additional mechanical and electrical services, new glovebox instrumentation and alarms. This report demonstrates that the gloveboxes meet the radiological design requirements of Engineering Standards.

Gaul, W.C.

2003-11-13T23:59:59.000Z

4

Ventilation in Multifamily Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, 2011 , 2011 Ventilation in Multifamily Buildings Welcome to the Webinar! We will start at 2:00 PM Eastern Time Be sure that you are also dialed into the telephone conference call: Dial-in number: 888-324-9601; Pass code: 5551971 Download the presentation at: www.buildingamerica.gov/meetings.html Building Technologies Program eere.energy.gov Building America: Introduction November 1, 2011 Cheryn Engebrecht Cheryn.engebrecht@nrel.gov Building Technologies Program Building Technologies Program eere.energy.gov * Reduce energy use in new and existing residential buildings * Promote building science and systems engineering / integration approach * "Do no harm": Ensure safety, health and durability are maintained or improved * Accelerate adoption of high performance technologies

5

VENTILATION (HVAC) FAILURE (BUILDING WIDE)  

E-Print Network (OSTI)

VENTILATION (HVAC) FAILURE (BUILDING WIDE) A failure or shutdown of the ventilation system will be signaled by cessation of the audible background "rumbling" sound of the building's HVAC system. As building durations. NOTE: Due to unpredictable pressure differentials in and around the labs during an HVAC failure

Strynadka, Natalie

6

Ventilation problems in heritage buildings  

Science Conference Proceedings (OSTI)

The control of indoor conditions in heritage buildings, such as castles or museums, is of paramount importance for the proper preservation of the artworks kept in. As heritage buildings are often not equipped with HVAC systems, it is necessary to provide ... Keywords: CO2 concentration, IAQ, heritage buildings, ventilation

S. Costanzo; A. Cusumano; C. Giaconia; S. Mazzacane

2007-05-01T23:59:59.000Z

7

Preoperational test report, vent building ventilation system  

Science Conference Proceedings (OSTI)

This represents a preoperational test report for Vent Building Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides Heating, Ventilation, and Air Conditioning (HVAC) for the W-030 Ventilation Building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

Clifton, F.T.

1997-11-04T23:59:59.000Z

8

Ventilation measurements in large office buildings  

SciTech Connect

Ventilation rates were measured in nine office buildings using an automated tracer gas measuring system. The buildings range in size from a two-story federal building with a floor area of about 20,000 ft/sup 2/ (1900 m/sup 2/) to a 26-story office building with a floor area of 700,000 ft/sup 2/ (65,000 m/sup 2/). The ventilation rates were measured for about 100 hours in each building over a range of weather conditions. The results are presented and examined for variation with time and weather. In most cases, the ventilation rate of a building is similar for hot and cold weather. In mild weather, outdoor air is used to cool the building and the ventilation rate increases. In the buildings where infiltration is a significant portion of the total ventilation rate, this total rate exhibits a dependence on weather conditions. The measured ventilation rates are discussed in relation to the outdoor air intake strategy in each building. The ventilation rates are also compared to the design rates in the buildings and ventilation rates based on the ASHRAE Standard 62-81. Some of the buildings are at times operated at lower ventilation rates than recommended in Standard 62-81.

Persily, A.K.; Grot, R.A.

1985-01-01T23:59:59.000Z

9

AEDG Implementation Recommendations: Ventilation | Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Ventilation Ventilation The Advanced Energy Design Guide (AEDG) for Small Office Buildings, 30% series, seeks to achieve 30% savings over ASHRAE Standard 90.1-1999. This guide focuses on improvements to small office buildings, less than 20,000ft2. The recommendations in this article are adapted from the implementation section of the guide and focus on ventilation air; exhaust air; control strategies; carbon dioxide sensors; economizers. Publication Date: Wednesday, May 13, 2009 air_ventilation.pdf Document Details Affiliation: DOE BECP Focus: Compliance Building Type: Commercial Code Referenced: ASHRAE Standard 90.1-1999 Document type: AEDG Implementation Recommendations Target Audience: Architect/Designer Builder Contractor Engineer State: All States Contacts Web Site Policies

10

WASTE HANDLING BUILDING VENTILATION SYSTEM DESCRIPTION DOCUMENT  

SciTech Connect

The Waste Handling Building Ventilation System provides heating, ventilation, and air conditioning (HVAC) for the contaminated, potentially contaminated, and uncontaminated areas of the Monitored Geologic Repository's (MGR) Waste Handling Building (WHB). In the uncontaminated areas, the non-confinement area ventilation system maintains the proper environmental conditions for equipment operation and personnel comfort. In the contaminated and potentially contaminated areas, in addition to maintaining the proper environmental conditions for equipment operation and personnel comfort, the contamination confinement area ventilation system directs potentially contaminated air away from personnel in the WHB and confines the contamination within high-efficiency particulate air (HEPA) filtration units. The contamination confinement areas ventilation system creates airflow paths and pressure zones to minimize the potential for spreading contamination within the building. The contamination confinement ventilation system also protects the environment and the public by limiting airborne releases of radioactive or other hazardous contaminants from the WHB. The Waste Handling Building Ventilation System is designed to perform its safety functions under accident conditions and other Design Basis Events (DBEs) (such as earthquakes, tornadoes, fires, and loss of the primary electric power). Additional system design features (such as compartmentalization with independent subsystems) limit the potential for cross-contamination within the WHB. The system provides status of important system parameters and equipment operation, and provides audible and/or visual indication of off-normal conditions and equipment failures. The Waste Handling Building Ventilation System confines the radioactive and hazardous material within the building such that the release rates comply with regulatory limits. The system design, operations, and maintenance activities incorporate ALARA (as low as is reasonably achievable) principles to maintain personnel radiation doses to all occupational workers below regulatory limits and as low as is reasonably achievable. The Waste Handling Building Ventilation System interfaces with the Waste Handling Building System by being located within the WHB and by maintaining specific pressures, temperatures, and humidity within the building. The system also depends on the WHB for water supply. The system interfaces with the Site Radiological Monitoring System for continuous monitoring of the exhaust air; the Waste Handling Building Fire Protection System for detection of fire and smoke; the Waste Handling Building Electrical System for normal, emergency, and standby power; and the Monitored Geologic Repository Operations Monitoring and Control System for monitoring and control of the system.

P.A. Kumar

2000-06-21T23:59:59.000Z

11

WASTE TREATMENT BUILDING VENTILATION SYSTEM DESCRIPTION DOCUMENT  

SciTech Connect

The Waste Treatment Building Ventilation System provides heating, ventilation, and air conditioning (HVAC) for the contaminated, potentially contaminated, and uncontaminated areas of the Monitored Geologic Repository's (MGR) Waste Treatment Building (WTB). In the uncontaminated areas, the non-confinement area ventilation system maintains the proper environmental conditions for equipment operation and personnel comfort. In the contaminated and potentially contaminated areas, in addition to maintaining the proper environmental conditions for personnel comfort and equipment operation, the contamination confinement area ventilation system directs potentially contaminated air away from personnel in the WTB and confines the contamination within high-efficiency particulate air (HEPA) filtration units. The contamination confinement area ventilation system creates airflow paths and pressure zones to minimize the potential for spreading contamination with the building. The contamination confinement ventilation system also protects the environment and the public by limiting airborne releases of radioactive or other hazardous contaminants from the WTB. The Waste Treatment Building Ventilation System confines the radioactive and hazardous material within the building such that the release rates comply with regulatory limits, The system design, operations, and maintenance activities incorporate ALARA (as low as is reasonably achievable) principles to maintain personnel radiation doses to all occupational workers below regulatory limits and as low as is reasonably achievable. The system provides status of important system parameters and equipment operation, and provides audible and/or visual indication of off-normal conditions and equipment failures. The Waste Treatment Building Ventilation System interfaces with the Waste Treatment Building System by being located in the WTB, and by maintaining specific pressure, temperature, and humidity environments within the building. The system also depends on the WTB for normal electric power supply and the required supply of water for heating, cooling, and humidification. Interface with the Waste Treatment Building System includes the WTB fire protection subsystem for detection of fire and smoke. The Waste Treatment Building Ventilation System interfaces with the Site Radiological Monitoring System for continuous monitoring of the exhaust air and key areas within the WTB, the Monitored Geologic Repository Operations Monitoring and Control System for monitoring and control of system operations, and the Site Generated Radiological Waste Handling System and Site Generated Hazardous, Non-Hazardous & Sanitary Waste Disposal System for routing of pretreated toxic, corrosive, and radiologically contaminated effluent from process equipment to the HEPA filter exhaust ductwork and air-cleaning unit.

P.A. Kumar

2000-06-22T23:59:59.000Z

12

Hysteresis effects in hybrid building ventilation  

E-Print Network (OSTI)

radiation, external wind forcing and internal heat gains e.g. due to electrical equipment or building chloride, etc. Developing world: By-products of cooking or heating fires Ghiaus & Allard (2005) · Exposure-breeze, displacement ventilation dissipate internal heat gains e.g. from kitchen stove · Wintertime: Spaces filled

Flynn, Morris R.

13

Quantitative relationship of sick building syndrome symptoms with ventilation rates  

E-Print Network (OSTI)

at two outdoor air supply rates." Indoor Air 14 Suppl 8: 7-Miettinen (1995). "Ventilation rate in office buildings andAssociation of ventilation rates and CO 2 concentrations

Fisk, William J.

2009-01-01T23:59:59.000Z

14

Natural ventilation possibilities for buildings in the United States  

E-Print Network (OSTI)

In the United States, many of the commercial buildings built in the last few decades are completely mechanically air conditioned, without the capability to use natural ventilation. This habit has occurred in building designs ...

Dean, Brian N. (Brian Nathan), 1974-

2001-01-01T23:59:59.000Z

15

Mixed-Mode Ventilation and Building Retrofits  

E-Print Network (OSTI)

November 1994, ENTPE, Lyon. [CIBSE] Chartered Institution ofMixed-mode ventilation. CIBSE Applications Manual AM13.incorporated by the design. CIBSE, 2000 Mixed-mode

Brager, Gail; Ackerly, Katie

2010-01-01T23:59:59.000Z

16

Low Energy Buildings: CFD Techniques for Natural Ventilation and Thermal  

NLE Websites -- All DOE Office Websites (Extended Search)

Low Energy Buildings: CFD Techniques for Natural Ventilation and Thermal Low Energy Buildings: CFD Techniques for Natural Ventilation and Thermal Comfort Prediction Speaker(s): Malcolm Cook Date: February 14, 2013 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Michael Wetter Malcolm's presentation will cover both his research and consultancy activities. This will cover the work he has undertaken during his time spent working with architects on low energy building design, with a particular focus on natural ventilation and passive cooling strategies, and the role computer simulation can play in this design process. Malcolm will talk about the simulation techniques employed, as well as the innovative passive design principles that have led to some of the UK's most energy efficient buildings. In addition to UK building projects, the talk will

17

Building Air Quality & Ventilation Models: Review - Evaluation - Proposals  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Air Quality & Ventilation Models: Review - Evaluation - Proposals Building Air Quality & Ventilation Models: Review - Evaluation - Proposals Speaker(s): James Axley Date: March 12, 1999 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Richard Sextro Developments in mathematical models for building air quality and ventilation analysis have changed the way we idealize buildings for purposes of analysis, the way we form system equations to effect the analysis, and the way we solve these equations to realize the analysis. While much has been achieved more is possible. This presentation will review the current state of the art - the building idealizations used, the system equations formed, and the solution methods applied - critically evaluate the completeness, complexity and utility of the most advanced models, and present proposals for future development

18

Retrofit Ventilation Strategies in Multifamily Buildings Webinar...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Slides from the Building America webinar on November 30, 2011. webinarhybridinsulation20111130.pdf...

19

New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy  

SciTech Connect

Approximately ten percent of the energy consumed in U.S. commercial buildings is used by HVAC systems to condition outdoor ventilation air. Reducing ventilation rates would be a simple and broadly-applicable energy retrofit option, if practical counter measures were available that maintained acceptable concentrations of indoor-generated air pollutants. The two general categories of countermeasures are: 1) indoor pollutant source control, and 2) air cleaning. Although pollutant source control should be used to the degree possible, source control is complicated by the large number and changing nature of indoor pollutant sources. Particle air cleaning is already routinely applied in commercial buildings. Previous calculations indicate that particle filtration consumes only 10percent to 25percent of the energy that would otherwise be required to achieve an equivalent amount of particle removal with ventilation. If cost-effective air cleaning technologies for volatile organic compounds (VOCs) were also available, outdoor air ventilation rates could be reduced substantially and broadly in the commercial building stock to save energy. The research carried out in this project focuses on developing novel VOC air cleaning technologies needed to enable energy-saving reductions in ventilation rates. The minimum required VOC removal efficiency to counteract a 50percent reduction in ventilation rate for air cleaning systems installed in the HVAC supply airstream is modest (generally 20percent or less).

Sidheswaran, Meera; Destaillats, Hugo; Sullivan, Douglas P.; Fisk, William J.

2010-10-27T23:59:59.000Z

20

BUILDING VENTILATION AND INDOOR AIR QUALITY  

E-Print Network (OSTI)

foam insulation, and radon from building gas context of withbuilding envelope to reduce exfiltration and infiltration, improving insulation,

Hollowell, C.D.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation building 773-a" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Utilizing Passive Ventilation to Complement HVAC Systems in Enclosed Buildings  

E-Print Network (OSTI)

Utilizing Passive Ventilation to Complement HVAC Systems in Enclosed Buildings Tom Rogg REU Student to assist HVAC has the potential to significantly reduce life cycle cost and energy consumption and electrical system that will tie thermostats to controlled valves in the actual HVAC system. Based on results

Mountziaris, T. J.

22

Retrofit Ventilation Strategies in Multifamily Buildings Webinar  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Foundation Retrofits Foundation Retrofits Building America Webinar November 30, 2011 Kohta Ueno Hybrid Foundation Retrofits 2 Background Hybrid Foundation Retrofits 3 Background  Space conditioning energy use for basements  Known moisture-safe solutions (previous research)  Persistent bulk water (leakage) issues  Retrofits of existing foundations  Especially uneven wall (rubble stone) foundations  "Hybrid" insulation and bulk water control assemblies Hybrid Foundation Retrofits 4 Foundations w. bulk water issues  Severe and rapid damage to interior insulation and finishes due to bulk water intrusion Hybrid Foundation Retrofits 5 Insulation Location Choices * Retrofits: interior insulation is often the only

23

Methodology for the evaluation of natural ventilation in buildings using a reduced-scale air model  

E-Print Network (OSTI)

Commercial office buildings predominantly are designed to be ventilated and cooled using mechanical systems. In temperate climates, passive ventilation and cooling techniques can be utilized to reduce energy consumption ...

Walker, Christine E. (Christine Elaine)

2006-01-01T23:59:59.000Z

24

Beyond blue and red arrows : optimizing natural ventilation in large buildings  

E-Print Network (OSTI)

Our growing understanding of technology and environment has expanded the complexities of producing large naturally ventilated buildings. While it may be argued that designing for natural ventilation is a straightforward, ...

Meguro, Wendy (Wendy Kei)

2005-01-01T23:59:59.000Z

25

An Overview of Residential Ventilation Activities in the Building America Program (Phase I)  

DOE Green Energy (OSTI)

This report provides an overview of issues involved in residential ventilation; provides an overview of the various ventilation strategies being evaluated by the five teams, or consortia, currently involved in the Building America Program; and identifies unresolved technical issues.

Barley, D.

2001-05-21T23:59:59.000Z

26

Evaluating the performance of natural ventilation in buildings through simulation and on-site monitoring  

E-Print Network (OSTI)

Natural ventilation in buildings is capable of reducing energy consumption while maintaining a comfortable indoor at the same time. It is important that natural ventilation is taken into consideration in the early design ...

Cheng, Haofan

2013-01-01T23:59:59.000Z

27

Ventilation Relevant Contaminants of Concern in Commercial Buildings Screening  

NLE Websites -- All DOE Office Websites (Extended Search)

Ventilation Relevant Contaminants of Ventilation Relevant Contaminants of Concern in Commercial Buildings Screening Process and Results Srinandini Parthasarathy, Thomas E. McKone, Michael G. Apte Environmental Energy Technologies Division Indoor Environment Department Lawrence Berkeley National Laboratory Berkeley, CA 94720 April 29, 2111 Prepared for the California Energy Commission, Public Interest Energy Research Program, Energy Related Environmental Research Program Legal Notice The Lawrence Berkeley National Laboratory is a national laboratory of the DOE managed by the University of California for the U.S. Department of Energy under Contract Number DE-AC02- 05CH11231. This report was prepared as an account of work sponsored by the Sponsor and pursuant to an M&O Contract with the United States Department of Energy (DOE). Neither the

28

Quantitative relationship of sick building syndrome symptoms with ventilation rates  

E-Print Network (OSTI)

32%), and as ventilation rate increases from 10 to 25 L/s-0.85) as ventilation rate increases from 10 to 25 L/s-29% as ventilation rate increases from 10 to 25 L/s-person.

Fisk, William J.

2009-01-01T23:59:59.000Z

29

Preconditioning Outside Air: Cooling Loads from Building Ventilation  

E-Print Network (OSTI)

HVAC equipment manufacturers, specifiers and end users interacting in the marketplace today are only beginning to address the series of issues promulgated by the increased outside air requirements in ASHRAE Standard 62- 1989, "Ventilation for Acceptable Indoor Air Quality", that has cascaded into building codes over the early to mid 1990's. There has been a twofold to fourfold increase in outside air requirements for many commercial building applications, compared to the 1981 version of the standard. To mitigate or nullify these additional weather loads, outdoor air preconditioning technologies are being promoted in combination with conventional HVAC operations downstream as a means to deliver the required fresh air and control humidity indoors. Preconditioning is the term applied for taking outside air to the indoor air setpoint (dry bulb temperature and relative humidity). The large humidity loads from outside air can now be readily recognized and quantified at cooling design point conditions using the extreme humidity ratios/dew points presented in the ASHRAE Handbook of Fundamentals Chapter 26 "Climatic Design Information". This paper presents an annual index called the Ventilation Load Index (VLI), recently developed by the Gas Research Institute (GRI) that measures the magnitude of latent (and sensible) loads for preconditioning outside air to indoor space conditions over the come of an entire year. The VLI has units of ton-hrs/scfm of outside air. The loads are generated using new weather data binning software called ~BinMaker, also from GRI, that organizes the 239 city, 8760 hour by hour, TMY2 weather data into user selected bidtables. The VLI provides a simple methodology for accessing the cooling load impact of increased ventilation air volumes and a potential basis for defining a "humid" climate location.

Kosar, D.

1998-01-01T23:59:59.000Z

30

Analysis of Energy Recovery Ventilator Savings for Texas Buildings  

E-Print Network (OSTI)

This analysis was conducted to identify the energy cost savings from retrofitting Texas buildings with air-to-air ERV (Energy Recovery Ventilator) systems. This analysis applied ERV and psychrometric equations in a bin-type procedure to determine the energy and costs required to condition outside air to return-air conditions. This analysis does not consider interactions with the air-handling system; therefore the effects of economizers, reheat schemes, variable flow rates and other adaptive components were not considered. This analysis demonstrates that ERV cost-effectiveness is largely dependent upon the building location in Texas (i.e., climate conditions) and outside air fraction: For a typical laboratory building that requires 100% outside air, an ERV could save roughly $1.00 to $1.50 per cubic foot per minute (CFM) of outside air during a one year period. For a typical office building that only requires 10% outside air, an ERV could save up to $1.00 per CFM of outside air over the period of one year.

Christman, K. D.; Haberl, J. S.; Claridge, D. E.

2009-11-01T23:59:59.000Z

31

Energy and air quality implications of passive stack ventilation in residential buildings  

SciTech Connect

Ventilation requires energy to transport and condition the incoming air. The energy consumption for ventilation in residential buildings depends on the ventilation rate required to maintain an acceptable indoor air quality. Historically, U.S. residential buildings relied on natural infiltration to provide sufficient ventilation, but as homes get tighter, designed ventilation systems are more frequently required particularly for new energy efficient homes and retrofitted homes. ASHRAE Standard 62.2 is used to specify the minimum ventilation rate required in residential buildings and compliance is normally achieved with fully mechanical whole-house systems; however, alternative methods may be used to provide the required ventilation when their air quality equivalency has been proven. One appealing method is the use of passive stack ventilation systems. They have been used for centuries to ventilate buildings and are often used in ventilation regulations in other countries. Passive stacks are appealing because they require no fans or electrical supply (which could lead to lower cost) and do not require maintenance (thus being more robust and reliable). The downside to passive stacks is that there is little control of ventilation air flow rates because they rely on stack and wind effects that depend on local time-varying weather. In this study we looked at how passive stacks might be used in different California climates and investigated control methods that can be used to optimize indoor air quality and energy use. The results showed that passive stacks can be used to provide acceptable indoor air quality per ASHRAE 62.2 with the potential to save energy provided that they are sized appropriately and flow controllers are used to limit over-ventilation.

Mortensen, Dorthe Kragsig; Walker, Iain S.; Sherman, Max

2011-01-01T23:59:59.000Z

32

Building America Top Innovations Hall of Fame Profile … Low-Cost Ventilation in Production Housing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

simple, cost-effective techniques for providing fresh air throughout the home, including exhaust-only and central fan-integrated supply ventilation. Building America has refined simple whole-house ventilation systems that cost less than $350 to install. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.3 Assured Health, Safety, and Durability Low-Cost Ventilation in Production Housing As high-performance homes get more air-tight and better insulated, attention to good indoor air quality becomes essential. Building America has effectively guided the nation's home builders to embrace whole-house ventilation by developing low-cost options that adapt well to their production processes. When the U.S. Department of Energy's Building America research teams began

33

Analysis of Buoyancy-Driven Ventilation of Hydrogen from Buildings (Presentation)  

DOE Green Energy (OSTI)

The scope of work for this project includes safe building design, vehicle leak in residential garage, continual slow leak, passive, buoyancy-driven ventilation (versus mechanical), and steady-state concentration of hydrogen versus vent size.

Barley, C. D.; Gawlik, K.; Ohi, J.; Hewett, R.

2007-09-11T23:59:59.000Z

34

Recommendations for the analysis and design of naturally ventilated buildings in urban areas  

E-Print Network (OSTI)

The motivation behind this work was to obtain a better understanding of how a building's natural ventilation potential is affected by the complexities introduced by the urban environment. To this end, we have derived in ...

Truong, Phan Hue

2012-01-01T23:59:59.000Z

35

Energy Efficient Ventilation for Maintaining Indoor Air Quality in Large Buildings  

E-Print Network (OSTI)

this paper was presented at the 3rd International Conference on Cold Climate Heating, Ventilating and Air-conditioning, Sapporo, Japan, November 2000 C. Y. Shaw Rsum Institute for Research in Construction, National Research Council Canada Achieving good indoor air quality in large residential and commercial buildings continues to be a top priority for owners, designers, building managers and occupants alike. Large buildings present a greater challenge in this regard than do smaller buildings and houses. The challenge is greater today because there are many new materials, furnishings, products and processes used in these buildings that are potential sources of air contaminants. There are three strategies for achieving acceptable indoor air quality: ventilation (dilution), source control and air cleaning/filtration. Of the three, the most frequently used strategy, and in most cases the only one available to building operators, is ventilation. Ventilation is the process of supplying outdoor air to an enclosed space and removing stale air from this space. It can control the indoor air quality by both diluting the indoor air with less contaminated outdoor air and removing the indoor contaminants with the exhaust air. Ventilation costs money because the outdoor air needs to be heated in winter and cooled in summer. To conserve energy, care must be taken to maximize the efficiency of the ventilation system. In this regard, a number of factors come into play

C. Y. Shaw; C. Y. Shaw Rsum

2000-01-01T23:59:59.000Z

36

ACT{sup 2} project report: Ventilation and air tightness measurement of the Sunset Building  

Science Conference Proceedings (OSTI)

This report presents the results of ventilation and air tightness measurements made on the test section of the Sunset Building as part of the ACT{sup 2} project. Real-time measurements were made over a two-week period in July 1991 to determine the building`s performance; most of the results derive from intensive measurements made during (unoccupied) weekend periods. The ventilation rate of the entire building was measured to be about 2 air changes per hour of outdoor air which exceeds ASHRAE Standard 62-1989 design requirements by over a factor of two. Ventilation in all specific locations was found to be adequate, except for conference rooms -- some of which were significantly under ventilated. Opportunities exist for energy savings with better control of the ventilation. Ventilation efficiency was measured for the test section and selected sub-sections as well. In order to account for interzonal and intrazonal interactions, axillary information was collected and used to adjust the data. The implications of this data may be important for future interpretation of the building`s performance.

Sherman, M.; Dickerhoff, D.

1991-10-01T23:59:59.000Z

37

ACT sup 2 project report: Ventilation and air tightness measurement of the Sunset Building  

Science Conference Proceedings (OSTI)

This report presents the results of ventilation and air tightness measurements made on the test section of the Sunset Building as part of the ACT{sup 2} project. Real-time measurements were made over a two-week period in July 1991 to determine the building's performance; most of the results derive from intensive measurements made during (unoccupied) weekend periods. The ventilation rate of the entire building was measured to be about 2 air changes per hour of outdoor air which exceeds ASHRAE Standard 62-1989 design requirements by over a factor of two. Ventilation in all specific locations was found to be adequate, except for conference rooms -- some of which were significantly under ventilated. Opportunities exist for energy savings with better control of the ventilation. Ventilation efficiency was measured for the test section and selected sub-sections as well. In order to account for interzonal and intrazonal interactions, axillary information was collected and used to adjust the data. The implications of this data may be important for future interpretation of the building's performance.

Sherman, M.; Dickerhoff, D.

1991-10-01T23:59:59.000Z

38

An overview of the TA-55, Building PF-4 ventilation system  

Science Conference Proceedings (OSTI)

An overview of the TA-55, Building PF-4 ventilation system is provided in the following sections. Included are descriptions of the zone configurations, equipment-performance criteria, ventilation support systems, and the ventilation-system evaluation criteria. Section 4.2.1.1 provides a brief discussion of the ventilation system function. Section 4.2.1.2 provides details on the overall system configuration. Details of system interfaces and support systems are provided in Section 4.2.1.3. Section 4.2.1.4 describes instrumentation and control needed to operate the ventilation system. Finally, Sections 4.2.1.5 and 4.2.1.6 describe system surveillance/maintenance and Technical Safety Requirements (TSR) Limitations, respectively. Note that the numerical parameters included in this description are considered nominal; set points and other specifications actually fall within operational bands.

NONE

1994-02-22T23:59:59.000Z

39

Building America Top Innovations Hall of Fame Profile … Outside Air Ventilation Controller  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

partner Davis Energy partner Davis Energy Group worked with Monley Cronin Construction to build 100 energy-efficient homes in Woodland, CA, with night- cooling ventilation systems. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.3 Assured Health, Safety, and Durability Outside Air Ventilation Controller Building America researchers developed technologies to harness the natural day-night temperature swings in the U.S. Southwest to cut cooling energy peak demand with no compromise in comfort. Building America research has shown that, in dry climates, the use of ventilation cooling can significantly reduce, delay, or completely eliminate air conditioner operation resulting in both energy savings and reduction of peak demand

40

Analysis of Buoyancy-Driven Ventilation of Hydrogen from Buildings: Preprint  

DOE Green Energy (OSTI)

When hydrogen gas is used or stored within a building, as with a hydrogen-powered vehicle parked in a residential garage, any leakage of unignited H2 will mix with indoor air and may form a flammable mixture. One approach to safety engineering relies on buoyancy-driven, passive ventilation of H2 from the building through vents to the outside.

Barley, C. D.; Gawlik, K.; Ohi, J.; Hewett, R.

2007-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation building 773-a" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Model for Naturally Ventilated Cavities on the Exteriors of Opaque Building Thermal Envelopes  

SciTech Connect

This paper describes a model for naturally ventilated cavities on the exterior of opaque building thermal envelopes that are formed by the presence of a lightweight baffle. The model can be used for building components that are slightly detached from the main envelope (but do not connect to the interior).

Griffith, B.

2006-11-01T23:59:59.000Z

42

Computer Simulation of Cooling Effect of Wind Tower on Passively Ventilated Building  

E-Print Network (OSTI)

Traditional buildings are cooled and ventilated by mechanically induced drafts. Natural ventilation aspires to cool and ventilate a building by natural means, such as cross ventilation or wind towers, without mechanical equipment. A simple computer program was developed to simulate airflow through a wind tower based on tower dimensions and air temperature. The program was compared to experimental results with reasonable agreement. Parametric analysis indicates that interior air temperature approaches outdoor air temperature asymptotically as tower height and cross-sectional area are increased, and that it may be more cost effective to increase the tower?s height than its cross sectional area. The program was then used to simulate hour-by-hour indoor air temperatures of an occupied auditorium in Dayton, OH. The results indicate that a large wind tower was able to keep the temperature of an occupied auditorium at a comfortable level year round.

Seryak, J.; Kissock, J. K.

2002-01-01T23:59:59.000Z

43

Assessment of Pollutant Spread from a Building Basement with three Ventilation Systems  

E-Print Network (OSTI)

Ventilation aims at providing a sufficient air renewal for ensuring a good indoor air quality (IAQ), yet building energy policies are leading to adapting various ventilation strategies minimising energy losses through air renewal. A recent IAQ evaluation campaign in French dwellings shows important pollution of living spaces by VOCs such as formaldehyde, acetaldehyde or hexanal, particularly in buildings equipped with a garage. Besides, radon emission from soil is a subject of concern in many countries. Several studies are done to understand its release mode and deal with the spread of this carcinogen gas. This paper aims to experimentally assess a contaminant spread from a house basement using mechanical exhaust and balanced ventilation systems, and natural ventilation.

Koffi, Juslin

2010-01-01T23:59:59.000Z

44

Project title: Natural ventilation, solar heating and integrated low-energy building design  

E-Print Network (OSTI)

of integrated low-energy building design. In Cambridge, research was conducted at the BP Institute - which was set up in 1999 with an endowment from BP to research some of the fundamental scientific challenges that the oil industry encounters. In the CMI... in building design. Summary of Intended Outcomes: The objectives of the project will be to develop designs and technologies to: reduce energy costs of maintaining a comfortable environment with buildings through use of solar power, natural ventilation...

2009-07-10T23:59:59.000Z

45

Guide to Energy-Efficient Ventilation Methods for Acceptable Levels of Indoor Air Quality Levels in Commercial Buildings  

Science Conference Proceedings (OSTI)

Indoor air quality is important in commercial buildings to maintain employee health, well-being, and productivity and avoid employer liability. The most common method to improve indoor air quality in commercial buildings is to use outside ventilation air for dilution of the inside air. Unfortunately, the conditioning of outdoor ventilation air may result in increased energy use for cooling, dehumidification, and heating; and humid outdoor ventilation air also can degrade indoor air quality. Some commerci...

2007-12-17T23:59:59.000Z

46

Low Energy Ventilation and Cooling of Non-Domestic Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

of Contact: Paul Mathew Short's Cambridge University-based research group develops passive and hybrid low-energy design strategies for non-domestic buildings in different...

47

CO2 MONITORING FOR DEMAND CONTROLLED VENTILATION IN COMMERCIAL BUILDINGS  

E-Print Network (OSTI)

26 Errors from energy management systems versus sensorby building energy management systems were generally verysignals to the energy management systems. Laboratory-based

Fisk, William J.

2010-01-01T23:59:59.000Z

48

Ventilation Systems  

Energy.gov (U.S. Department of Energy (DOE))

Ventilation is the process of moving air into and out of an interior space by natural or mechanical means. Ventilation is necessary for the health and comfort of occupants of all buildings....

49

Building Design and Operation for Improving Thermal Comfort in Naturally Ventilated Buildings in a Hot-Humid Climate  

E-Print Network (OSTI)

The goal of this research was to develop new techniques for designing and operating unconditioned buildings in a hot-humid climate that could contribute to an improvement of thermal performance and comfort condition. The recommendations proposed in this research will also be useful for facility managers on how to maintain unconditioned buildings in this climate. This study investigated two unconditioned Thai Buddhist temples located in the urban area of Bangkok, Thailand. One is a 100-year-old, high-mass temple. The other is a 5-year-old, lower-mass temple. The indoor measurements revealed that the thermal condition inside both temples exceed the ASHRAE-recommended comfort zone. Surprisingly, the older temple maintained a more comfortable indoor condition due to its thermal inertia, shading, and earth contacts. A baseline thermal and airflow model of the old temple was established using a calibrated computer simulation method. To accomplish this, HEATX, a 3-D Computational Fluid Dynamics (CFD) code, was coupled with the DOE-2 thermal simulation program. HEATX was used to calculate the airflow rate and the surface convection coefficients for DOE-2, and DOE-2 was used to provide physical input variables to form the boundary conditions for HEATX. In this way calibrated DOE-2/CFD simulation model was accomplished, and the baseline model was obtained. To investigate an improved design, four design options were studied: 1) a reflective or low-solar absorption roof, 2) R-30 ceiling insulation, 3) shading devices, and 4) attic ventilation. Each was operated using three modes of ventilation. The low-absorption roof and the R-30 ceiling insulation options were found to be the most effective options, whereas the shading devices and attic ventilation were less effective options, regardless of which ventilation mode was applied. All design options performed much better when nighttime-only ventilation was used. Based on this analysis, two prototype temples was proposed (i.e., low-mass and high-mass temples). From the simulation results of the two prototypes, design and operation guidelines are proposed, which consist of: 1) increased wall and ceiling insulation, 2) white-colored, low-absorption roof, 3) slab-on-ground floor, 4) shading devices, 5) nighttime-only ventilation, 6) attic ventilation, and 7) wider openings to increase the natural ventilation air flow windows, wing walls, and vertical fins.

Sreshthaputra, Atch

2007-11-29T23:59:59.000Z

50

Indoor environmental quality and ventilation in U.S. office buildings: A view of current issues  

Science Conference Proceedings (OSTI)

Much of the current focus on indoor environmental quality and ventilation in US office buildings is a response to sick building syndrome and occupant complaints about building-related health symptoms, poor indoor air quality, and thermal discomfort. The authors know that serious ``sick-building`` problems occur in a significant number of US office buildings and that a significant proportion of the occupants in many normal (non-sick) buildings report building-related health symptoms. Concerns about the health effects of environmental tobacco smoke have also focused attention on the indoor environment. The major responses of industry and governments, underway at the present time, are to restrict smoking in offices, to attempt to reduce the emissions of indoor pollutants, and to improve the operation of heating, ventilating and air conditioning (HVAC) systems. Better air filtration, improved HVAC commissioning and maintenance, and increased provisions for individual control of HVAC are some of the improvements in HVAC that are currently being, evaluated. In the future, the potential for improved productivity and reduced airborne transmission of infectious disease may become the major driving force for improved indoor environments.

Fisk, W.J.

1994-11-01T23:59:59.000Z

51

Modeling attic humidity as a function of weather, building construction, and ventilation rates  

Science Conference Proceedings (OSTI)

A dynamic model for predicting attic relative humidity (RH) and roof-sheathing moisture content (MC) was developed for microcomputer application. The model accepts standard hourly weather data and building-design parameters as input. Model predictions gave good agreement with measured data from a house located in Madison, Wisconsin. Solar radiation varies with roof orientation and plays an important role in determining moisture transfer to and from the roof sheathing. Opposing roof surfaces must be differentiated in attic humidity models to account for the effect of solar radiation. The model described in this paper is capable of such differentiation. Snow accumulation on a roof can significantly alter the temperature and moisture conditions in an attic, but further research is needed to understand the effect of a snow layer on attic temperatures. Various scenarios were simulated with this model to determine the effect of building practice and ventilation strategies on roof sheathing MC. Direct control of RH in the living space by ventilation is very effective in lowering attic moisture conditions. Where natural ventilation is not adequate, a timer-controlled attic fan shows great promise for ensuring efficient and economical attic ventilation.

Gorman, T.M.

1987-01-01T23:59:59.000Z

52

Proposed Design for a Coupled Ground-Source Heat Pump/Energy Recovery Ventilator System to Reduce Building Energy Demand.  

