Powered by Deep Web Technologies
Note: This page contains sample records for the topic "velocity wave probe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Millimeter-wave active probe  

DOE Patents (OSTI)

A millimeter-wave active probe for use in injecting signals with frequencies above 50GHz to millimeter-wave and ultrafast devices and integrated circuits including a substrate upon which a frequency multiplier consisting of filter sections and impedance matching sections are fabricated in uniplanar transmission line format. A coaxial input and uniplanar 50 ohm transmission line couple an approximately 20 GHz input signal to a low pass filter which rolls off at approximately 25 GHz. An input impedance matching section couples the energy from the low pass filter to a pair of matched, antiparallel beam lead diodes. These diodes generate odd-numberd harmonics which are coupled out of the diodes by an output impedance matching network and bandpass filter which suppresses the fundamental and third harmonics and selects the fifth harmonic for presentation at an output.

Majidi-Ahy, Gholamreza (Sunnyvale, CA); Bloom, David M. (Portola Valley, CA)

1991-01-01T23:59:59.000Z

2

P wave velocity variations in the Coso region, California, derived...  

Open Energy Info (EERE)

P wave velocity variations in the Coso region, California, derived from local earthquake travel times Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal...

3

Mass Transport Velocity in Free Barotropic Poincaré Waves  

Science Conference Proceedings (OSTI)

The mass transport velocity induced by long surface waves in a shallow, rotating viscous ocean is studied theoretically by using a Lagrangian description of motion. The depth is constant, and the water is homogeneous. Such waves are referred to ...

Frode Høydalsvik; Jan Erik Weber

2003-09-01T23:59:59.000Z

4

An Intercomparison Study Using Electromagnetic Three-Component Turbulent Velocity Probes  

Science Conference Proceedings (OSTI)

An intercomparison study was performed with four Russian-made, electromagnetic probes capable of measuring three components of oceanic turbulent velocities and two single-axis velocity sensors familiar to western scientists, namely, a hot-film ...

David Y. Lai; Vadim T. Paka; Donald P. Delisi; Anatoli V. Arjannikov; Sergei A. Khanaev

2000-07-01T23:59:59.000Z

5

On the Structure of the Velocity Field over Progressive Mechanically-Generated Water Waves  

Science Conference Proceedings (OSTI)

The structure of the velocity field over a propagating wave of fixed frequency is examined. The vertical and horizontal velocities were measured in a transformed Eulerian wave-following frame of reference in a wind-wave research facility at ...

Yiannis Alex Papadimitrakis; En Yun Hsu; Robert L. Street

1984-12-01T23:59:59.000Z

6

Detonation wave velocity and curvature of brass encased PBXN-111  

Science Conference Proceedings (OSTI)

Detonation velocities and wave front curvatures were measured for PBXN-111 charges encased in 5 mm thick brass tubes. In all the experiments (charge diameters from 19 to 47 mm) the brass case affected the detonation properties of PBXN-111. Steady detonation waves propagated in brass encased charges with diameters as small as 19 mm, which is about half of the unconfined failure diameter. The radii of curvature of the detonation waves at the center of the wave fronts ranged from 52 to 141 mm for charge diameters of 25 to 47 mm. The angles between the detonation wave fronts and the brass/charge interfaces were between 72 and 74 degrees. {copyright} {ital 1996 American Institute of Physics.}

Forbes, J.W.; Lemar, E.R. [Naval Surface Warfare Center, Indian Head Division, Silver Spring, Maryland 20903-5640 (United States)

1996-05-01T23:59:59.000Z

7

Matter wave optical techniques for probing many-body targets  

E-Print Network (OSTI)

This thesis reports on our investigation of the uses of matter waves to probe many-body targets. We begin by discussing decoherence in an atom interferometer, in which a free gas acts as a refractive medium for a matter ...

Sanders, Scott Nicholas

2010-01-01T23:59:59.000Z

8

Longshore sediment transport rate calculated incorporating wave orbital velocity fluctuations  

E-Print Network (OSTI)

Laboratory experiments were performed to study and improve longshore sediment transport rate predictions. Measured total longshore transport in the laboratory was approximately three times greater for plunging breakers than spilling breakers. Three distinct zones of longshore transport were observed across the surf zone: the incipient breaker zone, inner surf zone, and swash zone. Transport at incipient breaking was influenced by breaker type; inner surf zone transport was dominated by wave height, independent of wave period; and swash zone transport was dependent on wave period. Selected predictive formulas to compute total load and distributed load transport were compared to laboratory and field data. Equations by Kamphuis (1991) and Madsen et al. (2003) gave consistent total sediment transport estimates for both laboratory and field data. Additionally, the CERC formula predicted measurements well if calibrated and applied to similar breaker types. Each of the distributed load models had shortcomings. The energetics model of Bodge and Dean (1987) was sensitive to fluctuations in energy dissipation and often predicted transport peaks that were not present in the data. The Watanabe (1992) equation, based on time-averaged bottom stress, predicted no transport at most laboratory locations. The Van Rijn (1993) model was comprehensive and required hydrodynamic, bedform, and sediment data. The model estimated the laboratory cross-shore distribution well, but greatly overestimated field transport. Seven models were developed in this study based on the principle that transported sediment is mobilized by the total shear stress acting on the bottom and transported by the current at that location. Shear stress, including the turbulent component, was calculated from the wave orbital velocity. Models 1 through 3 gave good estimates of the transport distribution, but underpredicted the transport peak near the plunging wave breakpoint. A suspension term was included in Models 4 through 7, which improved estimates near breaking for plunging breakers. Models 4, 5 and 7 also compared well to the field measurements. It was concluded that breaker type is an important variable in determining the amount of transport that occurs at a location. Lastly, inclusion of the turbulent component of the orbital velocity is vital in predictive sediment transport equations.

Smith, Ernest Ray

2006-08-01T23:59:59.000Z

9

Mesoscale Waves as a Probe of Jupiter's Deep Atmosphere  

Science Conference Proceedings (OSTI)

Search of the Voyager images of Jupiter reveals a class of mesoscale waves occurring near the extrema of the zonal velocity profile between latitudes 30°S and 30°N. The average horizontal wavelength is 300 km, compared to an atmospheric scale ...

F. M. Flasar; P. J. Gierasch

1986-11-01T23:59:59.000Z

10

Surface acoustic wave probe implant for predicting epileptic seizures  

DOE Patents (OSTI)

A system and method for predicting and avoiding a seizure in a patient. The system and method includes use of an implanted surface acoustic wave probe and coupled RF antenna to monitor temperature of the patient's brain, critical changes in the temperature characteristic of a precursor to the seizure. The system can activate an implanted cooling unit which can avoid or minimize a seizure in the patient.

Gopalsami, Nachappa (Naperville, IL); Kulikov, Stanislav (Sarov, RU); Osorio, Ivan (Leawood, KS); Raptis, Apostolos C. (Downers Grove, IL)

2012-04-24T23:59:59.000Z

11

Effects of Wave Breaking on the Near-Surface Profiles of Velocity and Turbulent Kinetic Energy  

Science Conference Proceedings (OSTI)

A theoretical model for the near-surface velocity profile in the presence of breaking waves is presented. Momentum is accumulated by growing waves and is released upon wave breaking. In effect, such a transition is a process involving a time-...

Arne Melsom; Øyvind SÆtra

2004-02-01T23:59:59.000Z

12

P wave velocity variations in the Coso region, California, derived from  

Open Energy Info (EERE)

P wave velocity variations in the Coso region, California, derived from P wave velocity variations in the Coso region, California, derived from local earthquake travel times Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: P wave velocity variations in the Coso region, California, derived from local earthquake travel times Details Activities (1) Areas (1) Regions (0) Abstract: Inversion of 4036 P wave travel time residuals from 429 local earthquakes using a tomographic scheme provides information about three-dimensional upper crustal velocity variations in the Indian Wells Valley-Coso region of southeastern California. The residuals are calculated relative to a Coso-specific velocity model, corrected for station elevation, weighted, and back-projected along their ray paths through models defined with layers of blocks. Slowness variations in the surface

13

Effects of CO/sub 2/ flooding on wave velocities in rocks with hydrocarbons  

SciTech Connect

Compressional and shear-wave velocities were measured in the laboratory in seven sandstones (porosities ranging from 6 to 29%) and one unconsolidated sand (37% porosity) saturated with n-hexadecane (C/sub 16/H/sub 34/) both before and after CO/sub 2/ flooding. CO/sub 2/ flooding decreased compressional-wave velocities significantly, while shear-wave velocities were less affected. The magnitude of these effects was found to depend on confining and pore pressures, temperature, and porosities of the rocks. The experimental results and theoretical analysis show that the decreases in compressional-wave velocities caused by CO/sub 2/ flooding may be seismically resolvable in situ. Therefore, seismic--especially high-frequency, high-resolution seismic--methods may be useful in mapping and locating CO/sub 2/ zones, tracking movements of CO/sub 2/ fronts, and monitoring flooding processes in reservoirs undergoing CO/sub 2/ flooding.

Wang, Z. (Core Labs., Calgary (CA)); Nur, A.M. (Stanford Univ., Geophysics Dept., CA (US))

1989-11-01T23:59:59.000Z

14

The upper crustal P-wave velocity structure of Newberry volcano, Central Oregon.  

E-Print Network (OSTI)

?? The upper-crustal seismic-velocity structure of Newberry volcano, central Oregon, is imaged using P-wave travel time tomography. The inversion combines a densely-spaced seismic line collected… (more)

Beachly, Matthew William

2011-01-01T23:59:59.000Z

15

The Upper Crustal P-wave Velocity Structure of Newberry Volcano, Central Oregon.  

E-Print Network (OSTI)

??The upper-crustal seismic-velocity structure of Newberry volcano, central Oregon, is imaged using P-wave travel time tomography. The inversion combines a densely-spaced seismic line collected in… (more)

Beachly, Matthew William, 1986-

2011-01-01T23:59:59.000Z

16

Sources of Gravity Wave Activity Seen in the Vertical Velocities Observed by the Flatland VHF Radar  

Science Conference Proceedings (OSTI)

Observations of vertical velocity made with the Flatland VHF radar located in the extremely flat terrain near Champaign, Illinois, are used to study sources of enhanced variance. The variance is used as an indicator of gravity wave activity. In ...

G. D. Nastrom; M. R. Peterson; J. L. Green; K. S. Gage; T. E. VanZandt

1990-08-01T23:59:59.000Z

17

Effect of an Insoluble Surface Film on the Drift Velocity of Capillary–Gravity Waves  

Science Conference Proceedings (OSTI)

The drift velocity due to capillary-gravity waves in a deep ocean is investigated theoretically. The surface is covered by an insoluble, inextensible film, and the analysis is based an a Lagrangian description of motion. Attenuated as well as ...

Jan Erik Weber; Even Førland

1989-07-01T23:59:59.000Z

18

Three-dimensional P and S waves velocity structures of the Coso geothermal  

Open Energy Info (EERE)

P and S waves velocity structures of the Coso geothermal P and S waves velocity structures of the Coso geothermal area, California, from microseismic travel time data Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Three-dimensional P and S waves velocity structures of the Coso geothermal area, California, from microseismic travel time data Details Activities (1) Areas (1) Regions (0) Abstract: High precision P and S wave travel times for 2104 microearthquakes with focus <6 km are used in a non-linear inversion to derive high-resolution three-dimensional compressional and shear velocity structures at the Coso Geothermal Area in eastern California. Block size for the inversion is 0.2 km horizontally and 0.5 km vertically and inversions are investigated in the upper 5 km of the geothermal area.

19

Effect of temperature on wave velocities in sands and sandstones with heavy hydrocarbons  

SciTech Connect

A laboratory investigation was made of the effects of temperature on wave velocities in sandstones and unconsolidated sand saturated with heavy hydrocarbons. The large decreases of the compressional and shear velocities in such sandstones and sand with increasing temperature suggest that seismic methods may be very useful in detecting heat fronts in heavy hydrocarbon reservoirs undergoing steamflooding or in-situ combustion.

Wang, Z.; Nur, A.

1988-02-01T23:59:59.000Z

20

Electromagnetic plane waves with negative phase velocity in charged black strings  

SciTech Connect

We investigate the propagation regions of electromagnetic plane waves with negative phase velocity in the ergosphere of static charged black strings. For such a propagation, some conditions for negative phase velocity are established that depend on the metric components and the choice of the octant. We conclude that these conditions remain unaffected by the negative values of the cosmological constant.

Sharif, M., E-mail: msharif.math@pu.edu.pk; Manzoor, R., E-mail: rubabmanzoor9@yahoo.com [University of the Punjab, Department of Mathematics (Pakistan)

2013-02-15T23:59:59.000Z

Note: This page contains sample records for the topic "velocity wave probe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Effect of wave boundary layer on sea-to-air dimethylsulfide transfer velocity during typhoon passage  

E-Print Network (OSTI)

: Dimethylsulfide; Sea-to-air gas transfer velocity; Wave boundary layer; Tropical cyclone; Drag coefficient in order to accurately calculate aerosol radiative forcing. The sea-to-air DMS flux depends on airside coefficient CD and roughness length z0 has been investigated over small areas of the sea or in wave tanks

Chu, Peter C.

22

On the Group-Velocity Property for Wave-Activity Conservation Laws  

Science Conference Proceedings (OSTI)

The density and the flux of wave-activity conservation laws are generally required to satisfy the group-velocity property: under the WKB approximation (i.e., for nearly monochromatic small-amplitude waves in a slowly varying medium), the flux ...

J. Vanneste; T. G. Shepherd

1998-03-01T23:59:59.000Z

23

Group velocity of extraordinary waves in superdense magnetized quantum plasma with spin-1/2 effects  

Science Conference Proceedings (OSTI)

Based on the one component plasma model, a new dispersion relation and group velocity of elliptically polarized extraordinary electromagnetic waves in a superdense quantum magnetoplasma are derived. The group velocity of the extraordinary wave is modified due to the quantum forces and magnetization effects within a certain range of wave numbers. It means that the quantum spin-1/2 effects can reduce the transport of energy in such quantum plasma systems. Our work should be of relevance for the dense astrophysical environments and the condensed matter physics.

Li Chunhua; Ren Haijun; Yang Weihong [Department of Modern Physics, University of Science and Technology of China, 230026 Hefei (China); Wu Zhengwei [Department of Modern Physics, University of Science and Technology of China, 230026 Hefei (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong)

2012-12-15T23:59:59.000Z

24

Shear wave velocities from noise correlation at local scale  

Science Conference Proceedings (OSTI)

Cross correlations of ambient seismic noise recordings have been studied to infer shear seismic velocities with depth. Experiments have been done in the crowded and noisy historical centre of Napoli over inter-station distances from 50 m to about 400 m, whereas active seismic spreadings are prohibitive, even for just one receiver. Group velocity dispersion curves have been extracted with FTAN method from the noise cross correlations and then the non linear inversion of them has resulted in Vs profiles with depth. The information of near by stratigraphies and the range of Vs variability for samples of Neapolitan soils and rocks confirms the validity of results obtained with our expeditious procedure. Moreover, the good comparison of noise H/V frequency of the first main peak with 1D and 2D spectral amplifications encourages to continue experiments of noise cross-correlation. If confirmed in other geological settings, the proposed approach could reveal a low cost methodology to obtain reliable and detailed Vs velocity profiles.

De Nisco, G.; Nunziata, C. [Dipartimento di Scienze della Terra, Univ. Napoli Federico II (Italy); Vaccari, F. [Dipartimento di Scienze della Terra, Univ. Trieste (Italy); Panza, G. F. [Dipartimento di Scienze della Terra, Univ. Trieste (Italy); The Abdus Salam International Center for Theoretical Physics, ESP-SAND Group, Trieste (Italy)

2008-07-08T23:59:59.000Z

25

Velocity  

Science Conference Proceedings (OSTI)

... Delta t ffl \\Delta t = 1ns. Pulse-Dri ven Wall Motion ( ff = ... varies, can increase (!), eventually decays tozero. Pulse-Dri ven Domain Wall Velocity ( ff = ...

2004-01-16T23:59:59.000Z

26

Electromagnetic wave propagation with negative phase velocity in regular black holes  

SciTech Connect

We discuss the propagation of electromagnetic plane waves with negative phase velocity in regular black holes. For this purpose, we consider the Bardeen model as a nonlinear magnetic monopole and the Bardeen model coupled to nonlinear electrodynamics with a cosmological constant. It turns out that the region outside the event horizon of each regular black hole does not support negative phase velocity propagation, while its possibility in the region inside the event horizon is discussed.

Sharif, M., E-mail: msharif.math@pu.edu.pk; Manzoor, R., E-mail: rubabmanzoor9@yahoo.com [University of the Punjab, Department of Mathematics (Pakistan)

2012-12-15T23:59:59.000Z

27

Effect of temperature on wave velocities in sands and sandstones with heavy hydrocarbons  

SciTech Connect

A laboratory investigation was made of the effects of temperature on wave velocities in well cemented Massillon and Boise sandstones and unconsolidated Ottawa sand saturated with heavy hydrocarbons, as well as the dependence of compressional velocities in the hydrocarbons themselves as a function of temperature. The hydrocarbons selected as pore saturants were a commercial paraffin wax, 1-Eicosene, natural heavy crude, and natural tar. The experimental results show that the compressional wave velocities in the hydrocarbons decrease markedly with increasing temperature. In contrast wave velocities in the Massillon and Boise sandstones and unconsolidated Ottawa sand saturated with air or water decrease only little with increasing temperatures. The main reason for the large decreases in rocks with hydrocarbons is the melting of solid hydrocarbons, and high pore pressure. Thermal expansion of the saturants, and possibly thermal cracking of the heavy fractions and vaporization of the light fractions of the hydrocarbons may also contribute. The large decreases of the compressional and shear wave velocities in the hydrocarbon-saturated rocks and sands with temperature, suggest that seismic measurements such as used in seismology or borehole tomography may be very useful in detecting steam fronts in heavy hydrocarbon reservoirs undergoing steam flooding.

Wang, Z.; Nur, A.M.

1986-01-01T23:59:59.000Z

28

Nonlinear pulse propagation and phase velocity of laser-driven plasma waves  

Science Conference Proceedings (OSTI)

Laser evolution and plasma wave excitation by a relativistically-intense short-pulse laser in underdense plasma are investigated in the broad pulse limit, including the effects of pulse steepening, frequency red-shifting, and energy depletion. The nonlinear plasma wave phase velocity is shown to be significantly lower than the laser group velocity and further decreases as the pulse propagates owing to laser evolution. This lowers the thresholds for trapping and wavebreaking, and reduces the energy gain and efficiency of laser-plasma accelerators that use a uniform plasma profile.

Schroeder, Carl B.; Benedetti, Carlo; Esarey, Eric; Leemans, Wim

2011-03-25T23:59:59.000Z

29

On Energy Flux and Group Velocity of Waves in Baroclinic Flows  

Science Conference Proceedings (OSTI)

A modified energy flux is defined by adding a nondivergent term that involves ? to the traditional energy flux. The resultant flux, when normalized by the total eddy energy, is exactly equal to the group velocity of Rossby waves on a ? plane with ...

Edmund K. M. Chang; Isidoro Orlanski

1994-12-01T23:59:59.000Z

30

Increase of shear wave velocity before the 1998 eruption of Merapi volcano (Indonesia)  

E-Print Network (OSTI)

Increase of shear wave velocity before the 1998 eruption of Merapi volcano (Indonesia) U. Wegler,1 of the edifice of Merapi volcano (Java, Indonesia) before its eruption in 1998 by analyzing multiply scattered eruption of Merapi volcano (Indonesia), Geophys. Res. Lett., 33, L09303, doi:10.1029/2006GL025928. 1

Snieder, Roel

31

Probing Primordial and Pre-Galactic Lithium with High Velocity Clouds  

E-Print Network (OSTI)

The pre-Galactic abundance of lithium offers a unique window into non-thermal cosmological processes. The primordial Li abundance is guaranteed to be present and probes big bang nucleosynthesis (BBN), while an additional Li component is likely to have been produced by cosmic rays accelerated in large scale structure formation. Pre-Galactic Li currently can only be observed in low metallicity Galactic halo stars, but abundance measurements are plagued with systematic uncertainties due to modeling of stellar atmospheres and convection. We propose a new site for measuring pre-Galactic Li: low-metallicity, high-velocity clouds (HVCs) which are likely to be extragalactic gas accreted onto the Milky Way, and which already have been found to have deuterium abundances consistent with primordial. A Li observation in such an HVC would provide the first extragalactic Li measurement, and could shed new light on the apparent discrepancy between BBN predictions and halo star Li abundance determinations. Furthermore, HVC Li could at the same time test for the presence of non-primordial Li due to cosmic rays. The observability of elemental and isotopic Li abundances is discussed, and candidate sites identified.

Tijana Prodanovic; Brian D. Fields

2004-12-09T23:59:59.000Z

32

Velocity and Timing of Multiple Spherically Converging Shock Waves in Liquid Deuterium  

Science Conference Proceedings (OSTI)

The fuel entropy and required drive energy for an inertial confinement fusion implosion are set by a sequence of shocks that must be precisely timed to achieve ignition. This Letter reports measurements of multiple spherical shock waves in liquid deuterium that facilitate timing inertial confinement fusion shocks to the required precision. These experiments produced the highest shock velocity observed in liquid deuterium (U{sub s}=135 km/s at {approx}2500 GPa) and also the first observation of convergence effects on the shock velocity. Simulations model the shock-timing results well when a nonlocal transport model is used in the coronal plasma.

Boehly, T. R.; Goncharov, V. N.; Seka, W.; Hu, S. X.; Marozas, J. A. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Barrios, M. A.; Celliers, P. M.; Hicks, D. G.; Collins, G. W. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Meyerhofer, D. D. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Departments of Mechanical Engineering and Physics, University of Rochester, Rochester, New York 14623 (United States)

2011-05-13T23:59:59.000Z

33

EPRI (2004, 2006) Ground-Motion Model (GMM) Review Project: Shear Wave Velocity Measurements at Seismic Recording Stations  

Science Conference Proceedings (OSTI)

This report presents the results of site characterization studies for the EPRI (2004, 2006) Ground-Motion Model Review Project. The primary purpose of this investigation was to develop S-wave velocity (VS) profiles to a depth of 30 m, or more, and to estimate the average shear wave velocity of the upper 30 m (VS30) at thirty three (33) seismic instrument sites located in the Central and Eastern United States. Results are presented in individual seismic recording station site ...

2013-04-15T23:59:59.000Z

34

Optical pin apparatus for measuring the arrival time and velocity of shock waves and particles  

DOE Patents (OSTI)

An apparatus for the detection of the arrival and for the determination of the velocity of disturbances such as shock-wave fronts and/or projectiles. Optical pins using fluid-filled microballoons as the light source and an optical fiber as a link to a photodetector have been used to investigate shock-waves and projectiles. A microballoon filled with a noble gas is affixed to one end of a fiber-optic cable, and the other end of the cable is attached to a high-speed streak camera. As the shock-front or projectile compresses the microballoon, the gas inside is heated and compressed producing a bright flash of light. The flash of light is transmitted via the optic cable to the streak camera where it is recorded. One image-converter streak camera is capable of recording information from more than 100 microballoon-cable combinations simultaneously.

Benjamin, Robert F. (315 Rover Blvd., Los Alamos, NM 87544)

1987-01-01T23:59:59.000Z

35

Optical pin apparatus for measuring the arrival time and velocity of shock waves and particles  

DOE Patents (OSTI)

An apparatus for the detection of the arrival and for the determination of the velocity of disturbances such as shock-wave fronts and/or projectiles. Optical pins using fluid-filled microballoons as the light source and an optical fiber as a link to a photodetector have been used to investigate shock-waves and projectiles. A microballoon filled with a noble gas is affixed to one end of a fiber-optic cable, and the other end of the cable is attached to a high-speed streak camera. As the shock-front or projectile compresses the microballoon, the gas inside is heated and compressed producing a bright flash of light. The flash of light is transmitted via the optic cable to the streak camera where it is recorded. One image-converter streak camera is capable of recording information from more than 100 microballoon-cable combinations simultaneously.

Benjamin, R.F.

1983-10-18T23:59:59.000Z

36

Optical pin apparatus for measuring the arrival time and velocity of shock waves and particles  

DOE Patents (OSTI)

An apparatus is disclosed for the detection of the arrival and for the determination of the velocity of disturbances such as shock-wave fronts and/or projectiles. Optical pins using fluid-filled microballoons as the light source and an optical fiber as a link to a photodetector have been used to investigate shock-waves and projectiles. A microballoon filled with a noble gas is affixed to one end of a fiber-optic cable, and the other end of the cable is attached to a high-speed streak camera. As the shock-front or projectile compresses the microballoon, the gas inside is heated and compressed producing a bright flash of light. The flash of light is transmitted via the optic cable to the streak camera where it is recorded. One image-converter streak camera is capable of recording information from more than 100 microballoon-cable combinations simultaneously. 3 figs.

Benjamin, R.F.

1987-03-10T23:59:59.000Z

37

High-resolution seismic tomography of compressional wave velocity structure at Newberry Volcano, Oregon Cascade Range  

SciTech Connect

Compressional wave velocity structure is determined for the upper crust beneath Newberry Volcano, central Oregon, using a high-resolution active-source seismic-tomography method. Newberry Volcano is a bimodal shield volcano east of the axis of the Cascade Range. It is associated both with the Cascade Range and with northwest migrating silicic volcanism in southeast Oregon. High-frequency (approx.7 Hz) crustal phases, nominally Pg and a midcrustal reflected phase, travel upward through a target volume beneath Newberry Volcano to a dense array of 120 seismographs. This arrangement is limited by station spacing to 1- to 2-km resolution in the upper 5 to 6 km of the crust beneath the volcano's summit caldera. The experiment tests the hypothesis that Cascade Range volcanoes are underlain only by small magma chambers. A small low-velocity anomaly delineated abosut 3 km below the summit caldera supports this hypothesis for Newberry Volcano and is interpreted as a possible magma chamber of a few to a few tens of km/sup 3/ in volume. A ring-shaped high-velocity anomaly nearer the surface coincides with the inner mapped ring fractures of the caldera. It also coincides with a circular gravity high, and we interpret it as largely subsolidus silicic cone sheets. The presence of this anomaly and of silicic vents along the ring fractures suggests that the fractures are a likely eruption path between the small magma chamber and the surface.

Achauer, U.; Evans, J.R.; Stauber, D.A.

1988-09-10T23:59:59.000Z

38

Probing High-Velocity Transient-Field Strength Using Heavy-ions Traversing Fe and Gd  

SciTech Connect

The transient field strength for {sup 76}Ge ions, passing through iron and gadolinium layers at velocities approxZv{sub 0}, has been measured. Although a sizeable value has been obtained for Gd, a vanishing strength has been observed in Fe.

