Sample records for ventilation building 773-a

  1. Building Science- Ventilation

    Broader source: Energy.gov [DOE]

    This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question Ť"What are the best ventilation techniques"

  2. Building America Webinar: Ventilation in Multifamily Buildings...

    Energy Savers [EERE]

    Ventilation in Multifamily Buildings Building America Webinar: Ventilation in Multifamily Buildings This webinar was presented by research team Consortium for Advanced Residential...

  3. Retrofit Ventilation Strategies in Multifamily Buildings Webinar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retrofit Ventilation Strategies in Multifamily Buildings Webinar Retrofit Ventilation Strategies in Multifamily Buildings Webinar Slides from the Building America webinar on...

  4. Mixed-Mode Ventilation and Building Retrofits

    E-Print Network [OSTI]

    Brager, Gail; Ackerly, Katie

    2010-01-01T23:59:59.000Z

    Page 15 Mixed-Mode Ventilation and Building RetrofitsEngineers. 2000. Mixed-mode ventilation. CIBSE ApplicationsMichael. 2000. Hybrid Ventilation Systems: An Arup Approach

  5. Building America Webinar: Retrofit Ventilation Strategies in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategies in Multifamily Buildings Webinar Building America Webinar: Retrofit Ventilation Strategies in Multifamily Buildings Webinar This webinar, presented by...

  6. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy

    E-Print Network [OSTI]

    Sidheswaran, Meera

    2010-01-01T23:59:59.000Z

    VOCs substitute for ventilation in commercial buildings? ."Gorfain J (2008). Analysis of ventilation data from the U.S.Commercial Building Ventilation Energy Meera Sidheswaran,

  7. Hysteresis effects in hybrid building ventilation

    E-Print Network [OSTI]

    Flynn, Morris R.

    = Heating, ventilation & air conditioning Buildings and energy consumption #12;· Notwithstanding this energy-breeze, displacement ventilation dissipate internal heat gains e.g. from kitchen stove · Wintertime: Spaces filledHysteresis effects in hybrid building ventilation Morris R. Flynn Dept. of Mechanical & Aerospace

  8. Quantitative relationship of sick building syndrome symptoms with ventilation rates

    E-Print Network [OSTI]

    Fisk, William J.

    2009-01-01T23:59:59.000Z

    P. Miettinen (1995). "Ventilation rate in office buildings2005). Outdoor air ventilation and work- related symptoms inand Q. H. Lei (2006). "Ventilation and performance in office

  9. Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems

    E-Print Network [OSTI]

    Wetter, Michael

    2010-01-01T23:59:59.000Z

    for Building Heating, Ventilation and Air-Conditioningfor Building Heating, Ventilation and Air-Conditioningfor building heating, ventilation and air con- ditioning

  10. Study of natural ventilation in buildings with large eddy simulation

    E-Print Network [OSTI]

    Jiang, Yi, 1972-

    2002-01-01T23:59:59.000Z

    With the discovery of many economic, environmental, and health problems in sealed and mechanically ventilated buildings, the concept of natural ventilation has been revived. "Buildings that breathe" have become more and ...

  11. Utilizing Passive Ventilation to Complement HVAC Systems in Enclosed Buildings

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Utilizing Passive Ventilation to Complement HVAC Systems in Enclosed Buildings Tom Rogg REU Student are important considerations in building design. Incorporation of a combination of passive ventilation systems of the National Science Foundation. Research Objectives · To provide proof of concept that a passive ventilation

  12. Computer Simulation of Cooling Effect of Wind Tower on Passively Ventilated Building 

    E-Print Network [OSTI]

    Seryak, J.; Kissock, J. K.

    2002-01-01T23:59:59.000Z

    Traditional buildings are cooled and ventilated by mechanically induced drafts. Natural ventilation aspires to cool and ventilate a building by natural means, such as cross ventilation or wind towers, without mechanical equipment. A simple computer...

  13. Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements

    Broader source: Energy.gov [DOE]

    This Building America webinar, held on Sept. 24, 2014, focused on key challenges in multifamily ventilation and strategies to address these challenges.

  14. Natural ventilation possibilities for buildings in the United States

    E-Print Network [OSTI]

    Dean, Brian N. (Brian Nathan), 1974-

    2001-01-01T23:59:59.000Z

    In the United States, many of the commercial buildings built in the last few decades are completely mechanically air conditioned, without the capability to use natural ventilation. This habit has occurred in building designs ...

  15. Computer Simulation of Cooling Effect of Wind Tower on Passively Ventilated Building

    E-Print Network [OSTI]

    Seryak, J.; Kissock, J. K.

    2002-01-01T23:59:59.000Z

    Computer Simulation of Cooling Effect of Wind Tower on Passively Ventilated Building John Seryak Kelly Kissock Project Engineer Associate Professor Department of Mechanical and Aerospace Engineering... University of Dayton Dayton, Ohio ABSTRACT Traditional buildings are cooled and ventilated by mechanically induced drafts. Natural ventilation aspires to cool and ventilate a building by natural means, such as cross ventilation or wind towers...

  16. Text-Alternative Version of Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements

    Broader source: Energy.gov [DOE]

    Transcript of Building America webinar, "Multifamily Ventilation Strategies and Compartmentalization Requirements," held on Sept. 24, 2014.

  17. Reducing Mortality from Terrorist Releases of Chemical and Biological Agents: I. Filtration for Ventilation Systems in Commercial Building

    E-Print Network [OSTI]

    Thatcher, Tracy L.

    2011-01-01T23:59:59.000Z

    Filtration for Ventilation Systems in Commercial BuildingsFiltration for Ventilation Systems in Commercial Buildingsbuilding's mechanical ventilation system and by infiltration

  18. Modeling Ventilation in Multifamily Buildings John Markley, University of California, Davis -Western Cooling Efficiency Center

    E-Print Network [OSTI]

    California at Davis, University of

    Modeling Ventilation in Multifamily Buildings John Markley, University of California, Davis Efficiency Center Garth Torvestad, Benningfield Group, inc. ABSTRACT Proper ventilation is an essential that require special consideration in order to avoid excessive ventilation and energy waste. Two issues

  19. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy

    SciTech Connect (OSTI)

    Sidheswaran, Meera; Destaillats, Hugo; Sullivan, Douglas P.; Fisk, William J.

    2010-10-27T23:59:59.000Z

    Approximately ten percent of the energy consumed in U.S. commercial buildings is used by HVAC systems to condition outdoor ventilation air. Reducing ventilation rates would be a simple and broadly-applicable energy retrofit option, if practical counter measures were available that maintained acceptable concentrations of indoor-generated air pollutants. The two general categories of countermeasures are: 1) indoor pollutant source control, and 2) air cleaning. Although pollutant source control should be used to the degree possible, source control is complicated by the large number and changing nature of indoor pollutant sources. Particle air cleaning is already routinely applied in commercial buildings. Previous calculations indicate that particle filtration consumes only 10percent to 25percent of the energy that would otherwise be required to achieve an equivalent amount of particle removal with ventilation. If cost-effective air cleaning technologies for volatile organic compounds (VOCs) were also available, outdoor air ventilation rates could be reduced substantially and broadly in the commercial building stock to save energy. The research carried out in this project focuses on developing novel VOC air cleaning technologies needed to enable energy-saving reductions in ventilation rates. The minimum required VOC removal efficiency to counteract a 50percent reduction in ventilation rate for air cleaning systems installed in the HVAC supply airstream is modest (generally 20percent or less).

  20. Mixed-Mode Ventilation and Building Retrofits

    E-Print Network [OSTI]

    Brager, Gail; Ackerly, Katie

    2010-01-01T23:59:59.000Z

    of low-energy ventilation strategies in four generalized UKUK offices: How adaptive comfort theories might influence future low energy office refurbishment strategies’,UK Department of the Environment, Transport and the Regions’ Energy Efficiency Best Practice Programme Numerous guidelines for developing the most appropriate design strategy

  1. Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements- Sean Maxwell

    Broader source: Energy.gov [DOE]

    This presentation is included in the Building America webinar, Multifamily Ventilation Strategies and Compartmentalization Requirements, on September 24, 2014.

  2. Ventilation performance prediction for buildings: A method overview and recent applications

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    1 Ventilation performance prediction for buildings: A method overview and recent applications This paper presented an overview of the tools used to predict ventilation performance in buildings. The tools ventilation performance in an entire building. The zonal models had limited applications and could be replaced

  3. Ventilation performance prediction for buildings: Model Assessment Qingyan Chena,b,*

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    1 Ventilation performance prediction for buildings: Model Assessment Qingyan Chena,b,* , Kisup Leeb ventilation systems for buildings requires a suitable tool to assess the system performance-scale experimental, multizone network, zonal, and CFD) for predicting ventilation performance in buildings, which can

  4. Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems

    E-Print Network [OSTI]

    Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems Michael Wetter available Modelica library for building heating, ventilation and air conditioning systems. The library development is focused on the develop- ment of models for building heating, ventilation and air

  5. Natural Ventilation in Buildings: Measurement in a Wind Tunnel and Numerical Simulation with Large Eddy Simulation

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    save energy consumed by the heating, ventilating, and air- conditioning systems in a building1 Natural Ventilation in Buildings: Measurement in a Wind Tunnel and Numerical Simulation@purdue.edu Abstract Natural ventilation in buildings can create a comfortable and healthy indoor environment, and can

  6. Evaluation of Ventilation Strategies in New Construction Multifamily Buildings

    SciTech Connect (OSTI)

    Maxwell, S.; Berger, D.; Zuluaga, M.

    2014-07-01T23:59:59.000Z

    In multifamily buildings, particularly in the Northeast, exhaust ventilation strategies are the norm as a means of meeting both local exhaust and whole-unit mechanical ventilation rates. The issue of where the 'fresh' air is coming from is gaining significance as air-tightness standards for enclosures become more stringent, and the 'normal leakage paths through the building envelope' disappear. CARB researchers have found that the majority of high performance, new construction, multifamily housing in the Northeast use one of four general strategies for ventilation: continuous exhaust only with no designated supply or make-up air source, continuous exhaust with ducted make-up air to apartments, continuous exhaust with supply through a make-up air device integral to the unit HVAC, and continuous exhaust with supply through a passive inlet device, such as a trickle vent. Insufficient information is available to designers on how these various systems are best applied. Product performance data are based on laboratory tests, and the assumption is that products will perform similarly in the field. Proper application involves matching expected performance at expected building pressures, but there is no guarantee that those conditions will exist consistently in the finished building. This research effort, which included several weeks of building pressure monitoring, sought to provide field validation of system performance. The performance of four substantially different strategies for providing make-up air to apartments was evaluated.

  7. CO2 MONITORING FOR DEMAND CONTROLLED VENTILATION IN COMMERCIAL BUILDINGS

    E-Print Network [OSTI]

    Fisk, William J.

    2010-01-01T23:59:59.000Z

    use of demand control ventilation systems in general officethe demand controlled ventilation system increased the ratedemand controlled ventilation systems will, because of poor

  8. Submitted to Building and Environment ON ESTIMATION OF MULTIZONE VENTILATION RATES

    E-Print Network [OSTI]

    LBL-25772 Submitted to Building and Environment ON ESTIMATION OF MULTIZONE VENTILATION RATES FROM techniques are becoming widely used to measure the ventilation rates in buildings. As more detailed describes tech- niques for improving tracer-gas derived ventilation data using physical knowledge about

  9. A New Empirical Model for Predicting Single-Sided, Wind-Driven Natural Ventilation in Buildings

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    A New Empirical Model for Predicting Single-Sided, Wind-Driven Natural Ventilation in Buildings-sided natural ventilation is difficult due to the bi-directional flow at the opening and the complex flow around buildings. A new empirical model was developed that can predict the mean ventilation rate and fluctuating

  10. Simulating Natural Ventilation in and Around Buildings by Fast Fluid Mingang Jin1

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    1 Simulating Natural Ventilation in and Around Buildings by Fast Fluid Dynamics Mingang Jin1-765-496-7562 Fax: +1-765-494-0539 ABSTRACT Natural ventilation is a sustainable technology that can provide a well-built environment and also save energy. The application of natural ventilation to buildings requires a careful

  11. BUILDING VENTILATION AND INDOOR AIR QUALITY PROGRAM. CHAPTER FROM ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978

    E-Print Network [OSTI]

    Cairns, Elton J.

    2011-01-01T23:59:59.000Z

    ventilation rates established by various state and localVentilation requirements are currently set by state and localventilation rates are specified in the various building codes adopted by state and local

  12. Beyond blue and red arrows : optimizing natural ventilation in large buildings

    E-Print Network [OSTI]

    Meguro, Wendy (Wendy Kei)

    2005-01-01T23:59:59.000Z

    Our growing understanding of technology and environment has expanded the complexities of producing large naturally ventilated buildings. While it may be argued that designing for natural ventilation is a straightforward, ...

  13. Analysis of Solar Passive Techniques and Natural Ventilation Concepts in a Residential Building Including CFD Simulation

    E-Print Network [OSTI]

    Quince, N.; Ordonez, A.; Bruno, J. C.; Coronas, A.

    2010-01-01T23:59:59.000Z

    step to increase energy performance in buildings is to use passive strategies, such as orientation, natural ventilation or envelope optimisation. This paper presents an analysis of solar passive techniques and natural ventilation concepts in a case...

  14. Evaluating the performance of natural ventilation in buildings through simulation and on-site monitoring

    E-Print Network [OSTI]

    Cheng, Haofan

    2013-01-01T23:59:59.000Z

    Natural ventilation in buildings is capable of reducing energy consumption while maintaining a comfortable indoor at the same time. It is important that natural ventilation is taken into consideration in the early design ...

  15. Methodology for the evaluation of natural ventilation in buildings using a reduced-scale air model

    E-Print Network [OSTI]

    Walker, Christine E. (Christine Elaine)

    2006-01-01T23:59:59.000Z

    Commercial office buildings predominantly are designed to be ventilated and cooled using mechanical systems. In temperate climates, passive ventilation and cooling techniques can be utilized to reduce energy consumption ...

  16. Effect of fluctuating wind direction on cross natural ventilation in buildings from large eddy simulation

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    simulation Yi Jiang and Qingyan Chen* Building Technology Program Massachusetts Institute of Technology 77 direction on cross natural ventilation in building from large eddy simulation," Building and Environment, 37 in many industrial applications. To simulate natural ventilation in buildings, however, RANS modeling has

  17. Ventilation and Infiltration in High-Rise Apartment Buildings Richard C. Diamond, Helmut E. Feustel and Darryl J. Dickerhoff

    E-Print Network [OSTI]

    Diamond, Richard

    1 Ventilation and Infiltration in High-Rise Apartment Buildings Richard C. Diamond, Helmut E to characterize the ventilation rates for the individual apartments. Parametric simulations were performed flow simulations suggest that the ventilation to the individual units varies considerably

  18. Study of natural ventilation in buildings by large eddy simulation Yi Jiang and Qingyan Chen*

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    1 Study of natural ventilation in buildings by large eddy simulation Yi Jiang and Qingyan Chen 02139 *Phone: (617) 253-7714, Fax: (617) 253-6152, Email: qchen@mit.edu Abstract Natural ventilation in the mechanical ventilation systems. Two subgrid-scale models of large eddy simulation (LES), a Smagorinsky

  19. Simulation of wind driven ventilative cooling systems for an apartment building in Beijing and Shanghai

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    1 Simulation of wind driven ventilative cooling systems for an apartment building in Beijing., Glicksman, L.R. and Norford, L.K. 2002. "Simulation of wind driven ventilative cooling systems evaluation of two passive cooling strategies, daytime ventilation and night cooling, for a generic, six

  20. Controllability and invariance of monotone systems for robust ventilation automation in buildings

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Controllability and invariance of monotone systems for robust ventilation automation in buildings [2] and control [3] of Heating, Ventilating and Air Conditioning (HVAC) systems leads to an improved comfort for the users and a reduction of energy consumption. Compared to traditional ceiling ventilation

  1. Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements- Joe Lstiburek

    Broader source: Energy.gov [DOE]

    This presentation will be delivered at the U.S. Department of Energy Building America webinar, Multifamily Ventilation Strategies and Compartmentalization Requirements, on September 24, 2014. Joe...

  2. CO2 MONITORING FOR DEMAND CONTROLLED VENTILATION IN COMMERCIAL BUILDINGS

    SciTech Connect (OSTI)

    Fisk, William J.; Sullivan, Douglas P.; Faulkner, David; Eliseeva, Ekaterina

    2010-03-17T23:59:59.000Z

    Carbon dioxide (CO{sub 2}) sensors are often deployed in commercial buildings to obtain CO{sub 2} data that are used, in a process called demand-controlled ventilation, to automatically modulate rates of outdoor air ventilation. The objective is to keep ventilation rates at or above design specifications and code requirements and also to save energy by avoiding excessive ventilation rates. Demand controlled ventilation is most often used in spaces with highly variable and sometime dense occupancy. Reasonably accurate CO{sub 2} measurements are needed for successful demand controlled ventilation; however, prior research has suggested substantial measurement errors. Accordingly, this study evaluated: (a) the accuracy of 208 CO{sub 2} single-location sensors located in 34 commercial buildings, (b) the accuracy of four multi-location CO{sub 2} measurement systems that utilize tubing, valves, and pumps to measure at multiple locations with single CO{sub 2} sensors, and (c) the spatial variability of CO{sub 2} concentrations within meeting rooms. The field studies of the accuracy of single-location CO{sub 2} sensors included multi-concentration calibration checks of 90 sensors in which sensor accuracy was checked at multiple CO{sub 2} concentrations using primary standard calibration gases. From these evaluations, average errors were small, -26 ppm and -9 ppm at 760 and 1010 ppm, respectively; however, the averages of the absolute values of error were 118 ppm (16%) and 138 ppm (14%), at concentrations of 760 and 1010 ppm, respectively. The calibration data are generally well fit by a straight line as indicated by high values of R{sup 2}. The Title 24 standard specifies that sensor error must be certified as no greater than 75 ppm for a period of five years after sensor installation. At 1010 ppm, 40% of sensors had errors greater than {+-}75 ppm and 31% of sensors has errors greater than {+-}100 ppm. At 760 ppm, 47% of sensors had errors greater than {+-}75 ppm and 37% of sensors had errors greater than {+-}100 ppm. A significant fraction of sensors had errors substantially larger than 100 ppm. For example, at 1010 ppm, 19% of sensors had an error greater than 200 ppm and 13% of sensors had errors greater than 300 ppm. The field studies also included single-concentration calibration checks of 118 sensors at the concentrations encountered in the buildings, which were normally less than 500 ppm during the testing. For analyses, these data were combined with data from the calibration challenges at 510 ppm obtained during the multi-concentration calibration checks. For the resulting data set, the average error was 60 ppm and the average of the absolute value of error was 154 ppm. Statistical analyses indicated that there were statistically significant differences between the average accuracies of sensors from different manufacturers. Sensors with a 'single lamp single wavelength' design tended to have a statistically significantly smaller average error than sensors with other designs except for 'single lamp dual wavelength' sensors, which did not have a statistically significantly lower accuracy. Sensor age was not consistently a statistically significant predictor of error.

  3. Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements

    Broader source: Energy.gov [DOE]

    The webinar will focus on key challenges in multifamily ventilation and strategies to address these challenges.

  4. Building America Webinar: Ventilation in Multifamily Buildings | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronicBuilding Enclosures | DepartmentStrategies|of

  5. Building ventilation : a pressure airflow model computer generation and elements of

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Building ventilation : a pressure airflow model computer generation and elements of validation H when heating a residential building, approximately 30% of the energy loss is due to air renewal[1. Thus in tropical climates, natural ventilation affects essentially the inside comfort by favouring

  6. Project title: Natural ventilation, solar heating and integrated low-energy building design

    E-Print Network [OSTI]

    2009-07-10T23:59:59.000Z

    greenhouse gas emissions from office buildings CMI E-Newsletter Issue 7 BP announces funding for CMI project on integrated low-energy building design No air conditioning, no sweat! Sustainable Building Design: Application Of Natural Ventilation Short... , such as China, where new buildings are being constructed at a rate far in excess of the level of development in developed countries, and where energy is relatively expensive. More Information For further information, please visit the Natural Ventilation...

  7. Proposed Adjudication of the Contract for the Heating, Ventilating and Air Conditioning Installations for the ISR Buildings

    E-Print Network [OSTI]

    1968-01-01T23:59:59.000Z

    Proposed Adjudication of the Contract for the Heating, Ventilating and Air Conditioning Installations for the ISR Buildings

  8. Policy on Building use during Ventilation Outage: School of Science Roger Bacon Hall and Morrell Science Center

    E-Print Network [OSTI]

    Policy on Building use during Ventilation Outage: School of Science Roger Bacon Hall and Morrell) are present. For this reason, the School of Science has a special policy for times when building ventilation is not functioning as designed. A common cause of inadequate building ventilation is a power outage. Laboratory

  9. DEMAND CONTROLLED VENTILATION AND CLASSROOM VENTILATION

    E-Print Network [OSTI]

    Fisk, William J.

    2014-01-01T23:59:59.000Z

    for demand controlled ventilation in commercial buildings.The energy costs of classroom ventilation and some financialEstimating potential benefits of increased ventilation

  10. Natural Ventilation for Energy Savings in California Commercial Buildings

    E-Print Network [OSTI]

    2014-01-01T23:59:59.000Z

    heating, ventilating and air conditioning survey of small2004) Workplace air-conditioning and health servicesventilating, and air-conditioning applications. Bauman, F. ,

  11. Recommendations for the analysis and design of naturally ventilated buildings in urban areas

    E-Print Network [OSTI]

    Truong, Phan Hue

    2012-01-01T23:59:59.000Z

    The motivation behind this work was to obtain a better understanding of how a building's natural ventilation potential is affected by the complexities introduced by the urban environment. To this end, we have derived in ...

  12. Economic Analysis and Optimization of Exterior Insulation Requirements for Ventilated Buildings at Power Generation Facilities with High Internal Heat Gain

    E-Print Network [OSTI]

    Hughes, Douglas E.

    2010-12-17T23:59:59.000Z

    Industrial buildings require a large amount of heating and ventilation equipment to maintain the indoor environment within acceptable levels for personnel protection and equipment protection. The required heating and ventilation equipment...

  13. Preconditioning Outside Air: Cooling Loads from Building Ventilation

    E-Print Network [OSTI]

    Kosar, D.

    1998-01-01T23:59:59.000Z

    HVAC equipment manufacturers, specifiers and end users interacting in the marketplace today are only beginning to address the series of issues promulgated by the increased outside air requirements in ASHRAE Standard 62- 1989, "Ventilation...

  14. Building America Case Study: Selecting Ventilation Systems for Existing Homes (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-12-01T23:59:59.000Z

    This document addresses adding -or improving - mechanical ventilation systems to existing homes. The purpose of ventilation is to remove contaminants from homes, and this report discusses where, when, and how much ventilation is appropriate in a home, including some discussion of relevant codes and standards. Advantages, disadvantages, and approximate costs of various system types are presented along with general guidelines for implementing the systems in homes. CARB intends for this document to be useful to decision makers and contractors implementing ventilation systems in homes. Choosing the "best" system is not always straightforward; selecting a system involves balancing performance, efficiency, cost, required maintenance, and several other factors. It is the intent of this document to assist contractors in making more informed decisions when selecting systems. Ventilation is an integral part of a high-performance home. With more air-sealed envelopes, a mechanical means of removing contaminants is critical for indoor environmental quality and building durability.

  15. Assessment of Pollutant Spread from a Building Basement with three Ventilation Systems

    E-Print Network [OSTI]

    Koffi, Juslin

    2010-01-01T23:59:59.000Z

    Ventilation aims at providing a sufficient air renewal for ensuring a good indoor air quality (IAQ), yet building energy policies are leading to adapting various ventilation strategies minimising energy losses through air renewal. A recent IAQ evaluation campaign in French dwellings shows important pollution of living spaces by VOCs such as formaldehyde, acetaldehyde or hexanal, particularly in buildings equipped with a garage. Besides, radon emission from soil is a subject of concern in many countries. Several studies are done to understand its release mode and deal with the spread of this carcinogen gas. This paper aims to experimentally assess a contaminant spread from a house basement using mechanical exhaust and balanced ventilation systems, and natural ventilation.

  16. Model for Naturally Ventilated Cavities on the Exteriors of Opaque Building Thermal Envelopes

    SciTech Connect (OSTI)

    Griffith, B.

    2006-11-01T23:59:59.000Z

    This paper describes a model for naturally ventilated cavities on the exterior of opaque building thermal envelopes that are formed by the presence of a lightweight baffle. The model can be used for building components that are slightly detached from the main envelope (but do not connect to the interior).

  17. Energy and air quality implications of passive stack ventilation in residential buildings

    E-Print Network [OSTI]

    Energy and air quality implications of passive stack ventilation in residential buildings Laboratory is an equal opportunity employer. #12;Energy and air quality implications of passive stack in residential buildings and compliance is normally achieved with fully mechanical whole-house systems; however

  18. Design of an Overmoded-Waveguide Directional Antenna for Use in In-Building Ventilation Duct Wireless Networks

    E-Print Network [OSTI]

    Stancil, Daniel D.

    -to-design wireless net- works with better coverage is to use heating, ventilation, and air conditioning (HVAC) ductsDesign of an Overmoded-Waveguide Directional Antenna for Use in In-Building Ventilation Duct ventilation ducts. We obtain experimentally the element size and spacing of a reflector and driven element

  19. A Semi-Empirical Model for Studying the Impact of Thermal Mass and Cost-Return Analysis on Mixed-mode Ventilation in Office Buildings

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    -mode Ventilation in Office Buildings Haojie Wang1 and Qingyan Chen2,1,* 1 School of Mechanical Engineering, Purdue-mode ventilation that combines natural ventilation and mechanical ventilation has great potential to save cooling energy when compared to mechanical systems and is more reliable than natural ventilation systems

  20. Lau, J. and Chen, Q. 2007. "Floor-supply displacement ventilation for workshops," Building and Environment, 42(4), 1718-1730.

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    of the heating, ventilating and air-conditioning (HVAC) systems used in U.S. buildings are mixing ventilation1 Lau, J. and Chen, Q. 2007. "Floor-supply displacement ventilation for workshops," Building and Environment, 42(4), 1718-1730. FLOOR-SUPPLY DISPLACEMENT VENTILATION FOR WORKSHOPS Josephine Lau and Qingyan

  1. Air Flow Distribution in a Mechanically-Ventilated High-Rise Residential Building* Richard C. Diamond and Helmut E. Feustel

    E-Print Network [OSTI]

    Diamond, Richard

    energy efficiency in public housing as part of a utility's Demand Side Management (DSM) Program of the supply ventilation register for each corridor. The building is exposed on all sides to the windAir Flow Distribution in a Mechanically-Ventilated High-Rise Residential Building* Richard C

  2. Wireless RF Distribution in Buildings using Heating and Ventilation Ducts Christopher P. Diehl, Benjamin E. Henty, Nikhil Kanodia, and Daniel D. Stancil

    E-Print Network [OSTI]

    Stancil, Daniel D.

    Wireless RF Distribution in Buildings using Heating and Ventilation Ducts Christopher P. Diehl in buildings is proposed in which the heating and ventilation ducts are used as waveguides. Because

  3. Outside Air Ventilation Controller - Building America Top Innovation...

    Energy Savers [EERE]

    about this Top Innovation. See an example of this Top Innovation in action. Find more case studies of Building America projects across the country that are implementing outside...

  4. BUILDING VENTILATION AND INDOOR AIR QUALITY PROGRAM. CHAPTER FROM ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978

    E-Print Network [OSTI]

    Cairns, Elton J.

    2011-01-01T23:59:59.000Z

    and in new "energy-efficient design" hospitals. Developmentenergy-efficient ventilation standards and ventilation designs

  5. Building America Case Study: Evaluation of Ventilation Strategies in New Construction Multifamily Buildings, New York, New York (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-09-01T23:59:59.000Z

    In multifamily buildings, particularly in the Northeast, exhaust ventilation strategies are the norm as a means of meeting both local exhaust and whole-unit mechanical ventilation rates. The issue of where the 'fresh' air is coming from is gaining significance as air-tightness standards for enclosures become more stringent, and the 'normal leakage paths through the building envelope' disappear. CARB researchers have found that the majority of high performance, new construction, multifamily housing in the Northeast use one of four general strategies for ventilation: continuous exhaust only with no designated supply or make-up air source, continuous exhaust with ducted make-up air to apartments, continuous exhaust with supply through a make-up air device integral to the unit HVAC, and continuous exhaust with supply through a passive inlet device, such as a trickle vent. Insufficient information is available to designers on how these various systems are best applied. Product performance data are based on laboratory tests, and the assumption is that products will perform similarly in the field. Proper application involves matching expected performance at expected building pressures, but there is no guarantee that those conditions will exist consistently in the finished building. This research effort, which included several weeks of building pressure monitoring, sought to provide field validation of system performance. The performance of four substantially different strategies for providing make-up air to apartments was evaluated.

  6. Low-Cost Ventilation in Production Housing - Building America...

    Broader source: Energy.gov (indexed) [DOE]

    about this Top Innovation. See an example of this Top Innovation in action. Find more case studies of Building America projects across the country that demonstrate low-cost...

  7. A. Buonomano, M. Sherman, USA: Analysis of residential hybrid ventilation performance in U.S. climates 1 Intern. Symposium on Building and Ductwork Air tightness

    E-Print Network [OSTI]

    passive ventilation systems to meet ASHRAE 62.2 requirements as a step in the process for optimizing hybrid ventilation systems. A brief review of the literature with reference to the passive and hybrid ventilation systems in residential building is presented. The review focuses on key aspects of ventilation

  8. Building America Webinar: Retrofit Ventilation Strategies in Multifamily

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronicBuilding Enclosures | Department ofBuildings

  9. Evaluation of energy savings related to building envelope retrofit techniques and ventilation strategies for low energy cooling in

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    strategies for low energy cooling in offices and commercial sector Laurent Grignon-Massé, Dominique Marchio and automatic controls and the use of adequate ventilation strategies show great potential in energy savingsEvaluation of energy savings related to building envelope retrofit techniques and ventilation

  10. Indoor environmental quality and ventilation in U.S. office buildings: A view of current issues

    SciTech Connect (OSTI)

    Fisk, W.J.

    1994-11-01T23:59:59.000Z

    Much of the current focus on indoor environmental quality and ventilation in US office buildings is a response to sick building syndrome and occupant complaints about building-related health symptoms, poor indoor air quality, and thermal discomfort. The authors know that serious ``sick-building`` problems occur in a significant number of US office buildings and that a significant proportion of the occupants in many normal (non-sick) buildings report building-related health symptoms. Concerns about the health effects of environmental tobacco smoke have also focused attention on the indoor environment. The major responses of industry and governments, underway at the present time, are to restrict smoking in offices, to attempt to reduce the emissions of indoor pollutants, and to improve the operation of heating, ventilating and air conditioning (HVAC) systems. Better air filtration, improved HVAC commissioning and maintenance, and increased provisions for individual control of HVAC are some of the improvements in HVAC that are currently being, evaluated. In the future, the potential for improved productivity and reduced airborne transmission of infectious disease may become the major driving force for improved indoor environments.

  11. BUILDING VENTILATION AND INDOOR AIR QUALITY PROGRAM. CHAPTER FROM ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978

    E-Print Network [OSTI]

    Cairns, Elton J.

    2011-01-01T23:59:59.000Z

    The first section on the Ventilation Program, funded by thea large study on hospital ventilation require- ments.iii Ventilation Program C. D. Hollowell, A. Anaclerio, D. W.

  12. BUILDING VENTILATION AND INDOOR AIR QUALITY PROGRAM. CHAPTER FROM ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978

    E-Print Network [OSTI]

    Cairns, Elton J.

    2011-01-01T23:59:59.000Z

    occupants. The heating, ventilation and air conditioning (third of the heating, ventilation, and air conditioning (see Fig. 1) Heating ventilation and air conditioning (HVAC)

  13. Relationship of SBS-symptoms and ventilation system type in office buildings

    E-Print Network [OSTI]

    Seppanen, O.; Fisk, W.J.