E-Print Network (OSTI)

??The work presented in this thesis focuses on reducing the energy demand of a residential building by using a coupled ground-source heat pump/energy recovery ventilation (more)

McDaniel, Matthew Lee

2011-01-01T23:59:59.000Z

53

Recommended Changes to Specifications for Demand Controlled Ventilation in California's Title 24 Building Energy Efficiency Standards  

SciTech Connect

In demand-controlled ventilation (DCV), rates of outdoor air ventilation are automatically modulated as occupant density varies. The objective is to keep ventilation rates at or above design specifications and code requirements and also to save energy by avoiding excessive ventilation rates. DCV is most often used in spaces with highly variable and sometime dense occupancy. In almost all cases, carbon dioxide (CO{sub 2}) sensors installed in buildings provide the signal to the ventilation rate control system. People produce and exhale CO{sub 2} as a consequence of their normal metabolic processes; thus, the concentrations of CO{sub 2} inside occupied buildings are higher than the concentrations of CO{sub 2} in the outdoor air. The magnitude of the indoor-outdoor CO{sub 2} concentration difference decreases as the building's ventilation rate per person increases. The difference between the indoor and outdoor CO{sub 2} concentration is also a proxy for the indoor concentrations of other occupant-generated bioeffluents, such as body odors. Reviews of the research literature on DCV indicate a significant potential for energy savings, particularly in buildings or spaces with a high and variable occupancy. Based on modeling, cooling energy savings from applications of DCV are as high as 20%. With support from the California Energy Commission and the U.S. Department of Energy, the Lawrence Berkeley National Laboratory has performed research on the performance of CO{sub 2} sensing technologies and optical people counters for DCV. In addition, modeling was performed to evaluate the potential energy savings and cost effectiveness of using DCV in general office spaces within the range of California climates. The above-described research has implications for the specifications pertaining to DCV in section 121 of the California Title 24 Standard. Consequently, this document suggests possible changes in these specifications based on the research findings. The suggested changes in specifications were developed in consultation with staff from the Iowa Energy Center who evaluated the accuracy of new CO{sub 2} sensors in laboratory-based research. In addition, staff of the California Energy Commission, and their consultants in the area of DCV, provided input for the suggested changes in specifications.

Fisk, William J.; Sullivan, Douglas P.; Faulkner, David

2010-04-08T23:59:59.000Z

54

The estimation of wind pressures at ventilation inlets and outlets on buildings  

Science Conference Proceedings (OSTI)

Two example calculations illustrate the application of information provided in chapter 14 of the 1989 ASHRAE Fundamentals to the estimation of wind pressures at ventilation inlets and outlets on the exteriors of buildings. Wind pressures are calculated using the local estimated reference mean wind speeds at the building site and pressure coefficients selected from figures provided in Chapter 14 of the handbook. Calculations include estimation of wind speeds at building sites located significant distance from airport weather data recording stations in a variety of terrains using the power law mean wind speed profile equation. Wind frequency data are used to calculate the relative probability of occurrence of wind speed and direction events. Wind tunnel studies are recommended as the best source of wind pressure coefficients for applications where consequences of wind effects could be critical.

Aynsley, R.M (Georgia Inst. of Technology, Atlanta, GA (US))

1989-01-01T23:59:59.000Z

55

Energy Efficient Building Ventilation Systems: Innovative Building-Integrated Enthalpy Recovery  

Science Conference Proceedings (OSTI)

BEETIT Project: A2 is developing a building moisture and heat exchange technology that leverages a new material and design to create healthy buildings with lower energy use. Commercial building owners/operators are demanding buildings with greater energy efficiency and healthier indoor environments. A2 is developing a membrane-based heat and moisture exchanger that controls humidity by transferring the water vapor in the incoming fresh air to the drier air leaving the building. Unlike conventional systems, A2 locates the heat and moisture exchanger within the depths of the buildings wall to slow down the air flow and increase the surface area that captures humidity, but with less fan power. The systems integration into the wall reduces the size and demand on the air conditioning equipment and increases liable floor area flexibility.

None

2010-10-15T23:59:59.000Z

56

Infiltration and Natural Ventilation Model for Whole-Building Energy Simulation of Residential Buildings: Preprint  

DOE Green Energy (OSTI)

The infiltration term in the building energy balance equation is one of the least understood and most difficult to model. For many residential buildings, which have an energy performance dominated by the envelope, it can be one of the most important terms. There are numerous airflow models; however, these are not combined with whole-building energy simulation programs that are in common use in North America. This paper describes a simple multizone nodal airflow model integrated with the SUNREL whole-building energy simulation program.

Deru, M.; Burns, P.

2003-03-01T23:59:59.000Z

57

The role of the US Department of Energy in indoor air quality and building ventilation policy development  

SciTech Connect

Building ventilation consumes about 5.8 exajoules of energy each year in the US The annual cost of this energy, used for commercial building fans (1.6 exajoules) and the heating and cooling of outside air (4.2 exajoules), is about $US 33 billion per year. Energy conservation measures that reduce heating and cooling season ventilation rates 15 to 35% in commercial and residential buildings can result in a national savings of about 0.6 to 1.5 exajoules ($US 3-8 billion) per year assuming no reduction of commercial building fan energy use. The most significant adverse environmental impact of reduced ventilation and infiltration is the potential degradation of the buildings indoor air quality. Potential benefits to the US from the implementation of sound indoor air quality and building ventilation reduction policies include reduced building-sector energy consumption; reduced indoor, outdoor, and global air pollution; reduced product costs; reduced worker absenteeism; reduced health care costs; reduced litigation; increased worker well-being and productivity; and increased product quality and competitiveness.

Traynor, G.W. [Lawrence Berkeley Lab., CA (United States); Talbott, J.M.; Moses, D.O. [USDOE, Washington, DC (United States)

1993-07-01T23:59:59.000Z

58

Quantification of the association of ventilation rates with sick building syndrome symptoms  

E-Print Network (OSTI)

42%) as ventilation rate increases from 10 to 25 L/s-person.0.85) as ventilation rate increases from 10 to 25 L/s-29% as ventilation rate increases from 10 to 25 L/s-person.

Fisk, William J.

2009-01-01T23:59:59.000Z

59

Buoyancy-Driven Ventilation of Hydrogen from Buildings: Laboratory Test and Model Validation  

DOE Green Energy (OSTI)

Passive, buoyancy-driven ventilation is one approach to limiting hydrogen concentration. We explored the relationship between leak rate, ventilation design, and hydrogen concentrations.

Barley, C. D.; Gawlik, K.

2009-05-01T23:59:59.000Z

60

Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems  

DOE Green Energy (OSTI)

This paper presents a freely available Modelica library for building heating, ventilation and air conditioning systems. The library is based on the Modelica.Fluid library. It has been developed to support research and development of integrated building energy and control systems. The primary applications are controls design, energy analysis and model-based operation. The library contains dynamic and steady-state component models that are applicable for analyzing fast transients when designing control algorithms and for conducting annual simulations when assessing energy performance. For most models, dimensional analysis is used to compute the performance for operating points that differ from nominal conditions. This allows parameterizing models in the absence of detailed geometrical information which is often impractical to obtain during the conceptual design phase of building systems. In the first part of this paper, the library architecture and the main classes are described. In the second part, an example is presented in which we implemented a model of a hydronic heating system with thermostatic radiator valves and thermal energy storage.

Wetter, Michael

2009-06-17T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation building 773-a" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Optimization of a Solar Chimney Design to Enhance Natural Ventilation in a Multi-Storey Office Building  

E-Print Network (OSTI)

Natural ventilation of buildings can be achieved with solar-driven , buoyancy-induced airflow through a solar chimney channel. Research on solar chimneys has covered a wide range of topics, yet study of the integration in multi-storey buildings has been performed in few numerical studies , where steady-state conditions were assumed. In practice, if the solar chimney is to be used in an actual building, dynamic performance simulations would be required for the specific building design and climate. This study explores the applicability of a solar chimney in a prototype multi-storey office building in the Netherlands. Sensitivity analysis and optimization of the design will be performed via dynamic performance simulations in ESP-r. The robustness of the optimized design will be tested at the final stage , against e.g. windows' opening by users. This is an ongoing project; calibration of the solar chimney model and preliminary sensitivity analysis results are presented here. .

Gontikaki, M.; Trcka, M.; Hensen, J.; Hoes, P. J.

2010-01-01T23:59:59.000Z

62

Predicting natural ventilation in residential buildings in the context of urban environments  

E-Print Network (OSTI)

Wind Induced Ventila- tion in Shielded Buildings. Report, Central Building Research Institute, Roorkee, India.

Sharag-Eldin, A.

1998-01-01T23:59:59.000Z

63

Multifamily Individual Heating and Ventilation Systems, Lawrence, Massachusetts (Fact Sheet), Building America Case Study: Efficient Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Multifamily Individual Heating Multifamily Individual Heating and Ventilation Systems Lawrence, Massachusetts PROJECT INFORMATION Construction: Retrofit Type: Multifamily, affordable Builder: Merrimack Valley Habitat for Humanity (MVHfH) www.merrimackvalleyhabitat.org Size: 840 to 1,170 ft 2 units Price Range: $125,000-$130,000 Date completed: Slated for 2014 Climate Zone: Cold (5A) PERFORMANCE DATA HERS Index Range: 48 to 63 Projected annual energy cost savings: $1,797 Incremental cost of energy efficiency measures: $3,747 Incremental annual mortgage: $346 Annual cash flow: $1,451 Billing data: Not available The conversion of an older Massachusetts building into condominiums illustrates a safe, durable, and cost-effective solution for heating and ventilation systems that can potentially benefit millions of multifamily buildings. Merrimack Valley

64

IMPACT OF REDUCED INFILTRATION AND VENTILATION ON INDOOR AIR QUALITY IN RESIDENTIAL BUILDINGS  

E-Print Network (OSTI)

in building materials such as insulation, particleboard,Particleboard Insulation Adhesives Paint Building Contentsfoam insulation, and radon from various building materials -

Hollowell, Craig D.

2011-01-01T23:59:59.000Z

65

Simulating Natural Ventilation in and Around Buildings by Fast Fluid Mingang Jin1  

E-Print Network (OSTI)

ventilation, CIBSE [6] proposed analytical expressions separately for wind-driven and buoyancy- driven cross Review, vol. 4, no. 1, pp. 4­ 5, 1982. [6] CIBSE, Design data, in CIBSE Guid-Volum A, Chartered

Chen, Qingyan "Yan"

66

Energy and air quality implications of passive stack ventilation in residential buildings  

E-Print Network (OSTI)

scaling the passive stack diameter with house size (floora single-story house ventilated by a passive stack with andTable 1: Passive stack diameters scaling with house size

Mortensen, Dorthe Kragsig

2011-01-01T23:59:59.000Z

67

Relationship of SBS-symptoms and ventilation system type in office buildings  

E-Print Network (OSTI)

and Renewable Energy, Office of Building Technology, State andand Renewable Energy, Office of Building Technology, State and

Seppanen, O.; Fisk, W.J.

2002-01-01T23:59:59.000Z

68

Building America Top Innovations Hall of Fame Profile … Moisture and Ventilation Solutions in Hot, Humid Climates: Florida Manufactured Housing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Duct leakage was a key factor in moisture Duct leakage was a key factor in moisture damage in manufactured homes in humid climates. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 2. House-as-a-System Solutions 2.1 New Homes with Whole-House Packages Moisture and Ventilation Solutions in Hot, Humid Climates: Florida Manufactured Housing Research by Building America diagnosed the causes and prescribed a cure that dramatically reduced moisture problems in manufactured housing in Florida. In the late 1990s, Building America researchers at the Florida Solar Energy Center (FSEC) worked with manufactured home builders to diagnose moisture problems in homes in Florida. Moisture issues were so severe that in some homes researchers could push their fingers through the saturated drywall. Using a

69

Multifamily Ventilation Retrofit Strategies  

SciTech Connect

In multifamily buildings, central ventilation systems often have poor performance, overventilating some portions of the building (causing excess energy use), while simultaneously underventilating other portions (causing diminished indoor air quality). BSC and Innova Services Corporation performed a series of field tests at a mid-rise test building undergoing a major energy audit and retrofit, which included ventilation system upgrades.

Ueno, K.; Lstiburek, J.; Bergey, D.

2012-12-01T23:59:59.000Z

70

Demand Controlled Ventilation and Classroom Ventilation  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Authors Fisk, William J., Mark J. Mendell, Molly Davies, Ekaterina Eliseeva, David Faulkner, Tienzen Hong, and Douglas P. Sullivan Publisher Lawrence Berkeley National Laboratory City Berkeley Keywords absence, building s, carbon dioxide, demand - controlled ventilation, energy, indoor air quality, schools, ventilation Abstract This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling. Major findings included:  The single-location carbon dioxide sensors widely used for demand controlled ventilation frequently have large errors and will fail to effectively control ventilation rates (VRs).  Multi-location carbon dioxide measurement systems with more expensive sensors connected to multi-location sampling systems may measure carbon dioxide more accurately.

71

New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy ? FY11 Final Report  

Science Conference Proceedings (OSTI)

The research carried out in this project focuses on developing novel volatile organic compounds (VOCs) air cleaning technologies needed to enable energy-saving reductions in ventilation rates. we targeted a VOC air cleaning system that could enable a 50% reduction in ventilation rates. In a typical commercial HVAC system that provides a mixture of recirculated and outdoor air, a VOC air cleaner in the supply airstream must have a 15% to 20% VOC removal efficiency to counteract a 50% reduction in outdoor air supply.

Sidheswaran, Meera; Destaillats, Hugo; Cohn, Sebastian; Sullivan, Douglas P.; Fisk, William J.

2011-10-31T23:59:59.000Z

72

Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Links Commercial Building Ventilation and Indoor Environmental Quality Batteries and Fuel Cells Buildings Energy Efficiency Electricity Grid Energy Analysis Energy...

73

Controllability and invariance of monotone systems for robust ventilation automation in buildings  

E-Print Network (OSTI)

[2] and control [3] of Heating, Ventilating and Air Conditioning (HVAC) systems leads to an improved on these matters [4]. Various paths have already been explored for the control of HVAC systems in intelligent and energy saving [7], a model-predictive strategy [8], or a fuzzy logic controller [9]. The notion of Robust

74

Thermal comfort in naturally ventilated buildings: revisions to ASHRAE Standard 55  

E-Print Network (OSTI)

ASHRAE began funding a series of field studies of thermal comfort in office buildings spread across four different climate zones.

de Dear, Richard; Brager, Gail

2002-01-01T23:59:59.000Z

75

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation...  

Buildings Energy Data Book (EERE)

Buildings Technologies Reference Case, Second Edition (Revised), Sept. 2007, p. 26-31. Efficiency U.S. Average Best-Available Parameter Efficiency New Efficiency New Efficiency...

76

New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy ? FY11 Final Report  

E-Print Network (OSTI)

oxide and activated carbon fibers for removing a particle,oxide and activated carbon fibers for removing a particle,cleaning with activated carbon fiber filters Building and

Sidheswaran, Meera

2013-01-01T23:59:59.000Z

77

CO2 Monitoring for Demand Controlled Ventilation in Commercial...  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2 Monitoring for Demand Controlled Ventilation in Commercial Buildings Title CO2 Monitoring for Demand Controlled Ventilation in Commercial Buildings Publication Type Report Year...

78

Development and Application of a Procedure to Estimate Overall Building and Ventilation Parameters from Monitored Commercial Building Energy Use  

E-Print Network (OSTI)

This thesis proposes and validates a simplified model appropriate for parameter identification and evaluates several different inverse parameter identification schemes suitable for use when heating and cooling data from a commercial building are available. The validation has been performed using such data generated from a detailed building simulation program for different building geometries and building mass levels in two different climatic locations. Such a synthetic evaluation will validate the model used as well as determine the best parameter identification scheme, i.e., one likely to yield the most accurate set of parameter estimates. A multistep identification scheme has been found to yield very accurate results, and a more careful evaluation has been performed in order to evaluate its accuracy and stability with synthetic data against the effects of solar energy, HVAC system operation, internal load schedule, building thermal mass and geometry, and climatic location. This method is also evaluated using data from different time periods and when utility bill data (i.e. monthly data) only is available. The model is then applied to energy use data from two buildings being monitored under the Texas LoanSTAR Program, which are in different locations and have different HVAC systems. With parameters thus determined, two energy use indices, Energy Delivery Efficiency (EDE) and Multizone Efficiency Index (MEI), are calculated to present some insights into the benefits of retrofit from a constant volume (CV) to a variable air volume (VAV) system and of continuous commissioning (CC) work done to these two buildings, respectively. Uses and limitations of EDE and MEI are also discussed. Based on these findings, it is suggested that the multistep regression approach is an accurate and practical building physical parameter determination method, and the combined use of the EDE and MEI indices calculated from these parameters can provide insights into the HVAC system, and the potential for optimizing its operation.

Deng, Song

1997-05-01T23:59:59.000Z

79

Development and application of a procedure to estimate overall building and ventilation parameters from monitored commercial building energy use  

E-Print Network (OSTI)

This thesis proposes and validates a simplified model appropriate for parameter identification and evaluates several different inverse parameter identification schemes suitable for use when heating and cooling data from a commercial building are available. The validation has been performed using such data generated from a detailed building simulation program for different building geometries and building mass levels in two different climatic locations. Such a synthetic evaluation will validate the model used as well as determine the best parameter identification scheme, i.e., one likely to yield the most accurate set of parameter estimates. A multistep identification scheme has been found to yield very accurate results, and a more careful evaluation has been performed in order to evaluate its accuracy and stability with synthetic data against the effects of solar energy, HVAC system operation, internal load schedule, building then-thermal mass and geometry, and climatic location. This method is also evaluated using data from different time periods and when utility bill data (i.e. monthly data) only is available. The model is then applied to energy use data from two buildings being monitored under the Texas LoanSTAR Program, which are in different locations and have different HVAC systems. With parameters thus determined, two energy use indices, Energy Delivery Efficiency (EDE) and Multizone Efficiency Index (MEI), are calculated to present some insights into the benefits of retrofit from a constant volume (CV) to a variable air volume (VAV) system and of continuous commissioning (CC) work done to these two buildings, respectively. Uses and limitations of EDE and MEI are also discussed. Based on these findings, it is suggested that the multistep regression approach is an accurate and practical building physical parameter determination method, and the combined use of the EDE and MEI indices calculated from these parameters can provide insights into the HVAC system, and the potential for optimizing its operation.

Deng, Song Jiu

1997-01-01T23:59:59.000Z

80

Energy and air quality implications of passive stack ventilation in residential buildings  

E-Print Network (OSTI)

Sherman, M.H. (2008). Energy Implications of Meeting ASHRAE62.2, ASHRAE Transactions, June 2008, Vol. 114, Pt. 2, pp.and Sustainable Buildings, ASHRAE. Orme, M. 1998. "Energy

Mortensen, Dorthe Kragsig

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation building 773-a" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Thermal Comfort Study in a Naturally Ventilated Residential Building in a Tropical Hot-Humid Climate Region  

E-Print Network (OSTI)

This paper presents a thermal comfort study in a naturally ventilated residential building located in a tropical hot-humid climate region. The specific objective of this study is to investigate whether thermal comfort in this house can be achieved through a passive system only. The methods used in this study included conducting hourly monitoring of the temperature and relative humidity; measuring the air velocities; and assessing occupants' thermal sensations through questionnaires and interview. The data from the questionnaires were matched to the monitored data to assess the acceptable range of comfortable condition. Then using an hourly simulation program, some components of the building were also "modified" to investigate whether the building can be made "more comfortable". This study shows that it is possible to provide a thermally comfortable space in this region without using mechanical air-conditioning systems. The occupants' acceptable range of comfortable condition is different than that of people in the northern latitudes. The occupants sensed "neutrality" when the operative temperature in the house was about 27 degree Celsius (80F). The occupants could also tolerate slightly warm conditions, that is up to 29 degree Celsius (84OF), and still never wanted to install any air-conditioning systems. The simulation showed that using light wall materials would result in cooler indoor temperature at night but warmer during the day. If all windows were opened (25% the total floor area) the house could be more comfortable at night but less comfortable during the day. Findings of this study are important for architects and engineers in designing comfortable living spaces in these regions.

Soebarto, V. I.; Handjarinto, S.

1998-01-01T23:59:59.000Z

82

Characterization of ventilation ductwork in Building K-33 at the Oak Ridge K-25 Site  

Science Conference Proceedings (OSTI)

An extensive sampling and analysis program was initiated in September 1991 to characterize the ductwork of Building K-33, which is located at the Oak Ridge K-25 Site. This building, 32.4 acres under roof, contains nearly 3 miles of main plenums without considering the side laterals, which are extensive. A large number (i.e., 131) of hexane-moistened wipe samples were taken from within randomly selected locations in the 16 main plenums and the side lateral network. Samples were analyzed for polychlorinated biphenyls (PCBs), uranium, and technetium. These samples were augmented by 5 bulk material and 13 metal coupon samples that were subjected to TCLP (Toxicity Characteristic Leaching Procedure) analyses for arsenic, barium, cadmium, chromium, lead, nickel, selenium, silver, and mercury.

Mrochek, J.E.

1992-05-01T23:59:59.000Z

83

Natural Ventilation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Ventilation Natural Ventilation Natural Ventilation May 30, 2012 - 7:56pm Addthis Opening a window is a simple natural ventilation strategy. | Credit: ©iStockphoto/Simotion Opening a window is a simple natural ventilation strategy. | Credit: ©iStockphoto/Simotion What does this mean for me? If you live in a part of the country with cool nights and breezes, you may be able to cool your house with natural ventilation. If you're building a new home, design it to take advantage of natural ventilation. Natural ventilation relies on the wind and the "chimney effect" to keep a home cool. Natural ventilation works best in climates with cool nights and regular breezes. The wind will naturally ventilate your home by entering or leaving windows, depending on their orientation to the wind. When wind blows against your

84

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book (EERE)

3 3 Main Commercial Primary Energy Use of Heating and Cooling Equipment as of 1995 Heating Equipment | Cooling Equipment Packaged Heating Units 25% | Packaged Air Conditioning Units 54% Boilers 21% | Room Air Conditioning 5% Individual Space Heaters 2% | PTAC (2) 3% Furnaces 20% | Centrifugal Chillers 14% Heat Pumps 5% | Reciprocating Chillers 12% District Heat 7% | Rotary Screw Chillers 3% Unit Heater 18% | Absorption Chillers 2% PTHP & WLHP (1) 2% | Heat Pumps 7% 100% | 100% Note(s): Source(s): 1) PTHP = Packaged Terminal Heat Pump, WLHP = Water Loop Heat Pump. 2) PTAC = Packaged Terminal Air Conditioner BTS/A.D. Little, Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume 1: Chillers, Refrigerant Compressors, and Heating Systems, Apr. 2001, Figure 5-5, p. 5-14 for cooling and Figure 5-10, p. 5-18 for heating

85

Ventilation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(often required by building codes) will help to reduce your use of air conditioning, and attic fans may also help keep cooling costs down. Learn More Whole-House Ventilation...

86

Ventilation, temperature, and HVAC characteristics in small and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Ventilation, temperature, and HVAC characteristics in small and medium commercial buildings in California Title Ventilation, temperature, and HVAC characteristics in small and...

87

Why We Ventilate Our Houses - An Historical Look  

NLE Websites -- All DOE Office Websites (Extended Search)

The knowledge of how to ventilate buildings, and how much ventilation is necessary for human health and comfort, has evolved over centuries of trial and error. Humans and...

88

Demand-Controlled Ventilation Using CO2 Sensors - Federal Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

fresh air in a building can be a problem. Over ventilation results in higher energy usage and costs than are necessary with appropriate ventilation while potentially increasing...

89

Energy and first costs analysis of displacement and mixing ventilation systems for U.S. buildings and climates  

E-Print Network (OSTI)

In the past two decades, displacement ventilation has been increasingly used in Scandinavia and Western Europe to improve indoor air quality and to save energy. By using a detailed computer simulation method, this study ...

Hu, ShiPing, 1970-

1999-01-01T23:59:59.000Z

90

International Energy Agency Building Energy Simulation Test and Diagnostic Method for Heating, Ventilating, and Air-Conditioning Equipment Models (HVAC BESTEST); Volume 1: Cases E100-E200  

DOE Green Energy (OSTI)

This report describes the Building Energy Simulation Test for Heating, Ventilating, and Air-Conditioning Equipment Models (HVAC BESTEST) project conducted by the Tool Evaluation and Improvement International Energy Agency (IEA) Experts Group. The group was composed of experts from the Solar Heating and Cooling (SHC) Programme, Task 22, Subtask A. The current test cases, E100-E200, represent the beginning of work on mechanical equipment test cases; additional cases that would expand the current test suite have been proposed for future development.

Neymark, J.; Judkoff, R.

2002-01-01T23:59:59.000Z

91

Ventilation System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation System Basics Ventilation System Basics Ventilation System Basics August 16, 2013 - 1:33pm Addthis Ventilation is the process of moving air into and out of an interior space by natural or mechanical means. Ventilation is necessary for the health and comfort of occupants of all buildings. Ventilation supplies air for occupants to breathe and removes moisture, odors, and indoor pollutants like carbon dioxide. Too little ventilation may result in poor indoor air quality, while too much may cause unnecessarily higher heating and cooling loads. Natural Ventilation Natural ventilation occurs when outdoor air is drawn inside through open windows or doors. Natural ventilation is created by the differences in the distribution of air pressures around a building. Air moves from areas of

92

Ventilation System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation System Basics Ventilation System Basics Ventilation System Basics August 16, 2013 - 1:33pm Addthis Ventilation is the process of moving air into and out of an interior space by natural or mechanical means. Ventilation is necessary for the health and comfort of occupants of all buildings. Ventilation supplies air for occupants to breathe and removes moisture, odors, and indoor pollutants like carbon dioxide. Too little ventilation may result in poor indoor air quality, while too much may cause unnecessarily higher heating and cooling loads. Natural Ventilation Natural ventilation occurs when outdoor air is drawn inside through open windows or doors. Natural ventilation is created by the differences in the distribution of air pressures around a building. Air moves from areas of

93

Demonstration of Demand Control Ventilation Technology  

Science Conference Proceedings (OSTI)

Demand Control Ventilation (DCV) is one of the control strategies that can be used modulate the amount of ventilation air for space conditioning in commercial buildings. DCV modulates the amount of ventilation air introduced into the heating, ventilation and air conditioning (HVAC) system based on carbon dioxide levels sensed in the areas served. The carbon dioxide level is a proxy for the number of people within the space, from which the required quantity of ventilation air is determined. By using this ...

2011-12-30T23:59:59.000Z

94

Ventilative cooling  

E-Print Network (OSTI)

This thesis evaluates the performance of daytime and nighttime passive ventilation cooling strategies for Beijing, Shanghai and Tokyo. A new simulation method for cross-ventilated wind driven airflow is presented . This ...

Graa, Guilherme Carrilho da, 1972-

1999-01-01T23:59:59.000Z

95

Modeling buoyancy-driven airflow in ventilation shafts  

E-Print Network (OSTI)

Naturally ventilated buildings can significantly reduce the required energy for cooling and ventilating buildings by drawing in outdoor air using non-mechanical forces. Buoyancy-driven systems are common in naturally ...

Ray, Stephen D. (Stephen Douglas)

2012-01-01T23:59:59.000Z

96

Ventilation Systems for Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Systems for Cooling Ventilation Systems for Cooling Ventilation Systems for Cooling May 30, 2012 - 6:19pm Addthis Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Ventilation is the least expensive and most energy-efficient way to cool buildings. Ventilation works best when combined with methods to avoid heat buildup in your home. In some cases, natural ventilation will suffice for cooling, although it usually needs to be supplemented with spot ventilation, ceiling fans, and window fans. For large homes, homeowners might want to investigate whole house fans. Interior ventilation is ineffective in hot, humid climates where

97

Ventilation Systems for Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Systems for Cooling Ventilation Systems for Cooling Ventilation Systems for Cooling May 30, 2012 - 6:19pm Addthis Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Ventilation is the least expensive and most energy-efficient way to cool buildings. Ventilation works best when combined with methods to avoid heat buildup in your home. In some cases, natural ventilation will suffice for cooling, although it usually needs to be supplemented with spot ventilation, ceiling fans, and window fans. For large homes, homeowners might want to investigate whole house fans. Interior ventilation is ineffective in hot, humid climates where

98

Equivalence in Ventilation and Indoor Air Quality  

SciTech Connect

We ventilate buildings to provide acceptable indoor air quality (IAQ). Ventilation standards (such as American Society of Heating, Refrigerating, and Air-Conditioning Enginners [ASHRAE] Standard 62) specify minimum ventilation rates without taking into account the impact of those rates on IAQ. Innovative ventilation management is often a desirable element of reducing energy consumption or improving IAQ or comfort. Variable ventilation is one innovative strategy. To use variable ventilation in a way that meets standards, it is necessary to have a method for determining equivalence in terms of either ventilation or indoor air quality. This study develops methods to calculate either equivalent ventilation or equivalent IAQ. We demonstrate that equivalent ventilation can be used as the basis for dynamic ventilation control, reducing peak load and infiltration of outdoor contaminants. We also show that equivalent IAQ could allow some contaminants to exceed current standards if other contaminants are more stringently controlled.

Sherman, Max; Walker, Iain; Logue, Jennifer

2011-08-01T23:59:59.000Z

99

Transpired Air Collectors - Ventilation Preheating  

DOE Green Energy (OSTI)

Many commercial and industrial buildings have high ventilation rates. Although all that fresh air is great for indoor air quality, heating it can be very expensive. This short (2-page) fact sheet describes a technology available to use solar energy to preheat ventilation air and dramatically reduce utility bills.

Christensen, C.

2006-06-22T23:59:59.000Z

100

Project: Ventilation and Indoor Air Quality in Low-Energy ...  

Science Conference Proceedings (OSTI)

Ventilation and Indoor Air Quality in Low-Energy Buildings Project. Summary: NIST is developing tools and metrics to both ...

2012-12-27T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation building 773-a" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Section 4.1.3 Natural Ventilation: Greening Federal Facilities...  

NLE Websites -- All DOE Office Websites (Extended Search)

in and through build- ings. These airflows may be used both for ventilation air and for passive cooling strategies. Natural ventila- tion is often strongly preferred by building...

102

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... office buildings; air intake; systems engineering; maintenance; occupants; air flow; diffusers; air quality; ventilation systems; ASHRAE 62-2007 ...

103

Building Energy Software Tools Directory: DesignBuilder  

NLE Websites -- All DOE Office Websites (Extended Search)

naturally ventilated buildings, buildings with daylighting control, double facades, advanced solar shading strategies etc. Screen Shots Keywords Building energy simulation,...

104

Air Flow Distribution in a Mechanically-Ventilated High-Rise Residential Building* Richard C. Diamond and Helmut E. Feustel  

E-Print Network (OSTI)

Council for an Energy Efficient Economy, Washington DC, 1992. SHAPIRO-BARUCH, IAN, "Evaluation. The individual apartments have electric-resistance heaters in each room, and double-pane windows and sliding retrofits. New double-pane, low-e windows replaced the old windows throughout the building. A computerized

Diamond, Richard

105

The Trade-off between Solar Reflectance and Above-Sheathing Ventilation for Metal Roofs on Residential and Commercial Buildings  

Science Conference Proceedings (OSTI)

An alternative to white and cool-color roofs that meets prescriptive requirements for steep-slope (residential and non-residential) and low-slope (non-residential) roofing has been documented. Roofs fitted with an inclined air space above the sheathing (herein termed above-sheathing ventilation, or ASV), performed as well as if not better than high-reflectance, high-emittance roofs fastened directly to the deck. Field measurements demonstrated the benefit of roofs designed with ASV. A computer tool was benchmarked against the field data. Testing and benchmarks were conducted at roofs inclined at 18.34 ; the roof span from soffit to ridge was 18.7 ft (5.7 m). The tool was then exercised to compute the solar reflectance needed by a roof equipped with ASV to exhibit the same annual cooling load as that for a direct-to-deck cool-color roof. A painted metal roof with an air space height of 0.75 in. (0.019 m) and spanning 18.7 ft (5.7 m) up the roof incline of 18.34 needed only a 0.10 solar reflectance to exhibit the same annual cooling load as a direct-to-deck cool-color metal roof (solar reflectance of 0.25). This held for all eight ASHRAE climate zones complying with ASHRAE 90.1 (2007a). A dark heat-absorbing roof fitted with 1.5 in. (0.038 m) air space spanning 18.7 ft (5.7 m) and inclined at 18.34 was shown to have a seasonal cooling load equivalent to that of a conventional direct-to-deck cool-color metal roof. Computations for retrofit application based on ASHRAE 90.1 (1980) showed that ASV air spaces of either 0.75 or 1.5 in. (0.019 and 0.038 m) would permit black roofs to have annual cooling loads equivalent to the direct-to-deck cool roof. Results are encouraging, and a parametric study of roof slope and ASV aspect ratio is needed for developing guidelines applicable to all steep- and low-slope roof applications.

Desjarlais, Andre Omer [ORNL] [ORNL; Kriner, Scott [Metal Construction Association, Glenview, IL] [Metal Construction Association, Glenview, IL; Miller, William A [ORNL] [ORNL

2013-01-01T23:59:59.000Z

106

Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Exterior and interior of apartment building Exterior and interior of apartment building Residential Buildings The study of ventilation in residential buildings is aimed at understanding the role that air leakage, infiltration, mechanical ventilation, natural ventilation and building use have on providing acceptable indoor air quality so that energy and related costs can be minimized without negatively impacting indoor air quality. Risks to human health and safety caused by inappropriate changes to ventilation and air tightness can be a major barrier to achieving high performance buildings and must be considered.This research area focuses primarily on residential and other small buildings where the interaction of the envelope is important and energy costs are dominated by space conditioning energy rather than air

107

Review on Ventilation Rate Measuring and Modeling Techniques in Naturally  

NLE Websites -- All DOE Office Websites (Extended Search)

Review on Ventilation Rate Measuring and Modeling Techniques in Naturally Review on Ventilation Rate Measuring and Modeling Techniques in Naturally Ventilated Building Speaker(s): Sezin Eren Ozcan Date: May 16, 2006 - 12:00pm Location: Bldg. 90 Due to limited energy sources, countries are looking for alternative solutions to decrease energy needs. In that context, natural ventilation can be seen as a very attractive sustainable technique in building design. However, understanding of ventilation dynamics is needed to provide an efficient control. Ventilation rate has to be determined not only in terms of energy, but also for controlling indoor air quality and emissions. For these reasons, agricultural buildings (livestock houses, greenhouses, etc.), naturally ventilated industrial buildings, and residences require a reliable ventilation rate measuring technique. Measuring techniques suffer

108

Healthy Zero Energy Buildings ENVIRONMENTAL AREA RESEARCH  

E-Print Network (OSTI)

Healthy Zero Energy Buildings ENVIRONMENTAL AREA RESEARCH PIER Environmental Research www from buildings. Ventilation, however, comes with a significant energy cost. Currently, heating, cooling and ventilating commercial buildings represents 29 percent of their total onsite energy use

109

ASHRAE and residential ventilation  

SciTech Connect

In the last quarter of a century, the western world has become increasingly aware of environmental threats to health and safety. During this period, people psychologically retreated away from outdoors hazards such as pesticides, smog, lead, oil spills, and dioxin to the seeming security of their homes. However, the indoor environment may not be healthier than the outdoor environment, as has become more apparent over the past few years with issues such as mold, formaldehyde, and sick-building syndrome. While the built human environment has changed substantially over the past 10,000 years, human biology has not; poor indoor air quality creates health risks and can be uncomfortable. The human race has found, over time, that it is essential to manage the indoor environments of their homes. ASHRAE has long been in the business of ventilation, but most of the focus of that effort has been in the area of commercial and institutional buildings. Residential ventilation was traditionally not a major concern because it was felt that, between operable windows and envelope leakage, people were getting enough outside air in their homes. In the quarter of a century since the first oil shock, houses have gotten much more energy efficient. At the same time, the kinds of materials and functions in houses changed in character in response to people's needs. People became more environmentally conscious and aware not only about the resources they were consuming but about the environment in which they lived. All of these factors contributed to an increasing level of public concern about residential indoor air quality and ventilation. Where once there was an easy feeling about the residential indoor environment, there is now a desire to define levels of acceptability and performance. Many institutions--both public and private--have interests in Indoor Air Quality (IAQ), but ASHRAE, as the professional society that has had ventilation as part of its mission for over 100 years, is the logical place to provide leadership. This leadership has been demonstrated most recently by the publication of the first nationally recognized standard on ventilation in homes, ASHRAE Standard 62.2-2003, which builds on work that has been part of ASHRAE for many years and will presumably continue. Homeowners and occupants, which includes virtually all of us, will benefit from the application of Standard 62.2 and use of the top ten list. This activity is exactly the kind of benefit to society that the founders of ASHRAE envisioned and is consistent with ASHRAE's mission and vision. ASHRAE members should be proud of their Society for taking leadership in residential ventilation.

Sherman, Max H.

2003-10-01T23:59:59.000Z

110

Effect of building airtightness and fan size on the performance of mechanical ventilation systems in new U.S. houses: a critique of ASHRAE standard 62.2-2003  

E-Print Network (OSTI)

and Infiltration. Handbook: Fundamentals. American Societyand Ventilation. Handbook: Fundamentals. American Society ofand Ventilation. Handbook: Fundamentals. American Society of

Roberson, J.

2004-01-01T23:59:59.000Z

111

Review of Residential Ventilation Technologies.  