Fiori, E.; Georgiev, G.; Cabaret, S.; Lozeva, R. [CSNSM, CNRS/IN2P3, Universite Paris-Sud 11, UMR8609, F-91405 ORSAY-Campus (France); Stuchbery, A. E. [Department of Nuclear Physics, Australian National University, Canberra (Australia); Jungclaus, A.; Modamio, V.; Walker, J. [Instituto de Estructura de la Materia, CSIC, Madrid (Spain); Balabanski, D. L. [INRNE-BAS, Sofia (Bulgaria); Blazhev, A. [IKP, Cologne (Germany); Clement, E.; Grevy, S.; Stodel, C.; Thomas, J. C. [GANIL, Caen (France); Danchev, M. [University of Sofia (Bulgaria); Daugas, J. M. [CEA, DAM, DIF, 91297 Arpajon cedex (France); Hass, M.; Kumar, V. [The Weizmann Institute, Rehovot (Israel); Leske, J.; Pietralla, N. [TU Darmstadt, Darmstadt (Germany)

2009-08-26T23:59:59.000Z

39

Fiber optic sensor for detecting damage location and shock wave velocity  

DOE Patents (OSTI)

This invention is comprised of a shock velocity and damage location sensor providing a means of measuring shock speed and damage location. The sensor consists of a long series of time-of-arrival `points` constructed with fiber optics. The fiber optic sensor apparatus measures shock velocity as the fiber sensor is progressively crushed as a shock wave proceeds in a direction along the fiber. The light received by a receiving means changes as time-of-arrival points are destroyed as the sensor is disturbed by the shock. The sensor may comprise a transmitting fiber bent into a series of loops and fused to a receiving fiber at various places, time-of-arrival points, along the receiving fibers length. At the `points` of contact, where a portion of the light leaves the transmitting fiber and enters the receiving fiber, the loops would be required to allow the light to travel backwards through the receiving fiber toward a receiving means. The sensor may also comprise a single optical fiber wherein the time-of-arrival points are comprised of reflection planes distributed along the fibers length. In this configuration, as the shock front proceeds along the fiber it destroys one reflector after another. The output received by a receiving means from this sensor may be a series of downward steps produced as the shock wave destroys one time-of-arrival point after another, or a nonsequential pattern of steps in the event time-of-arrival points are destroyed at any point along the sensor.

Weiss, J.D.

1993-12-31T23:59:59.000Z

40

MEASUREMENT OF COMPRESSIONAL-WAVE SEISMIC VELOCITIES IN 29 WELLS AT THE HANFORD SITE  

Science Conference Proceedings (OSTI)

Check shot seismic velocity surveys were collected in 100 B/C, 200 East, 200-PO-1 Operational Unit (OU), and the Gable Gap areas in order to provide time-depth correlation information to aid the interpretation of existing seismic reflection data acquired at the Hanford Site (Figure 1). This report details results from 5 wells surveyed in fiscal year (FY) 2008, 7 wells in FY 2009, and 17 wells in FY 2010 and provides summary compressional-wave seismic velocity information to help guide future seismic survey design as well as improve current interpretations of the seismic data (SSC 1979/1980; SGW-39675; SGW-43746). Augmenting the check shot database are four surveys acquired in 2007 in support of the Bechtel National, Inc. Waste Treatment Plant construction design (PNNL-16559, PNNL-16652), and check shot surveys in three wells to support seismic testing in the 200 West Area (Waddell et al., 1999). Additional sonic logging was conducted during the late 1970s and early 1980s as part of the Basalt Waste Isolation Program (BWIP) (SSC 1979/1980) and check shot/sonic surveys as part of the safety report for the Skagit/Hanford Nuclear project (RDH/10-AMCP-0164). Check shot surveys are used to obtain an in situ measure of compressional-wave seismic velocity for sediment and rock in the vicinity of the well point, and provide the seismic-wave travel time to geologic horizons of interest. The check shot method deploys a downhole seismic receiver (geophone) to record the arrival of seismic waves generated by a source at the ground surface. The travel time of the first arriving seismic-wave is determined and used to create a time-depth function to correlate encountered geologic intervals with the seismic data. This critical tie with the underlying geology improves the interpretation of seismic reflection profile information. Fieldwork for this investigation was conducted by in house staff during the weeks of September 22, 2008 for 5 wells in the 200 East Area (Figure 2); June 1, 2009 for 7 wells in the 200-PO-1 OU and Gable Gap regions (see Figure 3 and Figure 4); and March 22, 2010 and April 19, 2010 for 17 wells in the 200 East, The initial scope of survey work was planned for Wells 299-EI8-1, 699-2-E14, 699-12-18, 699-16-51, 699-42-30, 699-53-55B, 699-54-18D, and 699-84-34B. Well 299-E18-1 could not be entered due to bent casing (prevented removal of the pump), wells 699-12-18 and 699-42-30 could not be safely reached by the logging truck, Well 699-16-51 was decommissioned prior to survey start, Well 699-53-55B did not have its pump pulled, and Wells 699-2-EI4, 699-54-18D, and 699-84-34B are artesian and capped with an igloo structure. Table 1 provides a list of wells that were surveyed and Figure 1 through Figure 5 show the well locations relative to the Hanford Site.

PETERSON SW

2010-10-08T23:59:59.000Z

Note: This page contains sample records for the topic "velocity wave probe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Correlations of whitecap coverage and gas transfer velocity with microwave brightness temperature for plunging and spilling breaking waves  

DOE Green Energy (OSTI)

Bubbles and bubble plumes generated by wind-induced breaking waves significantly enhance the gas exchange across the interface between the ocean and atmosphere under high-wind conditions. Whitcaps, or active spilling wave crests, are the sea-surface manifestation of the bubbles and bubble plumes in the subsurface mixed layer, and the fractional area of the sea surface covered by which has been proposed to correlate linearly with the air-sea gas transfer velocity. The presence of whitecaps substantially increases the microwave brightness temperature of the sea surface. It could be possible to estimate the whitecap coverage from the sea-surface microwave brightness temperature would also be very helpful in developing a remote-sensing model for predicting air-sea gas transfer velocities from microwave brightness temperatures. As a part of an air-water gas exchange experiment conducted in an outdoor surf pool, measurements were made that were designed to investigate the correlation between whitecap coverage and microwave brightness temperature. A mechanical wave maker was located at the deep end of the pool and the generated waves propagate and break towards the shallow end of the pool. Two wave patterns characteristic of plunging and spilling breaking waves at four wave heights from 0.3 m to 1.2 m were produced.

Wang, Qin; Monahan, E.C. [Connecticut Univ., Groton, CT (United States). Marine Sciences Inst.; Asher, W.E. [Battelle/Marine Sciences Lab., Sequim, WA (United States); Smith, P.M. [Naval Research Lab. Detachment, Stennis Space Center, MS (United States)

1995-07-01T23:59:59.000Z

42

Derivation of site-specific relationships between hydraulic parameters and p-wave velocities based on hydraulic and seismic tomography  

SciTech Connect

In this study, hydraulic and seismic tomographic measurements were used to derive a site-specific relationship between the geophysical parameter p-wave velocity and the hydraulic parameters, diffusivity and specific storage. Our field study includes diffusivity tomograms derived from hydraulic travel time tomography, specific storage tomograms, derived from hydraulic attenuation tomography, and p-wave velocity tomograms, derived from seismic tomography. The tomographic inversion was performed in all three cases with the SIRT (Simultaneous Iterative Reconstruction Technique) algorithm, using a ray tracing technique with curved trajectories. The experimental set-up was designed such that the p-wave velocity tomogram overlaps the hydraulic tomograms by half. The experiments were performed at a wellcharacterized sand and gravel aquifer, located in the Leine River valley near Göttingen, Germany. Access to the shallow subsurface was provided by direct-push technology. The high spatial resolution of hydraulic and seismic tomography was exploited to derive representative site-specific relationships between the hydraulic and geophysical parameters, based on the area where geophysical and hydraulic tests were performed. The transformation of the p-wave velocities into hydraulic properties was undertaken using a k-means cluster analysis. Results demonstrate that the combination of hydraulic and geophysical tomographic data is a promising approach to improve hydrogeophysical site characterization.

Brauchler, R.; Doetsch, J.; Dietrich, P.; Sauter, M.

2012-01-10T23:59:59.000Z

43

Ultrasonic probe deployment device for increased wave transmission and rapid area scan inspections  

DOE Patents (OSTI)

An ultrasonic probe deployment device in which an ultrasound-transmitting liquid forms the portion of the ultrasonic wave path in contact with the surface being inspected (i.e., the inspection surface). A seal constrains flow of the liquid, for example preventing the liquid from surging out and flooding the inspection surface. The seal is not rigid and conforms to variations in the shape and unevenness of the inspection surface, thus forming a seal (although possibly a leaky seal) around the liquid. The probe preferably is held in place to produce optimum ultrasonic focus on the area of interest. Use of encoders can facilitate the production of C-scan area maps of the material being inspected.

DiMambro, Joseph; Roach, Dennis P; Rackow, Kirk A; Nelson, Ciji L; Dasch, Cameron J; Moore, David G

2013-02-12T23:59:59.000Z

44

Ultrasonic probe deployment device for increased wave transmission and rapid area scan inspections  

DOE Patents (OSTI)

An ultrasonic probe deployment device in which an ultrasound-transmitting liquid forms the portion of the ultrasonic wave path in contact with the surface being inspected (i.e., the inspection surface). A seal constrains flow of the liquid, for example preventing the liquid from surging out and flooding the inspection surface. The seal is not rigid and conforms to variations in the shape and unevenness of the inspection surface, thus forming a seal (although possibly a leaky seal) around the liquid. The probe preferably is held in place to produce optimum ultrasonic focus on the area of interest. Use of encoders can facilitate the production of C-scan area maps of the material being inspected.

DiMambro, Joseph (Placitas, NM); Roach, Dennis P. (Albuquerque, NM); Rackow, Kirk A. (Albuquerque, NM); Nelson, Ciji L. (Albuquerque, NM); Dasch, Cameron J. (Boomfield Hills, MI); Moore, David G. (Albuquerque, NM)

2012-01-03T23:59:59.000Z

45

Estimating Wind Velocities in Mountain Lee Waves Using Sailplane Flight Data  

Science Conference Proceedings (OSTI)

Mountain lee waves are a form of atmospheric gravity wave that is generated by flow over mountain topography. Mountain lee waves are of considerable interest, because they can produce drag that affects the general circulation, windstorms, and ...

R. P. Millane; G. D. Stirling; R. G. Brown; N. Zhang; V. L. Lo; E. Enevoldson; J. E. Murray

2010-01-01T23:59:59.000Z

46

Measurements of plasma temperature in indirect drive targets from the shock wave velocity in aluminum in the Iskra-5 facility  

Science Conference Proceedings (OSTI)

Results are presented from the development of a method for measuring plasma temperature in indirect (X-ray) drive targets by recording the shock wave velocity in the Iskra-5 facility. The samples under investigation were irradiated by X-rays in a converter box, and the shock wave velocity was determined from the time at which the wave reached the back surface of the sample and the surface began to emit visible radiation. This emission, in turn, was detected by a streak camera. The results of experiments on the interaction of X radiation with a hot dense plasma, as well as the accompanying gas-dynamic processes in aluminum samples, are analyzed both theoretically and numerically. In experiments with Al and Pb samples, the shock wave velocity was measured to vary in the range U = 8-35 km/s, and the range of variation of the temperature of the box walls was measured to be T{sub e} = 140-170 eV.

Vatulin, V. V.; Zhidkov, N. V.; Kravchenko, A. G.; Kuznetsov, P. G.; Litvin, D. N.; Mis'ko, V. V.; Pinegin, A. V.; Pleteneva, N. P.; Senik, A. V.; Starodubtsev, K. V.; Tachaev, G. V. [Russian Federal Nuclear Center, All-Russia Research Institute of Experimental Physics (Russian Federation)

2010-05-15T23:59:59.000Z

47

Shear Wave Velocity Structure of Southern African Crust: Evidence for Compositional Heterogeneity within Archaean and Proterozoic Terrains  

Science Conference Proceedings (OSTI)

Crustal structure in southern Africa has been investigated by jointly inverting receiver functions and Rayleigh wave group velocities for 89 broadband seismic stations spanning much of the Precambrian shield of southern Africa. 1-D shear wave velocity profiles obtained from the inversion yield Moho depths that are similar to those reported in previous studies and show considerable variability in the shear wave velocity structure of the lower part of the crust between some terrains. For many of the Archaean and Proterozoic terrains in the shield, S velocities reach 4.0 km/s or higher over a substantial part of the lower crust. However, for most of the Kimberley terrain and adjacent parts of the Kheis Province and Witwatersrand terrain, as well as for the western part of the Tokwe terrain, mean shear wave velocities of {le} 3.9 km/s characterize the lower part of the crust along with slightly ({approx}5 km) thinner crust. These findings indicate that the lower crust across much of the shield has a predominantly mafic composition, except for the southwest portion of the Kaapvaal Craton and western portion of the Zimbabwe Craton, where the lower crust is intermediate-to-felsic in composition. The parts of the Kaapvaal Craton underlain by intermediate-to-felsic lower crust coincide with regions where Ventersdorp rocks have been preserved, and thus we suggest that the intermediate-to-felsic composition of the lower crust and the shallower Moho may have resulted from crustal melting during the Ventersdorp tectonomagmatic event at c. 2.7 Ga and concomitant crustal thinning caused by rifting.

Kgaswane, E M; Nyblade, A A; Julia, J; Dirks, P H H M; Durrheim, R J; Pasyanos, M E

2008-11-11T23:59:59.000Z

48

Crust and upper mantle P wave velocity structure beneath Valles caldera, New Mexico: Results from the Jemez teleseismic tomography experiment  

Science Conference Proceedings (OSTI)

New results are presented from the teleseismic component of the Jemez Tomography Experiment conducted across Valles caldera in northern New Mexico. We invert 4872 relative {ital P} wave arrival times recorded on 50 portable stations to determine velocity structure to depths of 40 km. The three principle features of our model for Valles caldera are: (1) near-surface low velocities of {minus}17{percent} beneath the Toledo embayment and the Valle Grande, (2) midcrustal low velocities of {minus}23{percent} in an ellipsoidal volume underneath the northwest quadrant of the caldera, and (3) a broad zone of low velocities ({minus}15{percent}) in the lower crust or upper mantle. Crust shallower than 20 km is generally fast to the northwest of the caldera and slow to the southeast. Near-surface low velocities are interpreted as thick deposits of Bandelier tuff and postcaldera volcaniclastic rocks. Lateral variation in the thickness of these deposits supports increased caldera collapse to the southeast, beneath the Valle Grande. We interpret the midcrustal low-velocity zone to contain a minimum melt fraction of 10{percent}. While we cannot rule out the possibility that this zone is the remnant 1.2 Ma Bandelier magma chamber, the eruption history and geochemistry of the volcanic rocks erupted in Valles caldera following the Bandelier tuff make it more likely that magma results from a new pulse of intrusion, indicating that melt flux into the upper crust beneath Valles caldera continues. The low-velocity zone near the crust-mantle boundary is consistent with either partial melt in the lower crust or mafic rocks without partial melt in the upper mantle. In either case, this low-velocity anomaly indicates that underplating by mantle-derived melts has occurred. {copyright} 1998 American Geophysical Union

Steck, Lee K.; Fehler, Michael C.; Roberts, Peter M.; Baldridge, W. Scott; Stafford, Darrik G. [Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico (United States); Lutter, William J.; Sessions, Robert [Department of Geology and Geophysics, University of Wisconsin-Madison (United States)

1998-10-01T23:59:59.000Z

49

PROBING THE HALO FROM THE SOLAR VICINITY TO THE OUTER GALAXY: CONNECTING STARS IN LOCAL VELOCITY STRUCTURES TO LARGE-SCALE CLOUDS  

Science Conference Proceedings (OSTI)

This paper presents the first potential connections made between two local features in velocity space found in a survey of M giant stars and stellar spatial inhomogeneities on global scales. Comparison to cosmological, chemodynamical stellar halo models confirms that the M giant population is particularly sensitive to rare, recent and massive accretion events. These events can give rise to locally observed velocity sequences-each made from a small fraction of debris from a massive progenitor, passing at high velocity through the survey volume, near the pericenter of the eccentric orbit of the system. The majority of the debris is found in much larger structures, whose morphologies are more cloud-like than stream-like and which lie at the orbital apocenters. Adopting this interpretation, the full-space motions represented by the observed M giant velocity features are derived under the assumption that the members within each sequence share a common space velocity. Orbit integrations are then used to trace the past and future trajectories of these stars across the sky revealing plausible associations with large, previously discovered, cloud-like structures. The connections made between nearby velocity structures and these distant clouds represent preliminary steps toward developing coherent maps of such giant debris systems. These maps promise to provide new insights into the origin of debris clouds, new probes of Galactic history and structure, and new constraints on the high-velocity tails of the local dark matter distribution that are essential for interpreting direct dark matter particle detection experiments.

Johnston, Kathryn V.; Sheffield, Allyson A. [Department of Astronomy, Columbia University, New York, NY 10027 (United States); Majewski, Steven R. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-0818 (United States); Sharma, Sanjib [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Rocha-Pinto, Helio J., E-mail: kvj@astro.columbia.edu [Observatorio do Valongo, Universidade Federal do Rio de Janeiro (Brazil)

2012-11-20T23:59:59.000Z

50

Rossby Wave Frequencies and Group Velocities for Finite Element and Finite Difference Approximations to the Vorticity-Divergence and the Primitive Forms of the Shallow Water Equations  

Science Conference Proceedings (OSTI)

In this paper Rossby wave frequencies and group velocities are analyzed for various finite element and finite difference approximations to the vorticity-divergence form of the shallow water equations. Also included are finite difference solutions ...

Beny Neta; R. T. Williams

1989-07-01T23:59:59.000Z

51

A Systematic Search for Trapped Equatorial Waves in the GATE Velocity Data  

Science Conference Proceedings (OSTI)

Moored current meter data taken over a 60-day period during GATE (GARP Atlantic Tropical Experiment) near the equator at 28°W, have been systematically searched for vertically propagating equatorially trapped waves. Three independent tests ...

A. M. Horigan; R. H. Weisberg

1981-04-01T23:59:59.000Z

52

One dimensional P wave velocity structure of the crust beneath west Java and accurate hypocentre locations from local earthquake inversion  

SciTech Connect

A one-dimensional (1-D) velocity model and station corrections for the West Java zone were computed by inverting P-wave arrival times recorded on a local seismic network of 14 stations. A total of 61 local events with a minimum of 6 P-phases, rms 0.56 s and a maximum gap of 299 Degree-Sign were selected. Comparison with previous earthquake locations shows an improvement for the relocated earthquakes. Tests were carried out to verify the robustness of inversion results in order to corroborate the conclusions drawn out from our reasearch. The obtained minimum 1-D velocity model can be used to improve routine earthquake locations and represents a further step toward more detailed seismotectonic studies in this area of West Java.

Supardiyono; Santosa, Bagus Jaya [Physics Department, Faculty of Mathematics and Natural Sciences, State University of Surabaya, Surabaya (Indonesia) and Physics Department, Faculty of Mathematics and Natural Sciences, Sepuluh Nopember Institute of Technology, Surabaya (Indonesia); Physics Department, Faculty of Mathematics and Natural Sciences, Sepuluh Nopember Institute of Technology, Surabaya (Indonesia)

2012-06-20T23:59:59.000Z

53

Estimating fracture parameters from p-wave velocity profiles about a geothermal well  

DOE Green Energy (OSTI)

The feasibility of locating fracture zones and estimating their crack parameters was examined using an areal well shoot method centered on Utah State Geothermal Well 9-1, Beaver County, Utah. High-resolution travel time measurements were made between a borehole sensor and an array of shot stations distributed radially and azimuthally about the well. Directional velocity behavior in the vicinity of the well was investigated by comparing velocity logs derived from the travel time data. Three fracture zones were identified form the velocity data, corroborating fracture indicators seen in other geophysical logs conducted in Well 9-1. Crack densities and average crack aspect ratios for these fracture zones were estimated using a self-consistent velocity theory (O'Connell and Budiansy 1974). Probable trends of these fracture zones were established from a combination of the data from the more distant shot stations and the results of a gravity survey. The results of this study indicate that the areal well shoot is a potentially powerful tool for the reconnaisance of fracture-controlled fluid and gas reservoirs. Improvements in methodology and hardware could transform it into an operationally viable survey method.

Jenkinson, J.T.; Henyey, T.L.; Sammis, C.G.; Leary, P.C.; McRaney, J.K.

1981-12-01T23:59:59.000Z

54

Electrostatic drift-wave instability in a nonuniform quantum magnetoplasma with parallel velocity shear flows  

SciTech Connect

The propagation of high and low frequency (in comparison with the cyclotron frequency) electrostatic drift-waves is investigated in a nonuniform, dense magnetoplasma (composed of electrons and ions), in the presence of parallel shear flow, by employing the quantum magnetohydrodynamic (QMHD) model. Using QMHD model, a new set of equations is presented in order to investigate linear properties of electrostatic drift-waves with sheared plasma flows for dense plasmas. In this regard, dispersion relations for coupled electron-thermal and drift-ion acoustic modes are derived and several interesting limiting cases are discussed. For instance, it is found that sheared ion flow parallel to the external magnetic field can drive the quantum drift-ion acoustic wave unstable, etc. The present investigation may have relevance in dense astrophysical environments where quantum effects are significant.

Tariq, Sabeen; Mirza, Arshad M. [Department of Physics, Theoretical Plasma Physics Group, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Masood, W. [Theoretical Plasma Physics Division, PINSTECH, P.O. Box. Nilore, Islamabad 44000, Pakistan and National Center for Physics (NCP), Islamabad 45320 (Pakistan)

2010-10-15T23:59:59.000Z

55

Imaging earth's interior: Tomographic inversions for mantle P-wave velocity structure  

SciTech Connect

A formalism is developed for the tomographic inversion of seismic travel time residuals. The travel time equations are solved both simultaneously, for velocity model terms and corrections to the source locations, and progressively, for each set of terms in succession. The methods differ primarily in their treatment of source mislocation terms. Additionally, the system of equations is solved directly, neglecting source terms. The efficacy of the algorithms is explored with synthetic data as we perform simulations of the general procedure used to produce tomographic images of Earth's mantle from global earthquake data. The patterns of seismic heterogeneity in the mantle that would be returned reliably by a tomographic inversion are investigated. We construct synthetic data sets based on real ray sampling of the mantle by introducing spherical harmonic patterns of velocity heterogeneity and perform inversions of the synthetic data.

Pulliam, R.J.

1991-07-01T23:59:59.000Z

56

CARS is a four wave mixing process, combining three incident electric fields, pump, Stokes and probe, to produce a fourth, the anti-  

E-Print Network (OSTI)

CARS is a four wave mixing process, combining three incident electric fields, pump, Stokes diagram for the production of a CARS signal. The three incident waves pump, probe (both of frequency p) and Stokes (S) combine to produce an anti-Stokes signal, frequency as. Figure 2. Schematic of the CARS system

Greenaway, Alan

57

Probing strong-field gravity and black holes with gravitational waves  

E-Print Network (OSTI)

Gravitational wave observations will be excellent tools for making precise measurements of processes that occur in very strong- field regions of space time. Extreme mass

Hughes, Scott A.

58

Train of high-power femtosecond pulses: Probe wave in a gas of prepared atoms  

E-Print Network (OSTI)

We present a new method for generating a regular train of ultrashort optical pulses in a prepared two-level medium. The train develops from incident monochromatic probe radiation travelling in a medium of atoms, which are in a quantum mechanical superposition of dressed internal states. In the frame of used linear theory for the probe radiation, the energy of individual pulses is an exponentially growing function of atom density and of interaction cross section. Pulse repetition rate is determined by the generalized Rabi frequency and can be around 1 THz and greater. We also show that the terms, extra to the dipole approximation, endow the gas by a new property: non-saturating dependence of refractive index on the dressing monochromatic field intensity. Contribution of these nonsaturating terms can be compatible with the main dipole approximation in the wavelength region of about ten micrometers (the range of CO_2 laser) or larger.

Gevorg Muradyan; A. Zh. Muradyan

2009-03-15T23:59:59.000Z

59

Lee Wave Vertical Structure Monitoring Using Height–Time Analysis of VHF?ST Radar Vertical Velocity Data  

Science Conference Proceedings (OSTI)

The strong lee wave event of intensive observation period 3 (14–15 October 1990) of the Pyrenean experiment was studied using a single VHF stratospheric–tropospheric radar installed 35 km downstream from the Pyrenean chain axis. This instrument ...

Jean-Luc Caccia

1998-05-01T23:59:59.000Z

60

In-plane ultrasonic velocity measurement of longitudinal and shear waves in the machine direction with transducers in rotating wheels  

DOE Patents (OSTI)

An improved system for measuring the velocity of ultrasonic signals within the plane of moving web-like materials, such as paper, paperboard and the like. In addition to velocity measurements of ultrasonic signals in the plane of the web in the MD and CD, one embodiment of the system in accordance with the present invention is also adapted to provide on-line indication of the polar specific stiffness of the moving web. In another embodiment of the invention, the velocity of ultrasonic signals in the plane of the web are measured by way of a plurality of ultrasonic transducers carried by synchronously driven wheels or cylinders, thus eliminating undue transducer wear due to any speed differences between the transducers and the web. In order to provide relatively constant contact force between the transducers and the webs, the transducers are mounted in a sensor housings which include a spring for biasing the transducer radially outwardly. The sensor housings are adapted to be easily and conveniently mounted to the carrier to provide a relatively constant contact force between the transducers and the moving web.

Hall, Maclin S. (Marietta, GA); Jackson, Theodore G. (Atlanta, GA); Knerr, Christopher (Lawrenceville, GA)

1998-02-17T23:59:59.000Z

Note: This page contains sample records for the topic "velocity wave probe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

In-plane ultrasonic velocity measurement of longitudinal and shear waves in the machine direction with transducers in rotating wheels  

DOE Patents (OSTI)

An improved system for measuring the velocity of ultrasonic signals within the plane of moving web-like materials, such as paper, paperboard and the like. In addition to velocity measurements of ultrasonic signals in the plane of the web in the MD and CD, one embodiment of the system in accordance with the present invention is also adapted to provide on-line indication of the polar specific stiffness of the moving web. In another embodiment of the invention, the velocity of ultrasonic signals in the plane of the web are measured by way of a plurality of ultrasonic transducers carried by synchronously driven wheels or cylinders, thus eliminating undue transducer wear due to any speed differences between the transducers and the web. In order to provide relatively constant contact force between the transducers and the webs, the transducers are mounted in a sensor housings which include a spring for biasing the transducer radially outwardly. The sensor housings are adapted to be easily and conveniently mounted to the carrier to provide a relatively constant contact force between the transducers and the moving web. 37 figs.