    2002-01-01T23:59:59.000Z

    SBS-SYMPTOMS AND VENTILATION SYSTEM TYPE IN OFFICE BUILDINGSSBS-SYMPTOMS AND VENTILATION SYSTEM TYPE IN OFFICE BUILDINGSabout the associations of ventilation system types in office

  14. Energy and air quality implications of passive stack ventilation in residential buildings

    E-Print Network [OSTI]

    Mortensen, Dorthe Kragsig

    2011-01-01T23:59:59.000Z

    tighter, designed ventilation systems are more frequentlyof passive stack ventilation systems. They have been usedto having a good ventilation system and therefore also to

  15. Energy and Cost Associated with Ventilating Office Buildings in a Tropical Climate

    E-Print Network [OSTI]

    Rim, Donghyun; Schiavon, Stefano; Nazaroff, William W

    2015-01-01T23:59:59.000Z

    heating and cooling energy demand in Switzer- land. Energyorder: 1) ventilation energy demand; 2) ventilation energythe study. Ventilation energy demand Fig 2A summarizes the

  16. BUILDING VENTILATION AND INDOOR AIR QUALITY PROGRAM. CHAPTER FROM ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978

    E-Print Network [OSTI]

    Cairns, Elton J.

    2011-01-01T23:59:59.000Z

    of automatic variable ventilation control systems based onof automatic variable ventilation control systems, The Johnbe developed. Automatic Variable Ventilation Control Systems

  17. The integration of engineering and architecture: A perspective on natural ventilation for the new San Francisco Federal Building

    SciTech Connect (OSTI)

    McConahey, Erin; Haves, Philip; Christ, Tim

    2002-05-31T23:59:59.000Z

    A description of the in-progress design of a new Federal Office Building for San Francisco is used to illustrate a number of issues arising in the design of large, naturally ventilated office buildings. These issues include the need for an integrated approach to design involving the architects, mechanical and structural engineers, lighting designers and specialist simulation modelers. In particular, the use of natural ventilation, and the avoidance of air-conditioning, depends on the high degree of exposed thermal mass made possible by the structural scheme and by the minimization of solar heat gains while maintaining the good daylighting that results from optimization of the fagade. Another issue was the need for a radical change in interior space planning in order to enhance the natural ventilation; all the individual enclosed offices are located along the central spine of each floorplate rather than at the perimeter. The role of integration in deterring the undermining of the design through value engineering is discussed. The comfort criteria for the building were established based on the recent extension to the ASHRAE comfort standard based on the adaptive model for naturally ventilated buildings. The building energy simulation program EnergyPlus was used to compare the performance of different natural ventilation strategies. The results indicate that, in the San Francisco climate, wind-driven ventilation provides sufficient nocturnal cooling to maintain comfortable conditions and that external chimneys do not provide significant additional ventilation at times when it when it would be beneficial.

  18. Thermal Comfort Study in a Naturally Ventilated Residential Building in a Tropical Hot-Humid Climate Region

    E-Print Network [OSTI]

    Soebarto, V. I.; Handjarinto, S.

    1998-01-01T23:59:59.000Z

    This paper presents a thermal comfort study in a naturally ventilated residential building located in a tropical hot-humid climate region. The specific objective of this study is to investigate whether thermal comfort in this house can be achieved...

  19. Recommended Changes to Specifications for Demand Controlled Ventilation in California's Title 24 Building Energy Efficiency Standards

    SciTech Connect (OSTI)

    Fisk, William J.; Sullivan, Douglas P.; Faulkner, David

    2010-04-08T23:59:59.000Z

    In demand-controlled ventilation (DCV), rates of outdoor air ventilation are automatically modulated as occupant density varies. The objective is to keep ventilation rates at or above design specifications and code requirements and also to save energy by avoiding excessive ventilation rates. DCV is most often used in spaces with highly variable and sometime dense occupancy. In almost all cases, carbon dioxide (CO{sub 2}) sensors installed in buildings provide the signal to the ventilation rate control system. People produce and exhale CO{sub 2} as a consequence of their normal metabolic processes; thus, the concentrations of CO{sub 2} inside occupied buildings are higher than the concentrations of CO{sub 2} in the outdoor air. The magnitude of the indoor-outdoor CO{sub 2} concentration difference decreases as the building's ventilation rate per person increases. The difference between the indoor and outdoor CO{sub 2} concentration is also a proxy for the indoor concentrations of other occupant-generated bioeffluents, such as body odors. Reviews of the research literature on DCV indicate a significant potential for energy savings, particularly in buildings or spaces with a high and variable occupancy. Based on modeling, cooling energy savings from applications of DCV are as high as 20%. With support from the California Energy Commission and the U.S. Department of Energy, the Lawrence Berkeley National Laboratory has performed research on the performance of CO{sub 2} sensing technologies and optical people counters for DCV. In addition, modeling was performed to evaluate the potential energy savings and cost effectiveness of using DCV in general office spaces within the range of California climates. The above-described research has implications for the specifications pertaining to DCV in section 121 of the California Title 24 Standard. Consequently, this document suggests possible changes in these specifications based on the research findings. The suggested changes in specifications were developed in consultation with staff from the Iowa Energy Center who evaluated the accuracy of new CO{sub 2} sensors in laboratory-based research. In addition, staff of the California Energy Commission, and their consultants in the area of DCV, provided input for the suggested changes in specifications.

  20. CAN SORBENT-BASED GAS PHASE AIR CLEANING FOR VOCS SUBSTITUTE FOR VENTILATION IN COMMERCIAL BUILDINGS?

    SciTech Connect (OSTI)

    Fisk, William; Fisk, William J.

    2007-08-01T23:59:59.000Z

    This paper reviews current knowledge about the suitability of sorbent-based air cleaning for removing volatile organic compounds (VOCs) from the air in commercial buildings, as needed to enable reductions in ventilation rates and associated energy savings. The principles of sorbent air cleaning are introduced, criteria are suggested for sorbent systems that can counteract indoor VOC concentration increases from reduced ventilation, major findings from research on sorbent performance for this application are summarized, and related priority research needs are identified. Major conclusions include: sorbent systems can remove a broad range of VOCs with moderate to high efficiency, sorbent technologies perform effectively when challenged with VOCs at the low concentrations present indoors, and there is a large uncertainty about the lifetime and associated costs of sorbent air cleaning systems when used in commercial buildings for indoor VOC control. Suggested priority research includes: experiments to determine sorbent system VOC removal efficiencies and lifetimes considering the broad range and low concentration of VOCs indoors; evaluations of in-situ regeneration of sorbents; and an updated analysis of the cost of sorbent air cleaning relative to the cost of ventilation.

  1. Optimization of a Solar Chimney Design to Enhance Natural Ventilation in a Multi-Storey Office Building 

    E-Print Network [OSTI]

    Gontikaki, M.; Trcka, M.; Hensen, J.; Hoes, P. J.

    2010-01-01T23:59:59.000Z

    Natural ventilation of buildings can be achieved with solar-driven , buoyancy-induced airflow through a solar chimney channel. Research on solar chimneys has covered a wide range of topics, yet study of the integration in multi-storey buildings has...

  2. Optimization of a Solar Chimney Design to Enhance Natural Ventilation in a Multi-Storey Office Building

    E-Print Network [OSTI]

    Gontikaki, M.; Trcka, M.; Hensen, J.; Hoes, P. J.

    2010-01-01T23:59:59.000Z

    Natural ventilation of buildings can be achieved with solar-driven , buoyancy-induced airflow through a solar chimney channel. Research on solar chimneys has covered a wide range of topics, yet study of the integration in multi-storey buildings has...

  3. Proposal for the award of a contract for the design, supply, installation and commissioning of an HVAC (Heating, Ventilation and Air Conditioning) system for Building 3862

    E-Print Network [OSTI]

    2014-01-01T23:59:59.000Z

    Proposal for the award of a contract for the design, supply, installation and commissioning of an HVAC (Heating, Ventilation and Air Conditioning) system for Building 3862

  4. Information Concerning the Contract for the Heating and Ventilation Installations for the Auxiliary Buildings of the 300 GeV Accelerator

    E-Print Network [OSTI]

    1974-01-01T23:59:59.000Z

    Information Concerning the Contract for the Heating and Ventilation Installations for the Auxiliary Buildings of the 300 GeV Accelerator

  5. Adjudication of a Contract for the Supply of the Heating and Ventilation Installations for the Auxiliary Buildings of the 300 GeV Accelerator

    E-Print Network [OSTI]

    1972-01-01T23:59:59.000Z

    Adjudication of a Contract for the Supply of the Heating and Ventilation Installations for the Auxiliary Buildings of the 300 GeV Accelerator

  6. Buoyancy-Driven Ventilation of Hydrogen from Buildings: Laboratory Test and Model Validation

    SciTech Connect (OSTI)

    Barley, C. D.; Gawlik, K.

    2009-05-01T23:59:59.000Z

    Passive, buoyancy-driven ventilation is one approach to limiting hydrogen concentration. We explored the relationship between leak rate, ventilation design, and hydrogen concentrations.

  7. Natural ventilation - A new method based on the Walton model applied to cross-ventilated buildings having two large external openings

    E-Print Network [OSTI]

    Bastide, Alain; Boyer, Harry

    2012-01-01T23:59:59.000Z

    In order to provide comfort in a low energy consumption building, it is preferable to use natural ventilation rather than HVAC systems. To achieve this, engineers need tools that predict the heat and mass transfers between the building's interior and exterior. This article presents a method implemented in some building software, and the results are compared to CFD. The results show that the knowledge model is not sufficiently well-described to identify all the physical phenomena and the relationships between them. A model is developed which introduces a new building-dependent coefficient allowing the use of Walton's model, as extended by Roldan to large external openings, and which better represents the turbulent phenomena near large external openings. The formulation of the mass flow rates is inversed to identify modeling problems. It appears that the discharge coefficient is not the only or best parameter to obtain an indoor static pressure compatible with CFD results, or to calculate more realistic mass fl...

  8. Developing evidence-based prescriptive ventilation rate standards for commercial buildings in California: a proposed framework

    SciTech Connect (OSTI)

    Mendell, Mark J.; Fisk, William J.

    2014-02-01T23:59:59.000Z

    Background - The goal of this project, with a focus on commercial buildings in California, was to develop a new framework for evidence-based minimum ventilation rate (MVR) standards that protect occupants in buildings while also considering energy use and cost. This was motivated by research findings suggesting that current prescriptive MVRs in commercial buildings do not provide occupants with fully safe and satisfactory indoor environments. Methods - The project began with a broad review in several areas ? the diverse strategies now used for standards or guidelines for MVRs or for environmental contaminant exposures, current knowledge about adverse human effects associated with VRs, and current knowledge about contaminants in commercial buildings, including their their presence, their adverse human effects, and their relationships with VRs. Based on a synthesis of the reviewed information, new principles and approaches are proposed for setting evidence-based VRs standards for commercial buildings, considering a range of human effects including health, performance, and acceptability of air. Results ? A review and evaluation is first presented of current approaches to setting prescriptive building ventilation standards and setting acceptable limits for human contaminant exposures in outdoor air and occupational settings. Recent research on approaches to setting acceptable levels of environmental exposures in evidence-based MVR standards is also described. From a synthesis and critique of these materials, a set of principles for setting MVRs is presented, along with an example approach based on these principles. The approach combines two sequential strategies. In a first step, an acceptable threshold is set for each adverse outcome that has a demonstrated relationship to VRs, as an increase from a (low) outcome level at a high reference ventilation rate (RVR, the VR needed to attain the best achievable levels of the adverse outcome); MVRs required to meet each specific outcome threshold are estimated; and the highest of these MVRs, which would then meet all outcome thresholds, is selected as the target MVR. In a second step, implemented only if the target MVR from step 1 is judged impractically high, costs and benefits are estimated and this information is used in a risk management process. Four human outcomes with substantial quantitative evidence of relationships to VRs are identified for initial consideration in setting MVR standards. These are: building-related symptoms (sometimes called sick building syndrome symptoms), poor perceived indoor air quality, and diminished work performance, all with data relating them directly to VRs; and cancer and non-cancer chronic outcomes, related indirectly to VRs through specific VR-influenced indoor contaminants. In an application of step 1 for offices using a set of example outcome thresholds, a target MVR of 9 L/s (19 cfm) per person was needed. Because this target MVR was close to MVRs in current standards, use of a cost/benefit process seemed unnecessary. Selection of more stringent thresholds for one or more human outcomes, however, could raise the target MVR to 14 L/s (30 cfm) per person or higher, triggering the step 2 risk management process. Consideration of outdoor air pollutant effects would add further complexity to the framework. For balancing the objective and subjective factors involved in setting MVRs in a cost-benefit process, it is suggested that a diverse group of stakeholders make the determination after assembling as much quantitative data as possible.

  9. Building Design and Operation for Improving Thermal Comfort in Naturally Ventilated Buildings in a Hot-Humid Climate

    E-Print Network [OSTI]

    Sreshthaputra, Atch

    2007-11-29T23:59:59.000Z

    , and 4) attic ventilation. Each was operated using three modes of ventilation. The low-absorption roof and the R-30 ceiling insulation options were found to be the most effective options, whereas the shading devices and attic ventilation were less...

  10. Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems

    E-Print Network [OSTI]

    Wetter, Michael

    2010-01-01T23:59:59.000Z

    to a strati?ed thermal energy storage Figure 5: Model ofsystem with thermal energy storage. (to model ventilation

  11. Diagnostics and Measurements of Infiltration and Ventilation Systems in High-Rise Apartment Buildings

    E-Print Network [OSTI]

    Diamond, Richard

    Diagnostics and Measurements of Infiltration and Ventilation Systems in High-Rise Apartment without compromising air quality? We have been studying the air flows and ventilation systems in high systems that are neither efficient nor deliver satisfactory ventilation. Frequent problems include

  12. BUILDING VENTILATION AND INDOOR AIR QUALITY PROGRAM. CHAPTER FROM ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978

    E-Print Network [OSTI]

    Cairns, Elton J.

    2011-01-01T23:59:59.000Z

    heat exchangers; additional subcontract activities consisting of: • field survey of current practices in enforcement of ventilation regulations; COMMERCIAL ENERGY CONSUMPTION DATA (

  13. Proposal for the Award of a Contract for the Heating, Ventilation and Cooling Installations for the LHC Surface Buildings

    E-Print Network [OSTI]

    1999-01-01T23:59:59.000Z

    This document concerns the award of a contract for the heating, ventilation and cooling installations for the LHC surface buildings. Following a market survey carried out among 80 firms in fifteen Member States, a call for tenders (IT-2524/ST/LHC) was sent on 14 January 1999 to four firms and five consortia, two consisting of three firms and three consisting of two firms, in five Member States. By the closing date, CERN had received five tenders. The Finance Committee is invited to agree to the negotiation of a contract for the heating, ventilation and cooling installations for the LHC surface buildings with the consortium DSD (DE), AIR ET CHALEUR (BE) and SPIE TRINDEL (FR) for a total amount not exceeding 14 500 000 Swiss francs, not subject to revision until 31 December 2001. The consortium has announced that the work will be distributed as follows: DSD (DE) 67% - Air et Chaleur (BE) 21% - Spie Trindel (FR) 12%.

  14. A Model for Evaluation of Life-Cycle Energy Savings of Occupancy Sensors for Control of Lighting and Ventilation in Office Buildings 

    E-Print Network [OSTI]

    Degelman, L. O.

    2000-01-01T23:59:59.000Z

    Lighting and ventilation represent the majority of the air conditioning loads in office buildings in hot humid climates. Use of motion sensors is one way to minimize the energy used for these loads. This paper describes the methods used...

  15. A Model for Evaluation of Life-Cycle Energy Savings of Occupancy Sensors for Control of Lighting and Ventilation in Office Buildings

    E-Print Network [OSTI]

    Degelman, L. O.

    2000-01-01T23:59:59.000Z

    Lighting and ventilation represent the majority of the air conditioning loads in office buildings in hot humid climates. Use of motion sensors is one way to minimize the energy used for these loads. This paper describes the methods used...

  16. Optimization of Occupancy Based Demand Controlled Ventilation in Residences

    E-Print Network [OSTI]

    Mortensen, Dorthe K.

    2012-01-01T23:59:59.000Z

    of intermittent ventilation for providing acceptable indoor253. CEN, EN15665: Ventilation for buildings - Determiningcriteria for residential ventilation systems, 2009. CEN,

  17. Energy saving strategies with personalized ventilation in tropics

    E-Print Network [OSTI]

    Schiavon, Stefano; Melikov, Arsen; Chandra Sekhar, Chandra Sekhar

    2010-01-01T23:59:59.000Z

    of a personalized ventilation system in the tropics, in:edged-mounted task ventilation system, Indoor Air, Vol. 14 (a chair-based personalized ventilation system, Building and

  18. Energy-saving strategies with personalized ventilation in cold climates

    E-Print Network [OSTI]

    Schiavon, Stefano; Melikov, Arsen

    2009-01-01T23:59:59.000Z

    potential of personalized ventilation system in the tropics,edged-mounted task ventilation system, Indoor Air, Vol. 14 (a chair-based personalized ventilation system, Building and

  19. Multifamily Ventilation Retrofit Strategies

    SciTech Connect (OSTI)

    Ueno, K.; Lstiburek, J.; Bergey, D.

    2012-12-01T23:59:59.000Z

    In multifamily buildings, central ventilation systems often have poor performance, overventilating some portions of the building (causing excess energy use), while simultaneously underventilating other portions (causing diminished indoor air quality). BSC and Innova Services Corporation performed a series of field tests at a mid-rise test building undergoing a major energy audit and retrofit, which included ventilation system upgrades.

  20. Numerical Simulation of Displacement Ventilation in a Gymnasium in a Large Space Building

    E-Print Network [OSTI]

    Wu, X.; Li, X.

    2006-01-01T23:59:59.000Z

    . However, there still remains a lot to do in providing a suitable airflow pattern for competitions, with less energy consumption. Recently the displacement ventilation (DV) system has been adopted in northern Europe. It is used in large spaces...

  1. Energy and air quality implications of passive stack ventilation in residential buildings

    E-Print Network [OSTI]

    Mortensen, Dorthe Kragsig

    2011-01-01T23:59:59.000Z

    scaling the passive stack diameter with house size (floora single-story house ventilated by a passive stack with andTable 1: Passive stack diameters scaling with house size

  2. Association of ventilation system type with SBS symptoms in office workers

    E-Print Network [OSTI]

    Seppanen, Olli; Fisk, William J.

    2001-01-01T23:59:59.000Z

    Evaluation of Swedish ventilation systems” Building andP. (1995) “Type of ventilation system in office buildingsEvaluation of ventilation system materials as sources of

  3. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy ? FY11 Final Report

    SciTech Connect (OSTI)

    Sidheswaran, Meera; Destaillats, Hugo; Cohn, Sebastian; Sullivan, Douglas P.; Fisk, William J.

    2011-10-31T23:59:59.000Z

    The research carried out in this project focuses on developing novel volatile organic compounds (VOCs) air cleaning technologies needed to enable energy-saving reductions in ventilation rates. we targeted a VOC air cleaning system that could enable a 50% reduction in ventilation rates. In a typical commercial HVAC system that provides a mixture of recirculated and outdoor air, a VOC air cleaner in the supply airstream must have a 15% to 20% VOC removal efficiency to counteract a 50% reduction in outdoor air supply.

  4. Modeling of Heat Transfer in Rooms in the Modelica Buildings Library

    E-Print Network [OSTI]

    Wetter, Michael

    2013-01-01T23:59:59.000Z

    for building heating, ventilation and air-conditioningfor Building Heating, Ventilation and Air- Conditioning

  5. Temperature stratification and air change effectiveness in a high cooling load office with two heat source heights in a combined chilled ceiling and displacement ventilation system

    E-Print Network [OSTI]

    Schiavon, Stefano; Bauman, Fred; Tully, Brad; Rimmer, Julian

    2012-01-01T23:59:59.000Z

    ceiling and displacement ventilation system. Submitted toceiling and displacement ventilation system. Submitted toceiling and displacement ventilation systems, Energy Build.

  6. Recommended Changes to Specifications for Demand Controlled Ventilation in California's Title 24 Building Energy Efficiency Standards

    E-Print Network [OSTI]

    Fisk, William J.

    2010-01-01T23:59:59.000Z

    s Title 24 Building Energy Efficiency Standards W.J. Fisk,s Title 24 Building Energy Efficiency Standards Report toCommission, 2008 Building energy efficiency standards for

  7. Building America Webinar: High Performance Space Conditioning...

    Energy Savers [EERE]

    and payback. bawebinardentzandconlin111814.pdf More Documents & Publications Ventilation in Multifamily Buildings Multifamily Ventilation - Best Practice? Building America...

  8. Particle deposition from turbulent flow: Review of published research and its applicability to ventilation ducts in commercial buildings

    SciTech Connect (OSTI)

    Sippola, Mark R.; Nazaroff, William W.

    2002-06-01T23:59:59.000Z

    This report reviews published experimental and theoretical investigations of particle deposition from turbulent flows and considers the applicability of this body of work to the specific case of particle deposition from flows in the ducts of heating, ventilating and air conditioning (HVAC) systems. Particle deposition can detrimentally affect the performance of HVAC systems and it influences the exposure of building occupants to a variety of air pollutants. The first section of this report describes the types of HVAC systems under consideration and discusses the components, materials and operating parameters commonly found in these systems. The second section reviews published experimental investigations of particle deposition rates from turbulent flows and considers the ramifications of the experimental evidence with respect to HVAC ducts. The third section considers the structure of turbulent airflows in ventilation ducts with a particular emphasis on turbulence investigations that have been used as a basis for particle deposition models. The final section reviews published literature on predicting particle deposition rates from turbulent flows.

  9. Decommissioning of Active Ventilation Systems in a Nuclear R and D Facility to Prepare for Building Demolition (Whiteshell Laboratories Decommissioning Project, Canada) - 13073

    SciTech Connect (OSTI)

    Wilcox, Brian; May, Doug; Howlett, Don; Bilinsky, Dennis [Atomic Energy of Canada Limited, Ara Mooradian Way, Pinawa, Manitoba (Canada)] [Atomic Energy of Canada Limited, Ara Mooradian Way, Pinawa, Manitoba (Canada)

    2013-07-01T23:59:59.000Z

    Whiteshell Laboratories (WL) is a nuclear research establishment owned by the Canadian government and operated by Atomic Energy of Canada Limited (AECL) since the early 1960's. WL is currently under a decommissioning license and the mandate is to remediate the nuclear legacy liabilities in a safe and cost effective manner. The WL Project is the first major nuclear decommissioning project in Canada. A major initiative underway is to decommission and demolish the main R and D Laboratory complex. The Building 300 R and D complex was constructed to accommodate laboratories and offices which were mainly used for research and development associated with organic-cooled reactors, nuclear fuel waste management, reactor safety, advanced fuel cycles and other applications of nuclear energy. Building 300 is a three storey structure of approximately 16,000 m{sup 2}. In order to proceed with building demolition, the contaminated systems inside the building have to be characterized, removed, and the waste managed. There is a significant focus on volume reduction of radioactive waste for the WL project. The active ventilation system is one of the significant contaminated systems in Building 300 that requires decommissioning and removal. The active ventilation system was designed to manage hazardous fumes and radioactivity from ventilation devices (e.g., fume hoods, snorkels and glove boxes) and to prevent the escape of airborne hazardous material outside of the laboratory boundary in the event of an upset condition. The system includes over 200 ventilation devices and 32 active exhaust fan units and high efficiency particulate air (HEPA) filters. The strategy to remove the ventilation system was to work from the laboratory end back to the fan/filter system. Each ventilation duct was radiologically characterized. Fogging was used to minimize loose contamination. Sections of the duct were removed by various cutting methods and bagged for temporary storage prior to disposition. Maintenance of building heating, ventilation and air conditioning (HVAC) balancing was critical to ensure proper airflow and worker safety. Approximately 103 m{sup 3} of equipment and materials were recovered or generated by the project. Low level waste accounted for approximately 37.4 m{sup 3}. Where possible, ducting was free released for metal recycling. Contaminated ducts were compacted into B-1000 containers and stored in a Shielded Modular Above-Ground Storage Facility (SMAGS) on the WL site awaiting final disposition. The project is divided into three significant phases, with Phases 1 and 2 completed. Lessons learned during the execution of Phases 1 and 2 have been incorporated into the current ventilation removal. (authors)

  10. Co-simulation for performance prediction of integrated building and HVAC systems - An analysis of solution characteristics using a two-body system

    E-Print Network [OSTI]

    Trcka, Marija

    2010-01-01T23:59:59.000Z

    buildings and heating, ventilation and air- conditioning (building type, heating, ventilation and air-conditioning (

  11. Risk Factors in Heating, Ventilating, and Air-Conditioning Systems for Occupant Symptoms in

    E-Print Network [OSTI]

    Mendell, M.J.; Lei-Gomez, Q.; Mirer, A.; Seppanen, O.; Brunner, G.

    2007-01-01T23:59:59.000Z

    for building ventilation systems." Retrieved December 15,of moisture and ventilation system contamination in U.S.installed in office ventilation systems on workers' health

  12. Air change effectiveness in laboratory tests of combined chilled ceiling and displacement ventilation.

    E-Print Network [OSTI]

    Schiavon, Stefano; Bauman, Fred; Tully, Brad; Rimmer, Julian

    2011-01-01T23:59:59.000Z

    and displacement ventilation systems. Energy and Buildings,and displacement ventilation systems. Submitted to HVAC&R (and displacement ventilation system. According to Novoselac

  13. Healthy Zero Energy Buildings (HZEB) Program - Cross-Sectional Study of Contaminant Levels, Source, Strengths, and Ventilation Rates in Retail Stores

    SciTech Connect (OSTI)

    Chan, Wanyu R.; Sidheswaran, Meera; Cohn, Sebastian; Sullivan, Douglas P.; Fisk, William

    2014-02-01T23:59:59.000Z

    This field study measured ventilation rates and indoor air quality parameters in 21 visits to retail stores in California. The data was collected to guide the development of new, science-based commercial building ventilation rate standards that balance the dual objectives of increasing energy efficiency and maintaining acceptable indoor air quality. Data collection occurred between September 2011 and March 2013. Three types of stores participated in this study: grocery stores, furniture/hardware stores, and apparel stores. Ventilation rates and indoor air contaminant concentrations were measured on a weekday, typically between 9 am and 6 pm. Ventilation rates measured using a tracer gas decay method exceeded the minimum requirement of California’s Title 24 Standard in all but one store. Even though there was adequate ventilation according to Title 24, concentrations of formaldehyde, acetaldehyde, and acrolein exceeded the most stringent chronic health guidelines. Other indoor air contaminants measured included carbon dioxide (CO{sub 2}), carbon monoxide (CO), ozone (O{sub 3}), and particulate matter (PM). Concentrations of CO{sub 2} were kept low by adequate ventilation, and were assumed low also because the sampling occurred on a weekday when retail stores were less busy. CO concentrations were also low. The indoor-outdoor ratios of O{sub 3} showed that the first-order loss rate may vary by store trade types and also by ventilation mode (mechanical versus natural). Analysis of fine and ultrafine PM measurements showed that a substantial portion of the particle mass in grocery stores with cooking-related emissions was in particles less than 0.3 ?m. Stores without cooking as an indoor source had PM size distributions that were more similar indoors and outdoors. The whole-building emission rates of volatile organic compounds (VOCs) and PM were estimated from the measured ventilation rates and indoor and outdoor contaminant concentrations. Mass balance models were then used to determine the ventilation rates, filtration strategies, or source reductions needed to maintain indoor contaminant concentrations below reference levels. Several scenarios of potential concern were considered: (i) formaldehyde levels in furniture/hardware stores, (ii) contaminants associated with cooking (e.g., PM, acrolein, and acetaldehyde) in grocery stores, and (iii) outdoor contaminants (e.g., PM and O{sub 3}) impacting stores that use natural ventilation. Estimated formaldehyde emission rates suggest that retail stores would need to ventilate at levels far exceeding the current Title 24 requirement to lower indoor concentrations below California’s stringent formaldehyde reference level. Given the high costs of providing ventilation but only modest chronic health benefit is expected, effective source control is an attractive alternative, as demonstrated by some retail stores in this study. Predictions showed that grocery stores need MERV 13 air filters, instead of MERV 8 filters that are more commonly used, to maintain indoor PM at levels that meet the chronic health standards for PM. Exposure to acrolein is a potential health concern in grocery stores, and should be addressed by increasing the use of kitchen range hoods or improving their contaminant removal efficiency. In stores that rely on natural ventilation, indoor PM can be a health concern if the stores are located in areas with high outdoor PM. This concern may be addressed by switching to mechanical ventilation when the outdoor air quality is poor, while continuing natural ventilation when outdoor air quality is good.

  14. Development and Application of a Procedure to Estimate Overall Building and Ventilation Parameters from Monitored Commercial Building Energy Use

    E-Print Network [OSTI]

    Deng, Song

    This thesis proposes and validates a simplified model appropriate for parameter identification and evaluates several different inverse parameter identification schemes suitable for use when heating and cooling data from a commercial building...

  15. Development and application of a procedure to estimate overall building and ventilation parameters from monitored commercial building energy use

    E-Print Network [OSTI]

    Deng, Song Jiu

    1997-01-01T23:59:59.000Z

    This thesis proposes and validates a simplified model appropriate for parameter identification and evaluates several different inverse parameter identification schemes suitable for use when heating and cooling data from a commercial building...

  16. The International Journal of Ventilation

    E-Print Network [OSTI]

    California at Davis, University of

    air quality and reducing energy required for heating, cooling, and ventilation. One application. Introduction Heating, cooling and ventilation can account for 50 percent of total building energy useThe International Journal of Ventilation Volume 12 Number 4 ISSN 1473 - 3315 March 2014 Contents

  17. DEMAND CONTROLLED VENTILATION AND CLASSROOM VENTILATION

    SciTech Connect (OSTI)

    Fisk, William J.; Mendell, Mark J.; Davies, Molly; Eliseeva, Ekaterina; Faulkner, David; Hong, Tienzen; Sullivan, Douglas P.

    2014-01-06T23:59:59.000Z

    This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling. Major findings included: ? The single-location carbon dioxide sensors widely used for demand controlled ventilation frequently have large errors and will fail to effectively control ventilation rates (VRs).? Multi-location carbon dioxide measurement systems with more expensive sensors connected to multi-location sampling systems may measure carbon dioxide more accurately.? Currently-available optical people counting systems work well much of the time but have large counting errors in some situations. ? In meeting rooms, measurements of carbon dioxide at return-air grilles appear to be a better choice than wall-mounted sensors.? In California, demand controlled ventilation in general office spaces is projected to save significant energy and be cost effective only if typical VRs without demand controlled ventilation are very high relative to VRs in codes. Based on the research, several recommendations were developed for demand controlled ventilation specifications in the California Title 24 Building Energy Efficiency Standards.The research on classroom ventilation collected data over two years on California elementary school classrooms to investigate associations between VRs and student illness absence (IA). Major findings included: ? Median classroom VRs in all studied climate zones were below the California guideline, and 40percent lower in portable than permanent buildings.? Overall, one additional L/s per person of VR was associated with 1.6percent less IA. ? Increasing average VRs in California K-12 classrooms from the current average to the required level is estimated to decrease IA by 3.4percent, increasing State attendance-based funding to school districts by $33M, with $6.2 M in increased energy costs. Further VR increases would provide additional benefits.? Confirming these findings in intervention studies is recommended. ? Energy costs of heating/cooling unoccupied classrooms statewide are modest, but a large portion occurs in relatively few classrooms.

