Powered by Deep Web Technologies
Note: This page contains sample records for the topic "vented gas fireplaces" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Fireplace photo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

photo Fireplace photo Photo of a fireplace. Fireplace photo More Documents & Publications .Hearth, Patio & Barbecue Association's Comments on DOE's Regulatory Burden RFI Department...

2

How Efficient is Your Fireplace? | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

How Efficient is Your Fireplace? How Efficient is Your Fireplace? How Efficient is Your Fireplace? February 10, 2012 - 10:21am Addthis In the middle of winter, fireplaces are a popular topic. This week, Ernie talked about re-building his dual-sided fireplace and adding a damper and tempered-glass doors in the process. In the heating urban myth debate, Elizabeth shared her former roommate's assumption that using a gas fireplace to heat a single room would be more efficient than a central heating system (not necessarily - it depends on your utility rates). We have several blog entries that talk about using your fireplace efficiently, and we provide some tips on our seasonal website. How efficient is your fireplace? Is it gas or wood-burning? Do you have tempered glass doors, an efficient damper, or other devices to keep it from

3

How Efficient is Your Fireplace? | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Efficient is Your Fireplace? Efficient is Your Fireplace? How Efficient is Your Fireplace? February 10, 2012 - 10:21am Addthis In the middle of winter, fireplaces are a popular topic. This week, Ernie talked about re-building his dual-sided fireplace and adding a damper and tempered-glass doors in the process. In the heating urban myth debate, Elizabeth shared her former roommate's assumption that using a gas fireplace to heat a single room would be more efficient than a central heating system (not necessarily - it depends on your utility rates). We have several blog entries that talk about using your fireplace efficiently, and we provide some tips on our seasonal website. How efficient is your fireplace? Is it gas or wood-burning? Do you have tempered glass doors, an efficient damper, or other devices to keep it from

4

Energy Savers: Fireplaces | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Savers: Fireplaces Energy Savers: Fireplaces Saving energy in fireplace use Energy Savers: Fireplaces More Documents & Publications Energy Saver 101: Home Heating Energy Saver...

5

Gas generation results and venting study for transuranic waste drums  

SciTech Connect (OSTI)

Sixteen waste drums, containing six categories of plutonium-contaminated waste, were monitored for venting and gas generation for six months. The venting devices tested appeared adequate to relieve pressure and prevent hydrogen accumulation. Most of the gas generation, primarily H2 and CO2, was due to radiolytic decomposition of the hydrogenous wastes. Comparison of the gas yields with those obtained previously in laboratory tests showed very reasonable agreement with few exceptions.

Kazanjian, A.R.; Arnold, P.M.; Simmons, W.C.; D'Amico, E.L.

1985-09-23T23:59:59.000Z

6

Other States Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Other States Natural Gas Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 408 1992 501 530 501 1993 501 522 515 533 536 531 583 546 1994 533 616 623 620 629 654 1995 667 594 663 634 643 626 643 663 603 553 567 578 1996 549 538 625 620 693 703 709 715 676 708 682 690 1997 133 124 135 142 147 142 149 177 160 150 159 161 1998 147 134 150 148 132 117 126 132 124 121 121 123 1999 754 406 686 588 693 611 708 340 590 811 785 592 2000 147 135 152 163 175 159 187 180 175 179 176 183 2001 166 149 171 206 224 208 221 218 229 222 222 238 2002 172 163 176 196 185 177 191 184 188 180 157 165

7

Methods for determining vented volumes during gas well blowouts  

SciTech Connect (OSTI)

Several methods are presented for determining vented volumes during gas well blowouts. The methods described apply to gas production in which no liquids phase(s), hydrocarbon and/or water, are present in the gas. Each method is illustrated with a numerical example. Sensitivity analyses provide estimates of probable errors. The method of crossplotting formation and flow string resistances is the only one which does not require special measurements. It is therefore applicalbe to cratered wells and underwater blowouts. The report includes several suggestions for investigations which might lead to better methods.

Hawkins, M.F. Jr.

1980-10-01T23:59:59.000Z

8

Solar and standby fireplace system  

SciTech Connect (OSTI)

A home heating system for supplying heated air and water is made up of a solar energy heating unit. The solar energy heating unit is provided with a channel in an insulating layer mounted within the housing, which channel directs heated air to the interior of the home. The interior of the housing also is provided with a plurality of water pipes for heating water. The water is preferably supplied from an indoor swimming pool and redirected back to the indoor swimming pool after being heated. A fireplace is also provided in conjunction with the solar energy heating unit, which fireplace acts as a back-up unit when the solar unit is not operable due to insufficient sunlight. The fireplace contains a conventional hearth and flue and is provided with a plurality of air conduits and water pipes within the flue so that the air and water may be heated by the fire in the hearth.

Binner, T.S.

1983-08-30T23:59:59.000Z

9

Biological and Chemical Scrubbings of Vented gas from hot-melting operation of recycled nylon plastics.  

E-Print Network [OSTI]

??This study aimed to develop a biotrickling-biofilter process and a two-stage chemical scrubbing process to absorb and oxidize VOCs in vented gas from hot-melt granulation… (more)

Chen, Kuan-po

2014-01-01T23:59:59.000Z

10

Arizona Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA

11

Pennsylvania Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0

12

Kentucky Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0

13

Oklahoma Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA

14

Ohio Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0

15

Arizona Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 NA NA NA NA NA NA NA NA NA NA NA NA

16

Florida Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 NA NA NA NA NA NA NA NA NA NA NA NA

17

Pennsylvania Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0

18

Virginia Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0

19

Oklahoma Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0

20

Illinois Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0

Note: This page contains sample records for the topic "vented gas fireplaces" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Florida Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA

22

Methods for determining vented volumes during gas-condensate and oil-well blowouts  

SciTech Connect (OSTI)

Several methods are presented for determining vented volumes during gas-condensate and oil well blowouts. Each method is illustrated with a numerical example. The method of crossplotting formation and flow string resistances is the only one which does not require special measurements. It is, therefore, applicable to cratered wells and underwater blowouts. The report includes several suggestions for investigations which might lead to better methods.

Hawkins, M.F. Jr.

1981-09-01T23:59:59.000Z

23

BRRR...5 Ways to Maximize Your Fireplace and Chimney Efficiency |  

Broader source: Energy.gov (indexed) [DOE]

BRRR...5 Ways to Maximize Your Fireplace and Chimney Efficiency BRRR...5 Ways to Maximize Your Fireplace and Chimney Efficiency BRRR...5 Ways to Maximize Your Fireplace and Chimney Efficiency January 30, 2013 - 5:13pm Addthis A warm fireplace can save you energy and money with proper maintenance. | Photo courtesy of ©iStockphoto.com/Pgiam. A warm fireplace can save you energy and money with proper maintenance. | Photo courtesy of ©iStockphoto.com/Pgiam. Erin Connealy Communications Specialist, Office of Energy Efficiency and Renewable Energy How can I participate? Follow these tips to make sure that your cozy fireplace isn't wasting energy in your home. The Northeast and much of the country has had very frigid temperatures lately! If you're like me, nothing sounds better than cozying up to the fireplace with a cup of cocoa on a cold day. But be aware that while

24

Federal Offshore--Gulf of Mexico Natural Gas Vented and Flared (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Federal Offshore--Gulf of Mexico Natural Gas Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 1,994 1,804 1,837 1,504 1,798 1,541 1,890 1,954 1,742 2,018 1,823 1,711 2002 1,661 1,512 1,693 1,728 1,794 1,738 1,809 1,820 1,523 1,433 1,667 1,714 2003 1,728 1,590 1,801 1,753 1,774 1,675 1,639 1,702 1,612 1,661 1,555 1,617 2004 1,554 1,465 1,600 1,544 1,566 1,463 1,536 1,508 1,194 1,301 1,336 1,339 2005 1,368 1,266 1,430 1,362 1,429 1,351 1,291 1,204 609 607 862 1,021

25

Gas Combustion Appliances: Validating VENT-II Vi H. Rapp, Albert Pastor-Perez, Brett C. Singer, and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Predicting Backdrafting and Spillage for Natural-Draft Predicting Backdrafting and Spillage for Natural-Draft Gas Combustion Appliances: Validating VENT-II Vi H. Rapp, Albert Pastor-Perez, Brett C. Singer, and Craig P. Wray Environmental Energy Technologies Division April 2013 In Press as: Vi H. Rapp, Albert Pastor-Perez, Brett C. Singer, and Craig P. Wray. 2013. "Predicting Backdrafting and Spillage for Natural-Draft Gas Combustion Appliances: A Validation of VENT-II". HVAC&R Research, DOI:10.1080/10789669.2013.771948 LBNL-6193E 2 DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof,

26

Petrographic, Mineralogic, and Geochemical Studies of Hydrocarbon-derived Authigenic Carbonate Rock from Gas Venting, Seepage, Free Gas, and Gas Hydrate Sites in the Gulf of Mexico and offshore India  

E-Print Network [OSTI]

. ACR collected from the seafloor in the Gulf of Mexico (GOM) and ACR recovered from drilled cores in the Krishna-Godawari (KG) basin offshore India were used. All study sites are associated with hydrocarbon gas venting, seepage, free gas, or gas hydrate...

Jung, Woodong

2012-02-14T23:59:59.000Z

27

Venting and leaking of methane from shale gas development: response to Cathles et al.  

Science Journals Connector (OSTI)

In April 2011, we published the first comprehensive analysis of greenhouse gas (GHG) emissions from shale gas obtained by hydraulic fracturing, with a focus...2012...). Here, we respond to those criticisms. We st...

Robert W. Howarth; Renee Santoro; Anthony Ingraffea

2012-07-01T23:59:59.000Z

28

Battery Vent Mechanism And Method  

DOE Patents [OSTI]

Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

Ching, Larry K. W. (Littleton, CO)

2000-02-15T23:59:59.000Z

29

Battery venting system and method  

DOE Patents [OSTI]

Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

Casale, Thomas J. (Aurora, CO); Ching, Larry K. W. (Littleton, CO); Baer, Jose T. (Gaviota, CA); Swan, David H. (Monrovia, CA)

1999-01-05T23:59:59.000Z

30

INSTALLATIONAND OPERATING INSTRUCTIONS FOR AQ-1 POWER VENT KIT  

E-Print Network [OSTI]

) including 25 foot control cable with 1/4" quick connect ends and an HPN 6 foot power cord 2. Nylon ties 1INSTALLATIONAND OPERATING INSTRUCTIONS FOR AQ-1 POWER VENT KIT DESIGNED FOR BOSCH 425 HN WATER OF CONTENTS contents with anAQ-1 power vent p.1 mounting gas pressure switch p.2 mounting linear spillage

Kostic, Milivoje M.

31

Natural Gas Vented and Flared  

U.S. Energy Information Administration (EIA) Indexed Site

143,457 166,909 165,360 165,928 209,439 212,848 1936-2012 143,457 166,909 165,360 165,928 209,439 212,848 1936-2012 Alaska 6,458 10,023 6,481 10,173 10,966 11,769 1967-2012 Alaska Onshore 5,125 7,812 5,271 8,034 9,276 9,244 1992-2012 Alaska State Offshore 1,334 2,212 1,210 2,139 1,690 2,525 1992-2012 Federal Offshore Gulf of Mexico 12,509 14,507 14,754 13,971 15,502 16,296 1997-2012 Louisiana 6,496 4,021 4,336 4,578 6,302 NA 1967-2012 Louisiana Onshore 6,078 3,777 4,121 4,432 6,153 NA 1992-2012 Louisiana State Offshore 418 243 215 146 149 NA 1999-2012 New Mexico 929 803 481 1,586 4,360 12,259 1967-2012 Oklahoma 0 0 0 0 1967-2010 Texas 36,682 42,541 41,234 39,569 35,248 47,530 1967-2012 Texas Onshore 36,682 42,541 41,234 39,569 35,248 47,530 1992-2012

32

Natural Gas Vented and Flared  

U.S. Energy Information Administration (EIA) Indexed Site

6-2013 6-2013 Oklahoma NA NA NA NA NA NA 1996-2013 Texas NA NA NA NA NA NA 1991-2013 Wyoming NA NA NA NA NA NA 1991-2013 Other States Other States Total NA NA NA NA NA NA 1991-2013 Alabama NA NA NA NA NA NA 1996-2013 Arizona NA NA NA NA NA NA 1996-2013 Arkansas NA NA NA NA NA NA 1991-2013 California NA NA NA NA NA NA 1996-2013 Colorado NA NA NA NA NA NA 1996-2013 Florida NA NA NA NA NA NA 1996-2013 Illinois NA NA NA NA NA NA 1991-2013 Indiana NA NA NA NA NA NA 1991-2013 Kansas NA NA NA NA NA NA 1996-2013 Kentucky NA NA NA NA NA NA 1991-2013 Maryland NA NA NA NA NA NA 1991-2013 Michigan NA NA NA NA NA NA 1996-2013 Mississippi NA NA NA NA NA NA 1996-2013 Missouri NA NA NA NA NA NA 1991-2013

33

Compressed Gas Cylinder Policy  

E-Print Network [OSTI]

storage rack, a wall mounted cylinder rack, anchored to a fixed bench top, vented gas cabinet, or other

34

Vent construction for batteries  

SciTech Connect (OSTI)

A battery casing to be hermetically sealed is described the casing having main side walls with end walls bridging the end portions of the side walls, at least one of the end walls facing and being exposed to the battery interior, the improvement in vent means for the casing which ruptures when internal casing pressure exceeds a given value. The vent means include at least one vent-forming rib of a given length and width projecting outward from a portion of the end wall normally facing the battery interior, the rib being in a central band or segment of the one end wall and oriented so that the length of the rib is parallel to the band or segment; and the rib having formed therein a vent-forming groove which extends transversely of the length of the rib only part way substantially symmetrically along the transverse contour thereof, so that both ends of the groove are spaced from the base of the rib and the groove extends comparable distances on both sides of the top or center point of the rib contour.

Romero, A.

1986-07-22T23:59:59.000Z

35

Life and hydrothermal vents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Life and hydrothermal vents Life and hydrothermal vents Name: williamh Status: N/A Age: N/A Location: N/A Country: N/A Date: Around 1993 Question: Are there biological communities near hydrothermal vents in the ocean? Is there any life inside the hydrothermal vent? Replies: If the presence of microorganisms in hot springs and geysers are any indication, I am certain there is life inside hydrothermal vents. These heat loving organisms are termed "thermophiles" and thrive where other life dies. They are able to survive in extreme heat due to the unique way their proteins are synthesized. The May 1993 Discover has a special article on thermophiles. wizkid Life at high temperature became very interesting to molecular biologists recently. The enormously useful technique known as PCR, (polymerase chain reaction), by which very small amounts of rare DNA can be amplified to large concentrations (Jurassic Park!), depends on having a DNA polymerase (the enzyme that synthesizes complementary DNA strands during replication of chromosomes), that can work at high temperatures, or at least can survive repeated high temperature cycles. PCR depends on synthesis of DNA followed by forced separation of the daughter strands at high temperature, followed by new synthesis, to amplify DNA exponentially. At any rate, normal bacterial polymerase will not work because the high temperature cycles kill it. Enter the now infamous, patented Taq polymerase, isolated from Thermus aquaticus, a hot spring bacterium, which works after heating to up to 94 C! So knowledge of life at high temperature allowed molecular biologists to get PCR to work, with all its benefits in cloning very rare genes and amplifying small amounts of DNA for forensic work etc.

36

Vented target elements for use in an isotope-production reactor. [LMFBR  

DOE Patents [OSTI]

A method is described for producing tritium gas in a fast breeder reactor cooled with liquid metal. Lithium target material is placed in pins equipped with vents, and tritium gas is recovered from the coolant.

Cawley, W.E.; Omberg, R.P.

1982-08-19T23:59:59.000Z

37

Volatile liquid hydrocarbon characterization of underwater hydrocarbon vents and formation waters from offshore production operations  

Science Journals Connector (OSTI)

Volatile liquid hydrocarbon characterization of underwater hydrocarbon vents and formation waters from offshore production operations ... The environmental implications of offshore oil and gas activities ... The environmental implications of offshore oil and gas activities ...

Theodor C. Sauer

1981-08-01T23:59:59.000Z

38

Ultra-high CO2 capture efficiency in CFB oxyfuel power plants by calcium looping process for CO2 recovery from purification units vent gas  

Science Journals Connector (OSTI)

Abstract This work presents a new option for the recovery of the CO2 losses from CO2 purification units in oxyfuel plants, by means of the Ca-looping process. The idea is to capture the CO2 in the vent stream from purification units by reaction with CaO sorbent in a carbonator reactor, where CaCO3 is formed. Sorbent is then regenerated in a calciner reactor by oxyfuel combustion of a fraction of the coal fed to the power plant. Since the Ca-looping process requires a continuous purge of exhaust sorbent and make-up of fresh limestone, the system is best coupled with a CFB boiler, where the exhausted Ca-rich sorbent can be used for in-furnace sulfur absorption. In this work, detailed mass and energy balances of the system proposed are reported, including a preliminary sizing of the reactors of the Ca-looping unit. A sensitivity analysis was also performed, by considering two types of coal as feed (mainly differing in sulfur content), two levels of non-condensable gases in the impure CO2 stream to be purified and different behaviors of the exhausted Ca-based sorbent injected in the CFB boiler, where it can experience different levels of recarbonation. Interesting results were obtained for this new system, which can capture about 90% of the CO2 vented from the purification unit in a reasonably compact reactors system, allowing an overall CO2 avoidance of the order of 99% with respect to conventional coal-fired steam plants without capture. As far as energy penalties are concerned, they were evaluated by the specific primary energy consumption for CO2 avoided index (SPECCA). Small differences with respect to reference oxyfuel plants without CO2 recovery were obtained, with either slightly better or slightly worse performances, depending on the sulfur content of the coal used. Penalties are associated to the export of CaO in the final exhausted sulfated sorbent from the CFB boiler, which increases when a higher sulfur coal is used. However, experimental analysis on the recarbonation level which can be attained by the CaL exhaust sorbent in the CFB boiler and further process optimization are needed to correctly account for these penalties and possibly minimize them.

Matteo C. Romano

2013-01-01T23:59:59.000Z

39

Estimation of heat and chemical fluxes from a seafloor hydrothermal vent field using radon measurements  

Science Journals Connector (OSTI)

... exists at about 200 m above the depth of the vent field12'13. Distinct excess radon levels have been observed at Endeavour both in vent water and in the effluent plume ... vent water and in the effluent plume up to 17 km from the ridge axis14.Radon is a chemically inert gas with a radioactive half life of 3.85 days. ...

N. D. Rosenberg; J. E. Lupton; D. Kadko; R. Collier; M. D. Lilley; H. Pak

1988-08-18T23:59:59.000Z

40

Terr. Atmos. Ocean. Sci., Vol. 17, No. 4, 933-950, December 2006 Methane Venting in Gas Hydrate Potential Area Offshore of SW  

E-Print Network [OSTI]

Potential Area Offshore of SW Taiwan: Evidence of Gas Analysis of Water Column Samples Tsanyao Frank Yang 1 areas offshore of SW Taiwan for analysis of dissolved gases. Some these samples show unusually high-shore and offshore of southwestern Taiwan (e.g., Chow et al. 2000; Yang et al. 2004; Chiu et al. 2006). The gases

Lin, Andrew Tien-Shun

Note: This page contains sample records for the topic "vented gas fireplaces" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

NUPRO process vent/MCO check valve - prevent backflow from process vent into MCO  

SciTech Connect (OSTI)

NUPRO process vent/MCO check valve - prevent backflow from process vent into MCO CGI-SNF-D-30-3-P4-040.

VAN KATWIJK, C.

1999-07-01T23:59:59.000Z

42

Transport characteristics across drum filter vents and polymer bags  

SciTech Connect (OSTI)

The rate at which hydrogen (H {sub 2}) or a volatile organic compound (VOC) exits a layer of confinement in a vented waste drum is proportional to the concentration difference across the layer. The proportionality constant is the gas transport characteristic. A series of transport experiments were conducted to determine H{sub 2} and VOC transport characteristics across different drum filter vents and polymer bags. This report reviews the methods and results of past investigators in defining transport characteristics across filter vents and polymer bags, describes the apparatus and procedures used in these experiments, compares the reported and estimated transport characteristics with earlier results, and discusses the impact of changing the transport characteristic values used in model calculations.

Liekhus, K.J.

1994-08-01T23:59:59.000Z

43

Vent for an electrochemical cell  

SciTech Connect (OSTI)

A pressure relief vent is described for use with a container subjected to internal pressure by a fluid, the vent comprising: pressure relief means comprising a diaphragm essentially flat in shape fastened to the exterior of the container at the perimeter of the diaphragm and at a location within the perimeter of the diaphragm; an opening in the container disposed so that fluid from the container can pass between the diaphragm and the container and exert pressure on the diaphragm; and the pressure relief means being ruptured at a predetermined pressure exerted by the fluid on the diaphragm.

Wilson, J.A.; Staniewicz, R.J.; Webber, B.; Allvey, G.W.

1987-05-12T23:59:59.000Z

44

GRI`s venting research program: Activities at Battelle and A.G.A. Laboratories (1988-1994). Final report, July 1988-September 1994  

SciTech Connect (OSTI)

The objective of this program was to develop guidelines for the practical and safe venting of flue gases from mid- and high-efficiency gas-fired appliances. The introduction of a greater diversity of appliances led to the need for revised venting guidelines. Through interaction with a GRI-established Technical Advisory Group, the venting program staff developed R&D tools and methods to analyze the venting requirements of gas appliances. Venting guidelines were developed and have been included in all manufacturers` furnace installation instructions since 1990. Guidelines were submitted to the National Fuel Gas Code (NFGC), accepted by the NFPA, and published in August 1992. Other combustion and ventilation air supply, vent terminals, VENT-II computer model, masonry chimneys, and commercial installations. The program has yielded a consumer savings estimated at $700 million, based on the implementation of the new venting guidelines that prevent vent corrosion and that provide consumers with subsequent savings in equipment repair and replacement costs. The GRI Venting Research Program also has enhanced consumer safety by helping ensure proper vent design and installation.

Rutz, A.L.; Paul, D.D.; DeWerth, D.W.; Borgeson, R.A.

1994-10-01T23:59:59.000Z

45

Natural Gas Vented and Flared (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

143,457 166,909 165,360 165,928 209,439 212,848 1936-2012 143,457 166,909 165,360 165,928 209,439 212,848 1936-2012 Federal Offshore Gulf of Mexico 12,509 14,507 14,754 13,971 15,502 16,296 1997-2012 Alabama 2,372 1,801 2,495 2,617 3,491 NA 1967-2012 Alaska 6,458 10,023 6,481 10,173 10,966 11,769 1967-2012 Arizona 0 0 0 0 0 0 1971-2012 Arkansas 11 114 141 425 494 NA 1967-2012 California 1,879 2,127 2,501 2,790 2,424 NA 1967-2012 Colorado 1,333 1,501 1,411 1,242 1,291 NA 1967-2012 Florida 0 0 0 0 0 0 1971-2012 Illinois 0 0 0 0 0 0 1967-2012 Indiana 0 0 0 0 2003-2010 Kansas 363 373 353 323 307 NA 1967-2012 Kentucky 0 0 0 0 0 0 1967-2012 Louisiana 6,496 4,021 4,336 4,578 6,302 NA 1967-2012 Maryland 0 0 0 0 0 0 2006-2012 Michigan 3,324 3,324 3,324 3,324 3,324 NA 1967-2012

46

Natural Gas Vented and Flared (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

6-2013 6-2013 Alaska NA NA NA NA NA NA 1991-2013 Arizona NA NA NA NA NA NA 1996-2013 Arkansas NA NA NA NA NA NA 1991-2013 California NA NA NA NA NA NA 1996-2013 Colorado NA NA NA NA NA NA 1996-2013 Florida NA NA NA NA NA NA 1996-2013 Illinois NA NA NA NA NA NA 1991-2013 Indiana NA NA NA NA NA NA 1991-2013 Kansas NA NA NA NA NA NA 1996-2013 Kentucky NA NA NA NA NA NA 1991-2013 Louisiana NA NA NA NA NA NA 1991-2013 Maryland NA NA NA NA NA NA 1991-2013 Michigan NA NA NA NA NA NA 1996-2013 Mississippi NA NA NA NA NA NA 1996-2013 Missouri NA NA NA NA NA NA 1991-2013 Montana NA NA NA NA NA NA 1996-2013 Nebraska NA NA NA NA NA NA 1991-2013 Nevada NA NA NA NA NA NA 1991-2013 New Mexico NA NA NA NA NA NA 1996-2013

47

Reactor pressure vessel head vents and methods of using the same  

DOE Patents [OSTI]

Internal head vents are usable in nuclear reactors and include piping inside of the reactor pressure vessel with a vent in the reactor upper head. Piping extends downward from the upper head and passes outside of the reactor to permit the gas to escape or be forcibly vented outside of the reactor without external piping on the upper head. The piping may include upper and lowers section that removably mate where the upper head joins to the reactor pressure vessel. The removable mating may include a compressible bellows and corresponding funnel. The piping is fabricated of nuclear-reactor-safe materials, including carbon steel, stainless steel, and/or a Ni--Cr--Fe alloy. Methods install an internal head vent in a nuclear reactor by securing piping to an internal surface of an upper head of the nuclear reactor and/or securing piping to an internal surface of a reactor pressure vessel.

Gels, John L; Keck, David J; Deaver, Gerald A

2014-10-28T23:59:59.000Z

48

AUTOMATED PLANNING FOR HYDROTHERMAL VENT PROSPECTING USING  

E-Print Network [OSTI]

AUTOMATED PLANNING FOR HYDROTHERMAL VENT PROSPECTING USING AUVS by ZEYN A SAIGOL A thesis submitted of searching the ocean floor for hydrothermal vents, using autonomous underwater vehicles (AUVs process (POMDP), but with a very large state space (of the order of 10123 states). This size of problem

Yao, Xin

49

Safe venting of ``red oil`` runaway reactions  

SciTech Connect (OSTI)

Calorimetry testing of Tri-n-butyl phosphate (TBP) saturated with strong nitric acid was performed to determine the relationship between vent size and pressure buildup in the event of a runaway reaction. These experiments show that runaway can occur in an open system, but that even when runaway is induced in the TBP/HN0{sub 3} system, dangerous pressure buildup will be prevented with practical vent size.

Paddleford, D.F. [Westinghouse Savannah River Co., Aiken, SC (United States); Fauske, H.K. [Fauske and Associates, Inc., Burr Ridge, IL (United States)

1994-12-21T23:59:59.000Z

50

Bonded carbon or ceramic fiber composite filter vent for radioactive waste  

DOE Patents [OSTI]

Carbon bonded carbon fiber composites as well as ceramic or carbon bonded ceramic fiber composites are very useful as filters which can separate particulate matter from gas streams entraining the same. These filters have particular application to the filtering of radioactive particles, e.g., they can act as vents for containers of radioactive waste material.

Brassell, Gilbert W. (13237 W. 8th Ave., Golden, CO 80401); Brugger, Ronald P. (Lafayette, CO)

1985-02-19T23:59:59.000Z

51

Measurements of NH3 and CO2 with distributed-feedback diode lasers near 2.0 m in bioreactor vent gases  

E-Print Network [OSTI]

absorption transition at 5016.977 cm 1 was selected for trace gas monitoring. For CO2, an isolated transition of a diode-laser sensor used to record gas-phase NH3 and CO2 mole fractions, ex- plain the motivation for NH3 and 40 ppm for CO2, which is suitable for the expected vent gas concentrations. 2. Theory

52

Chapter 12 - Depressurization, Blowdown, and Venting  

Science Journals Connector (OSTI)

Abstract An examination of emergency process inventory isolation and removal systems is provided in this chapter. These systems are commonly referred to in the process industry as ESD (emergency shutdown), venting, depressuring, or blowdown. Their objective is to prevent and limit the loss potential from system overpressure events that could lead to the loss of system integrity (i.e., ruptures, BLEVEs, etc.). The nature and purpose of pressure relief valves are examined, example vessel mathematical calculations to determine time to rupture are provided, blow and venting arrangements are discussed, and flare and burn pits features are described. Additionally, a flowchart is provided to determine which process vessels need depressurization capability depending on their operating characteristics. A table is provided to help determine disposal methods for various materials.

Dennis P. Nolan

2014-01-01T23:59:59.000Z

53

Sizing safety valve vent pipes for saturated steam  

SciTech Connect (OSTI)

A generalized procedure based on pressure and entropy as independent variables is used to calculate choked flow conditions at the valve orifice, valve pipe outlet and vent pipe outlet. At the third location, the results are independent of whether flow in the vent pipe is supersonic or subsonic. An integral method is used to calculate the vent pipe length required to choke the flow. 16 refs.