Hall, M.S.; Jackson, T.G.; Knerr, C.

1998-02-17T23:59:59.000Z

62

Dust ion-acoustic shock waves in charge varying dusty plasmas with electrons having vortexlike velocity distribution  

Science Conference Proceedings (OSTI)

A weakly nonlinear analysis is carried out to investigate the properties of dust ion-acoustic shock waves in a charge varying dusty plasma with vortexlike electron distribution. We use the ionization model, hot ions with equilibrium streaming speed and a trapped electron charging current derived from the well-known orbit limited motion theory. A new modified Burger equation is derived. Besides nonlinear trapping, this equation involves two kinds of dissipation (the anomalous one inherent to nonadiabatic dust charge fluctuation and the one due to the particle loss and ionization). These two kinds of dissipation can act concurrently. The traveling wave solution has been acquired by employing the modified extended tanh-function method. The shocklike solution is numerically analyzed based on the typical numerical data from laboratory dusty plasma devices. It is found that ion temperature, trapped particles, and weak dissipations significantly modify the shock structures.

Alinejad, H. [Department of Physics, Faculty of Basic Science, Babol University of Technology, Babol 47148-71167 (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha, P.O. Box 55134-441, Maragha 55177-36698 (Iran, Islamic Republic of); Tribeche, M. [Plasma Physics Group (PPG), Theoretical Physics Laboratory (TPL), Faculty of Science-Physics, University of Bab-Ezzouar, USTHB, B.P. 32, El Alia, Algiers (Algeria)

2010-12-15T23:59:59.000Z

63

5-ft Wave Flume Facility | Open Energy Information  

Open Energy Info (EERE)

5-ft Wave Flume Facility 5-ft Wave Flume Facility Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility Type Flume Length(m) 63.4 Beam(m) 1.5 Depth(m) 1.5 Water Type Freshwater Cost(per day) Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.5 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 10.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Simulated Beach No Channel/Tunnel/Flume Channel/Tunnel/Flume Yes Recirculating No Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Automated data acquisition and control system Cameras None Available Sensors Flow, Pressure Range(psi), Turbulence, Velocity, Wave Probe

64

3-ft Wave Flume Facility | Open Energy Information  

Open Energy Info (EERE)

3-ft Wave Flume Facility 3-ft Wave Flume Facility Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility Type Flume Length(m) 45.1 Beam(m) 0.9 Depth(m) 0.9 Water Type Freshwater Cost(per day) Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.2 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 10.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Simulated Beach No Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Automated data acquisition and control system Cameras None Available Sensors Flow, Pressure Range(psi), Turbulence, Velocity, Wave Probe

65

Calculations of Nonlinear Wave-Packet Interferometry Signals in the Pump-Probe Limit as Tests for Vibrational Control over Electronic Excitation Transfer  

E-Print Network (OSTI)

The preceding paper describes a strategy for externally influencing the course of short-time electronic excitation transfer (EET) in molecular dimers and observing the process by nonlinear wave-packet interferometry (nl-WPI). Within a sample of isotropically oriented dimers having a specified internal geometry, a vibrational mode internal to the acceptor chromophore can be preferentially driven by electronically nonresonant impulsive stimulated Raman (or resonant infrared) excitation with a short polarized control pulse. A subsequent electronically resonant polarized pump then preferentially excites the donor, and EET ensues. Here we test both the control strategy and its spectroscopic investigation-with some sacrifice of amplitude-level detail-by calculating the pump-probe difference signal. That signal is the limiting case of the control-influenced nl-WPI signal in which the two pulses in the pump pulse-pair coincide, as do the two pulses in the probe pulse-pair. We present calculated pump-probe difference signals for (1) a model excitation-transfer complex in which two equal-energy monomers each support one moderately Franck-Condon active intramolecular vibration; (2) a simplified model of the covalent dimer dithia-anthracenophane, representing its EET dynamics following selective impulsive excitation of the weakly Franck-Condon active anthracene vibration at 385 cm-1; and (3) a model complex featuring moderate electronic-vibrational coupling in which the site energy of the acceptor chromophore is lower than that of the donor.

Jason D. Biggs; Jeffrey A. Cina

2009-10-12T23:59:59.000Z

66

Probing Nuclear Symmetry Energy and its Imprints on Properties of Nuclei, Nuclear Reactions, Neutron Stars and Gravitational Waves  

E-Print Network (OSTI)

Significant progress has been made in recent years in constraining nuclear symmetry energy at and below the saturation density of nuclear matter using data from both terrestrial nuclear experiments and astrophysical observations. However, many interesting questions remain to be studied especially at supra-saturation densities. In this lecture note, after a brief summary of the currently available constraints on nuclear symmetry energy near the saturation density we first discuss the relationship between the symmetry energy and the isopin and momentum dependence of the single-nucleon potential in isospin-asymmetric nuclear medium. We then discuss several open issues regarding effects of the tensor force induced neutron-proton short-range correlation (SRC) on nuclear symmetry energy. Finally, as an example of the impacts of nuclear symmetry energy on properties of neutron stars and gravitational waves, we illustrate effects of the high-density symmetry energy on the tidal polarizability of neutron stars in coal...

Li, Bao-An; Fattoyev, Farrukh J; Newton, William G; Xu, Chang

2012-01-01T23:59:59.000Z

67

Grading of lumber using stress waves  

E-Print Network (OSTI)

The goal of this research was to develop stress wave grading technology suitable for small lumber mills. Specific goals include: 1) develop an ultrasonic probe configuration to facilitate real-time grain angle and edge knot measurement, 2) determine the statistical correlation between localized stress wave indices and lumber tensile strength and 3) compare the ultrasonic technique with other nondestructive evaluation (NDE) measurements including static MOE, impact stress wave and transverse vibration. Two hundred pieces of 2 x 6 Southern Pine lumber were randomly sampled. Material properties and NDE measurements such as static MOE, impact stress wave and transverse vibration MOEs were collected for the lumber. Before proceeding with final ultrasonic testing, pilot studies were done to study the effect of the strength reducing factors, such as grain angle and edge knots, on ultrasonic wave velocity. Wave velocity decreased as grain angle increased, with more apparent loss taking place at lower angles. The presence of edge knots decreased the wave velocity as measured along the narrow edge of the lumber. Using the knowledge gained from the pilot studies an ultrasonic probe configuration was devised to detect gross grain angle and edge knots. The tests were carried on the lumber using the configuration. Statistical models from localized stress wave indices were developed to predict the tensile strength. The linear correlation between predicted and actual ultimate tensile strength was 0.724. Ultrasonic testing was a slightly better predictor of ultimate tensile strength than shortspan bending, impact stress wave and transverse vibration techniques which had linear correlations of 0.716, 0.696 and 0.716 respectively. Separately including impact stress wave and transverse vibration MOEs into the ultrasonic model resulted in improved linear correlations of 0.769 and 0.787, respectively. In summary, knowledge from this study will be useful in the continuing development of stress wave lumber grading technology. Even though the results were only slightly better than those with short span bending and transverse vibration techniques, the ultrasonic technique appears to be promising for grading of wood.

Bethi, Rajeshwar

1994-01-01T23:59:59.000Z

68

Wave Breaking Dissipation Observed with “SWIFT” Drifters  

Science Conference Proceedings (OSTI)

Energy dissipation rates during ocean wave breaking are estimated from high-resolution profiles of turbulent velocities collected within 1 m of the surface. The velocity profiles are obtained from a pulse-coherent acoustic Doppler sonar on a wave-...

Jim Thomson

2012-12-01T23:59:59.000Z

69

Temporal Velocity Variations beneath the Coso Geothermal Field...  

Open Energy Info (EERE)

events and determine the compressional and shear wave velocity as well as their ratio. In a first step, we apply traveltime tomography based on the observed microearthquake...

70

Influence of the inlet velocity profiles on the prediction of velocity distribution inside an electrostatic precipitator  

SciTech Connect

The influence of the velocity profile at the inlet boundary on the simulation of air velocity distribution inside an electrostatic precipitator is presented in this study. Measurements and simulations were performed in a duct and an electrostatic precipitator (ESP). A four-hole cobra probe was used for the measurement of velocity distribution. The flow simulation was performed by using the computational fluid dynamics (CFD) code FLUENT. Numerical calculations for the air flow were carried out by solving the Reynolds-averaged Navier-Stokes equations coupled with the realizable k-{epsilon} turbulence model equations. Simulations were performed with two different velocity profiles at the inlet boundary - one with a uniform (ideal) velocity profile and the other with a non-uniform (real) velocity profile to demonstrate the effect of velocity inlet boundary condition on the flow simulation results inside an ESP. The real velocity profile was obtained from the velocity measured at different points of the inlet boundary whereas the ideal velocity profile was obtained by calculating the mean value of the measured data. Simulation with the real velocity profile at the inlet boundary was found to predict better the velocity distribution inside the ESP suggesting that an experimentally measured velocity profile could be used as velocity inlet boundary condition for an accurate numerical simulation of the ESP. (author)

Haque, Shah M.E.; Deev, A.V.; Subaschandar, N. [Process Engineering and Light Metals (PELM) Centre, Faculty of Sciences, Engineering and Health, Central Queensland University, Gladstone, Queensland 4680 (Australia); Rasul, M.G.; Khan, M.M.K. [College of Engineering and Built Environment, Faculty of Sciences, Engineering and Health, Central Queensland University, Rockhampton, Queensland 4702 (Australia)

2009-01-15T23:59:59.000Z

71

Observation of wave-packet propagation in the ion cyclotron range of frequencies in a tokamak plasma  

DOE Green Energy (OSTI)

Experimental observation of wave-packet propagation in the ion cyclotron range of frequencies in a tokamak plasma is reported. Studies were carried out in the Caltech Research Tokamak (Phys. Fluids {bold 23}, 614 (1980)) in a pure hydrogen plasma and in a regime where fast-wave damping was sufficiently small to permit multiple toroidal transits of the wave packet. Waves were launched by exciting a small loop antenna with a short burst of radio-frequency current and were detected with shielded magnetic probes. Probe scans revealed a large increase in wave-packet amplitude at smaller minor radii, and the packet velocity was found to be independent of radial position. Measurement of the packet transit time yielded direct information about the wave group velocity. Packet velocity was investigated as a function of the fundamental excitation frequency, plasma density, and toroidal magnetic field. Results are compared with the predictions of a cold plasma model that includes a vacuum layer at the edge.

Greene, G.J. (Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (USA)); Gould, R.W. (California Institute of Technology, Pasadena, CA (USA))

1991-02-01T23:59:59.000Z

72

Topographic Waves Generated by a Transient Wind  

Science Conference Proceedings (OSTI)

The concept of linear mountain waves is generally equated with steady-state stationary waves. This essentially means that the absolute horizontal phase velocity of mountain waves is zero and that their momentum flux profile is independent of ...

François Lott; Hector Teitelbaum

1993-08-01T23:59:59.000Z

73

Spectral Wave–Turbulence Decomposition  

Science Conference Proceedings (OSTI)

A new method of wave–turbulence decomposition is introduced, for which the only instrument required is one high-frequency pointwise velocity sensor. This is a spectral method that assumes equilibrium turbulence and no wave–turbulence interaction. ...

Jeremy D. Bricker; Stephen G. Monismith

2007-08-01T23:59:59.000Z

74

In-Situ Continuous Detonation Velocity Measurements Using Fiber-optic Bragg Grating Sensors  

Science Conference Proceedings (OSTI)

In order to fully calibrate hydrocodes and dynamic chemistry burn models, initiation and detonation research requires continuous measurement of low order detonation velocities as the detonation runs up to full order detonation for a given density and initiation pressure pulse. A novel detector of detonation velocity is presented using a 125 micron diameter optical fiber with an integral chirped fiber Bragg grating as an intrinsic sensor. This fiber is embedded in the explosive under study and interrogated during detonation as the fiber Bragg grating scatters light back along the fiber to a photodiode, producing a return signal dependant on the convolution integral of the grating reflection bandpass, the ASE intensity profile and the photodetector response curve. Detonation velocity is measured as the decrease in reflected light exiting the fiber as the grating is consumed when the detonation reaction zone proceeds along the fiber sensor axis. This small fiber probe causes minimal perturbation to the detonation wave and can measure detonation velocities along path lengths tens of millimeters long. Experimental details of the associated equipment and preliminary data in the form of continuous detonation velocity records within nitromethane and PBX-9502 are presented.

Benterou, J; Udd, E; Wilkins, P; Roeske, F; Roos, E; Jackson, D

2007-07-25T23:59:59.000Z

75

Ultrasonic shear wave couplant  

DOE Patents (OSTI)

Ultrasonically testing of an article at high temperatures is accomplished by the use of a compact layer of a dry ceramic powder as a couplant in a method which involves providing an ultrasonic transducer as a probe capable of transmitting shear waves, coupling the probe to the article through a thin compact layer of a dry ceramic powder, propagating a shear wave from the probe through the ceramic powder and into the article to develop echo signals, and analyzing the echo signals to determine at least one physical characteristic of the article.

Kupperman, David S. (Oak Park, IL); Lanham, Ronald N. (Lockport, IL)

1985-01-01T23:59:59.000Z

76

Ultrasonic shear wave couplant  

DOE Patents (OSTI)

Ultrasonically testing of an article at high temperatures is accomplished by the use of a compact layer of a dry ceramic powder as a couplant in a method which involves providing an ultrasonic transducer as a probe capable of transmitting shear waves, coupling the probe to the article through a thin compact layer of a dry ceramic powder, propagating a shear wave from the probe through the ceramic powder and into the article to develop echo signals, and analyzing the echo signals to determine at least one physical characteristic of the article.

Kupperman, D.S.; Lanham, R.N.

1984-04-11T23:59:59.000Z

77

Wave Mechanics and the Fifth Dimension  

E-Print Network (OSTI)

Replacing 4D Minkowski space by 5D canonical space leads to a clearer derivation of the main features of wave mechanics, including the wave function and the velocity of de Broglie waves. Recent tests of wave-particle duality could be adapted to investigate whether de Broglie waves are basically 4D or 5D in nature.

Paul S. Wesson; James M. Overduin

2013-01-28T23:59:59.000Z

78

Probe threshold and probe trivially perfect graphs  

Science Conference Proceedings (OSTI)

An undirected graph G=(V,E) is a probeC graph if its vertex set can be partitioned into two sets, N (nonprobes) and P (probes) where N is independent and there exists E^'@?NxN such that G^'=(V,E@?E^') is a C graph. In this article we investigate probe ... Keywords: 2-SAT, Graph class, Probe graphs, Probe interval, Probe threshold, Probe trivially perfect

Daniel Bayer; Van Bang Le; H. N. de Ridder

2009-11-01T23:59:59.000Z

79

Gravitational wave generation from bubble collisions in first-order phase transitions: an analytic approach  

E-Print Network (OSTI)

Gravitational wave production from bubble collisions was calculated in the early nineties using numerical simulations. In this paper, we present an alternative analytic estimate, relying on a different treatment of stochasticity. In our approach, we provide a model for the bubble velocity power spectrum, suitable for both detonations and deflagrations. From this, we derive the anisotropic stress and analytically solve the gravitational wave equation. We provide analytical formulae for the peak frequency and the shape of the spectrum which we compare with numerical estimates. In contrast to the previous analysis, we do not work in the envelope approximation. This paper focuses on a particular source of gravitational waves from phase transitions. In a companion article, we will add together the different sources of gravitational wave signals from phase transitions: bubble collisions, turbulence and magnetic fields and discuss the prospects for probing the electroweak phase transition at LISA.

Caprini, Chiara; Servant, Géraldine

2008-01-01T23:59:59.000Z

80

Gravitational wave generation from bubble collisions in first-order phase transitions: an analytic approach  

E-Print Network (OSTI)

Gravitational wave production from bubble collisions was calculated in the early nineties using numerical simulations. In this paper, we present an alternative analytic estimate, relying on a different treatment of stochasticity. In our approach, we provide a model for the bubble velocity power spectrum, suitable for both detonations and deflagrations. From this, we derive the anisotropic stress and analytically solve the gravitational wave equation. We provide analytical formulae for the peak frequency and the shape of the spectrum which we compare with numerical estimates. In contrast to the previous analysis, we do not work in the envelope approximation. This paper focuses on a particular source of gravitational waves from phase transitions. In a companion article, we will add together the different sources of gravitational wave signals from phase transitions: bubble collisions, turbulence and magnetic fields and discuss the prospects for probing the electroweak phase transition at LISA.

Chiara Caprini; Ruth Durrer; Geraldine Servant

2007-11-16T23:59:59.000Z

Note: This page contains sample records for the topic "velocity wave probe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Composite Vertical Structure of Vertical Velocity in Nonprecipitating Cumulus Clouds  

Science Conference Proceedings (OSTI)

Vertical transects of Doppler vertical velocity data, obtained from an airborne profiling millimeter-wave cloud radar, are composited for a large number of cumulus clouds (Cu) at various stages of their life cycle, to examine typical circulations ...

Yonggang Wang; Bart Geerts

2013-05-01T23:59:59.000Z

82

Interferometric and Chirped Optical Probe Techniques for High-Pressure Equation-of-State Measurements  

Science Conference Proceedings (OSTI)

We present experimental work exploring displacement and velocity interferometry as high spatial and temporal resolution diagnostics for measuring target preheat and the speed, planarity, and steadiness of a shock wave. A chirped pulse reflectometry experiment is also proposed as a frequency domain alternative for shock speed measurements. These techniques fill a need for high-precision diagnostics to derive accurate laboratory-based equation-of-state data at shock wave-driven pressures directly relevant to astrophysical systems. The performance of these optical laser probe techniques may exceed conventional passive techniques such as temporally streaked recording of optical emission upon shock breakout or side-on streaked X-ray radiography. Results from Nova laser and high-intensity ultrashort pulse experiments are presented. (c) 2000 The American Astronomical Society.

Gold, D. M.; Celliers, P. M.; Collins, G. W.; Budil, K. S.; Cauble, R.; Silva, L. B. da; Foord, M. E.; Stewart, R. E.; Wallace, R. J.; Young, D.

2000-04-01T23:59:59.000Z

83

Interactions between Rain and Wind Waves  

Science Conference Proceedings (OSTI)

Effects of rain on surface waves have been investigated in a circulating wind-wave tank. Surface displacement and slope spectra under different wind velocities were measured near the upwind and downwind edges of a region with simulated rains. ...

Ying-Keung Poon; Shih Tang; Jin Wu

1992-09-01T23:59:59.000Z

84

Inertia–Gravity Waves in the Stratosphere  

Science Conference Proceedings (OSTI)

The propagation and refraction of stationary inertia–gravity waves in the winter stratosphere is examined with ray tracing. Due to their smaller vertical group velocity these waves experience more lateral ray movement and horizontal refraction ...

Timothy J. Dunkerton

1984-12-01T23:59:59.000Z

85

Computational characterization of cutoff probe system for the measurement of electron density  

Science Conference Proceedings (OSTI)

The wave cutoff probe, a precise measurement method for measuring the electron density, was recently proposed. To characterize the cutoff probe system, in this paper, the microwave simulations of a cutoff probe system were performed at various configurations of the cutoff probe system. The influence of the cutoff probe spectrum stemming from numerous parametric elements such as the probe tip length, probe tip distance, probe tip plane orientation, chamber volume/geometry, and coaxial cable length is presented and discussed. This article is expected to provide qualitative and quantitative insight into cutoff probe systems and its optimization process.

Na, Byung-Keun; Kim, Dae-Woong; Kwon, Jun-Hyuk; Chang, Hong-Young [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 305-701 (Korea, Republic of); Kim, Jung-Hyung; You, Shin-Jae [Center for Vacuum Technology, Korea Research Institute of Standards and Science, Daejeon, 305-306 (Korea, Republic of)

2012-05-15T23:59:59.000Z

86

Fiber Optic Velocity Interferometry  

SciTech Connect

This paper explores the use of a new velocity measurement technique that has several advantages over existing techniques. It uses an optical fiber to carry coherent light to and from a moving target. A Fabry-Perot interferometer, formed by a gradient index lens and the moving target, produces fringes with a frequency proportional to the target velocity. This technique can measure velocities up to 10 km/s, is accurate, portable, and completely noninvasive.

Neyer, Barry T.

1988-04-01T23:59:59.000Z

87

The Coupling of Vertical Velocity and Signal Power Observed with the SOUSY VHF Radar  

Science Conference Proceedings (OSTI)

The perturbations to the static stability (and hence to the radar reflectivity) and to the velocity in a vertically propagating gravity wave are correlated, and the sign of the correlation depends on whether the wave is propagating upward or ...

G. D. Nastrom; R. Rüster; G. Schmidt

1998-01-01T23:59:59.000Z

88

Noise Effects on Wave-Generated Transport Induced by Ideal Waves  

Science Conference Proceedings (OSTI)

The authors consider the transport velocity in boundary layer flows driven by either noisy monochromatic progressive or standing waves. The central issue addressed here is whether such flows are capable of sustaining a transport velocity when ...

Juan M. Restrepo; Gary K. Leaf

2002-08-01T23:59:59.000Z

89

Measurement of plasma flows using Mach probe arrays  

E-Print Network (OSTI)

A rectangular array of three-dimensional Mach probes is constructed and installed in the plasma vessel of the Versatile Toroidal Facility (VTF) at MIT in order to measure ion flow velocity on the cross section of the VTF. ...

Kardon, Brian (Brian Michael)

2008-01-01T23:59:59.000Z

90

Sheets Wave Basin | Open Energy Information  

Open Energy Info (EERE)

Sheets Wave Basin Sheets Wave Basin Jump to: navigation, search Basic Specifications Facility Name Sheets Wave Basin Overseeing Organization University of Rhode Island Hydrodynamic Testing Facility Type Wave Basin Length(m) 30.0 Beam(m) 3.6 Depth(m) 1.8 Cost(per day) $750(+ Labor/Materials) Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 2.0 Length of Effective Tow(m) 25.0 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.3 Maximum Wave Height(m) at Wave Period(s) 3.0 Maximum Wave Length(m) 10 Wave Period Range(s) 3.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Pre-programmed for regular and irregular waves, but wavemaker is capable of any input motion. Wave Direction Uni-Directional

91

Traveling-wave photodetector  

DOE Patents (OSTI)

The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size. 4 figures.

Hietala, V.M.; Vawter, G.A.

1993-12-14T23:59:59.000Z

92

Traveling-wave photodetector  

DOE Patents (OSTI)

The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size.

Hietala, V.M.; Vawter, G.A.

1992-12-31T23:59:59.000Z

93

Traveling-wave photodetector  

DOE Patents (OSTI)

The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size.

Hietala, Vincent M. (Placitas, NM); Vawter, Gregory A. (Albuquerque, NM)

1993-01-01T23:59:59.000Z

94

Baroclinic Waves with Parameterized Effects of Moisture Interpreted Using Rossby Wave Components  

Science Conference Proceedings (OSTI)

A theoretical framework is developed for the evolution of baroclinic waves with latent heat release parameterized in terms of vertical velocity. Both wave–conditional instability of the second kind (CISK) and large-scale rain approaches are ...

Hylke de Vries; John Methven; Thomas H. A. Frame; Brian J. Hoskins

2010-09-01T23:59:59.000Z

95

Airspeed Corrections for Optical Array Probe Sample Volumes  

Science Conference Proceedings (OSTI)

The Particle Measuring System’s optical array probes have a sample volume that depends upon the diameter of the particle measured. The sample volume also depends upon the velocity of particles that pass through the probe because of the electronic ...

Darrel Baumgardner; Alexei Korolev

1997-10-01T23:59:59.000Z

96

ARM - Measurement - Vertical velocity  

NLE Websites -- All DOE Office Websites (Extended Search)

govMeasurementsVertical velocity govMeasurementsVertical velocity ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Vertical velocity The component of the velocity vector, along the local vertical. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CO2FLX : Carbon Dioxide Flux Measurement Systems ECOR : Eddy Correlation Flux Measurement System KAZR : Ka ARM Zenith Radar MMCR : Millimeter Wavelength Cloud Radar SODAR : Mini Sound Detection and Ranging

97

Cirrus Crystal Terminal Velocities  

Science Conference Proceedings (OSTI)

Cirrus crystal terminal velocities are of primary importance in determining the rate of transport of condensate from upper- to middle-tropospheric levels and profoundly influence the earth’s radiation balance through their effect on the rate of ...

Andrew J. Heymsfield; Jean Iaquinta

2000-04-01T23:59:59.000Z

98

Vertical Velocity Focus Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Velocity Focus Group Velocity Focus Group ARM 2008 Science Team Meeting Norfolk, VA March 10-14 Background Vertical velocity measurements have been at the top of the priority list of the cloud modeling community for some time. Doppler measurements from ARM profiling radars operating at 915-MHz, 35-GHz and 94-GHz have been largely unexploited. The purpose of this new focus group is to develop vertical velocity ARM products suitable for modelers. ARM response to their request has been slow. Most ARM instruments are suitable for cloud observations and have limited capabilities in precipitation Using ARM datasets for evaluating and improving cloud parameterization in global climate models (GCMs) is not straightforward, due to gigantic scale mismatches. Consider this... Looking only vertically drastically limits opportunities

99

High-Velocity Rocks Final Report  

DOE Green Energy (OSTI)

The objective of our research was to develop and demonstrate seismic data-acquisition and data-processing technologies that allow geothermal prospects below high-velocity rock outcrops to be evaluated. To do this, we acquired a 3-component seismic test line across an area of exposed high-velocity rocks in Brewster County, Texas, where there is high heat flow and surface conditions mimic those found at numerous geothermal prospects. Seismic contractors have not succeeded in creating good-quality seismic data in this area for companies who have acquired data for oil and gas exploitation purposes. Our test profile traversed an area where high-velocity rocks and low-velocity sediment were exposed on the surface in alternating patterns that repeated along the test line. We verified that these surface conditions cause non-ending reverberations of Love waves, Rayleigh waves, and shallow critical refractions to travel across the earth surface between the boundaries of the fast-velocity and slow-velocity material exposed on the surface. These reverberating surface waves form the high level of noise in this area that does not allow reflections from deep interfaces to be seen and utilized. Our data-acquisition method of deploying a box array of closely spaced geophones allowed us to recognize and evaluate these surface-wave noise modes regardless of the azimuth direction to the surface anomaly that backscattered the waves and caused them to return to the test-line profile. With this knowledge of the surface-wave noise, we were able to process these test-line data to create P-P and SH-SH images that were superior to those produced by a skilled seismic data-processing contractor. Compared to the P-P data acquired along the test line, the SH-SH data provided a better detection of faults and could be used to trace these faults upward to the boundaries of exposed surface rocks. We expanded our comparison of the relative value of S-wave and P-wave seismic data for geothermal applications by inserting into this report a small part of the interpretation we have done with 3C3D data across Wister geothermal field in the Imperial Valley of California. This interpretation shows that P-SV data reveal faults (and by inference, also fractures) that cannot be easily, or confidently, seen with P-P data, and that the combination of P-P and P-SV data allows VP/VS velocity ratios to be estimated across a targeted reservoir interval to show where an interval has more sandstone (the preferred reservoir facies). The conclusion reached from this investigation is that S-wave seismic technology can be invaluable to geothermal operators. Thus we developed a strong interest in understanding the direct-S modes produced by vertical-force sources, particularly vertical vibrators, because if it can be demonstrated that direct-S modes produced by vertical-force sources can be used as effectively as the direct-S modes produced by horizontal-force sources, geothermal operators can acquire direct-S data across many more prospect areas than can be done with horizontal-force sources, which presently are limited to horizontal vibrators. We include some of our preliminary work in evaluating direct-S modes produced by vertical-force sources.