  18. Building ventilation: A pressure airflow model computer generation and elements of validation

    E-Print Network [OSTI]

    Boyer, H; Adelard, L; Mara, T A

    2012-01-01T23:59:59.000Z

    The calculation of airflows is of great importance for detailed building thermal simulation computer codes, these airflows most frequently constituting an important thermal coupling between the building and the outside on one hand, and the different thermal zones on the other. The driving effects of air movement, which are the wind and the thermal buoyancy, are briefly outlined and we look closely at their coupling in the case of buildings, by exploring the difficulties associated with large openings. Some numerical problems tied to the resolving of the non-linear system established are also covered. Part of a detailled simulation software (CODYRUN), the numerical implementation of this airflow model is explained, insisting on data organization and processing allowing the calculation of the airflows. Comparisons are then made between the model results and in one hand analytical expressions and in another and experimental measurements in case of a collective dwelling.

  19. A study of time-dependent responses of a mechanical displacement ventilation (DV) system and an underfloor air distribution (UFAD) system : building energy performance of the UFAD system

    E-Print Network [OSTI]

    Yu, Jong Keun

    2010-01-01T23:59:59.000Z

    Displacement Ventilation system . . . . . . . . . . 1.1.2responses of mechanical Displacement Ventilation system 2.1of Displacement Ventilation Systems . Experi- mental and

  20. Ventilation Based on ASHRAE 62.2

    E-Print Network [OSTI]

    Indoor Ventilation Based on ASHRAE 62.2 Arnold Schwarzenegger Governor California Energy Commission Ventilation (ASHRAE 62.2) Minimum Best Practices Guide - Exhaust-Only Ventilation Introduction: The California/ASHRAE Standard 62.2-2007, Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings (ASHRAE

  1. Critical Question #2: What are the Best Practices for Ventilation...

    Energy Savers [EERE]

    2: What are the Best Practices for Ventilation Specific to Multifamily Buildings? Critical Question 2: What are the Best Practices for Ventilation Specific to Multifamily...

  2. Energy analysis of a personalized ventilation system in a cold climate: influence of the supplied air temperature

    E-Print Network [OSTI]

    Schiavon, Stefano; Melikov, Arsen

    2008-01-01T23:59:59.000Z

    potential of personalized ventilation system in the tropics.a chair-based personalized ventilation system. Building andedged-mounted task ventilation system. Indoor Air, Vol. 14 (

  3. Duct Systems in large commercial buildings: Physical characterization, air leakage, and heat conduction gains

    E-Print Network [OSTI]

    Fisk, W.J.

    2011-01-01T23:59:59.000Z

    fabricators of heating, ventilation, and air conditioningof Building Heating, Ventilation, Air Conditioning, and

  4. Building America Webinar: Saving Energy in Multifamily Buildings...

    Energy Savers [EERE]

    More Documents & Publications Building America Webinar: Retrofit Ventilation Strategies in Multifamily Buildings Webinar Energy Saver Guide Building America...

  5. ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality in Low- Rise Residential Buildings - Building America Top Innovation ASHRAE Standard 62.2. Ventilation and...

  6. Ventilation Behavior and Household Characteristics in New California Houses

    E-Print Network [OSTI]

    Price, Phillip N.; Sherman, Max H.

    2006-01-01T23:59:59.000Z

    and Mechanical Ventilation: Use of Local Exhaust Fans:pollutants. Large ventilation fans can cause local thermallocal contaminants such as those from kitchen and bathroom activities, then minimum building ventilation

  7. Application of the Gebhart-Block Model for Predicting Vertical Temperature Distribution in a Large Space Building with Natural Ventilation

    E-Print Network [OSTI]

    Huang, C.; Song, Y.; Luo, X.

    2006-01-01T23:59:59.000Z

    Based on the Block model for predicting vertical temperature distribution in a large space, this paper describes an improved Gebhart-Block model for predicting vertical temperature distribution of a large space with natural ventilation...

  8. Energy and first costs analysis of displacement and mixing ventilation systems for U.S. buildings and climates

    E-Print Network [OSTI]

    Hu, ShiPing, 1970-

    1999-01-01T23:59:59.000Z

    In the past two decades, displacement ventilation has been increasingly used in Scandinavia and Western Europe to improve indoor air quality and to save energy. By using a detailed computer simulation method, this study ...

  9. Ventilative cooling

    E-Print Network [OSTI]

    Graça, Guilherme Carrilho da, 1972-

    1999-01-01T23:59:59.000Z

    This thesis evaluates the performance of daytime and nighttime passive ventilation cooling strategies for Beijing, Shanghai and Tokyo. A new simulation method for cross-ventilated wind driven airflow is presented . This ...

  10. Assessment of natural ventilation potentials on free-form architecture design using CFD simulations: a Learning Hub building in Singapore

    E-Print Network [OSTI]

    Szu Cheng, CHIEN

    2013-01-01T23:59:59.000Z

    DESIGN USING CF D SIMULATIONS: A LEARNING HUB BUILDING INLearning Hub computational model. In order to build up the simulation

  11. Equivalence in Ventilation and Indoor Air Quality

    SciTech Connect (OSTI)

    Sherman, Max; Walker, Iain; Logue, Jennifer

    2011-08-01T23:59:59.000Z

    We ventilate buildings to provide acceptable indoor air quality (IAQ). Ventilation standards (such as American Society of Heating, Refrigerating, and Air-Conditioning Enginners [ASHRAE] Standard 62) specify minimum ventilation rates without taking into account the impact of those rates on IAQ. Innovative ventilation management is often a desirable element of reducing energy consumption or improving IAQ or comfort. Variable ventilation is one innovative strategy. To use variable ventilation in a way that meets standards, it is necessary to have a method for determining equivalence in terms of either ventilation or indoor air quality. This study develops methods to calculate either equivalent ventilation or equivalent IAQ. We demonstrate that equivalent ventilation can be used as the basis for dynamic ventilation control, reducing peak load and infiltration of outdoor contaminants. We also show that equivalent IAQ could allow some contaminants to exceed current standards if other contaminants are more stringently controlled.

  12. Modeling buoyancy-driven airflow in ventilation shafts

    E-Print Network [OSTI]

    Ray, Stephen D. (Stephen Douglas)

    2012-01-01T23:59:59.000Z

    Naturally ventilated buildings can significantly reduce the required energy for cooling and ventilating buildings by drawing in outdoor air using non-mechanical forces. Buoyancy-driven systems are common in naturally ...

  13. Temperature stratification and air change effectiveness in a high cooling load office with two heat source heights in a combined chilled ceiling and displacement ventilation system

    E-Print Network [OSTI]

    Schiavon, Stefano; Bauman, Fred; Tully, Brad; Rimmer, Julian

    2012-01-01T23:59:59.000Z

    and displacement ventilation system. Submitted to Energy andand displacement ventilation system. Submitted to Energy andand displacement ventilation systems, Energy Build. 34 (

  14. Building Retrofits for Increased Protection Against Airborne

    E-Print Network [OSTI]

    shutdown and purge cycles, and automated heating, ventilating and air-conditioning (HVAC) operational degrees of applicability to particular buildings and ventilation systems. This document presents ventilation system recommissioning, building envelope airtightening, building pressurization, relocation

  15. Reduceret energiforbrug til ventilation af bygninger

    E-Print Network [OSTI]

    Reduceret energiforbrug til ventilation af bygninger hvori der systematisk er valgt lav. 23. November 2007 #12;#12;Reduced energy use for ventilation of buildings through selection of low ventilation rate on perceived quality of air polluted by different materials, small ­ scale and full ­ scale

  16. Demand Controlled Ventilation and Classroom Ventilation

    E-Print Network [OSTI]

    Fisk, William J.

    2014-01-01T23:59:59.000Z

    2 -based demand controlled ventilation using ASHRAE Standardoptimizing energy use and ventilation. ASHRAE TransactionsWJ, Grimsrud DT, et al. 2011. Ventilation rates and health:

  17. Demand Controlled Ventilation and Classroom Ventilation

    E-Print Network [OSTI]

    Fisk, William J.

    2014-01-01T23:59:59.000Z

    use of demand control ventilation systems in general officedemand controlled  ventilation systems, Dennis DiBartolomeo the demand controlled ventilation system increased the rate 

  18. A simplified model for estimating population-scale energy impacts of building envelope air-tightening and mechanical ventilation retrofits

    SciTech Connect (OSTI)

    Logue, J. M.; Turner, W. J.N.; Walker, I. S.; Singer, B. C.

    2015-01-01T23:59:59.000Z

    Changing the air exchange rate of a home (the sum of the infiltration and mechanical ventilation airflow rates) affects the annual thermal conditioning energy. Large-scale changes to air exchange rates of the housing stock can significantly alter the residential sector's energy consumption. However, the complexity of existing residential energy models is a barrier to the accurate quantification of the impact of policy changes on a state or national level. The Incremental Ventilation Energy (IVE) model developed in this study combines the output of simple air exchange models with a limited set of housing characteristics to estimate the associated change in energy demand of homes. The IVE model was designed specifically to enable modellers to use existing databases of housing characteristics to determine the impact of ventilation policy change on a population scale. The IVE model estimates of energy change when applied to US homes with limited parameterisation are shown to be comparable to the estimates of a well-validated, complex residential energy model.

  19. Summary Report: Control Strategies for Mixed-Mode Buildings

    E-Print Network [OSTI]

    Brager, Gail; Borgeson, Sam; Lee, Yoonsu

    2007-01-01T23:59:59.000Z

    Design of Natural and Hybrid Ventilation Systems for Coolingof Natural and Hybrid Ventilation Systems in an OfficePeter. 1995. “Which Ventilation System? ” Building Services

  20. Ventilation Model

    SciTech Connect (OSTI)

    H. Yang

    1999-11-04T23:59:59.000Z

    The purpose of this analysis and model report (AMR) for the Ventilation Model is to analyze the effects of pre-closure continuous ventilation in the Engineered Barrier System (EBS) emplacement drifts and provide heat removal data to support EBS design. It will also provide input data (initial conditions, and time varying boundary conditions) for the EBS post-closure performance assessment and the EBS Water Distribution and Removal Process Model. The objective of the analysis is to develop, describe, and apply calculation methods and models that can be used to predict thermal conditions within emplacement drifts under forced ventilation during the pre-closure period. The scope of this analysis includes: (1) Provide a general description of effects and heat transfer process of emplacement drift ventilation. (2) Develop a modeling approach to simulate the impacts of pre-closure ventilation on the thermal conditions in emplacement drifts. (3) Identify and document inputs to be used for modeling emplacement ventilation. (4) Perform calculations of temperatures and heat removal in the emplacement drift. (5) Address general considerations of the effect of water/moisture removal by ventilation on the repository thermal conditions. The numerical modeling in this document will be limited to heat-only modeling and calculations. Only a preliminary assessment of the heat/moisture ventilation effects and modeling method will be performed in this revision. Modeling of moisture effects on heat removal and emplacement drift temperature may be performed in the future.

  1. Measuring Residential Ventilation System Airflows: Part 1 Laboratory

    E-Print Network [OSTI]

    1 Measuring Residential Ventilation System Airflows: Part 1 ­ Laboratory Evaluation of Airflow: residential, mechanical ventilation, measurement, ASHRAE 62.2, flow hood ABSTRACT Building codes increasingly require tighter homes and mechanical ventilation per ASHRAE Standard 62.2. These ventilation flows must

  2. Ventilation Model

    SciTech Connect (OSTI)

    V. Chipman

    2002-10-05T23:59:59.000Z

    The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their post-closure analyses. The Ventilation Model report was initially developed to analyze the effects of preclosure continuous ventilation in the Engineered Barrier System (EBS) emplacement drifts, and to provide heat removal data to support EBS design. Revision 00 of the Ventilation Model included documentation of the modeling results from the ANSYS-based heat transfer model. The purposes of Revision 01 of the Ventilation Model are: (1) To validate the conceptual model for preclosure ventilation of emplacement drifts and verify its numerical application in accordance with new procedural requirements as outlined in AP-SIII-10Q, Models (Section 7.0). (2) To satisfy technical issues posed in KTI agreement RDTME 3.14 (Reamer and Williams 2001a). Specifically to demonstrate, with respect to the ANSYS ventilation model, the adequacy of the discretization (Section 6.2.3.1), and the downstream applicability of the model results (i.e. wall heat fractions) to initialize post-closure thermal models (Section 6.6). (3) To satisfy the remainder of KTI agreement TEF 2.07 (Reamer and Williams 2001b). Specifically to provide the results of post-test ANSYS modeling of the Atlas Facility forced convection tests (Section 7.1.2). This portion of the model report also serves as a validation exercise per AP-SIII.10Q, Models, for the ANSYS ventilation model. (4) To further satisfy KTI agreements RDTME 3.01 and 3.14 (Reamer and Williams 2001a) by providing the source documentation referred to in the KTI Letter Report, ''Effect of Forced Ventilation on Thermal-Hydrologic Conditions in the Engineered Barrier System and Near Field Environment'' (Williams 2002). Specifically to provide the results of the MULTIFLUX model which simulates the coupled processes of heat and mass transfer in and around waste emplacement drifts during periods of forced ventilation. This portion of the model report is presented as an Alternative Conceptual Model with a numerical application, and also provides corroborative results used for model validation purposes (Section 6.3 and 6.4).

  3. Risk Factors in Heating, Ventilating, and Air-Conditioning Systemsfor Occupant Symptoms in U.S. Office Buildings: the EPA BASE Study

    SciTech Connect (OSTI)

    Mendell, M.J.; Lei-Gomez, Q.; Mirer, A.; Seppanen, O.; Brunner, G.

    2006-10-01T23:59:59.000Z

    Nonspecific building-related symptoms among occupants of modern office buildings worldwide are common and may be associated with important reductions in work performance, but their etiology remains uncertain. Characteristics of heating, ventilating, and air-conditioning (HVAC) systems in office buildings that increase risk of indoor contaminants or reduce effectiveness of ventilation may cause adverse exposures and subsequent increase in these symptoms among occupants. We analyzed data collected by the U.S. EPA from a representative sample of 100 large U.S. office buildings--the Building Assessment and Survey Evaluation (BASE) study--using multivariate logistic regression models with generalized estimating equations adjusted for potential personal and building confounders. We estimated odds ratios (ORs) and 95% confidence intervals (CIs) for associations between seven building-related symptom outcomes and selected HVAC system characteristics. Among factors of HVAC design or configuration: Outdoor air intakes less than 60 m above the ground were associated with approximately doubled odds of most symptoms assessed. Sealed (non-operable) windows were associated with increases in skin and eye symptoms (ORs= 1.9, 1.3, respectively). Outdoor air intake without an intake fan was associated with an increase in eye symptoms (OR=1.7). Local cooling coils were associated with increased headache (OR=1.5). Among factors of HVAC condition, maintenance, or operation: the presence of humidification systems in good condition was associated with an increase in headache (OR=1.4), whereas the presence of humidification systems in poor condition was associated with increases in fatigue/difficulty concentrating, as well as upper respiratory symptoms (ORs=1.8, 1.5). No regularly scheduled inspections for HVAC components was associated with increased eye symptoms, cough and upper respiratory symptoms (ORs=2.2, 1.6, 1.5). Less frequent cleaning of cooling coils or drip pans was associated with increased headache (OR=1.6). Fair or poor condition of duct liner was associated with increased upper respiratory symptoms (OR=1.4). Most of the many potential risk factors assessed here had not been investigated previously, and associations found with single symptoms may have been by chance, including several associations that were the reverse of expected. Risk factors newly identified in these analyses that deserve attention include outdoor air intakes less than 60 m above the ground, lack of operable windows, poorly maintained humidification systems, and lack of scheduled inspection for HVAC systems. Infrequent cleaning of cooling coils and drain pans were associated with increases in several symptoms in these as well as prior analyses of BASE data. Replication of these findings is needed, using more objective measurements of both exposure and health response. Confirmation of the specific HVAC factors responsible for increased symptoms in buildings, and development of prevention strategies could have major public health and economic benefits worldwide.

  4. Demand Controlled Ventilation and Classroom Ventilation

    E-Print Network [OSTI]

    Fisk, William J.

    2014-01-01T23:59:59.000Z

    to districts for ventilation, heating, and cooling.   Thus G is the gas use for heating ventilation  air, G i  is the air  gas use for heating ventilation air  the time elapsed 

  5. Building America Webinar: National Residential Efficiency Measures...

    Energy Savers [EERE]

    Database Webinar Slides Building America Webinar: Saving Energy in Multifamily Buildings Building America Webinar: Retrofit Ventilation Strategies in Multifamily Buildings Webinar...

  6. ASHRAE and residential ventilation

    SciTech Connect (OSTI)

    Sherman, Max H.

    2003-10-01T23:59:59.000Z

    In the last quarter of a century, the western world has become increasingly aware of environmental threats to health and safety. During this period, people psychologically retreated away from outdoors hazards such as pesticides, smog, lead, oil spills, and dioxin to the seeming security of their homes. However, the indoor environment may not be healthier than the outdoor environment, as has become more apparent over the past few years with issues such as mold, formaldehyde, and sick-building syndrome. While the built human environment has changed substantially over the past 10,000 years, human biology has not; poor indoor air quality creates health risks and can be uncomfortable. The human race has found, over time, that it is essential to manage the indoor environments of their homes. ASHRAE has long been in the business of ventilation, but most of the focus of that effort has been in the area of commercial and institutional buildings. Residential ventilation was traditionally not a major concern because it was felt that, between operable windows and envelope leakage, people were getting enough outside air in their homes. In the quarter of a century since the first oil shock, houses have gotten much more energy efficient. At the same time, the kinds of materials and functions in houses changed in character in response to people's needs. People became more environmentally conscious and aware not only about the resources they were consuming but about the environment in which they lived. All of these factors contributed to an increasing level of public concern about residential indoor air quality and ventilation. Where once there was an easy feeling about the residential indoor environment, there is now a desire to define levels of acceptability and performance. Many institutions--both public and private--have interests in Indoor Air Quality (IAQ), but ASHRAE, as the professional society that has had ventilation as part of its mission for over 100 years, is the logical place to provide leadership. This leadership has been demonstrated most recently by the publication of the first nationally recognized standard on ventilation in homes, ASHRAE Standard 62.2-2003, which builds on work that has been part of ASHRAE for many years and will presumably continue. Homeowners and occupants, which includes virtually all of us, will benefit from the application of Standard 62.2 and use of the top ten list. This activity is exactly the kind of benefit to society that the founders of ASHRAE envisioned and is consistent with ASHRAE's mission and vision. ASHRAE members should be proud of their Society for taking leadership in residential ventilation.

  7. Effect of building airtightness and fan size on the performance of mechanical ventilation systems in new U.S. houses: a critique of ASHRAE standard 62.2-2003

    E-Print Network [OSTI]

    Roberson, J.

    2004-01-01T23:59:59.000Z

    Install Residential Ventilation Systems. The Healthy HouseMechanical Ventilation Systems. Canadian StandardsCode: Whole House Ventilation Systems Research Report. 39

  8. Healthy Zero Energy Buildings (HZEB) Program Interim Report on Cross Sectional Study of Contaminant Levels, Source Strengths, and Ventilation Rates in Retail Stores

    E-Print Network [OSTI]

    Chan, Wanyu R.

    2014-01-01T23:59:59.000Z

    Refrigerating, and Air Conditioning Engineers, Inc. Bennett,Ventilating, and Air Conditioning Survey of Small and MediumRefrigerating and Air- Conditioning Engineers (ASHRAE,

  9. The Trade-off between Solar Reflectance and Above-Sheathing Ventilation for Metal Roofs on Residential and Commercial Buildings

    SciTech Connect (OSTI)

    Desjarlais, Andre Omer [ORNL] [ORNL; Kriner, Scott [Metal Construction Association, Glenview, IL] [Metal Construction Association, Glenview, IL; Miller, William A [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    An alternative to white and cool-color roofs that meets prescriptive requirements for steep-slope (residential and non-residential) and low-slope (non-residential) roofing has been documented. Roofs fitted with an inclined air space above the sheathing (herein termed above-sheathing ventilation, or ASV), performed as well as if not better than high-reflectance, high-emittance roofs fastened directly to the deck. Field measurements demonstrated the benefit of roofs designed with ASV. A computer tool was benchmarked against the field data. Testing and benchmarks were conducted at roofs inclined at 18.34 ; the roof span from soffit to ridge was 18.7 ft (5.7 m). The tool was then exercised to compute the solar reflectance needed by a roof equipped with ASV to exhibit the same annual cooling load as that for a direct-to-deck cool-color roof. A painted metal roof with an air space height of 0.75 in. (0.019 m) and spanning 18.7 ft (5.7 m) up the roof incline of 18.34 needed only a 0.10 solar reflectance to exhibit the same annual cooling load as a direct-to-deck cool-color metal roof (solar reflectance of 0.25). This held for all eight ASHRAE climate zones complying with ASHRAE 90.1 (2007a). A dark heat-absorbing roof fitted with 1.5 in. (0.038 m) air space spanning 18.7 ft (5.7 m) and inclined at 18.34 was shown to have a seasonal cooling load equivalent to that of a conventional direct-to-deck cool-color metal roof. Computations for retrofit application based on ASHRAE 90.1 (1980) showed that ASV air spaces of either 0.75 or 1.5 in. (0.019 and 0.038 m) would permit black roofs to have annual cooling loads equivalent to the direct-to-deck cool roof. Results are encouraging, and a parametric study of roof slope and ASV aspect ratio is needed for developing guidelines applicable to all steep- and low-slope roof applications.

  10. Impact of Independently Controlling Ventilation Rate per Person and Ventilation

    E-Print Network [OSTI]

    1 Impact of Independently Controlling Ventilation Rate per Person and Ventilation Rate per Floor Impact of Independently Controlling Ventilation Rate per Person and Ventilation Rate per Floor Area

  11. Should Title 24 Ventilation Requirements Be Amended to

    E-Print Network [OSTI]

    Should Title 24 Ventilation Requirements Be Amended to include an Indoor Air Quality Procedure Ventilation Requirements Be Amended to include an Indoor Air Quality Procedure? William J. Fisk, Spencer M Berkeley, CA 94720 May 10, 2013 ABSTRACT Minimum outdoor air ventilation rates (VRs) for buildings

  12. TOP DOWN VENTILATION AND COOLING Stephen A. Gage

    E-Print Network [OSTI]

    Linden, Paul F.

    TOP DOWN VENTILATION AND COOLING Stephen A. Gage G.R. Hunt P.F. Linden This paper examines the problems inherent in passively ventilating and cooling low and medium rise urban buildings. We focus openings in passive displacement ventilation systems. A solution is suggested. The concept that is examined

  13. CONFIDENTIAL: DO NOT QUOTE 1 Equivalence in Ventilation and

    E-Print Network [OSTI]

    CONFIDENTIAL: DO NOT QUOTE 1 Equivalence in Ventilation and Indoor Air Quality M. H. Sherman, I ventilate buildings to provide acceptable indoor air quality (IAQ). Ventilation standards (such as American Society of Heating, Refrigerating, and Air-Conditioning Enginners [ASHRAE] Standard 62) specify minimum

  14. Summer Infiltration/Ventilation Test Results from the FRTF Laboratory

    Broader source: Energy.gov (indexed) [DOE]

    Summer InfiltrationVentilation Test Results from the FRTF Laboratory Building America Technical Review Meeting April 29-30, 2013 A Research Institute of the University of Central...

  15. International Journal of Ventilation ISSN 1473-3315 Volume 4 No 4 Interacting Turbulent Plumes in a Naturally Ventilated Enclosure

    E-Print Network [OSTI]

    Linden, Paul F.

    International Journal of Ventilation ISSN 1473-3315 Volume 4 No 4 ________________________________________________________________________________________________________________________ ________________________________________________________________________________________________________________________ 301 Interacting Turbulent Plumes in a Naturally Ventilated Enclosure P. F. Linden1 and N. B. Kaye2 1 of turbulent plumes is examined in the context of building ventilation flows. Recent models for natural

  16. Development of a Residential Integrated Ventilation Controller

    SciTech Connect (OSTI)

    Staff Scientist; Walker, Iain; Sherman, Max; Dickerhoff, Darryl

    2011-12-01T23:59:59.000Z

    The goal of this study was to develop a Residential Integrated Ventilation Controller (RIVEC) to reduce the energy impact of required mechanical ventilation by 20percent, maintain or improve indoor air quality and provide demand response benefits. This represents potential energy savings of about 140 GWh of electricity and 83 million therms of natural gas as well as proportional peak savings in California. The RIVEC controller is intended to meet the 2008 Title 24 requirements for residential ventilation as well as taking into account the issues of outdoor conditions, other ventilation devices (including economizers), peak demand concerns and occupant preferences. The controller is designed to manage all the residential ventilation systems that are currently available. A key innovation in this controller is the ability to implement the concept of efficacy and intermittent ventilation which allows time shifting of ventilation. Using this approach ventilation can be shifted away from times of high cost or high outdoor pollution towards times when it is cheaper and more effective. Simulations, based on the ones used to develop the new residential ventilation requirements for the California Buildings Energy code, were used to further define the specific criteria and strategies needed for the controller. These simulations provide estimates of the energy, peak power and contaminant improvement possible for different California climates for the various ventilation systems. Results from a field test of the prototype controller corroborate the predicted performance.

  17. The Effects of Air Permeability, Background Ventilation and Lifestyle on Energy Performance, Indoor Air Quality and Risk of Condensation in Domestic Buildings

    E-Print Network [OSTI]

    Hashemi, Arman; Khatami, Narguess

    2015-04-08T23:59:59.000Z

    : London, UK, 2005. 34. EST. Energy Efficient Ventilation in Dwellings—A Guide for Specifiers: GPG268; Energy Saving Trust: London, UK, 2006. © 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed...

  18. E-Print Network 3.0 - af noninvasiv ventilation Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    materials on Summary: -polluting building materials on ventilation requirements and energy use in buildings", Proceedings of IAQVEC 2007... , Sendai, Japan, on CD-ROM....

  19. An energy standard for residential buildings in south China

    E-Print Network [OSTI]

    Huang, Yu Joe; Lang, Siwei; Hogan, John; Lin, Haiyan

    2003-01-01T23:59:59.000Z

    Code for Residential Buildings”, Third International Conference on Indoor Air Quality, Ventilation and Energy Conservation

  20. Proceedings of the Intern. Conference on Passive and Low Energy Architecture (PLEA), Toulouse (2002) 577 Cost efficiency of ventilation systems

    E-Print Network [OSTI]

    Gieseler, Udo D. J.

    2002-01-01T23:59:59.000Z

    ) 577 Cost efficiency of ventilation systems for low-energy buildings with earth-to-air heat exchange residential low-energy building are simulated for different ventilation systems with earth-to-air heat, simulation 1 Author to whom correspondence should be addressed. 1) VENTILATION SYSTEMS Ventilation systems

  1. International Journal of Ventilation Volume 2 No 3 Application of CFD to Predict and Control Chemical and Biological

    E-Print Network [OSTI]

    Zhai, John Z.

    attack, since the conventional ventilation systems are not designed for such an attack. How to design ventilation systems that can protect buildings from such an attack is an urgent issue for ventilation system are especially hazardous when they are dispersed inside of a building, where traditional ventilation systems may

  2. A study of time-dependent responses of a mechanical displacement ventilation (DV) system and an underfloor air distribution (UFAD) system : building energy performance of the UFAD system

    E-Print Network [OSTI]

    Yu, Jong Keun

    2010-01-01T23:59:59.000Z

    electricity demand responses in a building. The remedieselectricity demand responses for a building. An alternativedemand response (DR), is widely suggested for building HVAC

  3. Cost effective combined axial fan and throttling valve control of ventilation rate

    E-Print Network [OSTI]

    Sengun, Mehmet Haluk

    Cost effective combined axial fan and throttling valve control of ventilation rate C.J. Taylor 1 P with Proportional-Integral-Plus (PIP) control of ventilation rate in mechanically ventilated agricultural buildings ventilation. The new combined fan/valve configuration is compared with a commercially available PID

  4. Transient blocking in multi-chamber natural ventilation M. R. Flynn and C. P. Caulfield

    E-Print Network [OSTI]

    Flynn, Morris R.

    , the system must evolve towards a ventilated terminal state in which there is outflow of buoyant fluid (inflowTransient blocking in multi-chamber natural ventilation M. R. Flynn and C. P. Caulfield Dept-energy `natural' ventilation offers an environmental benefit over building ventilation by high

  5. Instructions for Completing the Building Emergency Plan Template

    E-Print Network [OSTI]

    Wildermuth, Mary C

    or Leak #12;Building Emergency Plan (Revised 1/2007) Page 4 (insert building name) 12. Ventilation Problem

  6. Building America Webinar: Advanced Envelope Research for Factory...

    Energy Savers [EERE]

    Advanced Envelope Research for Factory-Built Housing Building America Webinar: Saving Energy in Multifamily Buildings Building America Webinar: Ventilation in Multifamily Buildings...

  7. Carbon-dioxide-controlled ventilation study

    SciTech Connect (OSTI)

    McMordie, K.L.; Carroll, D.M.

    1994-05-01T23:59:59.000Z

    The In-House Energy Management (IHEM) Program has been established by the U.S. Department of Energy to provide funds to federal laboratories to conduct research on energy-efficient technology. The Energy Sciences Department of Pacific Northwest Laboratory (PNL) was tasked by IHEM to research the energy savings potential associated with reducing outdoor-air ventilation of buildings. By monitoring carbon dioxide (CO{sub 2}) levels in a building, outdoor air provided by the heating, ventilating, and air-conditioning (HVAC) system can be reduced to the percentage required to maintain satisfactory CO{sub 2} levels rather than ventilating with a higher outdoor-air percentage based on an arbitrary minimum outdoor-air setting. During summer months, warm outdoor air brought into a building for ventilation must be cooled to meet the appropriate cooling supply-air temperature, and during winter months, cold outdoor air must be heated. By minimizing the amount of hot or cold outdoor air brought into the HVAC system, the supply air requires less cooling or heating, saving energy and money. Additionally, the CO{sub 2} levels in a building can be monitored to ensure that adequate outdoor air is supplied to a building to maintain air quality levels. The two main considerations prior to implementing CO{sub 2}-based ventilation control are its impact on energy consumption and the adequacy of indoor air quality (IAQ) and occupant comfort. To address these considerations, six portable CO{sub 2} monitors were placed in several Hanford Site buildings to estimate the adequacy of office/workspace ventilation. The monitors assessed the potential for reducing the flow of outdoor-air to the buildings. A candidate building was also identified to monitor various ventilation control strategies for use in developing a plan for implementing and assessing energy savings.

  8. Meeting Residential Ventilation Standards

    E-Print Network [OSTI]

    ventilation standards, including American Society of Heating, Refrigerating, and Air-conditioning EngineersLBNL 4591E Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems (ASHRAE) Standard 62.2, specify continuous operation of a defined mechanical ventilation system to provide

  9. Residential ventilation standards scoping study

    SciTech Connect (OSTI)

    McKone, Thomas E.; Sherman, Max H.

    2003-10-01T23:59:59.000Z

    The goals of this scoping study are to identify research needed to develop improved ventilation standards for California's Title 24 Building Energy Efficiency Standards. The 2008 Title 24 Standards are the primary target for the outcome of this research, but this scoping study is not limited to that timeframe. We prepared this scoping study to provide the California Energy Commission with broad and flexible options for developing a research plan to advance the standards. This document presents the findings of a scoping study commissioned by the Public Interest Energy Research (PIER) program of the California Energy Commission to determine what research is necessary to develop new residential ventilation requirements for California. This study is one of three companion efforts needed to complete the job of determining the ventilation needs of California residences, determining the bases for setting residential ventilation requirements, and determining appropriate ventilation technologies to meet these needs and requirements in an energy efficient manner. Rather than providing research results, this scoping study identifies important research questions along with the level of effort necessary to address these questions and the costs, risks, and benefits of pursuing alternative research questions. In approaching these questions and corresponding levels of effort, feasibility and timing were important considerations. The Commission has specified Summer 2005 as the latest date for completing this research in time to update the 2008 version of California's Energy Code (Title 24).