Brandmaier, H.E.

1982-01-01T23:59:59.000Z

54

Spatial and temporal patterns in larval supply at hydrothermal vents ...  

Science Journals Connector (OSTI)

... larvae of vent invertebrates must possess long-range dispersal abilities. ... Larval abundance in the water column within the axial valley was measured with

55

Results from measurements on the PV-VENT systems  

E-Print Network [OSTI]

Results from measurements on the PV-VENT systems at Lundebjerg Solar Energy Centre Denmark Danish from measurements on the PV-VENT systems at Lundebjerg Søren �stergaard Jensen Solar Energy Centre with (Jensen, 2000a) Solar Energy Centre Denmark's (Danish Technological Institute) measuring work in the PV

56

An Experimental Study and Analysis on Vent Cap Performance  

E-Print Network [OSTI]

and the ambient, there are vent caps that are used to allow air to flow out the building but not into it. These vent caps can significantly contribute to the pressure that the exhaust fan must overcome to remove air from the building, which means the exhaust fan...

Escatel, Daniel Santiago

2012-07-16T23:59:59.000Z

57

Automated Planning for Hydrothermal Vent Prospecting Using AUVs  

E-Print Network [OSTI]

Automated Planning for Hydrothermal Vent Prospecting Using AUVs Zeyn A Saigol A thesis submitted of searching the ocean floor for hydrothermal vents, using autonomous under- water vehicles (AUVs decision process (POMDP), but with a very large state space (of the order of 10123 states). This size

Yao, Xin

58

Montana Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 32 38 34 40 43 27 63 59 60 71 67 62 1997 67 60 71 62 66 83 72 92 47 118 186 195 1998 189 147 159 177 107 76 155 129 136 0 0 0 1999 47 54 50 52 56 58 0 0 0 0 0 0 2000 43 39 41 44 49 44 44 36 36 39 43 28 2001 36 32 40 35 36 36 35 33 34 32 28 27 2002 30 25 27 31 31 30 28 32 30 29 28 27 2003 34 28 30 33 34 36 32 32 29 30 43 43 2004 49 41 37 81 85 91 97 125 135 150 125 55 2005 42 36 52 46 57 57 60 55 52 56 51 66 2006 74 75 73 86 111 99 94 87 117 119 110 127 2007 154 105 167 146 404 370 357 396 406 350 423 442 2008 441 459 496 511 599 506 583 685 659 668 615 642

59

Kansas Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 63 63 63 61 62 57 57 55 56 58 59 61 1997 60 55 60 59 62 60 58 54 50 54 54 54 1998 55 50 54 52 52 52 45 48 48 51 49 50 1999 52 44 47 46 46 47 46 46 44 45 44 46 2000 47 43 45 50 45 44 45 45 42 42 41 41 2001 42 37 41 40 41 39 41 41 39 40 39 40 2002 40 36 40 38 40 39 39 39 36 37 36 37 2003 36 32 36 35 36 34 36 36 35 35 34 34 2004 34 32 34 33 34 33 35 34 33 33 32 32 2005 32 30 32 32 32 30 32 33 31 32 31 31 2006 30 27 30 30 30 30 31 32 31 30 31 32 2007 30 27 30 30 30 30 31 32 30 30 31 32 2008 31 28 31 31 31 31 32 33 31 30 32 32 2009 29 26 29 29 29 29 30 31 30 29 30 31

60

South Dakota Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 384 350 382 380 382 376 405 418 397 439 445 486 1992 455 445 448 468 497 447 465 459 438 450 440 465 1993 463 417 484 453 478 459 497 500 495 545 507 435 1994 385 324 383 373 409 424 506 590 595 591 601 625 1995 640 570 637 609 617 602 617 637 578 526 540 549 1996 533 516 618 620 662 658 680 685 650 689 657 669 1997 128 123 129 135 139 134 135 145 143 146 140 143 1998 145 134 148 145 129 114 122 121 118 119 114 117 1999 147 136 151 148 132 116 124 124 120 122 116 119 2000 147 135 151 147 154 142 163 157 148 157 152 153 2001 165 148 169 172 179 173 173 170 172 174 172 175

Note: This page contains sample records for the topic "vented gas fireplaces" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Michigan Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 277 277 277 277 277 277 277 277 277 277 277 277 1997 277 277 277 277 277 277 277 277 277 277 277 277 1998 277 277 277 277 277 277 277 277 277 277 277 277 1999 277 277 277 277 277 277 277 277 277 277 277 277 2000 277 277 277 277 277 277 277 277 277 277 277 277 2001 277 277 277 277 277 277 277 277 277 277 277 277 2002 277 277 277 277 277 277 277 277 277 277 277 277 2003 277 277 277 277 277 277 277 277 277 277 277 277 2004 277 277 277 277 277 277 277 277 277 277 277 277 2005 277 277 277 277 277 277 277 277 277 277 277 277 2006 277 277 277 277 277 277 277 277 277 277 277 277

62

New York Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 1 0 0 0 0 0 0 0 0 0 1992 1 1 1 1 1 1 1 1 1 1 1 1 1993 1 1 1 1 1 1 1 1 1 1 1 1 1994 1 1 1 1 1 1 1 1 1 1 1 1 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 1 0 0 1 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0

63

Missouri Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 NA NA NA NA NA NA NA NA NA NA NA NA

64

Texas Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 2,478 2,147 2,113 2,353 3,203 2,833 3,175 2,684 2,296 2,457 2,750 2,150 1992 1,337 1,107 1,379 1,254 1,439 1,833 2,083 1,970 2,009 1,630 1,835 1,812 1993 3,276 3,172 2,618 2,863 2,492 2,286 2,563 2,471 2,865 3,708 2,934 3,238 1994 3,225 3,330 3,515 3,403 3,959 4,686 3,429 2,766 3,188 3,543 3,122 3,871 1995 3,543 3,658 3,862 3,738 4,350 5,148 3,768 3,039 3,503 3,893 3,430 4,252 1996 3,461 3,537 3,340 3,922 3,459 4,520 4,339 3,794 3,556 3,781 3,809 3,865 1997 4,840 4,113 3,927 4,679 5,610 3,723 4,139 3,845 4,287 3,430 2,237 3,092 1998 2,621 2,227 2,126 2,533 3,038 2,016 2,241 2,082 2,321 1,857 1,211 1,674

65

New Mexico Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 236 220 240 230 241 229 217 221 212 215 216 223 1997 241 220 245 236 243 225 235 239 231 240 217 213 1998 231 211 235 227 233 215 226 229 221 230 209 205 1999 232 210 231 226 225 229 230 235 224 235 229 212 2000 289 245 293 242 287 251 285 246 240 278 233 242 2001 249 226 245 237 213 175 179 384 317 237 505 288 2002 304 207 214 254 269 249 266 263 247 216 202 159 2003 179 154 198 210 234 226 221 285 199 193 127 121 2004 124 128 292 275 327 338 333 302 296 454 334 322 2005 286 279 290 253 291 295 299 311 310 310 303 306 2006 270 296 252 247 242 249 251 246 234 241 236 105

66

Nebraska Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 1 0 0 2003 1 1 1 1 1 1 1 1 1 1 1 1 2004 2 1 1 2 2 1 3 2 2 2 2 2 2005 4 3 2 2 2 1 2 3 2 3 3 3 2006 5 2 2 1 1 1 1 1 1 1 1 1 2007 1 1 1 0 1 0 1 1 1 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0

67

Mississippi Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 217 199 223 219 237 234 239 235 213 224 218 220 1997 214 202 214 209 221 223 218 242 235 258 250 256 1998 250 222 245 225 233 220 238 232 235 234 227 236 1999 230 217 247 232 239 233 234 231 226 223 214 219 2000 205 161 204 193 213 198 210 214 205 223 216 235 2001 236 216 234 241 248 236 265 266 242 260 251 267 2002 259 299 266 255 266 262 267 274 276 280 267 298 2003 293 261 282 277 284 285 244 304 306 323 305 337 2004 319 321 331 325 340 324 322 323 287 306 289 326 2005 411 296 348 330 342 320 347 322 319 360 339 210 2006 349 331 328 359 370 362 399 398 394 423 425 439

68

Kansas Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 63 63 63 61 62 57 57 55 56 58 59 61 1997 60 55 60 59 62 60 58 54 50 54 54 54 1998 55 50 54 52 52 52 45 48 48 51 49 50 1999 52 44 47 46 46 47 46 46 44 45 44 46 2000 47 43 45 50 45 44 45 45 42 42 41 41 2001 42 37 41 40 41 39 41 41 39 40 39 40 2002 40 36 40 38 40 39 39 39 36 37 36 37 2003 36 32 36 35 36 34 36 36 35 35 34 34 2004 34 32 34 33 34 33 35 34 33 33 32 32 2005 32 30 32 32 32 30 32 33 31 32 31 31 2006 30 27 30 30 30 30 31 32 31 30 31 32 2007 30 27 30 30 30 30 31 32 30 30 31 32 2008 31 28 31 31 31 31 32 33 31 30 32 32 2009 29 26 29 29 29 29 30 31 30 29 30 31

69

Oregon Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 NA NA NA NA NA NA NA NA NA NA

70

Maryland Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0

71

West Virginia Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0

72

Utah Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 646 1995 696 4,590 4,767 4,382 4,389 4,603 4,932 5,137 1996 5,088 4,788 2,269 2,009 2,564 1,687 1,695 1,724 1,229 1,255 1,547 1,422 1997 2,411 2,381 1,594 942 490 1,391 1,344 1,185 1,114 1,130 1,058 1,750 1998 909 697 700 689 1,194 1,161 2,299 2,625 2,235 2,226 2,258 2,373 1999 1,462 1,480 993 1,254 1,131 1,316 904 776 1,291 1,249 894 1,084 2000 158 65 69 100 91 626 87 119 185 220 123 99 2001 129 98 83 55 49 47 79 274 242 254 469 68 2002 167 68 110 123 71 55 54 89 37 40 38 102 2003 39 47 66 69 67 52 66 80 67 56 48 50 2004 48 56 57 45 39 43 81 73 59 89 51 46

73

Texas Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 2,478 2,147 2,113 2,353 3,203 2,833 3,175 2,684 2,296 2,457 2,750 2,150 1992 1,337 1,107 1,379 1,254 1,439 1,833 2,083 1,970 2,009 1,630 1,835 1,812 1993 3,276 3,172 2,618 2,863 2,492 2,286 2,563 2,471 2,865 3,708 2,934 3,238 1994 3,225 3,330 3,515 3,403 3,959 4,686 3,429 2,766 3,188 3,543 3,122 3,871 1995 3,543 3,658 3,862 3,738 4,350 5,148 3,768 3,039 3,503 3,893 3,430 4,252 1996 3,461 3,537 3,340 3,922 3,459 4,520 4,339 3,794 3,556 3,781 3,809 3,865 1997 4,840 4,113 3,927 4,679 5,610 3,723 4,139 3,845 4,287 3,430 2,237 3,092 1998 2,621 2,227 2,126 2,533 3,038 2,016 2,241 2,082 2,321 1,857 1,211 1,674

74

Arkansas Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 23 13 12 7 13 28 28 30 36 9 5 5 1992 33 29 32 31 30 29 30 30 30 32 32 33 1993 36 32 35 33 34 32 33 33 33 35 35 37 1994 27 25 27 25 26 25 25 26 25 27 27 28 1995 27 24 27 25 26 25 25 26 25 27 27 28 1996 17 23 8 0 31 45 28 29 25 19 25 21 1997 5 0 6 7 7 8 13 32 16 4 19 17 1998 2 0 2 2 2 3 4 11 5 1 6 6 1999 607 269 535 439 561 494 583 216 469 689 668 472 2000 1 0 1 16 21 17 23 23 27 23 24 30 2001 2 1 2 33 45 35 48 48 57 47 50 63 2002 12 15 29 41 29 25 27 24 25 17 1 5 2003 31 37 34 36 35 29 23 33 28 33 24 11 2004 28 26 24 23 21 16 18 17 17 17 17 16

75

Michigan Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 277 277 277 277 277 277 277 277 277 277 277 277 1997 277 277 277 277 277 277 277 277 277 277 277 277 1998 277 277 277 277 277 277 277 277 277 277 277 277 1999 277 277 277 277 277 277 277 277 277 277 277 277 2000 277 277 277 277 277 277 277 277 277 277 277 277 2001 277 277 277 277 277 277 277 277 277 277 277 277 2002 277 277 277 277 277 277 277 277 277 277 277 277 2003 277 277 277 277 277 277 277 277 277 277 277 277 2004 277 277 277 277 277 277 277 277 277 277 277 277 2005 277 277 277 277 277 277 277 277 277 277 277 277 2006 277 277 277 277 277 277 277 277 277 277 277 277

76

Alabama Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 194 200 140 132 106 82 205 152 157 192 159 134 1997 134 110 90 112 98 125 119 114 118 91 227 224 1998 125 101 87 104 91 117 114 112 112 86 206 206 1999 92 73 67 77 67 87 87 90 85 64 145 150 2000 130 149 130 112 75 80 120 97 78 98 88 105 2001 91 72 78 76 87 81 73 94 108 86 93 101 2002 122 135 99 106 129 94 107 98 103 100 103 134 2003 116 143 147 108 141 141 145 126 127 139 138 140 2004 171 119 130 154 201 208 395 182 179 207 188 181 2005 213 183 202 264 256 191 168 151 174 167 249 267 2006 271 273 301 303 289 302 383 356 262 305 242 238 2007 227 238 283 234 243 187 185 174 155 134 160 152

77

Louisiana Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 1,788 1,684 1,571 1,593 1,807 1,690 2,042 1,781 1,437 1,867 1,649 1,505 1992 1,707 1,639 1,564 1,775 1,752 2,153 1,623 1,737 1,907 1,568 1,595 1,518 1993 1,588 1,460 1,500 1,708 1,614 1,590 1,778 1,711 2,014 1,500 1,482 1,636 1994 1,597 1,468 1,509 1,717 1,623 1,599 1,788 1,720 2,025 1,509 1,490 1,645 1995 1,519 1,396 1,435 1,633 1,544 1,521 1,701 1,636 1,926 1,435 1,418 1,565 1996 1,545 1,443 1,514 1,471 1,528 1,939 2,042 2,033 1,985 1,930 2,083 2,192 1997 1,991 1,798 1,991 1,874 1,913 1,751 1,813 1,841 1,785 1,777 1,674 1,720 1998 1,775 1,602 1,775 1,670 1,705 1,561 1,616 1,641 1,590 1,583 1,492 1,533

78

Arkansas Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 23 13 12 7 13 28 28 30 36 9 5 5 1992 33 29 32 31 30 29 30 30 30 32 32 33 1993 36 32 35 33 34 32 33 33 33 35 35 37 1994 27 25 27 25 26 25 25 26 25 27 27 28 1995 27 24 27 25 26 25 25 26 25 27 27 28 1996 17 23 8 0 31 45 28 29 25 19 25 21 1997 5 0 6 7 7 8 13 32 16 4 19 17 1998 2 0 2 2 2 3 4 11 5 1 6 6 1999 607 269 535 439 561 494 583 216 469 689 668 472 2000 1 0 1 16 21 17 23 23 27 23 24 30 2001 2 1 2 33 45 35 48 48 57 47 50 63 2002 12 15 29 41 29 25 27 24 25 17 1 5 2003 31 37 34 36 35 29 23 33 28 33 24 11 2004 28 26 24 23 21 16 18 17 17 17 17 16

79

Mississippi Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 217 199 223 219 237 234 239 235 213 224 218 220 1997 214 202 214 209 221 223 218 242 235 258 250 256 1998 250 222 245 225 233 220 238 232 235 234 227 236 1999 230 217 247 232 239 233 234 231 226 223 214 219 2000 205 161 204 193 213 198 210 214 205 223 216 235 2001 236 216 234 241 248 236 265 266 242 260 251 267 2002 259 299 266 255 266 262 267 274 276 280 267 298 2003 293 261 282 277 284 285 244 304 306 323 305 337 2004 319 321 331 325 340 324 322 323 287 306 289 326 2005 411 296 348 330 342 320 347 322 319 360 339 210 2006 349 331 328 359 370 362 399 398 394 423 425 439

80

Wyoming Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 5,712 5,109 6,529 6,408 6,948 6,430 7,035 7,792 7,475 7,837 7,649 7,930 1992 7,430 7,009 7,475 7,039 5,797 7,809 8,770 8,218 7,442 7,505 7,662 7,580 1993 10,674 10,789 10,568 10,480 11,572 12,350 10,996 8,163 9,912 10,526 9,870 10,463 1994 11,590 11,569 11,181 10,129 9,324 10,365 10,174 10,394 10,578 10,635 10,629 10,155 1995 13,046 11,867 11,628 12,102 14,419 12,911 12,917 10,472 12,302 12,592 11,896 12,569 1996 13,000 12,042 12,951 12,509 12,793 4,939 12,847 13,190 12,355 13,227 12,716 12,883 1997 12,874 11,288 12,834 11,829 11,169 9,136 13,161 11,362 11,217 11,213 11,457 12,607 1998 753 689 750 718 689 701 717 729 724 764 745 732

Note: This page contains sample records for the topic "vented gas fireplaces" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

South Dakota Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 384 350 382 380 382 376 405 418 397 439 445 486 1992 455 445 448 468 497 447 465 459 438 450 440 465 1993 463 417 484 453 478 459 497 500 495 545 507 435 1994 385 324 383 373 409 424 506 590 595 591 601 625 1995 640 570 637 609 617 602 617 637 578 526 540 549 1996 533 516 618 620 662 658 680 685 650 689 657 669 1997 128 123 129 135 139 134 135 145 143 146 140 143 1998 145 134 148 145 129 114 122 121 118 119 114 117 1999 147 136 151 148 132 116 124 124 120 122 116 119 2000 147 135 151 147 154 142 163 157 148 157 152 153 2001 165 148 169 172 179 173 173 170 172 174 172 175

82

Montana Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 32 38 34 40 43 27 63 59 60 71 67 62 1997 67 60 71 62 66 83 72 92 47 118 186 195 1998 189 147 159 177 107 76 155 129 136 0 0 0 1999 47 54 50 52 56 58 0 0 0 0 0 0 2000 43 39 41 44 49 44 44 36 36 39 43 28 2001 36 32 40 35 36 36 35 33 34 32 28 27 2002 30 25 27 31 31 30 28 32 30 29 28 27 2003 34 28 30 33 34 36 32 32 29 30 43 43 2004 49 41 37 81 85 91 97 125 135 150 125 55 2005 42 36 52 46 57 57 60 55 52 56 51 66 2006 74 75 73 86 111 99 94 87 117 119 110 127 2007 154 105 167 146 404 370 357 396 406 350 423 442 2008 441 459 496 511 599 506 583 685 659 668 615 642

83

Alabama Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 194 200 140 132 106 82 205 152 157 192 159 134 1997 134 110 90 112 98 125 119 114 118 91 227 224 1998 125 101 87 104 91 117 114 112 112 86 206 206 1999 92 73 67 77 67 87 87 90 85 64 145 150 2000 130 149 130 112 75 80 120 97 78 98 88 105 2001 91 72 78 76 87 81 73 94 108 86 93 101 2002 122 135 99 106 129 94 107 98 103 100 103 134 2003 116 143 147 108 141 141 145 126 127 139 138 140 2004 171 119 130 154 201 208 395 182 179 207 188 181 2005 213 183 202 264 256 191 168 151 174 167 249 267 2006 271 273 301 303 289 302 383 356 262 305 242 238 2007 227 238 283 234 243 187 185 174 155 134 160 152

84

New Mexico Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 236 220 240 230 241 229 217 221 212 215 216 223 1997 241 220 245 236 243 225 235 239 231 240 217 213 1998 231 211 235 227 233 215 226 229 221 230 209 205 1999 232 210 231 226 225 229 230 235 224 235 229 212 2000 289 245 293 242 287 251 285 246 240 278 233 242 2001 249 226 245 237 213 175 179 384 317 237 505 288 2002 304 207 214 254 269 249 266 263 247 216 202 159 2003 179 154 198 210 234 226 221 285 199 193 127 121 2004 124 128 292 275 327 338 333 302 296 454 334 322 2005 286 279 290 253 291 295 299 311 310 310 303 306 2006 270 296 252 247 242 249 251 246 234 241 236 105

85

California Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 97 103 109 107 107 104 108 107 104 108 106 108 1997 111 113 85 88 213 140 121 108 122 171 175 144 1998 235 192 246 157 166 129 173 167 152 132 127 76 1999 165 135 173 110 116 91 121 117 106 92 89 53 2000 266 218 279 178 188 146 196 189 172 149 144 86 2001 207 169 217 138 146 114 152 146 134 116 111 67 2002 324 265 340 216 228 178 238 230 209 181 175 105 2003 266 228 237 343 405 431 342 333 276 316 593 170 2004 217 186 193 280 331 352 279 272 225 258 484 138 2005 143 123 127 184 218 232 184 179 148 170 319 91 2006 105 90 94 136 161 171 136 132 109 125 235 67

86

North Dakota Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 232 193 232 176 230 258 269 324 298 334 213 199 1997 229 264 293 280 303 313 258 301 327 330 321 315 1998 308 301 334 380 418 459 435 425 310 328 345 330 1999 231 194 245 204 202 206 231 307 232 227 202 212 2000 225 218 226 237 257 271 292 327 293 333 311 300 2001 269 246 276 255 245 263 289 283 250 260 281 249 2002 231 221 210 235 250 238 258 245 257 222 210 214 2003 196 167 193 174 167 161 158 171 164 181 168 170 2004 197 157 166 150 211 140 183 209 187 247 208 143 2005 175 200 247 273 271 299 324 339 300 274 283 275 2006 528 485 550 541 582 540 566 599 615 735 724 995

87

Louisiana Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 1,788 1,684 1,571 1,593 1,807 1,690 2,042 1,781 1,437 1,867 1,649 1,505 1992 1,707 1,639 1,564 1,775 1,752 2,153 1,623 1,737 1,907 1,568 1,595 1,518 1993 1,588 1,460 1,500 1,708 1,614 1,590 1,778 1,711 2,014 1,500 1,482 1,636 1994 1,597 1,468 1,509 1,717 1,623 1,599 1,788 1,720 2,025 1,509 1,490 1,645 1995 1,519 1,396 1,435 1,633 1,544 1,521 1,701 1,636 1,926 1,435 1,418 1,565 1996 1,545 1,443 1,514 1,471 1,528 1,939 2,042 2,033 1,985 1,930 2,083 2,192 1997 1,991 1,798 1,991 1,874 1,913 1,751 1,813 1,841 1,785 1,777 1,674 1,720 1998 1,775 1,602 1,775 1,670 1,705 1,561 1,616 1,641 1,590 1,583 1,492 1,533

88

Nevada Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0

89

Indiana Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0

90

California Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 97 103 109 107 107 104 108 107 104 108 106 108 1997 111 113 85 88 213 140 121 108 122 171 175 144 1998 235 192 246 157 166 129 173 167 152 132 127 76 1999 165 135 173 110 116 91 121 117 106 92 89 53 2000 266 218 279 178 188 146 196 189 172 149 144 86 2001 207 169 217 138 146 114 152 146 134 116 111 67 2002 324 265 340 216 228 178 238 230 209 181 175 105 2003 266 228 237 343 405 431 342 333 276 316 593 170 2004 217 186 193 280 331 352 279 272 225 258 484 138 2005 143 123 127 184 218 232 184 179 148 170 319 91 2006 105 90 94 136 161 171 136 132 109 125 235 67

91

Colorado Natural Gas Vented and Flared (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,656 1,514 1,326 1970's 7,126 2,843 4,758 3,008 2,957 2,516 1,836 1,528 1,108 1,199 1980's 796...

92

Colorado Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 112 77 78 91 100 89 100 106 97 121 155 102 1997 173 188 180 168 228 187 188 102 189 192 185 199 1998 92 166 98 92 98 115 222 83 82 92 95 10 1999 70 71 70 65 68 66 66 66 63 67 65 64 2000 67 64 68 65 68 66 67 68 65 69 69 70 2001 77 69 75 71 73 74 73 78 76 79 78 83 2002 83 75 84 79 79 77 79 80 72 80 72 75 2003 96 86 95 92 95 92 94 96 94 98 95 90 2004 99 89 98 94 98 95 97 99 97 101 98 93 2005 103 94 103 99 103 99 102 104 102 106 102 98 2006 110 99 109 105 109 105 108 111 109 113 109 104 2007 113 103 113 109 113 109 112 114 112 116 112 107 2008 128 116 127 122 127 123 126 129 126 131 127 121

93

West Virginia Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0

94

Oregon Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA 2012 NA NA NA NA NA NA NA NA NA NA NA NA

95

North Dakota Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 232 193 232 176 230 258 269 324 298 334 213 199 1997 229 264 293 280 303 313 258 301 327 330 321 315 1998 308 301 334 380 418 459 435 425 310 328 345 330 1999 231 194 245 204 202 206 231 307 232 227 202 212 2000 225 218 226 237 257 271 292 327 293 333 311 300 2001 269 246 276 255 245 263 289 283 250 260 281 249 2002 231 221 210 235 250 238 258 245 257 222 210 214 2003 196 167 193 174 167 161 158 171 164 181 168 170 2004 197 157 166 150 211 140 183 209 187 247 208 143 2005 175 200 247 273 271 299 324 339 300 274 283 275 2006 528 485 550 541 582 540 566 599 615 735 724 995

96

Utah Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 646 1995 696 4,590 4,767 4,382 4,389 4,603 4,932 5,137 1996 5,088 4,788 2,269 2,009 2,564 1,687 1,695 1,724 1,229 1,255 1,547 1,422 1997 2,411 2,381 1,594 942 490 1,391 1,344 1,185 1,114 1,130 1,058 1,750 1998 909 697 700 689 1,194 1,161 2,299 2,625 2,235 2,226 2,258 2,373 1999 1,462 1,480 993 1,254 1,131 1,316 904 776 1,291 1,249 894 1,084 2000 158 65 69 100 91 626 87 119 185 220 123 99 2001 129 98 83 55 49 47 79 274 242 254 469 68 2002 167 68 110 123 71 55 54 89 37 40 38 102 2003 39 47 66 69 67 52 66 80 67 56 48 50 2004 48 56 57 45 39 43 81 73 59 89 51 46

97

New York Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 1 0 0 0 0 0 0 0 0 0 1992 1 1 1 1 1 1 1 1 1 1 1 1 1993 1 1 1 1 1 1 1 1 1 1 1 1 1994 1 1 1 1 1 1 1 1 1 1 1 1 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 1 0 0 1 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0

98

Alaska Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 815 672 921 1,101 820 914 1,257 828 750 843 991 873 1992 1,627 880 1,087 827 1,093 902 1,323 1,401 1,859 1,015 1,082 1,001 1993 1,044 2,207 1,408 2,149 2,273 4,052 2,251 1,323 1,734 1,557 906 1,581 1994 615 1,300 829 1,266 1,338 2,386 1,325 779 1,021 917 534 931 1995 858 547 835 883 1,574 874 514 674 605 615 1996 682 532 552 569 588 618 691 545 634 560 528 570 1997 798 623 646 666 687 723 808 637 741 654 618 666 1998 788 615 639 658 679 715 799 630 733 647 610 658 1999 685 535 555 572 590 621 694 547 636 562 530 572 2000 728 568 590 608 627 660 738 582 677 597 564 608

99

Indiana Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0

100

Assessment of Literature Related to Combustion Appliance Venting Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Assessment of Literature Related to Combustion Appliance Venting Systems Assessment of Literature Related to Combustion Appliance Venting Systems Title Assessment of Literature Related to Combustion Appliance Venting Systems Publication Type Report LBNL Report Number LBNL-5798E Year of Publication 2012 Authors Rapp, Vi H., Brett C. Singer, J. Chris Stratton, and Craig P. Wray Date Published 06/2012 Abstract In many residential building retrofit programs, air tightening to increase energy efficiency is constrained by concerns about related impacts on the safety of naturally vented combustion appliances. Tighter housing units more readily depressurize when exhaust equipment is operated, making combustion appliances more prone to backdraft or spillage. Several test methods purportedly assess the potential for depressurization-induced backdrafting and spillage, but these tests are not robustly reliable and repeatable

Note: This page contains sample records for the topic "vented gas fireplaces" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Use a Vent Condenser to Recover Flash Steam Energy  

Broader source: Energy.gov [DOE]

This tip sheet on using vent condensers to recover flash steam energy provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

102

Use a Vent Condenser to Recover Flash Steam Energy (Revised)  

SciTech Connect (OSTI)

This revised ITP tip sheet on vent condenser to recover flash steam energy provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-05-01T23:59:59.000Z

103

Surface Mercury Geochemistry As A Guide To Volcanic Vent Structure...  