NLE Websites -- All DOE Office Websites (Extended Search)

Review of Residential Ventilation Technologies. Review of Residential Ventilation Technologies. Title Review of Residential Ventilation Technologies. Publication Type Journal Article LBNL Report Number LBNL-57730 Year of Publication 2007 Authors Russell, Marion L., Max H. Sherman, and Armin F. Rudd Journal HVAC&R Research Volume 13 Start Page Chapter Pagination 325-348 Abstract This paper reviews current and potential ventilation technologies for residential buildings in North America and a few in Europe. The major technologies reviewed include a variety of mechanical systems, natural ventilation, and passive ventilation. Key parameters that are related to each system include operating costs, installation costs, ventilation rates, heat recovery potential. It also examines related issues such as infiltration, duct systems, filtration options, noise, and construction issues. This report describes a wide variety of systems currently on the market that can be used to meet ASHRAE Standard 62.2. While these systems generally fall into the categories of supply, exhaust or balanced, the specifics of each system are driven by concerns that extend beyond those in the standard and are discussed. Some of these systems go beyond the current standard by providing additional features (such as air distribution or pressurization control). The market will decide the immediate value of such features, but ASHRAE may wish to consider modifications to the standard in the future.

112

Development of a Residential Integrated Ventilation Controller  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of a Residential Integrated Ventilation Controller Development of a Residential Integrated Ventilation Controller Title Development of a Residential Integrated Ventilation Controller Publication Type Report LBNL Report Number LBNL-5554E Year of Publication 2012 Authors Walker, Iain S., Max H. Sherman, and Darryl J. Dickerhoff Keywords ashrae standard 62,2, california title 24, residential ventilation, ventilation controller Abstract The goal of this study was to develop a Residential Integrated Ventilation Controller (RIVEC) to reduce the energy impact of required mechanical ventilation by 20%, maintain or improve indoor air quality and provide demand response benefits. This represents potential energy savings of about 140 GWh of electricity and 83 million therms of natural gas as well as proportional peak savings in California. The RIVEC controller is intended to meet the 2008 Title 24 requirements for residential ventilation as well as taking into account the issues of outdoor conditions, other ventilation devices (including economizers), peak demand concerns and occupant preferences. The controller is designed to manage all the residential ventilation systems that are currently available. A key innovation in this controller is the ability to implement the concept of efficacy and intermittent ventilation which allows time shifting of ventilation. Using this approach ventilation can be shifted away from times of high cost or high outdoor pollution towards times when it is cheaper and more effective. Simulations, based on the ones used to develop the new residential ventilation requirements for the California Buildings Energy code, were used to further define the specific criteria and strategies needed for the controller. These simulations provide estimates of the energy, peak power and contaminant improvement possible for different California climates for the various ventilation systems. Results from a field test of the prototype controller corroborate the predicted performance.

113

Summer Infiltration/Ventilation Test Results from the FRTF Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summer InfiltrationVentilation Test Results from the FRTF Laboratory Building America Technical Review Meeting April 29-30, 2013 A Research Institute of the University of Central...

114

Critical Question #2: What are the Best Practices for Ventilation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Specific to Multifamily Buildings? What is the best practice to address ASHRAE 62.2 Addendum J (multifamily)? Why is exhaust only (with supply in hallway) the...

115

Ventilation and Solar Heat Storage System Offers Big Energy Savings  

Ventilation and Solar Heat Storage System Offers Big Energy Savings ... Heat is either reflected away from the building with radiant barriers, or heat is absorbed

116

Case Study 3 - Energy Impacts of Infiltration and Ventilation in ...  

Science Conference Proceedings (OSTI)

... the energy use in commercial buildings due to infiltration and ventilation airflows and to investigate the potential for energy savings that could be ...

117

Development of a Residential Integrated Ventilation Controller  

SciTech Connect

The goal of this study was to develop a Residential Integrated Ventilation Controller (RIVEC) to reduce the energy impact of required mechanical ventilation by 20percent, maintain or improve indoor air quality and provide demand response benefits. This represents potential energy savings of about 140 GWh of electricity and 83 million therms of natural gas as well as proportional peak savings in California. The RIVEC controller is intended to meet the 2008 Title 24 requirements for residential ventilation as well as taking into account the issues of outdoor conditions, other ventilation devices (including economizers), peak demand concerns and occupant preferences. The controller is designed to manage all the residential ventilation systems that are currently available. A key innovation in this controller is the ability to implement the concept of efficacy and intermittent ventilation which allows time shifting of ventilation. Using this approach ventilation can be shifted away from times of high cost or high outdoor pollution towards times when it is cheaper and more effective. Simulations, based on the ones used to develop the new residential ventilation requirements for the California Buildings Energy code, were used to further define the specific criteria and strategies needed for the controller. These simulations provide estimates of the energy, peak power and contaminant improvement possible for different California climates for the various ventilation systems. Results from a field test of the prototype controller corroborate the predicted performance.

Staff Scientist; Walker, Iain; Sherman, Max; Dickerhoff, Darryl

2011-12-01T23:59:59.000Z

118

Ventilation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Ventilation Ventilation Controlled ventilation keeps energy-efficient homes healthy and comfortable. Learn more about ventilation. Controlled ventilation keeps energy-efficient homes healthy and comfortable. Learn more about ventilation. When creating an energy-efficient, airtight home through air sealing, it's very important to consider ventilation. Unless properly ventilated, an airtight home can seal in indoor air pollutants. Ventilation also helps control moisture-another important consideration for a healthy, energy-efficient home. Featured Whole-House Ventilation A whole-house ventilation system with dedicated ducting in a new energy-efficient home. | Photo courtesy of ©iStockphoto/brebca. Tight, energy-efficient homes require mechanical -- usually whole-house --

119

Carbon-dioxide-controlled ventilation study  

Science Conference Proceedings (OSTI)

The In-House Energy Management (IHEM) Program has been established by the U.S. Department of Energy to provide funds to federal laboratories to conduct research on energy-efficient technology. The Energy Sciences Department of Pacific Northwest Laboratory (PNL) was tasked by IHEM to research the energy savings potential associated with reducing outdoor-air ventilation of buildings. By monitoring carbon dioxide (CO{sub 2}) levels in a building, outdoor air provided by the heating, ventilating, and air-conditioning (HVAC) system can be reduced to the percentage required to maintain satisfactory CO{sub 2} levels rather than ventilating with a higher outdoor-air percentage based on an arbitrary minimum outdoor-air setting. During summer months, warm outdoor air brought into a building for ventilation must be cooled to meet the appropriate cooling supply-air temperature, and during winter months, cold outdoor air must be heated. By minimizing the amount of hot or cold outdoor air brought into the HVAC system, the supply air requires less cooling or heating, saving energy and money. Additionally, the CO{sub 2} levels in a building can be monitored to ensure that adequate outdoor air is supplied to a building to maintain air quality levels. The two main considerations prior to implementing CO{sub 2}-based ventilation control are its impact on energy consumption and the adequacy of indoor air quality (IAQ) and occupant comfort. To address these considerations, six portable CO{sub 2} monitors were placed in several Hanford Site buildings to estimate the adequacy of office/workspace ventilation. The monitors assessed the potential for reducing the flow of outdoor-air to the buildings. A candidate building was also identified to monitor various ventilation control strategies for use in developing a plan for implementing and assessing energy savings.

McMordie, K.L.; Carroll, D.M.

1994-05-01T23:59:59.000Z

120

Liquid ventilation  

E-Print Network (OSTI)

For 350 million years, fish have breathed liquid through gills. Mammals evolved lungs to breathe air. Rarely, circumstances can occur when a mammal needs to `turn back the clock' to breathe through a special liquid medium. This is particularly true if surface tension at the air-liquid interface of the lung is increased, as in acute lung injury. In this condition, surface tension increases because the pulmonary surfactant system is damaged, causing alveolar collapse, atelectasis, increased right-to-left shunt and hypoxaemia. 69 The aims of treatment are: (i) to offset increased forces causing lung collapse by applying mechanical ventilation with PEEP; (ii) to decrease alveolar surface tension with exogenous surfactant; (iii) to eliminate the air-liquid interface by filling the lung with a fluid in

U. Kaisers; K. P. Kelly; T. Busch

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation building 773-a" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Advanced Controls and Sustainable Systems for Residential Ventilation  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Controls and Sustainable Systems for Residential Ventilation Advanced Controls and Sustainable Systems for Residential Ventilation Title Advanced Controls and Sustainable Systems for Residential Ventilation Publication Type Report LBNL Report Number LBNL-5968E Year of Publication 2012 Authors Turner, William J. N., and Iain S. Walker Date Published 12/2012 Keywords ashrae standard 62,2, california title 24, passive ventilation, residential ventilation, ventilation controller Abstract Whole-house ventilation systems are becoming commonplace in new construction, remodeling/renovation, and weatherization projects, driven by combinations of specific requirements for indoor air quality (IAQ), health, and compliance with standards, such as ASHRAE 62.2. At the same time we wish to reduce the energy use in homes and therefore minimize the energy used to provide ventilation. This study examined several approaches to reducing the energy requirements of providing acceptable IAQ in residential buildings. Two approaches were taken. The first used RIVEC - the Residential Integrated VEntilation Controller - a prototype ventilation controller that aims to deliver whole-house ventilation rates that comply with ventilation standards, for the minimum use of energy. The second used passive and hybrid ventilation systems, rather than mechanical systems, to provide whole-house ventilation.

122

BUILDING TECHNOLOGIES PROGRAM CODE NOTES  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Control Ventilation Demand Control Ventilation 2012 IECC A demand control ventilation (DCV) system is an integral part of a building's ventilation design. It adjusts outside ventilation air based on the number of occupants and the ventilation demands that those occupants create. In most commercial occupancies, ventilation is provided to deal with two types of indoor pollution: (1) odors from people, and (2) off-gassing from building components and furniture. When a space is vacant, it has no people pollution so the people-related ventilation rate is not needed. Many types of high-occupancy spaces, such as classrooms, multipurpose rooms, theaters, conference rooms, or lobbies have ventilation designed for a high peak occupancy that rarely occurs. Ventilation can be reduced

123

Meeting Residential Ventilation Standards Through Dynamic Control...  

NLE Websites -- All DOE Office Websites (Extended Search)

Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems Title Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation...

124

Second International Green Building Conference and ...  

Science Conference Proceedings (OSTI)

... on the building materials and ventilation system. ... light bulbs, and energy efficient appliances will ... embrace similar energy efficiency measures for ...

1997-09-03T23:59:59.000Z

125

Residential ventilation standards scoping study  

SciTech Connect

The goals of this scoping study are to identify research needed to develop improved ventilation standards for California's Title 24 Building Energy Efficiency Standards. The 2008 Title 24 Standards are the primary target for the outcome of this research, but this scoping study is not limited to that timeframe. We prepared this scoping study to provide the California Energy Commission with broad and flexible options for developing a research plan to advance the standards. This document presents the findings of a scoping study commissioned by the Public Interest Energy Research (PIER) program of the California Energy Commission to determine what research is necessary to develop new residential ventilation requirements for California. This study is one of three companion efforts needed to complete the job of determining the ventilation needs of California residences, determining the bases for setting residential ventilation requirements, and determining appropriate ventilation technologies to meet these needs and requirements in an energy efficient manner. Rather than providing research results, this scoping study identifies important research questions along with the level of effort necessary to address these questions and the costs, risks, and benefits of pursuing alternative research questions. In approaching these questions and corresponding levels of effort, feasibility and timing were important considerations. The Commission has specified Summer 2005 as the latest date for completing this research in time to update the 2008 version of California's Energy Code (Title 24).

McKone, Thomas E.; Sherman, Max H.

2003-10-01T23:59:59.000Z

126

Breathing HRV by the Concept of AC Ventilation  

NLE Websites -- All DOE Office Websites (Extended Search)

Breathing HRV by the Concept of AC Ventilation Breathing HRV by the Concept of AC Ventilation Speaker(s): Hwataik Han Date: July 10, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Thomas McKone Heat recovery ventilators are frequently used to save heating/cooling loads of buildings for ventilation. There are several types of HRV's, including a parallel plate type, a rotary type, a capillary type, and a heat pipe type. The breathing HRV is a heat recovery ventilator of a new kind using the concept of alternating-current ventilation. The AC ventilation is the ventilation with the airflow directions reversed periodically. It has an advantage of using a single duct system, for both supply and exhaust purposes. In order to develop a breathing HRV system, the thermal recovery performance should be investigated depending on many parameters, such as

127

VENTILATION NEEDS DURING CONSTRUCTION  

Science Conference Proceedings (OSTI)

The purpose of this analysis is to determine ventilation needs during construction and development of the subsurface repository and develop systems to satisfy those needs. For this analysis, construction is defined as pre-emplacement excavation and development is excavation that takes place simultaneously with emplacement. The three options presented in the ''Overall Development and Emplacement Ventilation Systems'' analysis (Reference 5.5) for development ventilation will be applied to construction ventilation in this analysis as well as adding new and updated ventilation factors to each option for both construction and development. The objective of this analysis is to develop a preferred ventilation system to support License Application Design. The scope of this analysis includes: (1) Description of ventilation conditions; (2) Ventilation factors (fire hazards, dust control, construction logistics, and monitoring and control systems); (3) Local ventilation alternatives; (4) Global ventilation options; and (5) Evaluation of options.

C.R. Gorrell

1998-07-23T23:59:59.000Z

128

Ventilation Effectiveness Research at UT-Typer Lab Houses  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Effectiveness Research Ventilation Effectiveness Research at UT-Tyler Lab Houses Source Of Outside Air, Distribution, Filtration Armin Rudd Twin (almost) Lab Houses at UT-Tyler House 2: Unvented attic, House 1: Vented attic lower loads + PV Ventilation Effectiveness Research 30 April 2013 2 * 1475 ft 2 , 3-bedroom houses * House 2 was mirrored plan * 45 cfm 62.2 ventilation rate * Garage connected to house on only one wall * Access to attic via pull-down stairs in garage * Further access to House 2 unvented attic through gasket sealed door Ventilation Effectiveness Research 30 April 2013 3 Testing Approach  Building enclosure and building mechanical systems characterization by measurement of building enclosure air leakage, central air distribution system airflows, and ventilation system airflows.

129

Solar ventilation preheating: FEMP fact sheet  

DOE Green Energy (OSTI)

Installing a ''solar wall'' to heat air before it enters a building, called solar ventilation preheating, is one of the most efficient ways of reducing energy costs using clean and renewable energy. A solar wall can be designed as an integral part of a new building or it can be added in a retrofit project.

Clyne, R.

1999-09-30T23:59:59.000Z

130

BUILDING TECHNOLOGIES PROGRAM CODE NOTES  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Fan Efficiency Residential Fan Efficiency 2012 IECC Over the past several code cycles, mechanical ventilation requirements have been added to ensure adequate outside air is provided for ventilation whenever residences are occupied. These ventilation requirements can be found in the International Residential Code for homes and the International Mechanical Code for dwelling units in multifamily buildings. As a result of the new ventilation requirements, fans designated for whole-house ventilation will have many more operating hours than bathroom or kitchen exhaust fans that are temporarily operated to remove local humidity or odors. Earlier ventilation practices relied on infiltration or operable windows as the primary source of ventilation air. Homes and

131

Buildings  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) advances building energy performance through the development and promotion of efficient, affordable, and high impact technologies, systems, and practices. The...

132

Effect of Ventilation Strategies on Residential Ozone Levels  

NLE Websites -- All DOE Office Websites (Extended Search)

Effect of Ventilation Strategies on Residential Ozone Levels Effect of Ventilation Strategies on Residential Ozone Levels Title Effect of Ventilation Strategies on Residential Ozone Levels Publication Type Journal Article LBNL Report Number LBNL-5889E Year of Publication 2012 Authors Walker, Iain S., and Max H. Sherman Journal Building and Environment Volume 59 Start Page 456 Pagination 456-465 Date Published 01/2013 Keywords ashrae standard 62,2, filtration, infiltration, mechanical ventilation, ozone, simulation Abstract Elevated outdoor ozone levels are associated with adverse health effects. Because people spend the vast majority of their time indoors, reduction in indoor levels of ozone of outdoor origin would lower population exposures and might also lead to a reduction in ozone---associated adverse health effects. In most buildings, indoor ozone levels are diminished with respect to outdoor levels to an extent that depends on surface reactions and on the degree to which ozone penetrates the building envelope. Ozone enters buildings from outdoors together with the airflows that are driven by natural and mechanical means, including deliberate ventilation used to reduce concentrations of indoor---generated pollutants. When assessing the effect of deliberate ventilation on occupant health one should consider not only the positive effects on removing pollutants of indoor origin but also the possibility that enhanced ventilation might increase indoor levels of pollutants originating outdoors. This study considers how changes in residential ventilation that are designed to comply with ASHRAE Standard 62.2 might influence indoor levels of ozone. Simulation results show that the building envelope can contribute significantly to filtration of ozone. Consequently, the use of exhaust ventilation systems is predicted to produce lower indoor ozone concentrations than would occur with balanced ventilation systems operating at the same air---exchange rate. We also investigated a strategy for reducing exposure to ozone that would deliberately reduce ventilation rates during times of high outdoor ozone concentration while still meeting daily average ventilation requirements.

133

Particle deposition in ventilation ducts  

SciTech Connect

Exposure to airborne particles is detrimental to human health and indoor exposures dominate total exposures for most people. The accidental or intentional release of aerosolized chemical and biological agents within or near a building can lead to exposures of building occupants to hazardous agents and costly building remediation. Particle deposition in heating, ventilation and air-conditioning (HVAC) systems may significantly influence exposures to particles indoors, diminish HVAC performance and lead to secondary pollutant release within buildings. This dissertation advances the understanding of particle behavior in HVAC systems and the fates of indoor particles by means of experiments and modeling. Laboratory experiments were conducted to quantify particle deposition rates in horizontal ventilation ducts using real HVAC materials. Particle deposition experiments were conducted in steel and internally insulated ducts at air speeds typically found in ventilation ducts, 2-9 m/s. Behaviors of monodisperse particles with diameters in the size range 1-16 {micro}m were investigated. Deposition rates were measured in straight ducts with a fully developed turbulent flow profile, straight ducts with a developing turbulent flow profile, in duct bends and at S-connector pieces located at duct junctions. In straight ducts with fully developed turbulence, experiments showed deposition rates to be highest at duct floors, intermediate at duct walls, and lowest at duct ceilings. Deposition rates to a given surface increased with an increase in particle size or air speed. Deposition was much higher in internally insulated ducts than in uninsulated steel ducts. In most cases, deposition in straight ducts with developing turbulence, in duct bends and at S-connectors at duct junctions was higher than in straight ducts with fully developed turbulence. Measured deposition rates were generally higher than predicted by published models. A model incorporating empirical equations based on the experimental measurements was applied to evaluate particle losses in supply and return duct runs. Model results suggest that duct losses are negligible for particle sizes less than 1 {micro}m and complete for particle sizes greater than 50 {micro}m. Deposition to insulated ducts, horizontal duct floors and bends are predicted to control losses in duct systems. When combined with models for HVAC filtration and deposition to indoor surfaces to predict the ultimate fates of particles within buildings, these results suggest that ventilation ducts play only a small role in determining indoor particle concentrations, especially when HVAC filtration is present. However, the measured and modeled particle deposition rates are expected to be important for ventilation system contamination.

Sippola, Mark R.

2002-09-01T23:59:59.000Z

134

Solar Buildings: Transpired Air Collectors  

DOE Green Energy (OSTI)

Transpired air collectors preheat building ventilation air by using the building's ventilation fan to draw fresh air through the system. The intake air is heated as it passes through the perforated absorber plate and up the plenum between the absorber and the south wall of the building. Reduced heating costs will pay for the systems in 3--12 years.

NONE

1998-11-24T23:59:59.000Z

135

Sensor-based demand controlled ventilation  

SciTech Connect

In most buildings, occupancy and indoor pollutant emission rates vary with time. With sensor-based demand-controlled ventilation (SBDCV), the rate of ventilation (i.e., rate of outside air supply) also varies with time to compensate for the changes in pollutant generation. In other words, SBDCV involves the application of sensing, feedback and control to modulate ventilation. Compared to ventilation without feedback, SBDCV offers two potential advantages: (1) better control of indoor pollutant concentrations; and (2) lower energy use and peak energy demand. SBDCV has the potential to improve indoor air quality by increasing the rate of ventilation when indoor pollutant generation rates are high and occupants are present. SBDCV can also save energy by decreasing the rate of ventilation when indoor pollutant generation rates are low or occupants are absent. After providing background information on indoor air quality and ventilation, this report provides a relatively comprehensive discussion of SBDCV. Topics covered in the report include basic principles of SBDCV, sensor technologies, technologies for controlling air flow rates, case studies of SBDCV, application of SBDCV to laboratory buildings, and research needs. SBDCV appears to be an increasingly attractive technology option. Based on the review of literature and theoretical considerations, the application of SBDCV has the potential to be cost-effective in applications with the following characteristics: (a) a single or small number of dominant pollutants, so that ventilation sufficient to control the concentration of the dominant pollutants provides effective control of all other pollutants; (b) large buildings or rooms with unpredictable temporally variable occupancy or pollutant emission; and (c) climates with high heating or cooling loads or locations with expensive energy.

De Almeida, A.T. [Universidade de Coimbra (Portugal). Dep. Eng. Electrotecnica; Fisk, W.J. [Lawrence Berkeley National Lab., CA (United States)

1997-07-01T23:59:59.000Z

136

Residential pollutants and ventilation strategies: Moisture and combustion products  

SciTech Connect

This paper reviews literature that reports investigations of residential ventilation and indoor air quality. Two important residential pollutant classes, moisture and combustion pollutants, are examined. A companion paper examines volatile organic compounds and radon. Control strategies recommended from the review include appropriate building design to prevent or limit the sources of the pollutants within the space, proper operation and maintenance to prevent adverse conditions from developing during the building's life and appropriate use of ventilation. The characteristics of these pollutant sources suggest that ventilation systems in residences should have several properties. Moisture control puts significant restrictions on a ventilation system. The system should function continuously (averaged over days) and distribute ventilation throughout the habitable space. Combustion sources require task ventilation that functions reliably.

Hadlich, D.E.; Grimsrud, D.T.

1999-07-01T23:59:59.000Z

137

New and Underutilized Technology: Carbon Dioxide Demand Ventilation Control  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Dioxide Demand Ventilation Carbon Dioxide Demand Ventilation Control New and Underutilized Technology: Carbon Dioxide Demand Ventilation Control October 4, 2013 - 4:23pm Addthis The following information outlines key deployment considerations for carbon dioxide (CO2) demand ventilation control within the Federal sector. Benefits Demand ventilation control systems modulate ventilation levels based on current building occupancy, saving energy while still maintaining proper indoor air quality (IAQ). CO2 sensors are commonly used, but a multiple-parameter approach using total volatile organic compounds (TVOC), particulate matter (PM), formaldehyde, and relative humidity (RH) levels can also be used. CO2 sensors control the outside air damper to reduce the amount of outside air that needs to be conditioned and supplied to the building when

138

Ventilation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Ventilation Ventilation May 7, 2012 - 2:49pm Addthis This ventilation system in a tight, energy-efficient home ensures good indoor air quality. | Photo courtesy of ©iStockphoto.com/brebca. This ventilation system in a tight, energy-efficient home ensures good indoor air quality. | Photo courtesy of ©iStockphoto.com/brebca. What does this mean for me? After you've reduced air leakage in your home, adequate ventilation is critical for health and comfort. Depending on your climate, there are a number of strategies to ventilate your home. Ventilation is very important in an energy-efficient home. Air sealing techniques can reduce air leakage to the point that contaminants with known health effects such as formaldehyde, volatile organic compounds, and radon

139

Ventilation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Ventilation Ventilation May 7, 2012 - 2:49pm Addthis This ventilation system in a tight, energy-efficient home ensures good indoor air quality. | Photo courtesy of ©iStockphoto.com/brebca. This ventilation system in a tight, energy-efficient home ensures good indoor air quality. | Photo courtesy of ©iStockphoto.com/brebca. What does this mean for me? After you've reduced air leakage in your home, adequate ventilation is critical for health and comfort. Depending on your climate, there are a number of strategies to ventilate your home. Ventilation is very important in an energy-efficient home. Air sealing techniques can reduce air leakage to the point that contaminants with known health effects such as formaldehyde, volatile organic compounds, and radon

140

The Ventilated Ocean  

Science Conference Proceedings (OSTI)

Adiabatic theories of ocean circulation and density structure have a long tradition, from the concept of the ventilated thermocline to the notion that deep ocean ventilation is controlled by westerly winds over the Southern Ocean. This study ...

Patrick Haertel; Alexey Fedorov

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation building 773-a" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

VENTILATION MODEL REPORT  

SciTech Connect

The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their postclosure analyses.

V. Chipman

2002-10-31T23:59:59.000Z

142

Kitchen Ventilation Should be High Performance (Not Optional)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kitchen Ventilation Kitchen Ventilation Should be High Performance (not Optional) Brett C. Singer Residential Building Systems & Indoor Environment Groups Lawrence Berkeley National Laboratory Building America Technical Update Denver, CO April 30, 2013 Acknowledgements PROGRAM SUPPORT *U.S. Department of Energy - Building America Program *U.S. Environmental Protection Agency - Indoor Environments Division *U.S. Department of Housing and Urban Development - Office of Healthy Homes & Lead Hazard Control *California Energy Commission - Public Interest Energy Research Program TECHNICAL CONTRIBUTIONS *Woody Delp, Tosh Hotchi, Melissa Lunden, Nasim Mullen, Chris Stratton, Doug Sullivan, Iain Walker Kitchen Ventilation Simplified PROBLEM: * Cooking burners & cooking produce odors, moisture

143

LBNL REPORT NUMBER 53776; OCTOBER 2003 ASHRAE &Residential Ventilation  

E-Print Network (OSTI)

LBNL REPORT NUMBER 53776; OCTOBER 2003 ASHRAE &Residential Ventilation Max Sherman Energy Performance of Buildings Group IED/EETD Lawrence Berkeley Laboratory1 MHSherman@lbl.gov ASHRAE, the American of heating, ventilating, air-conditioning and refrigeration (HVAC&R). ASHRAE has recently released a new

144

Project: Contaminant Control in High-Performance Buildings  

Science Conference Proceedings (OSTI)

... Specifically, the use of building materials with low VOC emissions may allow energy savings by lowering outdoor air ventilation requirements. ...

2013-01-15T23:59:59.000Z

145

Ventilation, temperature, and HVAC characteristics in small and medium  

NLE Websites -- All DOE Office Websites (Extended Search)

Ventilation, temperature, and HVAC characteristics in small and medium Ventilation, temperature, and HVAC characteristics in small and medium commercial buildings in California Title Ventilation, temperature, and HVAC characteristics in small and medium commercial buildings in California Publication Type Journal Article Refereed Designation Refereed Year of Publication 2012 Authors Bennett, Deborah H., William J. Fisk, Michael G. Apte, X. Wu, Amber L. Trout, David Faulkner, and Douglas P. Sullivan Journal Indoor Air Volume 22 Issue 4 Pagination 309-20 Abstract This field study of 37 small and medium commercial buildings throughout California obtained information on ventilation rate, temperature, and heating, ventilating, and air-conditioning (HVAC) system characteristics. The study included seven retail establishments; five restaurants; eight offices; two each of gas stations, hair salons, healthcare facilities, grocery stores, dental offices, and fitness centers; and five other buildings. Fourteen (38%) of the buildings either could not or did not provide outdoor air through the HVAC system. The air exchange rate averaged 1.6 (s.d. = 1.7) exchanges per hour and was similar between buildings with and without outdoor air supplied through the HVAC system, indicating that some buildings have significant leakage or ventilation through open windows and doors. Not all buildings had sufficient air exchange to meet ASHRAE 62.1 Standards, including buildings used for fitness centers, hair salons, offices, and retail establishments. The majority of the time, buildings were within the ASHRAE temperature comfort range. Offices were frequently overcooled in the summer. All of the buildings had filters, but over half the buildings had a filter with a minimum efficiency reporting value rating of 4 or lower, which are not very effective for removing fine particles. PRACTICAL IMPLICATIONS: Most U.S. commercial buildings (96%) are small- to medium-sized, using nearly 18% of the country's energy, and sheltering a large population daily. Little is known about the ventilation systems in these buildings. This study found a wide variety of ventilation conditions, with many buildings failing to meet relevant ventilation standards. Regulators may want to consider implementing more complete building inspections at commissioning and point of sale.

146

Comfort standards and variation in exceedance for mixed-mode buildings.  

E-Print Network (OSTI)

a lower carbon society. Building Research & Information, 36(ventilated and mixed-mode buildings Part I: Thermalmodeling. Building and Environment, 44(4), 736749.

Brager, Gail; Borgeson, Sam

2010-01-01T23:59:59.000Z

147

A PILOT STUDY OF THE ACCURACY OF CO2 SENSORS IN COMMERCIAL BUILDINGS  

E-Print Network (OSTI)

A.K. (1997) Evaluating building IAQ and ventilation withcommercial and institutional buildings. Indoor Air 9: 226-Healthy and Sustainable Buildings, October 15- 17, 2007,

Fisk, William J.

2008-01-01T23:59:59.000Z

148

Secondary pollutants from ozone reactions with ventilation filters and  

NLE Websites -- All DOE Office Websites (Extended Search)

Secondary pollutants from ozone reactions with ventilation filters and Secondary pollutants from ozone reactions with ventilation filters and degradation of filter media additives Title Secondary pollutants from ozone reactions with ventilation filters and degradation of filter media additives Publication Type Journal Article Year of Publication 2011 Authors Destaillats, Hugo, Wenhao Chen, Michael G. Apte, Nuan Li, Michael Spears, Jérémie Almosni, Gregory Brunner, Jianshun(Jensen) Zhang, and William J. Fisk Journal Atmospheric Environment Volume 45 Start Page 3561 Issue 21 Pagination 3561-3568 Keywords commercial building ventilation & indoor environmental quality group, commercial building ventilation and indoor environmental quality group, energy analysis and environmental impacts department, indoor environment department, indoor environment group

149

Ventilation and Energy Saving in Auto Manufacturing Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Ventilation and Energy Saving in Auto Manufacturing Plants Ventilation and Energy Saving in Auto Manufacturing Plants Speaker(s): Alexander M. Zhivov Date: April 3, 2002 - 12:00pm Location: Bldg. 90 Dr. Alexander Zhivov is currently the chairman of the International Task Force "Autovent International" focusing on environmental problems within the Automotive Industry. This Task Force was formed in 1997 to develop the "Ventilation Guide for Automotive Industry". The guide was to be seen as a building block within the EU sponsored "Industrial Ventilation Design Guide Book" project, covering both theory and applications. In his presentation, Dr. Zhivov will talk about his work with the automotive industry, describe major highlights from the "Ventilation Guide for Automotive Industry" and talk about building, process and HVAC

150

Opaque Ventilated Facades - Performance Simulation Method and Assessment of  

NLE Websites -- All DOE Office Websites (Extended Search)

Opaque Ventilated Facades - Performance Simulation Method and Assessment of Opaque Ventilated Facades - Performance Simulation Method and Assessment of Simulated Performance Speaker(s): Emanuele Naboni Date: May 29, 2007 - 12:00pm Location: 90-3122 Opaque ventilated façade systems are increasingly used in buildings, even though their effects on the overall thermal performance of buildings have not yet been fully understood. The research reported in this presentation focuses on the modeling of such systems with EnergyPlus. Ventilated façade systems are modeled in EnergyPlus with module "Exterior Naturally Vented Cavity." Not all façade systems can be modeled with this module; this research defined the types of systems that can be modeled, and the limitations of such simulation. The performance of a ventilated façade

151

Residential pollutants and ventilation strategies: Volatile organic compounds and radon  

SciTech Connect

This paper reviews literature that reports investigations of residential ventilation and indoor air quality. Two important residential pollutant classes, volatile organic compounds and radon, are examined. A companion paper examines moisture and combustion pollutants. Control strategies recommended from the review include appropriate building design to prevent or limit the sources of the pollutants within the space, proper operation and maintenance to prevent adverse conditions from developing during the building's life and appropriate use of ventilation. The characteristics of these pollutant sources suggest that ventilation systems in residences should have several properties. They should have the extra capacity available to reduce short bursts of pollution, be located close to the expected source of the contamination, and be inexpensive. Mitigation of radon is technically a major success using a form of task ventilation. Whole-house ventilation is, at best, a secondary form of control of excess radon in residences.

Grimsrud, D.T.; Hadlich, D.E.

1999-07-01T23:59:59.000Z

152

ASHRAE and residential ventilation  

E-Print Network (OSTI)

conditioning Engineers. 2001. ASHRAE, Indoor Air QualityABOUT/IAQ_papr01.htm ASHRAE. Standard 62.2-2003:Ventilation Requirements. ASHRAE Journal, pp. 51- 55, June

Sherman, Max H.

2003-01-01T23:59:59.000Z

153

Measuring Residential Ventilation  

NLE Websites -- All DOE Office Websites (Extended Search)

measured. The local exhaust flows can be measured or can meet prescriptive ducting and fan labeling requirements that use ratings provided by the Home Ventilating Institute (HVI,...

154

System-Level Monitoring and Diagnosis of Building HVAC System.  

E-Print Network (OSTI)

??Heating, ventilation, and air conditioning (HVAC) is an indoor environmental technology that is extensively instrumented for large-scale buildings. Among all subsystems of buildings, the HVAC (more)

Wu, Siyu

2013-01-01T23:59:59.000Z

155

EnergyPlus: Energy Simulation Software for Buildings - Energy ...  

EnergyPlus is a building energy simulation program for modeling building heating, cooling, lighting, ventilating, and other energy flows. While it is based on the ...

156

Dehumidification and cooling loads from ventilation air  

SciTech Connect

The importance of controlling humidity in buildings is cause for concern, in part, because of indoor air quality problems associated with excess moisture in air-conditioning systems. But more universally, the need for ventilation air has forced HVAC equipment (originally optimized for high efficiency in removing sensible heat loads) to remove high moisture loads. To assist cooling equipment and meet the challenge of larger ventilation loads, several technologies have succeeded in commercial buildings. Newer technologies such as subcool/reheat and heat pipe reheat show promise. These increase latent capacity of cooling-based systems by reducing their sensible capacity. Also, desiccant wheels have traditionally provided deeper-drying capacity by using thermal energy in place of electrical power to remove the latent load. Regardless of what mix of technologies is best for a particular application, there is a need for a more effective way of thinking about the cooling loads created by ventilation air. It is clear from the literature that all-too-frequently, HVAC systems do not perform well unless the ventilation air loads have been effectively addressed at the original design stage. This article proposes an engineering shorthand, an annual load index for ventilation air. This index will aid in the complex process of improving the ability of HVAC systems to deal efficiently with the amount of fresh air the industry has deemed useful for maintaining comfort in buildings. Examination of typical behavior of weather shows that latent loads usually exceed sensible loads in ventilation air by at least 3:1 and often as much as 8:1. A designer can use the engineering shorthand indexes presented to quickly assess the importance of this fact for a given system design. To size those components after they are selected, the designer can refer to Chapter 24 of the 1997 ASHRAE Handbook--Fundamentals, which includes separate values for peak moisture and peak temperature.

Harriman, L.G. III [Mason-Grant, Portsmouth, NH (United States); Plager, D. [Quantitative Decision Support, Portsmouth, NH (United States); Kosar, D. [Gas Research Inst., Chicago, IL (United States)

1997-11-01T23:59:59.000Z

157

Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems  

E-Print Network (OSTI)

Rudd. 2007. Review of residential ventilation technologies.2009. EISG Final Report: Residential Integrated VentilationDesign and Operation of Residential Cooling Systems. Proc.

Sherman, Max H.

2011-01-01T23:59:59.000Z

158

Why We Ventilate  

NLE Websites -- All DOE Office Websites (Extended Search)

Why We Ventilate Why We Ventilate Title Why We Ventilate Publication Type Conference Paper LBNL Report Number LBNL-5093E Year of Publication 2011 Authors Logue, Jennifer M., Phillip N. Price, Max H. Sherman, and Brett C. Singer Conference Name Proceedings of the 2011 32nd AIVC Conference and 1st Tightvent Conference Date Published October 2011 Conference Location Brussels, Belgium Keywords indoor environment department, resave, ventilation and air cleaning Abstract It is widely accepted that ventilation is critical for providing good indoor air quality (IAQ) in homes. However, the definition of "good" IAQ, and the most effective, energy efficient methods for delivering it are still matters of research and debate. This paper presents the results of work done at the Lawrence Berkeley National Lab to identify the air pollutants that drive the need for ventilation as part of a larger effort to develop a health-based ventilation standard. First, we present results of a hazard analysis that identified the pollutants that most commonly reach concentrations in homes that exceed health-based standards or guidelines for chronic or acute exposures. Second, we present results of an impact assessment that identified the air pollutants that cause the most harm to the U.S. population from chronic inhalation in residences. Lastly, we describe the implications of our findings for developing effective ventilation standards.