  10. UC Berkeley Heat/Ventilation Curtailment Period DECEMBER 24, 2011 through JANUARY 1, 2012

    E-Print Network [OSTI]

    California at Irvine, University of

    UC Berkeley Heat/Ventilation Curtailment Period DECEMBER 24, 2011 through JANUARY 1, 2012 Each year and January 1, 2012 in order to conserve energy, most campus buildings will be closed and heat and ventilation://hrweb.berkeley.edu/ for more information. Barrows Hall BUILDINGS SCHEDULED TO BE WITHOUT HEAT/VENTILATION Bechtel Engineering

  11. Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems

    E-Print Network [OSTI]

    Sherman, Max H.

    2011-01-01T23:59:59.000Z

    2007. Review of residential ventilation technologies. HVAC&Rof intermittent ventilation for providing acceptable indoorResidential Integrated Ventilation Controller. Energy

  12. University of Leeds Sustainable buildings design, construction and refurbishment

    E-Print Network [OSTI]

    Haase, Markus

    -being of the local area Provide usable buildings designed to facilitate sustainable behaviour Sustainable design. #12; Use of natural ventilation, rather than mechanical ventilation or air conditioning, reduces

  13. Building America Technology Solutions for New and Existing Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for New and Existing Homes: Selecting Ventilation Systems for Existing Homes Building America Technology Solutions for New and Existing Homes: Selecting Ventilation...

  14. Building America Whole-House Solutions for Existing Homes: Multifamily...

    Energy Savers [EERE]

    Multifamily Individual Heating and Ventilation Systems Building America Whole-House Solutions for Existing Homes: Multifamily Individual Heating and Ventilation Systems The...

  15. Healthy buildings

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    This book is covered under the following headings: Healthy building strategies/productivity, Energy and design issues, Ventilation, Contaminants, Thermal, airflow, and humidity issues, School-related issues, Sources and sinks, Filtering, Operation and maintenance.

  16. ASHRAE's Residential Ventilation Standard: Exegesis of Proposed Standard 62.2

    E-Print Network [OSTI]

    Sherman, M.

    2000-01-01T23:59:59.000Z

    In February 2000, ASHRAE's Standard Project Committee on "Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings", SPC 62.2P7 recommended ASHRAE's first complete standard on residential ventilation for public review...

  17. Internal Microclimate Resulting From Ventilated Attics in Hot and Humid Regions

    E-Print Network [OSTI]

    Mooney, B. L.; Porter, W. A.

    Ventilated spaces in the built environment create unique and beneficial microclimates. While the current trends in building physics suggest sealing attics and crawlspaces, comprehensive research still supports the benefits of the ventilated...

  18. DECEMBER 24, 2011 through JANUARY 1, 2012 Heat/Ventilation Curtailment

    E-Print Network [OSTI]

    Walker, Matthew P.

    DECEMBER 24, 2011 through JANUARY 1, 2012 Heat/Ventilation Curtailment Request for Exception to Holiday Heat/Ventilation Curtailment Unit Requesting: Building: Contact Person: Specific Room(s): Address

  19. ASHRAE's Residential Ventilation Standard: Exegesis of Proposed Standard 62.2 

    E-Print Network [OSTI]

    Sherman, M.

    2000-01-01T23:59:59.000Z

    In February 2000, ASHRAE's Standard Project Committee on "Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings", SPC 62.2P7 recommended ASHRAE's first complete standard on residential ventilation ...

  20. Sensor-based demand controlled ventilation

    SciTech Connect (OSTI)

    De Almeida, A.T. [Universidade de Coimbra (Portugal). Dep. Eng. Electrotecnica; Fisk, W.J. [Lawrence Berkeley National Lab., CA (United States)

    1997-07-01T23:59:59.000Z

    In most buildings, occupancy and indoor pollutant emission rates vary with time. With sensor-based demand-controlled ventilation (SBDCV), the rate of ventilation (i.e., rate of outside air supply) also varies with time to compensate for the changes in pollutant generation. In other words, SBDCV involves the application of sensing, feedback and control to modulate ventilation. Compared to ventilation without feedback, SBDCV offers two potential advantages: (1) better control of indoor pollutant concentrations; and (2) lower energy use and peak energy demand. SBDCV has the potential to improve indoor air quality by increasing the rate of ventilation when indoor pollutant generation rates are high and occupants are present. SBDCV can also save energy by decreasing the rate of ventilation when indoor pollutant generation rates are low or occupants are absent. After providing background information on indoor air quality and ventilation, this report provides a relatively comprehensive discussion of SBDCV. Topics covered in the report include basic principles of SBDCV, sensor technologies, technologies for controlling air flow rates, case studies of SBDCV, application of SBDCV to laboratory buildings, and research needs. SBDCV appears to be an increasingly attractive technology option. Based on the review of literature and theoretical considerations, the application of SBDCV has the potential to be cost-effective in applications with the following characteristics: (a) a single or small number of dominant pollutants, so that ventilation sufficient to control the concentration of the dominant pollutants provides effective control of all other pollutants; (b) large buildings or rooms with unpredictable temporally variable occupancy or pollutant emission; and (c) climates with high heating or cooling loads or locations with expensive energy.

  1. Particle deposition in ventilation ducts

    SciTech Connect (OSTI)

    Sippola, Mark R.

    2002-09-01T23:59:59.000Z

    Exposure to airborne particles is detrimental to human health and indoor exposures dominate total exposures for most people. The accidental or intentional release of aerosolized chemical and biological agents within or near a building can lead to exposures of building occupants to hazardous agents and costly building remediation. Particle deposition in heating, ventilation and air-conditioning (HVAC) systems may significantly influence exposures to particles indoors, diminish HVAC performance and lead to secondary pollutant release within buildings. This dissertation advances the understanding of particle behavior in HVAC systems and the fates of indoor particles by means of experiments and modeling. Laboratory experiments were conducted to quantify particle deposition rates in horizontal ventilation ducts using real HVAC materials. Particle deposition experiments were conducted in steel and internally insulated ducts at air speeds typically found in ventilation ducts, 2-9 m/s. Behaviors of monodisperse particles with diameters in the size range 1-16 {micro}m were investigated. Deposition rates were measured in straight ducts with a fully developed turbulent flow profile, straight ducts with a developing turbulent flow profile, in duct bends and at S-connector pieces located at duct junctions. In straight ducts with fully developed turbulence, experiments showed deposition rates to be highest at duct floors, intermediate at duct walls, and lowest at duct ceilings. Deposition rates to a given surface increased with an increase in particle size or air speed. Deposition was much higher in internally insulated ducts than in uninsulated steel ducts. In most cases, deposition in straight ducts with developing turbulence, in duct bends and at S-connectors at duct junctions was higher than in straight ducts with fully developed turbulence. Measured deposition rates were generally higher than predicted by published models. A model incorporating empirical equations based on the experimental measurements was applied to evaluate particle losses in supply and return duct runs. Model results suggest that duct losses are negligible for particle sizes less than 1 {micro}m and complete for particle sizes greater than 50 {micro}m. Deposition to insulated ducts, horizontal duct floors and bends are predicted to control losses in duct systems. When combined with models for HVAC filtration and deposition to indoor surfaces to predict the ultimate fates of particles within buildings, these results suggest that ventilation ducts play only a small role in determining indoor particle concentrations, especially when HVAC filtration is present. However, the measured and modeled particle deposition rates are expected to be important for ventilation system contamination.

  2. Modeling particle loss in ventilation ducts

    SciTech Connect (OSTI)

    Sippola, Mark R.; Nazaroff, William W.

    2003-04-01T23:59:59.000Z

    Empirical equations were developed and applied to predict losses of 0.01-100 {micro}m airborne particles making a single pass through 120 different ventilation duct runs typical of those found in mid-sized office buildings. For all duct runs, losses were negligible for submicron particles and nearly complete for particles larger than 50 {micro}m. The 50th percentile cut-point diameters were 15 {micro}m in supply runs and 25 {micro}m in return runs. Losses in supply duct runs were higher than in return duct runs, mostly because internal insulation was present in portions of supply duct runs, but absent from return duct runs. Single-pass equations for particle loss in duct runs were combined with models for predicting ventilation system filtration efficiency and particle deposition to indoor surfaces to evaluate the fates of particles of indoor and outdoor origin in an archetypal mechanically ventilated building. Results suggest that duct losses are a minor influence for determining indoor concentrations for most particle sizes. Losses in ducts were of a comparable magnitude to indoor surface losses for most particle sizes. For outdoor air drawn into an unfiltered ventilation system, most particles smaller than 1 {micro}m are exhausted from the building. Large particles deposit within the building, mostly in supply ducts or on indoor surfaces. When filters are present, most particles are either filtered or exhausted. The fates of particles generated indoors follow similar trends as outdoor particles drawn into the building.

  3. Development of a Residential Integrated Ventilation Controller

    E-Print Network [OSTI]

    Walker, Iain

    2013-01-01T23:59:59.000Z

    Comparative Evaluation of Ventilation Systems. ” ASHRAEChimneys for Residential Ventilation. ” AIVC 25 Conference.1995. “Controlled Ventilation Options for Builders. ” Energy

  4. Does Mixing Make Residential Ventilation More Effective?

    E-Print Network [OSTI]

    Sherman, Max

    2011-01-01T23:59:59.000Z

    Mechanical Ventilation Systems. ” Int. J. Ventilation, 6(4),Residential Mechanical Ventilation Systems. ” ASHRAE HVAC&Rfor Extension of Ventilation System Tracer Gas Testing. ”

  5. Performance of ventilators for noninvasive positive pressure ventilation in children

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Performance of ventilators for noninvasive positive pressure ventilation in children Brigitte title: ventilators for noninvasive ventilation Supports and grants: The research of Brigitte Fauroux;2 Abstract The aim of the study was to evaluate the performance characteristics of all the ventilators

  6. Floor-Supply Displacement Ventilation in a Small Office Nobukazu Kobayashi

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    1 Floor-Supply Displacement Ventilation in a Small Office Nobukazu Kobayashi Building Technology Displacement ventilation . Computational fluid dynamics . Experimental measurements . Floor supply . Indoor air ventilation system using computational-fluid-dynamics (CFD). The experiment was carried out in a full

  7. Particle transport in low-energy ventilation systems. Part 1: theory of steady states

    E-Print Network [OSTI]

    Bolster, Diogo

    , such as that pro- vided by a conventional overhead heating, ventilating and air-conditioning system, is mixingParticle transport in low-energy ventilation systems. Part 1: theory of steady states Introduction of this energy is spent on ventilation of buildings with summer time cooling account for almost 10% of the US

  8. Demand Controlled Ventilation and Classroom Ventilation

    E-Print Network [OSTI]

    Fisk, William J.

    2014-01-01T23:59:59.000Z

    2008. 2008 Building energy efficiency standards forCalifornia Title 24 Building Energy Efficiency Standards.  in California’s Title 24 Building Energy Efficiency

  9. Ventilation Model Report

    SciTech Connect (OSTI)

    V. Chipman; J. Case

    2002-12-20T23:59:59.000Z

    The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their post-closure analyses. The Ventilation Model report was initially developed to analyze the effects of preclosure continuous ventilation in the Engineered Barrier System (EBS) emplacement drifts, and to provide heat removal data to support EBS design. Revision 00 of the Ventilation Model included documentation of the modeling results from the ANSYS-based heat transfer model. Revision 01 ICN 01 included the results of the unqualified software code MULTIFLUX to assess the influence of moisture on the ventilation efficiency. The purposes of Revision 02 of the Ventilation Model are: (1) To validate the conceptual model for preclosure ventilation of emplacement drifts and verify its numerical application in accordance with new procedural requirements as outlined in AP-SIII-10Q, Models (Section 7.0). (2) To satisfy technical issues posed in KTI agreement RDTME 3.14 (Reamer and Williams 2001a). Specifically to demonstrate, with respect to the ANSYS ventilation model, the adequacy of the discretization (Section 6.2.3.1), and the downstream applicability of the model results (i.e. wall heat fractions) to initialize post-closure thermal models (Section 6.6). (3) To satisfy the remainder of KTI agreement TEF 2.07 (Reamer and Williams 2001b). Specifically to provide the results of post-test ANSYS modeling of the Atlas Facility forced convection tests (Section 7.1.2). This portion of the model report also serves as a validation exercise per AP-SIII.10Q, Models, for the ANSYS ventilation model. (4) To asses the impacts of moisture on the ventilation efficiency.

  10. Study of airflow and thermal stratification in naturally ventilated rooms

    E-Print Network [OSTI]

    Menchaca Brandan, María Alejandra

    2012-01-01T23:59:59.000Z

    Natural ventilation (NV) can considerably contribute to reducing the cooling energy consumption of a building and increase occupant productivity, if correctly implemented. Such energy savings depend on the number of hours ...

  11. Effects of Material Moisture Adsorption and Desorption on Building Cooling Loads

    E-Print Network [OSTI]

    Fairey, P.; Kosar, D.

    1988-01-01T23:59:59.000Z

    ventilation of buildings in hot, humid climates has been shown to induce higher latent loads and higher room relative humidities during periods following the ventilation....

  12. Ventilation Air Preconditioning Systems

    E-Print Network [OSTI]

    Khattar, M.; Brandemuehl, M. J.

    1996-01-01T23:59:59.000Z

    simply and cost-effectively with a dual path arrangement that treats and controls the ventilation air independently of the recirculation air. The Electric Power Research Institute (EPRI)--the nonprofit R&D arm of the electric utility industry... particular type of application. EPRI is developing variations of the dual path concept to meet different reeofit and new construction markets. Figure 6. Ventilation Air Conditioner as a Separate Unit EPRVCALMAC System: Separate Unit for Ventilation Air...

  13. and Pollutant Safeguarding Buildings

    E-Print Network [OSTI]

    commercial buildings, these flows are driven primarily by the building's ventilation system, but natural2004 Airflow and Pollutant Transport Group Safeguarding Buildings Against Chemical and Biological research since 1998 to protect buildings and building occupants from threats posed by airborne chemical

  14. Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems

    E-Print Network [OSTI]

    Sherman, Max H.

    2011-01-01T23:59:59.000Z

    Dynamic Control of Ventilation Systems M.H. Sherman and I.S.a defined mechanical ventilation system to provide minimumair as part of ventilation system operation changes with

  15. Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems

    E-Print Network [OSTI]

    Sherman, Max H.

    2011-01-01T23:59:59.000Z

    with a detailed heating, ventilation, and air conditioning (well as ventilation systems integrated into heating (naturalventilation standards, including American Society of Heating,

  16. Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems

    E-Print Network [OSTI]

    Sherman, Max H.

    2011-01-01T23:59:59.000Z

    Rudd. 2007. Review of residential ventilation technologies.2009. EISG Final Report: Residential Integrated VentilationDesign and Operation of Residential Cooling Systems. Proc.

  17. Effect of Ventilation Strategies on

    E-Print Network [OSTI]

    1 Effect of Ventilation Strategies on Residential Ozone Levels Iain S. Walker ventilation used to reduce concentrations of indoor-generated pollutants. When assessing the effect of deliberate ventilation on occupant health one should consider not only

  18. Healthy Zero Energy Buildings ENVIRONMENTAL AREA RESEARCH

    E-Print Network [OSTI]

    from buildings. Ventilation, however, comes with a significant energy cost. Currently, heating, with roughly onethird of this energy used to heat and cool ventilation air. As buildings strive to become.energy.ca.gov/research/ environmental March 2011 The Issue Previous studies have associated low ventilation rates with reduced worker

  19. Impact of Residential Mechanical Ventilation on Energy Cost and Humidity Control

    SciTech Connect (OSTI)

    Martin, E.

    2014-01-01T23:59:59.000Z

    The DOE Building America program has been conducting research leading to cost effective high performance homes since the early 1990's. Optimizing whole house mechanical ventilation as part of the program's systems engineered approach to constructing housing has been an important subject of the program's research. Ventilation in residential buildings is one component of an effective, comprehensive strategy for creation and maintenance of a comfortable and healthy indoor air environment. The study described in this white paper is based on building energy modeling with an important focus on the indoor humidity impacts of ventilation. The modeling tools used were EnergyPlus version 7.1 (E+) and EnergyGauge USA (EGUSA). Twelve U.S. cities and five climate zones were represented. A total of 864 simulations (2*2*3*3*12= 864) were run using two building archetypes, two building leakage rates, two building orientations, three ventilation systems, three ventilation rates, and twelve climates.

  20. Ventilation Behavior and Household Characteristics in New California Houses

    E-Print Network [OSTI]

    Price, Phillip N.; Sherman, Max H.

    2006-01-01T23:59:59.000Z

    pollutant sources get more ventilation. • Except householdshealth issues motivate ventilation behavior. • Security andQuality, IAQ, mechanical ventilation systems, ventilation

  1. MODELING VENTILATION SYSTEM RESPONSE TO FIRE

    SciTech Connect (OSTI)

    Coutts, D

    2007-04-17T23:59:59.000Z

    Fires in facilities containing nuclear material have the potential to transport radioactive contamination throughout buildings and may lead to widespread downwind dispersal threatening both worker and public safety. Development and implementation of control strategies capable of providing adequate protection from fire requires realistic characterization of ventilation system response which, in turn, depends on an understanding of fire development timing and suppression system response. This paper discusses work in which published HEPA filter data was combined with CFAST fire modeling predictions to evaluate protective control strategies for a hypothetical DOE non-reactor nuclear facility. The purpose of this effort was to evaluate when safety significant active ventilation coupled with safety class passive ventilation might be a viable control strategy.

  2. Data Collection Methods for Assessing Adaptive Comfort in Mixed-Mode Buildings and Personal Comfort Systems

    E-Print Network [OSTI]

    Ackerly, Katie; Brager, Gail; Arens, Ed

    2012-01-01T23:59:59.000Z

    Thermal  comfort  for  free  running  buildings”,   Energy  and   Buildings,   23(3):  175-­?182   Baker,  N.V. ,  naturally  ventilated  buildings. ”  In   Proceedings  of  

  3. Comfort standards and variation in exceedance for mixed-mode buildings.

    E-Print Network [OSTI]

    Brager, Gail; Borgeson, Sam

    2010-01-01T23:59:59.000Z

    a lower carbon society. Building Research & Information, 36(ventilated and mixed-mode buildings – Part I: Thermalmodeling. Building and Environment, 44(4), 736–749.

  4. Air exchange effectiveness of conventional and task ventilation for offices

    SciTech Connect (OSTI)

    Fisk, W.J.; Faulkner, D.; Prill, R.J.

    1991-12-01T23:59:59.000Z

    Air quality and comfort complaints within large buildings are often attributed to air distribution problems. We define three air exchange effectiveness parameters related to air distribution. The first two indicate the indoor air flow pattern (i.e., the extent of short circuiting, mixing, or displacement flow) for an entire building or region. The third parameter is most useful for assessments of the spatial variability of ventilation. We also define the air diffusion effectiveness which indicates the air flow pattern within specific rooms or sections of buildings. The results of measurements of these parameters in US office buildings by the authors and other researchers are reviewed. Almost all measurements indicate very limited short circuiting or displacement flow between locations of air supply and removal. However, a moderate degree of short circuiting is evident from a few measurements in rooms with heated supply air. The results of laboratory-based measurements by the authors are consistent with the field data. Our measurements in office buildings do indicate that ventilation rates can vary substantially between indoor locations, probably due to variation in air supply rates between locations rather than variation in the indoor air flow patterns. One possible method of improving air distribution is to employ task ventilation with air supplied closer to the occupant`s breathing zone. We have evaluated two task ventilation systems in a laboratory setting. During most operating conditions, these systems did not provide a region of substantially increased ventilation where occupants breath. However, both systems are capable of providing substantially enhanced ventilation at the breathing zone under some operating conditions. Therefore, task ventilation is a potential option for using ventilation air more effectively.

  5. Air exchange effectiveness of conventional and task ventilation for offices

    SciTech Connect (OSTI)

    Fisk, W.J.; Faulkner, D.; Prill, R.J.

    1991-12-01T23:59:59.000Z

    Air quality and comfort complaints within large buildings are often attributed to air distribution problems. We define three air exchange effectiveness parameters related to air distribution. The first two indicate the indoor air flow pattern (i.e., the extent of short circuiting, mixing, or displacement flow) for an entire building or region. The third parameter is most useful for assessments of the spatial variability of ventilation. We also define the air diffusion effectiveness which indicates the air flow pattern within specific rooms or sections of buildings. The results of measurements of these parameters in US office buildings by the authors and other researchers are reviewed. Almost all measurements indicate very limited short circuiting or displacement flow between locations of air supply and removal. However, a moderate degree of short circuiting is evident from a few measurements in rooms with heated supply air. The results of laboratory-based measurements by the authors are consistent with the field data. Our measurements in office buildings do indicate that ventilation rates can vary substantially between indoor locations, probably due to variation in air supply rates between locations rather than variation in the indoor air flow patterns. One possible method of improving air distribution is to employ task ventilation with air supplied closer to the occupant's breathing zone. We have evaluated two task ventilation systems in a laboratory setting. During most operating conditions, these systems did not provide a region of substantially increased ventilation where occupants breath. However, both systems are capable of providing substantially enhanced ventilation at the breathing zone under some operating conditions. Therefore, task ventilation is a potential option for using ventilation air more effectively.

  6. Why We Ventilate

    SciTech Connect (OSTI)

    Logue, Jennifer M.; Sherman, Max H.; Price, Phil N.; Singer, Brett C.

    2011-09-01T23:59:59.000Z

    It is widely accepted that ventilation is critical for providing good indoor air quality (IAQ) in homes. However, the definition of"good" IAQ, and the most effective, energy efficient methods for delivering it are still matters of research and debate. This paper presents the results of work done at the Lawrence Berkeley National Lab to identify the air pollutants that drive the need for ventilation as part of a larger effort to develop a health-based ventilation standard. First, we present results of a hazard analysis that identified the pollutants that most commonly reach concentrations in homes that exceed health-based standards or guidelines for chronic or acute exposures. Second, we present results of an impact assessment that identified the air pollutants that cause the most harm to the U.S. population from chronic inhalation in residences. Lastly, we describe the implications of our findings for developing effective ventilation standards.

  7. Measure Guideline: Selecting Ventilation Systems for Existing Homes

    SciTech Connect (OSTI)

    Aldrich, R.

    2014-02-01T23:59:59.000Z

    This document addresses adding -or improving - mechanical ventilation systems to existing homes. The purpose of ventilation is to remove contaminants from homes, and this report discusses where, when, and how much ventilation is appropriate in a home, including some discussion of relevant codes and standards. Advantages, disadvantages, and approximate costs of various system types are presented along with general guidelines for implementing the systems in homes. CARB intends for this document to be useful to decision makers and contractors implementing ventilation systems in homes. Choosing the "best" system is not always straightforward; selecting a system involves balancing performance, efficiency, cost, required maintenance, and several other factors. It is the intent of this document to assist contractors in making more informed decisions when selecting systems. Ventilation is an integral part of a high-performance home. With more air-sealed envelopes, a mechanical means of removing contaminants is critical for indoor environmental quality and building durability.

  8. Building America Technology Solutions for New and Existing Homes...

    Energy Savers [EERE]

    Evaluation of Ventilation Strategies in New Construction Multifamily Buildings, New York, New York (Fact Sheet) Building America Technology Solutions for New and Existing Homes:...

  9. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    SciTech Connect (OSTI)

    Rudd, A.; Bergey, D.

    2014-02-01T23:59:59.000Z

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. It was inferior because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  10. This booklet has been developed to serve as an aid in selecting a laboratory fume hood ventilation system.

    E-Print Network [OSTI]

    Farritor, Shane

    as an aid in selecting a laboratory fume hood ventilation system. The information is intended to be unbiased consider the whole picture -- the laboratory space, the building's ventilation system, the hood's location Ventilation System Components and Accessories Remote Blowers 13 Blower Sizing 14 Air Volume 14 Static Pressure

  11. Application of CFD to Predict and Control Chemical and Biological Agent Dispersion in Buildings

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    attack, since the conventional ventilation systems are not designed for such an attack. How to design ventilation systems that can protect buildings from such an attack is an urgent issue for the ventilation are especially hazardous when they are dispersed inside of a building, where traditional ventilation systems may

  12. Cooling airflow design tool for displacement ventilation.

    E-Print Network [OSTI]

    Schiavon, Stefano; Bauman, Fred

    2009-01-01T23:59:59.000Z

    Tool for Displacement Ventilation: User Notes 2|Page 5.air  temperature.   Ventilation effectiveness is equivalent for Displacement  Ventilation (Chen and Glicksman 2003).  

  13. Infiltration in ASHRAE's Residential Ventilation Standards

    E-Print Network [OSTI]

    Sherman, Max

    2008-01-01T23:59:59.000Z

    of  the effective natural ventilation rate with weather to  Residential  Ventilation  Requirements”.  LBNL  57236.  and  M.H.   Sherman  "Ventilation  Behavior  and  Household 

  14. Equivalence in Ventilation and Indoor Air Quality

    E-Print Network [OSTI]

    Sherman, Max

    2012-01-01T23:59:59.000Z

    event, the intermittent ventilation equations of Sherman,of the energy impact of ventilation and associated financialReview of Residential Ventilation Technologies. Berkeley,

  15. Design methods for displacement ventilation: Critical review.

    E-Print Network [OSTI]

    Schiavon, Stefano

    2006-01-01T23:59:59.000Z

    Displacement ventilation in non-industrial premises, REHVADisplacement ventilation in non-industrial premises, REHVAof displacement ventilation in non-industrial premises. The

  16. Equivalence in Ventilation and Indoor Air Quality

    E-Print Network [OSTI]

    Sherman, Max

    2012-01-01T23:59:59.000Z

    the use of mechanical ventilation systems in the same way asand operating ventilation systems with variable amounts ofto determine the ventilation system’s operation. We presume

  17. Infiltration in ASHRAE's Residential Ventilation Standards

    E-Print Network [OSTI]

    Sherman, Max

    2008-01-01T23:59:59.000Z

    often need mechanical ventilation systems to meet current about mechanical ventilation systems but has a default unbalanced mechanical ventilation systems change  the 

  18. Optimization of Occupancy Based Demand Controlled Ventilation in Residences

    SciTech Connect (OSTI)

    Mortensen, Dorthe K.; Walker, Iain S.; Sherman, Max H.

    2011-05-01T23:59:59.000Z

    Although it has been used for many years in commercial buildings, the application of demand controlled ventilation in residences is limited. In this study we used occupant exposure to pollutants integrated over time (referred to as 'dose') as the metric to evaluate the effectiveness and air quality implications of demand controlled ventilation in residences. We looked at air quality for two situations. The first is that typically used in ventilation standards: the exposure over a long term. The second is to look at peak exposures that are associated with time variations in ventilation rates and pollutant generation. The pollutant generation had two components: a background rate associated with the building materials and furnishings and a second component related to occupants. The demand controlled ventilation system operated at a low airflow rate when the residence was unoccupied and at a high airflow rate when occupied. We used analytical solutions to the continuity equation to determine the ventilation effectiveness and the long-term chronic dose and peak acute exposure for a representative range of occupancy periods, pollutant generation rates and airflow rates. The results of the study showed that we can optimize the demand controlled airflow rates to reduce the quantity of air used for ventilation without introducing problematic acute conditions.

  19. ENERGY IMPACTS OF VARIOUS RESIDENTIAL MECHANICAL VENTILATION STRATEGIES

    E-Print Network [OSTI]

    Vieira, R.; Parker, D.; Lixing, G.; Wichers, M.

    ENERGY IMPACTS OF VARIOUS RESIDENTIAL MECHANICAL VENTILATION STRATEGIES Robin K. Vieira, Buildings. Research Division Director Danny S. Parker Principal Research Scientist Lixing Gu Principal Research Engineer Michael Wichers... into the homes. Many of these strategies utilize the central air handler fan from the HVAC system to ventilate when the system runs. Controllers can be purchased to force the air to enter for minimum periods of time or to shut off outside air dampers after...

  20. Healthy buildings

    SciTech Connect (OSTI)

    Geshwiler, M.; Montgomery, L.; Moran, M. (eds.)

    1991-01-01T23:59:59.000Z

    This proceedings is of the Indoor Air Quality (IAQ) Conference held September 4--8, 1991 in Washington, D.C. Entitled the IAQ 91, Healthy Buildings,'' the major topics of discussion included: healthy building strategies/productivity; energy and design issues; ventilation; contaminants; thermal, airflow, and humidity issues; school-related issues; sources and sinks; filtering; and operation and maintenance. For these conference proceedings, individual papers are processed separately for input into the Energy Data Base. (BN)

  1. Wind Tunnel Building - 1 

    E-Print Network [OSTI]

    Unknown

    2005-06-30T23:59:59.000Z

    This paper describes a simple graphic tool that enables a building designer to evaluate the potential for wind induced ventilation cooling in several climate zones. Long term weather data were analyzed to determine the conditions for which available...

  2. Ventilation technologies scoping study

    SciTech Connect (OSTI)

    Walker, Iain S.; Sherman, Max H.

    2003-09-30T23:59:59.000Z

    This document presents the findings of a scoping study commissioned by the Public Interest Energy Research (PIER) program of the California Energy Commission to determine what research is necessary to develop new residential ventilation requirements for California. This study is one of three companion efforts needed to complete the job of determining the needs of California, determining residential ventilation requirements, and determining appropriate ventilation technologies to meet these needs and requirements in an energy efficient manner. Rather than providing research results, this scoping study identifies important research questions along with the level of effort necessary to address these questions and the costs, risks, and benefits of pursuing alternative research questions. In approaching these questions and level of effort, feasibility and timing were important considerations. The Commission has specified Summer 2005 as the latest date for completing this research in time to update the 2008 version of California's Energy Code (Title 24).

  3. Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems

    SciTech Connect (OSTI)

    Sherman, Max H.; Walker, Iain S.

    2011-04-01T23:59:59.000Z

    Existing ventilation standards, including American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE) Standard 62.2, specify continuous operation of a defined mechanical ventilation system to provide minimum ventilation, with time-based intermittent operation as an option. This requirement ignores several factors and concerns including: other equipment such as household exhaust fans that might incidentally provide ventilation, negative impacts of ventilation when outdoor pollutant levels are high, the importance of minimizing energy use particularly during times of peak electricity demand, and how the energy used to condition air as part of ventilation system operation changes with outdoor conditions. Dynamic control of ventilation systems can provide ventilation equivalent to or better than what is required by standards while minimizing energy costs and can also add value by shifting load during peak times and reducing intake of outdoor air contaminants. This article describes the logic that enables dynamic control of whole-house ventilation systems to meet the intent of ventilation standards and demonstrates the dynamic ventilation system control concept through simulations and field tests of the Residential Integrated Ventilation-Energy Controller (RIVEC).

  4. Co-simulation for performance prediction of integrated building and HVAC systems -An analysis of solution

    E-Print Network [OSTI]

    performance simulation of buildings and heating, ventilation and air- conditioning (HVAC) systems can help, heating, ventilation and air-conditioning (HVAC) systems are responsible for 10%-60% of the total building

  5. Innovative Energy Efficient Industrial Ventilation

    E-Print Network [OSTI]

    Litomisky, A.

    2005-01-01T23:59:59.000Z

    factories, we found striking dichotomy between the classical “static” design of ventilation systems and constantly changing workflow and business demands. Using data from real factories, we are able to prove that classical industrial ventilation design...

  6. Summary Report: Control Strategies for Mixed-Mode Buildings

    E-Print Network [OSTI]

    Brager, Gail; Borgeson, Sam; Lee, Yoonsu

    2007-01-01T23:59:59.000Z

    control over their local thermal and ventilation conditions,local system through central Johnson Controls system. Even if they had not gone to natural ventilation,local constraint PAGE 20 UCLA’s Kinsey Hall AKA Humanities Building) SF Federal Building (site specific wind driven ventilation )

  7. Does Mixing Make Residential Ventilation More Effective?

    SciTech Connect (OSTI)

    Sherman, Max; Walker, Iain

    2010-08-16T23:59:59.000Z

    Ventilation dilutes or removes indoor contaminants to reduce occupant exposure. In a multi-zone environment such as a house, there will be different dilution rates and different source strengths in every zone. The total ventilation rate is the most important factor in determining the exposure of occupants to given sources, but the zone- specific distribution of exhaust and supply air, and the mixing of ventilation air can have significant roles. Different types of ventilation systems will provide different amounts of mixing depending on several factors such as air leakage through the building envelope, air distribution systems and the location of sources and occupants. This paper reports recent results of investigations to determine the impact that air mixing has on exposures of residential occupants to prototypical contaminants of concern. Evaluations of existing field measurements and simulations reported in the literature are combined with new analyses to provide an integrated overview of the topic. The results show that for extreme cases additional mixing can be a significant factor but for typical homes looking at average exposures mixing is not helpful and can even make exposures worse.