Open Energy Info (EERE)

Geochemistry As A Guide To Volcanic Vent Structure And Zones Of High Heat Flow In The Valley Of Ten Thousand Smokes, Katmai National Park, Alaska Jump to: navigation, search OpenEI...

104

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

68,747 68,747 34,577 0.39 0 0.00 34 1.16 14,941 0.29 0 0.00 11,506 0.36 61,058 0.31 I d a h o Idaho 60. Summary Statistics for Natural Gas Idaho, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented

105

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 0.00 0 0.00 0 0.00 540 0.01 0 0.00 2,132 0.07 2,672 0.01 H a w a i i Hawaii 59. Summary Statistics for Natural Gas Hawaii, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented and Flared

106

Gaseous fission product management for molten salt reactors and vented fuel systems  

SciTech Connect (OSTI)

Fission gas disposal is one of the unresolved difficulties for Molten Salt Reactors (MSRs) and advanced reactors with vented fuel systems. As these systems operate, they produce many radioactive isotopes of xenon and krypton (e.g. {sup 135}Xe t{sub 1/2} = 9.14 hours and {sup 85}Kr t{sub 1/2}= 10.73 years). Removing these gases proves vital to the success of such reactor designs for two reasons. First, the gases act as large neutron sinks which decrease reactivity and must be counterbalanced by increasing fuel loading. Second, for MSRs, inert fission product gases naturally separate quickly from high temperature salts, thus creating high vapor pressure which poses safety concerns. For advanced reactors with solid vented fuel, the gases are allowed to escape into an off-gas system and thus must be managed. Because of time delays in transport of fission product gases in vented fuel systems, some of the shorter-lived radionuclides will decay away thereby reducing the fission gas source term relative to an MSR. To calculate the fission gas source term of a typical molten salt reactor, we modeled a 1000 MWe graphite moderated thorium MSR similar to that detailed in Mathieu et al. [1]. The fuel salt used in these calculations was LiF (78 mole percent) - (HN)F 4 (22 mole percent) with a heavy nuclide composition of 3.86% {sup 233}U and 96.14% {sup 232}Th by mass. Before we can remove the fission product gases produced by this reactor configuration, we must first develop an appropriate storage mechanism. The gases could be stored in pressurized containers but then one must be concerned about bottle failure. Methods to trap noble gases in matrices are expensive and complex. Alternatively, there are direct storage/disposal options: direct injection into the Earth or injecting a grout-based product into the Earth. Advances in drilling technologies, hydro fracture technologies, and methods for the sequestration of carbon dioxide from fossil fuel plants are creating new options for disposal of fission gas wastes. In each option, lithostatic pressure, a kilometer or more underground, eliminates the pressure driving force for noble gas release and dissolves any untrapped gas in deep groundwater or into incorporated solid waste forms. The options, challenges, and potential for these methods to dispose of gaseous fission products are described. With this research, we hope to help both MSRs and other advanced reactors come one step closer to commercialization. (authors)

Messenger, S. J. [Massachusetts Inst. of Technology, 77 Massachusetts Ave., 54-1717, Cambridge, MA 02139 (United States); Forsberg, C. [Massachusetts Inst. of Technology, 77 Massachusetts Ave., 24-207, Cambridge, MA 02139 (United States); Massie, M. [Massachusetts Inst. of Technology, 77 Massachusetts Ave., NW12-230, Cambridge, MA 02139 (United States)

2012-07-01T23:59:59.000Z

107

Natural Gas Industrial Price  

Gasoline and Diesel Fuel Update (EIA)

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

108

Technical Note Methane gas migration through geomembranes  

E-Print Network [OSTI]

and Fick's law. This chart can be used by landfill designers to evaluate the methane gas transmission rate for a selected geomembrane type and thickness and expected methane gas pressure in the landfill. KEYWORDS landfill usually consists, from bottom to top, of: graded landfill surface; a gas-venting layer; a low

109

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

110

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

111

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

112

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 7,279 6,446 3,785 3,474 3,525 Total................................................................... 7,279 6,446 3,785 3,474 3,525 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 7,279 6,446 3,785 3,474 3,525 Nonhydrocarbon Gases Removed ..................... 788 736 431

113

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 15,206 15,357 16,957 17,387 18,120 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 463,929 423,672 401,396 369,624 350,413 From Oil Wells.................................................. 63,222 57,773 54,736 50,403 47,784 Total................................................................... 527,151 481,445 456,132 420,027 398,197 Repressuring ...................................................... 896 818 775 714 677 Vented and Flared.............................................. 527 481 456 420 398 Wet After Lease Separation................................

114

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 9 8 7 9 6 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 368 305 300 443 331 From Oil Wells.................................................. 1 1 0 0 0 Total................................................................... 368 307 301 443 331 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 368 307 301 443 331 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

115

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 98 96 106 109 111 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 869 886 904 1,187 1,229 From Oil Wells.................................................. 349 322 288 279 269 Total................................................................... 1,218 1,208 1,193 1,466 1,499 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 5 12 23 Wet After Lease Separation................................ 1,218 1,208 1,188 1,454 1,476 Nonhydrocarbon Gases Removed .....................

116

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 4 4 4 4 4 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 7 7 6 6 5 Total................................................................... 7 7 6 6 5 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 7 7 6 6 5 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

117

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

118

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

119

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

120

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

Note: This page contains sample records for the topic "vented gas fireplaces" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

122

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

123

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 380 350 400 430 280 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 1,150 2,000 2,050 1,803 2,100 Total................................................................... 1,150 2,000 2,050 1,803 2,100 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 1,150 2,000 2,050 1,803 2,100 Nonhydrocarbon Gases Removed .....................

124

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

125

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 1,502 1,533 1,545 2,291 2,386 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 899 1,064 1,309 1,464 3,401 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 899 1,064 1,309 1,464 3,401 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 899 1,064 1,309 1,464 3,401 Nonhydrocarbon Gases Removed .....................

126

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

127

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

128

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

129

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 7 7 5 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 34 32 22 48 34 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 34 32 22 48 34 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 34 32 22 48 34 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

130

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

131

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ......................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells...................................................... 0 0 0 0 0 From Oil Wells........................................................ 0 0 0 0 0 Total......................................................................... 0 0 0 0 0 Repressuring ............................................................ 0 0 0 0 0 Vented and Flared .................................................... 0 0 0 0 0 Wet After Lease Separation...................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed............................ 0 0 0 0 0 Marketed Production

132

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

133

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

134

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 17 20 18 15 15 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,412 1,112 837 731 467 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 1,412 1,112 837 731 467 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 1,412 1,112 837 731 467 Nonhydrocarbon Gases Removed ..................... 198 3 0 0 0 Marketed Production

135

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

136

Building Energy Software Tools Directory: VentAir 62  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

VentAir 62 VentAir 62 VentAir 62 logo. A ventilation airflow calculator that allows easy, accurate compliance with ASHRAE Standard 62-89. The program automates the cumbersome calculations presented by the Standard's Equation 6-1. The Windows-based program helps building designers design multiple-space ventilation systems that meet the requirements of the Standard. This tool analyzes space and system information from the VAV terminal and air handler unit schedules, calculates ventilation airflow requirements (space minimums and system-level required minimum), and provides additional or revised information for the VAV and AHU schedules. Keywords ventilation design, ASHRAE Standard 62 Validation/Testing N/A Expertise Required Knowledge of ASHRAE Standard 62 requirements and ventilation design.

137

An overview of BWR Mark-I containment venting risk implications  

SciTech Connect (OSTI)

Venting of boiling water reactors with Mark-I containments has been suggested as a way to prevent catastrophic failure and/or mitigate the consequences resulting from a severe accident. Based on phenomenological, human factors, and risk considerations, the potential benefits and downsides of venting Mark-I containments were analyzed. Several generic venting systems and two proposed utility systems were reviewed. Based on generic considerations, the offsite consequences during risk dominant accidents were qualitatively assessed for four different vent systems. A quantitative risk study of an early venting strategy was performed, based on the existing Peach Bottom hardware and the draft NUREG-1150 results for Peach Bottom. Appendices are also included which contain reviews of the Pilgrim and Vermont Yankee venting submitals, a response to the seven questions from the NRC about the Pilgrim venting strategy, and a review of the venting strategy directed by Revision 4 of the Boiling Water Reactor Emergency Procedures Guidelines. 16 refs., 7 figs., 7 tabs.

Wagner, K.C.; Dallman, R.J.; Galyean, W.J.

1988-11-01T23:59:59.000Z

138

Predicting Backdrafting and Spillage for Natural-Draft Gas Combustion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Predicting Backdrafting and Spillage for Natural-Draft Gas Combustion Predicting Backdrafting and Spillage for Natural-Draft Gas Combustion Appliances: Validating VENT-II Title Predicting Backdrafting and Spillage for Natural-Draft Gas Combustion Appliances: Validating VENT-II Publication Type Report LBNL Report Number LBNL-6193E Year of Publication 2013 Authors Rapp, Vi H., Albert Pastor-Perez, Brett C. Singer, and Craig P. Wray Date Published 04/2013 Abstract VENT-II is a computer program designed to provide detailed analysis of natural draft and induced draft combustion appliance vent-systems (i.e., furnace or water heater). This program is capable of predicting house depressurization thresholds that lead to backdrafting and spillage of combustion appliances; however, validation reports of the program being applied for this

139

Anaerobic Respiration on Tellurate and Other Metalloids in Bacteria from Hydrothermal Vent Fields in the Eastern Pacific Ocean  

Science Journals Connector (OSTI)

...tellurate, we noted first a drop in colony...source of reducing power for bioreduction...respiration at deep ocean hydrothermal vents...ER-V-6 is the first metavanadate-respiring...isolated from deep ocean hydrothermal vents...vent worms. The first evidence for selenite...bacteria from deep ocean hydrothermal vents...

Julius T. Csotonyi; Erko Stackebrandt; Vladimir Yurkov

2006-07-01T23:59:59.000Z

140

Why Sequence Thermoacidophiles of deep-sea hydrothermal vents?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermoacidophiles of Thermoacidophiles of deep-sea hydrothermal vents? Bacteria that live in hydrothermal vents on land and deep underwater need to be able to tolerate high temperatures and harsh, nutrient-poor environments with high concentrations of metals. As a result of living in such environments, however, these bacteria have enzymes that are stable at high temperatures, which could be useful for producing alternative fuels. Thermoacidophiles Photo: University of Delaware Aquificales bacteria are often found in thermal streams and associated with sulfide precipitation. Sequencing some of these bacterial genomes -- specifically, Thermocrinis ruber, S. rodmanii and S. kristjansonnii -- could provide researchers with so-called "anchor genomes" that would be applied in turn to studies already being done on microbial communities in

Note: This page contains sample records for the topic "vented gas fireplaces" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

VOC transport in vented drums containing simulated waste sludge  

SciTech Connect (OSTI)

A model is developed to estimate the volatile organic compound (VOC) concentration in the headspace of the innermost layer of confinement in a lab-scale vented waste drum containing simulated waste sludge. The VOC transport model estimates the concentration using the measured VOC concentration beneath the drum lid and model parameters defined or estimated from process knowledge of drum contents and waste drum configuration. Model parameters include the VOC diffusion characteristic across the filter vent, VOC diffusivity in air, size of opening in the drum liner lid, the type and number of layers of polymer bags surrounding the waste, VOC permeability across the polymer, and the permeable surface area of the polymer bags. Comparison of model and experimental results indicates that the model can accurately estimate VOC concentration in the headspace of the innermost layer of confinement. The model may be useful in estimating the VOC concentration in actual waste drums.

Liekhus, K.J.; Gresham, G.L.; Rae, C.; Connolly, M.J.

1994-02-01T23:59:59.000Z

142

Regulatory Reduction RFI, 76 Fed. Reg. 6123, February 3, 2011 | Department  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Regulatory Reduction RFI, 76 Fed. Reg. 6123, February 3, 2011 Regulatory Reduction RFI, 76 Fed. Reg. 6123, February 3, 2011 Regulatory Reduction RFI, 76 Fed. Reg. 6123, February 3, 2011 This is in reply to comments filed by the Hearth, Patio & Barbecue Association (HPBA) urging the U.S. Department of Energy (DOE) to repeal its energy conservation standards for direct heating equipment as applied to decorative vented gas fireplaces. I support HPBA's comments because I do not believe that decorative vented gas fireplaces were ever meant to be included under the term "direct heating equipment" as that term appears in the Energy Policy and Conservation Act (EPCA). Regulatory Reduction RFI, 76 Fed. Reg. 6123, February 3, 2011 More Documents & Publications .Hearth, Patio & Barbecue Association's Comments on DOE's Regulatory Burden

143

For Immediate Release  

Broader source: Energy.gov (indexed) [DOE]

7, 2011 7, 2011 Daniel Cohen, Esq. Office of General Counsel U.S. Department of Energy 1000 Independence Avenue, SW Washington, D.C. 20585 RE: Regulatory Reduction RFI, 76 Fed. Reg. 6123, February 3, 2011 Dear Mr. Cohen: This is in reply to comments filed by the Hearth, Patio & Barbecue Association (HPBA) urging the U.S. Department of Energy (DOE) to repeal its energy conservation standards for direct heating equipment as applied to decorative vented gas fireplaces. I support HPBA's comments because I do not believe that decorative vented gas fireplaces were ever meant to be included under the term "direct heating equipment" as that term appears in the Energy Policy and

144

Reservoir oil bubblepoint pressures revisited; solution gasoil ratios and surface gas specific gravities  

E-Print Network [OSTI]

Reservoir oil bubblepoint pressures revisited; solution gas­oil ratios and surface gas specific, for bubblepoint pressure and other fluid properties, require use of stock-tank gas rate and specific gravity in estimating stock-tank vent gas rate and quality for compliance purposes. D 2002 Elsevier Science B.V. All

Valkó, Peter

145

Remote-Handled Transuranic Waste Drum Venting - Operational Experience and Lessons Learned  

SciTech Connect (OSTI)

Remote-handled transuranic (RH TRU) waste drums must be vented to meet transportation and disposal requirement before shipment to the Waste Isolation Pilot Plant. The capability to perform remote venting of drums was developed and implemented at the Idaho National Laboratory. Over 490 drums containing RH TRU waste were successfully vented. Later efforts developed and implemented a long-stem filter to breach inner waste bags, which reduced layers of confinement and mitigated restrictive transportation wattage limits. This paper will provide insight to the technical specifications for the drum venting system, development, and testing activities, startup, operations, and lessons learned. (authors)

Clements, Th.L.Jr.; Bhatt, R.N.; Troescher, P.D. [CH2M-WG Idaho/Idaho National Laboratory, Idaho Falls, ID (United States); Wickland, T.J.; Anderson, L.; Wood, R. [Nuclear Filter Technology, Golden, CO (United States); Lattin, W.J. [Department of Energy-Idaho Operations Office, Idaho Falls, ID (United States)

2008-07-01T23:59:59.000Z

146

Metatranscriptomics reveal differences in in situ energy and nitrogen metabolism among hydrothermal vent snail symbionts  

E-Print Network [OSTI]

Despite the ubiquity of chemoautotrophic symbioses at hydrothermal vents, our understanding of the influence of environmental chemistry on symbiont metabolism is limited. Transcriptomic analyses are useful for linking ...

Sanders, J. G.

147

The ecology of deep-sea hydrothermal vents (C. L. Van Dover) S. K. ...  

Science Journals Connector (OSTI)

timately powered by geothermal heat. More than 100 vent ... prompted astrobiologists to seriously consider geothermal energy as a viable .... spreading centers.

2001-11-07T23:59:59.000Z

148

Solvent-vented injection in the analysis of agrochemicals by capillary supercritical fluid chromatography  

Science Journals Connector (OSTI)

Capillary supercritical fluid chromatography was performed with solvent-vented injection. Dilute samples of agrochemical mixtures were chromatographed and a study of detector response vs. quantity injected made.

S. Ashraf; K. D. Bartle; A. A. Clifford; I. L. Davies; R. Moulder

1990-12-01T23:59:59.000Z

149

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 21,507 32,672 33,279 34,334 35,612 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,473,792 1,466,833 1,476,204 1,487,451 1,604,709 From Oil Wells.................................................. 139,097 148,551 105,402 70,704 58,439 Total................................................................... 1,612,890 1,615,384 1,581,606 1,558,155 1,663,148 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................

150

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 94 95 100 117 117 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 13,527 13,846 15,130 14,524 15,565 From Oil Wells.................................................. 42,262 44,141 44,848 43,362 43,274 Total................................................................... 55,789 57,987 59,978 57,886 58,839 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 3,290 3,166 2,791 2,070 3,704 Wet After Lease Separation................................ 52,499 54,821 57,187 55,816 55,135

151

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 997 1,143 979 427 437 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 109,041 131,608 142,070 156,727 171,915 From Oil Wells.................................................. 5,339 5,132 5,344 4,950 4,414 Total................................................................... 114,380 136,740 147,415 161,676 176,329 Repressuring ...................................................... 6,353 6,194 5,975 6,082 8,069 Vented and Flared.............................................. 2,477 2,961 3,267 3,501 3,493 Wet After Lease Separation................................

152

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 42,475 42,000 45,000 46,203 47,117 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 264,139 191,889 190,249 187,723 197,217 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 264,139 191,889 190,249 187,723 197,217 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 264,139 191,889 190,249 187,723 197,217 Nonhydrocarbon Gases Removed

153

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 9,907 13,978 15,608 18,154 20,244 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,188,657 1,467,331 1,572,728 1,652,504 1,736,136 From Oil Wells.................................................. 137,385 167,656 174,748 183,612 192,904 Total................................................................... 1,326,042 1,634,987 1,747,476 1,836,115 1,929,040 Repressuring ...................................................... 50,216 114,407 129,598 131,125 164,164 Vented and Flared.............................................. 9,945 7,462 12,356 16,685 16,848

154

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 71 68 69 61 61 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 648 563 531 550 531 From Oil Wells.................................................. 10,032 10,751 9,894 11,055 11,238 Total................................................................... 10,680 11,313 10,424 11,605 11,768 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 1,806 2,043 1,880 2,100 2,135 Wet After Lease Separation................................ 8,875 9,271 8,545 9,504 9,633 Nonhydrocarbon Gases Removed

155

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 60,577 63,704 65,779 68,572 72,237 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 5,859,358 4,897,366 4,828,188 4,947,589 5,074,067 From Oil Wells.................................................. 999,624 855,081 832,816 843,735 659,851 Total................................................................... 6,858,983 5,752,446 5,661,005 5,791,324 5,733,918 Repressuring ...................................................... 138,372 195,150 212,638 237,723 284,491 Vented and Flared.............................................. 32,010 26,823 27,379 23,781 26,947

156

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 15,700 16,350 17,100 16,939 20,734 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 4,260,529 1,398,981 1,282,137 1,283,513 1,293,204 From Oil Wells.................................................. 895,425 125,693 100,324 94,615 88,209 Total................................................................... 5,155,954 1,524,673 1,382,461 1,378,128 1,381,413 Repressuring ...................................................... 42,557 10,838 9,754 18,446 19,031 Vented and Flared.............................................. 20,266 11,750 10,957 9,283 5,015 Wet After Lease Separation................................

157

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 36,000 40,100 40,830 42,437 44,227 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 150,000 130,853 157,800 159,827 197,217 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 150,000 130,853 157,800 159,827 197,217 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 150,000 130,853 157,800 159,827 197,217

158

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year.................................... 4,359 4,597 4,803 5,157 5,526 Production (million cubic feet) Gross Withdrawals From Gas Wells ................................................ 555,043 385,915 380,700 365,330 333,583 From Oil Wells .................................................. 6,501 6,066 5,802 5,580 5,153 Total................................................................... 561,544 391,981 386,502 370,910 338,735 Repressuring ...................................................... 13,988 12,758 10,050 4,062 1,307 Vented and Flared .............................................. 1,262 1,039 1,331 1,611 2,316 Wet After Lease Separation................................

159

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 3,321 4,331 4,544 4,539 4,971 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 61,974 71,985 76,053 78,175 87,292 From Oil Wells.................................................. 8,451 9,816 10,371 8,256 10,546 Total................................................................... 70,424 81,802 86,424 86,431 97,838 Repressuring ...................................................... 1 0 0 2 5 Vented and Flared.............................................. 488 404 349 403 1,071 Wet After Lease Separation................................ 69,936 81,397 86,075 86,027 96,762

160

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 3,051 3,521 3,429 3,506 3,870 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 71,545 71,543 76,915 R 143,644 152,495 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 71,545 71,543 76,915 R 143,644 152,495 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 71,545 71,543 76,915 R 143,644 152,495 Nonhydrocarbon Gases Removed

Note: This page contains sample records for the topic "vented gas fireplaces" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 33,948 35,217 35,873 37,100 38,574 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,484,269 1,484,856 1,432,966 1,391,916 1,397,934 From Oil Wells.................................................. 229,437 227,534 222,940 224,263 246,804 Total................................................................... 1,713,706 1,712,390 1,655,906 1,616,179 1,644,738 Repressuring ...................................................... 15,280 20,009 20,977 9,817 8,674 Vented and Flared.............................................. 3,130 3,256 2,849 2,347 3,525 Wet After Lease Separation................................

162

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 5,775 5,913 6,496 5,878 5,781 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 17,741 27,632 36,637 35,943 45,963 From Oil Wells.................................................. 16 155 179 194 87 Total................................................................... 17,757 27,787 36,816 36,137 46,050 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 17,757 27,787 36,816 36,137 46,050 Nonhydrocarbon Gases Removed

163

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 4,000 4,825 6,755 7,606 3,460 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 156,333 150,972 147,734 157,039 176,221 From Oil Wells.................................................. 15,524 16,263 14,388 12,915 11,088 Total................................................................... 171,857 167,235 162,122 169,953 187,310 Repressuring ...................................................... 8 0 0 0 0 Vented and Flared.............................................. 206 431 251 354 241 Wet After Lease Separation................................ 171,642 166,804

164

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 4,178 4,601 3,005 3,220 3,657 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 244,826 264,809 260,554 254,488 259,432 From Oil Wells.................................................. 36,290 36,612 32,509 29,871 31,153 Total................................................................... 281,117 301,422 293,063 284,359 290,586 Repressuring ...................................................... 563 575 2,150 1,785 1,337 Vented and Flared.............................................. 1,941 1,847 955 705 688 Wet After Lease Separation................................

165

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 7,068 7,425 7,700 8,600 8,500 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 241,776 224,560 224,112 194,121 212,276 From Oil Wells.................................................. 60,444 56,140 56,028 48,530 53,069 Total................................................................... 302,220 280,700 280,140 242,651 265,345 Repressuring ...................................................... 2,340 2,340 2,340 2,340 2,340 Vented and Flared.............................................. 3,324 3,324 3,324 3,324 3,324 Wet After Lease Separation................................

166

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 13,487 14,370 14,367 12,900 13,920 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 81,545 81,723 88,259 87,608 94,259 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 81,545 81,723 88,259 87,608 94,259 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 81,545 81,723 88,259 87,608 94,259 Nonhydrocarbon Gases Removed

167

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 33,897 33,917 34,593 33,828 33,828 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 98,551 97,272 97,154 87,993 85,018 From Oil Wells.................................................. 6,574 2,835 6,004 5,647 5,458 Total................................................................... 105,125 100,107 103,158 93,641 90,476 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 105,125 100,107 103,158

168

Results of gas monitoring of double-shell flammable gas watch list tanks  

SciTech Connect (OSTI)

Tanks 103-SY; 101-AW; 103-, 104-, and 105-AN are on the Flammable Gas Watch List. Recently, standard hydrogen monitoring system (SHMS) cabinets have been installed in the vent header of each of these tanks. Grab samples have been taken once per week, and a gas chromatograph was installed on tank 104-AN as a field test. The data that have been collected since gas monitoring began on these tanks are summarized in this document.

Wilkins, N.E.

1995-01-19T23:59:59.000Z

169

Shale Gas and Climate Targets: Can They Be Reconciled?  

E-Print Network [OSTI]

objectives. Second, because industry must incur the cost of CO2 separation as part of the production process this strategy creates for its GHG objectives. In recent years, natural gas exploration and development have is normally vented to the atmosphere as the gas is processed to market standards. While the expansion of B

170

The discovery of chemoautotrophic symbionts in the hydrothermal vent tubeworm Riftia pachyptila expanded our  

E-Print Network [OSTI]

The discovery of chemoautotrophic symbionts in the hydrothermal vent tubeworm Riftia pachyptila, the bacteria fix inorganic carbon and oxidize reduced inorganic substrates, such as reduced sulfur compounds at hydrothermal vents, hydrocarbon seeps and other chemically reduced deep-sea environments, exhibit a suite

Girguis, Peter R.

171

Introduction The deep-sea hydrothermal vent communities were discovered in  

E-Print Network [OSTI]

312 Introduction The deep-sea hydrothermal vent communities were discovered in 1977 and immediately (a monospecific genus) must have high rates of carbon fixation to support their growth. The physiological functioning of hydrothermal vent species, especially R. pachyptila, was studied intensively

Girguis, Peter R.

172

Spatial and temporal population genetics at deep-sea hydrothermal vents along the East Pacific Rise and Galápagos Rift  

E-Print Network [OSTI]

Ecological processes at deep-sea hydrothermal vents on fast-spreading mid-ocean ridges are punctuated by frequent physical disturbance. Larval dispersal among disjunct vent sites facilitates the persistence of sessile ...

Fusaro, Abigail Jean

2008-01-01T23:59:59.000Z

173

Energy Information Administration / Natural Gas Annual 2005 66  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 28. Summary Statistics for Natural Gas - Arizona, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year.................................... 8 7 9 6 6 Production (million cubic feet) Gross Withdrawals From Gas Wells ................................................ 305 300 443 331 233 From Oil Wells .................................................. 1 * * * * Total................................................................... 307 301 443 331 233 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared .............................................. * 0 0 0 0 Wet After Lease Separation................................ 307 301 443 331 233 Nonhydrocarbon Gases Removed......................

174

Base Natural Gas in Underground Storage (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period:

175

Gas fluidized-bed stirred media mill  

DOE Patents [OSTI]

A gas fluidized-bed stirred media mill is provided for comminuting solid ticles. The mill includes a housing enclosing a porous fluidizing gas diffuser plate, a baffled rotor and stator, a hollow drive shaft with lateral vents, and baffled gas exhaust exit ports. In operation, fluidizing gas is forced through the mill, fluidizing the raw material and milling media. The rotating rotor, stator and milling media comminute the raw material to be ground. Small entrained particles may be carried from the mill by the gas through the exit ports when the particles reach a very fine size.

Sadler, III, Leon Y. (Tuscaloosa, AL)

1997-01-01T23:59:59.000Z

176

Complete Genome Analysis of Sulfobacillus acidophilus Strain TPY, Isolated from a Hydrothermal Vent in the Pacific Ocean  

Science Journals Connector (OSTI)

...from a Hydrothermal Vent in the Pacific Ocean Bo Li 1 Yaping Chen 2 3 Qian Liu...from a hydrothermal vent in the Pacific Ocean. Ferrous iron and sulfur oxidation...from a hydrothermal vent in the Pacific Ocean (1229N, 10401 water depth...

Bo Li; Yaping Chen; Qian Liu; Songnian Hu; Xinhua Chen

2011-10-01T23:59:59.000Z

177

Economics of Residential Gas Furnaces and Water Heaters in United States  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Economics of Residential Gas Furnaces and Water Heaters in United States Economics of Residential Gas Furnaces and Water Heaters in United States New Construction Market Speaker(s): Alex Lekov Gabrielle Wong-Parodi James McMahon Victor Franco Date: May 8, 2009 - 12:00pm Location: 90-3122 In the new single-family home construction market, the choice of what gas furnace and gas water heater combination to install is primarily driven by first cost considerations. In this study, the authors use a life-cycle cost analysis approach that accounts for uncertainty and variability of inputs to assess the economic benefits of installing different gas furnace and water heater combinations. Among other factors, it assesses the economic feasibility of eliminating the traditional metal vents and replacing them with vents made of plastic materials used in condensing and power vent

178

System design description for the SY-101 vent header flow element enclosure upgrades  

SciTech Connect (OSTI)

This document describes the design of the High and Low Range Vent Header Flow Element(s) Field Enclosure for the 241-SY-101 High Level Nuclear Waste Underground Storage Tank.