159

Multifamily Ventilation - Best Practice?  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Multifamily Ventilation - Best Practice? Multifamily Ventilation - Best Practice? Dianne Griffiths April 29, 2013 Presentation Outline * Basic Objectives * Exhaust Systems * Make-up Air Systems Two Primary Ventilation Objectives 1) Providing Fresh Air - Whole-House 2) Removing Pollutants - Local Exhaust Our goal is to find the simplest solution that satisfies both objectives while minimizing cost and energy impacts. Common Solution: Align local exhaust with fresh air requirements (Ex: 25 Bath + 25 Kitchen) Exhaust-Driven Fresh Air Design * Exhaust slightly depressurizes the units * Outside air enters through leaks, cracks, or planned inlets * Widely used in the North Multifamily Ventilation Best Practice * Step 1: Understand ventilation requirements * Step 2: Select the simplest design that can

160

Design and performance of a rule-based controller in a naturally ventilated room  

Science Conference Proceedings (OSTI)

The objective of this work is to design and implement a fuzzy controller for naturally ventilated buildings. The controller is implemented in a test room using MATLABTM. Initially the controller was validated using simulated data. Simulations ... Keywords: fuzzy logic control, naturally ventilated buildings, thermal comfort

M. Eftekhari; L. Marjanovic; P. Angelov

2003-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation building 773-a" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Airflow Simulation and Energy Analysis in Ventilated Room with a New Type of Air Conditioning  

E-Print Network (OSTI)

Airflow simulation in one ventilated room with radiant heating and natural ventilation has been carried out. Three cases are compared: the closed room, the room with full openings, and the room with small openings. The radiator heating room with small openings is recommended. The airflow and thermal comfort are discussed for the last case. It is suitable for two kinds of civil buildings, housing buildings and office buildings, which take up the largest part of all functional buildings.

Liu, D.; Tang, G.; Zhao, F.

2006-01-01T23:59:59.000Z

162

Training the Next Generation of Commercial Building ...  

Science Conference Proceedings (OSTI)

... The heating, ventilation and air conditioning equipment, in these buildings, is controlled by a thermostat and other systems (lights and plugs) have ...

2012-02-14T23:59:59.000Z

163

Building Energy Software Tools Directory: Be06  

NLE Websites -- All DOE Office Websites (Extended Search)

ventilation system, heating installation and energy supply including alternatives as solar heating, solar power and heat pumps. The energy supply needed to the building is...

164

A database of PFT ventilation measurements  

SciTech Connect

About five years ago, a method for measuring the ventilation flows of a building was developed at Brookhaven National Laboratory (BNL). This method is based on the use of a family of compounds known as perfluorocarbon tracers or PFTs. Since 1982, BNL has measured ventilation in more than 4000 homes, comprising about 100 separate research projects throughout the world. This measurement set is unique in that it is the only set of ventilation measurements that acknowledge and measure the multizone characteristics of residences. Other large measurement sets assume that a home can be treated as a single well-mixed zone. This report describes the creation of a database of approximately half of the PFT ventilation measurements made by BNL over the last five years. The PFT database is currently available for use on any IBM PC or Apple Macintosh based personal computer system. In addition to its utility in modeling indoor pollutant dispersion, this database may also be useful to those people studying energy conservation, thermal comfort and heating system design in residential buildings. 2 refs.

D' Ottavio, T.W.; Goodrich, R.W.; Spandau, D.J.; Dietz, R.N.

1988-08-01T23:59:59.000Z

165

Residential Ventilation & Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 Residential Ventilation & Energy Figure 1: Annual Average Ventilation Costs of the Current U.S. Single-Family Housing Stock ($/year/house). Infiltration and ventilation in dwellings is conventionally believed to account for one-third to one-half of space conditioning energy. Unfortunately, there is not a great deal of measurement data or analysis to substantiate this assumption. As energy conservation improvements to the thermal envelope continue, the fraction of energy consumed by the conditioning of air may increase. Air-tightening programs, while decreasing energy requirements, have the tendency to decrease ventilation and its associated energy penalty at the possible expense of adequate indoor air quality. Therefore, more energy may be spent on conditioning air.

166

Why We Ventilate  

SciTech Connect

It is widely accepted that ventilation is critical for providing good indoor air quality (IAQ) in homes. However, the definition of"good" IAQ, and the most effective, energy efficient methods for delivering it are still matters of research and debate. This paper presents the results of work done at the Lawrence Berkeley National Lab to identify the air pollutants that drive the need for ventilation as part of a larger effort to develop a health-based ventilation standard. First, we present results of a hazard analysis that identified the pollutants that most commonly reach concentrations in homes that exceed health-based standards or guidelines for chronic or acute exposures. Second, we present results of an impact assessment that identified the air pollutants that cause the most harm to the U.S. population from chronic inhalation in residences. Lastly, we describe the implications of our findings for developing effective ventilation standards.

Logue, Jennifer M.; Sherman, Max H.; Price, Phil N.; Singer, Brett C.

2011-09-01T23:59:59.000Z

167

Heating, Ventilation, and Air Conditioning Renovations | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating, Ventilation, and Air Conditioning Renovations Heating, Ventilation, and Air Conditioning Renovations Heating, Ventilation, and Air Conditioning Renovations October 16, 2013 - 4:49pm Addthis Renewable Energy Options for HVAC Renovations Geothermal Heat Pumps (GHP) Solar Water Heating (SWH) Biomass Passive Solar Heating Biomass Heating Solar Ventilation Air Preheating Federal building renovations that encompass the heating, ventilation, and air conditioning (HVAC) systems in a facility provide a range of renewable energy opportunities. The primary technology option for HVAC renovations is geothermal heat pumps (GHP). Other options include leveraging a solar water heating (SWH) system to offset heating load or using passive solar heating or a biomass-capable furnace or boiler. Some facilities may also take

168

Effect of building airtightness and fan size on the performance of mechanical ventilation systems in new U.S. houses: a critique of ASHRAE standard 62.2-2003  

E-Print Network (OSTI)

as sizing a fan to deliver the design ventilation rate (fans and natural infiltration, in order to properly designfans should be as small as necessary to deliver the effective design

Roberson, J.

2004-01-01T23:59:59.000Z

169

Effect of building airtightness and fan size on the performance of mechanical ventilation systems in new U.S. houses: a critique of ASHRAE standard 62.2-2003  

E-Print Network (OSTI)

2002. When Does a House Need Passive Air Inlets? June. VolStudy on Passive Ventilation in Airtight Houses in Coldsupply. Because houses are so tight, passive vents are a

Roberson, J.

2004-01-01T23:59:59.000Z

170

ENERGY-EFFICIENT NEW COMMERCIAL BUILDINGS IN THE NORTHWEST REGION: A COMPILATION OF MEASURED DATA  

E-Print Network (OSTI)

daylighting, Heating, Ventilation, and Air Conditioning (HVAC) system(systems. Seven buildings have some earth berming; eleven have daylighting.

Piette, M.A.

2010-01-01T23:59:59.000Z

171

Optimization of Occupancy Based Demand Controlled Ventilation in Residences  

SciTech Connect

Although it has been used for many years in commercial buildings, the application of demand controlled ventilation in residences is limited. In this study we used occupant exposure to pollutants integrated over time (referred to as 'dose') as the metric to evaluate the effectiveness and air quality implications of demand controlled ventilation in residences. We looked at air quality for two situations. The first is that typically used in ventilation standards: the exposure over a long term. The second is to look at peak exposures that are associated with time variations in ventilation rates and pollutant generation. The pollutant generation had two components: a background rate associated with the building materials and furnishings and a second component related to occupants. The demand controlled ventilation system operated at a low airflow rate when the residence was unoccupied and at a high airflow rate when occupied. We used analytical solutions to the continuity equation to determine the ventilation effectiveness and the long-term chronic dose and peak acute exposure for a representative range of occupancy periods, pollutant generation rates and airflow rates. The results of the study showed that we can optimize the demand controlled airflow rates to reduce the quantity of air used for ventilation without introducing problematic acute conditions.

Mortensen, Dorthe K.; Walker, Iain S.; Sherman, Max H.

2011-05-01T23:59:59.000Z

172

Development of a Dedicated 100 Percent Ventilation Air Heat Pump  

Science Conference Proceedings (OSTI)

The concept of using dedicated 100 percent ventilation makeup air conditioning units to meet indoor air quality standards is attractive because of the inherent advantages. However, it is challenging to design and build direct expansion unitary equipment for this purpose. EPRI teamed with ClimateMaster to develop and test a prototype of a vapor compression heat pump to advance the state of the art in such equipment. The prototype unit provides deep dehumidification and cooling of ventilation air in the su...

2000-12-14T23:59:59.000Z

173

Mixed-Mode Ventilation and Building Retrofits  

E-Print Network (OSTI)

minimizing the use of air-conditioning A research reportComfort without air -conditioning in refurbished offices projects. Whether air conditioning is being reduced or

Brager, Gail; Ackerly, Katie

2010-01-01T23:59:59.000Z

174

Mixed-Mode Ventilation and Building Retrofits  

E-Print Network (OSTI)

October 1991). Energy Consumption Guide 19, Bordass, W.programme. Energy Consumption Guide 19, Energy W. 1991. Energy Efficiency in Offices: A Technical Guide for

Brager, Gail; Ackerly, Katie

2010-01-01T23:59:59.000Z

175

Summary of human responses to ventilation  

E-Print Network (OSTI)

low ventilation rates and increase in health problems:rate. As ventilation rates increase, benefits gained fordetermined that increases in ventilation rates above 10 Ls -

Seppanen, Olli A.; Fisk, William J.

2004-01-01T23:59:59.000Z

176

Infiltration in ASHRAE's Residential Ventilation Standards  

E-Print Network (OSTI)

Related to Residential Ventilation Requirements. Rudd, A. 2005. Review of Residential Ventilationand Matson N.E. , Residential Ventilation and Energy

Sherman, Max

2008-01-01T23:59:59.000Z

177

Design methods for displacement ventilation: Critical review.  

E-Print Network (OSTI)

Displacement Ventilation. ASHRAE Research project-RP-949.displacement ventilation. ASHRAE Transaction, 96 (1). Ar ???due to displacement ventilation. ASHRAE Transaction, 96 (1).

Schiavon, Stefano

2006-01-01T23:59:59.000Z

178

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Handling Unit Heating, Ventilation, and Air Conditioning (HVAC)-AHU-20984 (HVAC-FAN-E21) with HVAC-AHU-E-1, Building 773-A, Section E Southeast Roof CX(s) Applied: B1.3...

179

South Carolina | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Handling Unit Heating, Ventilation, and Air Conditioning (HVAC)-AHU-20984 (HVAC-FAN-E21) with HVAC-AHU-E-1, Building 773-A, Section E Southeast Roof CX(s) Applied: B1.3...

180

CX-004817: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Handling Unit Heating, Ventilation, and Air Conditioning (HVAC)-AHU-20984 (HVAC-FAN-E21) with HVAC-AHU-E-1, Building 773-A, Section E Southeast Roof CX(s) Applied: B1.3...

Note: This page contains sample records for the topic "ventilation building 773-a" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Measuring Residential Ventilation  

NLE Websites -- All DOE Office Websites (Extended Search)

Measuring Residential Ventilation Measuring Residential Ventilation System Airflows: Part 2 - Field Evaluation of Airflow Meter Devices and System Flow Verification J. Chris Stratton, Iain S. Walker, Craig P. Wray Environmental Energy Technologies Division October 2012 LBNL-5982E 2 Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any

182

Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems  

SciTech Connect

Existing ventilation standards, including American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE) Standard 62.2, specify continuous operation of a defined mechanical ventilation system to provide minimum ventilation, with time-based intermittent operation as an option. This requirement ignores several factors and concerns including: other equipment such as household exhaust fans that might incidentally provide ventilation, negative impacts of ventilation when outdoor pollutant levels are high, the importance of minimizing energy use particularly during times of peak electricity demand, and how the energy used to condition air as part of ventilation system operation changes with outdoor conditions. Dynamic control of ventilation systems can provide ventilation equivalent to or better than what is required by standards while minimizing energy costs and can also add value by shifting load during peak times and reducing intake of outdoor air contaminants. This article describes the logic that enables dynamic control of whole-house ventilation systems to meet the intent of ventilation standards and demonstrates the dynamic ventilation system control concept through simulations and field tests of the Residential Integrated Ventilation-Energy Controller (RIVEC).

Sherman, Max H.; Walker, Iain S.

2011-04-01T23:59:59.000Z

183

FEMP-FS--Solar Ventilation Preheating  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Installing a "solar wall" to heat air before it enters a Installing a "solar wall" to heat air before it enters a building, called solar ventilation preheating, is one of the most efficient ways of reducing energy costs using clean and renewable energy. The system works by heating outside air with a south-facing solar collector-a dark-colored wall made of sheet metal and perforated with tiny holes. Outdoor air is drawn through the holes and heated as it absorbs the wall's warmth. The warm air rises in the space between the solar wall and the building wall and is moved into the air-duct system, usually by means of a fan, to heat the building. Any additional heating needed at night or on cloudy days is supplied by the build- ing's conventional heating system. During summer months, intake air bypasses the solar collector,

184

Effect of building airtightness and fan size on the performance of mechanical ventilation systems in new U.S. houses: a critique of ASHRAE standard 62.2-2003  

E-Print Network (OSTI)

Centre. Berkshire GB EERE. 2004. Building Technologiesand Renewable Energy (EERE) sponsors the Building AmericaBarley 2001, Andrews 2002, EERE 2004, Rudd 2004). In fact,

Roberson, J.

2004-01-01T23:59:59.000Z

185

Energy efficiency buildings program, FY 1980  

SciTech Connect

A separate abstract was prepared on research progress in each group at LBL in the energy efficient buildings program. Two separate abstracts were prepared for the Windows and Lighting Program. Abstracts prepared on other programs are: Energy Performance of Buildings; Building Ventilation and Indoor Air Quality Program; DOE-21 Building Energy Analysis; and Building Energy Data Compilation, Analysis, and Demonstration. (MCW)

1981-05-01T23:59:59.000Z

186

Measure Guideline: Ventilation Cooling  

SciTech Connect

The purpose of this measure guideline on ventilation cooling is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

Springer, D.; Dakin, B.; German, A.

2012-04-01T23:59:59.000Z

187

Natural ventilation: it's as easy as opening the windows, or is it  

DOE Green Energy (OSTI)

The research consisted of an evaluation of the existing technologies available for passive cooling with an emphasis on strategies related to the use of natural ventilation. A preliminary data base for the study was established by three major efforts: 1. An extensive literature search of the architectural press was undertaken to ascertain the degree to which passive cooling strategies in general and natural ventilation in particular are designed into buildings at the present time. 2. An investigation of existing building stock profiles was undertaken to identify the existing and potential obstacles or advantages to the implementation of natural ventilation as a passive cooling strategy. The EIA Nonresidential Buildings Energy Consumption Survey and two previous PNL studies were reviewed. 3. Components 1 and 2 were followed up with telephone interviews and site visits with the architects, building owners and operators of selected buildings from 1 and 2 above to gain more specific insights into the problems and pleasures typically associated with natural ventilation.

Siebein, G.W.

1984-10-01T23:59:59.000Z

188

Effects of Material Moisture Adsorption and Desorption on Building Cooling Loads  

E-Print Network (OSTI)

Moisture adsorption and desorption (MAD) by internal building materials and furnishings can be significant in buildings. For many building cooling strategies, MAD may have overriding effects on building cooling loads. For example, natural ventilation of buildings in hot, humid climates has been shown to induce higher latent loads and higher room relative humidities during periods following the ventilation.

Fairey, P.; Kosar, D.

1988-01-01T23:59:59.000Z

189

Effect of Outside Air Ventilation Rate on Volatile Organic Compound  

NLE Websites -- All DOE Office Websites (Extended Search)

Outside Air Ventilation Rate on Volatile Organic Compound Outside Air Ventilation Rate on Volatile Organic Compound Concentrations in a Call Center Title Effect of Outside Air Ventilation Rate on Volatile Organic Compound Concentrations in a Call Center Publication Type Journal Article Year of Publication 2003 Authors Hodgson, Alfred T., David Faulkner, Douglas P. Sullivan, Dennis L. DiBartolomeo, Marion L. Russell, and William J. Fisk Journal Atmospheric Environment Volume 37 Start Page Chapter Pagination 5517-5528 Abstract A study of the relationship between outside air ventilation rate and concentrations of volatile organic compounds (VOCs) generated indoors was conducted in a call center office building. The building, with two floors and a floor area of 4,600 m2, was located in the San Francisco Bay Area, CA. Ventilation rates were manipulated with the building's four air handling units (AHUs). VOC concentrations in the AHU returns were measured on seven days during a 13-week period. VOC emission factors were determined for individual zones on days when they were operating at near steady-state conditions. The emission factor data were subjected to principal component (PC) analysis to identify groups of co-varying compounds. Potential sources of the PC vectors were ascribed based on information from the literature supporting the associations. Two vectors with high loadings of compounds including formaldehyde, 2,2,4-trimethyl-1,3- pentanediol monoisobutyrate, decamethylcyclopentasiloxane (d5 siloxane), and isoprene likely identified occupant-related sources. One vector likely represented emissions from building materials. Another vector represented emissions of solvents from cleaning products. The relationships between indoor minus outdoor VOC concentrations and ventilation rate were qualitatively examined for eight VOCs. Of these, acetaldehyde and hexanal, which were likely associated with material sources, and d5 siloxane exhibited general trends of higher concentrations at lower ventilation rates. For other compounds, the operation of the building and variations in pollutant generation and removal rates apparently combined to obscure the inverse relationship between VOC concentrations and ventilation. This result emphasizes the importance of utilizing source control measures, in addition to adequate ventilation, to limit concentrations of VOCs of concern in office buildings

190

Multifamily Individual Heating and Ventilation Systems, Lawrence, Massachusetts (Fact Sheet)  

SciTech Connect

The conversion of an older Massachusetts building into condominiums illustrates a safe, durable, and cost-effective solution for heating and ventilation systems that can potentially benefit millions of multifamily buildings. Merrimack Valley Habitat for Humanity (MVHfH) partnered with U.S. Department of Energy Building America team Building Science Corporation (BSC) to provide high performance affordable housing for 10 families in the retrofit of an existing mass masonry building (a former convent). The original ventilation design for the project was provided by a local engineer and consisted of a single large heat recovery ventilator (HRV) located in a mechanical room in the basement with a centralized duct system providing supply air to the main living space and exhausting stale air from the single bathroom in each apartment. This design was deemed to be far too costly to install and operate for several reasons: the large central HRV was oversized and the specified flows to each apartment were much higher than the ASHRAE 62.2 rate; an extensive system of ductwork, smoke and fire dampers, and duct chases were specified; ductwork required a significant area of dropped ceilings; and the system lacked individual ventilation control in the apartments

Metzger, C.; Ueno, K.; Kerrigan, P.; Wytrykowska, H.; Van Straaten, R.

2013-11-01T23:59:59.000Z

191

Procedures and Standards for Residential Ventilation System Commissioning:  

NLE Websites -- All DOE Office Websites (Extended Search)

Procedures and Standards for Residential Ventilation System Commissioning: Procedures and Standards for Residential Ventilation System Commissioning: An Annotated Bibliography Title Procedures and Standards for Residential Ventilation System Commissioning: An Annotated Bibliography Publication Type Report LBNL Report Number LBNL-6142E Year of Publication 2013 Authors J. Chris Stratton, and Craig P. Wray Keywords ASHRAE 62.2, commissioning, procedures, residential, standards, ventilation Abstract Beginning with the 2008 version of Title 24, new homes in California must comply with ANSI/ASHRAE Standard 62.2-2007 requirements for residential ventilation. Where installed, the limited data available indicate that mechanical ventilation systems do not always perform optimally or even as many codes and forecasts predict. Commissioning such systems when they are installed or during subsequent building retrofits is a step towards eliminating deficiencies and optimizing the tradeoff between energy use and acceptable IAQ. Work funded by the California Energy Commission about a decade ago at Berkeley Lab documented procedures for residential commissioning, but did not focus on ventilation systems. Since then, standards and approaches for commissioning ventilation systems have been an active area of work in Europe. This report describes our efforts to collect new literature on commissioning procedures and to identify information that can be used to support the future development of residential-ventilation-specific procedures and standards. We recommend that a standardized commissioning process and a commissioning guide for practitioners be developed, along with a combined energy and IAQ benefit assessment standard and tool, and a diagnostic guide for estimating continuous pollutant emission rates of concern in residences (including a database that lists emission test data for commercially-available labeled products).

192

Business reasons for utilizing renewable energy applications in facilities to assist in extending the life of the heating ventilation and air conditioning systems .  

E-Print Network (OSTI)

??This research is intended to discover business reasons for utilizing renewable energy applications in buildings to help extend the life of the heating, ventilation and (more)

Thompson, Glendon Raymond

2008-01-01T23:59:59.000Z

193

Honda Smart Home to Include Berkeley Lab Ventilation Controller  

NLE Websites -- All DOE Office Websites (Extended Search)

Honda Smart Home to Include Berkeley Lab Ventilation Controller Honda Smart Home to Include Berkeley Lab Ventilation Controller Honda smart home October 2013 October-November Special Focus: Energy Efficiency, Buildings, and the Electric Grid Honda Motor Company Inc is proceeding with plans to build a Smart Home in Davis, California, to demonstrate the latest in renewable energy technologies and energy efficiency. The home is expected to produce more energy than is consumed, demonstrating how the goal of "zero net energy" can be met in the near term future. A ventilation controller developed by researchers at Berkeley Lab's Environmental Energy Technologies Division (EETD) will be included in the smart home. EETD is currently working with the developers of the home control system to integrate its control algorithms.

194

Building Technologies Office: Critical Guidance for Peak Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

Effective, Low-Cost, Whole-Building Ventilation for Existing Homes Combustion Safety in Tight Houses An Overview of Gas Industry Research on Combustion Safety Model-based...

195

Buildings Energy Data Book: 5.5 Thermal Distribution Systems  

Buildings Energy Data Book (EERE)

Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume II: Thermal Distribution, Auxiliary Equipment, and Ventilation, Oct. 1999, Table A2-12, p. B2-1....

196

Buildings Energy Data Book: 5.5 Thermal Distribution Systems  

Buildings Energy Data Book (EERE)

Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume II: Thermal Distribution, Auxiliary Equipment, and Ventilation, Oct. 1999, Table 4-1, p. 4-4; and...

197

City of Frisco - Residential and Commercial Green Building Codes...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Your Home Ventilation Insulation Program Information Texas Program Type Building Energy Code '''''Note: In the spring on 2012, the city of Frisco was working to update the...

198

Economic model predictive control for building energy systems.  

E-Print Network (OSTI)

??In the United States, buildings account for nearly three quarters of electricity consumption and about 40% of greenhouse gas emissions. The heating, ventilation and air-conditioning (more)

Ma, Jingran

2012-01-01T23:59:59.000Z

199

Healthy Zero Energy Buildings (HZEB) Program- Interim Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

Healthy Zero Energy Buildings (HZEB) Program- Interim Report on Cross-Sectional Study of Contaminant Levels, Source Strengths, and Ventilation Rates in Retail Stores Title Healthy...

200

Building Energy Software Tools Directory: Tools by Country -...  

NLE Websites -- All DOE Office Websites (Extended Search)

Free software. DesignBuilder Building energy simulation, visualisation, CO2 emissions, solar shading, natural ventilation, daylighting, comfort studies, CFD, HVAC simulation,...

Note: This page contains sample records for the topic "ventilation building 773-a" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Building Energy Software Tools Directory: Tools by Subject -...  

NLE Websites -- All DOE Office Websites (Extended Search)

has been updated. DesignBuilder Building energy simulation, visualisation, CO2 emissions, solar shading, natural ventilation, daylighting, comfort studies, CFD, HVAC simulation,...

202

Study of natural ventilation design by integrating the multi-zone model with CFD simulation  

E-Print Network (OSTI)

Natural ventilation is widely applied in sustainable building design because of its energy saving, indoor air qualify and indoor thermal environment improvement. It is important for architects and engineers to accurately ...

Tan, Gang, 1974-

2005-01-01T23:59:59.000Z

203

The Potential for Wind Induced Ventilation to Meet Occupant Comfort Conditions  

E-Print Network (OSTI)

This paper describes a simple graphic tool that enables a building designer to evaluate the potential for wind induced ventilation cooling in several climate zones. Long term weather data were analyzed to determine the conditions for which available wind speed can be used to meet occupant comfort conditions. By calculating the change in enthalpy produced by a typical residential air conditioner during those hours when an occupant is uncomfortable, we were able to estimate the impact of natural ventilation on building cooling load. The graphic presentation of the results allows a designer to determine the potential energy savings of increasing the ventilation air flow rate as well as the orientation of building openings that will maximize ventilation cooling of the building occupants.

Byrne, S. J.; Huang, Y. J.; Ritschard, R. L.; Foley, D. M.

1985-01-01T23:59:59.000Z

204

Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems  

E-Print Network (OSTI)

increased cost per unit of energy at times of peak demandminimizing energy costs and operation during peak timesenergy and cost impacts of ventilation vary with weather and time

Sherman, Max H.

2011-01-01T23:59:59.000Z

205

Indoor Chemistry: Materials, Ventilation Systems, and Occupant Activities  

Science Conference Proceedings (OSTI)

Chemical processes taking place in indoor environments can significantly alter the nature and concentrations of pollutants. Exposure to secondary contaminants generated in these reactions needs to be evaluated in association with many aspects of buildings to minimize their impact on occupant health and well-being. Focusing on indoor ozone chemistry, we describe alternatives for improving indoor air quality by controlling chemical changes related to building materials, ventilation systems, and occupant activities.

Morrison, G.C.; Corsi, R.L.; Destaillats, H.; Nazaroff, W.W.; Wells, J.R.

2006-05-01T23:59:59.000Z

206

Buildings Operations and ETS Exposure  

E-Print Network (OSTI)

Mechanical systems are used in buildings to provide conditioned air, dissipate thermal loads, dilute contaminants, and maintain pressure differences. The characteristics of these systems and their operations have implications for the exposures of workers to environmental tobacco smoke (ETS) and for the control of these exposures. This review describes the general features of building ventilation systems and the efficacy of ventilation for controlling contaminant concentrations. Ventilation can reduce the concentration of ETS through dilution, but central heating, ventilating, and air conditioning (HVAC) can also move air throughout a building that has been contaminated by ETS. An understanding of HVAC systems is needed to develop models for exposures of workers to ETS.- Environ Health Perspect 107(Suppl 2):313-317 (1999).

John D. Spengler

1998-01-01T23:59:59.000Z

207

Guide to Closing and Conditioning Ventilated Crawlspaces  

SciTech Connect

This how-to guide explains the issues and concerns with conventional ventilated crawlspaces and provides prescriptive measures for improvements that will create healthier and more durable spaces. The methods described in this guide are not the only acceptable ways to treat a crawlspace but represent a proven strategy that works in many areas of the United States. The designs discussed in this guide may or may not meet the local building codes and as such will need to be researched before beginning the project.

Dickson, B.

2013-01-01T23:59:59.000Z

208

ELECTRIC POWER AND VENTILATION SYSTEM OF SILOE  

SciTech Connect

The 15-kv electric power of Siloe is supplied from a central substation, which serves all the laboratories in the Center. The substation transforms primary 3-phase power from 15 kv to 380 to 220 v. Control installations are supplied from sets of rectifiers and batteries with 127 and 48 v direct current. If the normal electric power supply fails, a 12000 kva diesel driven generator is automatically started and in a very short time supplies power. The ventilation system supplies the whole building with conditioned air, holds the shell in negative pressure, and exhausts radioactive effluents. (auth)

Mitault, G.; Faudou, J.-C.

1963-12-01T23:59:59.000Z

209

Commissioning Residential Ventilation Systems: A Combined Assessment of  

NLE Websites -- All DOE Office Websites (Extended Search)

Commissioning Residential Ventilation Systems: A Combined Assessment of Commissioning Residential Ventilation Systems: A Combined Assessment of Energy and Air Quality Potential Values Title Commissioning Residential Ventilation Systems: A Combined Assessment of Energy and Air Quality Potential Values Publication Type Report LBNL Report Number LBNL-5969E Year of Publication 2012 Authors Turner, William J. N., Jennifer M. Logue, and Craig P. Wray Date Published 07/2012 Keywords commissioning, energy, health, indoor air quality, residential, valuation, ventilation Abstract Due to changes in building codes, whole-house mechanical ventilation systems are being installed in new California homes. Few measurements are available, but the limited data suggest that these systems don't always perform as code and forecasts predict. Such deficiencies occur because systems are usually field assembled without design specifications, and there is no consistent process to identify and correct problems. The value of such activities in terms of reducing energy use and improving indoor air quality (IAQ) is poorly understood. Commissioning such systems when they are installed or during subsequent building retrofits is a step towards eliminating deficiencies and optimizing the tradeoff between energy use and IAQ.

210

Energy Basics: Ventilation Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

building through the roof, walls, and windows. Heat-reflecting roofs, insulation, and energy efficient windows will help to reduce that heat conduction. Radiation is heat...

211

Modeling study of ventilation, IAQ and energy impacts of residential mechanical ventilation  

SciTech Connect

This paper reports on a simulation study of indoor air quality, ventilation and energy impacts of several mechanical ventilation approaches in a single-family residential building. The study focused on a fictitious two-story house in Spokane, Washington and employed the multizone airflow and contaminant dispersal model CONTAM. The model of the house included a number of factors related to airflow including exhaust fan and forced-air system operation, duct leakage and weather effects, as well as factors related to contaminant dispersal including adsorption/desorption of water vapor and volatile organic compounds, surface losses of particles and nitrogen dioxide, outdoor contaminant concentrations, and occupant activities. The contaminants studied include carbon monoxide, carbon dioxide, nitrogen dioxide, water vapor, fine and coarse particles, and volatile organic compounds. One-year simulations were performed for four different ventilation approaches: a base case of envelope infiltration only, passive inlet vents in combination with exhaust fan operation, an outdoor intake duct connected to the forced-air system return balanced by exhaust fan operation, and a continuously-operated exhaust fan. Results discussed include whole building air change rates, air distribution within the house, heating and cooling loads, contaminants concentrations, and occupant exposure to contaminants.

Persily, A.K.

1998-05-01T23:59:59.000Z

212

Effect of building airtightness and fan size on the performance of mechanical ventilation systems in new U.S. houses: a critique of ASHRAE standard 62.2-2003  

E-Print Network (OSTI)

Determining Air Leakage Rate by Fan Pressurization. Americanof Building Envelopes by the Fan Pressurization Method.Dominated by Strong Exhaust Fan. ASHRAE Transactions. Vol

Roberson, J.

2004-01-01T23:59:59.000Z

213

Ventilation and Work Performance in Office Work  

E-Print Network (OSTI)

A). When ventilation rate increases from V to V\\, the ratiowork when ventilation rates increase. Field studies withper 10 L/s person increase in ventilation rate and relative

Seppanen, Olli; Fisk, William J.; Lei, Q.H.

2005-01-01T23:59:59.000Z

214

RESIDENTIAL VENTILATION AND ENERGY CHARACTERISTICS*  

E-Print Network (OSTI)

while still providing ventilation for adequate indoor air quality. Various ASHRAE Standards (e.g., 62 to the ASHRAE Standard 119 levels while still providing adequate ventilation through infiltration or mechanical alternatives. Various ASHRAE Standards are used to assist us. ASHRAE Standard 119-19885 classifies the envelope

215

Innovative Energy Efficient Industrial Ventilation  

E-Print Network (OSTI)

This paper was written to describe an innovative on-demand industrial ventilation system for woodworking, metalworking, food processing, pharmaceutical, chemical, and other industries. Having analyzed existing industrial ventilation in 130 factories, we found striking dichotomy between the classical static design of ventilation systems and constantly changing workflow and business demands. Using data from real factories, we are able to prove that classical industrial ventilation design consumes 70 % more energy than necessary. Total potential electricity saving achieved by using on-demand systems instead of classically designed industrial ventilation in the U.S. could be 26 billion kWh. At the average electricity cost of 7 cents per kWh, this would represent $1.875 billion. Eighty such systems are already installed in the USA and European Union.

Litomisky, A.

2005-01-01T23:59:59.000Z

216

Why We Ventilate - Recent Advances  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WHY WE VENTILATE: WHY WE VENTILATE: Recent Advances Max Sherman BA Stakeholders meeting ASHRAE BIO  Distinguished Lecturer  Exceptional Service Award  Board of Directors; TechC  Chair of committees:  62.2; Standards Committee  TC 4.3; TC 2.5  Holladay Distinguished Fellow OVERVIEW QUESTIONS  What is Ventilation? What is IAQ?  What functions does it provide?  How much do we need? Why?  How should ventilations standards be made? LBL has working on these problems Who Are You?  Engineers (ASHRAE Members & not);  architects,  contractors,  reps,  builders,  vendors,  code officials WHAT IS VENTILATION  Medicine: To Exchange Air In the Lungs  Latin: Ventilare, "to expose to the wind"  Today: To Bring In Outdoor Air And Replace

217

Infiltration as ventilation: Weather-induced dilution  

NLE Websites -- All DOE Office Websites (Extended Search)

Infiltration as ventilation: Weather-induced dilution Title Infiltration as ventilation: Weather-induced dilution Publication Type Report LBNL Report Number LBNL-5795E Year of...

218

Equivalence in Ventilation and Indoor Air Quality  

NLE Websites -- All DOE Office Websites (Extended Search)

62) specify minimum ventilation rates without taking into account the impact of those rates on IAQ. Innovative ventilation management is often a desirable element of reducing...

219

Solar Ventilation Preheating Resources and Technologies | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Preheating Resources and Technologies Solar Ventilation Preheating Resources and Technologies October 7, 2013 - 11:50am Addthis Photo of a dark brown perforated metal...

220

Improving Ventilation and Saving Energy: Relocatable Classroom...  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving Ventilation and Saving Energy: Relocatable Classroom Field Study Interim Report Title Improving Ventilation and Saving Energy: Relocatable Classroom Field Study Interim...

Note: This page contains sample records for the topic "ventilation building 773-a" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Whole-House Ventilation | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

air quality. There are four basic mechanical whole-house ventilation systems -- exhaust, supply, balanced, and energy recovery. Comparison of Whole-House Ventilation Systems...

222

RESIDENTIAL INTEGRATED VENTILATION ENERGY CONTROLLER - Energy ...  

A residential controller is described which is used to manage the mechanical ventilation systems of a home, installed to meet whole-house ventilation requirements, at ...

223

Development of a Residential Integrated Ventilation Controller  

E-Print Network (OSTI)

Passive Ventilation by Constant Area Vents to Maintain Indoor Air Quality in Houses. Passive Ventilation by Constant Area Vents to Maintain Indoor Air Quality in Houses."

Walker, Iain

2013-01-01T23:59:59.000Z

224

Energy-saving strategies with personalized ventilation in cold climates  

E-Print Network (OSTI)

designs of personalized ventilation, International Journal of heating, Ventilation and Refrigeration

Schiavon, Stefano; Melikov, Arsen

2009-01-01T23:59:59.000Z

225

Effect of building airtightness and fan size on the performance of mechanical ventilation systems in new U.S. houses: a critique of ASHRAE standard 62.2-2003  

E-Print Network (OSTI)

pg 4. 2000c. Industry News: Vermont to Require Mechanicalpgs 816-827. ICCI. 2003. Vermont Residential Building EnergyNew Construction in Vermont: A Review of Codes, Standards,

Roberson, J.

2004-01-01T23:59:59.000Z

226

Subsurface Ventilation System Description Document  

Science Conference Proceedings (OSTI)

The Subsurface Ventilation System supports the construction and operation of the subsurface repository by providing air for personnel and equipment and temperature control for the underground areas. Although the system is located underground, some equipment and features may be housed or located above ground. The system ventilates the underground by providing ambient air from the surface throughout the subsurface development and emplacement areas. The system provides fresh air for a safe work environment and supports potential retrieval operations by ventilating and cooling emplacement drifts. The system maintains compliance within the limits established for approved air quality standards. The system maintains separate ventilation between the development and waste emplacement areas. The system shall remove a portion of the heat generated by the waste packages during preclosure to support thermal goals. The system provides temperature control by reducing drift temperature to support potential retrieval operations. The ventilation system has the capability to ventilate selected drifts during emplacement and retrieval operations. The Subsurface Facility System is the main interface with the Subsurface Ventilation System. The location of the ducting, seals, filters, fans, emplacement doors, regulators, and electronic controls are within the envelope created by the Ground Control System in the Subsurface Facility System. The Subsurface Ventilation System also interfaces with the Subsurface Electrical System for power, the Monitored Geologic Repository Operations Monitoring and Control System to ensure proper and safe operation, the Safeguards and Security System for access to the emplacement drifts, the Subsurface Fire Protection System for fire safety, the Emplacement Drift System for repository performance, and the Backfill Emplacement and Subsurface Excavation Systems to support ventilation needs.

Eric Loros

2001-07-25T23:59:59.000Z

227

Subsurface Ventilation System Description Document  

Science Conference Proceedings (OSTI)

The Subsurface Ventilation System supports the construction and operation of the subsurface repository by providing air for personnel and equipment and temperature control for the underground areas. Although the system is located underground, some equipment and features may be housed or located above ground. The system ventilates the underground by providing ambient air from the surface throughout the subsurface development and emplacement areas. The system provides fresh air for a safe work environment and supports potential retrieval operations by ventilating and cooling emplacement drifts. The system maintains compliance within the limits established for approved air quality standards. The system maintains separate ventilation between the development and waste emplacement areas. The system shall remove a portion of the heat generated by the waste packages during preclosure to support thermal goals. The system provides temperature control by reducing drift temperature to support potential retrieval operations. The ventilation system has the capability to ventilate selected drifts during emplacement and retrieval operations. The Subsurface Facility System is the main interface with the Subsurface Ventilation System. The location of the ducting, seals, filters, fans, emplacement doors, regulators, and electronic controls are within the envelope created by the Ground Control System in the Subsurface Facility System. The Subsurface Ventilation System also interfaces with the Subsurface Electrical System for power, the Monitored Geologic Repository Operations Monitoring and Control System to ensure proper and safe operation, the Safeguards and Security System for access to the emplacement drifts, the Subsurface Fire Protection System for fire safety, the Emplacement Drift System for repository performance, and the Backfill Emplacement and Subsurface Excavation Systems to support ventilation needs.