Hardage, Bob A; DeAngelo, Michael V; Ermolaeva, Elena; Hardage, Bob A; Remington, Randy; Sava, Diana; Wagner, Donald; Wei, Shuijion

2013-02-28T23:59:59.000Z

100

Tool and a method for obtaining hydrologic flow velocity measurements in geothermal reservoirs  

Science Conference Proceedings (OSTI)

Downhole instruments based on a thermal perturbation principle are being developed to measure heat flow in permeable formations where convective transport of heat is important. To make heat flow measurements in these regions, the ground water velocity vector must be determined. A downhole probe has been designed to measure the local ground water velocity vector. The probe is a cylindrical heat source operated at a constant heat flux. In a convecting environment, surface temperatures on the probe are perturbed from those values of a purely conductive environment. With the aid of analytical and numerical models, these temperature differences can be related to the local velocity vector. 4 refs., 2 figs.

Carrigan, C.R.; Dunn, J.C.; Hardee, H.C.

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "velocity wave probe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Dynamic Response of Single Electrode Conductivity Probes in Slow Flows  

Science Conference Proceedings (OSTI)

Four designs of single electrode conductivity probes, three of them new, were tested for response characteristics in conditions simulating laboratory internal wave flows. Two of the new designs were shown to be significantly superior in sensing ...

William F. Simmons; Barry R. Ruddick

1984-03-01T23:59:59.000Z

102

Fetch Relations for Wind-Generated Waves as a Function of Wind-Stress Scaling  

Science Conference Proceedings (OSTI)

We present the variation that results when fetch relations for wind-generated wave spectra are sealed by the friction velocity component in the dominant wave direction rather than the magnitude of the friction velocity, using the data collected ...

Will Perrie; Bechara Toulany

1990-11-01T23:59:59.000Z

103

Wave Dragon  

NLE Websites -- All DOE Office Websites (Extended Search)

Overtopping Wave Devices Wave Dragon ApSLtd HWETTEI - Workshop October 26-28, 2005, Washington, DC Hydrokinetic Technologies Technical and Environmental Issues Workshop the Wave...

104

EM probes characterisation for security analysis  

Science Conference Proceedings (OSTI)

Along with the vast use of cryptography in security devices came the emergence of attacks like Electro-Magnetic analysis (EMA) where the measurement of the Electro-Magnetic (EM) waves radiated from an integrated circuit are used to extract sensitive ... Keywords: CEMA, correlation analysis, electro-magnetic analysis, probes, side channel information leakage

Benjamin Mounier; Anne-Lise Ribotta; Jacques Fournier; Michel Agoyan; Assia Tria

2012-01-01T23:59:59.000Z

105

High-frequency Probing Diagnostic for Hall Current Plasma Thrusters  

DOE Green Energy (OSTI)

High-frequency oscillations (1-100 MHz) in Hall thrusters have apparently eluded significant experimental scrutiny. A diagnostic setup, consisting of a single Langmuir probe, a special shielded probe connector-positioner, and an electronic impedance-matching circuit, was successfully built and calibrated. Through simultaneous high-frequency probing of the Hall thruster plasma at multiple locations, high-frequency plasma waves have been identified and characterized for various thruster operating conditions.

A.A. Litvak; Y. Raitses; N.J. Fisch

2001-10-25T23:59:59.000Z

106

Perspectives on Deposition Velocity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deposition Deposition Velocity ... Going down the rabbit hole to explain that sinking feeling Brian DiNunno, Ph.D. Project Enhancement Corporation June 6 th , 2012 Discussion Framework ï‚— Development of the HSS Deposition Velocity Safety Bulletin ï‚— Broader discussion of appropriate conservatism within dispersion modeling and DOE-STD-3009 DOE-STD-3009 Dose Comparison "General discussion is provided for source term calculation and dose estimation, as well as prescriptive guidance for the latter. The intent is that calculations be based on reasonably conservative estimates of the various input parameters." - DOE-STD-3009, Appendix A.3 DOE-STD-3009 Dispersion

107

Velocity pump reaction turbine  

DOE Patents (OSTI)

An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

House, Palmer A. (Walnut Creek, CA)

1982-01-01T23:59:59.000Z

108

Velocity pump reaction turbine  

DOE Patents (OSTI)

An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

House, Palmer A. (Walnut Creek, CA)

1984-01-01T23:59:59.000Z

109

Hinsdale Wave Basin 1 | Open Energy Information  

Open Energy Info (EERE)

Hinsdale Wave Basin 1 Hinsdale Wave Basin 1 Jump to: navigation, search Basic Specifications Facility Name Hinsdale Wave Basin 1 Overseeing Organization Oregon State University Hydrodynamics Hydrodynamic Testing Facility Type Wave Basin Length(m) 104.0 Beam(m) 3.7 Depth(m) 4.6 Cost(per day) $3500 Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 1.8 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 10.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Monochromatic waves (cnoidal, Stokes, Airy), solitary waves, user-defined free surface timeseries or board displacement timeseries for random waves Wave Direction Uni-Directional Simulated Beach Yes Description of Beach 12' by 12' concrete slabs anchored to flume walls

110

Instrumentation techniques for monitoring shock and detonation waves  

SciTech Connect

CORRTEX (Continuous Reflectometry for Radius Versus Time Experiments), SLIFER (Shorted Location Indication by Frequency of Electrical Resonance), and pin probes were used to monitor several conditions of blasting such as the detonation velocity of the explosive, the functioning of the stemming column confining the explosive, and rock mass motion. CORRTEX is a passive device that employs time-domain reflectometry to interrogate the two-way transit time of a coaxial cable. SLIFER is an active device that monitors the changing frequency resulting from a change in length of a coaxial cable forming an element of an oscillator circuit. Pin probes in this application consist of RG-174 coaxial cables, each with an open circuit, placed at several known locations within the material. Each cable is connected to a pulse-forming network and a voltage source. When the cables are shorted by the advancing wave, time-distance data are produced from which a velocity can be computed. This paper describes each technique, installation of the gauge, examples of the signals, and interpretation of the records. 11 refs., 11 figs.

Dick, R.D.; Parrish, R.L.

1985-01-01T23:59:59.000Z

111

Field Verification of ADCP Surface Gravity Wave Elevation Spectra  

Science Conference Proceedings (OSTI)

Acoustic Doppler current profilers (ADCPs) can measure orbital velocities induced by surface gravity waves, yet the ADCP estimates of these velocities are subject to a relatively high noise level. The present paper introduces a linear filtration ...

A. J. F. Hoitink; H. C. Peters; M. Schroevers

2007-05-01T23:59:59.000Z

112

Energy Flux and Wavelet Diagnostics of Secondary Mountain Waves  

Science Conference Proceedings (OSTI)

In recent years, aircraft data from mountain waves have been primarily analyzed using velocity and temperature power spectrum and momentum flux estimation. Herein it is argued that energy flux wavelets (i.e., pressure–velocity wavelet cross-...

Bryan K. Woods; Ronald B. Smith

2010-11-01T23:59:59.000Z

113

Shock waves in strongly coupled plasmas  

E-Print Network (OSTI)

Shock waves are supersonic disturbances propagating in a fluid and giving rise to dissipation and drag. Weak shocks, i.e., those of small amplitude, can be well described within the hydrodynamic approximation. On the other hand, strong shocks are discontinuous within hydrodynamics and therefore probe the microscopics of the theory. In this paper we consider the case of the strongly coupled N=4 plasma whose microscopic description, applicable for scales smaller than the inverse temperature, is given in terms of gravity in an asymptotically $AdS_5$ space. In the gravity approximation, weak and strong shocks should be described by smooth metrics with no discontinuities. For weak shocks we find the dual metric in a derivative expansion and for strong shocks we use linearized gravity to find the exponential tail that determines the width of the shock. In particular we find that, when the velocity of the fluid relative to the shock approaches the speed of light $v\\to 1$ the penetration depth $\\ell$ scales as $\\ell\\sim (1-v^2)^{1/4}$. We compare the results with second order hydrodynamics and the Israel-Stewart approximation. Although they all agree in the hydrodynamic regime of weak shocks, we show that there is not even qualitative agreement for strong shocks. For the gravity side, the existence of shock waves implies that there are disturbances of constant shape propagating on the horizon of the dual black holes.

Sergei Khlebnikov; Martin Kruczenski; Georgios Michalogiorgakis

2010-04-21T23:59:59.000Z

114

Shock waves in strongly coupled plasmas  

Science Conference Proceedings (OSTI)

Shock waves are supersonic disturbances propagating in a fluid and giving rise to dissipation and drag. Weak shocks, i.e., those of small amplitude, can be well described within the hydrodynamic approximation. On the other hand, strong shocks are discontinuous within hydrodynamics and therefore probe the microscopics of the theory. In this paper, we consider the case of the strongly coupled N=4 plasma whose microscopic description, applicable for scales smaller than the inverse temperature, is given in terms of gravity in an asymptotically AdS{sub 5} space. In the gravity approximation, weak and strong shocks should be described by smooth metrics with no discontinuities. For weak shocks, we find the dual metric in a derivative expansion, and for strong shocks we use linearized gravity to find the exponential tail that determines the width of the shock. In particular, we find that, when the velocity of the fluid relative to the shock approaches the speed of light v{yields}1 the penetration depth l scales as l{approx}(1-v{sup 2}){sup 1/4}. We compare the results with second-order hydrodynamics and the Israel-Stewart approximation. Although they all agree in the hydrodynamic regime of weak shocks, we show that there is not even qualitative agreement for strong shocks. For the gravity side, the existence of shock waves implies that there are disturbances of constant shape propagating on the horizon of the dual black holes.

Khlebnikov, Sergei; Kruczenski, Martin; Michalogiorgakis, Georgios [Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, Indiana 47907 (United States)

2010-12-15T23:59:59.000Z

115

SURFACE ALFVEN WAVES IN SOLAR FLUX TUBES  

SciTech Connect

Magnetohydrodynamic (MHD) waves are ubiquitous in the solar atmosphere. Alfven waves and magneto-sonic waves are particular classes of MHD waves. These wave modes are clearly different and have pure properties in uniform plasmas of infinite extent only. Due to plasma non-uniformity, MHD waves have mixed properties and cannot be classified as pure Alfven or magneto-sonic waves. However, vorticity is a quantity unequivocally related to Alfven waves as compression is for magneto-sonic waves. Here, we investigate MHD waves superimposed on a one-dimensional non-uniform straight cylinder with constant magnetic field. For a piecewise constant density profile, we find that the fundamental radial modes of the non-axisymmetric waves have the same properties as surface Alfven waves at a true discontinuity in density. Contrary to the classic Alfven waves in a uniform plasma of infinite extent, vorticity is zero everywhere except at the cylinder boundary. If the discontinuity in density is replaced with a continuous variation of density, vorticity is spread out over the whole interval with non-uniform density. The fundamental radial modes of the non-axisymmetric waves do not need compression to exist unlike the radial overtones. In thin magnetic cylinders, the fundamental radial modes of the non-axisymmetric waves with phase velocities between the internal and the external Alfven velocities can be considered as surface Alfven waves. On the contrary, the radial overtones can be related to fast-like magneto-sonic modes.

Goossens, M.; Andries, J.; Soler, R.; Van Doorsselaere, T. [Centre for Plasma Astrophysics, Department of Mathematics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, 3001 Leuven (Belgium); Arregui, I.; Terradas, J., E-mail: marcel.goossens@wis.kuleuven.be [Solar Physics Group, Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)

2012-07-10T23:59:59.000Z

116

Hinsdale Wave Basin 2 | Open Energy Information  

Open Energy Info (EERE)

Wave Basin 2 Wave Basin 2 Jump to: navigation, search Basic Specifications Facility Name Hinsdale Wave Basin 2 Overseeing Organization Oregon State University Hydrodynamics Length(m) 48.8 Beam(m) 26.5 Depth(m) 2.1 Water Type Freshwater Cost(per day) $3500 Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.8 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 10.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Monochromatic waves (cnoidal, Stokes, Airy), solitary waves, user-defined free surface timeseries or board displacement timeseries for random waves Wave Direction Both Simulated Beach Yes Description of Beach Built to client specifications, currently rigid concrete over gravel fill

117

Haynes Wave Basin | Open Energy Information  

Open Energy Info (EERE)

Wave Basin Wave Basin Jump to: navigation, search Basic Specifications Facility Name Haynes Wave Basin Overseeing Organization Texas A&M (Haynes) Hydrodynamic Testing Facility Type Wave Basin Length(m) 38.1 Beam(m) 22.9 Depth(m) 1.5 Water Type Freshwater Cost(per day) $150/hour (excluding labor) Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.6 Maximum Wave Height(m) at Wave Period(s) 3.3 Maximum Wave Length(m) 10.7 Wave Period Range(s) 3.3 Current Velocity Range(m/s) 0.2 Programmable Wavemaking Yes Wavemaking Description Directional, irregular, any spectrum, cnoidal or solitary wave Wave Direction Both Simulated Beach Yes Description of Beach Stone Channel/Tunnel/Flume Channel/Tunnel/Flume None

118

cell probe model  

Science Conference Proceedings (OSTI)

NIST. cell probe model. (definition). Definition: A model of computation where the cost of a computation is measured by the ...

2013-05-08T23:59:59.000Z

119

Rossby Waves in Zonal Barotropic Flows with Pseudocritical Levels  

Science Conference Proceedings (OSTI)

A pseudocritical level is defined as a region where the wave phase speed c equals the zonal basic flow velocity U and, additionally, the background potential vorticity gradient vanishes. In this study Rossby wave propagation is investigated in ...

Uwe Harlander

2002-09-01T23:59:59.000Z

120

Mechanical probing of liquid foam aging  

E-Print Network (OSTI)

We present experimental results on the Stokes experiment performed in a 3D dry liquid foam. The system is used as a rheometric tool : from the force exerted on a 1cm glass bead, plunged at controlled velocity in the foam in a quasi static regime, local foam properties are probed around the sphere. With this original and simple technique, we show the possibility of measuring the foam shear modulus, the gravity drainage rate and the evolution of the bubble size during coarsening.

Isabelle Cantat; Olivier Pitois

2006-09-19T23:59:59.000Z

Note: This page contains sample records for the topic "velocity wave probe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Ultrafast scanning probe microscopy  

DOE Patents (OSTI)

An ultrafast scanning probe microscopy method for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample.

Weiss, Shimon (El Cerrito, CA); Chemla, Daniel S. (Kensington, CA); Ogletree, D. Frank (El Cerrito, CA); Botkin, David (San Francisco, CA)

1995-01-01T23:59:59.000Z

122

Ultrafast scanning probe microscopy  

DOE Patents (OSTI)

An ultrafast scanning probe microscopy method is described for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample. 6 Figs.

Weiss, S.; Chemla, D.S.; Ogletree, D.F.; Botkin, D.

1995-05-16T23:59:59.000Z

123

Alden Wave Basin | Open Energy Information  

Open Energy Info (EERE)

Wave Basin Wave Basin Jump to: navigation, search Basic Specifications Facility Name Alden Wave Basin Overseeing Organization Alden Research Laboratory, Inc Hydrodynamic Testing Facility Type Wave Basin Length(m) 33.5 Beam(m) 21.3 Depth(m) 1.2 Water Type Freshwater Cost(per day) Depends on study Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.3 Maximum Wave Height(m) at Wave Period(s) 1.0 Maximum Wave Length(m) 1.8 Wave Period Range(s) 1.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Period adjustable electronically, height adjustable mechanically Wave Direction Both Simulated Beach Yes Description of Beach Designed as needed using commercially available sand/sediment

124

White light velocity interferometer  

DOE Patents (OSTI)

The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s. 41 figs.

Erskine, D.J.

1997-06-24T23:59:59.000Z

125

White light velocity interferometer  

DOE Patents (OSTI)

The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s.

Erskine, David J. (Oakland, CA)

1997-01-01T23:59:59.000Z

126

White light velocity interferometer  

DOE Patents (OSTI)

The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s.

Erskine, David J. (Oakland, CA)

1999-01-01T23:59:59.000Z

127

White light velocity interferometer  

DOE Patents (OSTI)

The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s. 41 figs.

Erskine, D.J.

1999-06-08T23:59:59.000Z

128

Unitaxial constant velocity microactuator  

SciTech Connect

A uniaxial drive system or microactuator capable of operating in an ultra-high vacuum environment. The mechanism includes a flexible coupling having a bore therethrough, and two clamp/pusher assemblies mounted in axial ends of the coupling. The clamp/pusher assemblies are energized by voltage-operated piezoelectrics therewithin to operatively engage the shaft and coupling causing the shaft to move along its rotational axis through the bore. The microactuator is capable of repeatably positioning to sub-manometer accuracy while affording a scan range in excess of 5 centimeters. Moreover, the microactuator generates smooth, constant velocity motion profiles while producing a drive thrust of greater than 10 pounds. The system is remotely controlled and piezoelectrically driven, hence minimal thermal loading, vibrational excitation, or outgassing is introduced to the operating environment.

McIntyre, Timothy J. (Knoxville, TN)

1994-01-01T23:59:59.000Z

129

Internal Waves in Monterey Submarine Canyon  

Science Conference Proceedings (OSTI)

Velocity, temperature, and salinity profile surveying in Monterey Submarine Canyon during spring tide reveals an internal wave field almost an order of magnitude more energetic than that in the open ocean. Semidiurnal fluctuations and their ...

Eric Kunze; Leslie K. Rosenfeld; Glenn S. Carter; Michael C. Gregg

2002-06-01T23:59:59.000Z

130

Strong Turbulence in the Wave Crest Region  

Science Conference Proceedings (OSTI)

High-resolution vertical velocity profiles in the surface layer of a lake reveal the turbulence structure beneath strongly forced waves. Dissipation rates of turbulence kinetic energy are estimated based on centered second-order structure ...

Johannes Gemmrich

2010-03-01T23:59:59.000Z

131

Shear Excitation of Atmospheric Gravity Waves  

Science Conference Proceedings (OSTI)

Unstable Velocity shears are a Common source of vertically propagating gravity waves in the atmosphere. However, the growth rates of unstable modes predicted by linear theory cannot always amount for their observed importance.

David C. Fritts

1982-09-01T23:59:59.000Z

132

Internal Gravity Wave Generation and Hydrodynamic Instability  

Science Conference Proceedings (OSTI)

Two mechanisms are proposed whereby internal gravity waves (IGW) may radiate from a linearly unstable region of Boussinesq parallel flow that is characterized in the far field by constant horizontal velocity and Brunt-Väisälä frequency. Through ...

B. R. Sutherland; C. P. Caulfield; W. R. Peltier

1994-11-01T23:59:59.000Z

133

Energy Dispersion in African Easterly Waves  

Science Conference Proceedings (OSTI)

The existence of an upstream (eastward) group velocity for African easterly waves (AEWs) is shown based on single-point lag regressions using gridded reanalysis data from 1990 to 2010. The eastward energy dispersion is consistent with the ...

Michael Diaz; Anantha Aiyyer

2013-01-01T23:59:59.000Z

134

Plasma beat-wave accelerator  

Science Conference Proceedings (OSTI)

We perform an analytic study of some quantities relevant to the plasma beat-wave accelerator (PBWA) concept. We obtain analytic expressions for the plasma frequency, longitudinal electron velocity, plasma density and longitudinal plasma electric field of a nonlinear longitudinal electron plasma oscillation with amplitude less than the wave-breaking limit and phase velocity approaching the speed of light. We also estimate the luminosity of a single-pass e/sup +/e/sup -/ linear PBWA collider assuming the energy and collision beamstrahlung are fixed parameters.

Noble, R.J.

1983-06-01T23:59:59.000Z

135

Temporal Velocity Variations beneath the Coso Geothermal Field Observed  

Open Energy Info (EERE)

Velocity Variations beneath the Coso Geothermal Field Observed Velocity Variations beneath the Coso Geothermal Field Observed using Seismic Double Difference Tomography of Compressional and Shear Wave Arrival Times Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Temporal Velocity Variations beneath the Coso Geothermal Field Observed using Seismic Double Difference Tomography of Compressional and Shear Wave Arrival Times Details Activities (1) Areas (1) Regions (0) Abstract: Microseismic imaging can be an important tool for characterizing geothermal reservoirs. Since microseismic sources occur more or less continuously both due to the operations of a geothermal field and the naturally occurring background seismicity, passive seismic monitoring is well suited to quantify the temporal variations in the vicinity of a

136

Sensitive interferometric video thermal wave imager  

Science Conference Proceedings (OSTI)

A new method of parallel thermal wave imaging is demonstrated in which the thermal wave image of a heated sample is converted into an optical phase image which is sensitively probed by a Twyman–Green interferometer. The sample is mounted onto an assembly of optical layers which acts as a temperature sensitive mirror.Heat conduction from the sample to this mirror results in a two?dimensional distribution of optical phase which is probed broadfield by the interferometer. The resulting transmission thermal wave image has characteristics analogous to those of photopyroelectric images. The interferogram produced in the interferometer may be recorded by videography

J. F. Power

1996-01-01T23:59:59.000Z

137

DeFrees Large Wave Basin | Open Energy Information  

Open Energy Info (EERE)

Large Wave Basin Large Wave Basin Jump to: navigation, search Basic Specifications Facility Name DeFrees Large Wave Basin Overseeing Organization Cornell University Hydrodynamics Hydrodynamic Testing Facility Type Wave Basin Length(m) 32.0 Beam(m) 0.6 Depth(m) 0.9 Water Type Freshwater Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.5 Maximum Wave Height(m) at Wave Period(s) 3.0 Maximum Wave Length(m) 64 Wave Period Range(s) 3.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Computer controlled 4m hydraulic wave paddle stroke allows a series of solitary waves to be generated; arbitrary wave shape possible Wave Direction Uni-Directional Simulated Beach Yes

138

An optical probe for local measurements of fast plasma ion dynamics  

SciTech Connect

A novel insertable probe for local measurements of equilibrium and fluctuating plasma ion flow velocity and temperature via Doppler spectroscopy is described. Optical radiation is collected by two fused silica fiber optic bundles with perpendicular viewlines. Spatial resolution of about 5 cm is achieved by terminating each view with an optical dump. The collected light is transported by the fiber bundles to a high-resolution spectrometer. Two components of the velocity are measured simultaneously{emdash}the radial along the insertion of the probe and a perpendicular component (which can be varied by simply rotating the probe by 90{degree}). The accuracy of the velocity measurements is better than 1 km/s. The probe is armored by a boron nitride enclosure and is inserted into a high temperature plasma to obtain radial profiles of the equilibrium and fluctuating plasma velocity. Initial measurements have been done in Madison Symmetric Torus reversed field pinch. {copyright} {ital 1998 American Institute of Physics.}

Fiksel, G.; Den Hartog, D.J.; Fontana, P.W. [Department of Physics, University of Wisconsin---Madison, 1150 University Avenue, Madison, Wisconsin53706 (United States)] [Department of Physics, University of Wisconsin---Madison, 1150 University Avenue, Madison, Wisconsin53706 (United States)

1998-05-01T23:59:59.000Z

139

Seismic Velocity And Attenuation Structure Of The Geysers Geothermal Field,  

Open Energy Info (EERE)

Velocity And Attenuation Structure Of The Geysers Geothermal Field, Velocity And Attenuation Structure Of The Geysers Geothermal Field, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Seismic Velocity And Attenuation Structure Of The Geysers Geothermal Field, California Details Activities (1) Areas (1) Regions (0) Abstract: The Geysers geothermal field is located in northern California and is one of the world's largest producers of electricity from geothermal energy. A key resource management issue at this field is the distribution of fluid in the matrix of the reservoir rock. In this paper, we interpret seismic compressional-wave velocity and quality quotient (Q) data at The Geysers in terms of the geologic structure and fluid saturation in the reservoir. Our data consist of waveforms from approximately 300

140

How HCI interprets the probes  

Science Conference Proceedings (OSTI)

We trace how cultural probes have been adopted and adapted by the HCI community. The flexibility of probes has been central to their uptake, resulting in a proliferation of divergent uses and derivatives. The varying patterns of adaptation of the probes ... Keywords: cultural probes, probes, reflective HCI

Kirsten Boehner; Janet Vertesi; Phoebe Sengers; Paul Dourish

2007-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "velocity wave probe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

MAGNETIC METHOD FOR PRODUCING HIGH VELOCITY SHOCK WAVES IN GASES  

DOE Patents (OSTI)

A device is described for producing high-energy plasmas comprising a tapered shock tube of dielectric material and having a closed small end, an exceedingly low-inductance coll supported about and axially aligned with the small end of the tapered tube. an elongated multiturn coil supported upon the remninder of the exterior wall of the shock tube. a potential source and switch connected in series with the low-inductance coil, a potential source and switch connected in series with the elongated coil, means for hermetically sealing the large end of the tube, means for purging the tube of gases, and means for admitting a selected gas into the shock tube.

Josephson, V.

1960-01-26T23:59:59.000Z

142

APPARATUS FOR PRODUCING HIGH VELOCITY SHOCK WAVES IN GASES  

DOE Patents (OSTI)

>A device for producing a high-energy ionized gas region comprises an evacuated tapered insulating vessel and a substantially hemispherical insulating cap hermetically affixed to the large end of the vessel, an annular electrode having a diameter equal to and supported in the interior wall of the vessel at the large end and having a conductive portion inside the vessel, a second electrode supported at the small end of the vessel, means connected to the vessel for introducing a selected gas therein, a source of high potential having two poles. means for connecting one pole of the high potential source to the annular electrode, and means for connecting the other pole of the potential source to the second electrode.