Vargo, G.F.

1995-11-01T23:59:59.000Z

179

InnoVent InfraVest GmbH | Open Energy Information  

Open Energy Info (EERE)

InfraVest GmbH Jump to: navigation, search Name: InnoVentInfraVest GmbH Place: Varel, Germany Zip: 26316 Sector: Wind energy Product: Wind farm project developer based in Germany....

180

Improving the System Life of Basic Oxygen and Electric Arc Furnace Hoods, Roofs, and Side Vents  

Broader source: Energy.gov [DOE]

This factsheet describes the benefits of a high-performance aluminum bronze alloy to basic oxygen furnace and electric arc furnace components such as hoods, roofs, and side vents.

Note: This page contains sample records for the topic "vented gas fireplaces" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Biogeography and Evolution of Hydrothermal-Vent Fauna in the Eastern Pacific Ocean  

Science Journals Connector (OSTI)

...Hydrothermal-Vent Fauna in the Eastern Pacific Ocean Verena Tunnicliffe The biogeography...the spreading history of mid-ocean ridges. Extensive collections...active ridge systems in the eastern Pacific Ocean provide an opportunity to examine...

1988-01-01T23:59:59.000Z

182

Comments of the Hearth, Patio & Barbecue Association on the U.S. Department  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of the Hearth, Patio & Barbecue Association on the U.S. of the Hearth, Patio & Barbecue Association on the U.S. Department of Energy's Request for Comment on Annual Fuel Utilization Efficiency Testing (75 Fed. Reg. 52892 (August 30, 2010)) Comments of the Hearth, Patio & Barbecue Association on the U.S. Department of Energy's Request for Comment on Annual Fuel Utilization Efficiency Testing (75 Fed. Reg. 52892 (August 30, 2010)) The U.S. Department of Energy ("DOE") has promulgated regulations that appear to subject essentially all vented gas fireplaces-including decorative gas fireplaces certified to the American National Standards Institute ("ANSI") Z21.50 standard-to heating efficiency standards, 75 Fed. Reg. 20112 (April 16, 2010). The Hearth, Patio & Barbecue Association ("HPBA") believes that this final rule was ill-considered

183

Toxic species evolution from guayule fireplace logs  

E-Print Network [OSTI]

push for guayule research and development corresponds to the oil crisis of the previous decade (3). Along with the renewed and continued interest in guayule rubber production research, the search for uses of co-products continues. Current economic... analyses have revealed that the development of marketable co-products is necessary to further promote commercialization of guayule rubber production (4, 5). The primary marketable product of guayule is rubber, but significant quantities of resins...

Soderman, Kristi Lee

2012-06-07T23:59:59.000Z

184

U.S. Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1930's 392,528 526,159 649,106 677,311 1940's 655,967 630,212 626,782 684,115 1,010,285 896,208 1,102,033 1,067,938 810,178 853,884 1950's 801,044 793,186 848,608 810,276 723,567 773,639 864,334 809,148 633,412 571,048 1960's 562,877 523,533 425,629 383,408 341,853 319,143 375,695 489,877 516,508 525,750 1970's 489,460 284,561 248,119 248,292 169,381 133,913 131,930 136,807 153,350 167,019 1980's 125,451 98,017 93,365 94,962 107,913 94,778 97,633 123,707 142,525 141,642 1990's 150,415 169,909 167,519 226,743 228,336 283,739 272,117 256,351 103,019 110,285 2000's 91,232 96,913 99,178 98,113 96,408 119,097 129,469 143,457 166,909 165,360

185

Natural Gas Withdrawals from Underground Storage (Annual Supply &  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

186

Injections of Natural Gas into Storage (Annual Supply & Disposition)  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

187

Surface Mercury Geochemistry As A Guide To Volcanic Vent Structure And  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Surface Mercury Geochemistry As A Guide To Volcanic Vent Structure And Zones Of High Heat Flow In The Valley Of Ten Thousand Smokes, Katmai National Park, Alaska Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Surface Mercury Geochemistry As A Guide To Volcanic Vent Structure And Zones Of High Heat Flow In The Valley Of Ten Thousand Smokes, Katmai National Park, Alaska Details Activities (2) Areas (1) Regions (0) Abstract: A reconnaissance survey of Hg° was designed to model the 1912 Novarupta vent structure and delineate zones of near-surface high heat

188

Impact of mine closure and access facilities on gas emissions from old mine workings to surface: examples of French iron and coal  

E-Print Network [OSTI]

with a vent to enable mine gas outflow in specific conditions. Measurements stations were installed on mine conditions. Some parts of the basin are under gas capture stations influence. This is not the case in "La1 Impact of mine closure and access facilities on gas emissions from old mine workings to surface

Boyer, Edmond

189

CenterPoint Energy (Gas) - Commercial Efficiency Rebates (Oklahoma) |  

Broader source: Energy.gov (indexed) [DOE]

Commercial Efficiency Rebates (Oklahoma) Commercial Efficiency Rebates (Oklahoma) CenterPoint Energy (Gas) - Commercial Efficiency Rebates (Oklahoma) < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Construction Appliances & Electronics Water Heating Maximum Rebate Boilers: 25% of equipment costs Modulating Boiler Controls: 25% Vent Dampers: $250/boiler Boiler Reset Controls: $150/control system Program Info State Oklahoma Program Type Utility Rebate Program Rebate Amount Forced-Air Furnace: $300-$400 Direct Vent Wall Furnace: $200 Hydronic Heating System: $300 Boilers: $1400-$2000/MMBtu input Modulating Boiler Controls: $1,000/MMBtu input Vent Dampers: 25% of cost Boiler Reset/Cut-Out Controls: up to $150/system Tankless Water Heater: $250

190

Radiant Barrier Insulation Performance in Full Scale Attics with Soffit and Ridge Venting  

E-Print Network [OSTI]

in an attic. Figure 1 shows the methods used to install the foil for the tests reviewed. In a brief review all of the characteristics, results and differences of the tests cannot be discussed. Other than the ORNL Karns house tests, there have been no full... that had natural ventilation rates, (ORNL and TVA) used soffit and gable venting and did not measure the ventilation rate. The other experimenters used forced ventilation and approximated either gable/gable or soffit/ridge venting. Since the roof deck...

Ober, D. G.; Volckhausen, T. W.

1988-01-01T23:59:59.000Z

191

Anaerobic Respiration on Tellurate and Other Metalloids in Bacteria from Hydrothermal Vent Fields in the Eastern Pacific Ocean  

Science Journals Connector (OSTI)

...Hydrothermal Vent Fields in the Eastern Pacific Ocean Julius T. Csotonyi 1 Erko Stackebrandt...hydrothermal vent fields in the eastern Pacific Ocean. In 2003, samples of sulfide...the Juan de Fuca Ridge in the Pacific Ocean. Appl. Environ. Microbiol...

Julius T. Csotonyi; Erko Stackebrandt; Vladimir Yurkov

2006-07-01T23:59:59.000Z

192

NATURAL GAS FROM SHALE: Questions and Answers Shale Gas Development Challenges -  

Broader source: Energy.gov (indexed) [DOE]

Air Air Key Points: * Air quality risks from shale oil and gas development are generally the result of: (1) dust and engine exhaust from increased truck traffic; (2) emissions from diesel-powered pumps used to power equipment; (3) intentional flaring or venting of gas for operational reasons; and, (4) unintentional emissions of pollutants from faulty equipment or impoundments. 1 * Natural gas is efficient and clean compared to other fossil fuels, emitting less nitrogen oxide and sulfur dioxide than coal and oil, no mercury and very few particulates. However, the drilling

193

Landfill Gas Sequestration in Kansas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Road Road P.O. Box 880 Morgantown, WV 26505-0880 304-285-4132 Heino.beckert@netl.doe.gov David newell Principal Investigator Kansas Geological Survey 1930 Constant Avenue Lawrence, KS 66045 785-864-2183 dnewall@kgs.uk.edu LandfiLL Gas sequestration in Kansas Background Municipal solid waste landfills are the largest source of anthropogenic methane emissions in the United States, accounting for about 34 percent of these emissions in 2004. Most methane (CH 4 ) generated in landfills and open dumps by anaerobic decomposition of the organic material in solid-waste-disposal landfills is either vented to the atmosphere or converted to carbon dioxide (CO 2 ) by flaring. The gas consists of about 50 percent methane (CH 4 ), the primary component of natural gas, about 50 percent carbon dioxide (CO

194

Geochemistry of hydrothermal fluids from Axial Seamount Hydrothermal Emissions Study vent field, Juan de Fuca Ridge: Subseafloor boiling and subsequent fluid-rock interaction  

SciTech Connect (OSTI)

Hydrothermal fluids collected from the ASHES vent field in 1986, 1987, and 1988 exhibit a very wide range of chemical composition over a small area ({approximately} 60 m in diameter). Compositions range from a 300C, gas-enriched (285 mmol/kg CO{sub 2}), low-chlorinity ({approximately} 33% of seawater) fluid to a 328C, relatively gas-depleted (50 mmol/kg CO{sub 2}), high-chlorinity ({approximately} 116% of seawater) fluid. The entire range of measured compositions at ASHES is best explained by a single hydrothermal fluid undergoing phase separation while rising through the ocean crust, followed by partial segregation of the vapor and brine phases. Other mechanisms proposed to produce chlorinity variations in hydrothermal fluids (precipitation/dissolution of a chloride-bearing mineral or crustal hydration) cannot produce the covariation of chlorinity and gas content observed at ASHES. There is good argument of the measured fluid compositions generated by a simple model of phase separation, in which gases are partitioned according to Henry's law and all salt remains in the liquid phase. Significant enrichments in silica, lithium and boron in the low-chlorinity fluids over levels predicted by the model are attributed to fluid-rock interaction in the upflow zone. Depletions in iron and calcium suggest that these elements have been removed by iron-sulfide and anhydrite precipitation at some time in the history of the low-chlorinity fluids. The distribution of low- and high-chlorinity venting is consistent with mechanisms of phase segregation based on differential buoyancy or relative permeability. The relatively shallow depth of the seafloor (1,540 m) and the observed chemistry of ASHES fluids are consistent with phase separation in the sub-critical or near-critical region.

Butterfield, D.A.; McDuff, R.E.; Lilley, M.D. (Univ. of Washington, Seattle (United States)); Massoth, G.J. (NOAA, Seattle, WA (United States)); Lupton, J.E. (Univ. of California, Santa Barbara (United States))

1990-08-10T23:59:59.000Z

195

Adaptation and acclimatization to ocean acidification in marine ectotherms: an in situ transplant experiment with polychaetes at a shallow CO2 vent system  

Science Journals Connector (OSTI)

...experiment with polychaetes at a shallow CO2 vent system Piero Calosi 1 Samuel P. S...polychaete species living around a natural CO2 vent system. Here, we show that a marine...live in different proximities to natural CO2 vents. Polychaetes, in general, have...

2013-01-01T23:59:59.000Z

196

Black smokers, massive sulphides and vent biota at the Mid-Atlantic Ridge  

Science Journals Connector (OSTI)

... rocks inside the boundary of the inner mound. By analogy with temperature measurements made by submersibles in shimmering water at the Galapagos spreading centre31 and the Guaymas Basin32, this water ... anomalies are attenuated by rapid heat dissipation in moving water. Direct measurements made from a submersible in similar Pacific vents have recorded water temperatures up to 400 C (ref. 36 ...

P. A. Rona; G. Klinkhammer; T. A. Nelsen; J. H. Trefry; H. Elderfield

1986-05-01T23:59:59.000Z

197

Compact fluorescent lamp using horizontal and vertical insulating septums and convective venting geometry  

DOE Patents [OSTI]

A novel design is described for a compact fluorescent lamp, including a lamp geometry which will increase light output and efficacy of the lamp in a base down operating position by providing horizontal and vertical insulating septums positioned in the ballast compartment of the lamp to provide a cooler coldspot. Selective convective venting provides additional cooling of the ballast compartment. 9 figs.

Siminovitch, M.

1998-02-10T23:59:59.000Z

198

Submarine venting of liquid carbon dioxide on a Mariana Arc volcano  

E-Print Network [OSTI]

Submarine venting of liquid carbon dioxide on a Mariana Arc volcano John Lupton NOAA/Pacific Marine hydrothermal fluids, it is rarely found in the form of CO2 liquid. Here we report the discovery of an unusual CO2-rich hydrothermal system at 1600-m depth near the summit of NW Eifuku, a small submarine volcano

Chadwick, Bill

199

Development of a model for predicting transient hydrogen venting in 55-gallon drums  

SciTech Connect (OSTI)

Remote drum venting was performed on a population of unvented high activity drums (HAD) in the range of 63 to 435 plutonium equivalent Curies (PEC). These 55-gallon Transuranic (TRU) drums will eventually be shipped to the Waste Isolation Pilot Plant (WIPP). As a part of this process, the development of a calculational model was required to predict the transient hydrogen concentration response of the head space and polyethylene liner (if present) within the 55-gallon drum. The drum and liner were vented using a Remote Drum Venting System (RDVS) that provided a vent sampling path for measuring flammable hydrogen vapor concentrations and allow hydrogen to diffuse below lower flammability limit (LFL) concentrations. One key application of the model was to determine the transient behavior of hydrogen in the head space, within the liner, and the sensitivity to the number of holes made in the liner or number of filters. First-order differential mass transport equations were solved using Laplace transformations and numerically to verify the results. the Mathematica 6.0 computing tool was also used as a validation tool and for examining larger than two chamber systems. Results will be shown for a variety of configurations, including 85-gallon and 110-gallon overpack drums. The model was also validated against hydrogen vapor concentration assay measurements.

Apperson, Jason W [Los Alamos National Laboratory; Clemmons, James S [Los Alamos National Laboratory; Garcia, Michael D [Los Alamos National Laboratory; Sur, John C [Los Alamos National Laboratory; Zhang, Duan Z [Los Alamos National Laboratory; Romero, Michael J [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

200

Subtidal Gastropods Consume Sulfur-Oxidizing Bacteria: Evidence from Coastal Hydrothermal Vents  

Science Journals Connector (OSTI)

...primarily hydrogen sulfide (H2S) (1). Even though hydro-thermal vents also occur in shallow coastal waters (2), reports of...bright-field optics, and (ii) their failure to stain with Sudan black B, indicating that they were not poly-, -hydroxybu-terate...

JEFFREY L. STEIN

1984-02-17T23:59:59.000Z

Note: This page contains sample records for the topic "vented gas fireplaces" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

CONSIDERATIONS STATISTIQUES RELATIVES A LA DISTRIBUTION DE LA VITESSE DU VENT  

E-Print Network [OSTI]

distribution. The reliability approach requires to know the distribution of the maximal speed valueCONSIDERATIONS STATISTIQUES RELATIVES A LA DISTRIBUTION DE LA VITESSE DU VENT Lambert Pierrat (1, 3 pression aérodynamique. Dans les deux cas, la vitesse peut être représentée par une distribution parente de

Paris-Sud XI, Université de

202

Energy Information Administration / Natural Gas Annual 2009 124  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 56. Summary Statistics for Natural Gas - New Hampshire, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

203

Energy Information Administration / Natural Gas Annual 2010 108  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 48. Summary Statistics for Natural Gas - Maryland, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 7 7 7 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 48 35 28 43 43 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 48 35 28 43 43 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed

204

Energy Information Administration / Natural Gas Annual 2005 120  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 55. Summary Statistics for Natural Gas - New Hampshire, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

205

Energy Information Administration / Natural Gas Annual 2005 96  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 43. Summary Statistics for Natural Gas - Kentucky, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 14,370 14,367 12,900 13,920 14,175 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 81,723 88,259 87,608 94,259 92,795 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 81,723 88,259 87,608 94,259 92,795 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 81,723

206

Energy Information Administration / Natural Gas Annual 2005 146  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 68. Summary Statistics for Natural Gas - Tennessee, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 350 400 430 280 400 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 2,000 2,050 1,803 2,100 2,200 Total................................................................... 2,000 2,050 1,803 2,100 2,200 Repressuring ...................................................... NA NA NA NA NA Vented and Flared.............................................. NA NA NA NA NA Wet After Lease Separation................................ 2,000 2,050 1,803 2,100 2,200

207

Energy Information Administration / Natural Gas Annual 2005 138  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 64. Summary Statistics for Natural Gas - Pennsylvania, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 40,100 40,830 42,437 44,227 46,654 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 130,853 157,800 159,827 197,217 168,501 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 130,853 157,800 159,827 197,217 168,501 Repressuring ...................................................... NA NA NA NA NA Vented and Flared.............................................. NA NA NA NA NA Wet After Lease Separation................................

208

Energy Information Administration / Natural Gas Annual 2005 104  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 47. Summary Statistics for Natural Gas - Massachusetts, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

209

Energy Information Administration / Natural Gas Annual 2010 126  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 57. Summary Statistics for Natural Gas - New Hampshire, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

210

Energy Information Administration / Natural Gas Annual 2010 134  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 61. Summary Statistics for Natural Gas - North Carolina, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

211

Energy Information Administration / Natural Gas Annual 2005 84  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 37. Summary Statistics for Natural Gas - Hawaii, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

212

Energy Information Administration / Natural Gas Annual 2010 84  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 36. Summary Statistics for Natural Gas - District of Columbia, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed

213

Energy Information Administration / Natural Gas Annual 2009 164  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 76. Summary Statistics for Natural Gas - Wisconsin, 2005-2009 Number of Producing Gas Wells at End of Year ................................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................... 0 0 0 0 0 From Oil Wells................................................. 0 0 0 0 0 From Coalbed Wells ........................................ 0 0 0 0 0 From Shale Gas Wells..................................... 0 0 0 0 0 Total.................................................................. 0 0 0 0 0 Repressuring ..................................................... 0 0 0 0 0 Vented and Flared ............................................. 0 0 0 0 0 Nonhydrocarbon Gases Removed.....................

214

Energy Information Administration / Natural Gas Annual 2006 84  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 37. Summary Statistics for Natural Gas - Hawaii, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ............................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Wet After Lease Separation............................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ......................................

215

Energy Information Administration / Natural Gas Annual 2010 128  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 58. Summary Statistics for Natural Gas - New Jersey, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

216

Energy Information Administration / Natural Gas Annual 2005 156  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 73. Summary Statistics for Natural Gas - Washington, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

217

Energy Information Administration / Natural Gas Annual 2009 112  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 50. Summary Statistics for Natural Gas - Minnesota, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

218

Energy Information Administration / Natural Gas Annual 2010 142  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 65. Summary Statistics for Natural Gas - Oregon, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 14 18 21 24 26 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 621 409 778 821 1,407 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 621 409 778 821 1,407 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed

219

Energy Information Administration / Natural Gas Annual 2009 144  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 66. Summary Statistics for Natural Gas - Rhode Island, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

220

Energy Information Administration / Natural Gas Annual 2010 158  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 73. Summary Statistics for Natural Gas - Vermont, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

Note: This page contains sample records for the topic "vented gas fireplaces" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Energy Information Administration / Natural Gas Annual 2009 106  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 47. Summary Statistics for Natural Gas - Maryland, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 7 7 7 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 46 48 35 28 43 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 46 48 35 28 43 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed

222

Energy Information Administration / Natural Gas Annual 2005 122  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 56. Summary Statistics for Natural Gas - New Jersey, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

223

Energy Information Administration / Natural Gas Annual 2006 116  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 53. Summary Statistics for Natural Gas - Nebraska, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ............................... 106 109 111 114 114 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 904 1,187 1,229 943 1,033 From Oil Wells.............................................. 288 279 269 258 185 Total............................................................... 1,193 1,466 1,499 1,201 1,217 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 5 12 23 29 17 Wet After Lease Separation............................ 1,188 1,454 1,476 1,172 1,200 Nonhydrocarbon Gases Removed

224

Energy Information Administration / Natural Gas Annual 2010 86  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 37. Summary Statistics for Natural Gas - Florida, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 2,845 2,000 2,742 290 13,938 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 2,845 2,000 2,742 290 13,938 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0

225

Energy Information Administration / Natural Gas Annual 2009 84  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 36. Summary Statistics for Natural Gas - Florida, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 2,954 2,845 2,000 2,742 290 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 2,954 2,845 2,000 2,742 290 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed

226

Energy Information Administration / Natural Gas Annual 2006 118  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 54. Summary Statistics for Natural Gas - Nevada, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ............................... 4 4 4 4 4 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 6 6 5 5 5 Total............................................................... 6 6 5 5 5 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Wet After Lease Separation............................ 6 6 5 5 5 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ......................................

227

Energy Information Administration / Natural Gas Annual 2009 96  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 42. Summary Statistics for Natural Gas - Iowa, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

228

Energy Information Administration / Natural Gas Annual 2009 130  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 59. Summary Statistics for Natural Gas - New York, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 5,449 5,985 6,680 6,675 6,628 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 54,851 55,339 54,232 49,607 44,273 From Oil Wells.............................................. 329 641 710 714 576 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 55,180 55,980 54,942 50,320 44,849 Repressuring .................................................. 0 0 0 0 0 Vented and Flared..........................................

229

Energy Information Administration / Natural Gas Annual 2010 148  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 68. Summary Statistics for Natural Gas - South Carolina, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

230

Energy Information Administration / Natural Gas Annual 2006 112  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 51. Summary Statistics for Natural Gas - Missouri, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ............................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Wet After Lease Separation............................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ......................................

231

Energy Information Administration / Natural Gas Annual 2010 124  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 56. Summary Statistics for Natural Gas - Nevada, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 4 4 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 5 5 4 4 4 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 5 5 4 4 4 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

232

Energy Information Administration / Natural Gas Annual 2010 132  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 60. Summary Statistics for Natural Gas - New York, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 5,985 6,680 6,675 6,628 6,736 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 55,339 54,232 49,607 44,273 35,163 From Oil Wells.............................................. 641 710 714 576 650 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 55,980 54,942 50,320 44,849 35,813 Repressuring .................................................. 0 0 0 0 0 Vented and Flared..........................................

233

Energy Information Administration / Natural Gas Annual 2005 100  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 45. Summary Statistics for Natural Gas - Maine, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

234

Energy Information Administration / Natural Gas Annual 2005 160  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 75. Summary Statistics for Natural Gas - Wisconsin, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ......................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells...................................................... 0 0 0 0 0 From Oil Wells........................................................ 0 0 0 0 0 Total......................................................................... 0 0 0 0 0 Repressuring ............................................................ 0 0 0 0 0 Vented and Flared .................................................... 0 0 0 0 0 Wet After Lease Separation...................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed............................

235

Energy Information Administration / Natural Gas Annual 2009 86  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 37. Summary Statistics for Natural Gas - Georgia, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

236

Energy Information Administration / Natural Gas Annual 2006 86  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 38. Summary Statistics for Natural Gas - Idaho, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ............................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Wet After Lease Separation............................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ......................................

237

Energy Information Administration / Natural Gas Annual 2006 76  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 33. Summary Statistics for Natural Gas - Delaware, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ............................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Wet After Lease Separation............................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ......................................

238

Energy Information Administration / Natural Gas Annual 2010 122  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 55. Summary Statistics for Natural Gas - Nebraska, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 114 186 322 285 276 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 1,033 1,331 2,862 2,734 2,092 From Oil Wells.............................................. 185 228 221 182 163 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 1,217 1,560 3,083 2,916 2,255 Repressuring .................................................. 0 0 0 0 0 Vented and Flared..........................................

239

Energy Information Administration / Natural Gas Annual 2010 118  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 53. Summary Statistics for Natural Gas - Missouri, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

240

Energy Information Administration / Natural Gas Annual 2010 150  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 69. Summary Statistics for Natural Gas - South Dakota, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 69 71 71 89 102 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 455 422 0 0 1,300 From Oil Wells.............................................. 10,162 11,458 10,909 11,366 11,240 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. NA NA 1,098 1,561 NA Total............................................................... 10,616 11,880 12,007 12,927 12,540 Repressuring .................................................. 0 0 0 0 0 Vented and Flared..........................................

Note: This page contains sample records for the topic "vented gas fireplaces" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Energy Information Administration / Natural Gas Annual 2010 114  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 51. Summary Statistics for Natural Gas - Minnesota, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

242

Energy Information Administration / Natural Gas Annual 2005 152  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 71. Summary Statistics for Natural Gas - Vermont, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

243

Energy Information Administration / Natural Gas Annual 2010 92  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 40. Summary Statistics for Natural Gas - Idaho, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

244

Energy Information Administration / Natural Gas Annual 2006 100  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 45. Summary Statistics for Natural Gas - Maine, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ............................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Wet After Lease Separation............................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ......................................

245

Energy Information Administration / Natural Gas Annual 2010 166  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 77. Summary Statistics for Natural Gas - Wisconsin, 2006-2010 Number of Producing Gas Wells at End of Year ................................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................... 0 0 0 0 0 From Oil Wells................................................. 0 0 0 0 0 From Coalbed Wells ........................................ 0 0 0 0 0 From Shale Gas Wells..................................... 0 0 0 0 0 Total.................................................................. 0 0 0 0 0 Repressuring ..................................................... 0 0 0 0 0 Vented and Flared ............................................. 0 0 0 0 0 Nonhydrocarbon Gases Removed.....................

246

Energy Information Administration / Natural Gas Annual 2005 108  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 49. Summary Statistics for Natural Gas - Minnesota, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

247

Energy Information Administration / Natural Gas Annual 2010 94  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 41. Summary Statistics for Natural Gas - Illinois, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 316 43 45 51 50 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ E 165 E 139 E 119 E 139 E 1,198 From Oil Wells.............................................. E 5 E 5 E 5 E 5 E 5 From Coalbed Wells ..................................... NA E 1,250 E 1,069 E 1,299 NA From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... E 170 E 1,394 1,193 1,443 1,203 Repressuring .................................................. 0 0 0 0 0 Vented and Flared..........................................

248

Energy Information Administration / Natural Gas Annual 2005 118  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 54. Summary Statistics for Natural Gas - Nevada, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 4 4 4 4 4 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 7 6 6 5 5 Total................................................................... 7 6 6 5 5 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 7 6 6 5 5 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

249

Energy Information Administration / Natural Gas Annual 2005 144  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 67. Summary Statistics for Natural Gas - South Dakota, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 68 69 61 61 69 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 563 531 550 531 446 From Oil Wells.................................................. 10,751 9,894 11,055 11,238 10,902 Total................................................................... 11,313 10,424 11,605 11,768 11,349 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 2,043 1,880 2,100 2,135 2,071 Wet After Lease Separation................................

250

Energy Information Administration / Natural Gas Annual 2005 128  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 59. Summary Statistics for Natural Gas - North Carolina, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

251

Energy Information Administration / Natural Gas Annual 2005 126  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 58. Summary Statistics for Natural Gas - New York, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 5,913 6,496 5,878 5,781 5,449 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 27,632 36,637 35,943 45,963 54,851 From Oil Wells.................................................. 155 179 194 87 329 Total................................................................... 27,787 36,816 36,137 46,050 55,180 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 27,787

252

Energy Information Administration / Natural Gas Annual 2010 72  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 30. Summary Statistics for Natural Gas - Arizona, 2006-2010 Number of Producing Gas Wells at End of Year................................................ 7 7 6 6 5 Production (million cubic feet) Gross Withdrawals From Gas Wells ........................................... 611 654 523 711 183 From Oil Wells ............................................. * * * * 0 From Coalbed Wells .................................... 0 0 0 0 0 From Shale Gas Wells ................................. 0 0 0 0 0 Total.............................................................. 611 655 523 712 183 Repressuring ................................................. 0 0 0 0 0 Vented and Flared ......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed.................

253

Energy Information Administration / Natural Gas Annual 2009 150  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 69. Summary Statistics for Natural Gas - Tennessee, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 400 330 305 285 310 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 NA 4,700 5,478 From Oil Wells.............................................. 2,200 2,663 3,942 R 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 2,200 2,663 3,942 4,700 5,478 Repressuring .................................................. NA NA NA NA NA Vented and Flared..........................................

254

Energy Information Administration / Natural Gas Annual 2006 122  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 56. Summary Statistics for Natural Gas - New Jersey, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ............................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Wet After Lease Separation............................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ......................................