NONE

2000-10-12T23:59:59.000Z

228

Does Mixing Make Residential Ventilation More Effective?  

E-Print Network (OSTI)

2009. ASHRAE Handbook of Fundamentals, Ventilation andleakage. The ASHRAE Handbook of fundamentals (ASHRAE 2009),

Sherman, Max

2011-01-01T23:59:59.000Z

229

Experimental Evaluation of Ventilation Systems in a Single-Family Dwelling  

E-Print Network (OSTI)

The French regulation on residential building ventilation relies on an overall and continuous air renewal. The fresh air should enter the building through the "habitable rooms" while the polluted air is extracted in the service rooms. In this way, internal air is drained from the lowest polluted rooms to the highest polluted ones. However, internal pressure equilibrium and air movements in buildings result from the combined effects ventilation system and parameters such as wind, temperature difference or doors opening. This paper aims to analyse the influence of these parameters on pollutant transfer within buildings. In so doing, experiments are carried out using tracer gas release for representing pollution sources in an experimental house. Mechanical exhaust, balanced and natural ventilation systems are thus tested. Results show the followings: - For all cases, internal doors' opening causes the most important pollutant spread. - When doors are closed, the best performances are obtained with balanced venti...

Koffi, Juslin; Akoua, Jean-Jacques

2010-01-01T23:59:59.000Z

230

Faade apertures optimization: integrating cross-ventilation performance analysis in fluid dynamics simulation  

Science Conference Proceedings (OSTI)

Performance-oriented design has as a primary aim to introduce spaces that achieve acceptable levels of human comfort. Wind-induced airflow plays a significant role in the improving occupants' comfort in a building. This paper explores the extent to which ... Keywords: building performance simulation, generative design, multiple criteria optimization, parametric design, wind-induced ventilation

Chrysanthi (Sandy) Karagkouni; Ava Fatah gen Schieck; Martha Tsigkari; Angelos Chronis

2013-04-01T23:59:59.000Z

231

Ventilation Model and Analysis Report  

Science Conference Proceedings (OSTI)

This model and analysis report develops, validates, and implements a conceptual model for heat transfer in and around a ventilated emplacement drift. This conceptual model includes thermal radiation between the waste package and the drift wall, convection from the waste package and drift wall surfaces into the flowing air, and conduction in the surrounding host rock. These heat transfer processes are coupled and vary both temporally and spatially, so numerical and analytical methods are used to implement the mathematical equations which describe the conceptual model. These numerical and analytical methods predict the transient response of the system, at the drift scale, in terms of spatially varying temperatures and ventilation efficiencies. The ventilation efficiency describes the effectiveness of the ventilation process in removing radionuclide decay heat from the drift environment. An alternative conceptual model is also developed which evaluates the influence of water and water vapor mass transport on the ventilation efficiency. These effects are described using analytical methods which bound the contribution of latent heat to the system, quantify the effects of varying degrees of host rock saturation (and hence host rock thermal conductivity) on the ventilation efficiency, and evaluate the effects of vapor and enhanced vapor diffusion on the host rock thermal conductivity.

V. Chipman

2003-07-18T23:59:59.000Z

232

Co-simulation for performance prediction of integrated building and HVAC systems -An analysis of solution  

E-Print Network (OSTI)

Co-simulation for performance prediction of integrated building and HVAC systems - An analysis performance simulation of buildings and heating, ventilation and air- conditioning (HVAC) systems can help, heating, ventilation and air-conditioning (HVAC) systems are responsible for 10%-60% of the total building

233

Internal Microclimate Resulting From Ventilated Attics in Hot and Humid Regions  

E-Print Network (OSTI)

Ventilated spaces in the built environment create unique and beneficial microclimates. While the current trends in building physics suggest sealing attics and crawlspaces, comprehensive research still supports the benefits of the ventilated microclimate. Data collected at the University of Florida Energy Park show the attic environment of asphalt shingled roofs to be typically hotter than the outdoor conditions, but when properly ventilated sustains a much lower relative humidity. The hot, humid regions of the United States can utilize this internally convective, exchanging air mass to provide stable moisture levels within attic spaces. Positioning the buildings primary boundary at the ceiling deck allows for utilization of this buffer climate to minimize moisture trapping in insulation and maximize the insulations thermal benefits. This investigation concludes the conditions in a ventilated attic are stable through seasonal changes and promotes cost effective, energy efficient climate control of unconditioned spaces in hot, humid regions.

Mooney, B. L.; Porter, W. A.

2010-08-01T23:59:59.000Z

234

Ozone Reductions Using Residential Building Envelopes  

SciTech Connect

Ozone is an air pollutant with that can have significant health effects and a significant source of ozone in some regions of California is outdoor air. Because people spend the vast majority of their time indoors, reduction in indoor levels of ozone could lead to improved health for many California residents. Ozone is removed from indoor air by surface reactions and can also be filtered by building envelopes. The magnitude of the envelope impact depends on the specific building materials that the air flows over and the geometry of the air flow paths through the envelope that can be changes by mechanical ventilation operation. The 2008 Residential Building Standards in California include minimum requirements for mechanical ventilation by referencing ASHRAE Standard 62.2. This study examines the changes in indoor ozone depending on the mechanical ventilation system selected to meet these requirements. This study used detailed simulations of ventilation in a house to examine the impacts of different ventilation systems on indoor ozone concentrations. The simulation results showed that staying indoors reduces exposure to ozone by 80percent to 90percent, that exhaust ventilation systems lead to lower indoor ozone concentrations, that opening of windows should be avoided at times of high outdoor ozone, and that changing the time at which mechanical ventilation occurs has the ability to halve exposure to ozone. Future work should focus on the products of ozone reactions in the building envelope and the fate of these products with respect to indoor exposures.

Walker, Iain S.; Sherman, Max; Nazaroff, William W.

2009-02-01T23:59:59.000Z

235

Development of an integrated building energy simulation with optimal central plant control.  

E-Print Network (OSTI)

??The purpose of computer-based building energy analysis programs is to assist heating, ventilation, and air conditioning (HVAC) engineers in the design process and to help (more)

Taylor, Russell Derek

1996-01-01T23:59:59.000Z

236

Comfort standards and variation in exceedance for mixed-mode buildings.  

E-Print Network (OSTI)

of Building Services Engineers (CIBSE) (2000) MixedMode Ventilation CIBSE ApplicationsManual AM13, CIBSE, London. Chartered Institution of

Brager, Gail; Borgeson, Sam

2010-01-01T23:59:59.000Z

237

Night-time naturally ventilated offices: Statistical simulations of window-use patterns from field monitoring  

Science Conference Proceedings (OSTI)

This paper investigates occupant behaviour of window-use in night-time naturally ventilated offices on the basis of a pilot field study, conducted during the summers of 2006 and 2007 in Cambridge, UK, and then demonstrates the effects of employing night-time ventilation on indoor thermal conditions using predictive models of occupant window-use. A longitudinal field study shows that occupants make good use of night-time natural ventilation strategies when provided with openings that allow secure ventilation, and that there is a noticeable time of day effect in window-use patterns (i.e. increased probability of action on arrival and departure). We develop logistic models of window-use for night-time naturally ventilated offices, which are subsequently applied to a behaviour algorithm, including Markov chains and Monte Carlo methods. The simulations using the behaviour algorithm demonstrate a good agreement with the observational data of window-use, and reveal how building design and occupant behaviour collectively affect the thermal performance of offices. They illustrate that the provision of secure ventilation leads to more frequent use of the window, and thus contributes significantly to the achievement of a comfortable indoor environment during the daytime occupied period. For example, the maximum temperature for a night-time ventilated office is found to be 3 C below the predicted value for a daytime-only ventilated office. (author)

Yun, Geun Young [Department of Architectural Engineering, Kyung Hee University, Yongin 446-701 (Korea); Steemers, Koen [Department of Architecture, University of Cambridge, 1-5 Scroope Terrace, Cambridge CB2 1PX (United Kingdom)

2010-07-15T23:59:59.000Z

238

Heating, Ventilation and Air Conditioning Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Presented By: WALTER E. JOHNSTON, PE Presented By: WALTER E. JOHNSTON, PE CEM, CEA, CLEP, CDSM, CPE Ventilation and Air Conditioning (HVAC) system is to provide and maintain a comfortable environment within a building for the occupants or for the process being conducted Many HVAC systems were not designed with energy efficiency as one of the design factors 3 Air Air is the major conductor of heat. Lack of heat = air conditioning OR 4 Btu - Amount of heat required to raise one pound of water 1 F = 0.252 KgCal 1 Pound of Water = About 1 Pint of Water ~ 1 Large Glass 1 Kitchen Match Basics of Air Conditioning = 1 Btu 5 = 6 Low Cost Cooling Unit 7 8 Typical Design Conditions 75 degrees F temperature 50% relative humidity 30 - 50 FPM air movement

239

Classroom HVAC: Improving ventilation and saving energy -- field study plan  

E-Print Network (OSTI)

in this study. Classroom HVAC: Improving Ventilation andV8doc.sas.com/sashtml. Classroom HVAC: Improving VentilationBerkeley, CA 94720. Classroom HVAC: Improving Ventilation

Apte, Michael G.; Faulkner, David; Hodgson, Alfred T.; Sullivan, Douglas P.

2004-01-01T23:59:59.000Z

240

On The Valuation of Infiltration towards Meeting Residential Ventilation Needs  

E-Print Network (OSTI)

Literature Related to Residential Ventilation Requirements.A. 2005. Review of Residential Ventilation Technologies,M.H. and Matson N.E. , Residential Ventilation and Energy

Sherman, Max H.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation building 773-a" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

5.1 Building Materials/Insulation 5.1 Building Materials/Insulation 5.2 Windows 5.3 Heating, Cooling, and Ventilation Equipment 5.4 Water Heaters 5.5 Thermal Distribution Systems 5.6 Lighting 5.7 Appliances 5.8 Active Solar Systems 5.9 On-Site Power 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 5 contains market and technology data on building materials and equipment. Sections 5.1 and 5.2 cover the building envelope, including building assemblies, insulation, windows, and roofing. Sections 5.3 through 5.7 cover equipment used in buildings, including space heating, water heating, space cooling, lighting, thermal distribution (ventilation and hydronics), and appliances. Sections 5.8 and 5.9 focus on energy production from on-site power equipment. The main points from this chapter are summarized below:

242

Automated CO2 and VOC-Based Control of Ventilation Systems Under Real-Time Pricing  

Science Conference Proceedings (OSTI)

The potential for shedding or shifting building electric loads in response to real-time prices (RTP) can be significant. Such a strategy provides cost reduction opportunities for commercial building customers as well as load reduction opportunities for electric utilities. This report describes the successful demonstration of an integrated RTP sensor/control system designed to increase the energy efficiency of building ventilation systems, while maintaining indoor air quality via CO2 and volatile organic ...

1998-11-02T23:59:59.000Z

243

PROGRESS IN ENERGY EFFICIENT BUILDINGS  

SciTech Connect

Recent accomplishments in buildings energy research by the diverse groups in the Energy Efficient Buildings Program at Lawrence Berkeley Laboratory (LBL) are summarized. We review technological progress in the areas of ventilation and indoor air quality, buildings energy performance, computer modeling, windows, and artificial lighting. The need for actual consumption data to track accurately the improving energy efficiency of buildings is being addressed by the Buildings Energy Data (BED) Group at LBL. We summarize results to date from our Building Energy Use Compilation and Analysis (BECA) studies, which include time trends in the energy consumption of new commercial and new residential buildings, the measured savings being attained by both commercial and residential retrofits, and the cost-effectiveness of buildings energy conservation measures. We also examine recent comparisons of predicted vs. actual energy usage/savings, and present the case for building energy use labels.

Wall, L.W.; Rosenfeld, A.H.

1982-12-01T23:59:59.000Z

244

Midlevel Ventilations Constraint on Tropical Cyclone Intensity  

Science Conference Proceedings (OSTI)

Midlevel ventilation, or the flux of low-entropy air into the inner core of a tropical cyclone (TC), is a hypothesized mechanism by which environmental vertical wind shear can constrain a tropical cyclones intensity. An idealized framework based ...

Brian Tang; Kerry Emanuel

2010-06-01T23:59:59.000Z

245

Whole-House Ventilation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Whole-House Ventilation Whole-House Ventilation Whole-House Ventilation May 30, 2012 - 2:37pm Addthis A whole-house ventilation system with dedicated ducting in a new energy-efficient home. | Photo courtesy of ©iStockphoto/brebca. A whole-house ventilation system with dedicated ducting in a new energy-efficient home. | Photo courtesy of ©iStockphoto/brebca. What does this mean for me? Whole-house ventilation is critical in an energy-efficient home to maintain adequate indoor air quality and comfort. The whole-house ventilation system you choose will depend upon your climate, budget, and the availability of experienced contractors in your area. Energy-efficient homes -- both new and existing -- require mechanical ventilation to maintain indoor air quality. There are four basic mechanical

246

Ventilation Controller for Improved Indoor Air Quality  

Iain Walker and colleagues at Berkeley Lab have developed a dynamic control system for whole-house ventilation fans that provides maximal air quality while reducing by 18-44% the energy spent on ventilation. The system, the Residential Integrated ...

247

Does Mixing Make Residential Ventilation More Effective?  

E-Print Network (OSTI)

under Contract No. DE-AC02-05CH11231. References ASHRAE.2009. ASHRAE Handbook of Fundamentals, Ventilation andChapter. Atlanta GA: ASHRAE. ASHRAE. 2007. Ventilation and

Sherman, Max

2011-01-01T23:59:59.000Z

248

May 1999 LBNL -42975 ASHRAE'S RESIDENTIAL VENTILATION  

E-Print Network (OSTI)

May 1999 LBNL - 42975 ASHRAE'S RESIDENTIAL VENTILATION STANDARD: EXEGESIS OF PROPOSED STANDARD 62 Berkeley National Laboratory Berkeley, CA 94720 April 1999 In January 1999 ASHRAE's Standard Project, approved ASHRAE's first complete standard on residential ventilation for public review

249

Ventilation Based on ASHRAE 62.2  

E-Print Network (OSTI)

Indoor Ventilation Based on ASHRAE 62.2 Arnold Schwarzenegger Governor California Energy Commission Ventilation (ASHRAE 62.2) Minimum Best Practices Guide - Exhaust-Only Ventilation Introduction: The California Energy Commission has created the following guide to provide assistance in complying with ANSI/ASHRAE

250

Beyond Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

without compromising future generations SUSTAINABLE INL Buildings Beyond Buildings Sustainability Beyond Buildings INL is taking sustainability efforts "beyond buildings" by...

251

Building Description  

Science Conference Proceedings (OSTI)

... a number of environmentally progressive features, such as natural ventilation, energy recovery, a biological wastewater treatment process, and ...

2005-10-07T23:59:59.000Z

252

Laboratory Evaluation of Energy Recovery Ventilators  

SciTech Connect

As deep retrofit measures and new construction practices are realizing lower infiltration levels in increasingly tighter envelopes, performance issues can arise with water vapor intrusion in building envelopes and the operation of exhaust only appliances in a depressurized home. Unbalancing (reducing exhaust airflows) of an energy recovery ventilator (ERV) can provide a means to supply makeup air and reduce the level of home depressurization to mitigate these issues, helping realize exhaust-only appliance rated performance, achieve safe atmospherically vented combustion, and/or improve envelope durability. ERV balanced flow operation is well documented, but there is not public domain information available that empirically establishes the effect of unbalanced flow on sensible and latent exchange, especially in the now dominant membrane type ERV used in residential applications. This laboratory evaluation focused on unbalanced flow performance of a membrane type ERV delivering 200 standard cubic feet per minute (SCFM )of supply air. The dataset generated yielded a limited set of curve fit algorithms for unbalanced flow performance that can be used to supplement current modeling approaches in simulation tools like EnergyPlus. Building America BA teams can then utilize such models to analyze whole house effects and determine best practices associated with unbalanced ERV operations.

Kosar, D.

2013-05-01T23:59:59.000Z

253

Effect of outside air ventilation rate on VOC concentrations and emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Effect of outside air ventilation rate on VOC concentrations and emissions Effect of outside air ventilation rate on VOC concentrations and emissions in a call center Title Effect of outside air ventilation rate on VOC concentrations and emissions in a call center Publication Type Conference Proceedings Year of Publication 2002 Authors Hodgson, Alfred T., David Faulkner, Douglas P. Sullivan, Dennis L. DiBartolomeo, Marion L. Russell, and William J. Fisk Conference Name Proceedings of the Indoor Air 2002 Conference, Monterey, CA Volume 2 Pagination 168-173 Publisher Indoor Air 2002, Santa Cruz, CA Abstract A study of the relationship between outside air ventilation rate and concentrations of VOCs generated indoors was conducted in a call center. Ventilation rates were manipulated in the building's four air handling units (AHUs). Concentrations of VOCs in the AHU returns were measured on 7 days during a 13- week period. Indoor minus outdoor concentrations and emission factors were calculated. The emission factor data was subjected to principal component analysis to identify groups of co-varying compounds based on source type. One vector represented emissions of solvents from cleaning products. Another vector identified occupant sources. Direct relationships between ventilation rate and concentrations were not observed for most of the abundant VOCs. This result emphasizes the importance of source control measures for limiting VOC concentrations in buildings

254

The California Healthy Buildings Study  

NLE Websites -- All DOE Office Websites (Extended Search)

The California Healthy Buildings Study The California Healthy Buildings Study Buildings can cause health problems - that relationship is well-known. When asked to fill out questionnaires, occupants of office buildings often report that symptoms such as eye and nose irritation, headache, fatigue, and itchy skin are more frequent or severe when they are inside rather than outside their offices. In "sick" buildings, the frequency of these symptoms becomes unusually high. Typically, health officials deal reactively with complaints in office buildings by investigating only the sick building. They interview employees, measure indoor pollutant concentrations, and inspect ventilation systems. However, in many buildings, these measures fail to identify the causes of health complaints. During the past five years, researchers have started to use cross-sectional

255

Building Envelopes | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Envelope Envelope SHARE Building Envelopes MFEL.jpg The building envelope-the materials that separate the indoor and outdoor environments-primarily determines the amount of energy required to heat, cool, and ventilate a building. The envelope also can significantly influence energy needs in areas accessible to sunlight. To cost-effectively improve the energy efficiency, moisture-durability, and environmental sustainability of building envelopes, ORNL is exploring new and emerging materials, components, and systems as well as the fundamentals of heat, air, and moisture transfer. Research is also focused on multifunctional solutions where the envelope serves as a filter that selectively accepts or rejects solar radiation and outdoor air, depending on the need for heating, cooling, ventilation, and lighting.

256

ASHRAE's Residential Ventilation Standard: Exegesis of Proposed Standard 62.2  

E-Print Network (OSTI)

In February 2000, ASHRAE's Standard Project Committee on "Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings", SPC 62.2P7 recommended ASHRAE's first complete standard on residential ventilation for public review. The standard is an attempt by the Society to address concerns over indoor air quality in dwellings and to set minimum standards that would allow for energy efficiency measures to be evaluated. The standard has requirements for whole-house ventilation, local exhaust ventilation, and source control. In addition to code-intended requirements, the standard also contains guidance information for the designer and/or user of the standard. This report summarizes the draft standard and attempts to address questions and concerns that those potentially affected by the standard might have. This report may also be of use to those considering public review comments on the draft standard.

Sherman, M.

2000-01-01T23:59:59.000Z

257

A Guide to Building Commissioning  

SciTech Connect

Commissioning is the process of verifying that a building's heating, ventilation, and air conditioning (HVAC) and lighting systems perform correctly and efficiently. Without commissioning, system and equipment problems can result in higher than necessary utility bills and unexpected and costly equipment repairs. This report reviews the benefits of commissioning, why it is a requirement for Leadership in Energy and Environmental Design (LEED) certification, and why building codes are gradually adopting commissioning activities into code.

Baechler, Michael C.

2011-09-01T23:59:59.000Z

258

A Guide to Building Commissioning  

SciTech Connect

Commissioning is the process of verifying that a building's heating, ventilation, and air conditioning (HVAC) and lighting systems perform correctly and efficiently. Without commissioning, system and equipment problems can result in higher than necessary utility bills and unexpected and costly equipment repairs. This report reviews the benefits of commissioning, why it is a requirement for Leadership in Energy and Environmental Design (LEED) certification, and why building codes are gradually adopting commissioning activities into code.

Baechler, Michael C.

2011-09-01T23:59:59.000Z

259

Changing Ventilation Rates in U.S. Offices: Implications for Health, Work  

NLE Websites -- All DOE Office Websites (Extended Search)

Changing Ventilation Rates in U.S. Offices: Implications for Health, Work Changing Ventilation Rates in U.S. Offices: Implications for Health, Work Performance, Energy, and Associated Economics Title Changing Ventilation Rates in U.S. Offices: Implications for Health, Work Performance, Energy, and Associated Economics Publication Type Journal Article Refereed Designation Refereed LBNL Report Number LBNL-5035E Year of Publication 2012 Authors Fisk, William J., Douglas R. Black, and Gregory Brunner Journal Building and Environment Volume 47 Pagination 368-372 Date Published 01/2012 Keywords cost-benefit analysis, economizer, health, office, ventilation rate, work performance Abstract This paper provides quantitative estimates of benefits and costs of providing different amounts of outdoor air ventilation in U.S. offices. For four scenarios that modify ventilation rates, we estimated changes in sick building syndrome (SBS) symptoms, work performance, short-term absence, and building energy consumption. The estimated annual economic benefits were $13 billion from increasing minimum ventilation rates (VRs) from 8 to 10 L/s per person, $38 billion from increasing minimum VRs from 8 to 15 L/s per person, and $33 billion from increasing VRs by adding outdoor air economizers for the 50% of the office floor area that currently lacks economizers. The estimated $0.04 billion in annual energy-related benefits of decreasing minimum VRs from 8 to 6.5 L/s per person are very small compared to the projected annual costs of $12 billion. Benefits of increasing minimum VRs far exceeded energy costs while adding economizers yielded health, performance, and absence benefits with energy savings.

260

Building Technologies Office: Commercial Building Energy Asset Score  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Asset Score Energy Asset Score Photo of a laptop with energy asset score image on the screen The free online Asset Scoring Tool will generate a score based on inputs about the building envelope and buildling systems (heating, ventilation, cooling, lighting, and service hot water). Launch Energy Asset Score The U.S. Department of Energy (DOE) is developing a Commercial Building Energy Asset Score (Asset Score) program to allow building owners and managers to more accurately assess building energy performance. The Asset Score program will act as a national standard and will include the Commercial Building Energy Asset Scoring Tool (Asset Scoring Tool) to evaluate the physical characteristics and as-built energy efficiency of buildings. The Asset Scoring Tool will identify cost-effective energy efficient improvements that, if implemented, can reduce energy bills and potentially improve building asset value. View the Asset Score fact sheet for a brief overview of the program.

Note: This page contains sample records for the topic "ventilation building 773-a" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Passive ventilation for residential air quality control  

SciTech Connect

Infiltration has long served the residential ventilation needs in North America. In Northern Europe it has been augmented by purpose-provided natural ventilation systems--so-called passive ventilation systems--to better control moisture problems in dwellings smaller than their North American counterparts and in a generally wetter climate. The growing concern for energy consumption, and the environmental impacts associated with it, has however led to tighter residential construction standards on both continents and as a result problems associated with insufficient background ventilation have surfaced. Can European passive ventilation systems be adapted for use in North American dwellings to provide general background ventilation for air quality control? This paper attempts to answer this question. The configuration, specifications and performance of the preferred European passive ventilation system--the passive stack ventilation (PSV) system--will be reviewed; innovative components and system design strategies recently developed to improve the traditional PSV system performance will be outlined; and alternative system configurations will be presented that may better serve the climatic extremes and more urban contexts of North America. While these innovative and alternative passive ventilation systems hold great promise for the future, a rational method to size the components of these systems to achieve the control and precision needed to meet the conflicting constraints of new ventilation and air tightness standards has not been forthcoming. Such a method will be introduced in this paper and an application of this method will be presented.

Axley, J.

1999-07-01T23:59:59.000Z

262

A field demonstration of automatic restroom ventilation control to reduce energy consumption  

SciTech Connect

This report documents the motion sensor evaluation task for the Hanford Energy Management Committee (HEMC) performed by Pacific Northwest Laboratory (PNL) to support the energy reduction mission. The study included installing automatic exhaust ventilation controls in the restrooms of the 1103 Building, 100N area. The goal of this task was to measure the benefit of automatically controlling exhaust ventilation in restrooms of an office building on the Hanford Site. The HEMC belief is that the value of controlling the fans is not limited to the power consumed by the fans, but also includes the value invested to condition (heat or cool) the makeup air. The air exhausted to the exterior of the building must ultimately be replaced by unconditioned air from the outside. This outside air must then by conditioned to maintain the comfort of building occupants. 6 figs., 1 tab.

Doggett, W.H.; Merrick, S.B.; Richman, E.E.

1989-09-01T23:59:59.000Z

263

A semiotic multi-agent system for intelligent building control  

Science Conference Proceedings (OSTI)

Intelligent agents have often been used within intelligent buildings for autonomous actuation of heating, ventilation and air conditioning systems (HVAC) within intelligent buildings. Ubiquitous wireless sensors send environmental data such as temperature, ... Keywords: actuators, affordance, ambient intelligence, collaborative negotiation, intelligent buildings, multi-agent systems, personalisation, pervasive space, semiotics, wireless sensor network

Darren Booy; Kecheng Liu; Bing Qiao; Chris Guy

2008-02-01T23:59:59.000Z

264

Humidity Control Systems for Civil Buildings in Hot Summer and Cold Winter Zone in China  

E-Print Network (OSTI)

In the hot summer and cold winter zone, moisture-laden outside air poses real problems for proper ventilation, air-conditioner sizing, and strategies to overcome the reduced dehumidification capacity of more energy-efficient air-conditioning (AC) systems. Based on our research, this paper further provides the rate and characteristics of moisture resources in civil buildings. Although the ventilation rate is limited with the minimum ventilation rate in the sanitation ventilation mode of the air conditioning period, dehumidifying period and heating period, the ventilation rate is unrestricted in thermal comfort ventilation mode. It is suggested that the operating conditions of the forced ventilation system should be determined on both outdoor air temperature and outdoor air relative humidity (RH). Therefore, the ventilation system should satisfy these requirements during prolonged periods of high ambient humidity. After a detailed presentation of the technical issues, this paper gives specific recommendations for providing adequate ventilation, moisture control and dehumidifying for buildings in hot-humid climates, and takes both the indoor environmental quality (IEQ) and the building energy efficiency into account. Supplying conditioned ventilation air to the buildings appears to be a promising approach to solve the heath problems associated with excessive indoor RH by installation of a separately controlled unit to dry and cool outdoor air.

Yu, X.

2006-01-01T23:59:59.000Z

265

A genetic rule weighting and selection process for fuzzy control of heating, ventilating and air conditioning systems  

Science Conference Proceedings (OSTI)

In this paper, we propose the use of weighted linguistic fuzzy rules in combination with a rule selection process to develop accurate fuzzy logic controllers dedicated to the intelligent control of heating, ventilating and air conditioning systems concerning ... Keywords: BEMS, building energy management system, FLC, fuzzy logic controller, Fuzzy logic controllers, GA, genetic algorithm, Genetic algorithms, HVAC systems, HVAC, heating, ventilating, and air conditioning, KB, knowledge base, PMV, predicted mean vote index for thermal comfort, Rule selection, Weighted fuzzy rules

Rafael Alcal; Jorge Casillas; Oscar Cordn; Antonio Gonzlez; Francisco Herrera

2005-04-01T23:59:59.000Z

266

System Performance Measurement Supports Design Recommendations for Solar Ventilation Preheat System (Brochure), Federal Energy Management Program (FEMP)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

System Performance System Performance Measurement Supports Design Recommendations for Solar Ventilation Preheat System The U.S. Department of Energy's (DOE) Federal Energy Management Program (FEMP) sponsored the installation of a data monitoring system to analyze the efficiency and performance of a large solar ventilation preheat (SVP) system. The system was installed at a Federal installation to reduce energy consumption and costs and to help meet Federal energy goals and mandates. SVP systems draw ventilation air in through a perforated metal solar collector with a dark color on the south side of a build-

267

Available Technologies: Ventilation Controller for Improved Indoor ...  

Iain Walker and colleagues at Berkeley Lab have developed a dynamic control system for whole-house ventilation fans that provides maximal air quality while reducing ...

268

Case Study 1 - Ventilation in Manufactured Houses  

Science Conference Proceedings (OSTI)

... Ventilation in Manufactured Houses. ... fan operation, an outdoor air intake duct installed on the forced-air return, and whole house exhaust with and ...

269

Summary of human responses to ventilation  

E-Print Network (OSTI)

coils of commercial air-conditioning systems. Proceedings ofrefrigerating and air-conditioning engineers, inc. pp 601-for ventilation and air-conditioning systems - offices and

Seppanen, Olli A.; Fisk, William J.

2004-01-01T23:59:59.000Z

270

Indoor Air Quality & Ventilation Group Staff Directory  

Science Conference Proceedings (OSTI)

Indoor Air Quality and Ventilation Group Staff. Staff Listing. Dr. Andrew K. Persily, Leader, Supervisory Mechanical Engineer, 301-975-6418. ...

2013-08-30T23:59:59.000Z

271

Does Mixing Make Residential Ventilation More Effective?  

E-Print Network (OSTI)

Does Mixing Make Residential Ventilation More Effective? Maxmanufacturer, or otherwise, does not necessarily constitutethe University of California. Does Mixing Make Residential

Sherman, Max

2011-01-01T23:59:59.000Z

272

Analysis of Demand Controlled Ventilation Technology and ...  

Science Conference Proceedings (OSTI)

... The actual health, comfort, and productivity impacts of mechanical ventilation ... p strat i csp o ... in California and elsewhere is the impact of ambient air ...

2011-01-11T23:59:59.000Z

273

Ventilation Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

is important in understanding cooling strategies for homes and buildings. Principles of Heat Transfer Heat is transferred to and from objects via three processes: conduction,...

274

Energy Performance and Economic Evaluations of the Geothermal Heat Pump System used in the KnowledgeWorks I and II Buildings, Blacksburg, Virginia.  

E-Print Network (OSTI)

??Heating, Ventilating and Air Conditioning Systems (HVAC) are not only one of the most energy consuming components in buildings but also contribute to green house (more)

Charoenvisal, Kongkun

2008-01-01T23:59:59.000Z

275

Thermal Comfort of Neutral Ventilated Buildings in Different Cities  

E-Print Network (OSTI)

Although the ASHRAE 55-1992 and ISO 7730 Standards are used all over the world, many researchers have pointed out that it is impossible to maintain a uniform thermal comfort standard worldwide because of differing climate conditions. Two field thermal comfort investigations were carried out in Shanghai and Changsha. In the hot season the neutral temperature in Changsha and Shanghai is 27.5? ET* and 26.5? ET*, respectively. Compared with other cities' studies, in Beijing and Tianjin, this paper discusses thermal comfort conditions in China. The results show that thermal neutral temperature in these Chinese cities is higher than that in the ASHRAE standard. Therefore, thermal comfort temperature in China cannot directly correlate with the ASHRAE standard. This difference should be considered when designing air conditioning designing to save energy.

Ye, X.; Zhou, Z.; Lian, Z.; Wen, Y.; Zhou, Z.; Jiang, C.

2006-01-01T23:59:59.000Z

276

Low Energy Buildings: CFD Techniques for Natural Ventilation...  

NLE Websites -- All DOE Office Websites (Extended Search)

projects, the talk will include work Malcolm completed as part of the design of the LEED Gold award winning Harm A. Weber Academic Center at Judson University, in Elgin, near...

277

New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy  

E-Print Network (OSTI)

compound by activated carbon fiber." Carbon 42(14): 2949-regeneration of an activated carbon fiber cloth adsorber."indoor VOCs activated carbon fibers." Proceedings of IAQ

Sidheswaran, Meera

2010-01-01T23:59:59.000Z

278

New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy  

E-Print Network (OSTI)

of Activated Carbon Fiber (ACF) filters 5 1.1VOC holding capacity of ACF . 14 1.3.2 Evaluation of VOC28 1.3.5 Energy consumption costs for using ACF filter bed

Sidheswaran, Meera

2010-01-01T23:59:59.000Z

279

New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy  

E-Print Network (OSTI)

carbon dioxide estimation tests were executed at a concentration higher than the indoor levels of formaldehyde by a factor

Sidheswaran, Meera

2010-01-01T23:59:59.000Z

280

Review of Literature Related to Residential Ventilation Requirements  

E-Print Network (OSTI)

typical existing house. Designed passive ventilation systemsPassive Ventilation by Constant Area Vents to Maintain Indoor Air Quality in Houses."House Ventilation Rates Local Exhaust Rates Air Distribution and Duct Leakage Infiltration Windows and Passive

McWilliams, Jennifer; Sherman, Max

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation building 773-a" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Microsoft Word - Draft Pier Final Report DCV and Classroom ventilation 05-11-12  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Controlled Ventilation and Classroom Ventilation William J. Fisk, Mark J. Mendell, Molly Davies, Ekaterina Eliseeva, David Faulkner, Tienzen Hong, Douglas P. Sullivan Indoor Environment Group Energy Analysis and Environmental Impacts Department Lawrence Berkeley National Laboratory Berkeley, CA 94720 May 2012 This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Building Technologies Program of the U.S. Department of Energy under contract DE-AC02- 05CH11231. LBNL-6258E Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither

282

Commissioning Ventilated Containment Systems in the Laboratory  

SciTech Connect

This Best Practices Guide focuses on the specialized approaches required for ventilated containment systems, understood to be all components that drive and control ventilated enclosures and local exhaust systems within the laboratory. Geared toward architects, engineers, and facility managers, this guide provides information about technologies and practices to use in designing, constructing, and operating operating safe, sustainable, high-performance laboratories.

Not Available

2008-08-01T23:59:59.000Z

283

Preoperational test report, primary ventilation system  

SciTech Connect

This represents a preoperational test report for Primary Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides vapor space filtered venting of tanks AY101, AY102, AZ101, AZ102. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

Clifton, F.T.

1997-11-04T23:59:59.000Z

284

Infiltration in ASHRAE's Residential Ventilation Standards  

Science Conference Proceedings (OSTI)

The purpose of ventilation is to dilute or remove indoor contaminants that an occupant could be exposed to. It can be provided by mechanical or natural means. ASHRAE Standards including standards 62, 119, and 136 have all considered the contribution of infiltration in various ways, using methods and data from 20 years ago. The vast majority of homes in the United States and indeed the world are ventilated through natural means such as infiltration caused by air leakage. Newer homes in the western world are tight and require mechanical ventilation. As we seek to provide acceptable indoor air quality at minimum energy cost, it is important to neither over-ventilate norunder-ventilate. Thus, it becomes critically important to correctly evaluate the contribution infiltration makes to both energy consumption and equivalent ventilation. ASHRAE Standard 62.2 specifies how much mechanical ventilation is considered necessary to provide acceptable indoor air quality, but that standard is weak on how infiltration can contribute towards meeting the total requirement. In the past ASHRAE Standard 136 was used to do this, but new theoretical approaches and expanded weather data have made that standard out of date. This article will describe how to properly treat infiltration as an equivalent ventilation approach and then use new data and these new approaches to demonstrate how these calculations might be done both in general and to update Standard 136.

Sherman, Max

2008-10-01T23:59:59.000Z

285

Commercial Building HVAC: How it Affects People  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Building HVAC: How it Affects People Commercial Building HVAC: How it Affects People Speaker(s): William Fisk Date: November 13, 2000 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: David Faulkner Commercial building heating, ventilating, and air conditioning (HVAC) systems are designed primarily to maintain a reasonable level of thermal comfort while limiting first costs and energy consumption. However, research conducted predominately within the last decade suggests that commercial building HVAC significantly influences human outcomes other than thermal comfort, including the health, satisfaction, and work performance of the building's occupants. This presentation will review the relationships of these outcomes with HVAC system type, filtration system efficiency, indoor air temperature, and outside air ventilation rate.