Scott, F.R.; Josephson, V.

1960-02-01T23:59:59.000Z

143

Is there Lower Limit to Velocity or Velocity Change?  

E-Print Network (OSTI)

Here we explore the possibility of a lower limit to velocity or velocity change which is 20 orders of magnitude smaller than the speed of light and explore the various observable signatures including those in cosmic rays and gamma ray bursts.

B. N. Sreenath; Kenath Arun; C. Sivaram

2012-09-17T23:59:59.000Z

144

Evaluation of residual stress gradients in ductile cast iron using critical refracted longitudinal (Lcr) wave technique  

E-Print Network (OSTI)

Critically refracted longitudinal (LCR) waves have been investigated as a possible technique for the evaluation of the residual stress gradients present in ductile iron castings. Residual stresses are likely to develop in ductile cast iron during the cooling phase of a casting process. A LCR probe fabricated for previous research was used to make the velocity measurements. The samples investigated were of different modularity and two were annealed while one was not. The samples were milled at increments of approximately two millimeters and the LCR velocities were taken-at each increment. This provided data for the mapping of velocity versus depth which represents the residual stress gradient. To confirm the presence of the residual stress gradient, strain gages were attached to similar samples and the samples were saw cut with the intent to relieve residual stresses. The strain gages indicated that residual stresses were relieved by the sawcutting. The strain gage data was found to support the LCR velocity map to an extent. Both sets of data indicate compressive stresses on the surface. The data also allowed for an evaluation of the annealing procedure used. The results showed that even after full annealing remnant stresses are still present in the bars tested.

Pfluger, Ron Atlan

1995-01-01T23:59:59.000Z

145

Steady and unsteady calibration of multi-hole probes  

E-Print Network (OSTI)

This thesis presents the development of a data crographics. reduction algorithm for multi-hole pressure probes. The algorithm has been developed for the reduction of calibration data from miniature non-nulling multi-hole probes in compressible, subsonic flow gelds. The algorithm is able to reduce data from any 5-or 7-hole probe in a subsonic flow field and generate very accurate predictions of the velocity magnitude and direction, total and static pressure, Mach and Reynolds member and fluid properties like the density and viscosity. The algorithm utilizes a local least-squares modeling technique and has been tested on 4 novel miniature 7-hole probes that have been calibrated at NASA Langley Flow Modeling and Control Branch for the entire subsonic regime. Each of the probes had a conical tip with diameter of 0.065''. Excellent prediction capabilities are demonstrated with maximum errors in angle prediction less than 0.6 degrees and maximum errors in velocity prediction less than 1%, both with 99 percent confidence. The development of Micro Electro Mechanical Systems (MEMS) -based, fast-response, multi-sensor pressure probes of miniature size for velocity and pressure measurement applications in unsteady and turbulent flow gelds is also discussed. A new type of pressure sensor has been developed with silicon-nitride diaphragm and a characteristic size of only 250 gm. These pressure sensors are small enough to be mounted close to the surface of a miniature hemispherical-tip probe, obtaining a probe bandwidth and a theoretical frequency response up to 100 kl-lz. Both computational and experimental approaches are employed to develop calibration techniques suitable for highly unsteady flow environments with strong spatial gradients.

Johansen, Espen S

1998-01-01T23:59:59.000Z

146

Measurement of turbulent wind velocities using a rotating boom apparatus  

DOE Green Energy (OSTI)

The present report covers both the development of a rotating-boom facility and the evaluation of the spectral energy of the turbulence measured relative to the rotating boom. The rotating boom is composed of a helicopter blade driven through a pulley speed reducer by a variable speed motor. The boom is mounted on a semiportable tower that can be raised to provide various ratios of hub height to rotor diameter. The boom can be mounted to rotate in either the vertical or horizontal plane. Probes that measure the three components of turbulence can be mounted at any location along the radius of the boom. Special hot-film sensors measured two components of the turbulence at a point directly in front of the rotating blade. By using the probe rotated 90/sup 0/ about its axis, the third turbulent velocity component was measured. Evaluation of the spectral energy distributions for the three components of velocity indicates a large concentration of energy at the rotational frequency. At frequencies slightly below the rotational frequency, the spectral energy is greatly reduced over that measured for the nonrotating case measurements. Peaks in the energy at frequencies that are multiples of the rotation frequency were also observed. We conclude that the rotating boom apparatus is suitable and ready to be used in experiments for developing and testing sensors for rotational measurement of wind velocity from wind turbine rotors. It also can be used to accurately measure turbulent wind for testing theories of rotationally sampled wind velocity.

Sandborn, V.A.; Connell, J.R.

1984-04-01T23:59:59.000Z

147

Van Allen probes pinpoint driver of speeding electrons  

NLE Websites -- All DOE Office Websites (Extended Search)

Van Allen probes pinpoint driver of speeding electrons Van Allen probes pinpoint driver of speeding electrons Van Allen probes pinpoint driver of speeding electrons Los Alamos researchers believe they have solved a lingering mystery about how electrons within Earth's radiation belt can suddenly become energetic enough to kill orbiting satellites. July 25, 2013 Artist's rendering of mechanism within Van Allen radiation belts An artist's rendering of a mechanism within the Van Allen radiation belts that can accelerate electrons to satellite-killing energies. The mechanism was discovered by a group of scientists using data from NASA's Van Allen Probes (formerly known as the Radiation Belt Storm Probes). Researchers, led by Los Alamos National laboratory space physicist Geoffrey Reeves, believe that electromagnetic waves within the Van Allen belts themselves

148

BEAM CONTROL PROBE  

DOE Patents (OSTI)

A probe is described for intercepting a desired portion of a beam of charged particles and for indicating the spatial disposition of the beam. The disclosed probe assembly includes a pair of pivotally mounted vanes moveable into a single plane with adjacent edges joining and a calibrated mechanical arrangement for pivoting the vancs apart. When the probe is disposed in the path of a charged particle beam, the vanes may be adjusted according to the beam current received in each vane to ascertain the dimension of the beam.

Chesterman, A.W.

1959-03-17T23:59:59.000Z

149

Chemical sensing flow probe  

DOE Patents (OSTI)

A new chemical probe determines the properties of an analyte using the light absorption of the products of a reagent/analyte reaction. The probe places a small reaction volume in contact with a large analyte volume. Analyte diffuses into the reaction volume. Reagent is selectively supplied to the reaction volume. The light absorption of the reaction in the reaction volume indicates properties of the original analyte. The probe is suitable for repeated use in remote or hostile environments. It does not require physical sampling of the analyte or result in significant regent contamination of the analyte reservoir.

Laguna, George R. (Albuquerque, NM); Peter, Frank J. (Albuquerque, NM); Butler, Michael A. (Albuquerque, NM)

1999-01-01T23:59:59.000Z

150

Chemical sensing flow probe  

DOE Patents (OSTI)

A new chemical probe determines the properties of an analyte using the light absorption of the products of a reagent/analyte reaction. The probe places a small reaction volume in contact with a large analyte volume. Analyte diffuses into the reaction volume. Reagent is selectively supplied to the reaction volume. The light absorption of the reaction in the reaction volume indicates properties of the original analyte. The probe is suitable for repeated use in remote or hostile environments. It does not require physical sampling of the analyte or result in significant regent contamination of the analyte reservoir. 7 figs.

Laguna, G.R.; Peter, F.J.; Butler, M.A.

1999-02-16T23:59:59.000Z

151

Carbon nanotube based electromechanical probes  

E-Print Network (OSTI)

Electromechanical probing applications continuously require smaller pitches, faster manufacturing and lower electrical resistance. Conventional techniques, such as MEMS based cantilever probes have their shortcomings in ...

Yaglioglu, Onnik, 1976-

2007-01-01T23:59:59.000Z

152

Wave Energy  

Energy.gov (U.S. Department of Energy (DOE))

Wave energy technologies extract energy directly from surface waves or from pressure fluctuations below the surface. Renewable energy analysts believe there is enough energy in ocean waves to provide up to 2 terawatts of electricity. (A terawatt is equal to a trillion watts.)

153

Fermi velocity renormalization and dynamical gap generation in graphene  

E-Print Network (OSTI)

We study the renormalization of the Fermi velocity by the long-range Coulomb interactions between the charge carriers in the Dirac-cone approximation for the effective low-energy description of the electronic excitations in graphene at half filling. Solving the coupled system of Dyson-Schwinger equations for the dressing functions in the corresponding fermion propagator with various approximations for the particle-hole polarization we observe that Fermi velocity renormalization effects generally lead to a considerable increase of the critical coupling for dynamical gap generation and charge-density wave formation at the semimetal-insulator transition.

C. Popovici; C. S. Fischer; L. von Smekal

2013-08-28T23:59:59.000Z

154

Hard probes 2006 Asilomar  

E-Print Network (OSTI)

"The second international conference on hard and electromagnetic probes of high-energy nuclear collisions was held June 9 to 16, 2006 at the Asilomar Conference grounds in Pacific Grove, California" (photo and 1/2 page)

2006-01-01T23:59:59.000Z

155

OTRC Wave Basin | Open Energy Information  

Open Energy Info (EERE)

OTRC Wave Basin OTRC Wave Basin Jump to: navigation, search Basic Specifications Facility Name OTRC Wave Basin Overseeing Organization Texas A&M (OTRC) Hydrodynamic Testing Facility Type Wave Basin Length(m) 45.7 Beam(m) 30.5 Depth(m) 5.8 Water Type Freshwater Cost(per day) $300/hour (excluding labor) Special Physical Features 4.6m wide x 9.1m long x 16.8m deep pit with adjustable depth floor in test area Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 0.6 Length of Effective Tow(m) 27.4 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.9 Maximum Wave Height(m) at Wave Period(s) 4.0 Maximum Wave Length(m) 25 Wave Period Range(s) 4.0 Current Velocity Range(m/s) 0.6 Programmable Wavemaking Yes Wavemaking Description GEDAP 3D wave generation software, 48 hinged flap wave generator

156

Velocity shear-induced effects on electrostatic ion perturbations  

Science Conference Proceedings (OSTI)

Linear evolution of electrostatic perturbations in an unmagnetized electron{endash}ion plasma shear flow is studied. New physical effects, arising due to the non-normality of linear dynamics are disclosed. A new class of {ital nonperiodic collective mode} with vortical motion of ions, characterized by intense energy exchange with the mean flow, is found. It is also shown that the velocity shear induces extraction of the mean flow energy by ion-sound waves and that during the shear-induced evolution the ion-sound waves turn eventually into ion plasma oscillations. {copyright} {ital 1997 American Institute of Physics.}

Rogava, A.D. [Department of Physics, Tbilisi State University, and Department of Theoretical Astrophysics, Abastumani Astrophysical Observatory, Tbilisi, Republic of (Georgia)] [Department of Physics, Tbilisi State University, and Department of Theoretical Astrophysics, Abastumani Astrophysical Observatory, Tbilisi, Republic of (Georgia); Chagelishvili, G.D. [Department of Theoretical Astrophysics, Abastumani Astrophysical Observatory, Tbilisi, Republic of (Georgia)] [Department of Theoretical Astrophysics, Abastumani Astrophysical Observatory, Tbilisi, Republic of (Georgia); [Department of Cosmogeophysics, Space Research Institute, Moscow (Russia); Berezhiani, V.I. [Department of Plasma Physics, Institute of Physics, Tbilisi, Republic of (Georgia)] [Department of Plasma Physics, Institute of Physics, Tbilisi, Republic of (Georgia)

1997-12-01T23:59:59.000Z

157

Ship Waves and Lee Waves  

Science Conference Proceedings (OSTI)

Three-dimensional internal trapped lee wave modes produced by an isolated obstacle in a stratified fluid are shown to have dynamics analogous to surface ship waves on water of finite depth. Two models which allow for vertical trapping of wave ...

R. D. Sharman; M. G. Wurtele

1983-02-01T23:59:59.000Z

158

Shock Waves in Weakly Compressed Granular Media  

E-Print Network (OSTI)

We experimentally probe nonlinear wave propagation in weakly compressed granular media, and observe a crossover from quasi-linear sound waves at low impact, to shock waves at high impact. We show that this crossover grows with the confining pressure $P_0$, whereas the shock wave speed is independent of $P_0$ --- two hallmarks of granular shocks predicted recently. The shocks exhibit powerlaw attenuation, which we model with a logarithmic law implying that local dissipation is weak. We show that elastic and potential energy balance in the leading part of the shocks.

Siet van den Wildenberg; Rogier van Loo; Martin van Hecke

2013-04-23T23:59:59.000Z

159

Extreme wave impinging and overtopping  

E-Print Network (OSTI)

This investigates the velocity fields of a plunging breaking wave impinging on a structure through measurements in a two-dimensional wave tank. As the wave breaks and overtops the structure, so-called green water is generated. The flow becomes multi-phased and chaotic as a highly aerated region is formed in the flow in the vicinity of the structure while water runs up onto the structure. In this study, particle image velocimetry (PIV) was employed to measure the velocity field of the water dominant region. For measurements of an aerated region that cannot be measured by PIV, a new measurement method called bubble image velocimetry (BIV) was developed. The principle and setup of the BIV method were introduced and validated. Mean and turbulence properties were obtained through ensemble averaging repeated tests measured by both methods. The dominant and maximum velocity of the breaking wave and associated green water are discussed for the three distinct phases of the impingement-runup-overtopping sequence. The distribution of the green water velocity along the top of the structure has a nonlinear profile and the maximum velocity occurs near the front of the fast moving water. Using the measured data and applying dimensional analysis, a similarity profile for the green water flow on top of the structure was obtained, and a prediction equation was formulated. The dam breaking solution used for the green water prediction was examined with determining initial water depth based on the experiment conditions. Comparison between measurements, the prediction equation, and the dam breaking flow was made. The prediction equation and the dam break flow with appropriate initial water depth may be used to predict the green water velocity caused by extreme waves in a hurricane. To demonstrate the aeration of the breaking wave and overtopping water, void fraction was also investigated. There is strong aeration in the region of overtopping water front generated by a plunging breaker. Void fraction of overtopping water was measured using a fiber optic reflectometer (FOR). The measured velocity and void fraction were also used to estimate flow rate and water volume of overtopping water.

Ryu, Yong Uk

2006-08-01T23:59:59.000Z

160

ARM - Measurement - Hydrometeor fall velocity  

NLE Websites -- All DOE Office Websites (Extended Search)

fall velocity fall velocity ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Hydrometeor fall velocity Fall velocity of hydrometeors (e.g. rain, snow, graupel, hail). Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments DISDROMETER : Impact Disdrometer LDIS : Laser Disdrometer WSACR : Scanning ARM Cloud Radar, tuned to W-Band (95GHz) Field Campaign Instruments DISDROMETER : Impact Disdrometer PDI : Phase Doppler Interferometer

Note: This page contains sample records for the topic "velocity wave probe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Property:Current Velocity Range(m/s) | Open Energy Information  

Open Energy Info (EERE)

Velocity Range(m/s) Velocity Range(m/s) Jump to: navigation, search Property Name Current Velocity Range(m/s) Property Type String Pages using the property "Current Velocity Range(m/s)" Showing 25 pages using this property. (previous 25) (next 25) 1 1.5-ft Wave Flume Facility + 0.0 + 10-ft Wave Flume Facility + 0.0 + 11-ft Wave Flume Facility + 0.0 + 2 2-ft Flume Facility + 0.0 + 3 3-ft Wave Flume Facility + 0.0 + 5 5-ft Wave Flume Facility + 0.0 + 6 6-ft Wave Flume Facility + 0.0 + A Alden Large Flume + 3.2 + Alden Small Flume + 0.0 + Alden Wave Basin + 0.0 + B Breakwater Research Facility + 0.0 + C Carderock Maneuvering & Seakeeping Basin + 0.0 + Carderock Tow Tank 2 + 0.0 + Carderock Tow Tank 3 + 0.0 + Chase Tow Tank + 0.0 + Coastal Harbors Modeling Facility + 0.0 +

162

Velocity and Attenuation Structure of the Geysers Geothermal Field, California  

DOE Green Energy (OSTI)

The Geysers geothermal field is located in northern California and is one of the world's largest producers of electricity from geothermal energy. The resource consists of primarily dry steam which is produced from a low, porosity fractured graywacke. Over the last several years steam pressure at the Geysers has been dropping. Concern over decline of the resource has prompted research to understand its fundamental nature. A key issue is the distribution of fluid in the matrix of the reservoir rock. In this paper we interpret seismic compressional-wave velocity and attenuation data at the Geysers in terms of the geologic structure and fluid saturation in the reservoir. Our data consist of approximately 300 earthquakes that are of magnitude 1.2 and are distributed in depth between sea level and 2.5 km. Using compressional-wave arrival times, we invert for earthquake location, origin time, and velocity along a three-dimensional grid. Using the initial pulse width of the compressional-wave, we invert for the initial pulse width associated with the source, and the one-dimensional Q structure. We find that the velocity structure correlates with known mapped geologic units, including a velocity high that is correlated with a felsite body at depth that is known from drilling. The dry steam reservoir, which is also known from drilling, is mostly correlated with low velocity. The Q increases with depth to the top of the dry steam reservoir and decreases with depth within the reservoir. The decrease of Q with depth probably indicates that the saturation of the matrix of the reservoir rock increases with depth.

Zucca, J. J.; Hutchings, L. J.; Kasameyer, P. W.

1993-01-01T23:59:59.000Z

163

DeFrees Small Wave Basin | Open Energy Information  

Open Energy Info (EERE)

Wave Basin Wave Basin Jump to: navigation, search Basic Specifications Facility Name DeFrees Small Wave Basin Overseeing Organization Cornell University Hydrodynamics Hydrodynamic Testing Facility Type Wave Basin Length(m) 15.0 Beam(m) 0.8 Depth(m) 0.9 Water Type Freshwater Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.3 Maximum Wave Height(m) at Wave Period(s) 3.0 Maximum Wave Length(m) 30 Wave Period Range(s) 3.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Computer controlled hydraulic paddle, arbitrary wave shape possible Wave Direction Uni-Directional Simulated Beach Yes Description of Beach 1:10 sloping glass with dissipative horsehair covering if needed

164

Convective heat flow probe  

DOE Patents (OSTI)

A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packet-type seals are provided along the probe above and below the heater pads.

Dunn, J.C.; Hardee, H.C.; Striker, R.P.

1984-01-09T23:59:59.000Z

165

Derivation of transformation equations for the parameters that characterize a plane acoustic wave without using phase invariance and Lorentz-Einstein transformation  

E-Print Network (OSTI)

We show that the transformation equations for the parameters that characterize a plane acoustic wave: period, (frequency), wave vector, wave length and phase velocity can be derived without using phase invariance and Lorentz-Einstein transformation

Bernhard Rothenstein

2005-06-20T23:59:59.000Z

166

Wind Forced Internal Waves in the North Pacific and Sargasso Sea  

Science Conference Proceedings (OSTI)

The three-dimensional structure of the near-inertial frequency internal wave field was measured at two open ocean sites using expendable velocity profilers. Both wave fields appear to be dominantly wind forced although their vertical structure ...

Eric A. D'Asaro

1984-04-01T23:59:59.000Z

167

The Direct Estimation of Near-Bottom Turbulent Fluxes in the Presence of Energetic Wave Motions  

Science Conference Proceedings (OSTI)

Velocities produced by energetic waves can contaminate direct covariance estimates of near-bottom turbulent shear stress and turbulent heat flux. A new adaptive filtering technique is introduced to minimize the contribution of wave-induced ...

W. J. Shaw; J. H. Trowbridge

2001-09-01T23:59:59.000Z

168

The Response of an Open Stratospheric Balloon to the Presence of Inertio-Gravity Waves  

Science Conference Proceedings (OSTI)

Analytic solutions for the vertical response of an open stratospheric balloon to the presence of inertio-gravity waves during its descent are obtained. Monochromatic waves with simultaneous variations in density, velocity, and temperature are ...

P. Alexander; J. Cornejo; A. De la Torre

1996-01-01T23:59:59.000Z

169

Original articles: Intelligent multichannel sensors for pulse wave analysis  

Science Conference Proceedings (OSTI)

Aortic pulse wave velocity is an independent predictive indicator for all cause mortality and cardiovascular morbidity. Unfortunately it is only invasively accessible and thus the A. carotis-A. femoralis pulse wave velocity (cfPWV) is recommended as ... Keywords: Arterial stiffness, BP, Cardiovascular risk, ECG, Electrocardiography, FIR, ICA, INA, Idxao, Idxo, Idxs, LED, PTT, PW, PWV, Pulse transit time, Pulse wave velocity, SD, cfPWV, dBP, p'(Idxo), p'(Idxs), p(Idxo), p(Idxs), sBP

S. Rosenkranz; C. Mayer; J. Kropf; S. Wassertheurer

2011-11-01T23:59:59.000Z

170

Dual output acoustic wave sensor for molecular identification  

DOE Patents (OSTI)

The invention comprises a method for the identification and quantification of sorbed chemical species onto a coating of a device capable of generating and receiving an acoustic wave, by measuring the changes in the velocity of the acoustic wave resulting from the sorption of the chemical species into the coating as the wave travels through the coating and by measuring the changes in the attenuation of an acoustic wave resulting from the sorption of the chemical species into the coating as the wave travels through the coating. The inventive method further correlates the magnitudes of the changes of velocity with respect to changes of the attenuation of the acoustic wave to identify the sorbed chemical species. The absolute magnitudes of the velocity changes or the absolute magnitude of the attenuation changes are used to determine the concentration of the identified chemical species.

Frye, G.C.; Martin, S.J.

1990-10-03T23:59:59.000Z

171

Shock Waves and Cosmological Matrix Models  

E-Print Network (OSTI)

We find the shock wave solutions in a class of cosmological backgrounds with a null singularity, each of these backgrounds admits a matrix description. A shock wave solution breaks all supersymmetry meanwhile indicates that the interaction between two static D0-branes cancel, thus provides basic evidence for the matrix description. The probe action of a D0-brane in the background of another suggests that the usual perturbative expansion of matrix model breaks down.

Miao Li; Wei Song

2005-07-19T23:59:59.000Z

172

Ultrasonic search wheel probe  

DOE Patents (OSTI)

A device is provided for reducing internal reflections from the tire of an ultrasonic search wheel probe or from within the material being examined. The device includes a liner with an anechoic chamber within which is an ultrasonic transducer. The liner is positioned within the wheel and includes an aperture through which the ultrasonic sound from the transducer is directed.

Mikesell, Charles R. (Idaho Falls, ID)

1978-01-01T23:59:59.000Z

173

Seismic velocity structure and microearthquake source properties at The Geysers, California, geothermal area  

DOE Green Energy (OSTI)

The method of progressive hypocenter-velocity inversion has been extended to incorporate S-wave arrival time data and to estimate S-wave velocities in addition to P-wave velocities. S-wave data to progressive inversion does not completely eliminate hypocenter-velocity tradeoffs, but they are substantially reduced. Results of a P and S-wave progressive hypocenter-velocity inversion at The Geysers show that the top of the steam reservoir is clearly defined by a large decrease of V/sub p//V/sub s/ at the condensation zone-production zone contact. The depth interval of maximum steam production coincides with minimum observed V/sub p//V/sub s/, and V/sub p//V/sub s/ increses below the shallow primary production zone suggesting that reservoir rock becomes more fluid saturated. The moment tensor inversion method was applied to three microearthquakes at The Geysers. Estimated principal stress orientations were comparable to those estimated using P-wave firstmotions as constraints. Well constrained principal stress orientations were obtained for one event for which the 17 P-first motions could not distinguish between normal-slip and strike-slip mechanisms. The moment tensor estimates of principal stress orientations were obtained using far fewer stations than required for first-motion focal mechanism solutions. The three focal mechanisms obtained here support the hypothesis that focal mechanisms are a function of depth at The Geysers. Progressive inversion as developed here and the moment tensor inversion method provide a complete approach for determining earthquake locations, P and S-wave velocity structure, and earthquake source mechanisms.

O'Connell, D.R.

1986-12-01T23:59:59.000Z

174

The Velocity-Selecting Cerenkov Counter  

E-Print Network (OSTI)

BAFFLE VELOCITY - SELECTING CERENKOV COUNTER (C 2) FiJI. 1velocity-selectinp: Cerenkov counter. ueaL-31;S CYLINDRICA~

Chamberlain, Owen; Weigand, Clyde

1956-01-01T23:59:59.000Z

175

Experimental Techniques for Measuring Temperature and Velocity...  

NLE Websites -- All DOE Office Websites (Extended Search)

Measuring Temperature and Velocity Fields to Improve the Use and Validation of Building Heat Transfer Models Title Experimental Techniques for Measuring Temperature and Velocity...

176

Lithospheric Velocity Structure of the Anatolain plateau-Caucasus-Caspian Regions  

SciTech Connect

Anatolian Plateau-Caucasus-Caspian region is an area of complex structure accompanied by large variations in seismic wave velocities. Despite the complexity of the region little is known about the detailed lithospheric structure. Using data from 29 new broadband seismic stations in the region, a unified velocity structure is developed using teleseismic receiver functions and surface waves. Love and Rayleigh surface waves dispersion curves have been derived from event-based analysis and ambient-noise correlation. We jointly inverted the receiver functions with the surface wave dispersion curves to determine absolute shear wave velocity and important discontinuities such as sedimentary layer, Moho, lithospheric-asthenospheric boundary. We combined these new station results with Eastern Turkey Seismic Experiment results (29 stations). Caspian Sea and Kura basin underlained by one of the thickest sediments in the world. Therefore, short-period surface waves are observed to be very slow. The strong crustal multiples in receiver functions and the slow velocities in upper crust indicate the presence of thick sedimentary unit (up to 20 km). Crustal thickness varies from 34 to 52 km in the region. The thickest crust is in Lesser Caucasus and the thinnest is in the Arabian Plate. The lithospheric mantle in the Greater Caucasus and the Kura depression is faster than the Anatolian Plateau and Lesser Caucasus. This possibly indicates the presence of cold lithosphere. The lower crust is slowest in the northeastern part of the Anatolian Plateau where Holocene volcanoes are located.

Gok, R; Mellors, R J; Sandvol, E; Pasyanos, M; Hauk, T; Yetirmishli, G; Teoman, U; Turkelli, N; Godoladze, T; Javakishvirli, Z

2009-04-15T23:59:59.000Z

177

Velocity Biases of Adaptive Filter Estimates in Heterodyne Doppler Lidar Measurements  

Science Conference Proceedings (OSTI)

Frequency estimates by heterodyne Doppler lidar (HDL) may result in velocity bias due to the atmospheric speckle effect and an asymmetrical power spectrum of the probing pulse, as discussed in a previous paper by Dabas et al. In this paper, it ...