  8. RESIDENTIAL VENTILATION AND ENERGY CHARACTERISTICS*

    E-Print Network [OSTI]

    RESIDENTIAL VENTILATION AND ENERGY CHARACTERISTICS* Max Sherman Nance Matson Energy Performance Berkeley, California The role of ventilation in the housing stock is to provide fresh air and to dilute to provide this ventilation service, either directly for moving the air or indirectly for conditioning

  9. 3, 805826, 2006 Ventilation under

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    OSD 3, 805­826, 2006 Ventilation under global warming A. Gnanadesikan et al. Title Page Abstract ocean ventilation change under global warming? A. Gnanadesikan 1 , J. L. Russell 2 , and F. Zeng 3 1­826, 2006 Ventilation under global warming A. Gnanadesikan et al. Title Page Abstract Introduction

  10. Measure Guideline: Ventilation Cooling

    SciTech Connect (OSTI)

    Springer, D.; Dakin, B.; German, A.

    2012-04-01T23:59:59.000Z

    The purpose of this measure guideline on ventilation cooling is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  11. Ventilation efficiencies of a desk-edge-mounted task ventilation system

    E-Print Network [OSTI]

    Faulkner, David; Fisk, William J.; Sullivan, Douglas P.; Lee, Seung Min

    2002-01-01T23:59:59.000Z

    DESK-EDGE-MOUNTED TASK VENTILATION SYSTEM D Faulkner * , WJthe effectiveness of a task ventilation system with an airthe desk. The task ventilation system provided outside air,

  12. Contaminants in Naturally Ventilated

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    ? 1973 OPEC Oil Crisis 1970s/80s - Sick Building Syndrome Bad planning = Many good ideas died 2007 - Can main motivation)- particularly for low energy ones! #12;Low Energy Buildings - Who Cares? + + = Buildings account for 48% of all energy used #12;Who cares some more? + = Buildings account for more than 50

  13. Mixed-Mode Ventilation and Building Retrofits

    E-Print Network [OSTI]

    Brager, Gail; Ackerly, Katie

    2010-01-01T23:59:59.000Z

    CBEEDAC). University College Dublin. 1997. Solar Energy inintervention. University College Dublin. 1997. Solar Energy

  14. Retrofit Ventilation Strategies in Multifamily Buildings Webinar |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingof EnhancedRestructuringNinthRetrofitDepartment of

  15. Ventilation in Multifamily Buildings | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015 -Helicopter-JapanEnergyNews

  16. Multifamily Individual Heating and Ventilation Systems, Lawrence, Massachusetts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01T23:59:59.000Z

    The conversion of an older Massachusetts building into condominiums illustrates a safe, durable, and cost-effective solution for heating and ventilation systems that can potentially benefit millions of multifamily buildings. Merrimack Valley Habitat for Humanity (MVHfH) partnered with U.S. Department of Energy Building America team Building Science Corporation (BSC) to provide high performance affordable housing for 10 families in the retrofit of an existing mass masonry building (a former convent). The original ventilation design for the project was provided by a local engineer and consisted of a single large heat recovery ventilator (HRV) located in a mechanical room in the basement with a centralized duct system providing supply air to the main living space and exhausting stale air from the single bathroom in each apartment. This design was deemed to be far too costly to install and operate for several reasons: the large central HRV was oversized and the specified flows to each apartment were much higher than the ASHRAE 62.2 rate; an extensive system of ductwork, smoke and fire dampers, and duct chases were specified; ductwork required a significant area of dropped ceilings; and the system lacked individual ventilation control in the apartments

  17. Ventilation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative JC3 RSS SeptemberRenewable Energy,Geothermal3: RedAbout(Brochure),Ventilation

  18. Ventilation Behavior and Household Characteristics in New California Houses

    E-Print Network [OSTI]

    Price, Phillip N.; Sherman, Max H.

    2006-01-01T23:59:59.000Z

    IAQ, mechanical ventilation systems, ventilation standards,to have mechanical ventilation systems resulted in anotherhave and use mechanical ventilation systems; and what is the

  19. Building America Whole-House Solutions for New Homes: New Traditions...

    Energy Savers [EERE]

    Homes: Landover Commons - Vancouver, WA More Documents & Publications Low-Cost Ventilation in Production Housing - Building America Top Innovation Building America...

  20. Building America Whole-House Solutions for New Homes: Shaw Constructio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Whole-House Solutions for Existing Homes: Multifamily Individual Heating and Ventilation Systems Building America Whole-House Solutions for New Homes:...

  1. Lightweight ventilated facade prototype: acoustic performance evaluation when the ventilation surface of

    E-Print Network [OSTI]

    Boyer, Edmond

    Lightweight ventilated facade prototype: acoustic performance evaluation when the ventilation Conference 23-27 April 2012, Nantes, France 3801 #12;1. INTRODUCTION Lightweight ventilated facades cavity is almost totally open, fully ventilated and not very wide. Therefore, its contribution

  2. Study of natural ventilation design by integrating the multi-zone model with CFD simulation

    E-Print Network [OSTI]

    Tan, Gang, 1974-

    2005-01-01T23:59:59.000Z

    Natural ventilation is widely applied in sustainable building design because of its energy saving, indoor air qualify and indoor thermal environment improvement. It is important for architects and engineers to accurately ...

  3. Integrated Demand Controlled Ventilation for Single Duct VAV System with Conference Rooms

    E-Print Network [OSTI]

    Yu, Y.; Liu, M.; Cho, Y.; Xu, K.

    2007-01-01T23:59:59.000Z

    Single duct variable air volume (VAV) systems are widely used in office buildings to achieve energy savings. It supplies proper amount of conditioned air to satisfy both the load and the ventilation requirements of each individual zone. To obtain...

  4. The Potential for Wind Induced Ventilation to Meet Occupant Comfort Conditions

    E-Print Network [OSTI]

    Byrne, S. J.; Huang, Y. J.; Ritschard, R. L.; Foley, D. M.

    1985-01-01T23:59:59.000Z

    This paper describes a simple graphic tool that enables a building designer to evaluate the potential for wind induced ventilation cooling in several climate zones. Long term weather data were analyzed to determine the conditions for which available...

  5. Noninvasive Positive Pressure Ventilation in the Emergency

    E-Print Network [OSTI]

    Noninvasive Positive Pressure Ventilation in the Emergency Department Mei-Ean Yeow, MDa , Jairo I, 1411 East 31st Street, Oakland, CA 94602-1018, USA Noninvasive ventilation is defined as the provision ventilators consist of both negative and positive pressure ventilators. Because negative pressure ventilation

  6. RADON DAUGHTER EXPOSURES IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01T23:59:59.000Z

    DAUGHTER EXPOSURES IN ENERGY-EFFICIENT BUILDINGS A.V. Nero,DAUGHTER EXPOSURES IN ENERGY-EFFICIENT BUILDINGS A.V. Nero,vs. VENTILATION IN ENERGY EFFICIENT HOUSES Air change rate(

  7. Laboratory Ventilation SafetyLaboratory Ventilation Safety J. Scott WardJ. Scott Ward

    E-Print Network [OSTI]

    Farritor, Shane

    Laboratory Ventilation SafetyLaboratory Ventilation Safety J. Scott WardJ. Scott Ward #12;In 1925. Labconco CorporationLabconco Corporation #12;Laboratory VentilationLaboratory Ventilation #12;Laboratory Ventilation ProductsLaboratory Ventilation Products #12;History of Fume HoodsHistory of Fume Hoods Thomas

  8. Guide to Closing and Conditioning Ventilated Crawlspaces

    SciTech Connect (OSTI)

    Dickson, B.

    2013-01-01T23:59:59.000Z

    This how-to guide explains the issues and concerns with conventional ventilated crawlspaces and provides prescriptive measures for improvements that will create healthier and more durable spaces. The methods described in this guide are not the only acceptable ways to treat a crawlspace but represent a proven strategy that works in many areas of the United States. The designs discussed in this guide may or may not meet the local building codes and as such will need to be researched before beginning the project.

  9. Ventilation | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for|Idahothe NewUtility-Scale Solar throughVentilation

  10. Smart Ventilation - RIVEC

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary ofSmall BusinessSecondary Ventilation Activity Inputs

  11. Natural vs. mechanical ventilation and cooling.

    E-Print Network [OSTI]

    Brager, Gail; Alspach, Peter; Nall, Daniel H.

    2011-01-01T23:59:59.000Z

    the drawbacks of each type of ventilation system helps theThe benefits of natural ventilation for occupants in com-In the strictest sense, “ventilation” refers to the exchange

  12. Air Distribution Effectiveness for Different Mechanical Ventilation

    E-Print Network [OSTI]

    LBNL-62700 Air Distribution Effectiveness for Different Mechanical Ventilation Systems Max H Effectiveness for Different Mechanical Ventilation Systems Max H. Sherman and Iain S. Walker Lawrence Berkeley National Laboratory, USA ABSTRACT The purpose of ventilation is to dilute indoor contaminants

  13. Energy Savings in Industrial Buildings 

    E-Print Network [OSTI]

    Zhou, A.; Tutterow, V.; Harris, J.

    2009-01-01T23:59:59.000Z

    , and electricity for equipment such as pumps, air compressors, and fans. Lesser, yet significant, amounts of energy are used for industrial buildings – heating, ventilation, and air conditioning (HVAC), lighting and facility use (such as office equipment). Due...

  14. Reverse ventilation--perfusion mismatch

    SciTech Connect (OSTI)

    Palmaz, J.C.; Barnett, C.A.; Reich, S.B.; Krumpe, P.E.; Farrer, P.A.

    1984-01-01T23:59:59.000Z

    Patients having lobar airway obstruction or consolidation usually have decreases of both ventilation and perfusion on lung scans. We report three patients in whom hypoxic vasoconstriction was apparently incomplete, resulting in a ''reversed'' ventilation-perfusion mismatch. Perfusion of the hypoxic lobe on the radionuclide scan was associated with metabolic alkalosis, pulmonary venous and pulmonary arterial hypertension in these patients.

  15. FAQS Qualification Card - Confinement Ventilation and Process...

    Office of Environmental Management (EM)

    Confinement Ventilation and Process Gas Treatment FAQS Qualification Card - Confinement Ventilation and Process Gas Treatment A key element for the Department's Technical...

  16. Solar Ventilation Preheating Resources and Technologies | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ventilation Preheating Resources and Technologies Solar Ventilation Preheating Resources and Technologies Photo of a dark brown perforated metal wall is pictured on the side of an...

  17. Building America Whole-House Solutions for New Homes: Testing...

    Energy Savers [EERE]

    and other sources related to building-efficiency measures that focus on the DHPhybrid heating system and heat recovery ventilation (HRV) system; Evaluate the thermal...

  18. Building America Technology Solutions for New and Existing Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impact of Infiltration and Ventilation on Measured Space Conditioning Energy and Moisture Levels in the Hot-Humid Climate Building America Technology Solutions for New and Existing...

  19. Revealing Occupancy Diversity Factors in Buildings Using Sensor Data

    E-Print Network [OSTI]

    Bouffaron, Pierrick

    2014-01-01T23:59:59.000Z

    for building VAV air-conditioning systems. Energy andRefrigerating and Air-Conditioning Engineers, Inc; 2004.Ventilation, and Air Conditioning) systems represent the

  20. Advanced Technologies and Practices - Building America Top Innovations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in specific technologies and construction practices that improve the building envelope; heating, ventilation, and air conditioning (HVAC); water heating components; and indoor...

  1. Balancing energy conservation and occupant needs in ventilation rate standards for Big Box stores and other commercial buildings in California: Issues related to the ASHRAE 62.1 Indoor Air Quality Procedure

    E-Print Network [OSTI]

    Mendell, Mark

    2014-01-01T23:59:59.000Z

    EUI) predicted with building energy models created using theusing EPA model ? Health benefits of reduced energy usage (

  2. Cardiac gated ventilation

    SciTech Connect (OSTI)

    Hanson, C.W. III [Hospital of the Univ. of Pennsylvania, Philadelphia, PA (United States). Dept. Anesthesia; Hoffman, E.A. [Univ. of Iowa College of Medicine, Iowa City, IA (United States). Div. of Physiologic Imaging

    1995-12-31T23:59:59.000Z

    There are several theoretic advantages to synchronizing positive pressure breaths with the cardiac cycle, including the potential for improving distribution of pulmonary and myocardial blood flow and enhancing cardiac output. The authors evaluated the effects of synchronizing respiration to the cardiac cycle using a programmable ventilator and electron beam CT (EBCT) scanning. The hearts of anesthetized dogs were imaged during cardiac gated respiration with a 50 msec scan aperture. Multi slice, short axis, dynamic image data sets spanning the apex to base of the left ventricle were evaluated to determine the volume of the left ventricular chamber at end-diastole and end-systole during apnea, systolic and diastolic cardiac gating. The authors observed an increase in cardiac output of up to 30% with inspiration gated to the systolic phase of the cardiac cycle in a non-failing model of the heart.

  3. Literature Review of Displacement Ventilation 

    E-Print Network [OSTI]

    Cho, S.; Im, P.; Haberl, J. S.

    2005-01-01T23:59:59.000Z

    . Energy Systems Laboratory, Texas A&M University System Page 9 IV. REFERENCES Chen, Q., Glicksman, L.R., Yuan, X., Hu, S. Yang, X. 1999. Performance evaluation and development of design guidelines for displacement ventilation, Final report... testing, and a tracer gas (CO 2 ) step-up procedure. Alamdari, F., Butler, D.J.G., Grigg, P.F., Shaw, M. R. 1998. Chilled ceilings and displacement ventilation. Renewable Energy, Vol. 15, Issues 1-4, pp. 300-305. Abstract: Displacement ventilation...

  4. Laboratory Ventilation Management Ralph Stuart, CHO

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Laboratory Ventilation Management Program Ralph Stuart, CHO Ellen Sweet, Laboratory Ventilation Specialist Cornell Department of Environmental Health and Safety 3/29/2013 #12;Laboratory Ventilation.1.2 Design and Construction Standards 10 7.1.3 Carbon Dioxide Ventilation Effectiveness Protocol 10 7.2 Job

  5. STATE OF CALIFORNIA MECHANICAL VENTILATION AND REHEAT

    E-Print Network [OSTI]

    STATE OF CALIFORNIA MECHANICAL VENTILATION AND REHEAT CEC-MECH-3C (Revised 08/09) CALIFORNIA ENERGY COMMISSION MECHANICAL VENTILATION AND REHEAT MECH-3C PROJECT NAME DATE MECHANICAL VENTILATION §121(b)2 REHEAT'D V.A. Max of D or G Design Ventilation Air cfm 50% of Design Zone Supply cfm B x 0.4 cfm/ft˛ Max

  6. Formaldehyde Transfer in Residential Energy Recovery Ventilators

    E-Print Network [OSTI]

    ;1. INTRODUCTION Mechanical ventilation systems were once considered unnecessary for single-family, US homes

  7. Literature Review of Displacement Ventilation

    E-Print Network [OSTI]

    Cho, S.; Im, P.; Haberl, J. S.

    Performance Evaluation and Design Guidelines for Displacement Ventilation” by Chen and Clicksman (2003), were used to begin the literature search. Their references include papers, articles, and web sites presenting major contributions to the understanding...

  8. Ventilation efficiencies and thermal comfort results of a desk-edge-mounted task ventilation system

    E-Print Network [OSTI]

    Faulkner, D.; Fisk, W.J.; Sullivan, D.P.; Lee, S.M.

    2003-01-01T23:59:59.000Z

    EDGE-MOUNTED TASK VENTILATION SYSTEM D Faulkner, WJ Fisk, DPDESK-EDGE-MOUNTED TASK VENTILATION SYSTEM D Faulkner * , WJcomfort of a task ventilation system with an air supply

  9. Experimental Evaluation of Ventilation Systems in a Single-Family Dwelling

    E-Print Network [OSTI]

    Koffi, Juslin; Akoua, Jean-Jacques

    2010-01-01T23:59:59.000Z

    The French regulation on residential building ventilation relies on an overall and continuous air renewal. The fresh air should enter the building through the "habitable rooms" while the polluted air is extracted in the service rooms. In this way, internal air is drained from the lowest polluted rooms to the highest polluted ones. However, internal pressure equilibrium and air movements in buildings result from the combined effects ventilation system and parameters such as wind, temperature difference or doors opening. This paper aims to analyse the influence of these parameters on pollutant transfer within buildings. In so doing, experiments are carried out using tracer gas release for representing pollution sources in an experimental house. Mechanical exhaust, balanced and natural ventilation systems are thus tested. Results show the followings: - For all cases, internal doors' opening causes the most important pollutant spread. - When doors are closed, the best performances are obtained with balanced venti...

  10. Energy saving strategies with personalized ventilation in tropics

    E-Print Network [OSTI]

    Schiavon, Stefano; Melikov, Arsen; Chandra Sekhar, Chandra Sekhar

    2010-01-01T23:59:59.000Z

    integrated personalized ventilation for minimizing crossMelikov, Personalized ventilation, Indoor Air, vol. 14 (to personalized and mixing ventilation, Indoor Air 14 (

  11. Measured Air Distribution Effectiveness for Residential Mechanical Ventilation Systems

    E-Print Network [OSTI]

    Sherman, Max H.

    2008-01-01T23:59:59.000Z

    6 th AIVC Conference “Ventilation Strategies and MeasurementAir Infiltration and Ventilation Centre, U.K. 1985REFERENCES ASHRAE. 2007. “Ventilation for Acceptable Indoor

  12. Summary of Workshop: Barriers to Energy Efficient Residential Ventilation

    E-Print Network [OSTI]

    Sherman, Max

    2008-01-01T23:59:59.000Z

    Improved controls for ventilation systems, including betterEfficient Residential Ventilation Held on January 10, 2008Consumers Manufacturers / Ventilation Industry Public Sector

  13. AUTOMATIC VARIABLE VENTILATION CONTROL SYSTEMS BASED ON AIR QUALITY DETECTION

    E-Print Network [OSTI]

    Turiel, Isaac

    2011-01-01T23:59:59.000Z

    saon Automatic Variable Ventilation Control Systems Based onL Kusuda, "Control Ventilation to Conserve Energy While t·79-3 Automatic variable ventilation control systems based on

  14. On The Valuation of Infiltration towards Meeting Residential Ventilation Needs

    E-Print Network [OSTI]

    Sherman, Max H.

    2008-01-01T23:59:59.000Z

    Related to Residential Ventilation Requirements”. LBNLP.N. and M.H. Sherman "Ventilation Behavior and HouseholdReview of Residential Ventilation Technologies”, LBNL 57730.

  15. Advanced Controls and Sustainable Systems for Residential Ventilation

    E-Print Network [OSTI]

    1 Advanced Controls and Sustainable Systems for Residential Ventilation William J.N. Turner & Iain..................................................................................................................... 8 Residential Ventilation Standards..........................................................................................9 Passive and Hybrid Ventilation

  16. Energy-saving strategies with personalized ventilation in cold climates

    E-Print Network [OSTI]

    Schiavon, Stefano; Melikov, Arsen

    2009-01-01T23:59:59.000Z

    Journal of heating, Ventilation and Refrigeration Research,on Cold Climate, Heating, Ventilation and Air-Conditioning,Ventilation Effectiveness, Federation of European Heating

  17. Optimization of Occupancy Based Demand Controlled Ventilation in Residences

    E-Print Network [OSTI]

    Mortensen, Dorthe K.

    2012-01-01T23:59:59.000Z

    for residential ventilation systems, 2009. CEN, EN15251:The demand controlled ventilation system operated at a lowthe whole house ventilation system that implicitly assumes

  18. On The Valuation of Infiltration towards Meeting Residential Ventilation Needs

    E-Print Network [OSTI]

    Sherman, Max H.

    2008-01-01T23:59:59.000Z

    from steady mechanical ventilation system. For the case ofbecause unbalanced mechanical ventilation systems change theoften need mechanical ventilation systems to meet current

  19. AUTOMATIC VARIABLE VENTILATION CONTROL SYSTEMS BASED ON AIR QUALITY DETECTION

    E-Print Network [OSTI]

    Turiel, Isaac

    2011-01-01T23:59:59.000Z

    SUt1t1ARY Mechanical ventilation systems usually provide aof any 02 based ventilation system is that a ventilationwith type of ventilation system~ weather conditions, and

  20. Advanced Controls and Sustainable Systems for Residential Ventilation

    E-Print Network [OSTI]

    Turner, William J.N.

    2014-01-01T23:59:59.000Z

    through dynamic control of ventilation systems. Energy andcontinuous mechanical ventilation systems a mean annualcompliant ASHRAE 62.2 ventilation system. Table 12: Average

  1. AUTOMATIC VARIABLE VENTILATION CONTROL SYSTEMS BASED ON AIR QUALITY DETECTION

    E-Print Network [OSTI]

    Turiel, Isaac

    2011-01-01T23:59:59.000Z

    ~saon Automatic Variable Ventilation Control Systems Based79-3 Automatic variable ventilation control systems based onof automatic variable ventilation control systems, result in

  2. Classroom HVAC: Improving ventilation and saving energy -- field study plan

    E-Print Network [OSTI]

    Apte, Michael G.; Faulkner, David; Hodgson, Alfred T.; Sullivan, Douglas P.

    2004-01-01T23:59:59.000Z

    in this study. Classroom HVAC: Improving Ventilation andV8doc.sas.com/sashtml. Classroom HVAC: Improving VentilationBerkeley, CA 94720. Classroom HVAC: Improving Ventilation

  3. ESTIMATION OF AIRFLOW IN LIVESTOCK BUILDINGS USING

    E-Print Network [OSTI]

    Denmark ABSTRACT In order to evaluate a given ventilation system in a livestock building and its to evaulate the effect of given ventilation systems. In particular it is of interest to determine if draught of the velocity perpendicular to the intensity contour re- liably. This is known as the aperture problem. Because

  4. 2013 Building Technologies Office Program Peer Review Report...

    Broader source: Energy.gov (indexed) [DOE]

    (SOM) used EnergyPlus to design a new 380,000 square foot federal office building in West Virginia. The building has an advanced ventilated double facade and uses low-energy...

  5. Building Efficiency and Indoor Air Quality - You Can Have Both

    E-Print Network [OSTI]

    Kettler, G. J.

    1998-01-01T23:59:59.000Z

    Providing ventilation for acceptable indoor air quality per ASHRAE Standard 62-1989 does not require large increases in utility costs. Building efficiency does not have to be sacrificed for a healthy building. The ASHRAE 62- 1989 requirement...

  6. P. Wargocki, H.N. Knudsen and M. Frontczak (2007) "The effect of using low-polluting building materials on

    E-Print Network [OSTI]

    research project is to quantify to what extent the use of low-polluting building materials would reduce-polluting building materials on ventilation requirements and energy use in buildings", Proceedings of IAQVEC 2007, Sendai, Japan, on CD-ROM. #12;#12;THE EFFECT OF USING LOW-POLLUTING BUILDING MATERIALS ON VENTILATION

  7. Summary of Workshop: Barriers to Energy Efficient Residential Ventilation

    E-Print Network [OSTI]

    Sherman, Max

    2008-01-01T23:59:59.000Z

    for whole-house ventilation, local exhaust ventilation,by mechanical ventilation. Standard 62.2 also requires localVentilation • Mechanical system meeting Section 4 or 'other methods" when approved by LDP • Local

  8. Equivalence in Ventilation and Indoor Air Quality

    E-Print Network [OSTI]

    Sherman, Max

    2012-01-01T23:59:59.000Z

    dryers, and other local ventilation. ? Occupant activitiesventilation such as that provided by economizers or intermittent locallocal kitchen and bath exhausts, but a large part of the standard focuses on the continuous mechanical whole-house ventilation.

  9. SIMPLIFIED METHODS FOR COMBINING MECHANICAL VENTILATION AND NATURAL INFILTRATION

    E-Print Network [OSTI]

    Modera, M.

    2011-01-01T23:59:59.000Z

    of Heating and Ventilating, Royal Institute of Technology,Heating and Ventilating The Royal Institute of Technology

  10. Ventilation-Synchronous Magnetic Resonance Microscopy of Pulmonary Structure and Ventilation in

    E-Print Network [OSTI]

    Ventilation-Synchronous Magnetic Resonance Microscopy of Pulmonary Structure and Ventilation helium (3 He) gas to acquire images that dem- onstrate pulmonary vasculature and ventilated airways of these structures relative to the less vascular surrounding tissues. A constant- flow ventilator was developed

  11. We compared the efficacy of positive pressure ventilation (PPV) vs negative pressure ventilation (NPV) in providing

    E-Print Network [OSTI]

    Shadmehr, Reza

    the rationale for the use ofintermittent assisted ventilation is based on the premise that it alleviates muscleWe compared the efficacy of positive pressure ventilation (PPV) vs negative pressure ventilationEMG), minute ventilation (VE),tidal volume (VT), and end-tidal CO (etCOĂ during 15 minutes of PPV and NPV

  12. Results of the Evaluation Study DeAL Decentralized Facade Integrated Ventilation Systems

    E-Print Network [OSTI]

    Mahler, B.; Himmler, R.

    Evaluation Results from 12 Buildings in Operation ESL-IC-08-10-38a Proceedings of the Eighth International Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 2... ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? What are Facade Integrated Ventilation Systems? ESL-IC-08-10-38a Proceedings of the Eighth International Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 3...

  13. Proceedings of ASHRAE-DOE-BTECC Conference on Building Thermal Envelopes Simplified Modeling for

    E-Print Network [OSTI]

    LBL-31305 Proceedings of ASHRAE-DOE-BTECC Conference on Building Thermal Envelopes Simplified in the envelopes of residential buildings is the primary mechanism to pro- vide ventilation to those buildings and exposure to be made and demonstrates how changes in the envelope or ventilation system would affect it

  14. Procedures and Standards for Residential Ventilation System

    E-Print Network [OSTI]

    1 Procedures and Standards for Residential Ventilation System Commissioning: An Annotated and by the California Energy Commission under Pier Contract 500-08-061. Key terms: residential, ventilation.C. and C.P. Wray. 2013. Procedures and Standards for Residential Ventilation System Commissioning

  15. Humidity Implications for Meeting Residential Ventilation Requirements

    E-Print Network [OSTI]

    1 LBNL-62182 Humidity Implications for Meeting Residential Ventilation Requirements Iain S. Walker for Meeting Residential Ventilation Requirements ABSTRACT In 2003 ASHRAE approved the nation's first residential ventilation standard, ASHRAE Standard 62.2. Because meeting this standard can significantly change

  16. Development of Building Automation and Control Systems

    E-Print Network [OSTI]

    Yang, Yang; Zhu, Qi; Maasoumy, Mehdi; Sangiovanni-Vincentelli, Alberto

    2012-01-01T23:59:59.000Z

    is not suitable for low energy buildings that requirelow energy solutions such as natural ventilation and active facade. In this BUILDINGlow energy green buildingsVzero energy in the ideal caseVis very challenging. There are examples of zero energy buildings

  17. Ozone Reductions Using Residential Building Envelopes

    SciTech Connect (OSTI)

    Walker, Iain S.; Sherman, Max; Nazaroff, William W.

    2009-02-01T23:59:59.000Z

    Ozone is an air pollutant with that can have significant health effects and a significant source of ozone in some regions of California is outdoor air. Because people spend the vast majority of their time indoors, reduction in indoor levels of ozone could lead to improved health for many California residents. Ozone is removed from indoor air by surface reactions and can also be filtered by building envelopes. The magnitude of the envelope impact depends on the specific building materials that the air flows over and the geometry of the air flow paths through the envelope that can be changes by mechanical ventilation operation. The 2008 Residential Building Standards in California include minimum requirements for mechanical ventilation by referencing ASHRAE Standard 62.2. This study examines the changes in indoor ozone depending on the mechanical ventilation system selected to meet these requirements. This study used detailed simulations of ventilation in a house to examine the impacts of different ventilation systems on indoor ozone concentrations. The simulation results showed that staying indoors reduces exposure to ozone by 80percent to 90percent, that exhaust ventilation systems lead to lower indoor ozone concentrations, that opening of windows should be avoided at times of high outdoor ozone, and that changing the time at which mechanical ventilation occurs has the ability to halve exposure to ozone. Future work should focus on the products of ozone reactions in the building envelope and the fate of these products with respect to indoor exposures.

  18. Air change effectiveness in laboratory tests of combined chilled ceiling and displacement ventilation.

    E-Print Network [OSTI]

    Schiavon, Stefano; Bauman, Fred; Tully, Brad; Rimmer, Julian

    2011-01-01T23:59:59.000Z

    for Displacement Ventilation. Atlanta: ASHRAE. ISO. 1993.ceiling and displacement ventilation systems. Energy andceiling and displacement ventilation systems. Submitted to

  19. Flexible Residential Test Facility: Impact of Infiltration and Ventilation on Measured Cooling Season Energy and Moisture Levels

    SciTech Connect (OSTI)

    Parker, D.; Kono, J.; Vieira, R.; Fairey, P.; Sherwin, J.; Withers, C.; Hoak, D.; Beal, D.

    2014-05-01T23:59:59.000Z

    Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC has conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.

  20. Field-Evaluation of Alternative HVAC Strategies to Meet Ventilation, Comfort and Humidity Control Criteria at Three Full-Serve Restaurants

    E-Print Network [OSTI]

    Yborra, S. C.; Spears, J. W.

    2000-01-01T23:59:59.000Z

    Lighting and ventilation represent the majority of the air conditioning loads in office buildings in hot humid climates. Use of motion sensors is one way to minimize the energy used for these loads. This paper describes the methods used...

  1. Field-Evaluation of Alternative HVAC Strategies to Meet Ventilation, Comfort and Humidity Control Criteria at Three Full-Serve Restaurants 

    E-Print Network [OSTI]

    Yborra, S. C.; Spears, J. W.

    2000-01-01T23:59:59.000Z

    Lighting and ventilation represent the majority of the air conditioning loads in office buildings in hot humid climates. Use of motion sensors is one way to minimize the energy used for these loads. This paper describes the methods used...

  2. Worker productivity and ventilation rate in a call center: Analyses of time-series data for a group of workers

    SciTech Connect (OSTI)

    Fisk, William J.; Price, Phillip; Faulkner, David; Sullivan, Douglas; Dibartolomeo, Dennis; Federspiel, Cliff; Liu, Gang; Lahiff, Maureen

    2002-01-01T23:59:59.000Z

    In previous studies, increased ventilation rates and reduced indoor carbon dioxide concentrations have been associated with improvements in health at work and increased performance in work-related tasks. Very few studies have assessed whether ventilation rates influence performance of real work. This paper describes part one of a two-part analysis from a productivity study performed in a call center operated by a health maintenance organization. Outside air ventilation rates were manipulated, indoor air temperatures, humidities, and carbon dioxide concentrations were monitored, and worker performance data for advice nurses, with 30-minute resolution, were analyzed via multivariate linear regression to look for an association of performance with building ventilation rate, or with indoor carbon dioxide concentration (which is related to ventilation rate per worker). Results suggest that the effect of ventilation rate on worker performance in this call center was very small (probably less than 1%) or nil, over most of the range of ventilation rate experienced during the study (roughly 12 L s{sup -1} to 48 L s{sup -1} per person). However, there is some evidence suggesting performance improvements of 2% or more when the ventilation rate per person is very high, as indicated by indoor CO{sub 2} concentrations exceeding outdoor concentrations by less than 75 ppm.