286

Formadehyde in New Homes: Ventilation vs. Source Control  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

at at Building America Residential Energy Efficiency Stakeholder Meeting March 1, 2012 Austin, Texas Formaldehyde in New Homes --- Ventilation vs. Source Control Brett C. Singer and Henry Willem Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Acknowledgments * Funding - U.S. Department of Energy - Building America Program - U.S. EPA - Indoor Environments Division - U.S. HUD - Office of Healthy Homes and Lead Hazard Control - Cal. Energy Commission Public Interest Environmental Research * Technical Contributions - Fraunhofer - Ibacos - IEE-SF * LBNL Team - Sherman, Hotchi, Russell, Stratton, and Others Background 1  Formaldehyde is an irritant and a carcinogen  Odor threshold: about 800 ppb  Widely varying health standards  US HUD (8-h): 400 ppb

287

Federal Energy Management Program: Solar Ventilation Preheating Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Ventilation Solar Ventilation Preheating Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Google Bookmark Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Delicious Rank Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on AddThis.com... Energy-Efficient Products

288

Association of Classroom Ventilation with Reduced Illness Absence...  

NLE Websites -- All DOE Office Websites (Extended Search)

Ventilation with Reduced Illness Absence: A Prospective Study in California Elementary Schools Title Association of Classroom Ventilation with Reduced Illness Absence: A...

289

Measuring Residential Ventilation System Airflows: Part 2 - Field...  

NLE Websites -- All DOE Office Websites (Extended Search)

Measuring Residential Ventilation System Airflows: Part 2 - Field Evaluation of Airflow Meter Devices and System Flow Verification Title Measuring Residential Ventilation System...

290

Improving Ventilation and Saving Energy: Final Report on Indoor...  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving Ventilation and Saving Energy: Final Report on Indoor Environmental Quality and Energy Monitoring in Sixteen Relocatable Classrooms Title Improving Ventilation and Saving...

291

Modeling indoor exposures to VOCs and SVOCs as ventilation rates...  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling indoor exposures to VOCs and SVOCs as ventilation rates vary Title Modeling indoor exposures to VOCs and SVOCs as ventilation rates vary Publication Type Conference Paper...

292

Report on Applicability of Residential Ventilation Standards in California  

E-Print Network (OSTI)

but also because passive, whole-house ventilation systemsPassive Ventilation by Constant Area Vents to Maintain Indoor Air Quality in Houses",

Sherman, Max H.; McWilliam, Jennifer A.

2005-01-01T23:59:59.000Z

293

Building Technologies Office: Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Buildings Residential Buildings to someone by E-mail Share Building Technologies Office: Residential Buildings on Facebook Tweet about Building Technologies Office: Residential Buildings on Twitter Bookmark Building Technologies Office: Residential Buildings on Google Bookmark Building Technologies Office: Residential Buildings on Delicious Rank Building Technologies Office: Residential Buildings on Digg Find More places to share Building Technologies Office: Residential Buildings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat. Lighten Energy Loads with System Design. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program

294

Russias R&D for Low Energy Buildings: Insights for Cooperation with Russia  

SciTech Connect

Russian buildings, Russian buildings sector energy consumption. Russian government has made R&D investment a priority again. The government and private sector both invest in a range of building energy technologies. In particular, heating, ventilation and air conditioning, district heating, building envelope, and lighting have active technology research projects and programs in Russia.

Schaaf, Rebecca E.; Evans, Meredydd

2010-05-01T23:59:59.000Z

295

Building Energy Software Tools Directory: LESOCOOL  

NLE Websites -- All DOE Office Websites (Extended Search)

LESOCOOL LESOCOOL LESOCOOL logo. Calculates the airflow rate by stack effect, as well as the cooling potential and the overheating risk in a naturally or mechanically ventilated building, showing the temperature evolution, the air flow rate and the ventilation heat transfer. It take into account convective and radiative heat gains. Single zone modelling is sufficient for most purposes. However a multizone model is available for the evaluation of the temperature evolution along the air path. This model is applicable to a single air path through zones ventilated in series. The Windows interface and the small number of input parameters make Lesocool very user friendly. It has a standard interface for non experts in building physics and a professional edition allowing more functions. The

296

Building Technologies Office: Commercial Building Energy Asset...  

NLE Websites -- All DOE Office Websites (Extended Search)

TECHNOLOGIES RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE Building Technologies Office Commercial Buildings...

297

CX-008358: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8: Categorical Exclusion Determination 8: Categorical Exclusion Determination CX-008358: Categorical Exclusion Determination Renovation of E-Wing Ventilation, Building 773-A CX(s) Applied: B2.1 Date: 04/18/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office Y646 is the current project underway to address Modification 2 of the original Commercial Modification Scope Document (CMSD). CMSD was originated to modify the E-Wing heating, ventilation and air conditioning (HVAC) Ventilation System to improve the air flow balance; and to improve radiological confinement and contamination control. These modifications are based on the results of an SRTC Computer Model for 773-A which was performed by Systems Engineering. Revision 3 - Added description and scope for the use of a Temporary Modification for 773-A F-080 exhaust system.

298

Energy efficient buildings: A world of possibilities  

SciTech Connect

Throughout the world, buildings are a major energy consumer. However, it can be shown that buildings that save from 30 to 50% over common practice can be built using available technologies while actually increasing occupant comfort and functionality. In addition, many technologies are in the development stage that promise even further increases in energy efficiency in buildings. This paper reviews the current state-of-the-art in energy efficient building practice including building equipment and envelopes. Topics discussed include heating, ventilating and air conditioning equipment; lighting; insulation; building envelopes; and building commissioning. The energy effects of switching to non-chlorofluorocarbons in building insulation and refrigeration equipment are discussed. Advanced technologies currently under development that might have a substantial impact on future energy use including advanced absorption chillers, new lighting and window technologies, and thermally activated heat pumps are also described. 24 refs., 6 figs.

Kuliasha, M.A.

1991-01-01T23:59:59.000Z

299

Building Envelope Renovations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Envelope Renovations Envelope Renovations Building Envelope Renovations October 16, 2013 - 4:51pm Addthis Renewable Energy Options for Building Envelope Renovations Daylighting Photovoltaics Solar Ventilation Air Preheating When renovating any part of the building envelope, such as the façade and windows, energy efficiency is a prime concern, but renewable energy technologies may also be options. In general, the economics of renewable energy are less favorable with building envelope renovations than with other types such as roof; heating, ventilation, and air conditioning (HVAC); plumbing; or lighting. As with all renovations, the renewable energy additions should be considered in the planning stage of the design process to maximize any potential benefits and reduce costs. Façade

300

Floor-supply displacement ventilation system  

E-Print Network (OSTI)

Research on indoor environments has received more attention recently because reports of symptoms and other health complaints related to indoor environments have been increasing. Heating, ventilating, and air-conditioning ...

Kobayashi, Nobukazu, 1967-

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation building 773-a" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Scale model studies of displacement ventilation  

E-Print Network (OSTI)

Displacement ventilation is an air conditioning method that provides conditioned air to indoor environments with the goal to improve air quality while reducing energy consumption. This study investigates the performance ...

Okutan, Galip Mehmet

1995-01-01T23:59:59.000Z

302

Midlevel Ventilation's Constraint on Tropical Cyclone Intensity  

E-Print Network (OSTI)

Midlevel ventilation, or the flux of low-entropy air into the inner core of a tropical cyclone (TC), is a hypothesized mechanism by which environmental vertical wind shear can constrain a tropical cyclones intensity. An ...

Tang, Brian Hong-An

303

A Ventilation Index for Tropical Cyclones  

E-Print Network (OSTI)

An important environmental control of both tropical cyclone intensity and genesis is vertical wind shear. One hypothesized pathway by which vertical shear affects tropical cyclones is midlevel ventilationor the flux of ...

Tang, Brian

304

Whole-House Ventilation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

into the house to be filtered to remove pollen and dust or dehumidified to provide humidity control Supply ventilation systems work best in hot or mixed climates. Because they...

305

Development of a Residential Integrated Ventilation Controller  

E-Print Network (OSTI)

Refrigerating, and Air-Conditioning Engineers, Atlanta, GA.Refrigerating, and Air-Conditioning Engineers, Atlanta, GA.of Ventilation and Air Conditioning: Is CERN up to Date With

Walker, Iain

2013-01-01T23:59:59.000Z

306

Cooling airflow design tool for displacement ventilation.  

E-Print Network (OSTI)

withEquation 7.4oftheASHRAEDesignGuidelinesforefficiency air diffusers. The ASHRAE method does not takeVentilation Atlanta: ASHRAE. Jiang, Z. , Chen, Q. , and

Schiavon, Stefano; Bauman, Fred

2009-01-01T23:59:59.000Z

307

Ventilation of the Subtropical North Pacific  

Science Conference Proceedings (OSTI)

The ventilation of the subtropical North Pacific is studied using a simple analytical model. The model is forced by winter mixed layer density and depth calculated from the Levitus climatology and wind stress curl from the Hellerman and ...

Rui Xin Huang; Sarah Russell

1994-12-01T23:59:59.000Z

308

Midlevel ventilation's constraint on tropical cyclone intensity  

E-Print Network (OSTI)

Midlevel ventilation, or the flux of low-entropy air into the inner core of a tropical cyclone (TC), is a hypothesized mechanism by which environmental vertical wind shear can constrain a TC's intensity. An idealized ...

Tang, Brian Hong-An

2010-01-01T23:59:59.000Z

309

Chlorofluorocarbon Constraints on North Atlantic Ventilation  

Science Conference Proceedings (OSTI)

The North Atlantic Ocean vigorously ventilates the ocean interior. Thermocline and deep water masses are exposed to atmospheric contact there and are sequestered in two principal classes: Subtropical Mode Water (STMW: 26.5 ? ?? ? 26.8) and ...

Thomas W. N. Haine; Kelvin J. Richards; Yanli Jia

2003-08-01T23:59:59.000Z

310

Implementing Fuzzy Expert System for intelligent buildings  

Science Conference Proceedings (OSTI)

In this paper we present the design of an intelligent dome, as well as the design and implementation of the Fuzzy Expert System for the module controlling Ventilation and Air Conditioning. The system was designed as a Client/Server, Blackboard architecture, ... Keywords: Fuzzy Expert Systems, domotics, intelligent buildings, knowledge based systems, knowledge engineering

Carlos A. Reyes-Garcia; Elva. Corona

2003-03-01T23:59:59.000Z

311

STATE OF CALIFORNIA BUILDING ENVELOPE SEALING  

E-Print Network (OSTI)

per minute (cfm) at 50 pascals for the dwelling with air distribution registers unsealed. SLA = 3.819 x (CFM50H / Conditioned Floor Area in ft2 ) per Residential ACM Manual Equation R3-16 Building and ventilation air and vented in accordance with manufacturers' installation instructions and all applicable

312

Performance Assessment of Photovoltaic Attic Ventilator Fans  

E-Print Network (OSTI)

Controlling summer attic heat gain is important to reducing air conditioning energy use in homes in hot-humid climates. Both heat transfer through ceilings and t attic duct systems can make up a large part of peak cooling demand, Attic ventilation has long been identified as a method to abate such heat gains. We present test results from using the photovoltaic (PV) attic ventilator fans in a test home to assess impact on attic and cooling energy performance.

Parker, D. S.; Sherwin, J. R.

2000-01-01T23:59:59.000Z

313

Shut-off mechanism for ventilation hose  

DOE Patents (OSTI)

A shut-off mechanism to provide automatic closure of a ventilation hose when the operation of drawing air through the hose is terminated. The mechanism includes a tube of light gauge metal inside of which are mounted a plurality of louver doors positioned in the closed position due to gravity when the ventilation unit is not operational. When the unit is operational, air flowing into the unit maintains the doors in the open position. 5 figs.

Huyett, J.D.; Meskanick, G.R.

1989-12-07T23:59:59.000Z

314

Building Energy Software Tools Directory: VentAir 62  

NLE Websites -- All DOE Office Websites (Extended Search)

VentAir 62 VentAir 62 VentAir 62 logo. A ventilation airflow calculator that allows easy, accurate compliance with ASHRAE Standard 62-89. The program automates the cumbersome calculations presented by the Standard's Equation 6-1. The Windows-based program helps building designers design multiple-space ventilation systems that meet the requirements of the Standard. This tool analyzes space and system information from the VAV terminal and air handler unit schedules, calculates ventilation airflow requirements (space minimums and system-level required minimum), and provides additional or revised information for the VAV and AHU schedules. Keywords ventilation design, ASHRAE Standard 62 Validation/Testing N/A Expertise Required Knowledge of ASHRAE Standard 62 requirements and ventilation design.

315

Tracer dating and ocean ventilation  

E-Print Network (OSTI)

The interpretation of transient tracer observations depends on difcult to obtain information on the evolution in time of the tracer boundary conditions and interior distributions. Recent studies have attempted to circumvent this problem by making use of a derived quantity, age, based on the simultaneous distribution of two complementary tracers, such as tritium and its daughter, helium 3. The age is defined with reference to the surface such that the boundary condition takes on a constant value of zero. We use a two-dimensional model to explore the circumstances under which such a combination of conservation equations for two complementary tracers can lead to a cancellation of the time derivative terms. An interesting aspect of this approach is that mixing can serve as a source or sink of tracer based age. We define an idealized "ventilation age tracer " that is conservative with respect to mixing, and we explore how its behavior compares with that of the tracer-based ages over a range of advective and diffusive parameters. 1.

G. Thiele; J. L. Sarmiento

1990-01-01T23:59:59.000Z

316

Theoretical Minimum Energy Use of a Building HVAC System  

E-Print Network (OSTI)

This paper investigates the theoretical minimum energy use required by the HVAC system in a particular code compliant office building. This limit might be viewed as the "Carnot Efficiency" for HVAC system. It assumes that all ventilation and air conditioning in the building are provided using the minimum energy value that does not violate physical law.

Tanskyi, O.

2011-01-01T23:59:59.000Z

317

Pretest Predictions for Phase II Ventilation Tests  

SciTech Connect

The objective of this calculation is to predict the temperatures of the ventilating air, waste package surface, and concrete pipe walls that will be developed during the Phase II ventilation tests involving various test conditions. The results will be used as inputs to validating numerical approach for modeling continuous ventilation, and be used to support the repository subsurface design. The scope of the calculation is to identify the physical mechanisms and parameters related to thermal response in the Phase II ventilation tests, and describe numerical methods that are used to calculate the effects of continuous ventilation. The calculation is limited to thermal effect only. This engineering work activity is conducted in accordance with the ''Technical Work Plan for: Subsurface Performance Testing for License Application (LA) for Fiscal Year 2001'' (CRWMS M&O 2000d). This technical work plan (TWP) includes an AP-2.21Q, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', activity evaluation (CRWMS M&O 2000d, Addendum A) that has determined this activity is subject to the YMP quality assurance (QA) program. The calculation is developed in accordance with the AP-3.12Q procedure, ''Calculations''. Additional background information regarding this activity is contained in the ''Development Plan for Ventilation Pretest Predictive Calculation'' (DP) (CRWMS M&O 2000a).

Yiming Sun

2001-09-19T23:59:59.000Z

318

Occupancy-Based Energy Management in Buildings: Final Report to Sponsors  

E-Print Network (OSTI)

of building usage including people, lighting, plug loads,lighting, temperature, and ventilation (outside air - OA) control are based on schedules which rely on room usagelighting, temperature, and ventilation (outside air - OA) controls are based on schedules, and set according to expected, or assumed, room usage.

Sohn, Michael D.

2010-01-01T23:59:59.000Z

319

Coupled urban wind flow and indoor natural ventilation modelling on a high-resolution grid: A case study for the Amsterdam ArenA stadium  

Science Conference Proceedings (OSTI)

Wind flow in urban environments is an important factor governing the dispersion of heat and pollutants from streets, squares and buildings. This paper presents a coupled CFD modelling approach for urban wind flow and indoor natural ventilation. A specific ... Keywords: Air exchange rate, Air quality, Computational Fluid Dynamics (CFD), Cross-ventilation, Full-scale measurements, Grid generation technique, Integrated model, Model validation and solution verification, Numerical simulation, Outdoor and indoor air flow, Sports stadium

T. van Hooff; B. Blocken

2010-01-01T23:59:59.000Z

320

U.S. Department of Energy Categorical Exclusion Determination Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Y646 (Y189), Renovation of E-Wing Ventilation, Building 773-A Y646 (Y189), Renovation of E-Wing Ventilation, Building 773-A Savannah River Site Aiken/Aiken/South Carolina Y646 is the current project underway to address Modification 2 of the original Commercial Modification Scope Document (CMSD). CMSD was originated to modify the E-Wing HVAC System to improve the air flow balance and improve radiological confinement and contamination control. These modifications are based on the results of an SRTC Computer Model for 773-A which was performed by Systems Engineering. Revision 4 adds missing details from the project design package (e.g., D&R of EP 5916 fan and associated HEPA filtration). B2.1 - Workplace enhancements Andrew R. Grainger Digitally signed by Andrew R. Grainger DN: cn=Andrew R. Grainger, o=DOE-SR, ou=EQMD,

Note: This page contains sample records for the topic "ventilation building 773-a" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Anaheim Public Utilities - Green Building and New Construction Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Anaheim Public Utilities - Green Building and New Construction Anaheim Public Utilities - Green Building and New Construction Rebate Program Anaheim Public Utilities - Green Building and New Construction Rebate Program < Back Eligibility Commercial Construction Industrial Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Windows, Doors, & Skylights Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Maximum Rebate Commercial Green Building: $75,000 Residential Green Building: $100,000 LEED Certification: $30,000 Green Building Rater Incentive: $6,000 Program Info State California Program Type Utility Rebate Program

322

Enthalpy Wheels Come of Age: Applying Energy Recovery Ventilation to Hospitality Venues in Hot, Humid Climate  

E-Print Network (OSTI)

Energy recovery ventilation systems, including rotary heat exchangers or enthalpy wheels, utilize mature technologies that are routinely applied in commercial buildings. Energy recovery is particularly important in buildings with significant outdoor air intake requirements and has recently become widely accepted in applications such as schools and theatres. Hospitality applications including restaurants, bars, casinos and similar settings also stand to benefit from application of the technology, however, there is a lack of experience and therefore of accepted guidance in these applications. Furthermore, the unique challenges inherent in the variety of hospitality venues may limit appropriate use of the technology. Applying energy recovery ventilation to hospitality venues in hot, humid climates need not be complex. This paper proposes guidelines that can facilitate application of the technology by specifiers or other construction professionals. These guidelines address evaluation of typical projects for the suitability of energy recovery, selection of appropriate energy recovery ventilation technology, and criteria for successful application of enthalpy wheels. Examples of applications developed for different mechanical systems and building types are provided. The literature describing the opportunities and limitations associated with enthalpy wheels is summarized and referenced. Installation, operation, and maintenance insights are presented, derived from the body of industry experience with enthalpy wheels.

Wellford, B. W.

2000-01-01T23:59:59.000Z

323

Building Technologies Office: Building America: Bringing Building  

NLE Websites -- All DOE Office Websites (Extended Search)

America: Bringing Building Innovations to Market America: Bringing Building Innovations to Market Building America logo The U.S. Department of Energy's (DOE) Building America program has been a source of innovations in residential building energy performance, durability, quality, affordability, and comfort for more than 15 years. This world-class research program partners with industry (including many of the top U.S. home builders) to bring cutting-edge innovations and resources to market. For example, the Solution Center provides expert building science information for building professionals looking to gain a competitive advantage by delivering high performance homes. At Building America meetings, researchers and industry partners can gather to generate new ideas for improving energy efficiency of homes. And, Building America research teams and DOE national laboratories offer the building industry specialized expertise and new insights from the latest research projects.

324

Potential Operation and Maintenance (O&M) Savings in the Basic Science Building at UTMB  

E-Print Network (OSTI)

This report presents the results of a study of the potential energy savings due to optimizing the Heating, Ventilation and Air Conditioning (HVAC) operation schedule in the Basic Science Building at University of Texas Medical Branch (UTMB), Galveston, Texas.

Liu, M.; Athar, A.; Claridge, D. E.; Reddy, T. A.; Haberl, J. S.

1993-01-01T23:59:59.000Z

325

Potential Operation and Maintenance (O&M) Savings in the Clinical Science Building at UTMB  

E-Print Network (OSTI)

This report presents the results of a study of the potential energy savings due to optimizing the Heating, Ventilation and Air Conditioning (HVAC) operation schedule in the Clinical Science Building at University of Texas Medical Brach (UTMB) Galveston, Texas.

Liu, M.; Athar, A.; Claridge, D. E.; Reddy, T. A.; Haberl, J. S.

1993-01-01T23:59:59.000Z

326

Solar energy dehumidification experiment on the Citicorp Center building : final report  

E-Print Network (OSTI)

The technical and economic feasibility of using solar energy to reduce conventional energy consumption of a large urban commercial building were studied in depth. Specifically, solar assisted dehumidification of ventillation ...

Unknown author

327

Assessment of Energy Savings Potential from the Use of Demand Controlled Ventilation in General Office Spaces in California  

Science Conference Proceedings (OSTI)

A prototypical office building meeting the prescriptive requirements of the 2008 California building energy efficiency standards (Title 24) was used in EnergyPlus simulations to calculate the energy savings potential of demand controlled ventilation (DCV) in five typical California climates per three design occupancy densities and two minimum ventilation rates. The assumed minimum ventilation rates in offices without DCV, based on two different measurement methods employed in a large survey, were 38 and 13 L/s per occupant. The results of the life cycle cost analysis show DCV is cost effective for office spaces if the typical minimum ventilation rate without DCV is 38 L/s per person, except at the low design occupancy of 10.8 people per 100 m2 in climate zones 3 (north coast) and 6 (south Coast). DCV was not found to be cost effective if the typical minimum ventilation rate without DCV is 13 L/s per occupant, except at high design occupancy of 21.5 people per 100 m2 in climate zones 14 (desert) and 16 (mountains). Until the large uncertainties about the base case ventilation rates in offices without DCV are reduced, the case for requiring DCV in general office spaces will be a weak case. Under the Title 24 Standards office occupant density of 10.8 people per 100 m2, DCV becomes cost effective when the base case minimum ventilation rate is greater than 42.5, 43.0, 24.0, 19.0, and 18.0 L/s per person for climate zone 3, 6, 12, 14, and 16 respectively.

Hong, Tianzhen; Fisk, William

2010-01-01T23:59:59.000Z

328

Transpired Collectors (Solar Preheaters for Outdoor Ventilation Air)--023385m FTA collectors  

Energy.gov (U.S. Department of Energy (DOE))

Federal Technology Alert describes transpired collectors or solar preheaters for outdoor ventilation air. The President's Million Solar Roofs Initiative aims to install 1 million solar energy systems on residential, commercial, and public-sector buildings by 2010. In support of the Initiative, and as part of a continual effort to ensure U.S. buildings are energy efficient and environmentally sustainable, the U.S. Department of Energy's Federal Energy Management Program (FEMP) will help install those solar systems targeted for the federal sector.

329

Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Apartment building exterior and interior Apartment building exterior and interior Residential Buildings EETD's research in residential buildings addresses problems associated with whole-building integration involving modeling, measurement, design, and operation. Areas of research include the movement of air and associated penalties involving distribution of pollutants, energy and fresh air. Contacts Max Sherman MHSherman@lbl.gov (510) 486-4022 Iain Walker ISWalker@lbl.gov (510) 486-4692 Links Residential Building Systems Group Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends High Technology and Industrial Systems Lighting Systems Residential Buildings Simulation Tools Sustainable Federal Operations

330

Office Buildings: Assessing and Reducing Plug and Process Loads in Office Buildings (Fact Sheet)  

SciTech Connect

Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use in office spaces are poorly understood.

2013-04-01T23:59:59.000Z

331

Retail Buildings: Assessing and Reducing Plug and Process Loads in Retail Buildings (Fact Sheet)  

SciTech Connect

Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use in retail spaces are poorly understood.

2013-04-01T23:59:59.000Z

332

Building Energy Software Tools Directory: BUS++  

NLE Websites -- All DOE Office Websites (Extended Search)

BUS++ BUS++ New generation platform for building energy, ventilation, noise level and indoor air quality simulations. A network assumption is adopted, and BUS++ allows both steady-state and dynamic simulations on a desired level of accuracy. BUS++ includes modern solution routines and has passed the most commonly used rigorous air flow and heat transfer test cases. However, only a limited number of special applications are completed. Keywords energy performance, ventilation, air flow, indoor air quality, noise level Validation/Testing N/A Expertise Required Special expertise needed for utilizing all potential calculation features. Common knowledge of building components needed for using special applications with graphical user interfaces. Users 20 users in VTT Building Technology and other companies in Finland.

333

Energy Savings in Industrial Buildings  

E-Print Network (OSTI)

The industrial sector accounts for more than one-third of total energy use in the United States and emits 28.7 percent of the countrys greenhouse gases. Energy use in the industrial sector is largely for steam and process heating systems, and electricity for equipment such as pumps, air compressors, and fans. Lesser, yet significant, amounts of energy are used for industrial buildings heating, ventilation, and air conditioning (HVAC), lighting and facility use (such as office equipment). Due to economic growth, energy consumption in the industrial sector will continue to increase gradually, as will energy use in industrial buildings. There is a large potential for energy saving and carbon intensity reduction by improving HVAC, lighting, and other aspects of building operation and technologies. Analyses show that most of the technologies and measures to save energy in buildings would be cost-effective with attractive rates of return. First, this paper will investigate energy performance in buildings within the manufacturing sector, as classified in the North American Industry Classification System (NAICS). Energy use patterns for HVAC and lighting in industrial buildings vary dramatically across different manufacturing sectors. For example, food manufacturing uses more electricity for HVAC than does apparel manufacturing because of the different energy demand patterns. Energy saving opportunities and potential from industrial buildings will also be identified and evaluated. Lastly, barriers for deployment of energy savings technologies will be explored along with recommendations for policies to promote energy efficiency in industrial buildings.

Zhou, A.; Tutterow, V.; Harris, J.

2009-05-01T23:59:59.000Z

334

Development of a Residential Integrated Ventilation Controller  

E-Print Network (OSTI)

Assessments on Noise. Energy and Buildings. Vol. 27. pp.Distribution Systems. Energy and Buildings. Vol. 20. pp.W.J. Fisk. 1994. Energy and Buildings vol. 21 (1). pp.15-22.

Walker, Iain

2013-01-01T23:59:59.000Z

335

Building Technologies Office: Commercial Building Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

on Twitter Bookmark Building Technologies Office: Commercial Building Activities on Google Bookmark Building Technologies Office: Commercial Building Activities on Delicious...

336

Building Technologies Office: Buildings Performance Database  

NLE Websites -- All DOE Office Websites (Extended Search)

on Twitter Bookmark Building Technologies Office: Buildings Performance Database on Google Bookmark Building Technologies Office: Buildings Performance Database on Delicious...

337

Around Buildings  

E-Print Network (OSTI)

Around Buildings W h y startw i t h buildings and w o r k o u t wa r d ? For one, buildings are difficult t o a v o i d these

Treib, Marc

1987-01-01T23:59:59.000Z

338

BUILDING INSPECTION Building, Infrastructure, Transportation  

E-Print Network (OSTI)

BUILDING INSPECTION Building, Infrastructure, Transportation City of Redwood City 1017 Middlefield Sacramento, Ca 95814-5514 Re: Green Building Ordinance and the Building Energy Efficiency Standards Per of Redwood City enforce the current Title 24 Building Energy Efficiency Standards as part

339

Building Technologies Office: About Emerging Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Emerging Technologies Emerging Technologies The Emerging Technologies team funds the research and development of cost-effective, energy-efficient building technologies within five years of commercialization. Learn more about the: Key Technologies Benefits Results Key Technologies Specific technologies pursued within the Emerging Technologies team include: Lighting: advanced solid-state lighting systems, including core technology research and development, manufacturing R&D, and market development Heating, ventilation, and air conditioning (HVAC): heat pumps, heat exchangers, and working fluids Building Envelope: highly insulating and dynamic windows, cool roofs, building thermal insulation, façades, daylighting, and fenestration Water Heating: heat pump water heaters and solar water heaters

340

Natural ventilation : design for suburban houses in Thailand  

E-Print Network (OSTI)

Natural Ventilation is the most effective passive cooling design strategy for architecture in hot and humid climates. In Thailand, natural ventilation has been the most essential element in the vernacular architecture such ...

Tantasavasdi, Chalermwat, 1971-

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation building 773-a" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

A scale model study of displacement ventilation with chilled ceilings  

E-Print Network (OSTI)

Displacement ventilation is a form of air-conditioning which provides good air quality and some energy savings. The air quality is better than for a conventional mixed ventilation system. The maximum amount of cooling that ...

Holden, Katherine J. A. (Katherine Joan Adrienne)

1995-01-01T23:59:59.000Z

342

Commercial Building Energy Asset Scoring Tool | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Scoring Tool Scoring Tool Commercial Building Energy Asset Scoring Tool This Asset Scoring Tool will guide your data collection, store your building information, and generate Asset Scores and system evaluations for your building envelope and building systems. The Asset Scoring Tool will also identify cost-effective upgrade opportunities and help you gain insight into the energy efficiency potential of your building. Key Features The Asset Scoring Tool will generate an Asset Score Report that will provide: A whole-building energy efficiency score based on the building envelope and building systems (heating, ventilation, cooling, lighting and service hot water). An evaluation of the current building systems that identifies inefficient building systems A set of opportunities to save energy and money

343

Education Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Education Education Characteristics by Activity... Education Education buildings are buildings used for academic or technical classroom instruction, such as elementary, middle, or high schools, and classroom buildings on college or university campuses. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Education Buildings... Seventy percent of education buildings were part of a multibuilding campus. Education buildings in the South and West were smaller, on average, than those in the Northeast and Midwest. Almost two-thirds of education buildings were government owned, and of these, over three-fourths were owned by a local government. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

344

Lodging Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

a nursing home, assisted living center, or other residential care building a half-way house some other type of lodging Lodging Buildings by Subcategory Figure showing lodging...

345

Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Exterior glass windows of office tower Commercial Buildings Commercial building systems research explores different ways to integrate the efforts of research in windows, lighting,...

346

EERE: Buildings  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Commercial Building Initiative works with commercial builders and owners to reduce energy use and optimize building performance, comfort, and savings. Solid-State Lighting...

347

Building Technologies Office: Energy Modeling Software  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling Software Modeling Software Information from energy simulation software is critical in the design of energy-efficient commercial buildings. The tools listed on this page are the product of Commercial Buildings Integration Program (CBI) research and are used in modeling current CBI projects. Modeling helps architects and building designers quickly identify the most cost-effective and energy-saving measures. Graphic of the EnergyPlus software logo. EnergyPlus - An award-winning new-generation building energy simulation program from the creators of BLAST and DOE-2. EnergyPlus models heating, cooling, lighting, ventilating, water, and other energy flows in buildings. OpenStudio - A free plugin for the SketchUp 3D drawing program. The plugin makes it easy to create and edit the building geometry in your EnergyPlus input files.

348

Distributed Intelligent Automated Demand Response (DIADR) Building  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Distributed Intelligent Automated Demand Distributed Intelligent Automated Demand Response (DIADR) Building Management System Distributed Intelligent Automated Demand Response (DIADR) Building Management System The U.S. Department of Energy (DOE) is currently conducting research into distributed intelligent-automated demand response (DIADR) building management systems. Project Description This project aims to develop a DIADR building management system with intelligent optimization and control algorithms for demand management, taking into account a multitude of factors affecting cost including: Comfort Heating, ventilating, and air conditioning (HVAC) Lighting Other building systems Climate Usage and occupancy patterns. The key challenge is to provide the demand response the ability to address more and more complex building systems that include a variety of loads,

349

Spot Ventilation: Source Control to Improve Indoor Air Quality  

SciTech Connect

Fact sheet for homeowners and contractors on how to employ spot ventilation in the home for comfort and safety.

2002-12-01T23:59:59.000Z

350

Whole-House Ventilation Systems: Improved Control of Air Quality  

SciTech Connect

Fact sheet for homeowners and contractors on how to employ spot ventilation in the home for comfort and safety.

2002-12-01T23:59:59.000Z

351

Ventilation planning at Energy West's Deer Creek mine  

SciTech Connect

In 2004 ventilation planning was initiated to exploit a remote area of Deer Creek mine's reserve (near Huntington, Utah), the Mill Fork Area, located under a mountain. A push-pull ventilation system was selected. This article details the design process of the ventilation system upgrade, the procurement process for the new fans, and the new fan startup testing. 5 figs., 1 photo.

Tonc, L.; Prosser, B.; Gamble, G. [Pacific Corp., Huntington, UT (United States)

2009-08-15T23:59:59.000Z

352

A Ventilation Index for Tropical Cyclones  

Science Conference Proceedings (OSTI)

An important environmental control of both tropical cyclone intensity and genesis is vertical wind shear. One hypothesized pathway by which vertical shear affects tropical cyclones is midlevel ventilationor the flux of low-entropy air into the center of ...

Brian Tang; Kerry Emanuel

2012-12-01T23:59:59.000Z

353

Buildings Performance Database Helps Building Owners, Investors...  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Performance Database Helps Building Owners, Investors Evaluate Energy Efficient Buildings Buildings Performance Database June 2013 A new database of building features and...

354

Building Technologies Office: Buildings NewsDetail  

NLE Websites -- All DOE Office Websites (Extended Search)

NewsDetail on Twitter Bookmark Building Technologies Office: Buildings NewsDetail on Google Bookmark Building Technologies Office: Buildings NewsDetail on Delicious Rank Building...

355

Building Technologies Office: Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

building sector by at least 50%. Photo of people walking around a new home. Visitors Tour Solar Decathlon Homes Featuring the Latest in Energy Efficient Building Technology...

356

Updated Buildings Sector Appliance and Equipment Costs and Efficiency  

U.S. Energy Information Administration (EIA) Indexed Site

Full report (4.1 mb) Full report (4.1 mb) Heating, cooling, & water heating equipment Appendix A - Technology Forecast Updates - Residential and Commercial Building Technologies - Reference Case (1.9 mb) Appendix B - Technology Forecast Updates - Residential and Commercial Building Technologies - Advanced Case (1.3 mb) Lighting and commercial ventilation & refrigeration equipment Appendix C - Technology Forecast Updates - Residential and Commercial Building Technologies - Reference Case (1.1 mb) Appendix D - Technology Forecast Updates - Residential and Commercial Building Technologies - Advanced Case (1.1 mb) Updated Buildings Sector Appliance and Equipment Costs and Efficiency Release date: August 7, 2013 Energy used in the residential and commercial sectors provides a wide range

357

City of Scottsdale - Green Building Incentives | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Scottsdale - Green Building Incentives Scottsdale - Green Building Incentives City of Scottsdale - Green Building Incentives < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Construction Design & Remodeling Other Sealing Your Home Ventilation Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Water Heating Solar Windows, Doors, & Skylights Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Program Info State Arizona Program Type Green Building Incentive Provider City of Scottsdale Scottsdale's Green Building Program, established in 1998, was the first such program in Arizona with an emphasis on residential home construction.

358

Warehouse and Service Building Renovations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Warehouse and Service Building Renovations Warehouse and Service Building Renovations Warehouse and Service Building Renovations October 16, 2013 - 4:59pm Addthis Renewable Energy Options for Warehouse and Service Building Renovations Daylighting Solar Ventilation Preheating Solar Water Heating Photovoltaics (PV) Many Federal facilities include warehouses or other buildings used for storage service such as motor pools or groundskeeping, hangars, or other spaces that are frequently open to the outside and have only semi-conditioned spaces. Use of daylighting and solar ventilation preheat are prime technologies for these type of spaces, but other technologies may also warrant consideration. Daylighting Daylighting can keep lighting costs down dramatically in warehouses and can be as simple as implementing translucent roofing materials or skylights.

359

Building Energy Software Tools Directory: DesignBuilder  

NLE Websites -- All DOE Office Websites (Extended Search)

DesignBuilder DesignBuilder DesignBuilder logo User-friendly modelling environment where you can work (and play) with building models. It provides a range of environmental performance data such as: energy consumption, internal comfort data and HVAC component sizes. Output is based on detailed sub-hourly simulation time steps using the EnergyPlus simulation engine. DesignBuilder can be used for simulations of many common HVAC types, naturally ventilated buildings, buildings with daylighting control, double facades, advanced solar shading strategies etc. Screen Shots Keywords Building energy simulation, visualisation, CO2 emissions, solar shading, natural ventilation, daylighting, comfort studies, CFD, HVAC simulation, pre-design, early-stage design, building energy code compliance checking,

360

SY Tank Farm ventilation isolation option risk assessment report  

DOE Green Energy (OSTI)

The safety of the 241-SY Tank Farm ventilation system has been under extensive scrutiny due to safety concerns associated with tank 101-SY. Hydrogen and other gases are generated and trapped in the waste below the liquid surface. Periodically, these gases are released into the dome space and vented through the exhaust system. This attention to the ventilation system has resulted in the development of several alternative ventilation system designs. The ventilation system provides the primary means of mitigation of accidents associated with flammable gases. This report provides an assessment of various alternatives ventilation system designs.

Powers, T.B.; Morales, S.D.

1994-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation building 773-a" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

On The Valuation of Infiltration towards Meeting Residential Ventilation Needs  

SciTech Connect

The purpose of ventilation is dilute or remove indoor contaminants that an occupant is exposed to. It can be provided by mechanical or natural means. In most homes, especially existing homes, infiltration provides the dominant fraction of the ventilation. As we seek to provide acceptable indoor air quality at minimum energy cost, it is important to neither over-ventilate nor under-ventilate. Thus, it becomes critically important to correctly evaluate the contribution infiltration makes to both energy consumption and equivalent ventilation. ASHRAE Standards including standards 62, 119, and 136 have all considered the contribution of infiltration in various ways, using methods and data from 20 years ago.