255

Energy Information Administration / Natural Gas Annual 2005 78  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 34. Summary Statistics for Natural Gas - District of Columbia, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

256

Energy Information Administration / Natural Gas Annual 2005 86  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 38. Summary Statistics for Natural Gas - Idaho, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

257

Energy Information Administration / Natural Gas Annual 2010 80  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 34. Summary Statistics for Natural Gas - Connecticut, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

258

Energy Information Administration / Natural Gas Annual 2010 82  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 35. Summary Statistics for Natural Gas - Delaware, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

259

Energy Information Administration / Natural Gas Annual 2005 116  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 53. Summary Statistics for Natural Gas - Nebraska, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 96 106 109 111 114 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 886 904 1,187 1,229 943 From Oil Wells.................................................. 322 288 279 269 258 Total................................................................... 1,208 1,193 1,466 1,499 1,201 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 5 12 23 29 Wet After Lease Separation................................ 1,208 1,188 1,454 1,476 1,172

260

Energy Information Administration / Natural Gas Annual 2005 142  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 66. Summary Statistics for Natural Gas - South Carolina, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

Note: This page contains sample records for the topic "vented gas fireplaces" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Energy Information Administration / Natural Gas Annual 2010 88  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 38. Summary Statistics for Natural Gas - Georgia, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

262

Energy Information Administration / Natural Gas Annual 2009 80  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 34. Summary Statistics for Natural Gas - Delaware, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

263

Energy Information Administration / Natural Gas Annual 2009 70  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 29. Summary Statistics for Natural Gas - Arizona, 2005-2009 Number of Producing Gas Wells at End of Year................................................ 6 7 7 6 6 Production (million cubic feet) Gross Withdrawals From Gas Wells ........................................... 233 611 654 523 711 From Oil Wells ............................................. * * * * * From Coalbed Wells .................................... 0 0 0 0 0 From Shale Gas Wells ................................. 0 0 0 0 0 Total.............................................................. 233 611 655 523 712 Repressuring ................................................. 0 0 0 0 0 Vented and Flared ......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed.................

264

Energy Information Administration / Natural Gas Annual 2009 90  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 39. Summary Statistics for Natural Gas - Idaho, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

265

Energy Information Administration / Natural Gas Annual 2009 108  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 48. Summary Statistics for Natural Gas - Massachusetts, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

266

Energy Information Administration / Natural Gas Annual 2009 82  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 35. Summary Statistics for Natural Gas - District of Columbia, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed

267

Energy Information Administration / Natural Gas Annual 2005 74  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 32. Summary Statistics for Natural Gas - Connecticut, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

268

Energy Information Administration / Natural Gas Annual 2009 156  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 72. Summary Statistics for Natural Gas - Vermont, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

269

Energy Information Administration / Natural Gas Annual 2009 134  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 61. Summary Statistics for Natural Gas - North Dakota, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 148 200 200 194 196 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 14,554 16,435 16,416 13,738 11,263 From Oil Wells.............................................. 41,350 46,351 54,381 73,450 81,226 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 55,904 62,786 70,797 87,188 92,489 Repressuring .................................................. 0 0 0 0 0 Vented and Flared..........................................

270

Energy Information Administration / Natural Gas Annual 2010 96  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 42. Summary Statistics for Natural Gas - Indiana, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 2,336 2,350 525 563 620 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 2,921 3,606 4,701 4,927 6,802 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 NA From Shale Gas Wells.................................. 0 0 0 0 NA Total............................................................... 2,921 3,606 4,701 4,927 6,802 Repressuring .................................................. NA NA NA NA NA Vented and Flared..........................................

271

Energy Information Administration / Natural Gas Annual 2009 140  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 64. Summary Statistics for Natural Gas - Oregon, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 15 14 18 21 24 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 454 621 409 778 821 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 454 621 409 778 821 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed

272

Energy Information Administration / Natural Gas Annual 2006 78  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 34. Summary Statistics for Natural Gas - District of Columbia, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ............................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Wet After Lease Separation............................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ......................................

273

Energy Information Administration / Natural Gas Annual 2006 88  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 39. Summary Statistics for Natural Gas - Illinois, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ............................... 225 240 251 316 E 316 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 174 169 165 E 161 E 165 From Oil Wells.............................................. 5 5 5 E 5 E 5 Total............................................................... 180 174 170 E 166 E 170 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Wet After Lease Separation............................ 180 174 170 166 170 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production

274

Energy Information Administration / Natural Gas Annual 2009 116  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 52. Summary Statistics for Natural Gas - Missouri, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

275

Energy Information Administration / Natural Gas Annual 2009 146  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 67. Summary Statistics for Natural Gas - South Carolina, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

276

Energy Information Administration / Natural Gas Annual 2009 126  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 57. Summary Statistics for Natural Gas - New Jersey, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

277

Energy Information Administration / Natural Gas Annual 2009 104  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 46. Summary Statistics for Natural Gas - Maine, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

278

Energy Information Administration / Natural Gas Annual 2009 78  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 33. Summary Statistics for Natural Gas - Connecticut, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

279

Energy Information Administration / Natural Gas Annual 2009 148  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 68. Summary Statistics for Natural Gas - South Dakota, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 69 69 71 71 89 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 446 455 422 0 0 From Oil Wells.............................................. 10,902 10,162 11,458 10,909 11,366 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. NA NA NA 1,098 1,561 Total............................................................... 11,349 10,616 11,880 12,007 12,927 Repressuring .................................................. 0 0 0 0 0 Vented and Flared..........................................

280

Energy Information Administration / Natural Gas Annual 2005 136  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 63. Summary Statistics for Natural Gas - Oregon, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 20 18 15 15 15 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,112 837 731 467 454 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 1,112 837 731 467 454 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 1,112 837 731 467 454 Nonhydrocarbon Gases Removed .....................

Note: This page contains sample records for the topic "vented gas fireplaces" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Energy Information Administration / Natural Gas Annual 2009 88  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 38. Summary Statistics for Natural Gas - Hawaii, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

282

Energy Information Administration / Natural Gas Annual 2005 154  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 72. Summary Statistics for Natural Gas - Virginia, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 3,521 3,429 3,506 3,870 4,132 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 71,543 76,915 143,644 R 85,508 88,610 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 71,543 76,915 143,644 R 85,508 88,610 Repressuring ...................................................... NA NA NA NA NA Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 71,543

283

Energy Information Administration / Natural Gas Annual 2006 140  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 65. Summary Statistics for Natural Gas - Rhode Island, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ............................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Wet After Lease Separation............................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ......................................

284

Energy Information Administration / Natural Gas Annual 2006 66  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 28. Summary Statistics for Natural Gas - Arizona, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year............................... 7 9 6 6 7 Production (million cubic feet) Gross Withdrawals From Gas Wells ........................................... 300 443 331 233 611 From Oil Wells ............................................. * * * * * Total.............................................................. 301 443 331 233 611 Repressuring ................................................. 0 0 0 0 0 Vented and Flared ......................................... 0 0 0 0 0 Wet After Lease Separation........................... 301 443 331 233 611 Nonhydrocarbon Gases Removed................. 0 0 0 0 0 Marketed Production......................................

285

Energy Information Administration / Natural Gas Annual 2009 92  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 40. Summary Statistics for Natural Gas - Illinois, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 316 316 43 45 51 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ E 161 E 165 E 139 E 119 E 139 From Oil Wells.............................................. E 5 E 5 E 5 E 5 E 5 From Coalbed Wells ..................................... NA NA E 1,250 E 1,069 E 1,299 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... E 166 E 170 E 1,394 E 1,193 E 1,443 Repressuring .................................................. 0 0 0 0 0 Vented and Flared..........................................

286

Energy Information Administration / Natural Gas Annual 2005 112  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 51. Summary Statistics for Natural Gas - Missouri, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

287

Energy Information Administration / Natural Gas Annual 2006 160  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 75. Summary Statistics for Natural Gas - Wisconsin, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year .................................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................... 0 0 0 0 0 From Oil Wells................................................. 0 0 0 0 0 Total.................................................................. 0 0 0 0 0 Repressuring ..................................................... 0 0 0 0 0 Vented and Flared ............................................. 0 0 0 0 0 Wet After Lease Separation............................... 0 0 0 0 0 Nonhydrocarbon Gases Removed..................... 0 0 0 0 0 Marketed Production .........................................

288

Energy Information Administration / Natural Gas Annual 2005 140  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 65. Summary Statistics for Natural Gas - Rhode Island, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

289

Energy Information Administration / Natural Gas Annual 2010 90  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 39. Summary Statistics for Natural Gas - Hawaii, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

290

Energy Information Administration / Natural Gas Annual 2005 102  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 46. Summary Statistics for Natural Gas - Maryland, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 7 5 7 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 32 22 48 34 46 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 32 22 48 34 46 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 32 22 48 34 46 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

291

Energy savings in one-pipe steam heating systems fitted with high-capacity air vents. Final report  

SciTech Connect (OSTI)

Multifamily buildings heated by one-pipe steam systems experience significant temperature gradients from apartment to apartment, often reaching 15{degrees}F. As a result, many tenants are to cold, or if the heating system output is increased so as to heat the coldest apartment adequately, too hot. While both are undesirable, the second is particularly so because it wastes energy. It was thought that insufficient air venting of the steam pipes contributed to the gradient. Theoretically, if steam mains and risers are quickly vented, steam will reach each radiator at approximately the same time and balance apartment temperatures. The project`s objective was to determine if the installation of large-capacity air vents at the ends of steam mains and risers would economically reduce the temperature gradient between apartments and reduce the amount of space heating energy required. The test was conducted by enabling and disabling air vents biweekly in 10 multifamily buildings in New York City between December 1992 to May 1993. The temperatures of selected apartments and total space heating energy were compared during each venting regime. There was no difference in energy consumption between ``vents on`` and ``vents off`` periods (see Tables 2 and 5); however, there was a reduction in the maximum spread of apartment temperatures.

Not Available

1994-09-01T23:59:59.000Z

292

Laclede Gas Company - Commercial and Industrial Energy Efficiency Rebate  

Broader source: Energy.gov (indexed) [DOE]

Laclede Gas Company - Commercial and Industrial Energy Efficiency Laclede Gas Company - Commercial and Industrial Energy Efficiency Rebate Program Laclede Gas Company - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Commercial Weatherization Maximum Rebate Commercial Incentive: Contact Laclede Gas for general program incentive maximum Gas Boilers: 1,000,000 BTU/hr ($3,000) Continuous Modulating Burner: $15,000 cap per burner Gas-fired Boiler Tune Up: $750 per building (non-profit), $500 per boiler (C&I) High Efficiency Air-Forced Furnaces: $200-$250 Vent Dampers: $500 per boiler Steam Trap Replacements: $2,500 Primary Air Dampers: $500 Food Service Gas Steamer: $475 Food Service Gas Fryer: $350

293

Biotic and abiotic interactions of deep-sea hydrothermal vent-endemic fish on the East Pacific Rise  

E-Print Network [OSTI]

A study of the ecology of fish endemic to hydrothermal vents on the East Pacific Rise was undertaken utilizing a variety of techniques, focusing on the bythitid Thermichthys hollisi. Stable isotope and gut content analyses ...

Buckman, Kate Lynn

2009-01-01T23:59:59.000Z

294

Seasonal Variation in Monthly Average Air Change Rates Using Passive Tracer Gas Measurements  

E-Print Network [OSTI]

of indoor air pollution sources. Concurrently, great efforts are made to make buildings energy efficient 1970s, while less attention has been paid to IAQ. Insufficient venting of indoor air pollutantsSeasonal Variation in Monthly Average Air Change Rates Using Passive Tracer Gas Measurements Marie

Hansen, René Rydhof

295

Home Energy Solutions for Existing Homes | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Home Energy Solutions for Existing Homes Home Energy Solutions for Existing Homes Home Energy Solutions for Existing Homes < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Manufacturing Heat Pumps Appliances & Electronics Water Heating Windows, Doors, & Skylights Program Info Funding Source Public Benefits Fund State Oregon Program Type State Rebate Program Rebate Amount Air Sealing: $150 Duct Insulation: 50% of cost up to $100 Gas Boiler: $200 Direct Vent Gas Fireplace: $200-$250 Direct Vent Gas Unit Heater: $100 Heat Pumps: $250 - $450, depending on efficiency and previous heating system Heat Pump Test: $150 Heat Pump Advanced Controls: $250 Ductless Heat Pump: $800

296

No loss fueling station for liquid natural gas vehicles  

SciTech Connect (OSTI)

This patent describes a no loss fueling station for delivery of liquid natural gas (LNG) to a use device such as a motor vehicle. It comprises: a pressure building tank holding a quantity of LNG and gas head; means for delivering LNG to the pressure building tank; means for selectively building the pressure in the pressure building tank; means for selectively reducing the pressure in the pressure building tank; means for controlling the pressure building and pressure reducing means to maintain a desired pressure in the pressure building tank without venting natural gas to the atmosphere; and means for delivering the LNG from the pressure building tank to the use device.

Cieslukowski, R.E.

1992-06-16T23:59:59.000Z

297

Oil/gas separator for installation at burning wells  

DOE Patents [OSTI]

An oil/gas separator is disclosed that can be utilized to return the burning wells in Kuwait to production. Advantageously, a crane is used to install the separator at a safe distance from the well. The gas from the well is burned off at the site, and the oil is immediately pumped into Kuwait's oil gathering system. Diverters inside the separator prevent the oil jet coming out of the well from reaching the top vents where the gas is burned. The oil falls back down, and is pumped from an annular oil catcher at the bottom of the separator, or from the concrete cellar surrounding the well.

Alonso, C.T.; Bender, D.A.; Bowman, B.R.; Burnham, A.K.; Chesnut, D.A.; Comfort, W.J. III; Guymon, L.G.; Henning, C.D.; Pedersen, K.B.; Sefcik, J.A.; Smith, J.A.; Strauch, M.S.

1993-03-09T23:59:59.000Z

298

Oil/gas separator for installation at burning wells  

SciTech Connect (OSTI)

An oil/gas separator is disclosed that can be utilized to return the burning wells in Kuwait to production. Advantageously, a crane is used to install the separator at a safe distance from the well. The gas from the well is burned off at the site, and the oil is immediately pumped into Kuwait`s oil gathering system. Diverters inside the separator prevent the oil jet coming out of the well from reaching the top vents where the gas is burned. The oil falls back down, and is pumped from an annular oil catcher at the bottom of the separator, or from the concrete cellar surrounding the well.

Alonso, C.T.; Bender, D.A.; Bowman, B.R. [and others

1991-12-31T23:59:59.000Z

299

GAS INJECTION/WELL STIMULATION PROJECT  

SciTech Connect (OSTI)

Driver Production proposes to conduct a gas repressurization/well stimulation project on a six well, 80-acre portion of the Dutcher Sand of the East Edna Field, Okmulgee County, Oklahoma. The site has been location of previous successful flue gas injection demonstration but due to changing economic and sales conditions, finds new opportunities to use associated natural gas that is currently being vented to the atmosphere to repressurize the reservoir to produce additional oil. The established infrastructure and known geological conditions should allow quick startup and much lower operating costs than flue gas. Lessons learned from the previous project, the lessons learned form cyclical oil prices and from other operators in the area will be applied. Technology transfer of the lessons learned from both projects could be applied by other small independent operators.

John K. Godwin

2005-12-01T23:59:59.000Z

300

Process for off-gas particulate removal and apparatus therefor  

DOE Patents [OSTI]

In the event of a breach in the off-gas line of a melter operation requiring closure of the line, a secondary vessel vent line is provided with a particulate collector utilizing atomization for removal of large particulates from the off-gas. The collector receives the gas containing particulates and directs a portion of the gas through outer and inner annular channels. The collector further receives a fluid, such as water, which is directed through the outer channel together with a second portion of the particulate-laden gas. The outer and inner channels have respective ring-like termination apertures concentrically disposed adjacent one another on the outer edge of the downstream side of the particulate collector. Each of the outer and inner channels curves outwardly away from the collector`s centerline in proceeding toward the downstream side of the collector. Gas flow in the outer channel maintains the fluid on the channel`s wall in the form of a ``wavy film,`` while the gas stream from the inner channel shears the fluid film as it exits the outer channel in reducing the fluid to small droplets. Droplets formed by the collector capture particulates in the gas stream by one of three mechanisms: impaction, interception or Brownian diffusion in removing the particulates. The particulate-laden droplets are removed from the fluid stream by a vessel vent condenser or mist eliminator. 4 figs.

Carl, D.E.

1997-10-21T23:59:59.000Z

Note: This page contains sample records for the topic "vented gas fireplaces" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Process for off-gas particulate removal and apparatus therefor  

DOE Patents [OSTI]

In the event of a breach in the off-gas line of a melter operation requiring closure of the line, a secondary vessel vent line is provided with a particulate collector utilizing atomization for removal of large particulates from the off-gas. The collector receives the gas containing particulates and directs a portion of the gas through outer and inner annular channels. The collector further receives a fluid, such as water, which is directed through the outer channel together with a second portion of the particulate-laden gas. The outer and inner channels have respective ring-like termination apertures concentrically disposed adjacent one another on the outer edge of the downstream side of the particulate collector. Each of the outer and inner channels curves outwardly away from the collector's centerline in proceeding toward the downstream side of the collector. Gasflow in the outer channel maintains the fluid on the channel's wall in the form of a "wavy film," while the gas stream from the inner channel shears the fluid film as it exits the outer channel in reducing the fluid to small droplets. Droplets formed by the collector capture particulates in the gas stream by one of three mechanisms: impaction, interception or Brownian diffusion in removing the particulates. The particulate-laden droplets are removed from the fluid stream by a vessel vent condenser or mist eliminator.

Carl, Daniel E. (Orchard Park, NY)

1997-01-01T23:59:59.000Z

302

Flammable Gas Detection for the D-Zero Gas System  

SciTech Connect (OSTI)

The use of flammable gas and high voltage in detector systems is common in many experiments at Fermilab. To mitigate the hazards associated with these systems, Fermilab Engineering Standard SD-45B (Ref. 1) was adopted. Since this note is meant to be a guide and not a mandatory standard, each experiment is reviewed for compliance with SD-45B by the flammable gas safety subcommittee. Currently, there are only two types of flammable gas in use, ethane (Appendix A) and methane (Appendix B). The worst flammable-gas case is C2H6 (ethane), which has an estimated flow rate that is 73% of the CH4 (methane) flow but a heat of combustion (in kcal/g-mole) that is 173% of that of methane. In the worst case, if ethane were to spew through its restricting orifice into its gas line at 0 psig and then through a catastrophic leak into Room 215 (TRD) or Room 511 (CDC/FDCNTX), the time that would be required to build up a greater than Class 1 inventory (0.4kg H2 equivalent) would be 5.2 hours (Ref. 2). Therefore a worst-case flammable gas leak would have to go undetected for over 5 hours in order to transform a either mixing room to an environment with a Risk Class greater than Class 1. The mixing systems, gas lines, and detectors themselves will be thoroughly leak checked prior to active service. All vessels that are part of the mixing systems will be protected from overpressure by safety valves vented outside the building. Both the input and output of all detector volumes are protected from overpressure in the same way. The volume immediately outside the central tracking detectors is continuously purged by nitrogen from boiloff from the main nitrogen dewar at the site. However, if flammable gas were to build up in the mixing rooms or particular detector areas, no matter how unlikely, flammable gas detectors that are part of the interlock chain of each gas mixing system will shut down the appropriate system. This includes shutting off the output of flammable gas manifolds within the gas shed. Similarly, if a fire were to break out anywhere in the D-ZERO Hall, fire sensors would stop the output of all flammable gas manifolds within the gas shed, by unpowering electrically controlled solenoid valves that are normally closed in the event of a power failure. Fire sensor contacts have not yet been installed.

Spires, L.D.; Foglesong, J.; /Fermilab

1991-02-11T23:59:59.000Z

303

Assessment and risk analysis of casing and cement impairment in oil and gas wells in Pennsylvania, 2000–2012  

Science Journals Connector (OSTI)

...and/or casing impairment. Remedial action is often attempted once...contamination/gas migration investigations, but these types of inspections...annular vent" 20 Cement Squeeze Remedial cementing operation performed...patch", "perf" 34 Top Job Remedial cementing operation used to...

Anthony R. Ingraffea; Martin T. Wells; Renee L. Santoro; Seth B. C. Shonkoff

2014-01-01T23:59:59.000Z

304

The Genome of Deep-Sea Vent Chemolithoautotroph Thiomicrospiracrunogena XCL-2  

SciTech Connect (OSTI)

Presented here is the complete genome sequence ofThiomicrospira crunogena XCL-2, representative of ubiquitouschemolithoautotrophic sulfur-oxidizing bacteria isolated from deep-seahydrothermal vents. This gammaproteobacterium has a single chromosome(2,427,734 bp), and its genome illustrates many of the adaptations thathave enabled it to thrive at vents globally. It has 14 methyl-acceptingchemotaxis protein genes, including four that may assist in positioningit in the redoxcline. A relative abundance of CDSs encoding regulatoryproteins likely control the expression of genes encoding carboxysomes,multiple dissolved inorganic nitrogen and phosphate transporters, as wellas a phosphonate operon, which provide this species with a variety ofoptions for acquiring these substrates from the environment. T. crunogenaXCL-2 is unusual among obligate sulfur oxidizing bacteria in relying onthe Sox system for the oxidation of reduced sulfur compounds. A 38 kbprophage is present, and a high level of prophage induction was observed,which may play a role in keeping competing populations of close relativesin check. The genome has characteristics consistent with an obligatelychemolithoautotrophic lifestyle, including few transporters predicted tohave organic allocrits, and Calvin-Benson-Bassham cycle CDSs scatteredthroughout the genome.

Scott, Kathleen M.; Sievert, Stefan M.; Abril, Fereniki N.; Ball,Lois A.; Barrett, Chantell J.; Blake, Rodrigo A.; Boller, Amanda J.; Chain, Patrick S.G.; Clark, Justine A.; Davis, Carisa R.; Detter, Chris; Do, Kimberly F.; Dobrinski, Kimberly P.; Faza, BrandonI.; Fitzpatrick,Kelly A.; Freyermuth, Sharyn K.; Harmer, Tara L.; Hauser, Loren J.; Hugler, Michael; Kerfeld, Cheryl A.; Klotz, Martin G.; Kong, William W.; Land, Miriam; Lapidus, Alla; Larimer, Frank W.; Longo, Dana L.; Lucas,Susan; Malfatti, Stephanie A.; Massey, Steven E.; Martin, Darlene D.; McCuddin, Zoe; Meyer, Folker; Moore, Jessica L.; Ocampo, Luis H.; Paul,John H.; Paulsen, Ian T.; Reep, Douglas K.; Ren, Qinghu; Ross, Rachel L.; Sato, Priscila Y.; Thomas, Phaedra; Tinkham, Lance E.; Zeruth, Gary T.

2006-08-23T23:59:59.000Z

305

CenterPoint Energy - Business Gas Heating Rebates | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

CenterPoint Energy - Business Gas Heating Rebates CenterPoint Energy - Business Gas Heating Rebates CenterPoint Energy - Business Gas Heating Rebates < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Appliances & Electronics Water Heating Maximum Rebate Boiler System, Modulating Boiler Burner, and Vent Dampeners: 25% of equipment cost Program Info Expiration Date 12/31/2013 State Arkansas Program Type Utility Rebate Program Rebate Amount Solutions Program: Varies Direct Install Measures: No cost to customers 85% to 91.9% Efficiency Boiler: $1,400/MMBtuh Input 92%+ Efficiency Boiler: $2000/MMBtuh Input Modulating Boiler Burners: $1,000/MMBtuh Input Vent Dampers: $250/boiler Boiler Controls: $150/system Storage Water Heater: $75 Tankless Water Heater: $500

306

Energy Information Administration / Natural Gas Annual 2008 122  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 55. Summary Statistics for Natural Gas - Nevada, 2004-2008 Number of Wells Producing at End of Year.. 4 4 4 4 4 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 5 5 5 5 4 From Coalbed Wells ..................................... 0 0 0 0 0 Total............................................................... 5 5 5 5 4 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 5 5 5 5 4 Extraction Loss...............................................

307

Energy Information Administration / Natural Gas Annual 2007 96  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 42. Summary Statistics for Natural Gas - Iowa, 2003-2007 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss............................................... 0 0 0 0 0 Total Dry Production ....................................

308

Energy Information Administration / Natural Gas Annual 2007 88  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 38. Summary Statistics for Natural Gas - Hawaii, 2003-2007 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss............................................... 0 0 0 0 0 Total Dry Production ....................................

309

Energy Information Administration / Natural Gas Annual 2007 156  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 72. Summary Statistics for Natural Gas - Vermont, 2003-2007 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss............................................... 0 0 0 0 0 Total Dry Production ....................................

310

Energy Information Administration / Natural Gas Annual 2007 80  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 34. Summary Statistics for Natural Gas - Delaware, 2003-2007 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss............................................... 0 0 0 0 0 Total Dry Production ....................................

311

Energy Information Administration / Natural Gas Annual 2008 146  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 67. Summary Statistics for Natural Gas - South Carolina, 2004-2008 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss...............................................

312

Energy Information Administration / Natural Gas Annual 2007 146  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 67. Summary Statistics for Natural Gas - South Carolina, 2003-2007 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss............................................... 0 0 0 0 0 Total Dry Production

313

Energy Information Administration / Natural Gas Annual 2007 86  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 37. Summary Statistics for Natural Gas - Georgia, 2003-2007 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss............................................... 0 0 0 0 0 Total Dry Production ....................................

314

Energy Information Administration / Natural Gas Annual 2007 122  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 55. Summary Statistics for Natural Gas - Nevada, 2003-2007 Number of Wells Producing at End of Year.. 4 4 4 4 4 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 6 5 5 5 5 Total............................................................... 6 5 5 5 5 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 6 5 5 5 5 Extraction Loss............................................... 0 0 0 0 0 Total Dry Production ....................................

315

Energy Information Administration / Natural Gas Annual 2007 132  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 60. Summary Statistics for Natural Gas - North Carolina, 2003-2007 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss............................................... 0 0 0 0 0 Total Dry Production

316

Energy Information Administration / Natural Gas Annual 2008 156  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 72. Summary Statistics for Natural Gas - Vermont, 2004-2008 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss...............................................

317

Energy Information Administration / Natural Gas Annual 2007 90  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 39. Summary Statistics for Natural Gas - Idaho, 2003-2007 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss............................................... 0 0 0 0 0 Total Dry Production ....................................

318

Energy Information Administration / Natural Gas Annual 2007 70  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 29. Summary Statistics for Natural Gas - Arizona, 2003-2007 Number of Wells Producing at End of Year . 9 6 6 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells ........................................... 443 331 233 611 654 From Oil Wells ............................................. * * * * * Total.............................................................. 443 331 233 611 655 Repressuring ................................................. 0 0 0 0 0 Vented and Flared ......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed................. 0 0 0 0 0 Marketed Production...................................... 443 331 233 611 655 Extraction Loss .............................................. 0 0 0 0 0 Total Dry Production

319

Energy Information Administration / Natural Gas Annual 2007 124  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 56. Summary Statistics for Natural Gas - New Hampshire, 2003-2007 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss............................................... 0 0 0 0 0 Total Dry Production ....................................

320

Energy Information Administration / Natural Gas Annual 2008 126  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 57. Summary Statistics for Natural Gas - New Jersey, 2004-2008 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss...............................................

Note: This page contains sample records for the topic "vented gas fireplaces" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Energy Information Administration / Natural Gas Annual 2008 112  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 50. Summary Statistics for Natural Gas - Minnesota, 2004-2008 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss...............................................

322

Energy Information Administration / Natural Gas Annual 2008 104  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 46. Summary Statistics for Natural Gas - Maine, 2004-2008 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss...............................................

323

Energy Information Administration / Natural Gas Annual 2007 92  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 40. Summary Statistics for Natural Gas - Illinois, 2003-2007 Number of Wells Producing at End of Year.. 240 251 316 316 316 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 169 165 E 161 E 165 E 164 From Oil Wells.............................................. 5 5 E 5 E 5 E 5 Total............................................................... 174 170 E 166 E 170 E 169 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 174 E 170 E 166 E 170 E 169 Extraction Loss...............................................