  3. Worker productivity and ventilation rate in a call center: Analyses of time-series data for a group of registered nurses

    SciTech Connect (OSTI)

    Fisk, William J.; Price, Phillip; Faulkner, David; Sullivan, Douglas; Dibartolomeo, Dennis

    2003-08-01T23:59:59.000Z

    We investigated the relationship of ventilation rates with the performance of advice nurses working in a call center. Ventilation rates were manipulated; temperatures, humidities, and CO{sub 2} concentrations were monitored; and worker performance data, with 30-minute resolution, were collected. Multivariate linear regression was used to investigate the association of worker performance with indoor minus outdoor CO{sub 2} concentration (which increases with decreasing ventilation rate per worker) and with building ventilation rate. Results suggest that the effect of ventilation rate on worker performance in this call center was very small (probably less than 1%) or nil, over most of the range of ventilation rate (roughly 12 L s{sup -1} to 48 L s{sup -1} per person). However, there is some evidence of worker performance improvements of 2% or more when the indoor CO{sub 2} concentration exceeded the outdoor concentration by less than 75 ppm.

  4. Sample of Chart Interest in maximizing the performance of heating and ventilation

    E-Print Network [OSTI]

    McGaughey, Alan

    Sample of Chart Motivation Interest in maximizing the performance of heating and ventilation within necessitates the development of accurate heat transfer models which can account for arbitrary geometries and study relevant building parameters · Create an accurate thermal-fluid heating model · Optimize

  5. Building and Environment 42 (2007) 203217 Model-based analysis and simulation of airflow control systems of

    E-Print Network [OSTI]

    Melnik, Roderick

    2007-01-01T23:59:59.000Z

    , testing, operation, and management of heating, ventilation and air conditioning (HVAC) systems rely systems of ventilation units in building environments Zhuang Wua , Roderick V.N. Melnikb,Ă, Finn Borupc and simulation of the airflow control system of ventilation units is of primary importance for the design

  6. Solar Ventilation Preheating Resources and Technologies

    Broader source: Energy.gov [DOE]

    This page provides a brief overview of solar ventilation preheating (SVP) technologies supplemented by specific information to apply SVP within the Federal sector.

  7. Equivalence in Ventilation and Indoor Air Quality

    E-Print Network [OSTI]

    Sherman, Max

    2012-01-01T23:59:59.000Z

    Equivalence in Ventilation and Indoor Air Quality M. H.have a method for determining equivalence in terms of eitherwe need to establish an equivalence principle that allows

  8. Development of a Residential Integrated Ventilation Controller

    E-Print Network [OSTI]

    Walker, Iain

    2013-01-01T23:59:59.000Z

    systems such as those sold by Honeywell, and Aprilaire. Forin the world. Honeywell (http://yourhome.honeywell.com/US/Products/Ventilation/ ) Honeywell makes a line of economy

  9. Should Title 24 Ventilation Requirements Be Amended to include an Indoor Air Quality Procedure?

    SciTech Connect (OSTI)

    Dutton, Spencer M.; Mendell, Mark J.; Chan, Wanyu R.

    2013-05-13T23:59:59.000Z

    Minimum outdoor air ventilation rates (VRs) for buildings are specified in standards, including California?s Title 24 standards. The ASHRAE ventilation standard includes two options for mechanically-ventilated buildings ? a prescriptive ventilation rate procedure (VRP) that specifies minimum VRs that vary among occupancy classes, and a performance-based indoor air quality procedure (IAQP) that may result in lower VRs than the VRP, with associated energy savings, if IAQ meeting specified criteria can be demonstrated. The California Energy Commission has been considering the addition of an IAQP to the Title 24 standards. This paper, based on a review of prior data and new analyses of the IAQP, evaluates four future options for Title 24: no IAQP; adding an alternate VRP, adding an equivalent indoor air quality procedure (EIAQP), and adding an improved ASHRAE-like IAQP. Criteria were established for selecting among options, and feedback was obtained in a workshop of stakeholders. Based on this review, the addition of an alternate VRP is recommended. This procedure would allow lower minimum VRs if a specified set of actions were taken to maintain acceptable IAQ. An alternate VRP could also be a valuable supplement to ASHRAE?s ventilation standard.

  10. Natural Ventilation | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota1Resourceloading newNatural Ventilation

  11. Commissioning Residential Ventilation Systems: A Combined Assessment of

    E-Print Network [OSTI]

    Commissioning Residential Ventilation Systems: A Combined Assessment of Energy and Air Quality ventilation systems are being installed in new California homes. Few measurements are available of commissioning residential whole- house ventilation systems that are intended to comply

  12. External Authorities and Peers Laboratory Ventilation Management Program

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    External Authorities and Peers Laboratory Ventilation Management Program Guidance Document External Authorities and Peers This group encompasses external groups who do not manage laboratory ventilation systems to laboratory ventilation management. Roles Responsibilities Tracking Indicator Laboratory science peers

  13. HVAC EFFICIENCY BUSINESS CASE DEMAND CONTROL KITCHEN VENTILATION

    E-Print Network [OSTI]

    California at Davis, University of

    HVAC EFFICIENCY BUSINESS CASE DEMAND CONTROL KITCHEN VENTILATION Selecting, financing ventilation (DCKV) for kitchen exhaust hoods. Implementation can be relatively simple in either new of demand control kitchen ventilation (DCKV) in many small, medium, and large kitchen exhaust hood

  14. RESEARCH ARTICLE Open Access Noninvasive ventilation reduces energy

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    RESEARCH ARTICLE Open Access Noninvasive ventilation reduces energy expenditure in amyotrophic with a shift of the burden of ventilation to extradiaphragmatic inspiratory muscles, including neck muscles prognostic value. We hypothesized that noninvasive ventilation (NIV) would relieve inspiratory neck muscles

  15. ENERGY IMPACTS OF VARIOUS RESIDENTIAL MECHANICAL VENTILATION STRATEGIES 

    E-Print Network [OSTI]

    Vieira, R.; Parker, D.; Lixing, G.; Wichers, M.

    2008-01-01T23:59:59.000Z

    . Enthalpy recovery ventilation units tend to use more energy overall - despite the heat recovery - than supply or exhaust only ventilation systems, due to using twice as much fan energy. This paper presents simulation results for eight ventilation strategies...

  16. EH&S GUIDELINES FOR PROJECT MANAGERS: Minimizing Impacts on Local Building Occupants

    E-Print Network [OSTI]

    EH&S GUIDELINES FOR PROJECT MANAGERS: Minimizing Impacts on Local Building Occupants I. BACKGROUND; · shutting off the ventilation to the affected areas; · conducting the project after hours or on weekends: · increasing the building ventilation; · installing temporary fans; · conducting the project after hours

  17. Infiltration in ASHRAE's Residential Ventilation Standards

    SciTech Connect (OSTI)

    Sherman, Max

    2008-10-01T23:59:59.000Z

    The purpose of ventilation is to dilute or remove indoor contaminants that an occupant could be exposed to. It can be provided by mechanical or natural means. ASHRAE Standards including standards 62, 119, and 136 have all considered the contribution of infiltration in various ways, using methods and data from 20 years ago. The vast majority of homes in the United States and indeed the world are ventilated through natural means such as infiltration caused by air leakage. Newer homes in the western world are tight and require mechanical ventilation. As we seek to provide acceptable indoor air quality at minimum energy cost, it is important to neither over-ventilate norunder-ventilate. Thus, it becomes critically important to correctly evaluate the contribution infiltration makes to both energy consumption and equivalent ventilation. ASHRAE Standard 62.2 specifies how much mechanical ventilation is considered necessary to provide acceptable indoor air quality, but that standard is weak on how infiltration can contribute towards meeting the total requirement. In the past ASHRAE Standard 136 was used to do this, but new theoretical approaches and expanded weather data have made that standard out of date. This article will describe how to properly treat infiltration as an equivalent ventilation approach and then use new data and these new approaches to demonstrate how these calculations might be done both in general and to update Standard 136.

  18. Hybrid Ventilation Optimization and Control Research and Development...

    Energy Savers [EERE]

    Hybrid Ventilation Optimization and Control Research and Development Hybrid Ventilation Optimization and Control Research and Development Lead Performer: Massachusetts Institute of...

  19. Ventilation System to Improve Savannah River Site's Liquid Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ventilation System to Improve Savannah River Site's Liquid Waste Operations Ventilation System to Improve Savannah River Site's Liquid Waste Operations August 28, 2014 - 12:00pm...

  20. Case Study - The Challenge: Improving Ventilation System Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ventilation System Energy Efficiency in a Textile Plant Case Study - The Challenge: Improving Ventilation System Energy Efficiency in a Textile Plant This case study examines how...

  1. Workers Remove Glove Boxes from Ventilation at Hanford's Plutonium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Remove Glove Boxes from Ventilation at Hanford's Plutonium Finishing Plant Workers Remove Glove Boxes from Ventilation at Hanford's Plutonium Finishing Plant January 28, 2015 -...

  2. air ventilation rate: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Requirements University of California eScholarship Repository Summary: typical existing house. Designed passive ventilation systemsPassive Ventilation by Constant Area Vents to...

  3. Adventitious ventilation: a new definition for an old mode?

    E-Print Network [OSTI]

    Schiavon, Stefano

    2014-01-01T23:59:59.000Z

    Refrigeration and Air-Conditioning Engineers (ASHRAEof ventilation and air- conditioning system types in officeto natural ventilation, air conditioning, with or without

  4. Summer Infiltration/Ventilation Test Results from the FRTF Laboratory...

    Energy Savers [EERE]

    Summer InfiltrationVentilation Test Results from the FRTF Laboratory Summer InfiltrationVentilation Test Results from the FRTF Laboratory This presentation was delivered at the...

  5. Warehouse and Service Building Renovations

    Broader source: Energy.gov [DOE]

    Many Federal facilities include warehouses or other buildings used for storage service such as motor pools or groundskeeping, hangars, or other spaces that are frequently open to the outside and have only semi-conditioned spaces. Use of daylighting and solar ventilation preheat are prime technologies for these type of spaces, but other technologies may also warrant consideration.

  6. A Guide to Building Commissioning

    SciTech Connect (OSTI)

    Baechler, Michael C.

    2011-09-01T23:59:59.000Z

    Commissioning is the process of verifying that a building's heating, ventilation, and air conditioning (HVAC) and lighting systems perform correctly and efficiently. Without commissioning, system and equipment problems can result in higher than necessary utility bills and unexpected and costly equipment repairs. This report reviews the benefits of commissioning, why it is a requirement for Leadership in Energy and Environmental Design (LEED) certification, and why building codes are gradually adopting commissioning activities into code.

  7. Theoretical Minimum Energy Use of a Building HVAC System 

    E-Print Network [OSTI]

    Tanskyi, O.

    2011-01-01T23:59:59.000Z

    This paper investigates the theoretical minimum energy use required by the HVAC system in a particular code compliant office building. This limit might be viewed as the "Carnot Efficiency" for HVAC system. It assumes that all ventilation and air...

  8. Building America Top Innovations Hall of Fame Profile ? Moisture...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2. House-as-a-System Solutions 2.1 New Homes with Whole-House Packages Moisture and Ventilation Solutions in Hot, Humid Climates: Florida Manufactured Housing Research by Building...

  9. Theoretical Minimum Energy Use of a Building HVAC System

    E-Print Network [OSTI]

    Tanskyi, O.

    2011-01-01T23:59:59.000Z

    This paper investigates the theoretical minimum energy use required by the HVAC system in a particular code compliant office building. This limit might be viewed as the "Carnot Efficiency" for HVAC system. It assumes that all ventilation and air...

  10. THE MECHANICS OF LUNG TISSUE UNDER HIGH-FREQUENCY VENTILATION

    E-Print Network [OSTI]

    Lewis, Mark

    THE MECHANICS OF LUNG TISSUE UNDER HIGH-FREQUENCY VENTILATION MARKUS R. OWEN AND MARK A. LEWIS SIAM­1761 Abstract. High-frequency ventilation is a radical departure from conventional lung ventilation question concerns ventilator-induced damage to the lung tissue, and a clear protocol for the most effective

  11. THE MECHANICS OF LUNG TISSUE UNDER HIGH-FREQUENCY VENTILATION

    E-Print Network [OSTI]

    THE MECHANICS OF LUNG TISSUE UNDER HIGH-FREQUENCY VENTILATION MARKUS R. OWEN AND MARK A. LEWIS Abstract. High frequency ventilation is a radical departure from conventional lung ventilation question concerns ventilator induced damage to the lung tissue, and a clear protocol for the most effective

  12. RECOMMENDED VENTILATION STRATEGIES FOR ENERGY-EFFICIENT PRODUCTION HOMES

    E-Print Network [OSTI]

    -port exhaust ventilation fan, and that builders offer balanced heat- recovery ventilation to buyersLBNL-40378 UC-000 RECOMMENDED VENTILATION STRATEGIES FOR ENERGY-EFFICIENT PRODUCTION HOMES Judy A of Energy under Contract No. DE-AC03-76SF00098. #12;i Abstract This report evaluates residential ventilation

  13. Midlevel ventilation's constraint on tropical cyclone intensity

    E-Print Network [OSTI]

    Tang, Brian Hong-An

    2010-01-01T23:59:59.000Z

    Midlevel ventilation, or the flux of low-entropy air into the inner core of a tropical cyclone (TC), is a hypothesized mechanism by which environmental vertical wind shear can constrain a TC's intensity. An idealized ...

  14. Tunnel ventilation effectiveness in fire scenarios 

    E-Print Network [OSTI]

    Colella, Francesco; Rein, Guillermo; Carvel, Ricky O; Torero, Jose L

    2010-01-01T23:59:59.000Z

    Throughout most of a tunnel network the ventilation behaviour may be approximated with a simple 1D flow model. However, there are some important - but relatively small - regions of the tunnel that require CFD analysis. The multi-scale model...

  15. Midlevel Ventilation's Constraint on Tropical Cyclone Intensity

    E-Print Network [OSTI]

    Tang, Brian Hong-An

    Midlevel ventilation, or the flux of low-entropy air into the inner core of a tropical cyclone (TC), is a hypothesized mechanism by which environmental vertical wind shear can constrain a tropical cyclone’s intensity. An ...

  16. A Ventilation Index for Tropical Cyclones

    E-Print Network [OSTI]

    Tang, Brian

    An important environmental control of both tropical cyclone intensity and genesis is vertical wind shear. One hypothesized pathway by which vertical shear affects tropical cyclones is midlevel ventilation—or the flux of ...

  17. Performance Assessment of Photovoltaic Attic Ventilator Fans 

    E-Print Network [OSTI]

    Parker, D. S.; Sherwin, J. R.

    2000-01-01T23:59:59.000Z

    has long been identified as a method to abate such heat gains. We present test results from using the photovoltaic (PV) attic ventilator fans in a test home to assess impact on attic and cooling energy performance....

  18. Development of a Residential Integrated Ventilation Controller

    E-Print Network [OSTI]

    Walker, Iain

    2013-01-01T23:59:59.000Z

    and Ventilation Center. Emmerich, S.J, Dols, W.S. , “LoopDA:8 Int. IPBSA Conf. (2003) Emmerich S.J. Nabinger, S. J. “53484. Wallace, L. A. , Emmerich, S. J. , and Howard-Reed,

  19. Floor-supply displacement ventilation system

    E-Print Network [OSTI]

    Kobayashi, Nobukazu, 1967-

    2001-01-01T23:59:59.000Z

    Research on indoor environments has received more attention recently because reports of symptoms and other health complaints related to indoor environments have been increasing. Heating, ventilating, and air-conditioning ...

  20. May 1999 LBNL -42975 ASHRAE'S RESIDENTIAL VENTILATION

    E-Print Network [OSTI]

    May 1999 LBNL - 42975 ASHRAE'S RESIDENTIAL VENTILATION STANDARD: EXEGESIS OF PROPOSED STANDARD 62 standard. 1 Max Sherman is a Senior Scientist at LBNL and the group leader of its Energy Performance

  1. Scale model studies of displacement ventilation

    E-Print Network [OSTI]

    Okutan, Galip Mehmet

    1995-01-01T23:59:59.000Z

    Displacement ventilation is an air conditioning method that provides conditioned air to indoor environments with the goal to improve air quality while reducing energy consumption. This study investigates the performance ...

  2. Performance Assessment of Photovoltaic Attic Ventilator Fans

    E-Print Network [OSTI]

    Parker, D. S.; Sherwin, J. R.

    2000-01-01T23:59:59.000Z

    has long been identified as a method to abate such heat gains. We present test results from using the photovoltaic (PV) attic ventilator fans in a test home to assess impact on attic and cooling energy performance....

  3. Demand Controlled Ventilation for Improved Humidity Control

    E-Print Network [OSTI]

    Rogers, J. K.

    1996-01-01T23:59:59.000Z

    Demand Controlled Ventilation for Improved Humidity Control James K. Rogers, P.E. One Blacksmith Road Chelmsford, Massachusetts ABSTRACT Recently introduced technology makes it possible to continuously monitor for humidity in numerous... is brought in for ventilation. The high "latent load" inherent in this hot, humid outside air is often the reason for installing excess chiller capacity and the cause of peak power demands. Recent concerns over poor indoor air quality (IAQ) due...

  4. Industrial Ventilation Statistics Confirm Energy Savings Opportunity

    E-Print Network [OSTI]

    Litomisky, A.

    2006-01-01T23:59:59.000Z

    is based on installed on-demand ventilation systems, where sensors and PLC are installed with each system, so data is easily collected. Another critical factor for effective dust collecting is proper air velocities in duct system. Having measured air... velocities at drops and at the main ducts of existing classical industrial ventilation designs in 90 factories, 130 systems, and 1000 drops, we have found that only a minimum of air velocities are in the recommended range. There is a striking dichotomy...

  5. Natural Ventilation for Energy Savings in California Commercial Buildings

    E-Print Network [OSTI]

    2014-01-01T23:59:59.000Z

    climate zones, the representative city’s mean daytimelives in/near the representative city. Similarly, non-and asthma) for each representative city. The scope of this

  6. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy

    E-Print Network [OSTI]

    Sidheswaran, Meera

    2010-01-01T23:59:59.000Z

    calcination temperature." Applied Catalysis B-EnvironmentalOXYGEN AVAILABILITY." Applied Catalysis 20(1-2): 15- Benne,ambient temperature." Applied Catalysis B-Environmental 81(

  7. CO2 MONITORING FOR DEMAND CONTROLLED VENTILATION IN COMMERCIAL BUILDINGS

    E-Print Network [OSTI]

    Fisk, William J.

    2010-01-01T23:59:59.000Z

    Laboratory-based evaluations of nine sensors with largespecified existing sensor for evaluation. In the prior fieldIn summary, these evaluations of faulty sensors did not

  8. CO2 MONITORING FOR DEMAND CONTROLLED VENTILATION IN COMMERCIAL BUILDINGS

    E-Print Network [OSTI]

    Fisk, William J.

    2010-01-01T23:59:59.000Z

    evaluations of the performance of sensor electronics and measurements of the output of infrared sources within sensors

  9. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy

    E-Print Network [OSTI]

    Sidheswaran, Meera

    2010-01-01T23:59:59.000Z

    scrubbed with potassium iodide scrubbers preceding each DNPHWaters Sep-pak Ozone scrubber). The concentration valueusing potassium iodide scrubbers (Waters Sep-pak Ozone

  10. CO2 MONITORING FOR DEMAND CONTROLLED VENTILATION IN COMMERCIAL BUILDINGS

    E-Print Network [OSTI]

    Fisk, William J.

    2010-01-01T23:59:59.000Z

    Transactions 105(2). Emmerich, S. J. and A. K. Persily (Fisk and de Almeida 1998; Emmerich and Persily 2001), CO 2Fisk and de Almeida 1998; Emmerich and Persily 2001; Apte

  11. Thermal Comfort of Neutral Ventilated Buildings in Different Cities

    E-Print Network [OSTI]

    Ye, X.; Zhou, Z.; Lian, Z.; Wen, Y.; Zhou, Z.; Jiang, C.

    2006-01-01T23:59:59.000Z

    Although the ASHRAE 55-1992 and ISO 7730 Standards are used all over the world, many researchers have pointed out that it is impossible to maintain a uniform thermal comfort standard worldwide because of differing climate conditions. Two field...

  12. Outside Air Ventilation Controller - Building America Top Innovation |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM PolicyOfEnergyOutreach to Multifamily Landlords

  13. Low-Cost Ventilation in Production Housing - Building America Top

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketing |Prepare for|Titanium Alloy

  14. Disposable colorimetric carbon dioxide detector use as an indicator of a patent airway during noninvasive mask ventilation

    E-Print Network [OSTI]

    Leone, T A; Lange, A; Rich, W; Finer, N N

    2006-01-01T23:59:59.000Z

    During Noninvasive Mask Ventilation Tina A. Leone, Allisonduring bag and mask ventilation and en- courage others toposi- tive pressure ventilation in preterm babies ventilated

  15. Impact of Infiltration and Ventilation on Measured Space Conditioning Energy and Moisture Levels in the Hot-Humid Climate, Cocoa, Florida (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01T23:59:59.000Z

    Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC has conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season. ?

  16. Room air stratification in combined chilled ceiling and displacement ventilation systems.

    E-Print Network [OSTI]

    Schiavon, Stefano; Bauman, Fred; Tully, Brad; Rimmer, Julian

    2012-01-01T23:59:59.000Z

    nodal model for displacement ventilation and chilled ceiling2002. Displacement ventilation in non- industrial premises.ceiling/displacement ventilation hybrid air conditioning

  17. Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation

    E-Print Network [OSTI]

    Logue, J.M.

    2012-01-01T23:59:59.000Z

    Energy Costs of Mechanical Ventilation KEMA-XENERGY.2004.Offermann, F. J.2009. Ventilation and indoor air quality intowards meeting residential ventilation needs. Berkeley, CA,

  18. Control of the microclimate around the head with opposing jet local ventilation

    E-Print Network [OSTI]

    Liu, Chonghui; Higuchi, Hiroshi; Arens, Edward; Zhang, Hui Ph.D

    2009-01-01T23:59:59.000Z

    of opposing jet local ventilation. AIAA 2009 Region I-NEImpact of a task-ambient ventilation system on perceived airefficiency for personalized ventilation application. Healthy

  19. Infiltration Effects on Residential Pollutant Concentrations for Continuous and Intermittent Mechanical Ventilation Approaches

    E-Print Network [OSTI]

    Sherman, Max

    2010-01-01T23:59:59.000Z

    P. (2002). Technical Note AIVC 57: Residential Ventilation.Air Infiltration and Ventilation Center (AIVC) Edwards, R.Related to Residential Ventilation Requirements. Berkeley,

  20. Created: July, 2014 Laboratory Safety Design Guide Section 3 Laboratory Ventilation

    E-Print Network [OSTI]

    Queitsch, Christine

    Created: July, 2014 Laboratory Safety Design Guide Section 3 ­ Laboratory Ventilation 3-1 Section 3 LABORATORY VENTILATION Contents A. Scope .................................................................................................................3-2 B. General Laboratory Ventilation

  1. Risk Factors in Heating, Ventilating, and Air-Conditioning Systems for Occupant Symptoms in

    E-Print Network [OSTI]

    Mendell, M.J.; Lei-Gomez, Q.; Mirer, A.; Seppanen, O.; Brunner, G.

    2007-01-01T23:59:59.000Z

    LBNL-61870 Risk Factors in Heating, Ventilating, and Air-for Occupant Symptoms in Heating, Ventilating, and Air-uncertain. Characteristics of heating, ventilating, and air-

  2. INDOOR AIR QUALITY AND ENERGY EFFICIENT VENTILATION RATES AT A NEW YORK CITY ELEMENTARY SCHOOL

    E-Print Network [OSTI]

    Young, Rodger A.

    2013-01-01T23:59:59.000Z

    To determine the yearly ventilation-heating load for thecalculations of ventilation heating load 25 in variousexi~ting school heating and ventilation conditions. It must

  3. Commissioning Residential Ventilation Systems: A Combined Assessment of Energy and Air Quality Potential Values

    E-Print Network [OSTI]

    Turner, William J.N.

    2014-01-01T23:59:59.000Z

    through dynamic control of ventilation systems. Energy andcontinuous mechanical ventilation systems a mean annualcompliant ASHRAE 62.2 ventilation system. Table 12: Average

  4. Procedures and Standards for Residential Ventilation System Commissioning: An Annotated Bibliography

    E-Print Network [OSTI]

    Stratton, J. Chris

    2014-01-01T23:59:59.000Z

    Residential Mechanical Ventilation Systems”. CAN/CSA-F326-of Domestic Ventilation Systems”. International EnergyPassive Stack Ventilation Systems: Design and Installation”.

  5. OCCUPANT-GENERATED CO2 AS AN INDICATOR OF VENTILATION RATE

    E-Print Network [OSTI]

    Turiel, Isaac

    2012-01-01T23:59:59.000Z

    ln mechanical ventilation systems are often inconvenientlywas conducted, the ventilation system mixes outside air withon a day when the ventilation system was in the all-outside-

  6. Infiltration Effects on Residential Pollutant Concentrations for Continuous and Intermittent Mechanical Ventilation Approaches

    E-Print Network [OSTI]

    Sherman, Max

    2010-01-01T23:59:59.000Z

    of whole-house ventilation systems in meeting exposurefor residential ventilation system design is the Americanand operating ventilation systems with variable amounts of

  7. Room air stratification in combined chilled ceiling and displacement ventilation systems.

    E-Print Network [OSTI]

    Schiavon, Stefano; Bauman, Fred; Tully, Brad; Rimmer, Julian

    2012-01-01T23:59:59.000Z

    and displacement ventilation systems. HVAC&R Research, 12 (and displacement ventilation system. ASHRAE RP-1438 Finalof Displacement Ventilation System—Experimental and

  8. Performance testing of a floor-based, occupant-controlled office ventilation system

    E-Print Network [OSTI]

    Bauman, Fred; Johnston, L.; Zhang, H.; Arens, Edward A

    1991-01-01T23:59:59.000Z

    a room ment ventilation systems." ASHRAE Transactions, Vol.95, Part 2. ence, Ventilation System Performance, 18-21Fountain. 1990. "A ventilation systems in office rooms."

  9. Russia’s R&D for Low Energy Buildings: Insights for Cooperation with Russia

    SciTech Connect (OSTI)

    Schaaf, Rebecca E.; Evans, Meredydd

    2010-05-01T23:59:59.000Z

    Russian buildings, Russian buildings sector energy consumption. Russian government has made R&D investment a priority again. The government and private sector both invest in a range of building energy technologies. In particular, heating, ventilation and air conditioning, district heating, building envelope, and lighting have active technology research projects and programs in Russia.

  10. The Impact of CO2-Based Demand-Controlled Ventilation on Energy Consumptions for Air Source Heat Pumps in Schools

    E-Print Network [OSTI]

    AlRaees, N.; Nassif, N.

    2013-01-01T23:59:59.000Z

    There have been increasingly growing concerns for many years over the quality of the air inside buildings and the associated energy use. The CO2-based demand-controlled ventilation DCV offers a great opportunity to reduce energy consumption in HVAC...

  11. Literature review supporting assessment of potential radionuclides in the 291-Z exhaust ventilation

    SciTech Connect (OSTI)

    Mahoney, L.A.; Ballinger, M.Y.; Jette, S.J.; Thomas, L.M. Glissmeyer, J.A. [Pacific Northwest Lab., Richland, WA (United States); Davis, W.E. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-08-01T23:59:59.000Z

    This literature review was prepared to support a study conducted by Pacific Northwest Laboratory to assess the potential deposition and resuspension of radionuclides in the 291-Z ventilation exhaust building located in the 200 West Area of the US Department of Energy`s Hanford Project near Richland, Washington. The filtered ventilation air from three of the facilities at the Plutonium Finishing Plant (PFP) complex are combined together in the 291-Z building before discharge through a common stack. These three facilities contributing filtered exhaust air to the discharge stream are (1) the PFP, also known as the Z-Plant or 234-5Z, (2) the Plutonium Reclamation Facility (PRF or 236-Z), and (3), the Waste Incinerator Building (WIB or 232-Z). The 291-Z building houses the exhaust fans that pull air from the 291-Z central collection plenum and exhausts the air to the stack. Section 2.0 of this report is a description of the physical characteristic of the ventilation system from the High Efficiency Particulate Air (HEPA) filters to the exhaust stack. A description of the processes performed in the facilities that are vented through 291-Z is given in Section 3.0. The description focuses on the chemical and physical forms of potential aerosols given off from the unit operations. A timeline of the operations and events that may have affected the deposition of material in the ventilation system is shown. Aerosol and radiation measurements taken in previous studies are also discussed. Section 4.0 discusses the factors that influence particle deposition and adhesion. Mechanisms of attachment and resuspension are covered with specific attention to the PFP ducts. Conclusions and recommendations are given in Section 5.0.

  12. Assessment of Energy Savings Potential from the Use of Demand Controlled Ventilation in General Office Spaces in California

    SciTech Connect (OSTI)

    Hong, Tianzhen; Fisk, William

    2010-01-01T23:59:59.000Z

    A prototypical office building meeting the prescriptive requirements of the 2008 California building energy efficiency standards (Title 24) was used in EnergyPlus simulations to calculate the energy savings potential of demand controlled ventilation (DCV) in five typical California climates per three design occupancy densities and two minimum ventilation rates. The assumed minimum ventilation rates in offices without DCV, based on two different measurement methods employed in a large survey, were 38 and 13 L/s per occupant. The results of the life cycle cost analysis show DCV is cost effective for office spaces if the typical minimum ventilation rate without DCV is 38 L/s per person, except at the low design occupancy of 10.8 people per 100 m2 in climate zones 3 (north coast) and 6 (south Coast). DCV was not found to be cost effective if the typical minimum ventilation rate without DCV is 13 L/s per occupant, except at high design occupancy of 21.5 people per 100 m2 in climate zones 14 (desert) and 16 (mountains). Until the large uncertainties about the base case ventilation rates in offices without DCV are reduced, the case for requiring DCV in general office spaces will be a weak case. Under the Title 24 Standards office occupant density of 10.8 people per 100 m2, DCV becomes cost effective when the base case minimum ventilation rate is greater than 42.5, 43.0, 24.0, 19.0, and 18.0 L/s per person for climate zone 3, 6, 12, 14, and 16 respectively.

  13. Building operating systems services: An architecture for programmable buildings.

    E-Print Network [OSTI]

    Dawson-Haggerty, Stephen

    2014-01-01T23:59:59.000Z

    Heating, Ventilation, and Air Conditioning 2.1.2 LightingVentilation, and Air Conditioning Heating, ventilation, andRefrigerating and Air-Conditioning Engineers. ASHRAE

  14. Estimated costs of ventilation systems complying with the HUD ventilation standard for manufactured homes

    SciTech Connect (OSTI)

    Miller, J.D.; Conner, C.C.

    1993-11-01T23:59:59.000Z

    At the request of the US Department of Housing and Urban Development (HUD), the Pacific Northwest Laboratory estimated the material, labor, and operating costs for ventilation equipment needed for compliance with HUD`s proposed revision to the ventilation standard for manufactured housing. This was intended to bound the financial impacts of the ventilation standard revision. Researchers evaluated five possible prototype ventilation systems that met the proposed ventilation requirements. Of those five, two systems were determined to be the most likely used by housing manufacturers: System 1 combines a fresh air duct with the existing central forced-air system to supply and circulate fresh air to conditioned spaces. System 2 uses a separate exhaust fan to remove air from the manufactured home. The estimated material and labor costs for these two systems range from $200 to $300 per home. Annual operating costs for the two ventilation systems were estimated for 20 US cities. The estimated operating costs for System 1 ranged from $55/year in Las Vegas, Nevada, to $83/year in Bismarck, North Dakota. Operating costs for System 2 ranged from a low of $35/year in Las Vegas to $63/year in Bismarck. Thus, HUD`s proposed increase in ventilation requirements will add less than $100/year to the energy cost of a manufactured home.