Sherman, Max H.

2008-09-01T23:59:59.000Z

362

Service Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Service Service Characteristics by Activity... Service Service buildings are those in which some type of service is provided, other than food service or retail sales of goods. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Service Buildings... Most service buildings were small, with almost ninety percent between 1,001 and 10,000 square feet. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics Number of Service Buildings by Predominant Building Size Category Figure showing number of service buildings by size. If you need assistance viewing this page, please contact 202-586-8800. Equipment Table: Buildings, Size, and Age Data by Equipment Types Predominant Heating Equipment Types in Service Buildings

363

4.42J / 1.044J / 2.66J Fundamentals of Energy in Buildings, Fall 2008  

E-Print Network (OSTI)

This subject provides a first course in thermo-sciences for students primarily interested in architecture and building technology. It introduces the fundamentals important to energy, ventilation, air conditioning and comfort ...

Glicksman, Leon

364

Mercantile Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Mercantile Mercantile Characteristics by Activity... Mercantile Mercantile buildings are those used for the sale and display of goods other than food (buildings used for the sales of food are classified as food sales). This category includes enclosed malls and strip shopping centers. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Mercantile Buildings... Almost half of all mercantile buildings were less than 5,000 square feet. Roughly two-thirds of mercantile buildings housed only one establishment. Another 20 percent housed between two and five establishments, and the remaining 12 percent housed six or more establishments. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

365

Other Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Other Other Characteristics by Activity... Other Other buildings are those that do not fit into any of the specifically named categories. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Other Buildings... Other buildings include airplane hangars; laboratories; buildings that are industrial or agricultural with some retail space; buildings having several different commercial activities that, together, comprise 50 percent or more of the floorspace, but whose largest single activity is agricultural, industrial/manufacturing, or residential; and all other miscellaneous buildings that do not fit into any other CBECS category. Since these activities are so diverse, the data are probably less meaningful than for other activities; they are provided here to complete

366

Building Technologies Office: 179D DOE Calculator  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

179D DOE Calculator 179D DOE Calculator EERE » Building Technologies Office » 179D DOE Calculator Printable Version Bookmark and Share What is the 179D federal tax deduction? Section 179D of the Federal Tax Code provides a tax deduction for energy efficiency improvements to commercial buildings. A building may qualify for a tax deduction under Section 179D not to exceed $1.80/ft² for whole building performance or $0.60/ft² for a partially qualifying property for envelope, heating, ventilating, and air conditioning (HVAC), or lighting improvements. In addition, a building may qualify with a reduced installed lighting power under the interim lighting rule. Energy simulations are required to show compliance with the energy and power cost savings requirements. View more detailed information.

367

Building Energy Software Tools Directory: HVACSIM+  

NLE Websites -- All DOE Office Websites (Extended Search)

HVACSIM+ HVACSIM+ Simulation model of a building HVAC (heating, ventilation, and air-conditioning ) system plus HVAC controls, the building shell, the heating/cooling plant, and energy management and control system (EMCS) algorithms. The main program of HVACSIM+ (HVAC SIMulation PLUS other systems employs a hierarchical, modular approach and advanced equation solving techniques to perform dynamic simulations of building/HVAC/control systems. The modular approach is based upon the methodology used in the TRNSYS program. Keywords HVAC equipment, systems, controls, EMCS, complex systems Validation/Testing N/A Expertise Required High level of computer literacy. Users More than 100. Audience Building technology researchers, graduate schools, consultants. Input Building system component model configuration, simulation setup work file,

368

Analysis of the Design of an HVAC System in a Public Building  

E-Print Network (OSTI)

Based on an example of the design of air conditioning system for a public building, this paper analyzes the characteristics of similar buildings, and introduces the air conditioning system, ventilating system, and the fire control system. The optimized combination of these three systems is carried out in this building to meet the demand on comfort, energy conservation, and fire control and protection, which can provide a reference for the design of similar buildings.

Wei, P.; Shao, Z.; Chen, H.

2006-01-01T23:59:59.000Z

369

Buildings*","Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

8. Primary Space-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" 8. Primary Space-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Space Heating","Primary Space-Heating Energy Source Used a" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings* ...............",4645,3982,1258,1999,282,63 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,2100,699,955,171,"Q" "5,001 to 10,000 ..............",889,782,233,409,58,"Q" "10,001 to 25,000 .............",738,659,211,372,32,"Q" "25,001 to 50,000 .............",241,225,63,140,8,9

370

Buildings*","Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

6. Space Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" 6. Space Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Space Heating","Space-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane","Other a" "All Buildings* ...............",4645,3982,1766,2165,360,65,372,113 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,2100,888,1013,196,"Q",243,72 "5,001 to 10,000 ..............",889,782,349,450,86,"Q",72,"Q" "10,001 to 25,000 .............",738,659,311,409,46,18,38,"Q"

371

Buildings*","Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

1. Water-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" 1. Water-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Water Heating","Water-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane" "All Buildings* ...............",4645,3472,1910,1445,94,27,128 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,1715,1020,617,41,"N",66 "5,001 to 10,000 ..............",889,725,386,307,"Q","Q",27 "10,001 to 25,000 .............",738,607,301,285,16,"Q",27

372

Vacant Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

of 275 thousand cubic feet per building, 29.9 cubic feet per square foot, at an average cost of 475 per thousand cubic feet. Energy Consumption in Vacant Buildings by Energy...

373

Building America  

SciTech Connect

IBACOS researched the constructability and viability issues of using high performance windows as one component of a larger approach to building houses that achieve the Building America 70% energy savings target.

Brad Oberg

2010-12-31T23:59:59.000Z

374

Topic: Building Energy Conservation  

Science Conference Proceedings (OSTI)

... Group. Indoor Air Quality and Ventilation Group. Heat Transfer and Alternative Energy Systems Group. Instrument. Roof Photovoltaic Test Facility. ...

2012-01-19T23:59:59.000Z

375

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... gas temperature; heat loss; enclosures; nuclear power plants; cables; ventilation ... validate fire computer codes for nuclear power plant applications. ...

376

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Evaluation of Fire Models for Nuclear Power Plant Applications: Cable ... cable trays; fire models; nuclear power plants; computer models; ventilation ...

377

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Impact of Natural Ventilation Strategies and Design Issues for California Applications, Including Input to ASHRAE Standard 62 and California Title ...

378

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Jacobson, E.; Brown, J.; Stepp, L. Evaluating Positive Pressure Ventilation In Large Structures: High-Rise Pressure Experiments. ...

379

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... attic ventilation; HUD Manufactured Home Construction; safety ... HUD) Standards for manufactured housing. ... combination of passive measures to be ...

380

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... ventilation; predictive models; manufactured housing; air change rate ... air return, and whole house exhaust with and without passive inlet vents. ...

Note: This page contains sample records for the topic "ventilation building 773-a" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Prototype Buildings  

Science Conference Proceedings (OSTI)

... The SDC D buildings, designed for Seattle, Washington, used special moment frames (SMFs) with reduced beam section (RBS) connections. ...

2013-02-08T23:59:59.000Z

382

Development of an Object-Oriented Building Physics Library and  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of an Object-Oriented Building Physics Library and Development of an Object-Oriented Building Physics Library and Investigation and Optimization of Hygrothermal and Hygienic Comfort in Rooms Speaker(s): Thierry Nouidui Date: October 14, 2010 - 12:00pm Location: 90-3122 The development of ventilation strategies for moisture problems, the reduction of the heating and cooling demands, the guarantee of hygrothermal and hygienic comfort in building constructions as well as the performance and the durability of building components are questions which are related to the strong interactions between the climate conditions, the building use and the building envelope. These questions can be answered with the help of efficient building simulation tools before building construction or retrofit. Until now, models which used the generic concepts of

383

Experimental Method to Determine the Energy Envelope Performance of Buildings  

E-Print Network (OSTI)

In France, buildings represent 40% of the annual energy consumption. This sector represents an important stack to achieve the objective of reducing by 4 the greenhouse gas emissions by 2050. Knowledge of construction techniques and the use of equipments are the main keys to realize low energy buildings. To achieve this aim, we monitored 24 experimental buildings. In order to evaluate these experimental buildings we compare the monitored energy performance to the predicted energy performance and explain the differences between both performances. Therefore, we developed an in-situ method to determine the thermal envelope performance of buildings (Ubuilding). The buildings are monitored in order to know the followings inputs: Occupancy rate; Heat supply; Solar supply; Ventilation and airflow losses; Distributions losses. The aim of this paper is to present the developed method and monitoring protocol. In order to validate the proposed experimental approach, we will present applications on different monitoring buildings in context of the project PREBAT (Research Program on Building's Evaluation).

Berger, J.; Tasca-Guernouti, S. T.; Humbert, M.

2010-01-01T23:59:59.000Z

384

Applications of HVAC System Utilizing Building Thermal Mass in Japan  

NLE Websites -- All DOE Office Websites (Extended Search)

Applications of HVAC System Utilizing Building Thermal Mass in Japan Applications of HVAC System Utilizing Building Thermal Mass in Japan Speaker(s): Katsuhiro Miura Date: January 27, 2012 - 10:00am Location: 90-3122 Seminar Host/Point of Contact: Michael Wetter Buildings have a large thermal capacity and it affects much on building thermal load for the HVAC system. The thermal mass can be utilized also to control the thermal load by storing thermal energy before HVAC operation. There are two ways to store thermal energy. One is by operating the HVAC system and the other is by natural ventilation, mainly at night. The latter could be combined with daily HVAC operation as a hybrid ventilation. Thermal mass storage is useful to decrease the hourly peak load and the daily thermal load and can be used for both cooling and heating purpose.

385

Better Buildings Neighborhood Program: Better Buildings Neighborhood  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Better Buildings Neighborhood Program Search Better Buildings Neighborhood Program Search Search Help Better Buildings Neighborhood Program HOME ABOUT BETTER BUILDINGS PARTNERS INNOVATIONS RUN A PROGRAM TOOLS & RESOURCES NEWS EERE » Building Technologies Office » Better Buildings Neighborhood Program Printable Version Share this resource Send a link to Better Buildings Neighborhood Program: Better Buildings Neighborhood Program to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Delicious

386

Building Technologies Office: Advancing Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Codes Building Energy Codes Printable Version Share this resource Send a link to Building Technologies Office: Advancing Building Energy Codes to someone by E-mail Share Building Technologies Office: Advancing Building Energy Codes on Facebook Tweet about Building Technologies Office: Advancing Building Energy Codes on Twitter Bookmark Building Technologies Office: Advancing Building Energy Codes on Google Bookmark Building Technologies Office: Advancing Building Energy Codes on Delicious Rank Building Technologies Office: Advancing Building Energy Codes on Digg Find More places to share Building Technologies Office: Advancing Building Energy Codes on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat.

387

Building Technologies Office: Building America Meetings  

NLE Websites -- All DOE Office Websites (Extended Search)

Building America Building America Meetings to someone by E-mail Share Building Technologies Office: Building America Meetings on Facebook Tweet about Building Technologies Office: Building America Meetings on Twitter Bookmark Building Technologies Office: Building America Meetings on Google Bookmark Building Technologies Office: Building America Meetings on Delicious Rank Building Technologies Office: Building America Meetings on Digg Find More places to share Building Technologies Office: Building America Meetings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR

388

Cranfield University Building 41 (Stafford Cripps Building)  

E-Print Network (OSTI)

Cranfield University Building 41 (Stafford Cripps Building) Building 41, formally known as the Stafford Cripps Building, has been transformed into a new Learning and Teaching Facility. Proposed ground

389

Building Technologies Office: Residential Building Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Building Residential Building Activities to someone by E-mail Share Building Technologies Office: Residential Building Activities on Facebook Tweet about Building Technologies Office: Residential Building Activities on Twitter Bookmark Building Technologies Office: Residential Building Activities on Google Bookmark Building Technologies Office: Residential Building Activities on Delicious Rank Building Technologies Office: Residential Building Activities on Digg Find More places to share Building Technologies Office: Residential Building Activities on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals

390

Better Buildings Neighborhood Program: Better Buildings Residential...  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Residential Network to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Residential Network on Facebook Tweet about Better Buildings...

391

Building Technologies Office: Better Buildings Challenge  

NLE Websites -- All DOE Office Websites (Extended Search)

on Twitter Bookmark Building Technologies Office: Better Buildings Challenge on Google Bookmark Building Technologies Office: Better Buildings Challenge on Delicious Rank...

392

Building Technologies Office: Building Energy Optimization Software  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Building Energy Optimization Software to someone by E-mail Share Building Technologies Office: Building Energy Optimization Software on Facebook Tweet about Building Technologies Office: Building Energy Optimization Software on Twitter Bookmark Building Technologies Office: Building Energy Optimization Software on Google Bookmark Building Technologies Office: Building Energy Optimization Software on Delicious Rank Building Technologies Office: Building Energy Optimization Software on Digg Find More places to share Building Technologies Office: Building Energy Optimization Software on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance

393

Building Science  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science Science The "Enclosure" Joseph Lstiburek, Ph.D., P.Eng, ASHRAE Fellow www.buildingscience.com * Control heat flow * Control airflow * Control water vapor flow * Control rain * Control ground water * Control light and solar radiation * Control noise and vibrations * Control contaminants, environmental hazards and odors * Control insects, rodents and vermin * Control fire * Provide strength and rigidity * Be durable * Be aesthetically pleasing * Be economical Building Science Corporation Joseph Lstiburek 2 Water Control Layer Air Control Layer Vapor Control Layer Thermal Control Layer Building Science Corporation Joseph Lstiburek 3 Building Science Corporation Joseph Lstiburek 4 Building Science Corporation Joseph Lstiburek 5 Building Science Corporation

394

Buildings Blog  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

blog Office of Energy Efficiency & blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en EnergyPlus Boosts Building Efficiency with Help from Autodesk http://energy.gov/eere/articles/energyplus-boosts-building-efficiency-help-autodesk building-efficiency-help-autodesk" class="title-link">EnergyPlus Boosts Building Efficiency with Help from Autodesk

395

Designing passive solar buildings to reduce temperature swings  

DOE Green Energy (OSTI)

Control of temperature swings is a major consideration in design of passive solar heated buildings - especially so as the designer seeks to achieve most of the building heat from the sun. Observations of temperature swings in several passive buildings are cited. Methods of temperature control are discussed, both by means of control intervention such as using of auxiliary backup heating, ventilation, and blowers, and by means of building design. The design approach is preferred as the main course with the intervention techniques used for fine tuning.

Balcomb, D.

1978-05-01T23:59:59.000Z

396

Sustainable Building Design Revolving Loan Fund | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sustainable Building Design Revolving Loan Fund Sustainable Building Design Revolving Loan Fund Sustainable Building Design Revolving Loan Fund < Back Eligibility State Government Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Other Windows, Doors, & Skylights Ventilation Heating Appliances & Electronics Commercial Lighting Lighting Water Heating Maximum Rebate 100% project financing Program Info Start Date 1/8/2010 State Arkansas Program Type State Loan Program Rebate Amount 100% project financing Provider Arkansas Energy Office The Sustainable Building Design Revolving Loan Fund (RLF) is funded by the American Recovery and Reinvestment Act of 2009 (ARRA). The Arkansas Energy

397

Integrated Building Management System (IBMS) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Management System Building Management System (IBMS) Integrated Building Management System (IBMS) The U.S. Department of Energy (DOE) is currently conducting research into an integrated building management system (IBMS). Project Description This project seeks to develop an open integration framework that allows multivendor systems to interoperate seamlessly using internet protocols. The applicant will create an integrated control platform for implementing new integrated control strategies and to enable additional enterprise control applications, such as demand response. The project team seeks to develop several strategies that take advantage of the sensors and functionality of heating, ventilation, and air conditioning (HVAC); security; and information and communication technologies (ICT) subsystems;

398

BUILDING TECHNOLOGIES PROGRAM CODE NOTES  

NLE Websites -- All DOE Office Websites (Extended Search)

Duct Insulation and Duct Insulation and Sealing Requirements in Commercial Buildings 2009 and 2012 IECC; ASHRAE 90.1-2007 and 2010; 2009 and 2012 IMC Duct insulation and sealing, especially insulated supply ducts delivering conditioned air within a building, save energy. The intent of energy efficiency codes, as related to duct insulation and sealing, is to keep mechanically warmed or cooled air as close to a constant, desired temperature as possible and prevent the conditioned air from escaping the duct system while it is being moved to spaces where it is needed. If reduced heat transfer through insulated ducts is accounted for in the heating, ventilating, and air conditioning (HVAC) load calculations, it may even be possible to reduce the size of HVAC equipment.

399

Smart Sensing, Estimation, and Prediction for Efficient Building Energy Management  

E-Print Network (OSTI)

occupancy by creating agent models of the occupants. These predictions enable the HVAC system increase is accounted for in heating, ventilation, and air conditioning (HVAC) systems. Smart sensing and adaptive energy management software can greatly decrease the energy usage of HVAC systems in many building

Chang, Yu-Han

400

Scalable Scheduling of Building Control Systems for Peak Demand Reduction  

E-Print Network (OSTI)

is model predictive control (MPC) ([6], [7]). In [6] the authors inves- tigated MPC for thermal energyScalable Scheduling of Building Control Systems for Peak Demand Reduction Truong X. Nghiem, Madhur operation of sub- systems such as heating, ventilating, air conditioning and refrigeration (HVAC&R) systems

Pappas, George J.

Note: This page contains sample records for the topic "ventilation building 773-a" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Thermal performance of the exterior envelopes of buildings IV  

Science Conference Proceedings (OSTI)

The purpose of this conference was to present for discussion the latest research from industrial, academic, and government laboratories on issues that will reduce energy consumption by improving the design and construction of buildings. The primary topics covered in the 15 sessions were Hot Climates, Daylighting, Walls/Roofs, Reflective Systems, Standards/Codes, Fenestration, Infiltration/Ventilation, Moisture, Whole Buildings, and Foundations. Abstracts were prepared for the 63 papers. (SC)

Not Available

1989-01-01T23:59:59.000Z

402

Co-design of control algorithm and embedded platform for building HVAC systems  

Science Conference Proceedings (OSTI)

The design of heating, ventilation and air conditioning (HVAC) systems is crucial for reducing energy consumption in buildings. As complex cyber-physical systems, HVAC systems involve three closely-related subsystems -- the control algorithm, the physical ... Keywords: building energy efficiency, co-design, platform-based design

Mehdi Maasoumy, Qi Zhu, Cheng Li, Forrest Meggers, Alberto Sangiovanni-Vincentelli

2013-04-01T23:59:59.000Z

403

Seamless Handover in Buildings Using HVAC Ducts: A New System Architecture  

E-Print Network (OSTI)

Seamless Handover in Buildings Using HVAC Ducts: A New System Architecture Ariton E. Xhafa, Paisarn-- In this paper, we present an innovative solution to the handover problem in multi-story buildings using HVAC of the indoor wireless networks that use the heating, ventilation, and air conditioning (HVAC) ducts

Stancil, Daniel D.

404

Proceedings of ASHRAE-DOE-BTECC Conference on Building Thermal Envelopes Simplified Modeling for  

E-Print Network (OSTI)

in the envelopes of residential buildings is the primary mechanism to pro- vide ventilation to those buildings. For radon the same mechanisms that drive the ven- tilation, drive the radon entry from soil gas. This paper leakage, air flow, energy conservation, energy calculation, environment, health, modeling. #12

405

Experimental Evaluation of a Downsized Residential Air Distribution System: Comfort and Ventilation Effectiveness  

SciTech Connect

Good air mixing not only improves thermal comfort Human thermal comfort is the state of mind that expresses satisfaction with the surrounding environment, according to ASHRAE Standard 55. Achieving thermal comfort for most occupants of buildings or other enclosures is a goal of HVAC design engineers. but also enhances ventilation effectiveness by inducing uniform supply-air diffusion. In general, the performance of an air distribution system in terms of comfort and ventilation effectiveness is influenced by the supply air temperature, velocity, and flow rate, all of which are in part dictated by the HVAC (Heating Ventilation Air Conditioning) In the home or small office with a handful of computers, HVAC is more for human comfort than the machines. In large datacenters, a humidity-free room with a steady, cool temperature is essential for the trouble-free system as well as the thermal load attributes. Any potential deficiencies associated with these design variables can be further exacerbated by an improper proximity of the supply and return outlets with respect to the thermal and geometrical characteristics of the indoor space. For high-performance houses, the factors influencing air distribution performance take on an even greater significance because of a reduced supply-air design flow rate resulting from downsized HVAC systems.

Jalalzadeh-Azar, A. A.

2007-01-01T23:59:59.000Z

406

Building Technologies Office: Commercial Reference Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Reference Commercial Reference Buildings to someone by E-mail Share Building Technologies Office: Commercial Reference Buildings on Facebook Tweet about Building Technologies Office: Commercial Reference Buildings on Twitter Bookmark Building Technologies Office: Commercial Reference Buildings on Google Bookmark Building Technologies Office: Commercial Reference Buildings on Delicious Rank Building Technologies Office: Commercial Reference Buildings on Digg Find More places to share Building Technologies Office: Commercial Reference Buildings on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score

407

Building Technologies Office: Buildings to Grid Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings to Grid Buildings to Grid Integration to someone by E-mail Share Building Technologies Office: Buildings to Grid Integration on Facebook Tweet about Building Technologies Office: Buildings to Grid Integration on Twitter Bookmark Building Technologies Office: Buildings to Grid Integration on Google Bookmark Building Technologies Office: Buildings to Grid Integration on Delicious Rank Building Technologies Office: Buildings to Grid Integration on Digg Find More places to share Building Technologies Office: Buildings to Grid Integration on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research Water Heating Research Lighting Research

408

Evaluation of design ventilation requirements for enclosed parking facilities  

SciTech Connect

This paper proposes a new design approach to determine the ventilation requirements for enclosed parking garages. The design approach accounts for various factors that affect the indoor air quality within a parking facility, including the average CO emission rate, the average travel time, the number of cars, and the acceptable CO level within the parking garage. This paper first describes the results of a parametric analysis based on the design method that was developed. Then the design method is presented to explain how the ventilation flow rate can be determined for any enclosed parking facility. Finally, some suggestions are proposed to save fan energy for ventilating parking garages using demand ventilation control strategies.

Ayari, A.; Krarti, M.

2000-07-01T23:59:59.000Z

409

New and Underutilized Heating, Ventilation, and Air Conditioning...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8, 2013 - 2:56pm Addthis The following heating, ventilation, and air conditioning (HVAC) technologies are underutilized within the Federal sector. These technologies have been...

410

Energy Impact of Residential Ventilation Norms in the United States  

E-Print Network (OSTI)

5% of the total space conditioning) and the intermittentsupply lead to greater space conditioning energy use. AnnualkWh Distribution Ventilation Space Conditioning Leaky House

Sherman, Max H.; Walker, Iain S.

2007-01-01T23:59:59.000Z

411

Review on Ventilation Rate Measuring and Modeling Techniques...  

NLE Websites -- All DOE Office Websites (Extended Search)

Bldg. 90 Due to limited energy sources, countries are looking for alternative solutions to decrease energy needs. In that context, natural ventilation can be seen as a very...

412

Energy Impacts of Envelope Tightening and Mechanical Ventilation...  

NLE Websites -- All DOE Office Websites (Extended Search)

or absolute standards along with mechanical ventilation throughout the U.S. housing stock. We used a physics-based modeling framework to simulate the impact of envelope...

413

Review of Literature Related to Residential Ventilation Requirements  

E-Print Network (OSTI)

Refrigerating, and Air -Conditioning Engineers, Atlanta, GRefrigerat ing, and Air-Conditioning Engineers, Atlanta, Gof Ventilation and Air Conditioning: Is C E R N up to Date

McWilliams, Jennifer; Sherman, Max

2005-01-01T23:59:59.000Z

414

Characterization of air recirculation in multiple fan ventilation systems.  

E-Print Network (OSTI)

??Booster fans, large underground fans, can increase the volumetric efficiency of ventilation systems by helping to balance the pressure and quantity distribution throughout a mine, (more)

Wempen, Jessica Michelle

2012-01-01T23:59:59.000Z

415

Analysis of Demand Controlled Ventilation Technology and ...  

Science Conference Proceedings (OSTI)

... the adoption of the Alaska Building Energy Efficiency Standard ... the methanol-fueled vehicle until warm, then parking it in the garage and shutting ...

2005-10-07T23:59:59.000Z

416

Energy and Ventilation Research in Highrise Apartments  

NLE Websites -- All DOE Office Websites (Extended Search)

the percent of household income spent for energy-is several times higher for these households than for single-family households. Historically, multifamily buildings have been the...

417

Development of a Residential Integrated Ventilation Controller  

E-Print Network (OSTI)

weightavg_rates.html California Energy Commission. 2005. of Regulations: California's Energy Efficiency Standards forBuildings. California Energy Commission, Sacramento, CA.

Walker, Iain

2013-01-01T23:59:59.000Z

418

Building Energy Software Tools Directory: ENERPASS  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERPASS ENERPASS Detailed building energy simulation program for residential and smaller commercial buildings. ENERPASS calculates the annual energy use for space heating, cooling, lighting, water heating and fan energy. The calculations are performed on an hourly basis using hourly measured weather data. ENERPASS can model up to seven building zones and provides hourly temperature and humidity predictions for each zone. A wide range of HVAC systems can be modelled including make-up air units, heat recovery ventilators, rooftop units, VAV, four-pipe fan coil, and dual duct. The program uses full screen data entry in an easy-to-use format. A typical building model can be generated in one to two hours. In IEA validation studies ENERPASS results compare favorably with other hourly based computer

419

Residential Attic Ventilation In A Hot And Humid Climate: Effects Of Increased Ventilation On Thermal Performance And Moisture Control.  

E-Print Network (OSTI)

?? The reality of the effect of natural ventilation in a residential attic cavity has been the topic of many debates and scholarly reports since (more)

Atherton, Stanley Arthur

2011-01-01T23:59:59.000Z

420

Green Building- Efficient Life Cycle  

E-Print Network (OSTI)

Energy saving does not just apply to traffic, production or agriculture. Buildings are also contributing to the climate change. The focus here is on the energy they use and on their CO2 emissions. Each year, Siemens invests more than two billion euros in the appropriate research and development. For customers, this means that Siemens is already providing them with energy efficient solutions that save resources and reduce emissions. Siemens Real Estate (SRE) has taken on the task of ensuring that Siemens AG will become 20 percent more energy efficient by 2011, and it has turned an efficiency program for existing real estate, which has been in existence since 2005, into an integrated green building initiative. This initiative comprises the components Sustainable Building Design, Life Cycle Cost Analysis, Green Building Certification and Natural Resources Management. These components are deliberately arranged around the life cycle of the real estate concerned. This allows a different emphasis to be placed on the different questions in each project phase and each phase of a buildings life and for them to be answered in a targeted manner. Sustainable Building Design comes into effect during the tasking and preliminary planning phase of a building project; and, by providing a specially developed sustainability manual, it helps with the definition of target values and the drawing up of efficiency strategies for the planning of the building. The manual epitomizes, and sets out clearly, the attitude of SRE to all building-specific sustainability matters. In addition, it is used in the offering of rewards for project competitions. As a result, through a selection of different energy-efficiency measures that have been roughly conceived beforehand, the primary energy consumption can already be restricted in the project definition phase. Life Cycle Cost Analysis comes into effect when the blueprint for buildings is being drawn up. Up to now, when components and systems were being chosen, the main focus was usually on the investment costs involved. By using a cost tool developed specifically to meet the needs of the company, SRE will in future be able to estimate the component-specific utilization costs such as cleaning, maintenance, and the use of energy at an early planning stage. Green Building Certification is used in building projects during the planning and implementation phase, and it thus ensures the quality of the new real estate over the long term. Siemens is implementing the Green Building Program of the European Commission in new building projects and renovation work in EU countries. In all other countries that are not taking part in the EU Green Building Program, SRE uses certification in accordance with LEED (Leadership in Energy and Environmental Design). In the LEED certification, a transparent and easy-to-use catalog of criteria is employed to make an assessment of the use of energy and other aspects of sustainability, such as the selection of the plot of land, the efficient use of water, the quality of air within buildings, and the selection of materials. This ensures that a neutral and independent assessment is made of all new building and large-scale renovation projects. The action program Natural Resources Management rounds off the range of measures in the area of existing real estate. The aim of the program is to identify and highlight all latent efficiency potential in existing buildings. This includes, for instance, modernizing the control equipment used for the heating and ventilation systems. This entails replacing electrical power units with more efficient models, and retrofitting fans and pumps with frequency converters. Sixty buildings have now been inspected, and savings of almost eight million Euros have been achieved. The average payback period is less than two years. One example of this is an old Siemens building from the 1970s at the Munich-Perlach site. Through energy optimization, it has been possible to cu

Kohns, R.

2008-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation building 773-a" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Office Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Since they comprised 18 percent of commercial floorspace, this means that their total energy intensity was just slightly above average. Office buildings predominantly used...

422

Better Buildings Neighborhood Program: Better Buildings Partners  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Better Buildings Partners to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Partners on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Partners on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Partners on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Partners on Delicious Rank Better Buildings Neighborhood Program: Better Buildings Partners on Digg Find More places to share Better Buildings Neighborhood Program: Better Buildings Partners on AddThis.com... Better Buildings Residential Network Progress Stories Interviews Videos Events Quick Links to Partner Information AL | AZ | CA | CO | CT FL | GA | IL | IN | LA ME | MD | MA | MI | MO NE | NV | NH | NJ | NY

423

Building Technologies Office: National Laboratories Supporting Building  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratories National Laboratories Supporting Building America to someone by E-mail Share Building Technologies Office: National Laboratories Supporting Building America on Facebook Tweet about Building Technologies Office: National Laboratories Supporting Building America on Twitter Bookmark Building Technologies Office: National Laboratories Supporting Building America on Google Bookmark Building Technologies Office: National Laboratories Supporting Building America on Delicious Rank Building Technologies Office: National Laboratories Supporting Building America on Digg Find More places to share Building Technologies Office: National Laboratories Supporting Building America on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America

424

Building Technologies Office: Integrated Building Management System  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Building Integrated Building Management System Research Project to someone by E-mail Share Building Technologies Office: Integrated Building Management System Research Project on Facebook Tweet about Building Technologies Office: Integrated Building Management System Research Project on Twitter Bookmark Building Technologies Office: Integrated Building Management System Research Project on Google Bookmark Building Technologies Office: Integrated Building Management System Research Project on Delicious Rank Building Technologies Office: Integrated Building Management System Research Project on Digg Find More places to share Building Technologies Office: Integrated Building Management System Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE

425

A Bench Study of Intensive Care Unit Ventilators: New versus Old and Turbine-Based versus Compressed Gas-Based Ventilators  

E-Print Network (OSTI)

. Material: Four turbine- based ventilators and nine conventional servo-valve compressed-gas ventilators were1 A Bench Study of Intensive Care Unit Ventilators: New versus Old and Turbine-Based versus Compressed Gas-Based Ventilators Arnaud W. Thille,1 MD; Aissam Lyazidi,1 Biomed Eng MS; Jean-Christophe M

Paris-Sud XI, Université de

426

ENERGY EFFICIENT BUILDINGS PROGRAM. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1979  

SciTech Connect

The research reported in this volume was undertaken during FY 1979 within the Energy & Environment Division of the Lawrence Berkeley Laboratory. This volume will comprise a section of the Energy & Environment Division 1979 Annual Report, to be published in the summer of 1980. Work reported relate to: thermal performance of building envelopes; building ventilation and indoor air quality; a computer program for predicting energy use in buildings; study focused specifically on inherently energy intensive hospital buildings; energy efficient windows and lighting; potential for energy conservation and savings in the buildings sector; and evaluation of energy performance standards for residential buildings.

Authors, Various

1979-12-01T23:59:59.000Z

427

Sensitivity of Tropical Cyclone Intensity to Ventilation in an Axisymmetric Model  

E-Print Network (OSTI)

The sensitivity of tropical cyclone intensity to ventilation of cooler, drier air into the inner core is examined using an axisymmetric tropical cyclone model with parameterized ventilation. Sufficiently strong ventilation ...

Tang, Brian

428

Sensitivity of Tropical Cyclone Intensity to Ventilation in an Axisymmetric Model  

Science Conference Proceedings (OSTI)

The sensitivity of tropical cyclone intensity to ventilation of cooler, drier air into the inner core is examined using an axisymmetric tropical cyclone model with parameterized ventilation. Sufficiently strong ventilation induces cooling of the ...

Brian Tang; Kerry Emanuel

2012-08-01T23:59:59.000Z

429

EnergyPlus Boosts Building Efficiency with Help from Autodesk | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EnergyPlus Boosts Building Efficiency with Help from Autodesk EnergyPlus Boosts Building Efficiency with Help from Autodesk EnergyPlus Boosts Building Efficiency with Help from Autodesk November 21, 2013 - 1:55pm Addthis Amir Roth Amir Roth Technology Development Manager, Building Technologies Office KEY FACTS Building energy simulation is the calculation of energy used to heat, cool, light, and ventilate a building given a description of the building and its operation. Building energy simulation plays important roles in the design of energy-efficient buildings, in building energy-efficiency codes and standards, in voluntary rating programs like LEED and GreenGlobes, and energy-efficiency incentive programs. For decades, the Energy Department's Building Technologies Office has been developing free, world-class simulation tools to help industry improve

430

Indoor air quality issues related to the acquisition of conservation in commercial buildings  

Science Conference Proceedings (OSTI)

The quality of indoor air in commercial buildings is dependent on the complex interaction between sources of indoor pollutants, environmental factors within buildings such as temperature and humidity, the removal of air pollutants by air-cleaning devices, and the removal and dilution of pollutants from outside air. To the extent that energy conservation measures (ECMs) may affect a number of these factors, the relationship between ECMs and indoor air quality is difficult to predict. Energy conservation measures may affect pollutant levels in other ways. Conservation measures, such as caulking and insulation, may introduce sources of indoor pollutants. Measures that reduce mechanical ventilation may allow pollutants to build up inside structures. Finally, heating, ventilation, and air-conditioning (HVAC) systems may provide surface areas for the growth of biogenic agents, or may encourage the dissemination of pollutants throughout a building. Information about indoor air quality and ventilation in both new and existing commercial buildings is summarized in this report. Sick building syndrome and specific pollutants are discussed, as are broader issues such as ventilation, general mitigation techniques, and the interaction between energy conservation activities and indoor air quality. Pacific Northwest Laboratory (PNL) prepared this review to aid the Bonneville Power Administration (Bonneville) in its assessment of potential environmental effects resulting from conservation activities in commercial buildings. 76 refs., 2 figs., 19 tabs.

Baechler, M.C.; Hadley, D.L.; Marseille, T.J.

1990-09-01T23:59:59.000Z

431

Minimum Energy Ventilation for Fast Food Restaurant Kitchens  

Science Conference Proceedings (OSTI)

Cooking equipment exhaust systems have a significant impact on the energy consumption of fast food restaurants. This research investigated issues that relate to the energy performance of commercial kitchen ventilation systems and demonstrated that significant energy and cost savings can be achieved by reducing ventilation rates.

1996-10-30T23:59:59.000Z

432

Absolute Glovebox Ventilation Filtration System with Unique Filter Replacement Feature  

SciTech Connect

A glovebox ventilation system was designed for a new plutonium-238 processing facility that provided 1) downdraft ventilation, 2) a leak tight seal around the High Efficiency Particulate Air (HEPA) filters, and 3) a method for changing the filters internally without risk of contaminating the laboratory.

Freeman, S. S.; Slusher, W. A.

1975-12-31T23:59:59.000Z

433

A survey and critical review of the literature on indoor air quality, ventilation and health symptoms in schools  

Science Conference Proceedings (OSTI)

A survey and critical review were undertaken of existing published literature and reports on indoor air quality (IAQ), ventilation, and IAQ- and building-related health problems in schools, including California schools. Over 450 relevant publications were obtained and reviewed, including papers published in the archival peer-reviewed scientific literature, proceedings of scientific meetings, government reports, 77 NIOSH Health Hazard Evaluation Reports (HHER) and 70 reports on investigations of problem schools in California. Most of the reviewed literature was for complaint or problem schools. The types of health symptoms reported in schools were very similar to those defined as sick building syndrome (SBS) symptoms, although this may be due, at least in part, to the type of health symptom questionnaires used. Some of the symptoms, e.g., wheezing, are indicative of asthma. In the studies in which complaint and noncomplaint buildings or areas were compared, complaint buildings generally had higher rates of health symptoms.