Alain M. Dabas; Philippe Drobinski; Pierre H. Flamant

2000-09-01T23:59:59.000Z

178

Teleseismic evidence for a low-velocity body under the Coso geothermal area  

Open Energy Info (EERE)

Teleseismic evidence for a low-velocity body under the Coso geothermal area Teleseismic evidence for a low-velocity body under the Coso geothermal area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Teleseismic evidence for a low-velocity body under the Coso geothermal area Details Activities (1) Areas (1) Regions (0) Abstract: Teleseismic P wave arrivals were recorded by a dense array of seismograph stations located in the Coso geothermal area, California. The resulting pattern of relative residuals an area showing approximately 0.2-s excess travel time that migrates with changing source azimuth, suggesting that the area is the 'delay shadow' produced by a deep, low-velocity body. Inversion of the relative residual data for three-dimensional velocity structure determines the lateral variations in velocity to a depth of 22.5

179

Velocity Distributions from Nonextensive Thermodynamics  

E-Print Network (OSTI)

There is no accepted mechanism that explains the equilibrium structures that form in collisionless cosmological N-body simulations. Recent work has identified nonextensive thermodynamics as an innovative approach to the problem. The distribution function that results from adopting this framework has the same form as for polytropes, but the polytropic index is now related to the degree of nonextensiveness. In particular, the nonextensive approach can mimic the equilibrium structure of dark matter density profiles found in simulations. We extend the investigation of this approach to the velocity structures expected from nonextensive thermodynamics. We find that the nonextensive and simulated N-body rms-velocity distributions do not match one another. The nonextensive rms-velocity profile is either monotonically decreasing or displays little radial variation, each of which disagrees with the rms-velocity distributions seen in simulations. We conclude that the currently discussed nonextensive models require further modifications in order to corroborate dark matter halo simulations. (adapted from TeX)

Eric I. Barnes; Liliya L. R. Williams; Arif Babul; Julianne J. Dalcanton

2006-10-05T23:59:59.000Z

180

Measuring OutdoorAir Intake Rates Using Electronic Velocity Sensors at Louvers and Downstream of Airflow Straighteners  

SciTech Connect

Practical and accurate technologies are needed for continuously measuring and controlling outdoor air (OA) intake rates in commercial building heating, ventilating, and air conditioning (HVAC) systems. This project evaluated two new measurement approaches. Laboratory experiments determined that OA flow rates were measurable with errors generally less than 10percent using electronic air velocity probes installed between OA intake louver blades or at the outlet face of louvers. High accuracy was maintained with OA flow rates as low as 15percent of the maximum for the louvers. Thus, with this measurement approach HVAC systems do not need separate OA intakes for minimum OA supply. System calibration parameters are required for each unique combination of louver type and velocity sensor location but calibrations are not necessary for each system installation. The research also determined that the accuracy of measuring OA flow rates with velocity probes located in the duct downstream of the intake louver was not improved by installing honeycomb airflow straighteners upstream of the probes. Errors varied with type of upstream louver, were as high as 100percent, and were often greater than 25percent. In conclusion, use of electronic air velocity probes between the blades of OA intake louvers or at the outlet face of louvers is a highly promising means of accurately measuring rates of OA flow into HVAC systems. The use of electronic velocity probes downstream of airflow straighteners is less promising, at least with the relatively small OA HVAC inlet systems employed in this research.

Fisk, William; Sullivan, Douglas; Cohen, Sebastian; Han, Hwataik

2008-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "velocity wave probe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Avoided-Level-Crossing Spectroscopy with Dressed Matter Waves  

SciTech Connect

We devise a method for probing resonances of macroscopic matter waves in shaken optical lattices by monitoring their response to slow parameter changes, and show that such resonances can be disabled by particular choices of the driving amplitude. The theoretical analysis of this scheme reveals far-reaching analogies between dressed atoms and time periodically forced matter waves.

Eckardt, Andre [ICFO-Institut de Ciencies Fotoniques, E-08860 Castelldefels (Barcelona) (Spain); Holthaus, Martin [Institut fuer Physik, Carl von Ossietzky Universitaet, D-26111 Oldenburg (Germany)

2008-12-12T23:59:59.000Z

182

MHL 2D Wind/Wave | Open Energy Information  

Open Energy Info (EERE)

MHL 2D Wind/Wave MHL 2D Wind/Wave Jump to: navigation, search Basic Specifications Facility Name MHL 2D Wind/Wave Overseeing Organization University of Michigan Hydrodynamics Hydrodynamic Testing Facility Type Tunnel Length(m) 35.1 Beam(m) 0.7 Depth(m) 1.2 Cost(per day) $2000 (+ Labor/Materials) Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.2 Wave Period Range(s) 0.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Regular and irregular wave spectrum Wave Direction Uni-Directional Simulated Beach Yes Description of Beach Removable beach Channel/Tunnel/Flume Channel/Tunnel/Flume Yes Recirculating No Wind Capabilities Wind Capabilities Yes Wind Velocity Range(m/s) 20.4

183

University of Iowa Wave Basin | Open Energy Information  

Open Energy Info (EERE)

University of Iowa Wave Basin University of Iowa Wave Basin Overseeing Organization University of Iowa Hydrodynamic Testing Facility Type Wave Basin Length(m) 40.0 Beam(m) 20.0 Depth(m) 3.0 Cost(per day) Contact POC Special Physical Features Towed 3DPIV; contactless motion tracking; free surface measurement mappingv Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 2.5 Length of Effective Tow(m) 25.0 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.6 Wave Period Range(s) 0.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Fully programmable for regular or irregular waves Wave Direction Uni-Directional Simulated Beach Yes Description of Beach Trusses overlaid with lattice and matting Channel/Tunnel/Flume

184

Meridional Localization of Planetary Waves in Stochastic Zonal Flows  

Science Conference Proceedings (OSTI)

The effect of stochastic fluctuations in the zonal-mean velocity field on the energy dispersion of planetary stationary waves is considered, using the nondivergent, barotropic vorticity equation. It is found that for small noise levels, the ...

Adam Hugh Monahan; Lionel Pandolfo

2001-04-01T23:59:59.000Z

185

Evidence for Barotropic Wave Radiation from the Gulf Stream  

Science Conference Proceedings (OSTI)

Highly energetic velocity fluctuations associated with topographic Rossby waves are frequently observed over the continental slope and rise off the United States and Canadian east coast. It has been suggested that the energy source for these ...

Amy S. Bower; Nelson G. Hogg

1992-01-01T23:59:59.000Z

186

Infragravity Edge Wave Observations on Two California Beaches  

Science Conference Proceedings (OSTI)

Wavenumber-frequency spectra of the infragravity (periods 20-200 sec) wave velocity field in the surf zone of two California beaches are estimated. Because the longshore arrays of biaxial electromagnetic current meters are relatively short (...

Joan Oltman-Shay; R. T. Guza

1987-05-01T23:59:59.000Z

187

Isothermal Plasma Waves in Gravitomagnetic Planar Analogue  

E-Print Network (OSTI)

We investigate the wave properties of the Kerr black hole with isothermal plasma using 3+1 ADM formalism. The corresponding Fourier analyzed perturbed GRMHD equations are used to obtain the dispersion relations. These relations lead to the real values of the components of wave vector $\\textbf{k}$ which are used to evaluate the quantities like phase and group velocities etc. These have been discussed graphically in the neighborhood of the pair production region. The results obtained verify the conclusion of Mackay et al. according to which rotation of a black hole is required for negative phase velocity propagation.

M. Sharif; Umber Sheikh

2007-09-15T23:59:59.000Z

188

Body Wave Tomography For Regional Scale Assessment Of Geothermal Indicators  

Open Energy Info (EERE)

Body Wave Tomography For Regional Scale Assessment Of Geothermal Indicators Body Wave Tomography For Regional Scale Assessment Of Geothermal Indicators In The Western Great Basin Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Body Wave Tomography For Regional Scale Assessment Of Geothermal Indicators In The Western Great Basin Details Activities (8) Areas (4) Regions (0) Abstract: Body and surface wave tomography are two of the primary methods for estimation of regional scale seismic velocity variations. Seismic velocity is affected by temperature and rock composition in complex ways, but when combined with geologic and structural maps, relative temperature can in some cases be estimated. We present preliminary tomographic models for compressional and shear-wave velocity using local and regional earthquakes recorded by Earthscope Transportable Array stations, network

189

L-Shaped Flume Wave Basin | Open Energy Information  

Open Energy Info (EERE)

L-Shaped Flume Wave Basin L-Shaped Flume Wave Basin Jump to: navigation, search Basic Specifications Facility Name L-Shaped Flume Wave Basin Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility Type Wave Basin Length(m) 76.2 Beam(m) 15.2 Depth(m) 1.8 Water Type Freshwater Special Physical Features Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.6 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 10.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wave Direction Uni-Directional Simulated Beach No Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Automated data acquisition and control sys

190

System and method for determining coolant level and flow velocity in a nuclear reactor  

DOE Patents (OSTI)

A boiling water reactor includes a reactor pressure vessel having a feedwater inlet for the introduction of recycled steam condensate and/or makeup coolant into the vessel, and a steam outlet for the discharge of produced steam for appropriate work. A fuel core is located within a lower area of the pressure vessel. The fuel core is surrounded by a core shroud spaced inward from the wall of the pressure vessel to provide an annular downcomer forming a coolant flow path between the vessel wall and the core shroud. A probe system that includes a combination of conductivity/resistivity probes and/or one or more time-domain reflectometer (TDR) probes is at least partially located within the downcomer. The probe system measures the coolant level and flow velocity within the downcomer.

Brisson, Bruce William; Morris, William Guy; Zheng, Danian; Monk, David James; Fang, Biao; Surman, Cheryl Margaret; Anderson, David Deloyd

2013-09-10T23:59:59.000Z

191

Method of accelerating photons by a relativistic plasma wave  

DOE Patents (OSTI)

Photons of a laser pulse have their group velocity accelerated in a plasma as they are placed on a downward density gradient of a plasma wave of which the phase velocity nearly matches the group velocity of the photons. This acceleration results in a frequency upshift. If the unperturbed plasma has a slight density gradient in the direction of propagation, the photon frequencies can be continuously upshifted to significantly greater values.

Dawson, John M. (Pacific Palisades, CA); Wilks, Scott C. (Santa Monica, CA)

1990-01-01T23:59:59.000Z

192

Lagrangian kinematics of steep waves up to the inception of a spilling breaker  

E-Print Network (OSTI)

Horizontal Lagrangian velocities and accelerations at the surface of steep water-waves are studied by Particle Tracking Velocimetry (PTV) for gradually increasing crest heights up to the inception of a spilling breaker. Localized steep waves are excited using wavemaker-generated Peregrine breather-type wave trains. Actual crest and phase velocities are estimated from video recorded sequences of the instantaneous wave shape as well as from surface elevation measurements by wave gauges. Effects of nonlinearity and spectral width on phase velocity, as well as relation between the phase velocity and crest propagation speed are discussed. The inception of a spilling breaker is associated with the horizontal velocity of water particles at the crest attaining that of the crest, thus confirming the kinematic criterion for inception of breaking.

Shemer, Lev

2013-01-01T23:59:59.000Z

193

Velocity-Space Proton Diffusion in the Solar Wind Turbulence  

E-Print Network (OSTI)

We study a velocity-space quasilinear diffusion of the solar wind protons driven by oblique Alfven turbulence at proton kinetic scales. Turbulent fluctuations at these scales possess properties of kinetic Alfven waves (KAWs) that are efficient in Cherenkov resonant interactions. The proton diffusion proceeds via Cherenkov kicks and forms a quasilinear plateau - nonthermal proton tail in the velocity distribution function (VDF). The tails extend in velocity space along the mean magnetic field from 1 to (1.5-3) VA, depending on the spectral break position, turbulence amplitude at the spectral break, and spectral slope after the break. The most favorable conditions for the tail generation occur in the regions where the proton thermal and Alfven velocities are about the same, VTp/VA = 1. The estimated formation times are within 1-2 h for typical tails at 1 AU, which is much shorter than the solar wind expansion time. Our results suggest that the nonthermal proton tails, observed in-situ at all heliocentric distan...

Voitenko, Yuriy

2013-01-01T23:59:59.000Z

194

Kinematics of Turbulence Convected by a Random Wave Field  

Science Conference Proceedings (OSTI)

Turbulent velocity spectra measured beneath wind waves show a large enhancement about the central wave frequency. A “5/3" frequency dependence can be seen both above and below the central peak, but with an apparent increase in spectral density at ...

J. L. Lumley; E. A. Terray

1983-11-01T23:59:59.000Z

195

DOE Workshop - Deposition Velocity Status  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delivering DOE's Vision for the Delivering DOE's Vision for the East Tennessee Technology Park Mission Safely Delivering the Department of Energy's Vision for the East Tennessee Technology Park Mission DOE Workshop Deposition Velocity Status Mike Hitchler, Manager Nuclear Facility Safety June 5, 2012 Safely Delivering DOE's Vision for the East Tennessee Technology Park Mission Existing UCOR Analyses * UCOR facilities at East Tennessee Technology Park (ETTP) and Oak Ridge National Laboratory (ORNL) use various plume models depending on when they were developed and by whom. - Some use MACCS or MACCS2 for dispersion evaluation. (~5 locations) - LLLW uses ingestion modeling (multiple locations)

196

Velocity Probability Density Functions for Oceanic Floats  

Science Conference Proceedings (OSTI)

Probability density functions (PDFs) of daily velocities from subsurface floats deployed in the North Atlantic and equatorial Atlantic Oceans are examined. In general, the PDFs are approximately Gaussian for small velocities, but with significant ...

Annalisa Bracco; J. H. LaCasce; Antonello Provenzale

2000-03-01T23:59:59.000Z

197

Equatorial Velocity Profiles. Part II: Zonal Component  

Science Conference Proceedings (OSTI)

Vertical profiles of horizontal velocity made along 53°E in the western Indian Ocean, during and after he onset of the southwest monsoon in 1976, show features in zonal velocity of relatively small vertical scale. Persistence of the features over ...

Kathleen O'Neill; James R. Luyten

1984-12-01T23:59:59.000Z

198

Determining Vertical Water Velocities from Seaglider  

Science Conference Proceedings (OSTI)

Vertical velocities in the world’s oceans are typically small, less than 1 cm s?1, posing a significant challenge for observational techniques. Seaglider, an autonomous profiling instrument, can be used to estimate vertical water velocity in the ...

Eleanor Frajka-Williams; Charles C. Eriksen; Peter B. Rhines; Ramsey R. Harcourt

2011-12-01T23:59:59.000Z

199

Velocity Probability Density Functions from Altimetry  

Science Conference Proceedings (OSTI)

Probability density functions (pdfs) are employed to evaluate the distribution of velocities in the global ocean. This study computes pdfs of ocean surface velocity using altimetric data from the TOPEX/Poseidon satellite. Results show that the ...

Sarah T. Gille; Stefan G. Llewellyn Smith

2000-01-01T23:59:59.000Z

200

Determining Velocities and Mixing Coefficients from Tracers  

Science Conference Proceedings (OSTI)

The effort to determine oceanic velocities from tracer distributions relies on a knowledge of the effects of mixing. However, the macroscopic diffusion coefficient, K, is generally not known and must be calculated along with the velocity. The ...

Jae Hak Lee; George Veronis

1989-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "velocity wave probe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

An Acoustic Doppler and Electromagnetic Velocity Profiler  

Science Conference Proceedings (OSTI)

A freely failing current meter called the Absolute Velocity Profiler (AVP) is described. This profiler is an expansion of a previously developed instrument, the Electro-Magnetic Velocity Profiler (EMVP), with the additional capability of acoustic ...

Thomas B. Sanford; Robert G. Driver; John H. Dunlap

1985-06-01T23:59:59.000Z

202

Equatorial Velocity Profiles. Part I: Meridional Component  

Science Conference Proceedings (OSTI)

A time series or vertical profiles of horizontal velocity was collected in the western equatorial Indian Ocean during late spring of 1976. The meridional velocity component is examined here, the zonal component in Part II of this paper. The ...

Kathleen O'Neill

1984-12-01T23:59:59.000Z

203

Waterspout Velocity Measurements by Airborne Doppler Lidar  

Science Conference Proceedings (OSTI)

A Doppler lidar measures the line-of-sight velocity of cloud droplets in a waterspout much as a meteorological Doppler radar measures the velocity of larger hydrometeors. We discuss details of the application of an airborne Doppler lidar to ...

R. L. Schwiesow; R. E. Cupp; P. C. Sinclair; R. F. Abbey Jr.

1981-04-01T23:59:59.000Z

204

Probing Multiparton Correlations at CEBAF  

E-Print Network (OSTI)

In this talk, I explore the possibilities of probing the multiparton correlation functions at CEBAF at its current energy and the energies with its future upgrades.

Jianwei Qiu

1998-08-08T23:59:59.000Z

205

Cold Plasma Wave Analysis in Magneto-Rotational Fluids  

E-Print Network (OSTI)

This paper is devoted to investigate the cold plasma wave properties. The analysis has been restricted to the neighborhood of the pair production region of the Kerr magnetosphere. The Fourier analyzed general relativistic magnetohydrodynamical equations are dealt under special circumstances and dispersion relations are obtained. We find the $x$-component of the complex wave vector numerically. The corresponding components of the propagation vector, attenuation vector, phase and group velocities are shown in graphs. The direction and dispersion of waves are investigated.

M. Sharif; Umber Sheikh

2010-05-25T23:59:59.000Z

206

Oceanic Internal Waves Are Not Weak Waves  

Science Conference Proceedings (OSTI)

It is shown that the oceanic internal wave field is too energetic by roughly two orders of magnitude to be treated theoretically as an assemblage of weakly interacting waves. This may be seen both from recent weak wave theoretical calculations ...

Greg Holloway

1980-06-01T23:59:59.000Z

207

Nonlinear Landau damping of transverse electromagnetic waves in dusty plasmas  

SciTech Connect

High-frequency transverse electromagnetic waves in a collisionless isotropic dusty plasma damp via nonlinear Landau damping. Taking into account the latter we have obtained a generalized set of Zakharov equations with local and nonlocal terms. Then from this coupled set of Zakharov equations a kinetic nonlinear Schroedinger equation with local and nonlocal nonlinearities is derived for special cases. It is shown that the modulation of the amplitude of the electromagnetic waves leads to the modulation instability through the nonlinear Landau damping term. The maximum growth rate is obtained for the special case when the group velocity of electromagnetic waves is close to the dust acoustic velocity.

Tsintsadze, N. L. [E. Andronikashvili Institute of Physics, Tbilisi 0171 (Georgia); Department of Physics, Government College University, Lahore 54000 (Pakistan); Salam Chair in Physics, Government College University, Lahore 54000 (Pakistan); Chaudhary, Rozina [Department of Physics, Government College University, Lahore 54000 (Pakistan); Salam Chair in Physics, Government College University, Lahore 54000 (Pakistan); Shah, H. A. [Department of Physics, Government College University, Lahore 54000 (Pakistan); Murtaza, G. [Salam Chair in Physics, Government College University, Lahore 54000 (Pakistan)

2009-04-15T23:59:59.000Z

208

Ion Bernstein wave heating research  

SciTech Connect

Ion Bernstein wave heating (IBWH) utilizes the ion Bernstein wave (IBW), a hot plasma wave, to carry the radio frequency (rf) power to heat tokamak reactor core. Earlier wave accessibility studies have shown that this finite-Larmor-radius (FLR) mode should penetrate into a hot dense reactor plasma core without significant attenuation. Moreover, the IBW`s low phase velocity ({omega}/k{sub {perpendicular}} {approx} V{sub Ti} {much_lt} V{sub {alpha}}) greatly reduces the otherwise serious wave absorption by the 3.5 MeV fusion {alpha}-particles. In addition, the property of IBW`s that k{sub {perpendicular}} {rho}{sub i} {approx} 1 makes localized bulk ion heating possible at the ion cyclotron harmonic layers. Such bulk ion heating can prove useful in optimizing fusion reactivity. In another vein, with proper selection of parameters, IBW`s can be made subject to strong localized electron Landau damping near the major ion cyclotron harmonic resonance layers. This property can be useful, for example, for rf current drive in the reactor plasma core. This paper discusses this research.

Ono, Masayuki

1992-03-01T23:59:59.000Z

209

Ion Bernstein wave heating research  

Science Conference Proceedings (OSTI)

Ion Bernstein wave heating (IBWH) utilizes the ion Bernstein wave (IBW), a hot plasma wave, to carry the radio frequency (rf) power to heat tokamak reactor core. Earlier wave accessibility studies have shown that this finite-Larmor-radius (FLR) mode should penetrate into a hot dense reactor plasma core without significant attenuation. Moreover, the IBW's low phase velocity ({omega}/k{sub {perpendicular}} {approx} V{sub Ti} {much lt} V{sub {alpha}}) greatly reduces the otherwise serious wave absorption by the 3.5 MeV fusion {alpha}-particles. In addition, the property of IBW's that k{sub {perpendicular}} {rho}{sub i} {approx} 1 makes localized bulk ion heating possible at the ion cyclotron harmonic layers. Such bulk ion heating can prove useful in optimizing fusion reactivity. In another vein, with proper selection of parameters, IBW's can be made subject to strong localized electron Landau damping near the major ion cyclotron harmonic resonance layers. This property can be useful, for example, for rf current drive in the reactor plasma core. This paper discusses this research.

Ono, Masayuki.

1992-03-01T23:59:59.000Z

210

VELOCITY INDICATOR FOR EXTRUSION PRESS  

DOE Patents (OSTI)

An indicator is presented for measuring the lowspeed velocity of an object in one direction where the object returns in the opposite direction at a high speed. The indicator comprises a drum having its axis of rotation transverse to the linear movement of the object and a tape wound upon the drum with its free end extending therefrom and adapted to be connected to the object. A constant torque is applied to the drum in a direction to wind the tape on the drum. The speed of the tape in the unwinding direction is indicated on a tachometer which is coupled through a shaft and clutch means to the drum only when the tape is unwinding.

Digney, F.J. Jr.; Bevilacqua, F.

1959-04-01T23:59:59.000Z

211

Plasma wave propagation with a plasma density gradient  

Science Conference Proceedings (OSTI)

Plasma waves with the plasma diffusion velocity u{sub n} due to a plasma density gradient are described in a positive column plasma. The ion wave is generated by the perturbation of the operating frequency 10{sup 6} s{sup -1} and it propagates with the group velocity u{sub g{approx}}c{sub s}{sup 2}/u{sub n{approx}}(10{sup 5}-10{sup 6}) m/s, where c{sub s} is the acoustic velocity in a fine tube fluorescent lamp, while the electron wave cannot be generated with a turbulence of low frequency less than the electron oscillation frequency {omega}{sub pe}. The propagation of the lighting signal observed in long tube fluorescent lamps is well understood with the propagation of ion waves occurring along the plasma density gradient.

Cho, Guangsup; Choi, Eun-Ha; Uhm, Han Sup [Department of Electrophysics, Kwangwoon University, 447-1 Nowon Wallgye, Seoul 139-701 (Korea, Republic of)

2011-03-15T23:59:59.000Z

212

Millimeter Wave Cloud Radar (MMCR) Handbook  

SciTech Connect

The millimeter cloud radar (MMCR) systems probe the extent and composition of clouds at millimeter wavelengths. The MMCR is a zenith-pointing radar that operates at a frequency of 35 GHz. The main purpose of this radar is to determine cloud boundaries (e.g., cloud bottoms and tops). This radar will also report radar reflectivity (dBZ) of the atmosphere up to 20 km. The radar possesses a doppler capability that will allow the measurement of cloud constituent vertical velocities.

KB Widener; K Johnson

2005-01-30T23:59:59.000Z

213

Calculation of Extreme Wave Loads on Coastal Highway Bridges  

E-Print Network (OSTI)

Coastal bridges are exposed to severe wave, current and wind forces during a hurricane. Most coastal bridges are not designed to resist wave loads in such extreme situations, and there are no existing analytical methods to calculate wave loads on coastal highway bridges. This study focuses on developing a new scheme to estimate the extreme wave loads on bridges for designing purpose. In order to do this, a 2D wave velocity potential model (2D Model) is set up for the deterministic analysis of wave force on bridge decks. 2D Model is a linear wave model, which has the capability of calculating wave velocity potential components in time domain based on wave parameters such as wave height, wave period and water depth, and complex structural geometries. 2D Model has Laplace equation as general equation. The free surface boundary, incoming and outgoing wave boundary conditions are linearized, decomposed first, and then solved by the finite difference method. Maximum wave forces results calculated by the linear 2D Model are compared with results from CFD software Flow3D that is using Navier Stokes theory up to the 5th order; and 2D Model is validated by comparing results with experiment data. A case study is conducted for calculating extreme wave forces on I-10 Bridge across Escambia Bay, Florida during Hurricane Ivan in September 2004.SWAN model is adapted to investigate the parameters of wave heights and wave periods around bridge sites. SWAN model has the capability of predicting or hindcasting significant wave heights and wave periods as long as the domain and input parameters are given. The predicted significant wave heights are compared with measurements by Buoy Station 42039 and 42040 nearest to Escambia Bay. A new prediction equation of maximum uplift wave forces on bridge decks is developed in terms of wave height, wave period, water depth, bridge width, water clearance and over top water load. To develop the equations, the relationship is investigated between maximum uplift wave forces and wave parameters, water clearance, green water effects and bridge width. 2D Model is used for up to 1886 cases with difference parameters. Flow3D model is adopted to determine coefficients of water clearance and green water effects, which cannot be calculated by 2D Model.

Meng, Bo

2008-12-01T23:59:59.000Z

214

The collisions of high-velocity clouds with the galactic halo  

E-Print Network (OSTI)

Spiral galaxies are surrounded by a widely distributed hot coronal gas and seem to be fed by infalling clouds of neutral hydrogen gas with low metallicity and high velocities. We numerically study plasma waves produced by the collisions of these high-velocity clouds (HVCs) with the hot halo gas and with the gaseous disk. In particular, we tackle two problems numerically: 1) collisions of HVCs with the galactic halo gas and 2) the dispersion relations to obtain the phase and group velocities of plasma waves from the equations of plasma motion as well as further important physical characteristics such as magnetic tension force, gas pressure, etc. The obtained results allow us to understand the nature of MHD waves produced during the collisions in galactic media and lead to the suggestion that these waves can heat the ambient halo gas. These calculations are aiming at leading to a better understanding of dynamics and interaction of HVCs with the galactic halo and of the importance of MHD waves as a heating proce...