324

Energy Information Administration / Natural Gas Annual 2007 164  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 76. Summary Statistics for Natural Gas - Wisconsin, 2003-2007 Number of Wells Producing at End of Year..... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................... 0 0 0 0 0 From Oil Wells................................................. 0 0 0 0 0 Total.................................................................. 0 0 0 0 0 Repressuring ..................................................... 0 0 0 0 0 Vented and Flared ............................................. 0 0 0 0 0 Nonhydrocarbon Gases Removed..................... 0 0 0 0 0 Marketed Production ......................................... 0 0 0 0 0 Extraction Loss.................................................. 0 0 0 0 0

325

Energy Information Administration / Natural Gas Annual 2007 106  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 47. Summary Statistics for Natural Gas - Maryland, 2003-2007 Number of Wells Producing at End of Year.. 7 7 7 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 48 34 46 48 35 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 48 34 46 48 35 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 48 34 46 48 35 Extraction Loss............................................... 0 0 0 0 0 Total Dry Production

326

Energy Information Administration / Natural Gas Annual 2007 144  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 66. Summary Statistics for Natural Gas - Rhode Island, 2003-2007 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss............................................... 0 0 0 0 0 Total Dry Production ....................................

327

Energy Information Administration / Natural Gas Annual 2008 90  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 39. Summary Statistics for Natural Gas - Idaho, 2004-2008 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss...............................................

328

Energy Information Administration / Natural Gas Annual 2007 140  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 64. Summary Statistics for Natural Gas - Oregon, 2003-2007 Number of Wells Producing at End of Year.. 15 15 15 14 18 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 731 467 454 621 409 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 731 467 454 621 409 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 731 467 454 621 409 Extraction Loss............................................... 0 0 0

329

Energy Information Administration / Natural Gas Annual 2008 164  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 76. Summary Statistics for Natural Gas - Wisconsin, 2004-2008 Number of Wells Producing at End of Year..... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................... 0 0 0 0 0 From Oil Wells................................................. 0 0 0 0 0 From Coalbed Wells ........................................ 0 0 0 0 0 Total.................................................................. 0 0 0 0 0 Repressuring ..................................................... 0 0 0 0 0 Vented and Flared ............................................. 0 0 0 0 0 Nonhydrocarbon Gases Removed..................... 0 0 0 0 0 Marketed Production ......................................... 0 0 0 0 0 Extraction Loss..................................................

330

Energy Information Administration / Natural Gas Annual 2008 86  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 37. Summary Statistics for Natural Gas - Georgia, 2004-2008 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss...............................................

331

Energy Information Administration / Natural Gas Annual 2008 82  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 35. Summary Statistics for Natural Gas - District of Columbia, 2004-2008 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss...............................................

332

Columbia Gas of Kentucky - Home Savings Rebate Program (Kentucky) |  

Broader source: Energy.gov (indexed) [DOE]

Columbia Gas of Kentucky - Home Savings Rebate Program (Kentucky) Columbia Gas of Kentucky - Home Savings Rebate Program (Kentucky) Columbia Gas of Kentucky - Home Savings Rebate Program (Kentucky) < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Program Info State Kentucky Program Type Utility Rebate Program Rebate Amount Home Energy Audit: Free Forced Air Furnace: $400 Dual Fuel Furnace: $300 Tankless Water Heater: $300 Tank Water Heater: $200 Power Vent Water Heater: $250 Space Heater: $100 Provider Columbia Gas of Kentucky Columbia Gas of Kentucky offers rebates to residential customers for the purchase and installation of energy efficient appliances and equipment. Water heaters, furnaces and space heating equipment are available for cash

333

Secretary Chu Announces More Stringent Appliance Standards for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

heaters, pool heaters and direct heating equipment such as gas fireplaces - will reduce air pollution, prevent the release of harmful nitrogen oxides and mercury, and avoid...

334

Method of and apparatus for preheating pressurized fluidized bed combustor and clean-up subsystem of a gas turbine power plant  

DOE Patents [OSTI]

In a gas turbine power plant having a pressurized fluidized bed combustor, gas turbine-air compressor subsystem and a gas clean-up subsystem interconnected for fluid flow therethrough, a pipe communicating the outlet of the compressor of the gas turbine-air compressor subsystem with the interior of the pressurized fluidized bed combustor and the gas clean-up subsystem to provide for flow of compressed air, heated by the heat of compression, therethrough. The pressurized fluidized bed combustor and gas clean-up subsystem are vented to atmosphere so that the heated compressed air flows therethrough and loses heat to the interior of those components before passing to the atmosphere.

Cole, Rossa W. (E. Rutherford, NJ); Zoll, August H. (Cedar Grove, NJ)

1982-01-01T23:59:59.000Z

335

The tube-worm Riftia pachyptila Jones, 1981 is one of the most prominent members of the hydrothermal vent  

E-Print Network [OSTI]

of the hydrothermal vent community. This organism harbours chemolithoautotrophic bacteria deep within its body production and inorganic carbon fixation. As a consequence of its morphology, the tube- worm must provide its symbionts with the compounds required for autotrophy (e.g. inorganic carbon and sulphide). Recent studies

Girguis, Peter R.

336

GeoChip-based analysis of metabolic diversity of microbial communities at the Juan de Fuca Ridge hydrothermal vent  

Science Journals Connector (OSTI)

...originally isolated from geothermal ground water...metabolism in the geothermal environment. However...observed during the development of vent chimneys...38 Wu L ( 2004 ) Development and evaluation of microarray-based...Department of Energy under the Genomics...and Environmental Research, Office of...

Fengping Wang; Huaiyang Zhou; Jun Meng; Xiaotong Peng; Lijing Jiang; Ping Sun; Chuanlun Zhang; Joy D. Van Nostrand; Ye Deng; Zhili He; Liyou Wu; Jizhong Zhou; Xiang Xiao

2009-01-01T23:59:59.000Z

337

Assessment of Literature and Simulation Software Related to Combustion Appliance Venting Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Assessment of Literature Related to Assessment of Literature Related to Combustion Appliance Venting Systems V.H. Rapp, B.C. Singer, J.C. Stratton, C.P. Wray Environmental Energy Technologies Division June 2012 LBNL-5798E 2 Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned

338

Vent sizing of cumene hydroperoxide (CHP) system under fire scenario considering emergency flooding measure  

Science Journals Connector (OSTI)

Abstract Cumene hydroperoxide (CHP) can release large amounts of thermal energy and result in high temperature and pressure during runaway reactions. Calorimeters and related methodologies have been made for preventing runaway reactions of CHP. However, protective measures such as flooding and emergency relief system have not been studied intensively to protect CHP systems from runaway reactions of CHP. In this paper, vent sizing package 2 (VSP2) was used to study the runaway reactions of CHP in 12 wt%, 28 wt% and 48 wt% concentration and CHP solution mixing with water under adiabatic and heat input conditions. Chemical systems according to runaway reaction of CHP in cumene have been identified as non tempered systems. However, tempering occurs at about 180 °C with pad pressure of 9 bar in open cell tests after water addition. The Design Institute for Emergency Relief Systems (DIERS) methods were used to size the relief system of 120 m3 reactor with 60 t CHP solution content considering flooding. The required relief rate decreases significantly and the mass flow rate per unit flow area decreases slightly with the addition of water. So the vent diameter of reactors can be reduced when water has been added. The results show that the flooding and emergency relief system can be effective to protect 120 m3 reactors from runaway reactions of CHP under fire scenario in the concentration around 28 wt% or less. It is suggested that the relief system of CHP reactors should be sized properly considering fire scenario. If emergency flooding measure is involved for relief sizing, the measure must be credible. The volume of reactor and maximum concentration of CHP should be defined properly.

Feng Sun; Fan Zhang; Man-Ping Jin; Ning Shi; Wei Xu

2014-01-01T23:59:59.000Z

339

Natural Gas  

Science Journals Connector (OSTI)

30 May 1974 research-article Natural Gas C. P. Coppack This paper reviews the world's existing natural gas reserves and future expectations, together with natural gas consumption in 1972, by main geographic...

1974-01-01T23:59:59.000Z

340

Efficient Utilization of Greenhouse Gases in a Gas-to-Liquids Process Combined with CO2/Steam-Mixed Reforming and Fe-Based Fischer–Tropsch Synthesis  

Science Journals Connector (OSTI)

In the reforming unit, CO2 reforming and steam reforming of methane are combined together to produce syngas in flexible composition. ... In the burner-type reformer, NG is used as a heating fuel, in order to reduce the consumption of NG, the vent gas can be applied to the burner to replace some part of NG as fuel. ...

Chundong Zhang; Ki-Won Jun; Kyoung-Su Ha; Yun-Jo Lee; Seok Chang Kang

2014-06-16T23:59:59.000Z

Note: This page contains sample records for the topic "vented gas fireplaces" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Net Withdrawals of Natural Gas from Underground Storage (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

342

Energy Information Administration / Natural Gas Annual 2005 130  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 60. Summary Statistics for Natural Gas - North Dakota, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 95 100 117 117 148 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 13,846 15,130 14,524 15,565 14,554 From Oil Wells.................................................. 44,141 44,848 43,362 R 41,768 41,350 Total................................................................... 57,987 59,978 57,886 R 57,333 55,904 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 3,166 2,791 2,070 R 2,198 3,260 Wet After Lease Separation................................

343

Energy Information Administration / Natural Gas Annual 2006 80  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 35. Summary Statistics for Natural Gas - Florida, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ............................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 3,785 3,474 3,525 2,954 2,845 Total............................................................... 3,785 3,474 3,525 2,954 2,845 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Wet After Lease Separation............................ 3,785 3,474 3,525 2,954 2,845 Nonhydrocarbon Gases Removed .................

344

Energy Information Administration / Natural Gas Annual 2005 114  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 52. Summary Statistics for Natural Gas - Montana, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 4,331 4,544 4,539 4,971 5,751 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 71,985 76,053 78,175 87,292 91,833 From Oil Wells.................................................. 9,816 10,371 8,256 10,546 16,722 Total................................................................... 81,802 86,424 86,431 97,838 108,555 Repressuring ...................................................... * * 2 5 9 Vented and Flared.............................................. 404 349 403 1,071 629 Wet After Lease Separation................................

345

Energy Information Administration / Natural Gas Annual 2009 100  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 44. Summary Statistics for Natural Gas - Kentucky, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 14,175 15,892 16,563 16,290 17,152 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 92,795 95,320 95,437 110,587 106,782 From Oil Wells.............................................. 0 0 0 1,529 1,518 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. NA NA NA 2,000 5,000 Total............................................................... 92,795 95,320 95,437 114,116 113,300 Repressuring .................................................. 0 0 0 0 0 Vented and Flared..........................................

346

Energy Information Administration / Natural Gas Annual 2005 150  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 70. Summary Statistics for Natural Gas - Utah, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 4,601 3,005 3,220 3,657 4,092 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 264,809 260,554 254,488 259,432 279,412 From Oil Wells.................................................. 36,612 32,509 29,871 31,153 32,583 Total................................................................... 301,422 293,063 284,359 290,586 311,994 Repressuring ...................................................... 575 2,150 1,785 1,337 1,294 Vented and Flared.............................................. 1,847 955 705 688 595 Wet After Lease Separation................................

347

Energy Information Administration / Natural Gas Annual 2006 94  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 42. Summary Statistics for Natural Gas - Kansas, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ............................... 16,957 17,387 18,120 18,946 19,713 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 401,396 369,624 350,413 332,860 327,386 From Oil Wells.............................................. 54,736 50,403 47,784 45,390 44,643 Total............................................................... 456,132 420,027 398,197 378,250 372,029 Repressuring .................................................. 775 714 677 643 620 Vented and Flared.......................................... 456 420 398 378 365 Wet After Lease Separation............................

348

Energy Information Administration / Natural Gas Annual 2005 62  

Gasoline and Diesel Fuel Update (EIA)

62 62 Table 26. Summary Statistics for Natural Gas - Alabama, 2001-2005 2001 2002 2003 2004 2005 Number of Gas and Gas Condensate Wells Producing at End of Year....................................... 4,597 4,803 5,157 5,526 5,523 Production (million cubic feet) Gross Withdrawals From Gas Wells ................................................... 385,915 380,700 365,330 333,583 311,479 From Oil Wells ..................................................... 6,066 5,802 5,580 5,153 5,728 Total...................................................................... 391,981 386,502 370,910 338,735 317,206 Repressuring ......................................................... 12,758 10,050 4,062 1,307 478 Vented and Flared .................................................

349

Energy Information Administration / Natural Gas Annual 2006 98  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 44. Summary Statistics for Natural Gas - Louisiana, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ............................... 17,100 16,939 20,734 18,838 17,459 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 1,282,137 1,283,513 1,262,361 1,212,453 1,282,075 From Oil Wells.............................................. 100,324 94,615 114,934 97,460 96,163 Total............................................................... 1,382,461 1,378,128 1,377,295 1,309,913 1,378,238 Repressuring .................................................. 9,754 18,446 19,031 8,638 10,454 Vented and Flared.......................................... 10,957 9,283 5,015

350

Energy Information Administration / Natural Gas Annual 2005 106  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 48. Summary Statistics for Natural Gas - Michigan, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 7,425 7,700 8,600 8,500 8,900 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 224,560 224,112 194,121 212,276 213,421 From Oil Wells.................................................. 56,140 56,028 48,530 53,069 53,355 Total................................................................... 280,700 280,140 242,651 265,345 266,776 Repressuring ...................................................... 2,340 2,340 2,340 2,340 2,340 Vented and Flared.............................................. 3,324 3,324 3,324 3,324 3,324

351

Energy Information Administration / Natural Gas Annual 2005 98  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 44. Summary Statistics for Natural Gas - Louisiana, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 16,350 17,100 16,939 20,734 18,838 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,398,981 1,282,137 1,283,513 R 1,262,361 1,212,453 From Oil Wells.................................................. 125,693 100,324 94,615 R 114,934 97,460 Total................................................................... 1,524,673 1,382,461 1,378,128 R 1,377,295 1,309,913 Repressuring ...................................................... 10,838 9,754 18,446 19,031 8,638 Vented and Flared..............................................

352

Minnesota Energy Resources (Gas) - Residential Energy Efficiency Rebate  

Broader source: Energy.gov (indexed) [DOE]

Minnesota Energy Resources (Gas) - Residential Energy Efficiency Minnesota Energy Resources (Gas) - Residential Energy Efficiency Rebate Program Minnesota Energy Resources (Gas) - Residential Energy Efficiency Rebate Program < Back Eligibility Agricultural Commercial Construction Institutional Local Government Nonprofit Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Appliances & Electronics Construction Design & Remodeling Sealing Your Home Ventilation Commercial Lighting Lighting Water Heating Maximum Rebate Level II Audit (For-profit organizations): $400 Level I Audit (For-profit organizations): $250 Programmable Thermostat: 50% of cost Steam Traps: $250 Boiler Tune Up: $500 Vent Damper: $500 O2 Trim Control: $5,000 Gas boiler 300,000 to 9,999,999 Btu/hr output: $750 - $5,000

353

Energy Information Administration / Natural Gas Annual 2005 132  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 61. Summary Statistics for Natural Gas - Ohio, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 33,917 34,593 33,828 33,828 33,735 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 97,272 97,154 87,993 85,018 77,819 From Oil Wells.................................................. 2,835 6,004 5,647 5,458 5,704 Total................................................................... 100,107 103,158 93,641 90,476 83,523 Repressuring ...................................................... NA NA NA NA NA Vented and Flared.............................................. NA NA NA NA NA Wet After Lease Separation................................

354

Energy Information Administration / Natural Gas Annual 2006 130  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 60. Summary Statistics for Natural Gas - North Dakota, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ............................... 100 117 117 148 200 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 15,130 14,524 15,565 14,554 16,435 From Oil Wells.............................................. 44,848 43,362 41,768 41,350 46,351 Total............................................................... 59,978 57,886 57,333 55,904 62,786 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 2,791 2,070 2,198 3,260 7,460 Wet After Lease Separation............................

355

Energy Information Administration / Natural Gas Annual 2006 70  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 30. Summary Statistics for Natural Gas - California, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ............................... 1,232 1,249 1,272 1,356 1,451 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 92,050 90,368 79,823 87,599 94,612 From Oil Wells.............................................. 304,972 278,072 269,004 264,445 254,526 Total............................................................... 397,021 368,440 348,827 352,044 349,137 Repressuring .................................................. 30,991 23,806 22,405 29,134 29,001 Vented and Flared.......................................... 2,690 3,940 3,215 2,120 1,562 Wet After Lease Separation............................

356

Energy Information Administration / Natural Gas Annual 2006 146  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 68. Summary Statistics for Natural Gas - Tennessee, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ............................... 400 430 280 400 330 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 2,050 1,803 2,100 2,200 1,793 Total............................................................... 2,050 1,803 2,100 2,200 1,793 Repressuring .................................................. NA NA NA NA NA Vented and Flared.......................................... NA NA NA NA NA Wet After Lease Separation............................ 2,050 1,803 2,100 2,200 1,793 Nonhydrocarbon Gases Removed

357

Energy Information Administration / Natural Gas Annual 2006 134  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 62. Summary Statistics for Natural Gas - Oklahoma, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ............................... 33,279 34,334 35,612 36,704 38,060 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 1,476,204 1,487,451 1,597,915 R 1,592,524 1,640,389 From Oil Wells.............................................. 105,402 70,704 57,854 R 46,786 48,597 Total............................................................... 1,581,606 1,558,155 1,655,769 R 1,639,310 1,688,985 Repressuring .................................................. NA NA NA NA NA Vented and Flared.......................................... NA NA NA NA NA Wet After Lease Separation............................

358

Energy Information Administration / Natural Gas Annual 2005 70  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 30. Summary Statistics for Natural Gas - California, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 1,244 1,232 1,249 1,272 1,356 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 94,790 92,050 90,368 79,823 87,599 From Oil Wells.................................................. 320,048 304,972 278,072 269,004 264,445 Total................................................................... 414,838 397,021 368,440 348,827 352,044 Repressuring ...................................................... 35,052 30,991 23,806 22,405 29,134 Vented and Flared.............................................. 1,717 2,690 3,940

359

Energy Information Administration / Natural Gas Annual 2006 154  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 72. Summary Statistics for Natural Gas - Virginia, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ............................... 3,429 3,506 3,870 4,132 5,179 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 76,915 143,644 85,508 88,610 103,027 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 76,915 143,644 85,508 88,610 103,027 Repressuring .................................................. NA NA NA NA NA Vented and Flared.......................................... 0 0 0 0 0 Wet After Lease Separation............................ 76,915 143,644 85,508 88,610 103,027

360

Energy Information Administration / Natural Gas Annual 2005 90  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 40. Summary Statistics for Natural Gas - Indiana, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 1,533 1,545 2,291 2,386 2,321 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,064 1,309 1,464 3,401 3,135 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 1,064 1,309 1,464 3,401 3,135 Repressuring ...................................................... NA NA NA NA NA Vented and Flared.............................................. NA NA NA NA NA Wet After Lease Separation................................ 1,064 1,309 1,464

Note: This page contains sample records for the topic "vented gas fireplaces" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Energy Information Administration / Natural Gas Annual 2005 134  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 62. Summary Statistics for Natural Gas - Oklahoma, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 32,672 33,279 34,334 35,612 36,704 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,466,833 1,476,204 1,487,451 R 1,597,915 1,622,046 From Oil Wells.................................................. 148,551 105,402 70,704 R 57,854 48,090 Total................................................................... 1,615,384 1,581,606 1,558,155 R 1,655,769 1,670,137 Repressuring ...................................................... NA NA NA NA NA Vented and Flared.............................................. NA NA NA NA NA

362

Portugal Egypt Figure 2. Natural gas supply and disposition in the United States, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

Portugal Egypt Figure 2. Natural gas supply and disposition in the United States, 2012 (trillion cubic feet) Natural Gas Plant Liquids Production Gross Withdrawals From Gas and Oil Wells Nonhydrocarbon Gases Removed Vented/Flared Reservoir Repressuring Production Dry Gas Imports Canada Trinidad/Tobago Natural Gas Storage Facilities Exports Japan Canada Mexico Additions Withdrawals Gas Industry Use Residential Commercial Industrial Vehicle Fuel Electric Power 29.5 0.8 0.2 3.3 2.963 0.112 0.620 0.971 0.014 24.1 1.3 2.9 2.8 2.5 2.9 7.2 0.03 9.1 0.003 Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition"; Form EIA-895, "Annual Quantity and

363

Portable tester for determining gas content within a core sample  

DOE Patents [OSTI]

A portable tester is provided for reading and displaying the pressure of a gas released from a rock core sample stored within a sealed container and for taking a sample of the released pressurized gas for chemical analysis thereof for subsequent use in a modified direct method test which determines the volume of gas and specific type of gas contained within the core sample. The portable tester includes a pair of low and high range electrical pressure transducers for detecting a gas pressure; a pair of low and high range display units for displaying the pressure of the detected gas- a selector valve connected to the low and high range pressure transducers, a selector knob for selecting gas flow to one of the flow paths; control valve having an inlet connection to the sealed container, and outlets connected to: a sample gas canister, a second outlet port connected to the selector valve means for reading the pressure of the gas from the sealed container to either the low range or high range pressure transducers, and a connection for venting gas contained within the sealed container to the atmosphere. A battery is electrically connected to and supplies the power for operating the unit. The pressure transducers, display units, selector and control valve means and the battery is mounted to and housed within a protective casing for portable transport and use.

Garcia, Jr., Fred (Donora, PA); Schatzel, Steven J. (Bethel Park, PA)

1998-01-01T23:59:59.000Z

364

Portable tester for determining gas content within a core sample  

DOE Patents [OSTI]

A portable tester is provided for reading and displaying the pressure of a gas released from a rock core sample stored within a sealed container and for taking a sample of the released pressurized gas for chemical analysis thereof for subsequent use in a modified direct method test which determines the volume of gas and specific type of gas contained within the core sample. The portable tester includes a pair of low and high range electrical pressure transducers for detecting a gas pressure; a pair of low and high range display units for displaying the pressure of the detected gas; a selector valve connected to the low and high range pressure transducers and a selector knob for selecting gas flow to one of the flow paths; control valve having an inlet connection to the sealed container; and outlets connected to: a sample gas canister, a second outlet port connected to the selector valve means for reading the pressure of the gas from the sealed container to either the low range or high range pressure transducers, and a connection for venting gas contained within the sealed container to the atmosphere. A battery is electrically connected to and supplies the power for operating the unit. The pressure transducers, display units, selector and control valve means and the battery is mounted to and housed within a protective casing for portable transport and use. 5 figs.

Garcia, F. Jr.; Schatzel, S.J.

1998-04-21T23:59:59.000Z

365

CHARACTERIZATION OF DWPF MELTER OFF-GAS QUENCHER SAMPLE  

SciTech Connect (OSTI)

The Savannah River National Laboratory (SRNL) recently received a deposit sample from the Melter Primary Off Gas System (POG) of the Defense Waste Processing Facility (DWPF). This sample was composed of material that had been collected while the quencher was in operation January 27, 2011 through March 31, 2011. DWPF requested, through a technical assistance request, characterization of the melter off-gas deposits by x-ray diffraction (XRD), scanning electron microscopy (SEM), and chemical analysis. The purpose of the Melter Off-Gas System is to reduce the amount of radioactive particles and mercury in the gases vented to the atmosphere. Gases emitted from the melter pass through the primary film cooler, quencher, Off-Gas Condensate Tank (OGCT), Steam Atomized Scrubbers (SAS), a condenser, a high efficiency mist eliminator, and a high efficiency particulate air filter, before being vented to the Process Vessel Vent System. The film coolers cool the gases leaving the melter vapor space from {approx}750 C to {approx}375 C, by introducing air and steam to the flow. In the next step, the quencher cools the gas to about 60 C by bringing the condensate from the OGCT in contact with the effluent (Figure 1). Most of the steam in the effluent is then condensed and the melter vapor space pressure is reduced. The purpose of the OGCT is to collect and store the condensate formed during the melter operation. Condensate from the OGCT is circulated to the SAS and atomized with steam. This atomized condensate is mixed with the off-gas to wet and join the particulate which is then removed in the cyclone. The next stage incorporates a chilled water condenser which separates the vapors and elemental mercury from the off-gas steam. Primary off-gas deposit samples from the DWPF melter have previously been analyzed. In 2003, samples from just past the film cooler, from the inlet of the quencher and inside the quencher were analyzed at SRNL. It was determined that the samples were a mixture of sludge and glass frit. The major component was Si along with Fe, Al, and other elements in the radioactive waste being processed. The deposits analyzed also contained U-235 fission products and actinide elements. Prior to that, deposits in the off-gas system in the DWPF nonradioactive half scale melter and the one-tenth scale integrated DWPF melter system were analyzed and determined to be mixtures of alkali rich chlorides, sulfates, borates, and fluorides entrained with iron oxides, spinels and frit particles formed by vapor-phase transport and condensation. Additional work was performed in 2007 in which researchers similarly found the deposits to be a combination of sludge and frit particles.

Newell, J.

2011-11-14T23:59:59.000Z

366

Economics of residential gas furnaces and water heaters in United States new construction market  

SciTech Connect (OSTI)

New single-family home construction represents a significant and important market for the introduction of energy-efficient gas-fired space heating and water-heating equipment. In the new construction market, the choice of furnace and water-heater type is primarily driven by first cost considerations and the availability of power vent and condensing water heaters. Few analysis have been performed to assess the economic impacts of the different combinations of space and water-heating equipment. Thus, equipment is often installed without taking into consideration the potential economic and energy savings of installing space and water-heating equipment combinations. In this study, we use a life-cycle cost analysis that accounts for uncertainty and variability of the analysis inputs to assess the economic benefits of gas furnace and water-heater design combinations. This study accounts not only for the equipment cost but also for the cost of installing, maintaining, repairing, and operating the equipment over its lifetime. Overall, this study, which is focused on US single-family new construction households that install gas furnaces and storage water heaters, finds that installing a condensing or power-vent water heater together with condensing furnace is the most cost-effective option for the majority of these houses. Furthermore, the findings suggest that the new construction residential market could be a target market for the large-scale introduction of a combination of condensing or power-vent water heaters with condensing furnaces.

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2009-05-06T23:59:59.000Z

367

Controls on Gas Hydrate Formation and Dissociation  

SciTech Connect (OSTI)

The main objectives of the project were to monitor, characterize, and quantify in situ the rates of formation and dissociation of methane hydrates at and near the seafloor in the northern Gulf of Mexico, with a focus on the Bush Hill seafloor hydrate mound; to record the linkages between physical and chemical parameters of the deposits over the course of one year, by emphasizing the response of the hydrate mound to temperature and chemical perturbations; and to document the seafloor and water column environmental impacts of hydrate formation and dissociation. For these, monitoring the dynamics of gas hydrate formation and dissociation was required. The objectives were achieved by an integrated field and laboratory scientific study, particularly by monitoring in situ formation and dissociation of the outcropping gas hydrate mound and of the associated gas-rich sediments. In addition to monitoring with the MOSQUITOs, fluid flow rates and temperature, continuously sampling in situ pore fluids for the chemistry, and imaging the hydrate mound, pore fluids from cores, peepers and gas hydrate samples from the mound were as well sampled and analyzed for chemical and isotopic compositions. In order to determine the impact of gas hydrate dissociation and/or methane venting across the seafloor on the ocean and atmosphere, the overlying seawater was sampled and thoroughly analyzed chemically and for methane C isotope ratios. At Bush hill the pore fluid chemistry varies significantly over short distances as well as within some of the specific sites monitored for 440 days, and gas venting is primarily focused. The pore fluid chemistry in the tub-warm and mussel shell fields clearly documented active gas hydrate and authigenic carbonate formation during the monitoring period. The advecting fluid is depleted in sulfate, Ca Mg, and Sr and is rich in methane; at the main vent sites the fluid is methane supersaturated, thus bubble plumes form. The subsurface hydrology exhibits both up-flow and down-flow of fluid at rates that range between 0.5 to 214 cm/yr and 2-162 cm/yr, respectively. The fluid flow system at the mound and background sites are coupled having opposite polarities that oscillate episodically between 14 days to {approx}4 months. Stability calculations suggest that despite bottom water temperature fluctuations, of up to {approx}3 C, the Bush Hill gas hydrate mound is presently stable, as also corroborated by the time-lapse video camera images that did not detect change in the gas hydrate mound. As long as methane (and other hydrocarbon) continues advecting at the observed rates the mound would remain stable. The {_}{sup 13}C-DIC data suggest that crude oil instead of methane serves as the primary electron-donor and metabolic substrate for anaerobic sulfate reduction. The oil-dominated environment at Bush Hill shields some of the methane bubbles from being oxidized both anaerobically in the sediment and aerobically in the water column. Consequently, the methane flux across the seafloor is higher at Bush hill than at non-oil rich seafloor gas hydrate regions, such as at Hydrate Ridge, Cascadia. The methane flux across the ocean/atmosphere interface is as well higher. Modeling the methane flux across this interface at three bubble plumes provides values that range from 180-2000 {_}mol/m{sup 2} day; extrapolating it over the Gulf of Mexico basin utilizing satellite data is in progress.