Daisey, J.M. [Lawrence Berkeley National Lab., CA (United States). Energy and Environment Div.; Angell, W.J. [Univ. of Minnesota, St. Paul, MN (United States)

1998-03-01T23:59:59.000Z

434

HOW THE LEED VENTILATION CREDIT IMPACTS ENERGY CONSUMPTION OF GSHP SYSTEMS A CASE STUDY FOR PRIMARY SCHOOLS  

Science Conference Proceedings (OSTI)

This paper presents a study on the impacts of increased outdoor air (OA) ventilation on the performance of ground-source heat pump (GSHP) systems that heat and cool typical primary schools. Four locations Phoenix, Miami, Seattle, and Chicago are selected in this study to represent different climate zones in the United States. eQUEST, an integrated building and HVAC system energy analysis program, is used to simulate a typical primary school and the GSHP system at the four locations with minimum and 30% more than minimum OA ventilation. The simulation results show that, without an energy recovery ventilator, the 30% more OA ventilation results in an 8.0 13.3% increase in total GSHP system energy consumption at the four locations. The peak heating and cooling loads increase by 20.2 30% and 14.9 18.4%, respectively, at the four locations. The load imbalance of the ground heat exchanger is increased in hot climates but reduced in mild and cold climates.

Liu, Xiaobing [ORNL

2011-01-01T23:59:59.000Z

435

Residential Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Residential Residential Buildings Residential buildings-such as single family homes, townhomes, condominiums, and apartment buildings-are all covered by the Residential Energy Consumption Survey (RECS). See the RECS home page for further information. However, buildings that offer multiple accomodations such as hotels, motels, inns, dormitories, fraternities, sororities, convents, monasteries, and nursing homes, residential care facilities are considered commercial buildings and are categorized in the CBECS as lodging. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/residential.html

436

A numerical approach to evaluating what percentage of a living space is well-ventilated, for the assessment of thermal comfort  

E-Print Network (OSTI)

A bioclimatic approach to designing comfortable buildings in hot and humid tropical regions requires, firstly, some preliminary, important work on the building envelope to limit the energy contributions, and secondly, an airflow optimization of the building. For the first step, tools such as nodal or zonal models have been largely implemented. For the second step, the assessment of air velocities, in three dimensions and in a large space, can only be performed through the use of detailed models such as with CFD. This paper deals with the improvement of thermal comfort by ventilating around the occupants. For this purpose, the average velocity coefficient definition is modified to be adapted to CFD and the areas involving movement or the living spaces. We propose a new approach based on the derivation of a new quantity: the well-ventilated percentage of a living space. The well-ventilated percentage of a space allows a time analysis of the aeraulic behaviour of the building in its environment. These percentages can be over a period such as one day, a season or a year. These kinds of results are helpful for an architect to configure the rooms of a house according to their uses, the environment, the architectural choices and the constraints related to the design of bioclimatic buildings.

Alain Bastide; Alfred Jean Philippe Lauret; Franois Garde; Harry Boyer

2012-12-18T23:59:59.000Z

437

Better Buildings Neighborhood Program: Better Buildings Residential  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Better Buildings Residential Network-Current Members to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Delicious Rank Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Digg Find More places to share Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on AddThis.com...

438

Building Technologies Office: Commercial Building Partnership Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Building Commercial Building Partnership Opportunities with the Department of Energy to someone by E-mail Share Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Facebook Tweet about Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Twitter Bookmark Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Google Bookmark Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Delicious Rank Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Digg Find More places to share Building Technologies Office: Commercial

439

Building Technologies Office: About Residential Building Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

About Residential About Residential Building Programs to someone by E-mail Share Building Technologies Office: About Residential Building Programs on Facebook Tweet about Building Technologies Office: About Residential Building Programs on Twitter Bookmark Building Technologies Office: About Residential Building Programs on Google Bookmark Building Technologies Office: About Residential Building Programs on Delicious Rank Building Technologies Office: About Residential Building Programs on Digg Find More places to share Building Technologies Office: About Residential Building Programs on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat.

440

Ventilation Systems Operating Experience Review for Fusion Applications  

SciTech Connect

This report is a collection and review of system operation and failure experiences for air ventilation systems in nuclear facilities. These experiences are applicable for magnetic and inertial fusion facilities since air ventilation systems are support systems that can be considered generic to nuclear facilities. The report contains descriptions of ventilation system components, operating experiences with these systems, component failure rates, and component repair times. Since ventilation systems have a role in mitigating accident releases in nuclear facilities, these data are useful in safety analysis and risk assessment of public safety. An effort has also been given to identifying any safety issues with personnel operating or maintaining ventilation systems. Finally, the recommended failure data were compared to an independent data set to determine the accuracy of individual values. This comparison is useful for the International Energy Agency task on fusion component failure rate data collection.

L. C. Cadwallader

1999-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation building 773-a" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The impact of ventilation rate on the emission rates of volatile...  

NLE Websites -- All DOE Office Websites (Extended Search)

impact of ventilation rate on the emission rates of volatile organic compounds in residences Title The impact of ventilation rate on the emission rates of volatile organic...

442

Commercial Building Energy Management Systems Handbook: Opportunities for Reducing Costs and Improving Comfort  

Science Conference Proceedings (OSTI)

This document is written for the commercial building owner, manager, or developer without a technical background but wanting to understand and evaluate recommendations for energy savings or comfort made by energy consultants and/or building engineers. It provides an overview of commercial building heating, ventilating, air-conditioning (HVAC), and lighting systems, and of the energy management systems (EMSs) that control comfort and provide energy savings. Opportunities for energy savings and/or increase...

1993-08-24T23:59:59.000Z

443

Building Technologies Office: Bookmark Notice  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE Building Technologies Office Commercial Buildings Printable Version...

444

Building Technologies Office: Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Contacts on Twitter Bookmark Building Technologies Office: Contacts on Google Bookmark Building Technologies Office: Contacts on Delicious Rank Building...

445

Building Technologies Office: Webmaster  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Webmaster on Twitter Bookmark Building Technologies Office: Webmaster on Google Bookmark Building Technologies Office: Webmaster on Delicious Rank Building...

446

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... high rise buildings; building collapse; disasters; fire ... adhesive strength; building codes; cohesive ... materials; thermal conductivity; thermal insulation ...

447

Changing ventilation rates in U.S. offices: Implications for health, work performance, energy, and associated economics  

SciTech Connect

This paper provides quantitative estimates of benefits and costs of providing different amounts of outdoor air ventilation in U.S. offices. For four scenarios that modify ventilation rates, we estimated changes in sick building syndrome (SBS) symptoms, work performance, short-term absence, and building energy consumption. The estimated annual economic benefits were $13 billion from increasing minimum ventilation rates (VRs) from 8 to 10 L/s per person, $38 billion from increasing minimum VRs from 8 to 15 L/s per person, and $33 billion from increasing VRs by adding outdoor air economizers for the 50% of the office floor area that currently lacks economizers. The estimated $0.04 billion in annual energy-related benefits of decreasing minimum VRs from 8 to 6.5 L/s per person are very small compared to the projected annual costs of $12 billion. Benefits of increasing minimum VRs far exceeded energy costs while adding economizers yielded health, performance, and absence benefits with energy savings.

Fisk, William; Black, Douglas; Brunner, Gregory

2011-07-01T23:59:59.000Z

448

Building Technologies Office: Residential Buildings Energy Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency Meeting to someone by E-mail Share Building Technologies Office: Residential Buildings Energy Efficiency Meeting on Facebook Tweet about Building Technologies...

449

Building Technologies Office: Residential Buildings Energy Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Energy Efficiency Meeting The U.S. Department of Energy (DOE) Building America program held the Residential Buildings Energy Efficiency Meeting in Denver, Colorado, on...

450

Building Technologies Office: 2013 DOE Building Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 DOE Building Technologies Office Program Review to someone by E-mail Share Building Technologies Office: 2013 DOE Building Technologies Office Program Review on Facebook Tweet...

451

Building America Building Science Education Roadmap  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building America Building America Building Science Education Roadmap April 2013 Contents Introduction ................................................................................................................................ 3 Background ................................................................................................................................. 4 Summit Participants .................................................................................................................... 5 Key Results .................................................................................................................................. 6 Problem ...................................................................................................................................... 7

452

Fire protection countermeasures for containment ventilation systems  

SciTech Connect

The goal of this project is to find countermeasures to protect High Efficiency Particulate Air (HEPA) filters, in exit ventilation ducts, from the heat and smoke generated by fire. Initially, methods were developed to cool fire-heated air by fine water spray upstream of the filters. It was recognized that smoke aerosol exposure to HEPA filters could also cause disruption of the containment system. Through testing and analysis, several methods to partially mitigate the smoke exposure to the HEPA filters were identified. A continuous, movable, high-efficiency prefilter using modified commercial equipment was designed. The technique is capable of protecting HEPA filters over the total time duration of the test fires. The reason for success involved the modification of the prefiltration media. Commercially available filter media has particle sorption efficiency that is inversely proportional to media strength. To achieve properties of both efficiency and strength, rolling filter media were laminated with the desired properties. The approach was Edisonian, but truncation in short order to a combination of prefilters was effective. The application of this technique was qualified, since it is of use only to protect HEPA filters from fire-generated smoke aerosols. It is not believed that this technique is cost effective in the total spectrum of containment systems, especially if standard fire protection systems are available in the space. But in areas of high-fire risk, where the potential fuel load is large and ignition sources are plentiful, the complication of a rolling prefilter in exit ventilation ducts to protect HEPA filters from smoke aerosols is definitely justified.

Alvares, N.; Beason, D.; Bergman, V.; Creighton, J.; Ford, H.; Lipska, A.

1980-08-25T23:59:59.000Z

453

Protecting buildings from a biological or chemical attack: Actions to take before or during a release  

SciTech Connect

This report presents advice on how to operate a building to reduce casualties from a biological or chemical attack, as well as potential changes to the building (e.g. the design of the ventilation system) that could make it more secure. It also documents the assumptions and reasoning behind the advice. The particular circumstances of any attack, such as the ventilation system design, building occupancy, agent type, source strength and location, and so on, may differ from the assumptions made here, in which case actions other than our recommendations may be required; we hope that by understanding the rationale behind the advice, building operators can modify it as required for their circumstances. The advice was prepared by members of the Airflow and Pollutant Transport Group, which is part of the Indoor Environment Department at the Lawrence Berkeley National Laboratory. The group's expertise in this area includes: tracer-gas measurements of airflows in buildings (Sextro, Thatcher); design and operation of commercial building ventilation systems (Delp); modeling and analysis of airflow and tracer gas transport in large indoor spaces (Finlayson, Gadgil, Price); modeling of gas releases in multi-zone buildings (Sohn, Lorenzetti, Finlayson, Sextro); and occupational health and safety experience related to building design and operation (Sextro, Delp). This report is concerned only with building design and operation; it is not a how-to manual for emergency response. Many important emergency response topics are not covered here, including crowd control, medical treatment, evidence gathering, decontamination methods, and rescue gear.

Price, Phillip N.; Sohn, Michael D.; Gadgil, Ashok J.; Delp, William W.; Lorenzetti, David M.; Finlayson, Elizabeth U.; Thatcher, Tracy L.; Sextro, Richard G.; Derby, Elisabeth A.; Jarvis, Sondra A.

2003-01-29T23:59:59.000Z

454

Protecting buildings from a biological or chemical attack: Actions to take before or during a release  

SciTech Connect

This report presents advice on how to operate a building to reduce casualties from a biological or chemical attack, as well as potential changes to the building (e.g. the design of the ventilation system) that could make it more secure. It also documents the assumptions and reasoning behind the advice. The particular circumstances of any attack, such as the ventilation system design, building occupancy, agent type, source strength and location, and so on, may differ from the assumptions made here, in which case actions other than our recommendations may be required; we hope that by understanding the rationale behind the advice, building operators can modify it as required for their circumstances. The advice was prepared by members of the Airflow and Pollutant Transport Group, which is part of the Indoor Environment Department at the Lawrence Berkeley National Laboratory. The group's expertise in this area includes: tracer-gas measurements of airflows in buildings (Sextro, Thatcher); design and operation of commercial building ventilation systems (Delp); modeling and analysis of airflow and tracer gas transport in large indoor spaces (Finlayson, Gadgil, Price); modeling of gas releases in multi-zone buildings (Sohn, Lorenzetti, Finlayson, Sextro); and occupational health and safety experience related to building design and operation (Sextro, Delp). This report is concerned only with building design and operation; it is not a how-to manual for emergency response. Many important emergency response topics are not covered here, including crowd control, medical treatment, evidence gathering, decontamination methods, and rescue gear.

Price, Phillip N.; Sohn, Michael D.; Gadgil, Ashok J.; Delp, William W.; Lorenzetti, David M.; Finlayson, Elizabeth U.; Thatcher, Tracy L.; Sextro, Richard G.; Derby, Elisabeth A.; Jarvis, Sondra A.

2003-01-29T23:59:59.000Z

455

Building Energy Software Tools Directory: Tools by Country - Switzerland  

NLE Websites -- All DOE Office Websites (Extended Search)

Switzerland Switzerland A E F L M P U Tool Applications Free Recently Updated ACOUSALLE acoustics, codes and standards ECO-BAT environmental performance, life cycle assessment, sustainable development Software has been updated. EnerCAD Building Energy Efficiency; Early Design Optimization; Architecture Oriented; Life Cycle Analysis Software has been updated. flixo 2D heat transfer, cold bridge, fenestration, frame U-value, thermal bridge Software has been updated. LESO-COMFORT thermal comfort, load calculation, energy LESO-SHADE shading factors, solar shading, building geometry LESOCOOL airflow, passive cooling, energy simulation, mechanical ventilation LESODIAL Daylighting, early design stage, user-friendliness LESOKAI thermal tranmission, water vapor, building envelope Software has been updated.

456

309 Building transition plan  

Science Conference Proceedings (OSTI)

The preparation for decontamination and decommissioning (transition) of the 309 Building is projected to be completed by the end of the fiscal year (FY) 1998. The major stabilization and decontamination efforts include the Plutonium Recycle Test Reactor (PRTR), fuel storage and transfer pits, Transfer Waste (TW) tanks and the Ion Exchange Vaults. In addition to stabilizing contaminated areas, equipment, components, records, waste products, etc., will be dispositioned. All nonessential systems, i.e., heating, ventilation, and air conditioning (HVAC), electrical, monitoring, fluids, etc., will be shut down and drained/de-energized. This will allow securing of the process, laboratory, and office areas of the facility. After that, the facility will be operated at a level commensurate with its surveillance needs while awaiting D&D. The implementation costs for FY 1995 through FY 1998 for the transition activities are estimated to be $1,070K, $2,115K, $2,939K, and $4,762K, respectively. Costs include an assumed company overhead of 20% and a 30% out year contingency.

Graves, C.E.

1994-08-31T23:59:59.000Z

457

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... the computer model was developed from 3 sources; the District of Columbia ... doors provided outside air (oxygen) to a pre-heated, under ventilated ...

458

Building and Fire Publications  

Science Conference Proceedings (OSTI)

The American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) is in the process of revising Standard 62 Ventilation for ...

459

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... This paper presents an analysis of the measured outdoor air ventilation rates, including comparisons with the requirements in ASHRAE Standard 62 ...

460

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Modeling Study of Ventilation in Manufactured Houses. ... on the forced-air return, and whole house exhaust with and without passive inlet vents. ...

Note: This page contains sample records for the topic "ventilation building 773-a" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Industrial Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Industrial Industrial / Manufacturing Buildings Industrial/manufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey (MECS). See the MECS home page for further information. Commercial buildings found on a manufacturing industrial complex, such as an office building for a manufacturer, are not considered to be commercial if they have the same owner and operator as the industrial complex. However, they would be counted in the CBECS if they were owned and operated independently of the manufacturing industrial complex. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/industrial.html

462

Building debris  

E-Print Network (OSTI)

This thesis relates architectural practices to intelligent use of resources and the reuse of derelict spaces. The initial investigation of rammed earth as a building material is followed by site-specific operations at the ...

Dahmen, Joseph (Joseph F. D.)

2006-01-01T23:59:59.000Z

463

Advanced, Integrated Control for Building Operations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced, Integrated Control for Building Advanced, Integrated Control for Building Operations Advanced, Integrated Control for Building Operations The U.S. Department of Energy (DOE) is currently conducting research into advanced integrated controls for building operations and seeking to validate energy savings strategies by simulations. Project Description This project will develop an advanced, integrated control for the following building systems: Cooling and heating Lighting Ventilation Window and blind operation. A variety of operation and energy saving control strategies will be evaluated on a building equipped with alternative cooling and heating methods, including fan coil units, radiant mullions, and motorized window and blinds. Project Partners Research is being undertaken by DOE, Siemens Corporate Research, Siemens

464

UNDERSTANDING FLOW OF ENERGY IN BUILDINGS USING MODAL ANALYSIS METHODOLOGY  

SciTech Connect

It is widely understood that energy storage is the key to integrating variable generators into the grid. It has been proposed that the thermal mass of buildings could be used as a distributed energy storage solution and several researchers are making headway in this problem. However, the inability to easily determine the magnitude of the buildings effective thermal mass, and how the heating ventilation and air conditioning (HVAC) system exchanges thermal energy with it, is a significant challenge to designing systems which utilize this storage mechanism. In this paper we adapt modal analysis methods used in mechanical structures to identify the primary modes of energy transfer among thermal masses in a building. The paper describes the technique using data from an idealized building model. The approach is successfully applied to actual temperature data from a commercial building in downtown Boise, Idaho.

John Gardner; Kevin Heglund; Kevin Van Den Wymelenberg; Craig Rieger

2013-07-01T23:59:59.000Z

465

EIA Energy Efficiency-Commercial Buildings Sector Energy Intensities,  

U.S. Energy Information Administration (EIA) Indexed Site

Commercial Buildings Sector Energy Intensities Commercial Buildings Sector Energy Intensities Commercial Buildings Sector Energy Intensities: 1992- 2003 Released Date: December 2004 Page Last Revised: August 2009 These tables provide estimates of commercial sector energy consumption and energy intensities for 1992, 1995, 1999 and 2003 based on the Commercial Buildings Energy Consumption Survey (CBECS). They also provide estimates of energy consumption and intensities adjusted for the effect of weather on heating, cooling, and ventilation energy use. Total Site Energy Consumption (U.S. and Census Region) Html Excel PDF bullet By Principal Building Activity (Table 1a) html Table 1a excel table 1a. pdf table 1a. Weather-Adjusted by Principal Building Activity (Table 1b) html table 1b excel table 1b pdf table 1b.

466

DOE-2 building energy analysis computer program  

SciTech Connect

Concern with energy conservation requirements has resulted in a growing awareness throughout the architectural/engineering community of the need for an easy-to-use, fast-running, completely documented, public-domain computer program for the energy-use analysis of buildings. DOE-2 has been developed to meet these needs. The program emphasizes ease of input, efficiency of computation, flexibility of operation, and usefulness of output. A key factor in meeting these requirements has been achieved by the development of a free-format Building Design Language (BDL) that greatly facilitates the user's task in defining the building; its heating, ventilating, and air conditioning (HVAC) systems; and its operation. The DOE-2 program is described.

Hunn, B.D.

1979-01-01T23:59:59.000Z

467

NREL: Buildings Research - SUNREL Energy Simulation Software  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Research Search More Search Options Site Map SUNREL® is a hourly building energy simulation program that aids in the design of small energy-efficient buildings where the loads are dominated by the dynamic interactions between the building's envelope, its environment, and its occupants. The program is based on fundamental models of physical behavior and includes algorithms specifically for passive technologies, such as Trombe walls, programmable window shading, advanced glazings, and natural ventilation. In addition, a simple graphical interface aids in creating input files. SUNREL is an upgrade of SERI-RES, which was released in the early 1980s by the Solar Energy Research Institute (SERI) that has since been incorporated into the National Renewable Energy Laboratory. The program has been used by

468

Energy Crossroads: Ventilation, Infiltration & Indoor Air Quality |  

NLE Websites -- All DOE Office Websites (Extended Search)

Ventilation, Infiltration & Indoor Air Quality Ventilation, Infiltration & Indoor Air Quality Suggest a Listing Air Infiltration and Ventilation Centre (AIVC) The AIVC fulfills its objectives by providing a range of services and facilities which include: Information, Technical Analysis, Technical Interchange, and Coordination. American Conference of Governmental Industrial Hygienists (ACGIH) The ACGIH offers high quality technical publications and learning opportunities. Americlean Services Corp. (ASC) ASC is a certified SBA 8(a) engineering/consulting firm specializing in HVAC contamination detection, abatement, and monitoring. In addition to highly professional ductwork cleaning and HVAC cleaning services, ASC offers a wide range of other engineering/ consulting/ management services

469

Building Technologies Office: Sensors and Controls Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Sensors and Controls Research Sensors and Controls Research The Emerging Technologies team conducts research into technologies related to building sensors and controls. They work with building systems-such as a heating, ventilation, and air conditioning (HVAC) systems-to analyze energy use and help occupants manage energy costs. Building controls have the potential to reduce building energy consumption by monitoring variables and other inputs, and then automatically responding in a predetermined fashion. Research between the Department of Energy, industry, and laboratories focuses on: Sensors Photo of a ceiling-mounted fire sprinkler. Sensors are designed to help building owners and operators better manage their energy use through automation. Sensors measure predefined variables, such as the amount of natural light coming in through an office window, and then feed this data into a building's control system. The control can then respond by adjusting the various building systems. For example, sensors may note when a person leaves a room and let controls know to turn off the lights, or can ensure that faucets only release water if someone's hand is waved.

470

Evaluating Ventilation Systems for Existing Homes  

SciTech Connect

During the course of this project, an affordable and high performance ductwork system to directly address the problems of thermal losses, poor efficiency, and air leakage was designed. To save space and enable direct connections between different floors of the building, the ductwork system was designed in such a way that it occupied interior or exterior frame wall cavities. The ductwork system satisfied building regulations for structural support when bridging multiple floors, the spread of fire and smoke, and insulation to reduce the heat flow into or out of the building. Retrofits of urban residential buildings will be the main focus for the application of this ductwork system. Highly reflective foils and insulating materials were used to aid in the increase of the overall R-value of the ductwork itself and the wall assembly. It is expected that the proposed system will increase the efficiency of the HVAC system and the thermal resistance of the building envelope. The performance of the proposed ductwork design was numerically evaluated in a number of different ways. Our results indicate that the duct method is a very cost attractive alternative to the conventional method.

Aldrich, R.; Arena, L.

2013-02-01T23:59:59.000Z

471

Evaluating Ventilation Systems for Existing Homes  

SciTech Connect

During the course of this project, an affordable and high performance ductwork system to directly address the problems of thermal losses, poor efficiency, and air leakage was designed. To save space and enable direct connections between different floors of the building, the ductwork system was designed in such a way that it occupied interior or exterior frame wall cavities. The ductwork system satisfied building regulations for structural support when bridging multiple floors, the spread of fire and smoke, and insulation to reduce the heat flow into or out of the building. Retrofits of urban residential buildings will be the main focus for the application of this ductwork system. Highly reflective foils and insulating materials were used to aid in the increase of the overall R-value of the ductwork itself and the wall assembly. It is expected that the proposed system will increase the efficiency of the HVAC system and the thermal resistance of the building envelope. The performance of the proposed ductwork design was numerically evaluated in a number of different ways. Our results indicate that the aerogel duct method is a very cost attractive alternative to the conventional method.

Aldrich, R.; Arena, L.

2013-02-01T23:59:59.000Z

472

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Measured Performance of Building Integrated Photovoltaic Panels. Round 2. Measured Performance of Building Integrated Photovoltaic Panels. ...

473

Ventilation Rates Estimated from Tracers in the Presence of Mixing  

Science Conference Proceedings (OSTI)

The intimate relationship among ventilation, transit-time distributions, and transient tracer budgets is analyzed. To characterize the advectivediffusive transport from the mixed layer to the interior ocean in terms of flux we employ a ...

Timothy M. Hall; Thomas W. N. Haine; Darryn W. Waugh; Mark Holzer; Francesca Terenzi; Deborah A. LeBel

2007-11-01T23:59:59.000Z

474

Ventilation and Energy Saving in Auto Manufacturing Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Ventilation and Energy Saving in Auto Manufacturing Plants Speaker(s): Alexander M. Zhivov Date: April 3, 2002 - 12:00pm Location: Bldg. 90 Dr. Alexander Zhivov is currently the...

475

Issue #9: What are the Best Ventilation Techniques? | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

do we address ventilation in all climates? What is the best compromise between occupant health and safety and energy efficiency? issue9recommendashrae.pdf issue9ashrae622vent...

476

Evaluation of Existing Technologies for Meeting Residential Ventilation  

E-Print Network (OSTI)

) ........................................................................... 9 5. Central Fan Integrated (CFI) Supply with air inlet in return and continuously operating exhaust................................................................................................ 10 7. CFI with 7% Outside Air (OA), without continuous exhaust ­ not 62.2 compliant Ventilation from ACM........................................................................ 11

477

Simulations of Indoor Air Quality and Ventilation Impacts of ...  

Science Conference Proceedings (OSTI)

... lighting load from ASHRAE Standard 90.1 (ANSI/ASHRAE ... with a nonzero base ventilation rate, such ... and C-T24, will help to temper such exposure. ...

2006-10-03T23:59:59.000Z

478

Intelligent Control of Heating, Ventilating and Air Conditioning Systems  

Science Conference Proceedings (OSTI)

This paper proposed a simulation-optimization energy saving strategy for heating, ventilating and air conditioning (HVAC) systems' condenser water loop through intelligent control of single speed cooling towers' components. An analysis of system components ...

Patrick Low Kie; Lau Bee Theng

2009-07-01T23:59:59.000Z

479

CANCELLED: Mechanism of Human Responses to Ventilation Rates...  

NLE Websites -- All DOE Office Websites (Extended Search)

CANCELLED: Mechanism of Human Responses to Ventilation Rates and Air Temperature Speaker(s): Henry Willem Date: July 2, 2010 - 12:00pm Location: 90-3122 Seminar HostPoint of...

480

Formaldehyde as a basis for residential ventilation rates  

E-Print Network (OSTI)

large numbers of houses using passive monitoring techniques.rates by passive techniques in 61 occupied houses, half ofhouses in the U.S. have been ventilated by passive

Sherman, M.H.; Hodgson, A.T.

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation building 773-a" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Energy-saving strategies with personalized ventilation in cold climates  

E-Print Network (OSTI)

quality of the building (wall thermal insulation, type of16C). The building has a good insulation and air tightness

Schiavon, Stefano; Melikov, Arsen

2009-01-01T23:59:59.000Z

482

Evaluation of an Incremental Ventilation Energy Model for Estimating  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of an Incremental Ventilation Energy Model for Estimating Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation Title Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation Publication Type Report LBNL Report Number LBNL-5796E Year of Publication 2012 Authors Logue, Jennifer M., William J. N. Turner, Iain S. Walker, and Brett C. Singer Date Published 06/2012 Abstract Changing the rate of airflow through a home affects the annual thermal conditioning energy.Large-scale changes to airflow rates of the housing stock can significantly alter the energy consumption of the residential energy sector. However, the complexity of existing residential energy models hampers the ability to estimate the impact of policy changes on a state or nationwide level. The Incremental Ventilation Energy (IVE) model developed in this study was designed to combine the output of simple airflow models and a limited set of home characteristics to estimate the associated change in energy demand of homes. The IVE model was designed specifically to enable modelers to use existing databases of home characteristics to determine the impact of policy on ventilation at a population scale. In this report, we describe the IVE model and demonstrate that its estimates of energy change are comparable to the estimates of a well-validated, complex residential energy model when applied to homes with limited parameterization. Homes with extensive parameterization would be more accurately characterized by complex residential energy models. The demonstration included a range of home types, climates, and ventilation systems that cover a large fraction of the residential housing sector.

483

Key Factors in Displacement Ventilation Systems for Better IAQ  

E-Print Network (OSTI)

This paper sets up a mathematical model of three-dimensional steady turbulence heat transfer in an air-conditioned room of multi-polluting heat sources. Numerical simulation helps identify key factors in displacement ventilation systems that affect air-quality in rooms of multi-polluting heat sources. Results show that it is very important to determine the suitable air-intemperature , air-inflow, and heat source quantity and dispersion, to obtain better displacement ventilation results.

Wang, X.; Chen, J.; Li, Y.; Wang, Z.

2006-01-01T23:59:59.000Z

484

Capture and Use of Coal Mine Ventilation Air Methane  

Science Conference Proceedings (OSTI)

CONSOL Energy Inc., in conjunction with MEGTEC Systems, Inc., and the U.S. Department of Energy with the U.S. Environmental Protection Agency, designed, built, and operated a commercial-size thermal flow reversal reactor (TFRR) to evaluate its suitability to oxidize coal mine ventilation air methane (VAM). Coal mining, and particularly coal mine ventilation air, is a major source of anthropogenic methane emissions, a greenhouse gas. Ventilation air volumes are large and the concentration of methane in the ventilation air is low; thus making it difficult to use or abate these emissions. This test program was conducted with simulated coal mine VAM in advance of deploying the technology on active coal mine ventilation fans. The demonstration project team installed and operated a 30,000 cfm MEGTEC VOCSIDIZER oxidation system on an inactive coal mine in West Liberty, WV. The performance of the unit was monitored and evaluated during months of unmanned operation at mostly constant conditions. The operating and maintenance history and how it impacts the implementation of the technology on mine fans were investigated. Emission tests showed very low levels of all criteria pollutants at the stack. Parametric studies showed that the equipment can successfully operate at the design specification limits. The results verified the ability of the TFRR to oxidize {ge}95% of the low and variable concentration of methane in the ventilation air. This technology provides new opportunities to reduce greenhouse gas emissions by the reduction of methane emissions from coal mine ventilation air. A large commercial-size installation (180,000 cfm) on a single typical mine ventilation bleeder fan would reduce methane emissions by 11,000 to 22,100 short tons per year (the equivalent of 183,000 to 366,000 metric tonnes carbon dioxide).

Deborah Kosmack

2008-10-31T23:59:59.000Z

485

Engineering work plan and design basis for 241-SY ventilation improvements  

DOE Green Energy (OSTI)

There are three tanks in the 241-SY tank farm. Tank 241-SY101 and 241-SY-103 are flammable gas watch list tanks. Tank 241-SY-102 is included in the ventilation improvement process in an effort to further control air flow in the tank farm. This tank farm has only one outlet ventilation port for all three tanks. Flammable gas is released (may be steady and/or periodic) from the waste in the primary tank vapor space. The gas is removed from the tank by an active ventilation system. However, maintaining consistent measurable flow through the tank can be problematic due to the poor control capabilities of existing equipment. Low flow through the tank could allow flammable gas to build up in the tank and possibly exceed the lower flammability limit (LFL), prevent the most rapid removal of flammable gas from the tank after a sudden gas release, and/or cause high vacuum alarms to sound. Using the inlet and outlet down stream butterfly valves performs the current method of controlling flow in tank farm 241-SY. A filter station is installed on the inlet of each tank, but controlling air flow with its 12 inch butterfly valve is difficult. There is also in-leakage through pump and valve pits. Butterfly valves on the downstream side of each tank could also be used to control air flow. However, their large size and the relatively low air velocity make this control method also ineffective. The proposed method of optimizing tank air flow and pressure control capability is to install an air flow controller on the inlet of each existing filter station in SY farm, and seal as best as practical all other air leakage paths. Such air flow controllers have been installed on 241-AN and 241-AW tanks (see drawing H-2-85647).

Andersen, J.A.

1997-05-19T23:59:59.000Z

486

Building Energy Software Tools Directory: TREAT  

NLE Websites -- All DOE Office Websites (Extended Search)

TREAT TREAT TREAT logo. Performs hourly simulations for single family, multifamily, and mobile homes. Comprehensive analysis tool includes tools for retrofitting heating and cooling systems, building envelopes (insulation and infiltration), windows and doors, hot water, ventilation, lighting and appliances, and more. Weather normalizes utility bills for comparison to performance of model. Highly accurate calculations which consider waste heat (baseload), solar heat gain, and fully interacted energy savings calculations. Create individual energy improvements or packages of interactive improvements. Also performs load sizing. Generates XML file for upload to online database tracking systems. Complies with HERS BESTEST. Approved by the U.S. Department of Energy for use in Weatherization Assistance Programs. Screen

487

Building Energy Software Tools Directory: TREAT  

NLE Websites -- All DOE Office Websites (Extended Search)

TREAT TREAT TREAT logo. Performs hourly simulations for single family, multifamily, and mobile homes. Comprehensive analysis tool includes tools for retrofitting heating and cooling systems, building envelopes (insulation and infiltration), windows and doors, hot water, ventilation, lighting and appliances, and more. Weather normalizes utility bills for comparison to performance of model. Highly accurate calculations which consider waste heat (baseload), solar heat gain, and fully interacted energy savings calculations. Create individual energy improvements or packages of interactive improvements. Also performs load sizing. Generates XML file for upload to online database tracking systems. Complies with HERS BESTEST. Approved by the U.S. Department of Energy for use in Weatherization Assistance Programs. Screen

488

High-performance commercial building facades  

SciTech Connect

This study focuses on advanced building facades that use daylighting, sun control, ventilation systems, and dynamic systems. A quick perusal of the leading architectural magazines, or a discussion in most architectural firms today will eventually lead to mention of some of the innovative new buildings that are being constructed with all-glass facades. Most of these buildings are appearing in Europe, although interestingly U.S. A/E firms often have a leading role in their design. This ''emerging technology'' of heavily glazed fagades is often associated with buildings whose design goals include energy efficiency, sustainability, and a ''green'' image. While there are a number of new books on the subject with impressive photos and drawings, there is little critical examination of the actual performance of such buildings, and a generally poor understanding as to whether they achieve their performance goals, or even what those goals might be. Even if the building ''works'' it is often dangerous to take a design solution from one climate and location and transport it to a new one without a good causal understanding of how the systems work. In addition, there is a wide range of existing and emerging glazing and fenestration technologies in use in these buildings, many of which break new ground with respect to innovative structural use of glass. It is unclear as to how well many of these designs would work as currently formulated in California locations dominated by intense sunlight and seismic events. Finally, the costs of these systems are higher than normal facades, but claims of energy and productivity savings are used to justify some of them. Once again these claims, while plausible, are largely unsupported. There have been major advances in glazing and facade technology over the past 30 years and we expect to see continued innovation and product development. It is critical in this process to be able to understand which performance goals are being met by current technology and design solutions, and which ones need further development and refinement. The primary goal of this study is to clarify the state-of-the-art of the performance of advanced building facades so that California building owners and designers can make informed decisions as to the value of these building concepts in meeting design goals for energy efficiency, ventilation, productivity and sustainability.

Lee, Eleanor; Selkowitz, Stephen; Bazjanac, Vladimir; Inkarojrit, Vorapat; Kohler, Christian

2002-06-01T23:59:59.000Z

489

High-performance commercial building facades  

SciTech Connect

This study focuses on advanced building facades that use daylighting, sun control, ventilation systems, and dynamic systems. A quick perusal of the leading architectural magazines, or a discussion in most architectural firms today will eventually lead to mention of some of the innovative new buildings that are being constructed with all-glass facades. Most of these buildings are appearing in Europe, although interestingly U.S. A/E firms often have a leading role in their design. This ''emerging technology'' of heavily glazed fagades is often associated with buildings whose design goals include energy efficiency, sustainability, and a ''green'' image. While there are a number of new books on the subject with impressive photos and drawings, there is little critical examination of the actual performance of such buildings, and a generally poor understanding as to whether they achieve their performance goals, or even what those goals might be. Even if the building ''works'' it is often dangerous to take a design solution from one climate and location and transport it to a new one without a good causal understanding of how the systems work. In addition, there is a wide range of existing and emerging glazing and fenestration technologies in use in these buildings, many of which break new ground with respect to innovative structural use of glass. It is unclear as to how well many of these designs would work as currently formulated in California locations dominated by intense sunlight and seismic events. Finally, the costs of these systems are higher than normal facades, but claims of energy and productivity savings are used to justify some of them. Once again these claims, while plausible, are largely unsupported. There have been major advances in glazing and facade technology over the past 30 years and we expect to see continued innovation and product development. It is critical in this process to be able to understand which performance goals are being met by current technology and design solutions, and which ones need further development and refinement. The primary goal of this study is to clarify the state-of-the-art of the performance of advanced building facades so that California building owners and designers can make informed decisions as to the value of these building concepts in meeting design goals for energy efficiency, ventilation, productivity and sustainability.

Lee, Eleanor; Selkowitz, Stephen; Bazjanac, Vladimir; Inkarojrit, Vorapat; Kohler, Christian

2002-06-01T23:59:59.000Z

490

Building Technologies Office: Building America Research Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

Tools to someone by E-mail Tools to someone by E-mail Share Building Technologies Office: Building America Research Tools on Facebook Tweet about Building Technologies Office: Building America Research Tools on Twitter Bookmark Building Technologies Office: Building America Research Tools on Google Bookmark Building Technologies Office: Building America Research Tools on Delicious Rank Building Technologies Office: Building America Research Tools on Digg Find More places to share Building Technologies Office: Building America Research Tools on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score

491

Building Technologies Office: Commercial Building Research  

NLE Websites -- All DOE Office Websites (Extended Search)

to someone by E-mail to someone by E-mail Share Building Technologies Office: Commercial Building Research on Facebook Tweet about Building Technologies Office: Commercial Building Research on Twitter Bookmark Building Technologies Office: Commercial Building Research on Google Bookmark Building Technologies Office: Comm