Jelinek, Petr; 10.1016/j.cpc.2011.01.023

2011-01-01T23:59:59.000Z

215

Detectability of gravitational waves from phase transitions  

Science Conference Proceedings (OSTI)

Gravitational waves potentially represent our only direct probe of the universe when it was less than one second old. In particular, first-order phase transitions in the early universe can generate a stochastic background of gravitational waves which may be detectable today. We briefly summarize the physical sources of gravitational radiation from phase transitions and present semianalytic expressions for the resulting gravitational wave spectra from three distinct realistic sources: bubble collisions, turbulent plasma motions, and inverse-cascade helical magnetohydrodynamic turbulence. Using phenomenological parameters to describe phase transition properties, we determine the region of parameter space for which gravitational waves can be detected by the proposed Laser Interferometer Space Antenna. The electroweak phase transition is detectable for a wide range of parameters.

Kahniashvili, Tina [Department of Physics, Kansas State University, 116 Cardwell Hall, Manhattan, Kansas 66506 (United States); CCPP, New York University, 4 Washington Plaza, New York, New York 10003 (United States); Department of Physics, Laurentian University, Ramsey Lake Road, Sudbury, ON P3E 2C6 (Canada); National Abastumani Astrophysical Observatory, 2A Kazbegi Ave, Tbilisi, GE-0160 (Georgia); Kosowsky, Arthur [Department of Physics and Astronomy, University of Pittsburgh, 3941 O'Hara Street, Pittsburgh, Pennsylvania 15260 (United States); Gogoberidze, Grigol [Department of Physics, Kansas State University, 116 Cardwell Hall, Manhattan, Kansas 66506 (United States); National Abastumani Astrophysical Observatory, 2A Kazbegi Ave, Tbilisi, GE-0160 (Georgia); Centre for Plasma Astrophysics, K.U. Leuven, Celestijnenlaan 200B, 3001 Leuven (Belgium); Maravin, Yurii [Department of Physics, Kansas State University, 116 Cardwell Hall, Manhattan, Kansas 66506 (United States)

2008-08-15T23:59:59.000Z

216

Excavatability Assessment of Weathered Sedimentary Rock Mass Using Seismic Velocity Method  

SciTech Connect

Seismic refraction method is one of the most popular methods in assessing surface excavation. The main objective of the seismic data acquisition is to delineate the subsurface into velocity profiles as different velocity can be correlated to identify different materials. The physical principal used for the determination of excavatability is that seismic waves travel faster through denser material as compared to less consolidated material. In general, a lower velocity indicates material that is soft and a higher velocity indicates more difficult to be excavated. However, a few researchers have noted that seismic velocity method alone does not correlate well with the excavatability of the material. In this study, a seismic velocity method was used in Nusajaya, Johor to assess the accuracy of this seismic velocity method with excavatability of the weathered sedimentary rock mass. A direct ripping run by monitoring the actual production of ripping has been employed at later stage and compared to the ripper manufacturer's recommendation. This paper presents the findings of the seismic velocity tests in weathered sedimentary area. The reliability of using this method with the actual rippability trials is also presented.

Bin Mohamad, Edy Tonnizam; Noor, Muhazian Md; Isa, Mohamed Fauzi Bin Md.; Mazlan, Ain Naadia [Department of Geotechnics and Transportation, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai. Johor (Malaysia); Saad, Rosli [Universiti Sains Malaysia, Penang (Malaysia)

2010-12-23T23:59:59.000Z

217

Mapping Metal-Enriched High Velocity Clouds to Very Low HI Column Densities  

E-Print Network (OSTI)

Our galaxy is the nearest known quasar absorption line system, and it uniquely provides us with an opportunity to probe multiple lines of sight through the same galaxy. This is essential for our interpretations of the complex kinematic profiles seen in the MgII absorption due to lines of sight through intermediate redshift galaxies. The Milky Way halo has never been probed for high velocity clouds below the 21-cm detection threshold of N(HI)~10^18 cm-2. Through a survey of MgII absorption looking toward the brightest AGNs and quasars, it will be possible to reach down a few orders of magnitude in HI column density. The analogs to the high velocity components of the MgII absorption profiles due to intermediate redshift galaxies should be seen. We describe a program we are undertaking, and present some preliminary findings.

Chris Churchill; Jane Charlton; Joe Masiero

2001-08-13T23:59:59.000Z

218

Long duration ash probe  

DOE Patents (OSTI)

A long duration ash probe includes a pressure shell connected to a port in a combustor with a sample coupon mounted on a retractable carriage so as to retract the sample coupon within the pressure shell during sootblowing operation of the combustor. A valve mounted at the forward end of the pressure shell is selectively closeable to seal the sample coupon within the shell, and a heating element in the shell is operable to maintain the desired temperature of the sample coupon while retracted within the shell. The carriage is operably mounted on a pair of rails within the shell for longitudinal movement within the shell. A hollow carrier tube connects the hollow cylindrical sample coupon to the carriage, and extends through the carriage and out the rearward end thereof. Air lines are connected to the rearward end of the carrier tube and are operable to permit coolant to pass through the air lines and thence through the carrier tube to the sample coupon so as to cool the sample coupon.

Hurley, John P. (Grand Forks, ND); McCollor, Don P. (Grand Forks, ND); Selle, Stanley J. (Grand Forks, MN)

1994-01-01T23:59:59.000Z

219

Molecular probe technology detects bacteria without culture  

E-Print Network (OSTI)

clinical samples, the molecular probes for L. brevis werepublished the design of our molecular probes (Figure 1a) and3, “1“, a majority of the molecular probes for that genome

2012-01-01T23:59:59.000Z

220

Experimental Study on Kinematics and Dynamics of Breaking Waves in Deep Water  

E-Print Network (OSTI)

A new measurement technique called fiber optic reflectometer (FOR) was developed to investigate multiphase flows. The principle and setup of the FOR technique were introduced and applied to various experiments. Based on the coherently mixed signal between the Fresnel reflection off the fiber-liquid interface and the scattered signal off the object, such as a gas bubble, and a solid particle, this single probe technique is capable of simultaneously measuring the velocity of the object with a high accuracy and the phase of the fluid. In addition, bubble diameter, velocity, and void fraction were measured directly. By means of a simple modification of the FOR technique, solute concentration and refractive index change were measured with a greatly improved accuracy. This modified technique was used for measuring of a NaCl concentration in deionized water to validate a new normalization technique. In the second part of this thesis, a plunging breaking wave in deep water has been studied. Using the wave focusing method, a strong plunging breaker was generated with accuracy in the deep water condition in a two-dimensional wave tank. It was possible to describe the breaking process in detail using a high speed camera with a frame rate of 500 or 1000 fps. Four kinds of experimental techniques were employed or developed to investigate the plunging breaker. Bubble image velocimetry (BIV) and particle image velocimetry (PIV) were used to measure the velocity fields. The velocity fields of the highly aerated region were obtained from the BIV measurements. In addition, the modified PIV technique is capable of measuring the velocities in the entire flow field including the aerated region. Mean and turbulent properties were obtained by the ensemble average. The mean velocity, mean vorticity, and mean kinetic energy were examined over the entire flow field. In addition, the Reynolds stresses and turbulent kinetic energy were calculated with high temporal and spatial resolutions. Free surface elevation was obtained from wave gauge measurements. BIV and PIV images were also used to obtain the free surface elevation and the boundary of the aerated region for more accurate results. The FOR technique was used to obtain the void ratio at each splash-up region. Compressibility of the plunging breaker was considered. Mass flux, momentum flux, kinetic energy, and Reynolds stresses at each FOR station were recalculated using the void ratio obtained from the FOR measurements. All terms at the first splash-up region were highly overestimated more than 100 percent unless the void ratio was applied to the calculation of fluxes and energies. Compared with the fully developed first splash-up region, the overestimation at the second and third splash-up was less significant. However, most terms were overestimated by 20~30 percent when the void ratio was not considered.

Lim, Ho Joon

2010-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "velocity wave probe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Locating an active fault zone in Coso geothermal field by analyzing seismic guided waves from microearthquake data  

DOE Green Energy (OSTI)

Active fault systems usually provide high-permeability channels for hydrothermal outflow in geothermal fields. Locating such fault systems is of a vital importance to plan geothermal production and injection drilling, since an active fault zone often acts as a fracture-extensive low-velocity wave guide to seismic waves. We have located an active fault zone in the Coso geothermal field, California, by identifying and analyzing a fault-zone trapped Rayleigh-type guided wave from microearthquake data. The wavelet transform is employed to characterize guided-wave's velocity-frequency dispersion, and numerical methods are used to simulate the guided-wave propagation. The modeling calculation suggests that the fault zone is {approx} 200m wide, and has a P wave velocity of 4.80 km/s and a S wave velocity of 3.00 km/s, which is sandwiched between two half spaces with relatively higher velocities (P wave velocity 5.60 km/s, and S wave velocity 3.20 km/s). zones having vertical or nearly vertical dipping fault planes.

SGP-TR-150-16

1995-01-26T23:59:59.000Z

222

Co-existence of whistler waves with kinetic Alfven wave turbulence for the high-beta solar wind plasma  

SciTech Connect

It is shown that the dispersion relation for whistler waves is identical for a high or low beta plasma. Furthermore, in the high-beta solar wind plasma, whistler waves meet the Landau resonance with electrons for velocities less than the thermal speed, and consequently, the electric force is small compared to the mirror force. As whistlers propagate through the inhomogeneous solar wind, the perpendicular wave number increases through refraction, increasing the Landau damping rate. However, the whistlers can survive because the background kinetic Alfven wave (KAW) turbulence creates a plateau by quasilinear (QL) diffusion in the solar wind electron distribution at small velocities. It is found that for whistler energy density of only {approx}10{sup -3} that of the kinetic Alfven waves, the quasilinear diffusion rate due to whistlers is comparable to KAW. Thus, very small amplitude whistler turbulence can have a significant consequence on the evolution of the solar wind electron distribution function.

Mithaiwala, Manish; Crabtree, Chris; Ganguli, Gurudas [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375-5346 (United States); Rudakov, Leonid [Icarus Research Inc., P.O. Box 30780, Bethesda, Maryland 20824-0780 (United States)

2012-10-15T23:59:59.000Z

223

USING MICRO-SEISMICITY AND SEISMIC VELOCITIES TO MAP SUBSURFACE GEOLOGIC  

Open Energy Info (EERE)

USING MICRO-SEISMICITY AND SEISMIC VELOCITIES TO MAP SUBSURFACE GEOLOGIC USING MICRO-SEISMICITY AND SEISMIC VELOCITIES TO MAP SUBSURFACE GEOLOGIC AND HYDROLOGIC STRUCTURE WITHIN THE COSO GEOTHERMAL FIELD, CALIFORNIA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: USING MICRO-SEISMICITY AND SEISMIC VELOCITIES TO MAP SUBSURFACE GEOLOGIC AND HYDROLOGIC STRUCTURE WITHIN THE COSO GEOTHERMAL FIELD, CALIFORNIA Details Activities (1) Areas (1) Regions (0) Abstract: We relocate 14 years of seismicity in the Coso Geothermal Field using differential travel times and simultaneously invert for seismic velocities to improve our knowledge of the subsurface geologic and hydrologic structure. We utilize over 60,000 micro-seismic events using waveform crosscorrelation to augment the expansive catalog of Pand S-wave

224

Modeling fault-zone guided waves of microearthquakes in a geothermal  

Open Energy Info (EERE)

fault-zone guided waves of microearthquakes in a geothermal fault-zone guided waves of microearthquakes in a geothermal reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Modeling fault-zone guided waves of microearthquakes in a geothermal reservoir Details Activities (1) Areas (1) Regions (0) Abstract: Fault-zone guided waves have been identified in microearthquake seismograms recorded at the Coso Geothermal Field, California. The observed guided waves have particle motions and propagation group velocities similar to Rayleigh wave modes. A numerical method has been employed to simulate the guided-wave propagation through the fault zone. By comparing observed and synthetic waveforms the fault-zone width and its P- and S-wave velocity structure have been estimated. It is suggested here that the identification

225

STEREO QUADRATURE OBSERVATIONS OF THE THREE-DIMENSIONAL STRUCTURE AND DRIVER OF A GLOBAL CORONAL WAVE  

SciTech Connect

We present the first observations of a global coronal wave ('EIT wave') from the two STEREO satellites in quadrature. The wave's initiation site was at the disk center in STEREO-B and precisely on the limb in STEREO-A. These unprecedented observations from the STEREO Extreme Ultraviolet Imaging (EUVI) instruments enable us to gain insight into the wave's kinematics, initiation, and three-dimensional structure. The wave propagates globally over the whole solar hemisphere visible to STEREO-B with a constant velocity of {approx}263 +- 16 km s{sup -1}. From the two STEREO observations, we derive a height of the wave in the range of {approx}80-100 Mm. Comparison of the wave kinematics with the early phase of the erupting coronal mass ejection (CME) structure indicates that the wave is initiated by the CME lateral expansion, and then propagates freely with a velocity close to the fast magnetosonic speed in the quiet solar corona.

Kienreich, I. W.; Temmer, M.; Veronig, A. M., E-mail: ines.kienreich@uni-graz.a, E-mail: mat@igam.uni-graz.a, E-mail: asv@igam.uni-graz.a [Institute of Physics/IGAM, University of Graz, Universitaetsplatz 5, A-8010 Graz (Austria)

2009-10-01T23:59:59.000Z

226

1.5-ft Wave Flume Facility | Open Energy Information  

Open Energy Info (EERE)

-ft Wave Flume Facility -ft Wave Flume Facility Jump to: navigation, search Basic Specifications Facility Name 1.5-ft Wave Flume Facility Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility Type Flume Length(m) 45.1 Beam(m) 0.5 Depth(m) 0.9 Water Type Freshwater Cost(per day) Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.2 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 10.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Simulated Beach No Channel/Tunnel/Flume Channel/Tunnel/Flume Yes Recirculating No Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Automated data acquisition and control system

227

11-ft Wave Flume Facility | Open Energy Information  

Open Energy Info (EERE)

ft Wave Flume Facility ft Wave Flume Facility Jump to: navigation, search Basic Specifications Facility Name Wave Flume Facility Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility Type Flume Length(m) 77.4 Beam(m) 3.4 Depth(m) 1.8 Water Type Freshwater Cost(per day) Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.4 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 10.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Simulated Beach No Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities Yes Control and Data Acquisition Description Automated data acquisition and control system Cameras None

228

10-ft Wave Flume Facility | Open Energy Information  

Open Energy Info (EERE)

ft Wave Flume Facility ft Wave Flume Facility Jump to: navigation, search Basic Specifications Facility Name 10-ft Wave Flume Facility Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility Type Flume Length(m) 63.4 Beam(m) 3.0 Depth(m) 1.5 Water Type Freshwater Cost(per day) Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.5 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 0.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Simulated Beach No Channel/Tunnel/Flume Channel/Tunnel/Flume Yes Recirculating No Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Automated data acquisition and control system

229

6-ft Wave Flume Facility | Open Energy Information  

Open Energy Info (EERE)

Wave Flume Facility Wave Flume Facility Jump to: navigation, search Basic Specifications Facility Name 6-ft Wave Flume Facility Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility Type Flume Length(m) 105.2 Beam(m) 1.8 Depth(m) 1.8 Water Type Freshwater Cost(per day) Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.4 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 10.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Simulated Beach No Channel/Tunnel/Flume Channel/Tunnel/Flume Yes Recirculating No Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Automated data acquisition and control system

230

Stable operating regime for traveling wave devices  

DOE Patents (OSTI)

Autophase stability is provided for a traveling wave device (TWD) electron beam for amplifying an RF electromagnetic wave in walls defining a waveguide for said electromagnetic wave. An off-axis electron beam is generated at a selected energy and has an energy noise inherently arising from electron gun. The off-axis electron beam is introduced into the waveguide. The off-axis electron beam is introduced into the waveguide at a second radius. The waveguide structure is designed to obtain a selected detuning of the electron beam. The off-axis electron beam has a velocity and the second radius to place the electron beam at a selected distance from the walls defining the waveguide, wherein changes in a density of the electron beam due to the RF electromagnetic wave are independent of the energy of the electron beam to provide a concomitant stable operating regime relative to the energy noise.

Carlsten, Bruce E. (Los Alamos, NM)

2000-01-01T23:59:59.000Z

231

Probe spectroscopy of quasienergy states  

E-Print Network (OSTI)

The present qubit technology, in particular in Josephson qubits, allows an unprecedented control of discrete energy levels. This motivates a new study of the old pump-probe problem, where a discrete quantum system is driven by a strong drive and simultaneously probed by a weaker one. The strong drive is included by the Floquet method and the resulting quasienergy states are then studied with the probe. We study a qubit where the harmonic drive has a significant longitudinal component relative to the static equilibrium state of the qubit. Both analytical and numerical methods are used to solve the problem. We present calculations with realistic parameters and compare the results with recent experimental results. A short introduction to the Floquet method and the probe absorption is given.

Matti Silveri; Jani Tuorila; Mika Kemppainen; Erkki Thuneberg

2013-01-02T23:59:59.000Z

232

Monitoring probe for groundwater flow  

DOE Patents (OSTI)

A monitoring probe for detecting groundwater migration. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow.

Looney, Brian B. (Aiken, SC); Ballard, Sanford (Albuquerque, NM)

1994-01-01T23:59:59.000Z

233

Assessment of the 296-S-21 Stack Sampling Probe Location  

SciTech Connect

Tests were performed to assess the suitability of the location of the air sampling probe on the 296-S-21 stack according to the criteria of ANSI N13.1-1999, Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stacks and Ducts of Nuclear Facilities. Pacific Northwest National Laboratory conducted most tests on a 3.67:1 scale model of the stack. CH2MHill also performed some limited confirmatory tests on the actual stack. The tests assessed the capability of the air-monitoring probe to extract a sample representative of the effluent stream. The tests were conducted for the practical combinations of operating fans and addressed: (1) Angular Flow--The purpose is to determine whether the velocity vector is aligned with the sampling nozzle. The average yaw angle relative to the nozzle axis should not be more than 20. The measured values ranged from 5 to 11 degrees on the scale model and 10 to 12 degrees on the actual stack. (2) Uniform Air Velocity--The gas momentum across the stack cross section where the sample is extracted should be well mixed or uniform. The uniformity is expressed as the variability of the measurements about the mean, the coefficient of variance (COV). The lower the COV value, the more uniform the velocity. The acceptance criterion is that the COV of the air velocity must be ?20% across the center two-thirds of the area of the stack. At the location simulating the sampling probe, the measured values ranged form 4 to 11%, which are within the criterion. To confirm the validity of the scale model results, air velocity uniformity measurements were made both on the actual stack and on the scale model at the test ports 1.5 stack diameters upstream of the sampling probe. The results ranged from 6 to 8% COV on the actual stack and 10 to 13% COV on the scale model. The average difference for the eight runs was 4.8% COV, which is within the validation criterion. The fact that the scale model results were slightly higher than the actual stack suggests that the other test results on the scale model are conservative relative to the actual stack. (3) Uniform Concentration of Tracer Gases--A uniform contaminant concentration in the sampling plane enables the extraction of samples that represent the true concentration. This was first tested using a tracer gas to represent gaseous effluents. The fan is a good mixer, so injecting the tracer downstream of the fans provides worst-case results. The acceptance criteria are that (1) the COV of the measured tracer gas concentration is ?20% across the center two-thirds of the sampling plane and (2) at no point in the sampling plane does the concentration vary from the mean by >30%. The results on the scale model at the point simulating the sampling probe ranged from 0.3 to 6 %COV, and the maximum single point deviation from the mean was -10%. (4) Uniform Concentration of Tracer Particles--Uniformity in contaminant concentration at the sampling probe was further demonstrated using tracer particles large enough to exhibit inertial effects. Particles of 10-?m aerodynamic diameter were used. The acceptance criterion is that the COV of particle concentration is ?20% across the center two-thirds of the sampling plane. The scale model results ranged form 2 to 9%. Based on these tests, the location of the air sampling probe on the 296-S-21 stack meets the requirements of the ANSI/HPS N13.1-1999 standard.

Glissmeyer, John A.

2006-09-08T23:59:59.000Z

234

Super-light electromagnetic wave with longitudinal and transversal modes  

E-Print Network (OSTI)

The transformation converting equations invariant under Lorentz into the equations invariant under Galileo is obtained. On this basis: (1) the super-light electromagnetic wave with longitudinal and transversal modes is found out; (2) it is shown the wave velocity coincides with that of de Broglie's wave; (3) the connection between Maxwell's electrodynamics and Shredinger's equation is established; (4) structural elements of space are discovered and "a horizon of visibility" is found. It is shown Bell's inequalities and the principle of the light speed constancy are based on the SRT artifact and "Einstein's local realism" is determined by the wave referred above. Objectivity of results for quantum and classical objects is discussed

M. M. Kononenko

2007-08-20T23:59:59.000Z

235

Probing phonons in plutonium  

Science Conference Proceedings (OSTI)

Plutonium (Pu) is well known to have complex and unique physico-chemical properties [1]. Notably, the pure metal exhibits six solid-state phase transformations with large volume expansions and contractions along the way to the liquid state: {alpha} {yields} {beta} {yields} {gamma} {yields} {delta} {yields} {delta}' {yields} {var_epsilon} {yields} liquid. Unalloyed Pu melts at a relatively low temperature {approx}640 C to yield a higher density liquid than that of the solid from which it melts. Detailed understanding of the properties of plutonium and plutonium-based alloys is critical for the safe handling, utilization, and long-term storage of these important, but highly toxic materials. However, both technical and safety issues have made experimental observations extremely difficult. Phonon dispersion curves (PDCs) are key experimental data to the understanding of the basic properties of Pu materials such as: force constants, sound velocities, elastic constants, thermodynamics, phase stability, electron-phonon coupling, structural relaxation, etc. However, phonon dispersion curves (PDCs) in plutonium (Pu) and its alloys have defied measurement for the past few decades since the discovery of this element in 1941. This is due to a combination of the high thermal-neutron absorption cross section of plutonium and the inability to grow the large single crystals (with dimensions of a few millimeters) necessary for inelastic neutron scattering. Theoretical simulations of the Pu PDC continue to be hampered by the lack of suitable inter-atomic potentials. Thus, until recently the PDCs for Pu and its alloys have remained unknown experimentally and theoretically. The experimental limitations have recently been overcome by using a tightly focused undulator x-ray micro-beam scattered from single-grain domains in polycrystalline specimens. This experimental approach has been applied successfully to map the complete PDCs of an fcc {delta}-Pu-Ga alloy using the high resolution inelastic x-ray scattering (HRIXS) capability on ID28 [2].

Farber, D; Chiang, T; Krisch, M; Occelli, F; Schwartz, A; Wall, M; Xu, R; Boro, C

2003-12-17T23:59:59.000Z

236

Wave–Wave Interaction of Unstable Baroclinic Waves  

Science Conference Proceedings (OSTI)

Two slightly unstable baroclinic waves in the two-layer Phillips model are allowed to interact with each other as well as the mean flow. A theory for small dissipation rates is developed to examine the role of wave–wave interaction in the ...

Joseph Pedlosky; Lorenzo M. Polvani

1987-02-01T23:59:59.000Z

237

On physical interpretation of two dimensional time-correlations regarding time delay velocities and eddy shaping  

SciTech Connect

Time delay estimation (TDE) techniques are frequently used to estimate the flow velocity from fluctuating measurements. Tilted structures carried by the flow lead to misinterpretation of the time delays in terms of velocity direction and amplitude. It affects TDE measurements from probes, and is also intrinsically important for beam emission spectroscopy and gas puff imaging measurements. Local eddy shapes estimated from 2D fluctuating field are necessary to gain a more accurate flow estimate from TDE, as illustrated by Langmuir probe array measurements. A least square regression approach is proposed to estimate both flow field and shaping parameters. The technique is applied to a test case built from numerical simulation of interchange fluctuations. The local eddy shape does not only provide corrections for the velocity field but also quantitative information about the statistical interaction mechanisms between local eddies and E Multiplication-Sign B flow shear. The technique is then tested on gaz puff imaging data collected at the edge of EAST tokamak plasmas. It is shown that poloidal asymmetries of the fluctuation fields-velocity and eddy shape-are consistent at least qualitatively with a ballooning type of turbulence immersed in a radially sheared equilibrium flow.

Fedorczak, N. [Center for Momentum Transport and Flow Organization, University of California at San Diego, San Diego, California 92093 (United States); CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Manz, P. [Center for Momentum Transport and Flow Organization, University of California at San Diego, San Diego, California 92093 (United States); Max-Planck-Institut feur Plasmaphysik, Association Euratom-IPP, 85748Garching (Germany); Thakur, S. C.; Xu, M.; Tynan, G. R. [Center for Momentum Transport and Flow Organization, University of California at San Diego, San Diego, California 92093 (United States); Xu, G. S.; Liu, S. C. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

2012-12-15T23:59:59.000Z

238

Real time mass flux measurements of gas-solid suspensions at low velocities  

SciTech Connect

In previous work, measurement of the particulate mass flux was made based upon a novel electrostatic technique. A small conducting wire sensor was inserted in the flow and as each particle hit the sensor an individual pulse of current was identified. Through suitable electronic circuitry, the number of pulses in a given time were counted. This was a direct measure of the number of particle-probe collisions which was related to local particle mass flow. The technique is currently limited to monodisperse suspensions. A primary advantage of the impact counter system is that the output does not depend upon the magnitude of the actual charge transfer. As long as the pulses are sufficiently above the noise level, variations in charge transfer will not affect the measurement. For the current work, the technique was applied to vertical gas-solid flow where the fluid velocity was slightly above the particle terminal velocity. Under these conditions a sufficient signal to noise ratio was not found. The Cheng-Soo charge transfer theory indicated that the low particle-sensor impact velocity was responsible. The probe system was then modified by extracting a particulate sample isokinetically and accelerating the particles to a sufficient velocity by an area reduction in the sampling tube. With this technique the signal to noise ratio was about 12 to 1. Mass flux results are shown to compare favorably with filter collection and weighing.

Saunders, J H; Chao, B T; Soo, S L

1981-01-01T23:59:59.000Z

239

p-wave holographic insulator/superconductor phase transition  

SciTech Connect

Using a five-dimensional anti-de Sitter (AdS) soliton in an Einstein-Yang-Mills theory with SU(2) gauge group, we study p-wave holographic insulator/superconductor phase transition. To explore the phase structure of the model, we consider the system in the probe limit as well as fully back-reacted solutions. We will also study the zero temperature limit of the p-wave holographic superconductor in four dimensions.