  15. Indoor Air Quality Assessment of the San Francisco Federal Building

    SciTech Connect (OSTI)

    Apte, Michael; Bennett, Deborah H.; Faulkner, David; Maddalena, Randy L.; Russell, Marion L.; Spears, Michael; Sullivan, Douglas P; Trout, Amber L.

    2008-07-01T23:59:59.000Z

    An assessment of the indoor air quality (IAQ) of the San Francisco Federal Building (SFFB) was conducted on May 12 and 14, 2009 at the request of the General Services Administration (GSA). The purpose of the assessment was for a general screening of IAQ parameters typically indicative of well functioning building systems. One naturally ventilated space and one mechanically ventilated space were studied. In both zones, the levels of indoor air contaminants, including CO2, CO, particulate matter, volatile organic compounds, and aldehydes, were low, relative to reference exposure levels and air quality standards for comparable office buildings. We found slightly elevated levels of volatile organic compounds (VOCs) including two compounds often found in"green" cleaning products. In addition, we found two industrial solvents at levels higher than typically seen in office buildings, but the levels were not sufficient to be of a health concern. The ventilation rates in the two study spaces were high by any standard. Ventilation rates in the building should be further investigated and adjusted to be in line with the building design. Based on our measurements, we conclude that the IAQ is satisfactory in the zone we tested, but IAQ may need to be re-checked after the ventilation rates have been lowered.

  16. Design of a Natural Ventilation System in the Dunhuang Museum 

    E-Print Network [OSTI]

    Zhang, Y.; Guan, W.

    2006-01-01T23:59:59.000Z

    that also meets architectural standards. Natural ventilation design methods are presented in this paper. A natural ventilation system is designed in the DunHuang museum. Thermal dynamic simulation and CFD simulation were analyzed in the exhibition hall...

  17. Design of a Natural Ventilation System in the Dunhuang Museum

    E-Print Network [OSTI]

    Zhang, Y.; Guan, W.

    2006-01-01T23:59:59.000Z

    Fresh air and good air quality can be obtained by a natural ventilation system, to fulfill the requirement of near natural conditions for the psychological health of mankind. A natural ventilation system is an ecological, energy saving system...

  18. Study on Influencing Factors of Night Ventilation in Office Rooms

    E-Print Network [OSTI]

    Wang, Z.; Sun, X.

    2006-01-01T23:59:59.000Z

    A mathematical and physical model on night ventilation is set up. The fields of indoor air temperature, air velocity and thermal comfort are simulated using Airpak software. Some main influencing factors of night ventilation in office rooms...

  19. Analyzing Ventilation Effects of Different Apartment Styles by CFD

    E-Print Network [OSTI]

    Li, X.; Wang, L.; Ye, Z.

    2006-01-01T23:59:59.000Z

    in different directions have distinct ventilation environments. By compare the velocity fields of each apartment in four directions, results show that the apartment in the east has favorable ventilation effects. There are some disadvantages of other apartments...

  20. Application Study on Combined Ventilation System of Improving IAQ

    E-Print Network [OSTI]

    Hu, S.; Li, G.; Zhang, C.; Ye, B.

    2006-01-01T23:59:59.000Z

    A type of combined ventilating system is put forward in this paper. Through CFD simulation and testing of contaminant concentrations in a prototype residential room, the results demonstrate that the new ventilating system is advantageous...

  1. GASTRIC REFLUX IN MECHANICALLY VENTILATED GASTRIC FED ICU PATIENTS

    E-Print Network [OSTI]

    Schallom, Marilyn

    2013-08-31T23:59:59.000Z

    in ventilated patients is a major cause of ventilator associated pneumonia (VAP). Guidelines that recommend head of bed (HOB) elevation greater than 30? to prevent reflux, aspiration and VAP conflict with guidelines to prevent pressure ulcers which recommend HOB...

  2. A scale model study of displacement ventilation with chilled ceilings

    E-Print Network [OSTI]

    Holden, Katherine J. A. (Katherine Joan Adrienne)

    1995-01-01T23:59:59.000Z

    Displacement ventilation is a form of air-conditioning which provides good air quality and some energy savings. The air quality is better than for a conventional mixed ventilation system. The maximum amount of cooling that ...

  3. Natural ventilation : design for suburban houses in Thailand

    E-Print Network [OSTI]

    Tantasavasdi, Chalermwat, 1971-

    1998-01-01T23:59:59.000Z

    Natural Ventilation is the most effective passive cooling design strategy for architecture in hot and humid climates. In Thailand, natural ventilation has been the most essential element in the vernacular architecture such ...

  4. Advanced System Design of In-Building Wireless Communication Networks Using

    E-Print Network [OSTI]

    Stancil, Daniel D.

    Advanced System Design of In-Building Wireless Communication Networks Using Ventilation Ducts design an IEEE 802.11g wireless system that uses ventilation ducts to distribute the signals throughout modifications and antenna excitations we have tried, chronicling how to best install wireless local area network

  5. Control of the microclimate around the head with opposing jet local ventilation

    E-Print Network [OSTI]

    Liu, Chonghui; Higuchi, Hiroshi; Arens, Edward; Zhang, Hui Ph.D

    2009-01-01T23:59:59.000Z

    of opposing jet local ventilation. AIAA 2009 Region I-NEHead with Opposing Jet Local Ventilation Chonghui Liu 1,* ,

  6. HOSPITAL VENTILATION STANDARDS AND ENERGY CONSERVATION: CHEMICAL CONTAMINATION OF HOSPITAL AIR. FINAL REPORT.

    E-Print Network [OSTI]

    Rainer, David

    2012-01-01T23:59:59.000Z

    open bench top local exhaust ventilation, The OSHA standardsuch as local ex- haust ventilation when properly applied,

  7. HOSPITAL VENTILATION STANDARDS AND ENERGY CONSERVATION: A SUMMARY OF THE LITERATURE WITH CONCLUSIONS AND RECOMMENDATIONS, FY 78 FINAL REPORT

    E-Print Network [OSTI]

    DeRoos, R.L.

    2011-01-01T23:59:59.000Z

    on the premise that current hospital ventilation standardsand ,ventilation rates based on the premise of reducing

  8. STATE OF CALIFORNIA DEMAND CONTROL VENTILATION SYSTEMS ACCEPTANCE

    E-Print Network [OSTI]

    STATE OF CALIFORNIA DEMAND CONTROL VENTILATION SYSTEMS ACCEPTANCE CEC-MECH-6A (Revised 08/09) CALIFORNIA ENERGY COMMISSION CERTIFICATE OF ACCEPTANCE MECH-6A NA7.5.5 Demand Control Ventilation Systems DEMAND CONTROL VENTILATION SYSTEMS ACCEPTANCE CEC-MECH-6A (Revised 08/09) CALIFORNIA ENERGY COMMISSION

  9. Contribution of Gular Pumping to Lung Ventilation in Monitor

    E-Print Network [OSTI]

    Brainerd, Elizabeth

    Contribution of Gular Pumping to Lung Ventilation in Monitor Lizards Tomasz Owerkowicz,1 * Colleen that lizards are subject to a speed- dependent axial constraint that prevents effective lung ventilation during locomotion, varanids use a positive pressure gular pump to assist lung ventilation. Disabling the gular pump

  10. Care of a cardiac pt on mechanical ventilation

    E-Print Network [OSTI]

    Kay, Mark A.

    Care of a cardiac pt on mechanical ventilation CVICU New Hires Orientation Day 2 Winnie Yung, RN, MN #12;Outline · Physiology of breathing · Terminology · Intubation · Mode of mechanical ventilation· Mode of mechanical ventilation · Nursing care of a vented pt · Nursing care of a vented single

  11. STATE OF CALIFORNIA INDOOR AIR QUALITY AND MECHANICAL VENTILATION

    E-Print Network [OSTI]

    STATE OF CALIFORNIA INDOOR AIR QUALITY AND MECHANICAL VENTILATION CEC- CF-6R-MECH-05 (Revised 08 Ventilation (Page 1 of 7) Site Address: Enforcement Agency: Permit Number: 2008 Residential Compliance Forms August 2009 Ventilation for Indoor Air Quality (IAQ): All dwelling units shall meet the requirements

  12. Improved Wireless Performance from Mode Scattering in Ventilation Ducts

    E-Print Network [OSTI]

    Stancil, Daniel D.

    Improved Wireless Performance from Mode Scattering in Ventilation Ducts Benjamin E. Henty, PA 15230. henty@eirp.org and stancil@cmu.edu Abstract Ventilation ducts are a convenient present in a ventilation duct T-junction and note with some surprise that improvement in the performance

  13. AIR FLOW MODELING IN DEEP WELLS: APPLICATION TO MINING VENTILATION

    E-Print Network [OSTI]

    Johansson, Karl Henrik

    AIR FLOW MODELING IN DEEP WELLS: APPLICATION TO MINING VENTILATION E. WITRANT1, K.H. JOHANSSON2. Introduction Traditionally, the control of large-scale systems, such as mining ventilation, has been performed to the preliminary design of the global system and automation devices. Mining ventilation provides for an interesting

  14. Experimental Study of Ventilation Performance in Laboratories with Chemical Spills

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    1 Experimental Study of Ventilation Performance in Laboratories with Chemical Spills Mingang Chemical spills occur frequently in laboratories. The current ventilation code for laboratories recommends a ventilation rate of 12 ACH for maintaining a safe laboratory environment. On the other hand, the energy saving

  15. AIR FLOW MODELING IN DEEP WELLS: APPLICATION TO MINING VENTILATION

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    AIR FLOW MODELING IN DEEP WELLS: APPLICATION TO MINING VENTILATION E. WITRANT1, K.H. JOHANSSON2, the control of large-scale systems, such as mining ventilation, has been performed locally with decentralized of the global system and automation devices. Mining ventilation provides for an interesting exam- ple

  16. Estimating ventilation time scales using overturning stream functions

    E-Print Network [OSTI]

    Döös, Kristofer

    Estimating ventilation time scales using overturning stream functions Bijoy Thompson & Jonas for estimating ventilation time scales from overturning stream functions is proposed. The stream function may describing an ide- alized semi-enclosed ocean basin ventilated through a narrow strait over a sill

  17. Natural Ventilation Design for Houses in Thailand Chalermwat Tantasavasdia

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    1 Natural Ventilation Design for Houses in Thailand Chalermwat Tantasavasdia , Jelena Srebricb This paper explores the potential of using natural ventilation as a passive cooling system for new house conditions in Bangkok, the study found that it is possible to use natural ventilation to create a thermally

  18. Article original Influence du mode de ventilation des litires

    E-Print Network [OSTI]

    Boyer, Edmond

    Article original Influence du mode de ventilation des litičres sur les émissions gazeuses d expérimentalement l'effet de la ventilation des litičres sur le devenir de l'azote, dans un élevage intensif porcin systčmes de ventilation de litičre (ascendante et descendante) sont testés par rapport ŕ un systčme témoin

  19. Validation of CFD Simulations for Natural Ventilation , Camille Allocca1

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    1 Validation of CFD Simulations for Natural Ventilation Yi Jiang1 , Camille Allocca1 , and Qingyan ventilation, which may provide occupants with good indoor air quality and a high level of thermal comfort-driven and buoyancy-drive natural ventilation. The validation of the CFD models used the experimental data of wind

  20. SURFACE CIRCULATION AND VENTILATION Lynne D. Talley(1)

    E-Print Network [OSTI]

    Talley, Lynne D.

    SURFACE CIRCULATION AND VENTILATION Lynne D. Talley(1) , Rana Fine(2) , Rick Lumpkin (3) , Nikolai by high frequency radars. Ventilation and upwelling processes connect the surface layer and underlying quantitative information on formation rates and residence times, and compelling evidence of decadal ventilation

  1. Estimating ventilation time scales using overturning stream functions

    E-Print Network [OSTI]

    Döös, Kristofer

    Estimating ventilation time scales using overturning stream functions Bijoy Thompson & Jonas 2014 # Springer-Verlag Berlin Heidelberg 2014 Abstract A simple method for estimating ventilation time-enclosed ocean basin ventilated through a narrow strait over a sill, and the result is compared to age estimates

  2. Harms of Unintentional Leaks during Volume Targeted Pressure Support Ventilation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Harms of Unintentional Leaks during Volume Targeted Pressure Support Ventilation Sonia Khirani1 Background: Volume targeted pressure support ventilation (VT-PSV) is a hybrid mode increasingly used. The objective of the study was to determine the ability of home ventilators to maintain the preset minimal VT

  3. "Passive Ventilation in a Simple Structure" Thomas Rogg

    E-Print Network [OSTI]

    Mountziaris, T. J.

    "Passive Ventilation in a Simple Structure" Thomas Rogg Faculty Mentor: Dr. Scott Civjan, Civil & Environmental Engineering The research concept is to investigate the addition of a passive ventilation system in a greener and more efficient ventilation system. The project is in the very early stages and I have been

  4. Variable ventilation induces endogenous surfactant release in normal guinea pigs

    E-Print Network [OSTI]

    Lutchen, Kenneth

    Variable ventilation induces endogenous surfactant release in normal guinea pigs Stephen P. Arold,1. Alencar, Kenneth R. Lutchen, and Edward P. Ingenito. Variable ventilation induces endogenous surfactant.00036.2003.--Variable or noisy ventilation, which includes random breath-to-breath variations in tidal

  5. Measuring Residential Ventilation System Airflows: Part 2 -Field

    E-Print Network [OSTI]

    1 Measuring Residential Ventilation System Airflows: Part 2 - Field Evaluation of Airflow Meter Residential Ventilation System Airflows: Part 2 - Field Evaluation of Airflow Meter Devices and System Flow, mechanical ventilation, measurement, ASHRAE 62.2, flow hood ABSTRACT The 2008 California State Energy Code

  6. Ventilation planning at Energy West's Deer Creek mine

    SciTech Connect (OSTI)

    Tonc, L.; Prosser, B.; Gamble, G. [Pacific Corp., Huntington, UT (United States)

    2009-08-15T23:59:59.000Z

    In 2004 ventilation planning was initiated to exploit a remote area of Deer Creek mine's reserve (near Huntington, Utah), the Mill Fork Area, located under a mountain. A push-pull ventilation system was selected. This article details the design process of the ventilation system upgrade, the procurement process for the new fans, and the new fan startup testing. 5 figs., 1 photo.

  7. Optimal decision making in ventilation control Andrew Kusiak*, Mingyang Li

    E-Print Network [OSTI]

    Kusiak, Andrew

    by heating, ventilating and air- conditioning (HVAC) systems. According to published statistics, HVAC systemsOptimal decision making in ventilation control Andrew Kusiak*, Mingyang Li Department of Mechanical Accepted 24 July 2009 Available online 15 August 2009 Keywords: Ventilation Air quality Multi

  8. MINING VENTILATION CONTROL: A NEW INDUSTRIAL CASE FOR WIRELESS AUTOMATION

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    % of the energy consumed by the mining process goes into the ventilation (including heating the air). It is clearMINING VENTILATION CONTROL: A NEW INDUSTRIAL CASE FOR WIRELESS AUTOMATION E. Witrant1, A. D This paper serves as an introduction to Special Session on Ventilation Control in Large-Scale Systems. We de

  9. Mining ventilation control: a new industrial case for wireless automation

    E-Print Network [OSTI]

    Johansson, Karl Henrik

    system with high envi- ronmental impact: the mining ventilation. We do not pretend to solve the global ventilation is an interesting example of a large scale system with high environmental impact where advancedMining ventilation control: a new industrial case for wireless automation E. Witrant1, A. D

  10. Effect of repository underground ventilation on emplacement drift temperature control

    SciTech Connect (OSTI)

    Yang, H.; Sun, Y.; McKenzie, D.G.; Bhattacharyya, K.K. [Morrison Knudson Corporation, Las Vegas, NV (United States)

    1996-02-01T23:59:59.000Z

    The repository advanced conceptual design (ACD) is being conducted by the Civilian Radioactive Waste Management System, Management & Operating Contractor. Underground ventilation analyses during ACD have resulted in preliminary ventilation concepts and design methodologies. This paper discusses one of the recent evaluations -- effects of ventilation on emplacement drift temperature management.

  11. BUI.LDING ENERGY 1987 Edition

    E-Print Network [OSTI]

    for Offices, Retail and Wholesale Stores Section Title PaaeDesign Requirements ...·.·.......·... 55Energy Building Energy Efficiency Standards Energy Conservation Standards for New Offices, Retail and Wholesale ...·...··...... - Retail and Wholesale Stores . Ventilation Requirements .... 81 85 106 122 138 154 Energy Conservation

  12. Human Health Science Building Geothermal Heat Pumps

    Broader source: Energy.gov [DOE]

    Project objectives: Construct a ground sourced heat pump, heating, ventilation, and air conditioning system for the new Oakland University Human Health Sciences Building utilizing variable refrigerant flow (VRF) heat pumps. A pair of dedicated outdoor air supply units will utilize a thermally regenerated desiccant dehumidification section. A large solar thermal system along with a natural gas backup boiler will provide the thermal regeneration energy.

  13. A Hybrid Model and MIMO Control for Intelligent Buildings Temperature

    E-Print Network [OSTI]

    Boyer, Edmond

    A Hybrid Model and MIMO Control for Intelligent Buildings Temperature Regulation over WSN Emmanuel is to propose a model-based feedback control strategy for indoor temperature regulation in buildings equipped. In order to set a model-based Fig. 1. UFAD ventilation control approach, we first investigate

  14. Jess S. Jackson Sustainable Winery Building WATER STORAGE

    E-Print Network [OSTI]

    Schladow, S. Geoffrey

    and an 8-foot-high CMU wall, constructed within the thermal envelope, provides thermal mass throughout reduce the need for electrical lighting PASSIVE HEATING AND COOLING natural ventilation and thermal mass-sustaining. The 8,500 sq.ft. building is a pre-engineered metal building with a significantly upgraded thermal

  15. Hood Commissioning Laboratory Ventilation Management Program

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Hood Commissioning Laboratory Ventilation Management Program Form In the interest of efficiency and effective use of our limited resources, EHS will not initiate or schedule the commissioning process for any____Other (describe) Hood is:______New _______Relocated_______Reconfigured (Describe ) Requested Commissioning Date (s

  16. Ventilation of the Baltic Sea deep water

    E-Print Network [OSTI]

    Mohrholz, Volker

    , Powstaców Warszawy 55, PL­81­712 Sopot, Poland 4 Department of Oceanography, G¨oteborg University, Box 460 by thermohaline intrusions, ventilate the deep water of the eastern Gotland Basin. A recent study of the energy that about 30% of the energy needed below the halocline for deep water mixing is explained by the breaking

  17. A Bench Study of Intensive Care Unit Ventilators: New versus Old and Turbine-Based versus Compressed Gas-Based Ventilators

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . Material: Four turbine- based ventilators and nine conventional servo-valve compressed-gas ventilators were1 A Bench Study of Intensive Care Unit Ventilators: New versus Old and Turbine-Based versus patient's effort. On average, turbine-based ventilators performed better than conventional ventilators

  18. On The Valuation of Infiltration towards Meeting Residential Ventilation Needs

    SciTech Connect (OSTI)

    Sherman, Max H.

    2008-09-01T23:59:59.000Z

    The purpose of ventilation is dilute or remove indoor contaminants that an occupant is exposed to. It can be provided by mechanical or natural means. In most homes, especially existing homes, infiltration provides the dominant fraction of the ventilation. As we seek to provide acceptable indoor air quality at minimum energy cost, it is important to neither over-ventilate nor under-ventilate. Thus, it becomes critically important to correctly evaluate the contribution infiltration makes to both energy consumption and equivalent ventilation. ASHRAE Standards including standards 62, 119, and 136 have all considered the contribution of infiltration in various ways, using methods and data from 20 years ago.

  19. Solar energy dehumidification experiment on the Citicorp Center building : final report

    E-Print Network [OSTI]

    Unknown author

    The technical and economic feasibility of using solar energy to reduce conventional energy consumption of a large urban commercial building were studied in depth. Specifically, solar assisted dehumidification of ventillation ...

  20. Control System Implementation and Follow-up within the Cooling and Ventilation Contracts for the LHC

    E-Print Network [OSTI]

    Body, Y; Morodo, M C

    2001-01-01T23:59:59.000Z

    The control system implementation for the cooling and ventilation facilities connected to the LHC Project relies on the technical and human resources that are organised within large-size industrial contracts. Beside the technical aspects, the follow-up of the implementation activities in the framework of such contracts also involves a managerial effort in order to achieve a flexible and coherent control system. The purpose is to assure precise and reliable regulation together with accurate local and remote supervision in conformity with the operational requirements. These objectives can only be reached by a systematic approach that keeps the co-ordination between the in-house and external cross-disciplinary teams as well as the fulfilment of the validation procedures and the contractual formalities. The case that here illustrates this approach is the control system implementation for the heating, ventilation and air conditioning of the LHC surface buildings, which shall extend up to 2004.

  1. Simulating Buoyancy-Driven Airflow in Buildings by1 Coarse-Grid Fast Fluid Dynamics2

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    1 Simulating Buoyancy-Driven Airflow in Buildings by1 Coarse-Grid Fast Fluid Dynamics2 Mingang Jin1. Introduction33 Whole-building airflow simulations are required in applications such as natural ventilation34 design, coupled building airflow and energy simulation, smoke control, and air quality diagnosis35

  2. Performance Assessment of Photovoltaic Attic Ventilator Fans

    Broader source: Energy.gov [DOE]

    A case study of photovoltaic attic ventilator fans was conducted on an occupied single family home in Central Florida. Two fans were installed at mid-summer in an instrumented home where attic air temperature, meteorological conditions and space cooling electric power were measured. The home already had an attic radiant barrier, but still experienced attic air temperatures in excess of 130oF.

  3. Recovering Energy From Ventilation and Process Airstreams

    E-Print Network [OSTI]

    Cheney, W. A.

    RECOVERING ENERGY FROM VENTILATION AND PROCESS AIRSTREAMS Heat Exchangers and contaminant Recovery William A. Cheney united Air Specialists, Inc. Cincinnati, Ohio The high cost of energy has prompted industry to look for new ways to reduce... 17-19, 1986 CONTAMINANT RECOVERY The ability to capture waste energy from an airstream, while simultaneously condensing hydrocarbon vapors, is a rela tively new technique in the heat-recovery market. In this process, high concentra tions...

  4. Advanced Controls for Residential Whole-House Ventilation Systems

    SciTech Connect (OSTI)

    Turner, William; Walker, Iain; Sherman, Max

    2014-08-01T23:59:59.000Z

    Whole-house ventilation systems are becoming commonplace in new construction, remodeling/renovation, and weatherization projects, driven by combinations of specific requirements for indoor air quality (IAQ), health and compliance with standards, such as ASHRAE 62.2. Ventilation systems incur an energy penalty on the home via fan power used to drive the airflow, and the additional space-conditioning load associated with heating or cooling the ventilation air. Finding a balance between IAQ and energy use is important if homes are to be adequately ventilated while not increasing the energy burden. This study used computer simulations to examine RIVEC the Residential Integrated Ventilation Controller - a prototype ventilation controller that aims to deliver whole-house ventilation rates that comply with ventilation standards, for the minimum use of energy. Four different whole-house ventilation systems were simulated, both with and without RIVEC, so that the energy and IAQ results could be compared. Simulations were conducted for 13 US climate zones, three house designs, and three envelope leakage values. The results showed that the RIVEC controller could typically return ventilation energy savings greater than 40percent without compromising long-term chronic or short-term acute exposures to relevant indoor contaminants. Critical and average peak power loads were also reduced as a consequence of using RIVEC.

  5. Global Energy, Environmental Trends and Challenges: The Need for Best Building Practices 

    E-Print Network [OSTI]

    Hartkopf, V.

    2011-01-01T23:59:59.000Z

    Center for Building Performance and Diagnostics, a NSF/IUCRC, and ABSIC at Carnegie Mellon Systems Integration for High Performance Buildings Communities, Urbanities, Regions Volker Hartkopf, PhD, Dr.h.c. Director, Center for Building... for Building Performance and Diagnostics, a NSF/IUCRC, and ABSIC at Carnegie Mellon 28 Even high rise offices can be naturally ventilated Commerzbank Frankfurt Foster & Arup Center for Building Performance and Diagnostics, a NSF/IUCRC, and ABSIC...

  6. Final Report Balancing energy conservation and occupant needs in ventilation rate standards for Big Box stores in California: predicted indoor air quality and energy consumption using a matrix of ventilation scenarios

    E-Print Network [OSTI]

    Apte, Michael G.

    2013-01-01T23:59:59.000Z

    evaluation of displacement ventilation and dedicated outdoorB, Carlson N (2009). Ventilation requirements in a retailof Intermittent Ventilation for Providing Acceptable Indoor

  7. Final Report Balancing energy conservation and occupant needs in ventilation rate standards for Big Box stores in California: predicted indoor air quality and energy consumption using a matrix of ventilation scenarios

    E-Print Network [OSTI]

    Apte, Michael G.

    2013-01-01T23:59:59.000Z

    Air cleaning and local ventilation near strong sources bothair cleaning, and local ventilation may be needed at reducedremoval, air cleaning, and local ventilation may be the best

  8. Building Stones

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    3). Photographs by the author. Building Stones, Harrell, UEEOxford Short Citation: Harrell, 2012, Building Stones. UEE.Harrell, James A. , 2012, Building Stones. In Willeke

  9. Office Buildings: Assessing and Reducing Plug and Process Loads in Office Buildings (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-04-01T23:59:59.000Z

    Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use in office spaces are poorly understood.

  10. Retail Buildings: Assessing and Reducing Plug and Process Loads in Retail Buildings (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-04-01T23:59:59.000Z

    Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use in retail spaces are poorly understood.

  11. The Ocean's Memory of the Atmosphere: Residence-Time and Ventilation-Rate Distributions of Water Masses

    E-Print Network [OSTI]

    Primeau, Francois W; Holzer, Mark

    2006-01-01T23:59:59.000Z

    in steady state. Local ventilation rates for non- steadyrespec- tively. The local ventilation fluxes regardless ofmaps of ventilation The residence-time-partitioned, local

  12. Heating, Ventilating, and Air-Conditioning: Recent Advances in Diagnostics and Controls to Improve Air-Handling System Performance

    E-Print Network [OSTI]

    Wray, Craig P.

    2008-01-01T23:59:59.000Z

    Heating, Ventilating, and Air-Conditioning: Recent Advancesthe energy efficiency of many heating, ventilating, and air-system, which delivers heating, cooling, and ventilation air

  13. THE EFFECTS OF ENERGY-EFFICIENT VENTILATION RATES ON INDOOR AIR QUALITY AT AN OHIO ELEMENTARY SCHOOL

    E-Print Network [OSTI]

    Berk, J.V.

    2013-01-01T23:59:59.000Z

    To determine the ventilation~heating load for the 2778calculations of ventilation~heating load 19 in variousthrough heating, cooling, and ventilation (see Figure l).

  14. HOSPITAL VENTILATION STANDARDS AND ENERGY CONSERVATION: A SUMMARY OF THE LITERATURE WITH CONCLUSIONS AND RECOMMENDATIONS, FY 78 FINAL REPORT

    E-Print Network [OSTI]

    DeRoos, R.L.

    2011-01-01T23:59:59.000Z

    to prelude higher ventilation heating or cooling. InRequirements: --The ventilation, heating, air conditioning,and comfort. --The ventilation, heating, air conditioning,

  15. Indoor Airflow And Pollutant Removal In A Room With Floor-Based Task Ventilation: Results of Additional Experiments

    E-Print Network [OSTI]

    Faulkner, D.

    2011-01-01T23:59:59.000Z

    C , "Displacement Ventilation Systems in Office Rooms,"Controlled Office Ventilation System," ASHRAE Transactions,of a floor-based task ventilation system designed for use in

  16. An Index for Evaluation of Air Quality Improvement in Rooms with Personalized Ventilation Based on Occupied Density and Normalized Concentration

    E-Print Network [OSTI]

    Schiavon, Stefano; Melikov, Arsen; Cermak, Radim; De Carli, Michele; Li, Xianting

    2007-01-01T23:59:59.000Z

    potential of personalized ventilation system in the tropics.edge mounted task ventilation system. Proceedings of Indoorwith a total-volume ventilation system. The index is applied

  17. HOSPITAL VENTILATION STANDARDS AND ENERGY CONSERVATION: A SUMMARY OF THE LITERATURE WITH CONCLUSIONS AND RECOMMENDATIONS, FY 78 FINAL REPORT

    E-Print Network [OSTI]

    DeRoos, R.L.

    2011-01-01T23:59:59.000Z

    laminar") flow ventilation system for patient isolation.MICHAELSEN, G. S. Ventilation system maintenance practices:1974. A new ventilation system for cleaner operating

  18. A Survey and Critical Review of the Literature on Indoor Air Quality, Ventilation and Health Symptoms in Schools

    E-Print Network [OSTI]

    Daisey, Joan M.

    2010-01-01T23:59:59.000Z

    between seasons and ventilation systems, Proceedings ofto Old school: ventilation system, one constructed prior toall had mechanical ventilation systems of some type. C 0

  19. A Survey and Critical Review of the Literature on Indoor Air Quality, Ventilation and Health Symptoms in Schools

    E-Print Network [OSTI]

    Daisey, Joan M.

    2010-01-01T23:59:59.000Z

    is experiencing IAQ and ventilation problems, and relatedis experiencing IAQ and ventilation problems, and relatedof air quality and ventilation problems in California

  20. HOSPITAL VENTILATION STANDARDS AND ENERGY CONSERVATION: A SUMMARY OF THE LITERATURE WITH CONCLUSIONS AND RECOMMENDATIONS, FY 78 FINAL REPORT

    E-Print Network [OSTI]

    DeRoos, R.L.

    2011-01-01T23:59:59.000Z

    the largest problem facing the ventilation engineer; sourcesthe heating and ventilation was already a problem. 6 In thethe hospital odor problem with regards to ventilation rates.

  1. Recommended Ventilation Strategies for Energy-Efficient Production Homes

    SciTech Connect (OSTI)

    Roberson, J.; Brown, R.; Koomey, J.; Warner, J.; Greenberg, S.

    1998-12-01T23:59:59.000Z

    This report evaluates residential ventilation systems for the U.S. Environmental Protection Agency's (EPA's) ENERGY STAR{reg_sign} Homes program and recommends mechanical ventilation strategies for new, low-infiltration, energy-efficient, single-family, ENERGY STAR production (site-built tract) homes in four climates: cold, mixed (cold and hot), hot humid, and hot arid. Our group in the Energy Analysis Department at Lawrence Berkeley National Lab compared residential ventilation strategies in four climates according to three criteria: total annualized costs (the sum of annualized capital cost and annual operating cost), predominant indoor pressure induced by the ventilation system, and distribution of ventilation air within the home. The mechanical ventilation systems modeled deliver 0.35 air changes per hour continuously, regardless of actual infiltration or occupant window-opening behavior. Based on the assumptions and analysis described in this report, we recommend independently ducted multi-port supply ventilation in all climates except cold because this strategy provides the safety and health benefits of positive indoor pressure as well as the ability to dehumidify and filter ventilation air. In cold climates, we recommend that multi-port supply ventilation be balanced by a single-port exhaust ventilation fan, and that builders offer balanced heat-recovery ventilation to buyers as an optional upgrade. For builders who continue to install forced-air integrated supply ventilation, we recommend ensuring ducts are airtight or in conditioned space, installing a control that automatically operates the forced-air fan 15-20 minutes during each hour that the fan does not operate for heating or cooling, and offering ICM forced-air fans to home buyers as an upgrade.

  2. Microsoft Word - Determination of Class to Update Ventilation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solutions LLC Original Signatures on File Determination of Class Modification Update Ventilation Language for Consistency Waste Isolation Pilot Plant Carlsbad, New Mexico Permit...

  3. Energy-saving strategies with personalized ventilation in cold climates

    E-Print Network [OSTI]

    Schiavon, Stefano; Melikov, Arsen

    2009-01-01T23:59:59.000Z

    Energy-saving strategies with personalized ventilation inalone if energy-saving strategies are not applied. TheHowever, this energy- saving strategy can be recommended

  4. Measured Air Distribution Effectiveness for Residential Mechanical Ventilation Systems

    E-Print Network [OSTI]

    Sherman, Max H.