Miriam Kastner; Ian MacDonald

2006-03-03T23:59:59.000Z

368

Emission of nanoparticles during combustion of waste biomass in fireplace  

Science Journals Connector (OSTI)

Contamination of air by solid particles is serious problem for human health and also environment. Small particles in nano-sizes are more dangerous than same weight of larger size. Negative effect namely of the solid particles depends on (i) number (ii) specific surface area (iii) respirability and (iv) bonding of others substances (e.g. PAHs As Cd Zn Cu etc.) which are higher for smaller (nano-sizes) particles compared to larger one. For this reason mentioned above this contribution deals with measuring of amount and distribution of nanoparticles produced form combustion of waste city biomass in small combustion unit with impactor DLPI.

2014-01-01T23:59:59.000Z

369

Gas Turbines  

Science Journals Connector (OSTI)

When the gas turbine generator was introduced to the power generation ... fossil-fueled power plant. Twenty years later, gas turbines were established as an important means of ... on utility systems. By the early...

Jeffrey M. Smith

1996-01-01T23:59:59.000Z

370

Gas Turbines  

Science Journals Connector (OSTI)

... the time to separate out the essentials and the irrelevancies in a text-book. The gas ...gasturbine ...

H. CONSTANT

1950-10-21T23:59:59.000Z

371

Cascade Natural Gas - Commercial Efficiency Rebate Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Cascade Natural Gas - Commercial Efficiency Rebate Program Cascade Natural Gas - Commercial Efficiency Rebate Program Cascade Natural Gas - Commercial Efficiency Rebate Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Appliances & Electronics Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Water Heating Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount HVAC Unit Heater: $1.50-$3 / kBtuh input Warm Air Furnace: $3.00 / kBtuh input Direct Fired Radiant Heating: $6.50 / kBtuh input Boiler: $4.00 / kBtuh input Boiler Vent Damper: $1,000 Boiler Steam Trap: $80 DHW Energy Star Tankless Water Heaters: $60 / gpm Domestic Hot Water Tank: $2.50 / kBtuh input

372

Cheyenne Light, Fuel and Power (Gas) - Commercial and Industrial Efficiency  

Broader source: Energy.gov (indexed) [DOE]

Cheyenne Light, Fuel and Power (Gas) - Commercial and Industrial Cheyenne Light, Fuel and Power (Gas) - Commercial and Industrial Efficiency Rebate Program (Wyoming) Cheyenne Light, Fuel and Power (Gas) - Commercial and Industrial Efficiency Rebate Program (Wyoming) < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Appliances & Electronics Water Heating Maximum Rebate Custom: 50% of project cost Program Info Start Date 06/09/2011 State Wyoming Program Type Utility Rebate Program Rebate Amount Water Heater: $75 - $300 Furnaces: $250 - $400 Boilers: $150 - $400 Setback Thermostat: $25 - $50 Convection Oven: $100 High Efficiency Range/Oven: $500 Conveyor Oven: $500 Fryer: $500 Broiler: $100 Steam Cooker: $500 Vent Dampers for Boilers: $125 Custom: Two year buy down or 50% of project cost, whichever is less

373

Bio-oil Stabilization and Upgrading by Hot Gas Filtration  

Science Journals Connector (OSTI)

Removal of char and minerals from pyrolysis oil for the production of biomass-derived boiler and turbine fuels has been demonstrated at Solar Energy Research Institute (SERI)/National Renewable Energy Laboratory (NREL) using a ceramic cloth hot gas filter (HGF). ... Non-condensable gaseous products were vented through a 2 ?m filter for collection of any residual aerosol and then to a totalizing dry-gas meter for flow rate measurement. ... The composition of the feed and product vapors to and from the HGF test stand was monitored continuously with the molecular beam mass spectrometer (MBMS), and the composition of the product gases from the HGF test stand was monitored continuously by gas chromatography (GC). ...

Robert M. Baldwin; Calvin J. Feik

2013-04-22T23:59:59.000Z

374

Colorado Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

375

California Natural Gas Number of Gas and Gas Condensate Wells...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) California Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

376

Louisiana Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

377

Michigan Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

378

Oklahoma Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

379

Virginia Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

380

Tennessee Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

Note: This page contains sample records for the topic "vented gas fireplaces" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

382

Arkansas Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

383

Maryland Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

384

Illinois Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Illinois Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

385

Missouri Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

386

Mississippi Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

387

Nebraska Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

388

Number of Producing Gas Wells (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Count) Count) Data Series: Wellhead Price Imports Price Price of Imports by Pipeline Price of LNG Imports Exports Price Price of Exports by Pipeline Price of LNG Exports Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period:

389

Global depression in gene expression as a response to rapid thermal changes in vent mussels  

Science Journals Connector (OSTI)

...potential relationship between natural genetic variation, stress...attributable to specific gene cascades that can be up- or downregulated...Massive emissions of toxic gas in the Atlantic. Nature 415...explore a relationship between natural genetic variation, gene expression...

2009-01-01T23:59:59.000Z

390

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

,366 ,366 95,493 1.08 0 0.00 1 0.03 29,406 0.56 1,206 0.04 20,328 0.64 146,434 0.73 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: South Carolina South Carolina 88. Summary Statistics for Natural Gas South Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ...........................................

391

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0,216 0,216 50,022 0.56 135 0.00 49 1.67 85,533 1.63 8,455 0.31 45,842 1.45 189,901 0.95 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: M a r y l a n d Maryland 68. Summary Statistics for Natural Gas Maryland, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 9 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 33 28 26 22 135 From Oil Wells ...........................................

392

Energy Information Administration / Natural Gas Annual 2008 154  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 71. Summary Statistics for Natural Gas - Utah, 2004-2008 Number of Wells Producing at End of Year.. 3,657 4,092 4,858 5,197 5,578 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 259,432 279,412 322,848 276,634 337,924 From Oil Wells.............................................. 31,153 32,583 33,472 35,104 36,056 From Coalbed Wells ..................................... NA NA NA 73,623 67,619 Total............................................................... 290,586 311,994 356,321 385,361 441,598 Repressuring .................................................. 1,337 1,294 1,300 1,742 1,571 Vented and Flared.......................................... 688 595 585 1,005 1,285 Nonhydrocarbon Gases Removed

393

Energy Information Administration / Natural Gas Annual 2007 130  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 59. Summary Statistics for Natural Gas - New York, 2003-2007 Number of Wells Producing at End of Year.. 5,878 5,781 5,449 5,985 6,680 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 35,943 45,963 54,851 55,339 54,232 From Oil Wells.............................................. 194 87 329 641 710 Total............................................................... 36,137 46,050 55,180 55,980 54,942 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 36,137 46,050 55,180 55,980 54,942

394

Energy Information Administration / Natural Gas Annual 2007 154  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 71. Summary Statistics for Natural Gas - Utah, 2003-2007 Number of Wells Producing at End of Year.. 3,220 3,657 4,092 R 4,858 5,197 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 254,488 259,432 279,412 R 322,848 350,257 From Oil Wells.............................................. 29,871 31,153 32,583 R 33,472 35,104 Total............................................................... 284,359 290,586 311,994 R 356,321 385,361 Repressuring .................................................. 1,785 1,337 1,294 1,300 1,742 Vented and Flared.......................................... 705 688 595 R 585 1,005 Nonhydrocarbon Gases Removed ................. 13,810 10,592 8,883 R 6,116 6,205 Marketed Production

395

Energy Information Administration / Natural Gas Annual 2007 98  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 43. Summary Statistics for Natural Gas - Kansas, 2003-2007 Number of Wells Producing at End of Year.. 17,387 18,120 18,946 19,713 19,713 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 369,624 350,413 332,860 327,386 322,836 From Oil Wells.............................................. 50,403 47,784 45,390 44,643 44,023 Total............................................................... 420,027 398,197 378,250 372,029 366,859 Repressuring .................................................. 714 677 643 620 E 618 Vented and Flared.......................................... 420 398 378 365 E 363 Nonhydrocarbon Gases Removed ................. NA NA NA NA NA Marketed Production ......................................

396

Energy Information Administration / Natural Gas Annual 2007 84  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 36. Summary Statistics for Natural Gas - Florida, 2003-2007 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 3,474 3,525 2,954 2,845 2,000 Total............................................................... 3,474 3,525 2,954 2,845 2,000 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 387 402 337 304 E 222 Marketed Production ...................................... 3,087 3,123 2,616 2,540 1,778 Extraction Loss...............................................

397

Energy Information Administration / Natural Gas Annual 2007 118  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 53. Summary Statistics for Natural Gas - Montana, 2003-2007 Number of Wells Producing at End of Year.. 4,539 4,971 5,751 6,578 6,925 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 78,175 87,292 91,833 93,759 97,483 From Oil Wells.............................................. 8,256 10,546 16,722 20,278 23,092 Total............................................................... 86,431 97,838 108,555 114,037 120,575 Repressuring .................................................. 2 5 9 19 6 Vented and Flared.......................................... 403 1,071 629 1,173 3,721 Nonhydrocarbon Gases Removed ................. NA NA NA NA NA Marketed Production ......................................

398

Energy Information Administration / Natural Gas Annual 2007 138  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 63. Summary Statistics for Natural Gas - Oklahoma, 2003-2007 Number of Wells Producing at End of Year.. 34,334 35,612 36,704 38,060 38,364 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 1,487,451 1,597,915 1,592,524 1,640,389 1,709,207 From Oil Wells.............................................. 70,704 57,854 46,786 48,597 35,186 Total............................................................... 1,558,155 1,655,769 1,639,310 1,688,985 1,744,393 Repressuring .................................................. NA NA NA NA NA Vented and Flared.......................................... NA NA NA NA NA Nonhydrocarbon Gases Removed ................. NA NA NA NA NA Marketed Production

399

Energy Information Administration / Natural Gas Annual 2008 152  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 70. Summary Statistics for Natural Gas - Texas, 2004-2008 Number of Wells Producing at End of Year.. 72,237 74,827 74,265 76,436 87,556 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 5,074,067 5,331,776 5,649,784 R 6,256,767 7,006,392 From Oil Wells.............................................. 659,851 675,061 676,649 R 704,092 754,566 From Coalbed Wells ..................................... 0 0 0 0 0 Total............................................................... 5,733,918 6,006,837 6,326,433 R 6,960,858 7,760,958 Repressuring .................................................. 284,491 303,477 325,967 546,659 555,796 Vented and Flared..........................................

400

Energy Information Administration / Natural Gas Annual 2007 100  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 44. Summary Statistics for Natural Gas - Kentucky, 2003-2007 Number of Wells Producing at End of Year.. 12,900 13,920 14,175 15,892 16,563 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 87,608 94,259 92,795 95,320 95,437 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 87,608 94,259 92,795 95,320 95,437 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 87,608 94,259 92,795 95,320 95,437

Note: This page contains sample records for the topic "vented gas fireplaces" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Energy Information Administration / Natural Gas Annual 2008 130  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 59. Summary Statistics for Natural Gas - New York, 2004-2008 Number of Wells Producing at End of Year.. 5,781 5,449 5,985 6,680 6,675 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 45,963 54,851 55,339 54,232 49,607 From Oil Wells.............................................. 87 329 641 710 714 From Coalbed Wells ..................................... 0 0 0 0 0 Total............................................................... 46,050 55,180 55,980 54,942 50,320 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production

402

Energy Information Administration / Natural Gas Annual 2007 136  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 62. Summary Statistics for Natural Gas - Ohio, 2003-2007 Number of Wells Producing at End of Year.. 33,828 33,828 33,735 33,945 34,416 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 87,993 85,018 77,819 81,155 82,827 From Oil Wells.............................................. 5,647 5,458 5,704 5,160 5,268 Total............................................................... 93,641 90,476 83,523 86,315 88,095 Repressuring .................................................. NA NA NA NA NA Vented and Flared.......................................... NA NA NA NA NA Nonhydrocarbon Gases Removed ................. NA NA NA NA NA Marketed Production ......................................

403

Energy Information Administration / Natural Gas Annual 2008 166  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 77. Summary Statistics for Natural Gas - Wyoming, 2004-2008 Number of Wells Producing at End of Year.. 20,244 23,734 25,052 R 27,350 28,969 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 1,736,136 1,803,443 1,900,589 1,662,265 1,780,261 From Oil Wells.............................................. 192,904 200,383 211,177 R 159,039 156,133 From Coalbed Wells ..................................... NA NA NA 436,580 551,873 Total............................................................... 1,929,040 2,003,826 2,111,766 R 2,257,884 2,488,267 Repressuring .................................................. 164,164 171,616 114,343 R 8,063 9,118 Vented and Flared..........................................

404

Energy Information Administration / Natural Gas Annual 2007 72  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 30. Summary Statistics for Natural Gas - Arkansas, 2003-2007 Number of Wells Producing at End of Year.. 7,606 3,460 3,462 R 3,814 4,773 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 157,039 176,221 180,969 R 262,911 262,905 From Oil Wells.............................................. 12,915 11,088 9,806 R 7,833 7,509 Total............................................................... 169,953 187,310 190,774 R 270,744 270,414 Repressuring .................................................. 0 0 0 439 516 Vented and Flared.......................................... 354 241 241 R 12 11 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ......................................

405

Energy Information Administration / Natural Gas Annual 2007 76  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 32. Summary Statistics for Natural Gas - Colorado, 2003-2007 Number of Wells Producing at End of Year..... 18,774 16,718 22,691 20,568 22,949 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................... 970,229 1,002,453 1,038,739 1,101,361 1,093,695 From Oil Wells................................................. 51,065 87,170 105,247 113,035 160,833 Total.................................................................. 1,021,294 1,089,622 1,143,985 1,214,396 1,254,529 Repressuring ..................................................... 8,885 9,229 9,685 10,285 10,625 Vented and Flared............................................. 1,123 1,158 1,215 1,291 1,333 Nonhydrocarbon Gases Removed

406

Energy Information Administration / Natural Gas Annual 2008 72  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 30. Summary Statistics for Natural Gas - Arkansas, 2004-2008 Number of Wells Producing at End of Year.. 3,460 3,462 3,814 4,773 5,592 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 176,221 180,969 262,911 259,708 437,006 From Oil Wells.............................................. 11,088 9,806 7,833 7,509 7,378 From Coalbed Wells ..................................... NA NA NA 3,198 2,698 Total............................................................... 187,310 190,774 270,744 270,414 447,082 Repressuring .................................................. 0 0 439 516 511 Vented and Flared.......................................... 241 241 12 11 20 Nonhydrocarbon Gases Removed

407

Energy Information Administration / Natural Gas Annual 2008 118  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 53. Summary Statistics for Natural Gas - Montana, 2004-2008 Number of Wells Producing at End of Year.. 4,971 5,751 6,578 6,925 7,095 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 87,292 91,833 93,759 84,460 82,400 From Oil Wells.............................................. 10,546 16,722 20,278 23,092 22,995 From Coalbed Wells ..................................... NA NA NA 13,022 14,004 Total............................................................... 97,838 108,555 114,037 120,575 119,399 Repressuring .................................................. 5 9 19 6 6 Vented and Flared.......................................... 1,071 629 1,173 3,721 6,863 Nonhydrocarbon Gases Removed

408

Energy Information Administration / Natural Gas Annual 2007 166  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 77. Summary Statistics for Natural Gas - Wyoming, 2003-2007 Number of Wells Producing at End of Year.. 18,154 20,244 23,734 25,052 26,900 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 1,652,504 1,736,136 1,803,443 1,900,589 2,102,362 From Oil Wells.............................................. 183,612 192,904 200,383 211,177 156,066 Total............................................................... 1,836,115 1,929,040 2,003,826 2,111,766 2,258,428 Repressuring .................................................. 131,125 164,164 171,616 114,343 133,716 Vented and Flared.......................................... 16,685 16,848 31,161 31,661 47,331 Nonhydrocarbon Gases Removed

409

,"Missouri Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Wells (MMcf)","Missouri Natural Gas Gross Withdrawals from Oil Wells (MMcf)","Missouri Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)","Missouri Natural...

410

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

483,052 483,052 136,722 1.54 6,006 0.03 88 3.00 16,293 0.31 283,557 10.38 41,810 1.32 478,471 2.39 F l o r i d a Florida 57. Summary Statistics for Natural Gas Florida, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 47 50 98 92 96 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 7,584 8,011 8,468 7,133 6,706 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

411

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

291,898 291,898 113,995 1.29 0 0.00 4 0.14 88,078 1.68 3,491 0.13 54,571 1.73 260,140 1.30 I o w a Iowa 63. Summary Statistics for Natural Gas Iowa, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0

412

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: New England New England 36. Summary Statistics for Natural Gas New England, 1992-1996 Table 691,089 167,354 1.89 0 0.00 40 1.36 187,469 3.58 80,592 2.95 160,761 5.09 596,215 2.98 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................

413

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

29,693 29,693 0 0.00 0 0.00 6 0.20 17,290 0.33 0 0.00 16,347 0.52 33,644 0.17 District of Columbia District of Columbia 56. Summary Statistics for Natural Gas District of Columbia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

414

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

42,980 42,980 14,164 0.16 0 0.00 1 0.03 9,791 0.19 23,370 0.86 6,694 0.21 54,020 0.27 D e l a w a r e Delaware 55. Summary Statistics for Natural Gas Delaware, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

415

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-49,536 -49,536 7,911 0.09 49,674 0.25 15 0.51 12,591 0.24 3 0.00 12,150 0.38 32,670 0.16 North Dakota North Dakota 82. Summary Statistics for Natural Gas North Dakota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 496 525 507 463 462 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 104 101 104 99 108 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 12,461 18,892 19,592 16,914 16,810 From Oil Wells ........................................... 47,518 46,059 43,640 39,760 38,906 Total.............................................................. 59,979 64,951 63,232 56,674 55,716 Repressuring ................................................

416

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

21,547 21,547 4,916 0.06 0 0.00 0 0.00 7,012 0.13 3 0.00 7,099 0.22 19,031 0.10 N e w H a m p s h i r e New Hampshire 77. Summary Statistics for Natural Gas New Hampshire, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

417

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

139,881 139,881 26,979 0.30 463 0.00 115 3.92 27,709 0.53 19,248 0.70 28,987 0.92 103,037 0.52 A r i z o n a Arizona 50. Summary Statistics for Natural Gas Arizona, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 6 6 6 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 721 508 711 470 417 From Oil Wells ........................................... 72 110 48 88 47 Total.............................................................. 794 618 759 558 464 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease

418

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Middle Middle Atlantic Middle Atlantic 37. Summary Statistics for Natural Gas Middle Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,857 1,981 2,042 1,679 1,928 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 36,906 36,857 26,180 37,159 38,000 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 161,372 152,717 140,444 128,677 152,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 162,196 153,327 140,982 129,400 153,134 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed

419

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

386,690 386,690 102,471 1.16 0 0.00 43 1.47 142,319 2.72 5,301 0.19 98,537 3.12 348,671 1.74 M i n n e s o t a Minnesota 71. Summary Statistics for Natural Gas Minnesota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

420

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,108,583 1,108,583 322,275 3.63 298 0.00 32 1.09 538,749 10.28 25,863 0.95 218,054 6.90 1,104,972 5.52 I l l i n o i s Illinois 61. Summary Statistics for Natural Gas Illinois, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 382 385 390 372 370 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 337 330 323 325 289 From Oil Wells ........................................... 10 10 10 10 9 Total.............................................................. 347 340 333 335 298 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

Note: This page contains sample records for the topic "vented gas fireplaces" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

286,485 286,485 71,533 0.81 25 0.00 31 1.06 137,225 2.62 5,223 0.19 72,802 2.31 286,814 1.43 M i s s o u r i Missouri 73. Summary Statistics for Natural Gas Missouri, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5 8 12 15 24 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 27 14 8 16 25 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 27 14 8 16 25 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

422

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

411,951 411,951 100,015 1.13 0 0.00 5 0.17 114,365 2.18 45,037 1.65 96,187 3.05 355,609 1.78 Massachusetts Massachusetts 69. Summary Statistics for Natural Gas Massachusetts, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

423

Gas vesicles.  

Science Journals Connector (OSTI)

...in the suspending water, of concentration...MPa and balances the atmospheric pressure. Note that...versely, liquid water could not form by condensation inside the gas vesicle...presumably surrounded by water on all sides. At...

A E Walsby

1994-03-01T23:59:59.000Z

424

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

226,798 226,798 104,124 1.17 0 0.00 0 0.00 58,812 1.12 2,381 0.09 40,467 1.28 205,783 1.03 North Carolina North Carolina 81. Summary Statistics for Natural Gas North Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

425

Energy Information Administration / Natural Gas Annual 2005 4  

Gasoline and Diesel Fuel Update (EIA)

Figure 2. Natural Gas Supply and Disposition in the United States, 2005 (Trillion Cubic Feet) Extraction Loss Gross Withdrawals From Gas and Oil Wells Nonhydrocarbon Gases Removed Vented/Flared Reservoir Repressuring Production Dry Gas Imports Canada Trinidad/Tobago Algeria Nigeria Qatar Malaysia Oman Natural Gas Storage Facilities Exports Japan Canada Mexico Additions Withdrawals Gas Industry Use Residential Commercial Industrial Vehicle Fuel Electric Power 23.5 0.7 0.1 3.7 3.700 0.439 0.097 0.008 0.003 0.002 0.009 0.305 0.358 0.065 18.1 0.9 3.1 3.1 1.7 4.8 3.1 6.7 0.02 5.9 Egypt 0.073 Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition"; Form EIA-895, "Monthly and Annual

426

DOE/EIA-0131(04) Natural Gas Annual 2004 Publication Date:  

Gasoline and Diesel Fuel Update (EIA)

Energy Information Administration / Natural Gas Annual 2004 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year................................ 341,678 373,304 387,772 393,327 405,048 Production (million cubic feet) Gross Withdrawals From Gas Wells ............................................ 17,726,056 18,129,408 17,794,858 R 17,881,802 17,993,520 From Oil Wells .............................................. 6,447,820 6,371,371 6,146,420 6,237,176 6,061,912 Total............................................................... 24,173,875 24,500,779 23,941,279 R 24,118,978 24,055,432 Repressuring .................................................. 3,379,661 3,370,832 3,455,145 3,547,781 3,701,656 Vented and Flared

427

Pollutant exposures from unvented gas cooking burners: A simulation-based  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pollutant exposures from unvented gas cooking burners: A simulation-based Pollutant exposures from unvented gas cooking burners: A simulation-based assessment for Southern California Title Pollutant exposures from unvented gas cooking burners: A simulation-based assessment for Southern California Publication Type Journal Article Year of Publication 2013 Authors Logue, Jennifer M., Neil E. Klepeis, Agnes B. Lobscheid, and Brett C. Singer Journal Environmental Health Perspectives Date Published 11/2013 Abstract Background: Residential natural gas cooking burners (NGCBs) can emit substantial quantities of pollutants and they are typically used without venting. Objective: Quantify pollutant concentrations and occupant exposures resulting from NGCB use in California homes. Methods: A mass balance model was applied to estimate time-dependent pollutant concentrations throughout homes and the "exposure concentrations" experienced by individual occupants. The model was applied to estimate nitrogen dioxide (NO2), carbon monoxide (CO), and formaldehyde (HCHO) concentrations for one week each in summer and winter for a representative sample of Southern California homes. The model simulated pollutant emissions from NGCBs, NO2 and CO entry from outdoors, dilution throughout the home, and removal by ventilation and deposition. Residence characteristics and outdoor concentrations of CO and NO2 were obtained from available databases. Ventilation rates, occupancy patterns, and burner use were inferred from household characteristics. Proximity to the burner(s) and the benefits of using venting range hoods were also explored. Replicate model executions using independently generated sets of stochastic variable values yielded estimated pollutant concentration distributions with geometric means varying less than 10%.

428

Biogeography and Biodiversity in Sulfide Structures of Active and Inactive Vents at Deep-Sea Hydrothermal Fields of the Southern Mariana Trough  

Science Journals Connector (OSTI)

...respectively. Cell abundance is higher in exterior parts of...bias resulting from the efficiency of DNA preparation from...structures may be relatively high in the interior parts...microbial community and venting chemistry in a sediment-hosted...and R. Amann. 1999. High bacterial diversity in...

Shingo Kato; Yoshinori Takano; Takeshi Kakegawa; Hironori Oba; Kazuhiko Inoue; Chiyori Kobayashi; Motoo Utsumi; Katsumi Marumo; Kensei Kobayashi; Yuki Ito; Jun-ichiro Ishibashi; Akihiko Yamagishi

2010-03-12T23:59:59.000Z

429

Preliminary Study of a Vented Attic Radiant Barrier System in Hot, Humid Climates Using Side-by-Side, Full-Scale Test Houses  

E-Print Network [OSTI]

A series of side-by-side tests was performed using two full scale test houses to determine the effectiveness of a Vented Radiant Barrier System (VRBS) in reducing the ceiling heat flux during the summer cooling season in North Florida. Another...

Lear, W. E.; Barrup, T. E.; Davis, K. E.

1987-01-01T23:59:59.000Z

430

Microsoft Word - Document1  

Broader source: Energy.gov (indexed) [DOE]

Mr. Daniel Cohen Mr. Daniel Cohen Office of the General Counsel 1000 Independence Avenue , SW Washington D.C. 20585 RE: Regulatory Reduction RFI, 76 Fed. Reg. 6123, February 3, 2011 Via Email: Regulatory.Review@hq.doe.gov Dear Mr Cohen , Thank you on behalf of Empire Comfort Systems for the opportunity to comment on the Regulatory Burden issue . Our company is a small company of about 260 employees located about 20 minutes east of St.Louis in Belleville , Illinois . We try to do things according to the regulations given to us and to be good citizens . We support the comments submitted by the Hearth Patio and Barbecue Association concerning the need to repeal DOE's April 16, 2010 ban on decorative vented gas fireplaces . Our company supported the law requiring energy efficiency standards for Direct Heating Equipment

431

Ground Gas Handbook  

Science Journals Connector (OSTI)

...pathways of least resistance to gas transport, and applications are discussed, such as migrating landfill gas emissions, also from leaking landfill gas collection systems, as well as natural gas and oil-field gas leakage from abandoned production...

Allen W Hatheway

432

Pollutant Exposures from Natural Gas Cooking Burners: A Simulation-Based Assessment for Southern California  

SciTech Connect (OSTI)

Residential natural gas cooking burners (NGCBs) can emit substantial quantities of pollutants and they are typically used without venting. The objective of this study is to quantify pollutant concentrations and occupant exposures resulting from NGCB use in California homes. A mass balance model was applied to estimate time-dependent pollutant concentrations throughout homes and the "exposure concentrations" experienced by individual occupants. The model was applied to estimate nitrogen dioxide (NO{sub 2}), carbon monoxide (CO), and formaldehyde (HCHO) concentrations for one week each in summer and winter for a representative sample of Southern California homes. The model simulated pollutant emissions from NGCBs, NO{sub 2} and CO entry from outdoors, dilution throughout the home, and removal by ventilation and deposition. Residence characteristics and outdoor concentrations of CO and NO{sub 2} were obtained from available databases. Ventilation rates, occupancy patterns, and burner use were inferred from household characteristics. Proximity to the burner(s) and the benefits of using venting range hoods were also explored. Replicate model executions using independently generated sets of stochastic variable values yielded estimated pollutant concentration distributions with geometric means varying less than 10%. The simulation model estimates that in homes using NGCBs without coincident use of venting range hoods, 62%, 9%, and 53% of occupants are routinely exposed to NO{sub 2}, CO, and HCHO levels that exceed acute health-based standards and guidelines. NGCB use increased the sample median of the highest simulated 1-hr indoor concentrations by 100, 3000, and 20 ppb for NO{sub 2}, CO, and HCHO, respectively. Reducing pollutant exposures from NGCBs should be a public health priority. Simulation results suggest that regular use of even moderately effective venting range hoods would dramatically reduce the percentage of homes in which concentrations exceed health-based standards.

Logue, Jennifer M.; Klepeis, Neil E.; Lobscheid, Agnes B.; Singer, Brett C.

2014-06-01T23:59:59.000Z

433

Gas Delivered  

Gasoline and Diesel Fuel Update (EIA)

. Average . Average Price of Natural Gas Delivered to Residential Consumers, 1980-1996 Figure 1980 1982 1984 1986 1988 1990 1992 1994 1996 0 2 4 6 8 10 0 40 80 120 160 200 240 280 320 Dollars per Thousand Cubic Feet Dollars per Thousand Cubic Meters Nominal Dollars Constant Dollars Sources: Nominal dollars: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Constant dollars: Prices were converted to 1995 dollars using the chain-type price indexes for Gross Domestic Product (1992 = 1.0) as published by the U. S. Department of Commerce, Bureau of Economic Analysis. Residential: Prices in this publication for the residential sector cover nearly all of the volumes of gas delivered. Commercial and Industrial: Prices for the commercial and industrial sectors are often associated with

434

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

73,669 73,669 141,300 1.59 221,822 1.12 3 0.10 46,289 0.88 33,988 1.24 31,006 0.98 252,585 1.26 A r k a n s a s Arkansas 51. Summary Statistics for Natural Gas Arkansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,750 1,552 1,607 1,563 1,470 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,500 3,500 3,500 3,988 4,020 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 171,543 166,273 161,967 161,390 182,895 From Oil Wells ........................................... 39,364 38,279 33,446 33,979 41,551 Total.............................................................. 210,906 204,552 195,413 195,369 224,446 Repressuring ................................................

435

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-1,080,240 -1,080,240 201,024 2.27 1,734,887 8.78 133 4.54 76,629 1.46 136,436 4.99 46,152 1.46 460,373 2.30 O k l a h o m a Oklahoma 84. Summary Statistics for Natural Gas Oklahoma, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 13,926 13,289 13,487 13,438 13,074 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 28,902 29,118 29,121 29,733 29,733 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 1,674,405 1,732,997 1,626,858 1,521,857 1,467,695 From Oil Wells ........................................... 342,950 316,945 308,006 289,877 267,192 Total.............................................................. 2,017,356 2,049,942 1,934,864

436

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

7,038,115 7,038,115 3,528,911 39.78 13,646,477 69.09 183 6.24 408,861 7.80 1,461,718 53.49 281,452 8.91 5,681,125 28.40 West South Central West South Central 42. Summary Statistics for Natural Gas West South Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 87,198 84,777 88,034 88,734 62,357 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 92,212 95,288 94,233 102,525 102,864 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 11,599,913 11,749,649 11,959,444 11,824,788 12,116,665 From Oil Wells ........................................... 2,313,831 2,368,395 2,308,634 2,217,752 2,151,247 Total..............................................................

437

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

77,379 77,379 94,481 1.07 81,435 0.41 8 0.27 70,232 1.34 1,836 0.07 40,972 1.30 207,529 1.04 K e n t u c k y Kentucky 65. Summary Statistics for Natural Gas Kentucky, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,084 1,003 969 1,044 983 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 12,483 12,836 13,036 13,311 13,501 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 79,690 86,966 73,081 74,754 81,435 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 79,690 86,966 73,081 74,754 81,435 Repressuring ................................................

438

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,720 0.32 31,767 1.16 29,447 0.93 153,549 0.77 Pacific Noncontiguous Pacific Noncontiguous 45. Summary Statistics for Natural Gas Pacific Noncontiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341

439

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-310,913 -310,913 110,294 1.24 712,796 3.61 2 0.07 85,376 1.63 22,607 0.83 57,229 1.81 275,508 1.38 K a n s a s Kansas 64. Summary Statistics for Natural Gas Kansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,681 9,348 9,156 8,571 7,694 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,400 19,472 19,365 22,020 21,388 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 580,572 605,578 628,900 636,582 629,755 From Oil Wells ........................................... 79,169 82,579 85,759 86,807 85,876 Total.............................................................. 659,741 688,157 714,659 723,389 715,631 Repressuring ................................................

440

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

819,046 819,046 347,043 3.91 245,740 1.24 40 1.36 399,522 7.62 32,559 1.19 201,390 6.38 980,555 4.90 M i c h i g a n Michigan 70. Summary Statistics for Natural Gas Michigan, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,223 1,160 1,323 1,294 2,061 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,257 5,500 6,000 5,258 5,826 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 120,287 126,179 136,989 146,320 201,123 From Oil Wells ........................................... 80,192 84,119 91,332 97,547 50,281 Total.............................................................. 200,479 210,299 228,321 243,867 251,404 Repressuring ................................................

Note: This page contains sample records for the topic "vented gas fireplaces" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

W W y o m i n g -775,410 50,253 0.57 666,036 3.37 14 0.48 13,534 0.26 87 0.00 9,721 0.31 73,609 0.37 Wyoming 98. Summary Statistics for Natural Gas Wyoming, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,826 10,933 10,879 12,166 12,320 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,111 3,615 3,942 4,196 4,510 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 751,693 880,596 949,343 988,671 981,115 From Oil Wells ........................................... 285,125 142,006 121,519 111,442 109,434 Total.............................................................. 1,036,817 1,022,602 1,070,862 1,100,113 1,090,549 Repressuring

442

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,179 0.31 31,767 1.16 27,315 0.86 150,877 0.75 A l a s k a Alaska 49. Summary Statistics for Natural Gas Alaska, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341 3,085,900 3,369,904 3,373,584 Repressuring

443

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

628,189 628,189 449,511 5.07 765,699 3.88 100 3.41 528,662 10.09 39,700 1.45 347,721 11.01 1,365,694 6.83 West North Central West North Central 39. Summary Statistics for Natural Gas West North Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,177 9,873 9,663 9,034 8,156 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,569 19,687 19,623 22,277 21,669 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 594,551 626,728 651,594 655,917 648,822 From Oil Wells ........................................... 133,335 135,565 136,468 134,776 133,390 Total.............................................................. 727,886 762,293

444

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,048,760 1,048,760 322,661 3.64 18,131 0.09 54 1.84 403,264 7.69 142,688 5.22 253,075 8.01 1,121,742 5.61 N e w Y o r k New York 80. Summary Statistics for Natural Gas New York, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 329 264 242 197 232 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5,906 5,757 5,884 6,134 6,208 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 22,697 20,587 19,937 17,677 17,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 23,521 21,197 20,476 18,400 18,134 Repressuring ................................................

445

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,554,530 1,554,530 311,229 3.51 3,094,431 15.67 442 15.08 299,923 5.72 105,479 3.86 210,381 6.66 927,454 4.64 Mountain Mountain 43. Summary Statistics for Natural Gas Mountain, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 38,711 38,987 37,366 39,275 38,944 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 30,965 34,975 38,539 38,775 41,236 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 2,352,729 2,723,393 3,046,159 3,131,205 3,166,689 From Oil Wells ........................................... 677,771 535,884 472,397 503,986 505,903 Total.............................................................. 3,030,499 3,259,277 3,518,556

446

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,592,465 1,592,465 716,648 8.08 239,415 1.21 182 6.21 457,792 8.73 334,123 12.23 320,153 10.14 1,828,898 9.14 South Atlantic South Atlantic 40. Summary Statistics for Natural Gas South Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,307 3,811 4,496 4,427 4,729 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 39,412 35,149 41,307 37,822 36,827 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 206,766 208,892 234,058 236,072 233,409 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 214,349 216,903 242,526 243,204 240,115

447

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,999,161 1,999,161 895,529 10.10 287,933 1.46 1,402 47.82 569,235 10.86 338,640 12.39 308,804 9.78 2,113,610 10.57 Pacific Contiguous Pacific Contiguous 44. Summary Statistics for Natural Gas Pacific Contiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,896 3,781 3,572 3,508 2,082 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 1,142 1,110 1,280 1,014 996 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 156,635 124,207 117,725 96,329 88,173 From Oil Wells ........................................... 294,800 285,162 282,227 289,430 313,581 Total.............................................................. 451,435 409,370

448

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-122,394 -122,394 49,997 0.56 178,984 0.91 5 0.17 37,390 0.71 205 0.01 28,025 0.89 115,622 0.58 West Virginia West Virginia 96. Summary Statistics for Natural Gas West Virginia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 2,356 2,439 2,565 2,499 2,703 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 38,250 33,716 39,830 36,144 35,148 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... E 182,000 171,024 183,773 186,231 178,984 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. E 182,000 171,024 183,773 186,231 178,984 Repressuring ................................................

449

Gas vesicles.  

Science Journals Connector (OSTI)

...the gas vesicles simply reduce their sinking rates and...remaining suspended in the water column. A microorganism...phenomena as stratification, water- bloom formation, and...the many proteins that make up the phycobilisome (73...flagellate bacteria in natural waters. The natural selection...

A E Walsby

1994-03-01T23:59:59.000Z

450

Gas vesicles.  

Science Journals Connector (OSTI)

...these costs can be compared is in units of energy expenditure per time (joules per second...requires 7.24 x 10-18 kg of Gvp. The energy cost of making this protein, Eg, is...Eg = 2.84 x 101- o J. The rate of energy expenditure in gas vesicle synthesis then...

A E Walsby

1994-03-01T23:59:59.000Z

451

Gas sensor  

DOE Patents [OSTI]

A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

2014-09-09T23:59:59.000Z

452

Liquid Natural Gas  

Science Journals Connector (OSTI)

Liquid Natural Gas ... IN A new technique for storing natural gas at the East Ohio Gas Co. plant, Cleveland, Ohio, the gas is liquefied before passing to the gas holders. ... Natural gas contains moisture and carbon dioxide, both of which liquefy before the natural gas and are somewhat of a nuisance because upon solidification they clog the pipes. ...

W. F. SCHAPHORST

1941-04-25T23:59:59.000Z

453

Oilfield Flare Gas Electricity Systems (OFFGASES Project)  

SciTech Connect (OSTI)

The Oilfield Flare Gas Electricity Systems (OFFGASES) project was developed in response to a cooperative agreement offering by the U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) under Preferred Upstream Management Projects (PUMP III). Project partners included the Interstate Oil and Gas Compact Commission (IOGCC) as lead agency working with the California Energy Commission (CEC) and the California Oil Producers Electric Cooperative (COPE). The project was designed to demonstrate that the entire range of oilfield 'stranded gases' (gas production that can not be delivered to a commercial market because it is poor quality, or the quantity is too small to be economically sold, or there are no pipeline facilities to transport it to market) can be cost-effectively harnessed to make electricity. The utilization of existing, proven distribution generation (DG) technologies to generate electricity was field-tested successfully at four marginal well sites, selected to cover a variety of potential scenarios: high Btu, medium Btu, ultra-low Btu gas, as well as a 'harsh', or high contaminant, gas. Two of the four sites for the OFFGASES project were idle wells that were shut in because of a lack of viable solutions for the stranded noncommercial gas that they produced. Converting stranded gas to useable electrical energy eliminates a waste stream that has potential negative environmental impacts to the oil production operation. The electricity produced will offset that which normally would be purchased from an electric utility, potentially lowering operating costs and extending the economic life of the oil wells. Of the piloted sites, the most promising technologies to handle the range were microturbines that have very low emissions. One recently developed product, the Flex-Microturbine, has the potential to handle the entire range of oilfield gases. It is deployed at an oilfield near Santa Barbara to run on waste gas that is only 4% the strength of natural gas. The cost of producing oil is to a large extent the cost of electric power used to extract and deliver the oil. Researchers have identified stranded and flared gas in California that could generate 400 megawatts of power, and believe that there is at least an additional 2,000 megawatts that have not been identified. Since California accounts for about 14.5% of the total domestic oil production, it is reasonable to assume that about 16,500 megawatts could be generated throughout the United States. This power could restore the cost-effectiveness of thousands of oil wells, increasing oil production by millions of barrels a year, while reducing emissions and greenhouse gas emissions by burning the gas in clean distributed generators rather than flaring or venting the stranded gases. Most turbines and engines are designed for standardized, high-quality gas. However, emerging technologies such as microturbines have increased the options for a broader range of fuels. By demonstrating practical means to consume the four gas streams, the project showed that any gases whose properties are between the extreme conditions also could be utilized. The economics of doing so depends on factors such as the value of additional oil recovered, the price of electricity produced, and the alternate costs to dispose of stranded gas.

Rachel Henderson; Robert Fickes

2007-12-31T23:59:59.000Z

454

NATURAL GAS MARKET ASSESSMENT  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION NATURAL GAS MARKET ASSESSMENT PRELIMINARY RESULTS In Support.................................................................................... 6 Chapter 2: Natural Gas Demand.................................................................................................. 10 Chapter 3: Natural Gas Supply

455

,"Missouri Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)","Missouri Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)","Missouri Natural Gas Price Sold to...

456

Natural Gas Weekly Update  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

natural gas production output. Rigs Natural Gas Transportation Update Tennessee Gas Pipeline Company yesterday (August 4) said it is mobilizing equipment and manpower for...

457

Shale gas is natural gas trapped inside  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Shale gas is natural gas trapped inside formations of shale - fine grained sedimentary rocks that can be rich sources of petroleum and natural gas. Just a few years ago, much of...

458

Gas Chromatography  

Science Journals Connector (OSTI)

Researchers from the University of Missouri and ICx Nomadics have reported on the use of a optofluidic ring resonator (OFRR) sensor for on-column detection ?. ... Although substantial differences were noted between fresh and aged (or oxidized) oils, many of the compounds in the oxidized oil went unidentified due to lack of library mass spectral data. ... A high resolution MEMS based gas chromatography column for the analysis of benzene and toluene gaseous mixtures ...

Frank L. Dorman; Joshua J. Whiting; Jack W. Cochran; Jorge Gardea-Torresdey

2010-05-26T23:59:59.000Z

459

Full scale experimental analysis of stress states in sleeve repairs of gas pipelines  

Science Journals Connector (OSTI)

This study discusses the experimental determination of stress states in sleeve repairs of underground gas pipelines. Work was done to define the effects of the reduction of pressure during welding, the load and place of positioning clamps, the length of the repair sleeve, and the use of O'ring-based devices to prevent gas leakage. Tests were carried out in reinforcements, welded with internal pressure equal to 60, 80 and 100% of the service pressure. High stresses were generated in tests carried out with short sleeves and O'rings, and occurred once the sleeve was fully welded and the pipeline pressure re-established. Maximum stresses, up to 270 MPa, were generated after about 1 min following closing of venting valves, on tests with artificial gas leaks. From the results of these experimental studies, it is concluded that several operative aspects could be optimised, to minimise the stresses in the reinforcements and to reduce the risk of failures.

M.D Chapetti; J.L Otegui; C Manfredi; C.F Martins

2001-01-01T23:59:59.000Z

460

Flammability tests on D0 Run II muon PDT Gas and P-10 Gas  

SciTech Connect (OSTI)

The authors have done a series of measurements with mixtures of Argon, CF4 and CH4 to demonstrate that the mixture chosen for RunII (84% Argon, 8% CH4, 8% CF4) is not flammable. The tests were conducted in the Meson Detector Building in a test cell similar in construction to a cell of a Muon PDT. In order to establish the viability of the test set-up, they first repeated the demonstration that P-10 gas (90% Argon, 10% CH4) is in fact flammable, contrary to the classification by the US DOT. US DOT regulation 173.115 defines flammable gas as: (1) is ignitable (at 14.7 psi) when in a mixture of 13% or less with air; or (2) has a flammability range (at 14.7 psi) with air of at least 12% regardless of the lower explosive limit (LEL). P-10 has a LEL of about 40% and a flammability range of about 10%, so P-10 is not flammable according to the US DOT definition. The point here is that the DOT classifications are to serve the DOT's function to ensure transportation safety, and are not necessarily appropriate for other situations. The first configuration of their test cell, however, apparently failed to ignite P-10. With the guidance of Bill Nuttall of CERN, they modified their test cell to make it more like the standard flammability testing setups, with a large viewing window and a spark gap in the middle of the cell. In this second configuration P-10 was easily and reliably ignitable. After becoming more familiar with the visible indicators of combustion of P-10 (water vapor cloud formation, pressure changes and gas venting) they retested with the initial configuration, and found that the mixture actually had been burning, and that they had just missed all the indications. The data from CERN showed that P-10 burns rather slowly, with about a one second rise time for the pressure to reach the maximum of four atmospheres overpressure. In the tests they saw no signs of any flame, but only a water vapor cloud. Some preliminary tests with the same cell using Argon-Ethane and air had a much more impressive burn, with rapid venting and a red flash clearly visible.

Herman F. Haggerty; James L. Priest and Tom Marshall

2001-07-12T23:59:59.000Z

Note: This page contains sample records for the topic "vented gas fireplaces" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Identification of chemoautotrophic microorganisms from a diffuse flow hydrothermal vent at EPR 9° north using ¹³C DNA stable isotope probing and catalyzed activated reporter deposition-fluorescence in situ hybridization  

E-Print Network [OSTI]

At deep-sea hydrothermal vents chemolithoautotrophic microbes mediate the transfer of geothermal chemical energy to higher trophic levels. To better understand these underlying processes and the organisms catalyzing them, ...

Richberg, Kevin Patrick

2010-01-01T23:59:59.000Z

462

Gas Sampling Considerations  

Science Journals Connector (OSTI)

Gas sampling is carried out to measure the quality of a gas. Gas samples are sometimes acquired by in situ observation within the main gas body by using remote or visual observation for specific properties. A mor...

Alvin Lieberman

1992-01-01T23:59:59.000Z

463

Georgia Tech Dangerous Gas  

E-Print Network [OSTI]

1 Georgia Tech Dangerous Gas Safety Program March 2011 #12;Georgia Tech Dangerous Gas Safety.......................................................................................................... 5 6. DANGEROUS GAS USAGE REQUIREMENTS................................................. 7 6.1. RESTRICTED PURCHASE/ACQUISITION RULES: ................................................ 7 7. FLAMMABLE GAS

Sherrill, David

464

Market Digest: Natural Gas  

Reports and Publications (EIA)

The Energy Information Administration's Natural Gas Market Digest provides information and analyses on all aspects of natural gas markets.

2014-01-01T23:59:59.000Z

465

Table B1. Summary Statistics for Natural Gas in the United States, Metric Equivalents, 2002-2006  

Gasoline and Diesel Fuel Update (EIA)

5 5 Table B1. Summary Statistics for Natural Gas in the United States, Metric Equivalents, 2002-2006 See footnotes at end of table. Number of Gas and Gas Condensate Wells Producing at End of Year .................................. 387,772 393,327 406,147 R 425,887 448,641 Production (million cubic meters) Gross Withdrawals From Gas Wells .............................................. 503,894 506,356 506,454 R 494,748 508,075 From Oil Wells ................................................ 174,047 176,617 172,292 R 169,476 157,583 Total ................................................................. 677,942 682,973 678,746 R 664,223 665,657 Repressuring .................................................... 97,839 100,462 104,819 R 104,759 92,453 Vented and Flared

466

Gas Chromatography  

Science Journals Connector (OSTI)

He received his B.S. degree in 1970 from Rhodes College in Memphis, TN, his M.S. degree in 1973 from the University of Missouri, Columbia, MO, and his Ph.D. degree in 1975 from Dalhousie University, Halifax, Nova Scotia, Canada. ... A review (with 145 references) on the role of carrier gases on the separation process (A4) demonstrates that carrier gas interactions are integral to the chromatographic process. ... In another report, activity coefficients for refrigerants were evaluated with a polyol ester oil stationary phase (C22). ...

Gary A. Eiceman; Herbert H. Hill, Jr.; Jorge Gardea-Torresdey

2000-04-25T23:59:59.000Z

467

Aluminum Bronze Alloys to Improve the System Life of Basic Oxygen and Electric Arc Furnace Hoods, Roofs and Side Vents.  

SciTech Connect (OSTI)

Energy Industries of Ohio was the lead organization for a consortium that examined the current situation involving the service life of electric arc and basic oxygen furnace hoods, roofs and side vents. Republic Engineered Products (REP), one of the project partners, installed a full-scale Al-Bronze “skirt” in their BOF at their Lorain OH facility, believed to be the first such installation of this alloy in this service. In 24 months of operation, the Al-Bronze skirt has processed a total of 4,563 heats, requiring only 2 shutdowns for maintenance, both related to physical damage to the skirt from operational mishaps. Yearly energy savings related to the REP facility are projected to be ~ 10 billion Btu's with significant additional environmental and productivity benefits. In recognition of the excellent results, this project was selected as the winner of the Ohio’s 2006 Governor’s Award for Excellence in Energy, the state’s award for outstanding achievements in energy efficiency.

Lawrence C. Boyd Jr.; Dr. Vinod K. Sikka

2006-12-29T23:59:59.000Z

468

Alaska Natural Gas Gross Withdrawals and Production  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Annual Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Gross Withdrawals 3,479,290 3,415,884 3,312,386 3,197,100 3,162,922 3,164,791 1967-2012 From Gas Wells 165,624 150,483 137,639 127,417 112,268 107,873 1967-2012 From Oil Wells 3,313,666 3,265,401 3,174,747 3,069,683 3,050,654 3,056,918 1967-2012 From Coalbed Wells 0 0 0 0 0 0 2002-2012 Repressuring 3,039,347 3,007,418 2,908,828 2,812,701 2,795,732 2,801,763 1967-2012 Vented and Flared 6,458 10,023 6,481 10,173 10,966 11,769 1967-2012 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 1996-2012 Marketed Production 433,485 398,442 397,077 374,226 356,225 351,259 1967-2012

469

Average Price of Natural Gas Production  

Gasoline and Diesel Fuel Update (EIA)

. . Quantity and Average Price of Natural Gas Production in the United States, 1930-1996 (Volumes in Million Cubic Feet, Prices in Dollars per Thousand Cubic Feet) Table Year Gross Withdrawals Used for Repressuring Nonhydro- carbon Gases Removed Vented and Flared Marketed Production Extraction Loss Dry Production Average Wellhead Price of Marketed Production 1930 ....................... NA NA NA NA 1,978,911 75,140 1,903,771 0.08 1931 ....................... NA NA NA NA 1,721,902 62,288 1,659,614 0.07 1932 ....................... NA NA NA NA 1,593,798 51,816 1,541,982 0.06 1933 ....................... NA NA NA NA 1,596,673 48,280 1,548,393 0.06 1934 ....................... NA NA NA NA 1,815,796 52,190 1,763,606 0.06 1935 ....................... NA NA NA NA 1,968,963 55,488 1,913,475 0.06 1936 ....................... 2,691,512 73,507 NA 392,528 2,225,477

470

Fuel gas conditioning process  

DOE Patents [OSTI]

A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

Lokhandwala, Kaaeid A. (Union City, CA)

2000-01-01T23:59:59.000Z

471

Federal Offshore Gulf of Mexico Natural Gas Summary  

U.S. Energy Information Administration (EIA) Indexed Site

Dry Proved Reserves Dry Proved Reserves (Billion Cubic Feet) Proved Reserves as of 12/31 13,634 1992-2007 Estimated Production NA 1992-2007 Production (Million Cubic Feet) Number of Producing Gas Wells 2,552 1,527 1,984 1,852 1,559 1,474 1998-2012 Gross Withdrawals 2,813,197 2,329,955 2,444,102 2,259,144 1,830,913 1,527,875 1997-2012 From Gas Wells 2,202,242 1,848,290 1,877,722 1,699,908 1,353,929 1,013,914 1997-2012 From Oil Wells 610,955 481,665 566,380 559,235 476,984 513,961 1997-2012 From Shale Gas Wells 0 0 0 0 0 0 2007-2012 From Coalbed Wells 0 0 0 0 0 0 2002-2012 Repressuring 1,969 1,105 432 110 3,084 4,014 1997-2012 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 1997-2012 Vented and Flared 12,509 14,507 14,754 13,971 15,502 16,296 1997-2012

472

Neutron Gas  

Science Journals Connector (OSTI)

We assume that the neutron-neutron potential is well-behaved and velocity-dependent. We can then apply perturbation theory to find the energy per particle of a neutron gas, in the range of Fermi wave numbers 0.5

J. S. Levinger and L. M. Simmons

1961-11-01T23:59:59.000Z

473

Natural Gas Hydrates  

Science Journals Connector (OSTI)

Natural Gas Hydrates ... Formation Characteristics of Synthesized Natural Gas Hydrates in Meso- and Macroporous Silica Gels ... Formation Characteristics of Synthesized Natural Gas Hydrates in Meso- and Macroporous Silica Gels ...

Willard I. Wilcox; D. B. Carson; D. L. Katz

1941-01-01T23:59:59.000Z

474

Gas Kick Mechanistic Model  

E-Print Network [OSTI]

Gas kicks occur during drilling when the formation pressure is greater than the wellbore pressure causing influx of gas into the wellbore. Uncontrolled gas kicks could result in blowout of the rig causing major financial loss and possible injury...

Zubairy, Raheel

2014-04-18T23:59:59.000Z

475

Historical Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

476

Historical Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

477

Historical Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

478

Future of Natural Gas  

Office of Environmental Management (EM)

technology is improving - Producers are drilling in liquids rich gas and crude oil shale plays due to lower returns on dry gas production - Improved well completion time...

479

Natural Gas Industrial Price  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells...

480

Passive landfill gas emission – Influence of atmospheric pressure and implications for the operation of methane-oxidising biofilters  

Science Journals Connector (OSTI)

A passively vented landfill site in Northern Germany was monitored for gas emission dynamics through high resolution measurements of landfill gas pressure, flow rate and composition as well as atmospheric pressure and temperature. Landfill gas emission could be directly related to atmospheric pressure changes on all scales as induced by the autooscillation of air, diurnal variations and the passage of pressure highs and lows. Gas flux reversed every 20 h on average, with 50% of emission phases lasting only 10 h or less. During gas emission phases, methane loads fed to a connected methane oxidising biofiltration unit varied between near zero and 247 g CH4 h?1 m?3 filter material. Emission dynamics not only influenced the amount of methane fed to the biofilter but also the establishment of gas composition profiles within the biofilter, thus being of high relevance for biofilter operation. The duration of the gas emission phase emerged as most significant variable for the distribution of landfill gas components within the biofilter.

Julia Gebert; Alexander Groengroeft

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vented gas fireplaces" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Raman gas analyzer for determining the composition of natural gas  

Science Journals Connector (OSTI)

We describe a prototype of a Raman gas analyzer designed for measuring the composition of natural gas. Operation of the gas analyzer was tested on a real natural gas. We show that our Raman gas analyzer prototype...

M. A. Buldakov; B. V. Korolev; I. I. Matrosov…

2013-03-01T23:59:59.000Z

482

Noble gas magnetic resonator  

DOE Patents [OSTI]

Precise measurements of a precessional rate of noble gas in a magnetic field is obtained by constraining the time averaged direction of the spins of a stimulating alkali gas to lie in a plane transverse to the magnetic field. In this way, the magnetic field of the alkali gas does not provide a net contribution to the precessional rate of the noble gas.

Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

2014-04-15T23:59:59.000Z

483

OIL & GAS INSTITUTE Introduction  

E-Print Network [OSTI]

OIL & GAS INSTITUTE CONTENTS Introduction Asset Integrity Underpinning Capabilities 2 4 4 6 8 9 10 COMPETITIVENESS UNIVERSITY of STRATHCLYDE OIL & GAS INSTITUTE OIL & GAS EXPERTISE AND PARTNERSHIPS #12;1 The launch of the Strathclyde Oil & Gas Institute represents an important step forward for the University

Mottram, Nigel

484

Natural Gas: Dry Wells Yield Gas  

Science Journals Connector (OSTI)

... THE Gas Council and Home Oil of Canada have announced plans for developing two ... Council and Home Oil of Canada have announced plans for developing two natural ...

1969-04-26T23:59:59.000Z

485

Other States Total Natural Gas Gross Withdrawals and Production  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Annual Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Gross Withdrawals 4,430,466 4,839,942 5,225,005 5,864,402 6,958,125 8,225,321 1991-2012 From Gas Wells 2,480,211 2,613,139 2,535,642 2,523,173 1991-2010 From Oil Wells 525,280 534,253 648,906 691,643 1991-2010 From Shale Gas Wells 569,502 796,138 1,146,821 1,787,965 2007-2010 From Coalbed Wells 855,473 896,412 893,636 861,620 2002-2010 Repressuring 48,011 51,781 43,376 45,994 1991-2010 Vented and Flared 32,600 52,667 55,544 53,950 1991-2010 Nonhydrocarbon Gases Removed 223,711 282,651 291,611 352,304 1994-2010

486

Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

487

South Dakota Natural Gas Number of Gas and Gas Condensate Wells...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) South Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

488

Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

489

Montana Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Montana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

490

Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

491

Texas Natural Gas Number of Gas and Gas Condensate Wells (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Texas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

492

New York Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) New York Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

493

West Virginia Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) West Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

494

North Dakota Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) North Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

495

Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

496

U.S. Natural Gas Number of Gas and Gas Condensate Wells (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) U.S. Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

497

Utah Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Utah Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

498

Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

499

Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

500

Indiana Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Indiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...