    2008-01-01T23:59:59.000Z

    In Review J. Indoor Air) 2007 LBNL-63193 Tarantola, Albert,Gas Measurement to Determine Air Movements in a House,Measurement Techniques”, Air Infiltration and Ventilation

  5. Summary of Workshop: Barriers to Energy Efficient Residential Ventilation

    E-Print Network [OSTI]

    Sherman, Max

    2008-01-01T23:59:59.000Z

    quality problems. Traditionally residential ventilation wasquality problems such as moisture. Residential ventilationventilation air is only one way of tackling the R H problem

  6. Position paper -- Tank ventilation system design air flow rates

    SciTech Connect (OSTI)

    Goolsby, G.K.

    1995-01-04T23:59:59.000Z

    The purpose of this paper is to document a project position on required ventilation system design air flow rates for the waste storage tanks currently being designed by project W-236A, the Multi-Function Waste Tank Facility (MWTF). The Title 1 design primary tank heat removal system consists of two systems: a primary tank vapor space ventilation system; and an annulus ventilation system. At the conclusion of Title 1 design, air flow rates for the primary and annulus ventilation systems were 960 scfm and 4,400 scfm, respectively, per tank. These design flow rates were capable of removing 1,250,000 Btu/hr from each tank. However, recently completed and ongoing studies have resulted in a design change to reduce the extreme case heat load to 700,000 Btu/hr. This revision of the extreme case heat load, coupled with results of scale model evaporative testing performed by WHC Thermal Hydraulics, allow for a reduction of the design air flow rates for both primary and annulus ventilation systems. Based on the preceding discussion, ICF Kaiser Hanford Co. concludes that the design should incorporate the following design air flow rates: Primary ventilation system--500 scfm maximum and Annulus ventilation system--1,100 scfm maximum. In addition, the minimum air flow rates in the primary and annulus ventilation systems will be investigated during Title 2 design. The results of the Title 2 investigation will determine the range of available temperature control using variable air flows to both ventilation systems.

  7. Natural Ventilation Applications in Hot-humid Climate: A Preliminary Design for the College of Design at NTUST

    E-Print Network [OSTI]

    Lin, M. T.; Wei, H. Y.; Lin, Y. J.; Wu, H. F.; Liu, P. H.

    have derived useful information from the wind-rose. Figures 7 and 8 show that the wind blows from the northeast about 72% of the time. Figure 9 shows prevailing wind directions for the four seasons, which is very useful for the initial settings.... The experimental model adopted collective strategies and added a few considerations corresponding to local prevailing wind trends in the climate situation of the building. Oppositely, the comparable model is a rectangular mass with no added ventilation...

  8. 4.42J / 1.044J / 2.66J Fundamentals of Energy in Buildings, Fall 2008

    E-Print Network [OSTI]

    Glicksman, Leon

    This subject provides a first course in thermo-sciences for students primarily interested in architecture and building technology. It introduces the fundamentals important to energy, ventilation, air conditioning and comfort ...

  9. Ventilation System Basics | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sureReportsofDepartmentSeries |Attacks | DepartmentVentilation System Basics

  10. Microsoft Word - Ventilation System Sampling Results 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA / USACE625 FINALOptimizationFor Immediate48Ventilation

  11. OCCUPANT-GENERATED CO2 AS AN INDICATOR OF VENTILATION RATE

    E-Print Network [OSTI]

    Turiel, Isaac

    2012-01-01T23:59:59.000Z

    1977. 7. Hunt, C.M. , "Ventilation Measurements in theJ. , and Hollowell, C.D. , Ventilation on Indoor Quality inThe Effect of Reduced Ventilation on Indoor Air Quality And

  12. Modeling indoor exposures to VOCs and SVOCs as ventilation rates vary

    E-Print Network [OSTI]

    Parthasarathy, Srinandini

    2013-01-01T23:59:59.000Z

    J. 2008. Analysis of ventilation data from the United StatesASHRAE Standard 62.1-2010, Ventilation for Acceptable Indoorto VOCs and   SVOCs as ventilation rates vary   Srinandini 

  13. Circulation . Author manuscript Ultrafast and whole-body cooling with total liquid ventilation induces

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ventilation induces favorable neurological and cardiac outcomes after cardiac arrest in rabbits Mourad decrease after resuscitation. Since total liquid ventilation (TLV) with temperature controlled ; physiology ; Liquid Ventilation ; Liver ; physiology ; Lung ; physiology ; Nervous System Physiological

  14. Oceanic ventilation and biogeochemical cycling: Understanding the physical mechanisms that produce realistic distributions of tracers and

    E-Print Network [OSTI]

    Matsumoto, Katsumi

    Oceanic ventilation and biogeochemical cycling: Understanding the physical mechanisms that produce circulation support different rates of ventilation, which in turn produce different distributions. Matsumoto, J. L. Sarmiento, R. D. Slater, and P. S. Swathi (2004), Oceanic ventilation and biogeochemical

  15. `Perfect ventilation, good sewerage and effective water closets': Urban factors in the development

    E-Print Network [OSTI]

    `Perfect ventilation, good sewerage and effective water closets': Urban factors in the development sanitation ``Perfect ventilation, good sewerage and effective water closets': Urban factors ventilation, good sewerage and effective water closets': Urban factors in the development of modern nursing

  16. Gaseous effluents from the combustion of nanocomposites in controlled-ventilation conditions

    E-Print Network [OSTI]

    Boyer, Edmond

    Gaseous effluents from the combustion of nanocomposites in controlled-ventilation conditions D on the combustion of nanocomposite samples under various ventilation conditions. Tests have been performed ammonium polyphosphate in equal proportions. During testing, the ventilation-controlled conditions were

  17. UBC Social Ecological Economic Development Studies (SEEDS) Student Report CIRS Auditorium Ventilation System

    E-Print Network [OSTI]

    Ventilation System: Adequacy Assessment, Energy Consumption and Comfort of the Living Space Provided Prepared of a project/report". #12;CEEN 596 FINAL PROJECT REPORT CIRS Auditorium Ventilation System: Adequacy Assessment...........................................................................................13 a) The Ventilation System

  18. Commissioning of a Coupled Earth Tube and Natural Ventilation System at the Acceptance Phase

    E-Print Network [OSTI]

    Pan, S.; Zheng, M.; Yoshida, H.

    In this paper, the environment and energy performance of an actual coupled earth tube and natural ventilation system in a gymnasium was measured during the acceptance phase in two operation states: no ventilation and natural ventilation. From...

  19. Sensitivity of Tropical Cyclone Intensity to Ventilation in an Axisymmetric Model

    E-Print Network [OSTI]

    Tang, Brian

    The sensitivity of tropical cyclone intensity to ventilation of cooler, drier air into the inner core is examined using an axisymmetric tropical cyclone model with parameterized ventilation. Sufficiently strong ventilation ...

  20. FORESTRY BUILDING: BUILDING EMERGENCY PLAN

    E-Print Network [OSTI]

    FORESTRY BUILDING: BUILDING EMERGENCY PLAN Date Adopted: August 18, 2009 Date Revised June 17, 2013 Prepared By: Diana Evans and Jennifer Meyer #12;PURDUE UNIVERSITY BUILDING EMERGENCY PLAN VERSION 3 2 Table Suspension or Campus Closure SECTION 3: BUILDING INFORMATION 3.1 Building Deputy/Alternate Building Deputy

  1. Numerical Simulation of a Displacement Ventilation System with Multi-heat Sources and Analysis of Influential Factors

    E-Print Network [OSTI]

    Wu, X.; Gao, J.; Wu, W.

    2006-01-01T23:59:59.000Z

    Displacement ventilation (DV) is a promising ventilation concept due to its high ventilation efficiency. In this paper, the application of the CFD method, the velocity and temperature fields of three-dimensional displacement ventilation systems...

  2. BUILDING NAME HEYDON-LAURENCE BUILDING

    E-Print Network [OSTI]

    Viglas, Anastasios

    BUILDING NAME HEYDON-LAURENCE BUILDING PHARMACY AND BANK BUILDING JOHN WOOLEY BUILDING OLD TEARCHER'S BUILDING PHYSICS BUILDING BAXTER'S LODGE INSTITUTE BUILDING CONSERVATION WORKS R.D.WATT BUILDING MACLEAY BUILDING THE QUARANGLE BADHAM BUILDING J.D. STEWART BUILDING BLACKBURN BUILDING MADSEN BUILDING STORE

  3. Maintenance Guide for Greenhouse Ventilation, Evaporative Cooling Heating Systems1

    E-Print Network [OSTI]

    Watson, Craig A.

    when the need is discovered, but a good preventive maintenance program will reduce the number. This fact sheet will emphasize corrective and preventive maintenance procedures for ventilation, evaporativeAE26 Maintenance Guide for Greenhouse Ventilation, Evaporative Cooling Heating Systems1 D. E

  4. A Survey and Critical Review of the Literature on Indoor Air Quality, Ventilation and Health Symptoms in Schools

    E-Print Network [OSTI]

    Daisey, Joan M.

    2010-01-01T23:59:59.000Z

    rate over- estimates the local ventilation rate of occupied1992); no local exhaust ventilation for photocopiers that

  5. An Index for Evaluation of Air Quality Improvement in Rooms with Personalized Ventilation Based on Occupied Density and Normalized Concentration

    E-Print Network [OSTI]

    Schiavon, Stefano; Melikov, Arsen; Cermak, Radim; De Carli, Michele; Li, Xianting

    2007-01-01T23:59:59.000Z

    Journal of heating, Ventilation and Refrigeration Research,on Cold Climate, Heating, Ventilation and Air-Conditioning,

  6. Ventilation Systems Operating Experience Review for Fusion Applications

    SciTech Connect (OSTI)

    Cadwallader, Lee Charles

    1999-12-01T23:59:59.000Z

    This report is a collection and review of system operation and failure experiences for air ventilation systems in nuclear facilities. These experiences are applicable for magnetic and inertial fusion facilities since air ventilation systems are support systems that can be considered generic to nuclear facilities. The report contains descriptions of ventilation system components, operating experiences with these systems, component failure rates, and component repair times. Since ventilation systems have a role in mitigating accident releases in nuclear facilities, these data are useful in safety analysis and risk assessment of public safety. An effort has also been given to identifying any safety issues with personnel operating or maintaining ventilation systems. Finally, the recommended failure data were compared to an independent data set to determine the accuracy of individual values. This comparison is useful for the International Energy Agency task on fusion component failure rate data collection.

  7. Occupant satisfaction in mixed-mode buildings

    E-Print Network [OSTI]

    Brager, Gail; Baker, Lindsay

    2009-01-01T23:59:59.000Z

    2001. “Association of ventilation system type with sickof Natural and Hybrid Ventilation Systems in an Officeother three rely on ventilation systems (both natural and

  8. Application of CO{sub 2}-based demand-controlled ventilation using ASHRAE Standard 62: Optimizing energy use and ventilation

    SciTech Connect (OSTI)

    Schell, M.B. [Engelhard Sensor Technologies, Santa Barbara, CA (United States); Turner, S.; Shim, R.O. [Chelsea Group, Ltd., Delray Beach, FL (United States)

    1998-12-31T23:59:59.000Z

    CO{sub 2}-based demand-controlled ventilation (DCV), when properly applied in spaces where occupancies vary below design occupancy, can reduce unnecessary overventilation while implementing target per-person ventilation rates. A recent interpretation of ANSI/ASHRAE Standard 62-1989, Interpretation 1C 62-1989-27, has affirmed that carbon dioxide (CO{sub 2})-based demand-controlled ventilation (DCV) systems can use CO{sub 2} as an occupancy indicator to modulate ventilation below the maximum total outdoor air intake rate while still maintaining the required ventilation rate per person, provided that certain conditions are met. This paper, co-written by the author of the interpretation, provides guidelines on the application of CO{sub 2}-based DCV. In addition, a method is presented that allows reasonable estimates of the actual ventilation rate per person being effectively delivered to the space, based on comparing predicted CO{sub 2} ventilation levels with CO{sub 2} levels logged in an occupied space. Finally, a model is presented to evaluate various CO{sub 2}-based DCV strategies to predict their delivery of target per-person ventilation rates within the lag times required by the standard.

  9. Around Buildings

    E-Print Network [OSTI]

    Treib, Marc

    1987-01-01T23:59:59.000Z

    Around Buildings W h y startw i t h buildings and w o r k o u t wa r d ? For one, buildings are difficult t o a v o i d these

  10. A survey and critical review of the literature on indoor air quality, ventilation and health symptoms in schools

    SciTech Connect (OSTI)

    Daisey, J.M. [Lawrence Berkeley National Lab., CA (United States). Energy and Environment Div.; Angell, W.J. [Univ. of Minnesota, St. Paul, MN (United States)

    1998-03-01T23:59:59.000Z

    A survey and critical review were undertaken of existing published literature and reports on indoor air quality (IAQ), ventilation, and IAQ- and building-related health problems in schools, including California schools. Over 450 relevant publications were obtained and reviewed, including papers published in the archival peer-reviewed scientific literature, proceedings of scientific meetings, government reports, 77 NIOSH Health Hazard Evaluation Reports (HHER) and 70 reports on investigations of problem schools in California. Most of the reviewed literature was for complaint or problem schools. The types of health symptoms reported in schools were very similar to those defined as sick building syndrome (SBS) symptoms, although this may be due, at least in part, to the type of health symptom questionnaires used. Some of the symptoms, e.g., wheezing, are indicative of asthma. In the studies in which complaint and noncomplaint buildings or areas were compared, complaint buildings generally had higher rates of health symptoms.

  11. BUILDING INSPECTION Building, Infrastructure, Transportation

    E-Print Network [OSTI]

    BUILDING INSPECTION Building, Infrastructure, Transportation City of Redwood City 1017 Middlefield Sacramento, Ca 95814-5514 Re: Green Building Ordinance and the Building Energy Efficiency Standards Per of Redwood City enforce the current Title 24 Building Energy Efficiency Standards as part

  12. Estimation of building occupancy levels through environmental signals deconvolution

    E-Print Network [OSTI]

    Johansson, Karl Henrik

    , and ventilation actuation signals in order to identify a dynamic model. The building occupancy estimation problem Abstract We address the problem of estimating the occupancy lev- els in rooms using the information is formulated as a regularized deconvolution problem, where the estimated occupancy is the input that, when

  13. Changing ventilation rates in U.S. offices: Implications for health, work performance, energy, and associated economics

    SciTech Connect (OSTI)

    Fisk, William; Black, Douglas; Brunner, Gregory

    2011-07-01T23:59:59.000Z

    This paper provides quantitative estimates of benefits and costs of providing different amounts of outdoor air ventilation in U.S. offices. For four scenarios that modify ventilation rates, we estimated changes in sick building syndrome (SBS) symptoms, work performance, short-term absence, and building energy consumption. The estimated annual economic benefits were $13 billion from increasing minimum ventilation rates (VRs) from 8 to 10 L/s per person, $38 billion from increasing minimum VRs from 8 to 15 L/s per person, and $33 billion from increasing VRs by adding outdoor air economizers for the 50% of the office floor area that currently lacks economizers. The estimated $0.04 billion in annual energy-related benefits of decreasing minimum VRs from 8 to 6.5 L/s per person are very small compared to the projected annual costs of $12 billion. Benefits of increasing minimum VRs far exceeded energy costs while adding economizers yielded health, performance, and absence benefits with energy savings.

  14. Occupancy Modeling and Prediction for Building Energy Varick L. Erickson, University of California, Merced

    E-Print Network [OSTI]

    Cerpa, Alberto E.

    A Occupancy Modeling and Prediction for Building Energy Management Varick L. Erickson, University.Cerpa, University of California, Merced Heating, cooling and ventilation accounts for 35% energy usage in the United and Prediction for Building Energy Management and Auditing. ACM Trans. Sensor Netw. V, N, Article A (August 2012

  15. Indoor Air Quality Factors in Designing a Healthy Building John D. Spengler

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    , building materials and systems, ventilation models, design tools Shortened title: IAQ in Designing and regulations, rapid introduction of new building materials and commercial products, as well as the prevailing indoor air quality (IAQ) is an important determinant of healthy design, it is not the sole determinant

  16. Toward Web Enhanced Building Automation Ger^ome Bovet and Antonio Ridi and Jean Hennebert

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    cost of the energy. Repre- senting 20% to 40% of the global energy bill in Europe and USA, buildings are a major source of energy consumption, actually more important than industry and transportation [27]. In a building, half of the energy consumption comes from the Heating, Ventilation and Air Conditioning systems

  17. Seamless Handover in Buildings Using HVAC Ducts: A New System Architecture

    E-Print Network [OSTI]

    Stancil, Daniel D.

    Seamless Handover in Buildings Using HVAC Ducts: A New System Architecture Ariton E. Xhafa, Paisarn-- In this paper, we present an innovative solution to the handover problem in multi-story buildings using HVAC of the indoor wireless networks that use the heating, ventilation, and air conditioning (HVAC) ducts

  18. Humidity Control Systems for Civil Buildings in Hot Summer and Cold Winter Zone in China 

    E-Print Network [OSTI]

    Yu, X.

    2006-01-01T23:59:59.000Z

    ICEBO2006, Shenzhen, China Control Systems for Energy Efficiency and Comfort, Vol. V-3-1 Humidity Control Systems for Civil Buildings in Hot Summer and Cold Winter Zone in China Xiaoping Yu Doctoral Candidate Chongqing University of Science... the sensor-controller to run when humidity reaches a set level. A dehumidifying ventilator is particularly effective if the humidity source is in our basement. Dehumidifying ventilators don't recover heat but they use less electricity than heat pump...

  19. Building Energy in China: Forward to Low-Carbon Economy 

    E-Print Network [OSTI]

    Weiding, L.

    2008-01-01T23:59:59.000Z

    of the Eighth International Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 Limitation of technologies due to weather diversity ?Natural ventilation ?Solar energy (photovoltaic) ?Daylighting ?Ground source heat pump 18 ESL... Photovoltaic: an expensive technology for demo ? Duration of equivalent full-load bright sunshine is only 980 hours in Shanghai; ? The cost of photovoltaic is 70,000RMB/kW; ? Electric tariff is about 1RMB/kWh for commercial buildings; ? Pay back period would...

  20. Author's personal copy Infaunal burrow ventilation and pore-water transport in muddy sediments

    E-Print Network [OSTI]

    Shull, David H.

    burrow ventilation activities of organisms. Burrow ventilation is modeled as a simple non-local exchangeAuthor's personal copy Infaunal burrow ventilation and pore-water transport in muddy sediments D: bioturbation bioirrigation biogeochemistry benthic ecology radon Boston Harbor a b s t r a c t The ventilation

  1. ENERGY ANALYSISF FOR WORKSHOPS WITH FLOOR-SUPPLY DISPLACEMENT VENTILATION UNDER THE U.S. CLIMATES

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    1 ENERGY ANALYSISF FOR WORKSHOPS WITH FLOOR-SUPPLY DISPLACEMENT VENTILATION UNDER THE U.S. CLIMATES ventilation systems are better than mixing ventilation systems. The benefits include indoor air quality. This research compared the energy use of a floor-supply displacement ventilation system in a large industrial

  2. Wireless Ventilation Control for Large-Scale Systems: the Mining Industrial Case

    E-Print Network [OSTI]

    Boyer, Edmond

    Wireless Ventilation Control for Large-Scale Systems: the Mining Industrial Case E. Witrant1,, A. D, for large scale systems with high environmental impact: the mining ventilation control systems. Ventilation). We propose a new model for underground ventilation. The main components of the system dynamics

  3. Ventilating Existing Homes in the US Air Infiltration Review. 2010;31(2)

    E-Print Network [OSTI]

    mechanical ventilation fan leads to reductions in other measures, such as adding insulation. This has led

  4. Particle transport in low-energy ventilation systems. Part 2: Transients and experiments

    E-Print Network [OSTI]

    Bolster, Diogo

    Particle transport in low-energy ventilation systems. Part 2: Transients and experiments- sumption is a must for efficient ventilation system design. In this work, we study the transport ventilated by low energy displacement-ventilation systems. With these results and the knowledge of typical

  5. Experimental Measurements and Numerical Simulations of Particle Transport and Distribution in Ventilated Rooms

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    was neglected, and particles were hence removed only by the ventilation system. Thus the particle removal performance of different ventilation systems can be evaluated. Three ventilation systems have been studied; Ventilation systems; Lagrangian particle tracking, CFD 1. Introduction Suspended particulate matter can serve

  6. Assessment of Energy Savings Potential from the Use of Demand Control Ventilation Systems in General Office Spaces in California

    SciTech Connect (OSTI)

    Hong, Tianzhen; Fisk, William J.

    2009-07-08T23:59:59.000Z

    Demand controlled ventilation (DCV) was evaluated for general office spaces in California. A medium size office building meeting the prescriptive requirements of the 2008 California building energy efficiency standards (CEC 2008) was assumed in the building energy simulations performed with the EnergyPlus program to calculate the DCV energy savings potential in five typical California climates. Three design occupancy densities and two minimum ventilation rates were used as model inputs to cover a broader range of design variations. The assumed values of minimum ventilation rates in offices without DCV, based on two different measurement methods, were 81 and 28 cfm per occupant. These rates are based on the co-author's unpublished analyses of data from EPA's survey of 100 U.S. office buildings. These minimum ventilation rates exceed the 15 to 20 cfm per person required in most ventilation standards for offices. The cost effectiveness of applying DCV in general office spaces was estimated via a life cycle cost analyses that considered system costs and energy cost reductions. The results of the energy modeling indicate that the energy savings potential of DCV is largest in the desert area of California (climate zone 14), followed by Mountains (climate zone 16), Central Valley (climate zone 12), North Coast (climate zone 3), and South Coast (climate zone 6). The results of the life cycle cost analysis show DCV is cost effective for office spaces if the typical minimum ventilation rates without DCV is 81 cfm per person, except at the low design occupancy of 10 people per 1000 ft{sup 2} in climate zones 3 and 6. At the low design occupancy of 10 people per 1000 ft{sup 2}, the greatest DCV life cycle cost savings is a net present value (NPV) of $0.52/ft{sup 2} in climate zone 14, followed by $0.32/ft{sup 2} in climate zone 16 and $0.19/ft{sup 2} in climate zone 12. At the medium design occupancy of 15 people per 1000 ft{sup 2}, the DCV savings are higher with a NPV $0.93/ft{sup 2} in climate zone 14, followed by $0.55/ft{sup 2} in climate zone 16, $0.46/ft{sup 2} in climate zone 12, $0.30/ft{sup 2} in climate zone 3, $0.16/ft{sup 2} in climate zone 3. At the high design occupancy of 20 people per 1000 ft{sup 2}, the DCV savings are even higher with a NPV $1.37/ft{sup 2} in climate zone 14, followed by $0.86/ft{sup 2} in climate zone 16, $0.84/ft{sup 2} in climate zone 3, $0.82/ft{sup 2} in climate zone 12, and $0.65/ft{sup 2} in climate zone 6. DCV was not found to be cost effective if the typical minimum ventilation rate without DCV is 28 cfm per occupant, except at high design occupancy of 20 people per 1000 ft{sup 2} in climate zones 14 and 16. Until the large uncertainties about the base case ventilation rates in offices without DCV are reduced, the case for requiring DCV in general office spaces will be a weak case.

  7. Comparison of Two Ventilation Systems in a Chinese Commercial Kitchen

    E-Print Network [OSTI]

    Wan, X.; Yu, L.; Hou, H.

    2006-01-01T23:59:59.000Z

    A numerical simulation of an indoor thermal environment in a Chinese commercial kitchen has been carried out using indoor zero-equation turbulence model. Two different ventilation systems in a Chinese commercial kitchen have been simulated...

  8. Experiment on Residential Ventilation System In Actual House

    E-Print Network [OSTI]

    Tiecheng, L.

    2006-01-01T23:59:59.000Z

    Traced-gas was used in the experiment in order to evaluate the ventilation effect in different conditions in actual house. The influence of interior doors which opened or closed and vents position were considered in the experiment....

  9. Key Factors in Displacement Ventilation Systems for Better IAQ

    E-Print Network [OSTI]

    Wang, X.; Chen, J.; Li, Y.; Wang, Z.

    2006-01-01T23:59:59.000Z

    This paper sets up a mathematical model of three-dimensional steady turbulence heat transfer in an air-conditioned room of multi-polluting heat sources. Numerical simulation helps identify key factors in displacement ventilation systems that affect...

  10. Educational placements for children who are ventilator assisted

    E-Print Network [OSTI]

    Jones, David E.; Clatterburk, Chris C.; Marquis, Janet; Turnbull, H. Rutherford; Moberly, Rebecca L.

    1996-01-01T23:59:59.000Z

    Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Educational placements for children who are ventilator assisted Jones, David E;Clatterbuck, Chris C;Marquis, Janet;Turnbull, H Rutherford, III...

  11. Ventilation Effectiveness Research at UT-Typer Lab Houses

    Broader source: Energy.gov (indexed) [DOE]

    Ventilation Effectiveness Research at UT-Tyler Lab Houses Source Of Outside Air, Distribution, Filtration Armin Rudd Twin (almost) Lab Houses at UT-Tyler House 2: Unvented attic,...

  12. Commissioning Trial for Mechanical Ventilation System Installed in Houses

    E-Print Network [OSTI]

    Ohta, I.; Fukushima, A.

    2004-01-01T23:59:59.000Z

    , commissioning process should be introduced more often. REFERENCES (1) Roger Anneling, The P-mark system for prefabricated houses in Sweden, 1998, CADDET (2) Hirai et al, Comparison between results from ventilation network model calculation...

  13. active tracheal ventilation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    S. MITCHELL, T. T. GLEESON, California 92717 MITCHELL, G. S., T. T. GLEESON, AND A. F. BENNETT. Ventilation and acid-base balance during (Vcoz) and 02 consumption (SOL?), and...

  14. Key Factors in Displacement Ventilation Systems for Better IAQ 

    E-Print Network [OSTI]

    Wang, X.; Chen, J.; Li, Y.; Wang, Z.

    2006-01-01T23:59:59.000Z

    This paper sets up a mathematical model of three-dimensional steady turbulence heat transfer in an air-conditioned room of multi-polluting heat sources. Numerical simulation helps identify key factors in displacement ventilation systems that affect...

  15. Indoor air quality issues related to the acquisition of conservation in commercial buildings

    SciTech Connect (OSTI)

    Baechler, M.C.; Hadley, D.L.; Marseille, T.J.

    1990-09-01T23:59:59.000Z

    The quality of indoor air in commercial buildings is dependent on the complex interaction between sources of indoor pollutants, environmental factors within buildings such as temperature and humidity, the removal of air pollutants by air-cleaning devices, and the removal and dilution of pollutants from outside air. To the extent that energy conservation measures (ECMs) may affect a number of these factors, the relationship between ECMs and indoor air quality is difficult to predict. Energy conservation measures may affect pollutant levels in other ways. Conservation measures, such as caulking and insulation, may introduce sources of indoor pollutants. Measures that reduce mechanical ventilation may allow pollutants to build up inside structures. Finally, heating, ventilation, and air-conditioning (HVAC) systems may provide surface areas for the growth of biogenic agents, or may encourage the dissemination of pollutants throughout a building. Information about indoor air quality and ventilation in both new and existing commercial buildings is summarized in this report. Sick building syndrome and specific pollutants are discussed, as are broader issues such as ventilation, general mitigation techniques, and the interaction between energy conservation activities and indoor air quality. Pacific Northwest Laboratory (PNL) prepared this review to aid the Bonneville Power Administration (Bonneville) in its assessment of potential environmental effects resulting from conservation activities in commercial buildings. 76 refs., 2 figs., 19 tabs.

  16. Capture and Use of Coal Mine Ventilation Air Methane

    SciTech Connect (OSTI)

    Deborah Kosmack

    2008-10-31T23:59:59.000Z

    CONSOL Energy Inc., in conjunction with MEGTEC Systems, Inc., and the U.S. Department of Energy with the U.S. Environmental Protection Agency, designed, built, and operated a commercial-size thermal flow reversal reactor (TFRR) to evaluate its suitability to oxidize coal mine ventilation air methane (VAM). Coal mining, and particularly coal mine ventilation air, is a major source of anthropogenic methane emissions, a greenhouse gas. Ventilation air volumes are large and the concentration of methane in the ventilation air is low; thus making it difficult to use or abate these emissions. This test program was conducted with simulated coal mine VAM in advance of deploying the technology on active coal mine ventilation fans. The demonstration project team installed and operated a 30,000 cfm MEGTEC VOCSIDIZER oxidation system on an inactive coal mine in West Liberty, WV. The performance of the unit was monitored and evaluated during months of unmanned operation at mostly constant conditions. The operating and maintenance history and how it impacts the implementation of the technology on mine fans were investigated. Emission tests showed very low levels of all criteria pollutants at the stack. Parametric studies showed that the equipment can successfully operate at the design specification limits. The results verified the ability of the TFRR to oxidize {ge}95% of the low and variable concentration of methane in the ventilation air. This technology provides new opportunities to reduce greenhouse gas emissions by the reduction of methane emissions from coal mine ventilation air. A large commercial-size installation (180,000 cfm) on a single typical mine ventilation bleeder fan would reduce methane emissions by 11,000 to 22,100 short tons per year (the equivalent of 183,000 to 366,000 metric tonnes carbon dioxide).

  17. Evaluation of pulmonary ventilation in horses during methoxyflurane anesthesia

    E-Print Network [OSTI]

    McDonald, Don Reed

    1976-01-01T23:59:59.000Z

    EVALUATION OF PULMONARY VENTILATION IN HORSES DURING METHOXYFLURANE ANESTHESIA A Thesis by DON REED McDONALD Submitted to the Graduate College of Texas A8M University in Partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE August 1976 Major Subject: Veterinary Medicine and Surgery EVALUATION OF PULMONARY VENTILATION IN HORSES DURING METHOXYFLURANE ANESTHESIA A Thesis by DON REED McDONALD Approved as to style and content by; Chairman o Committee Head...

  18. Design Alternative Evaluation No. 3: Post-Closure Ventilation

    SciTech Connect (OSTI)

    Logan, R.C.

    1999-06-22T23:59:59.000Z

    The objective of this study is to provide input to the Enhanced Design Alternatives (EDA) for License Application Design Selection (LADS). Its purpose is to develop and evaluate conceptual designs for post-closure ventilation alternatives that enhance repository performance. Post-closure ventilation is expected to enhance repository performance by limiting the amount of water contacting the waste packages. Limiting the amount of water contacting the waste packages will reduce corrosion.

  19. Evaluating Ventilation Systems for Existing Homes

    SciTech Connect (OSTI)

    Aldrich, R.; Arena, L.

    2013-02-01T23:59:59.000Z

    During the course of this project, an affordable and high performance ductwork system to directly address the problems of thermal losses, poor efficiency, and air leakage was designed. To save space and enable direct connections between different floors of the building, the ductwork system was designed in such a way that it occupied interior or exterior frame wall cavities. The ductwork system satisfied building regulations for structural support when bridging multiple floors, the spread of fire and smoke, and insulation to reduce the heat flow into or out of the building. Retrofits of urban residential buildings will be the main focus for the application of this ductwork system. Highly reflective foils and insulating materials were used to aid in the increase of the overall R-value of the ductwork itself and the wall assembly. It is expected that the proposed system will increase the efficiency of the HVAC system and the thermal resistance of the building envelope. The performance of the proposed ductwork design was numerically evaluated in a number of different ways. Our results indicate that the duct method is a very cost attractive alternative to the conventional method.

  20. MR-compatible ventilator for small animals: computer-controlled ventilation for proton and noble gas imaging

    E-Print Network [OSTI]

    of normal breathing gas or experimental test gases. 2. Materials and methods 2.1. Overview of the ventilator/timers control electro-mechanical relays (S2072 relay board, National Instruments Interface Board), which in turn