Akhavan, Amin [School of physics, Institute for Research in Fundamental Sciences (IPM) P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Department of Physics, Sharif University of Technology P.O. Box 11365-9161, Tehran (Iran, Islamic Republic of); Alishahiha, Mohsen [School of physics, Institute for Research in Fundamental Sciences (IPM) P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

2011-04-15T23:59:59.000Z

240

The velocity campaign for ignition on NIF  

SciTech Connect

Achieving inertial confinement fusion ignition requires a symmetric, high velocity implosion. Experiments show that we can reach 95 {+-} 5% of the required velocity by using a 420 TW, 1.6 MJ laser pulse. In addition, experiments with a depleted uranium hohlraum show an increase in capsule performance which suggests an additional 18 {+-} 5 {mu}m/ns of velocity with uranium hohlraums over gold hohlraums. Combining these two would give 99 {+-} 5% of the ignition velocity. Experiments show that we have the ability to tune symmetry using crossbeam transfer. We can control the second Legendre mode (P2) by changing the wavelength separation between the inner and outer cones of laser beams. We can control the azimuthal m = 4 asymmetry by changing the wavelength separation between the 23.5 and 30 degree beams on NIF. This paper describes our 'first pass' tuning the implosion velocity and shape on the National Ignition Facility laser [Moses et al., Phys. Plasmas, 16, 041006 (2009)].

Callahan, D. A.; Meezan, N. B.; Glenzer, S. H.; MacKinnon, A. J.; Benedetti, L. R.; Bradley, D. K.; Celeste, J. R.; Celliers, P. M.; Dixit, S. N.; Doeppner, T.; Dzentitis, E. G.; Glenn, S.; Haan, S. W.; Haynam, C. A.; Hicks, D. G.; Hinkel, D. E.; Jones, O. S.; Landen, O. L.; London, R. A.; MacPhee, A. G. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

2012-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "velocity wave probe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Impact Velocity (2011) | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Impact Velocity (2011) | National Nuclear Security Administration Impact Velocity (2011) | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Video Gallery > Impact Velocity (2011) Impact Velocity (2011) Impact Velocity (2011) From: NNSANews Views: 388 2 ratings Time: 02:26 More in Science & Technology See video Facebook Twitter

242

Wave-Driven Rotation In Centrifugal Mirrors  

SciTech Connect

Centrifugal mirrors use supersonic rotation to provide axial confinement and enhanced stability. Usually the rotation is produced using electrodes, but these electrodes have limited the rotation to the Alfven critical ionization velocity, which is too slow to be useful for fusion. Instead, the rotation could be produced using radio frequency waves. A fixed azimuthal ripple is a simple and efficient wave that could produce rotation by harnessing alpha particle energy. This is an extension of the alpha channeling effect. The alpha particle power and efficiency in a simulated devices is sufficient to produce rotation without external energy input. By eliminating the need for electrodes, this opens new opportunities for centrifugal traps.

Abraham J. Fetterman and Nathaniel J. Fisch

2011-03-28T23:59:59.000Z

243

A Thunderstorm Bow Wave  

Science Conference Proceedings (OSTI)

The thunderstorm solitary gust or bow wave, observed by Doviak and Ge, is examined from the viewpoint of boundary layer wave theory. It is concluded that all its well defined characteristics are consistently modeled as a bow wave of ducted ...

G. Chimonas; Carmen J. Nappo

1987-02-01T23:59:59.000Z

244

The Sandia Wave Reflector  

The Sandia wave reflector is a magnetic conductor for wireless transmissions near 433 MHz. The device reflects perpendicular electromagnetic waves in-phase and suppresses surface waves resulting in improved gain performance and effective operation ...

245

Geostrophic Shock Waves  

Science Conference Proceedings (OSTI)

Organized depth discontinuities involving a balance between steepening and dissipation are usually referred to as shock waves. An analytical “educed gravity” model is used to examine a special kind of shock wave. The wave under study is a depth ...

Doron Nof

1986-05-01T23:59:59.000Z

246

The jump-off velocity of an impulsively loaded spherical shell  

SciTech Connect

We consider a constant temperature spherical shell of isotropic, homogeneous, linearly elastic material with density {rho} and Lame coefficients {lambda} and {mu}. The inner and outer radii of the shell are r{sub i} and r{sub o}, respectively. We assume that the inside of the shell is a void. On the outside of the shell, we apply a uniform, time-varying pressure p(t). We also assume that the shell is initially at rest. We want to compute the jump-off time and velocity of the pressure wave, which are the first time after t = 0 at which the pressure wave from the outer surface reaches the inner surface. This analysis computes the jump-off velocity and time for both compressible and incompressible materials. This differs substantially from [3], where only incompressible materials are considered. We will consider the behavior of an impulsively loaded, exponentially decaying pressure wave p(t) = P{sub 0{sup e}}{sup -{alpha}t}, where {alpha} {ge} 0. We notice that a constant pressure wave P(t) = P{sub 0} is a special case ({alpha} = 0) of a decaying pressure wave. Both of these boundary conditions are considered in [3].

Chabaud, Brandon M. [Los Alamos National Laboratory; Brock, Jerry S. [Los Alamos National Laboratory

2012-04-13T23:59:59.000Z

247

Fundamental modes of a trapped probe photon in optical fibers conveying periodic pulse trains  

SciTech Connect

Wave modes induced by cross-phase reshaping of a probe photon in the guiding structure of a periodic train of temporal pulses are investigated theoretically with emphasis on exact solutions to the wave equation for the probe. The study has direct connection with recent advances on the issue of light control by light, the focus being on the trapping of a low-power probe by a temporal sequence of periodically matched high-power pulses of a dispersion-managed optical fiber. The problem is formulated in terms of the nonlinear optical fiber equation with averaged dispersion, coupled to a linear equation for the probe including a cross-phase modulation term. Shape-preserving modes which are robust against the dispersion are shown to be induced in the probe, they form a family of mutually orthogonal solitons the characteristic features of which are determined by the competition between the self-phase and cross-phase effects. Considering a specific context of this competition, the theory predicts two degenerate modes representing a train of bright signals and one mode which describes a train of dark signals. When the walk-off between the pump and probe is taken into consideration, these modes have finite-momentum envelopes and none of them is totally transparent vis-a-vis the optical pump soliton.

Dikande, Alain M. [Laboratory of Research on Advanced Materials and Nonlinear Sciences (LaRAMaNS), Department of Physics, Faculty of Science, University of Buea, P.O. Box 63, Buea (Cameroon)

2010-01-15T23:59:59.000Z

248

Gravitational waves and gamma-ray bursts  

E-Print Network (OSTI)

Gamma-Ray Bursts are likely associated with a catastrophic energy release in stellar mass objects. Electromagnetic observations provide important, but indirect information on the progenitor. On the other hand, gravitational waves emitted from the central source, carry direct information on its nature. In this context, I give an overview of the multi-messenger study of gamma-ray bursts that can be carried out by using electromagnetic and gravitational wave observations. I also underline the importance of joint electromagnetic and gravitational wave searches, in the absence of a gamma-ray trigger. Finally, I discuss how multi-messenger observations may probe alternative gamma-ray burst progenitor models, such as the magnetar scenario.

Alessandra Corsi; for the LIGO Scientific Collaboration; for the Virgo Collaboration

2012-04-18T23:59:59.000Z

249

Resonant radiation shed by dispersive shock waves  

E-Print Network (OSTI)

We show that dispersive shock waves resulting from the nonlinearity overbalancing a weak leading-order dispersion can emit resonant radiation owing to higher-order dispersive contributions. We analyze such phenomenon for the defocusing nonlinear Schroedinger equation, giving criteria for calculating the radiated frequency based on the estimate of the shock velocity, revealing also a diversity of possible scenarios depending on the order and magnitude of the dispersive corrections.

Conforti, Matteo; Trillo, Stefano

2013-01-01T23:59:59.000Z

250

Detection of Breaking Events in a Wind-Generated Wave Field  

Science Conference Proceedings (OSTI)

Measurements were made of the surface elevation of a fetch-limited wave field (fetch 7 km, wind speed about 6 m s?1). Good high-frequency response was attained by the use of a very thin, bare wire probe of diameter 0.13 mm. Breaking waves were ...

M. A. Weissman; S. S. Ataktürk; K. B. Katsaros

1984-10-01T23:59:59.000Z

251

Chromospheric Doppler Velocity Oscillations in a Sunspot  

E-Print Network (OSTI)

We analyse the chromospheric Doppler velocity oscillations in a sunspot using the high resolution spectral observations obtained from the Fast Imaging Solar Spectrograph(FISS) of the New Solar Telescope at the Big Bear Solar Observatory. The Doppler velocity maps are constructed from the bisectors of the spectral observations. The time series analysis of Doppler velocity maps show enhanced power in the sunspot umbra at higher frequencies and in the penumbra at lower frequencies. We find that the peak power frequency decreases gradually from the umbra to outward.

Maurya, R A

2013-01-01T23:59:59.000Z

252

Argonne CNM: Proximal Probes Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Proximal Probes Proximal Probes Capabilities Omicron VT-AFM XA microscope scanning tunneling microscope VIew high-resolution image. Variable-temperature, ultra-high-vacuum, atomic force microscope/scanning tunneling microscope: Omicron VT-AFM XA (N. Guisinger, Electronic & Magnetic Materials & Devices Group) Measurement modes include: Contact and non-contact AFM Magnetic force microscopy (MFM) Scanning tunneling spectroscopy Preparation tools include: Resistive sample heating Direct current heating E-beam heating Sputter ion etching Gas dosing E-beam evaporation An analysis chamber contains combined four-grid LEED/Auger optics Omicron nanoprobe View high-resolution image Scanning probe/scanning electron microscopy: Omicron UHV Nanoprobe (N. Guisinger, Electronic & Magnetic Materials & Devices Group)

253

Hand-held survey probe  

DOE Patents (OSTI)

A system for providing operational feedback to a user of a detection probe may include an optical sensor to generate data corresponding to a position of the detection probe with respect to a surface; a microprocessor to receive the data; a software medium having code to process the data with the microprocessor and pre-programmed parameters, and making a comparison of the data to the parameters; and an indicator device to indicate results of the comparison. A method of providing operational feedback to a user of a detection probe may include generating output data with an optical sensor corresponding to the relative position with respect to a surface; processing the output data, including comparing the output data to pre-programmed parameters; and indicating results of the comparison.

Young, Kevin L. (Idaho Falls, ID); Hungate, Kevin E. (Idaho Falls, ID)

2010-02-23T23:59:59.000Z

254

Boundary Layer Dynamics in a Simple Model for Convectively Coupled Gravity Waves  

Science Conference Proceedings (OSTI)

A simplified model of intermediate complexity for convectively coupled gravity waves that incorporates the bulk dynamics of the atmospheric boundary layer is developed and analyzed. The model comprises equations for velocity, potential ...

Michael L. Waite; Boualem Khouider

2009-09-01T23:59:59.000Z

255

Spectrally Resolved Energy Dissipation Rate and Momentum Flux of Breaking Waves  

Science Conference Proceedings (OSTI)

Video observations of the ocean surface taken from aboard the Research Platform FLIP reveal the distribution of the along-crest length and propagation velocity of breaking wave crests that generate visible whitecaps. The key quantity assessed is ...

Johannes R. Gemmrich; Michael L. Banner; Chris Garrett

2008-06-01T23:59:59.000Z

256

Vertical Structure of Kelvin Waves in the Indonesian Throughflow Exit Passages  

Science Conference Proceedings (OSTI)

The subsurface structure of intraseasonal Kelvin waves in two Indonesian Throughflow (ITF) exit passages is observed and characterized using velocity and temperature data from the 2004–06 International Nusantara Stratification and Transport (...

Kyla Drushka; Janet Sprintall; Sarah T. Gille; Irsan Brodjonegoro

2010-09-01T23:59:59.000Z

257

Quasi-biennial Oscillation and Its Analog under the Assumption of Wave Self-Acceleration  

Science Conference Proceedings (OSTI)

We have investigated numerically, using a slowly varying model, how the behavior of the quasi-biennial oscillation (QBO) in the equatorial stratosphere and its analog in the laboratory water tank are modified when wave phase velocities are ...

Hiroshi Tanaka; Nobuyuki Yoshizawa

1985-11-01T23:59:59.000Z

258

Analytical Modeling of Wave Generation by the Borehole Orbital Vibrator Source  

E-Print Network (OSTI)

of the source as a function of wave frequency and rockon the source-fluid boundary and the fluid-rock boundary. ToP2 1731 m/s Rock S velocity c S2 Source/borehole parameters

Nakagawa, Seiji; Daley, Thomas M.

2004-01-01T23:59:59.000Z

259

PROPAGATION OF GRAVITY WAVES IN A CONVECTIVE LAYER  

SciTech Connect

We perform numerical simulations of gravity mode propagation in a convective layer to investigate the observed association between small spatial scales and low frequencies in the photospheric velocity fields. According to the linear theory, when the fluid layer is convectively unstable, gravity modes are evanescent waves. However, in simple two-dimensional numerical settings, we find that when the equilibrium structure is modified by coherent large-scale convective motions, the waves injected at the bottom of the layer are no longer evanescent. In this situation, gravity waves can be detected at the surface of the layer. In our simplified model the injected wave's frequency remains unchanged, but its amplitude has a spatial modulation determined by the convective structure. This result may explain some analyses done with the proper orthogonal decomposition method of the solar surface velocity field even though solar convection is far more complex than the convection model considered here.

Onofri, M.; Vecchio, A.; Veltri, P. [Dipartimento di Fisica, Universita della Calabria, via P. Bucci, 87036 Rende (Italy); De Masi, G., E-mail: onofri@fis.unical.it [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, 35127 Padova (Italy)

2012-02-10T23:59:59.000Z

260

Probing phonons in plutonium  

Science Conference Proceedings (OSTI)

Plutonium (Pu) is well known to have complex and unique physico-chemical properties. Notably, the pure metal exhibits six solid-state phase transformations with large volume expansions and contractions along the way to the liquid state: {alpha} {yields} {beta} {yields} {gamma} {yields} {delta} {yields} {delta}{prime} {yields} {var_epsilon} {yields} liquid. Unalloyed Pu melts at a relatively low temperature {approx}640 C to yield a higher density liquid than that of the solid from which it melts, (Figure 1). Detailed understanding of the properties of plutonium and plutonium-based alloys is critical for the safe handling, utilization, and long-term storage of these important, but highly toxic materials. However, both technical and and safety issues have made experimental observations extremely difficult. Phonon dispersion curves (PDCs) are key experimenta l data to the understanding of the basic properties of Pu materials such as: force constants, sound velocities, elastic constants, thermodynamics, phase stability, electron-phonon coupling, structural relaxation, etc. However, phonon dispersion curves (PDCs) in plutonium (Pu) and its alloys have defied measurement for the past few decades since the discovery of this element in 1941. This is due to a combination of the high thermal-neutron absorption cross section of plutonium and the inability to grow the large single crystals (with dimensions of a few millimeters) necessary for inelastic neutron scattering. Theoretical simulations of the Pu PDC continue to be hampered by the lack of suitable inter -atomic potentials. Thus, until recently the PDCs for Pu and its alloys have remained unknown experimentally and theoretically. The experimental limitations have recently been overcome by using a tightly focused undulator x-ray micro-beam scattered from single -grain domains in polycrystalline specimens. This experimental approach has been applied successfully to map the complete PDCs of an fcc d-Pu-Ga alloy using the high resolution inelastic x-ray scattering (HRIXS) capability on ID28. The complete PDCs for an fcc Pu-0.6 wt% Ga alloy are plotted in Figure 2, and represent the first full set of phonon dispersions ever determined for any Pu-bearing materials. The solid curves (red) are calculated using a standard Born-von Karman (B-vK) force constant model. An adequate fit to the experimental data is obtained if interactions up to the fourth-nearest neighbours are included. The dashed curves (blue) are recent dynamical mean field theory (DMFT) results by Dai et al. The elastic moduli calculated from the slopes of the experimental phonon dispersion curves near the {Lambda} point are: C{sub 11} = 35.3 {+-} 1.4 GPa, C{sub 12} = 25.5 {+-} 1.5 GPa and C{sub 44} = 30.53 {+-} 1.1 GPa. These values are in excellent agreement with those of the only other measurement on a similar alloy (1 wt % Ga) using ultrasonic techniques as well as with those recently calculated from a combined DMFT and linear response theory for pure {delta}-Pu. Several unusual features, including a large elastic anisotropy, a small shear elastic modulus C{prime}, a Kohn-like anomaly in the T{sub 1}[011] branch, and a pronounced softening of the [111] transverse modes are found. These features can be related to the phase transitions of plutonium and to strong coupling between the lattice structure and the 5f valence instabilities. The HRIXS results also provide a critical test for theoretical treatments of highly correlated 5f electron systems as exemplified by recent dynamical mean field theory (DMFT) calculations for {delta}-plutonium. The experimental-theoretical agreements shown in Figure 2 in terms of a low shear elastic modulus C{prime}, a Kohn-like anomaly in the T{sub 1}[011] branch, and a large softening of the T[111] modes give credence to the DMFT approach for the theoretical treatment of 5f electron systems of which {delta}-Pu is a classic example. However, quantitative differences remain. These are the position of the Kohn anomaly along the T{sub 1}[011] branch, the energy maximum of the T[111] mode s

Wong, Joe; Krisch, M.; Farber, D.; Occelli, F.; Schwartz, A.; Chiang, T.C.; Wall, M.; Boro, C.; Xu, Ruqing (UIUC); (LLNL); (ESRF); (LANL)

2010-11-16T23:59:59.000Z

Note: This page contains sample records for the topic "velocity wave probe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Fundamental Guided Wave Metrology  

Science Conference Proceedings (OSTI)

Fundamental Guided Wave Metrology. Summary: ... The program is focused on fundamental measurement research for microwave parameters. ...

2010-10-05T23:59:59.000Z

262

Nonlinear fan instability of electromagnetic waves  

Science Conference Proceedings (OSTI)

This paper studies the linear and nonlinear stages of the fan instability, considering electromagnetic waves of the whistler frequency range interacting resonantly with energetic electron fluxes in magnetized plasmas. The main attention is paid to determine the wave-particle interaction processes that can lead to the excitation of intense electromagnetic waves by nonequilibrium particle distributions involving suprathermal tails, and to explain under what conditions and through what mechanisms they can occur, develop, and saturate. This paper presents and discusses two main processes: (i) the linear fan instability and (ii) the nonlinear process of dynamical resonance merging, which can significantly amplify the energy carried by linearly destabilized waves after they saturate due to particle trapping. This study consists of (i) determining analytically and numerically, for parameters typical of space and laboratory plasmas, the linear growth rates of whistlers excited by suprathermal particle fluxes through the fan instability, as well as the corresponding thresholds and the physical conditions at which the instability can appear, (ii) building a theoretical self-consistent 3D model and a related numerical code for describing the nonlinear evolution of the wave-particle system, and (iii) performing numerical simulations to reveal and characterize the nonlinear amplification process at work, its conditions of development, and its consequences, notably in terms of electromagnetic wave radiation. The simulations show that when the waves have reached sufficient energy levels owing to the linear fan instability, they saturate by trapping particles and due to the complex dynamics of these particles in the electromagnetic fields, the resonant velocities' domains of the waves overlap and merge, meanwhile a strong increase of the wave energy occurs.

Krafft, C. [Laboratoire de Physique des Plasmas, Ecole Polytechnique, 91128 Palaiseau Cedex (France) and University Paris Sud, 91405 Orsay Cedex (France); Volokitin, A. [Space Research Institute (IKI), 117997, 84/32 Profsoyuznaya Str., Moscow (Russian Federation)

2010-10-15T23:59:59.000Z

263

Determination of applied stresses in rails using the acoustoelastic effect of ultrasonic waves  

E-Print Network (OSTI)

This research develops a procedure to determine the applied stresses in rails using the acoustoelastic effect of ultrasonic waves. Acoustoelasticity is defined as the stress dependency of ultrasonic wave speed or wave polarization. Analytical models are developed that predict the acoustoelastic effect for longitudinal waves, shear waves, Lamb waves, and Rayleigh waves. Using a programming tool, a numerical simulation of the models is generated to obtain the stress dependent curves of wave velocity and polarization of the various ultrasonic waves propagating in rail steel. A comparison of the sensitivity of the acoustoelastic effect is made to determine the feasibility of ultrasonic waves for further study. Rayleigh waves are found to be most sensitive to stress change. Rayleigh waves are generated using ultrasonic transducer and detected using a laser Doppler vibrometer (LDV). The LDV measures the in-plane and out-of-plane velocities. Polarization is defined as the ratio of in-plane and out-of-plane displacements. Initially, polarization is determined for the specimen in unstressed condition. Thereafter, the rail specimen is stressed in a compression testing machine, the experiment repeated, and the polarization determined. Thus, Rayleigh wave polarization is obtained as a function of applied stress. Finally, the change in polarization obtained experimentally is compared with the analytical model.

Gokhale, Shailesh Ashok

2007-12-01T23:59:59.000Z

264

Nuclear Physics with Electroweak Probes  

E-Print Network (OSTI)

In recent years, the italian theoretical Nuclear Physics community has played a leading role in the development of a unified approach, allowing for a consistent and fully quantitative description of the nuclear response to electromagnetic and weak probes. In this paper I review the main achievements in both fields, point out some of the open problems, and outline the most promising prospects.

Omar Benhar

2009-02-26T23:59:59.000Z

265

Mesoscale Thermohaline, Sound Velocity and Baroclinic Flow Structure of the Pacific Subtropical Front During the Winter of 1980  

Science Conference Proceedings (OSTI)

The three-dimensional thermohaline. sound velocity and baroclinic flow structure of the. pacific sub-tropical front during January and February 1990 are discussed. The front is meander-like, with a wavelength of 180 km, a wave amplitude of 55 km, ...

Gunnar I. Roden

1981-05-01T23:59:59.000Z

266

Cantilevered probe detector with piezoelectric element  

DOE Patents (OSTI)

A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

Adams, Jesse D; Sulchek, Todd A; Feigin, Stuart C

2013-04-30T23:59:59.000Z

267

Cantilevered probe detector with piezoelectric element  

DOE Patents (OSTI)

A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

Adams, Jesse D. (Reno, NV); Sulchek, Todd A. (Oakland, CA); Feigin, Stuart C. (Reno, NV)

2012-07-10T23:59:59.000Z

268

Watching Gravitational Waves  

E-Print Network (OSTI)

In the vicinity of merging neutron strar binaries or supernova remnants, gravitational waves can interact with the prevailing strong magnetic fields. The resulting partial conversion of gravitational waves into electromagnetic (radio) waves might prove to be an indirect way of detecting gravitational waves from such sources. Another interesting interaction considered in this article is the excitation of magnetosonic plasma waves by a gravitational wave passing through the surrounding plasma. The transfer of gravitational wave energy into the plasma might help to fuel the `fireball' of electromagnetic radiation observed in gamma ray bursts. In the last section of the article, a dispersion relation is derived for such magnetosonic plasma waves driven by a gravitational wave.

Joachim Moortgat

2001-04-02T23:59:59.000Z

269

Good Vibrations Probe Innards of Molecular Electronic ...  

Science Conference Proceedings (OSTI)

... Probing molecules in integrated silicon-molecule-metal junctions by inelastic tunneling spectroscopy. ACS Nano Letters, 8, 478 (2008).

2012-11-02T23:59:59.000Z

270

Estimating Spatial Velocity Statistics with Coherent Doppler Lidar  

Science Conference Proceedings (OSTI)

The spatial statistics of a simulated turbulent velocity field are estimated using radial velocity estimates from simulated coherent Doppler lidar data. The structure functions from the radial velocity estimates are processed to estimate the ...

Rod Frehlich; Larry Cornman

2002-03-01T23:59:59.000Z

271

Improved double planar probe data analysis technique  

Science Conference Proceedings (OSTI)

Plasma electron number density and ion number density in a dc multidipole weakly collisional Ar plasma are measured with a single planar Langmuir probe and a double planar probe, respectively. A factor of two discrepancy between the two density measurements is resolved by applying Sheridan's empirical formula [T. E. Sheridan, Phys. Plasmas 7, 3084 (2000)] for sheath expansion to the double probe data.

Ghim, Young-chul; Hershkowitz, Noah [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

2009-03-15T23:59:59.000Z

272

ARM - Evaluation Product - Convective Vertical Velocity  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsConvective Vertical Velocity ProductsConvective Vertical Velocity Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Convective Vertical Velocity 2011.04.25 - 2011.05.23 Site(s) SGP General Description Convective processes play an important role in Earth's energy balance by distributing heat and moisture throughout the atmosphere. In particular, vertical air motions associated with these processes are inherently linked to the life cycle of these convective systems and are therefore directly tied to their energy budget. However, direct measurements of vertical air motions (e.g., in situ aircraft observations) are sparse, making it difficult to compare them with numerical model output, which relies on convective parameterization schemes that have yet to be extensively

273

Impact of Hight Velocity Cold Spray Particles  

SciTech Connect

This paper presents experimental data and an computational model of the cold spray solid particle impact process. Copper particles impacting onto a polished stainless steel substrate are examined. The high velocity impact causes significant plastic deformation of both the particle and the sub- strate, but no melting is observed. The plastic deformation exposes clean surfaces that, under the high impact pressures, result in significant bond strengths between the particle and substrate. Experimental measurements of the splat and crater sizes compare well with the numerical calculations. It is shown that the crater depth is significant and increases with impact velocity. However, the splat diameter is much less sensitive to the impact velocity. It is also shown that the geometric lengths of the splat and crater scale linearly with the diameter of the impacting particle. It is hoped that the results presented will allow better understanding of the bonding process during cold spray.

Dykhuizen, R.C.; Gilmore, D.L.; Jiang, X.; Neiser, R.A.; Sampath, S.; Smith, M.F.

1998-12-01T23:59:59.000Z

274

Visibility graph analysis of solar wind velocity  

E-Print Network (OSTI)

We analyze in situ measurements of solar wind velocity obtained by Advanced Composition Explorer (ACE) spacecraft and Helios spacecraft during the years 1998-2012 and 1975-1983 respectively. The data belong to mainly solar cycle 23 (1996-2008) and solar cycle 21 (1976-1986) respectively. We use Directed Horizontal Visibility graph (DHVg) algorithm and estimate a graph functional, namely, the degree distance (D) as the Kullback-Leibler divergence (KLD) argument to understand time irreversibility of solar wind time series. We estimate this degree distance irreversibility parameter for these time series at different phases of solar activity cycle. Irreversibility parameter is first established for known dynamical data and then applied for solar wind velocity time series. It is observed that irreversibility in solar wind velocity fluctuations show similar behaviour at 0.3 AU (Helios data) and 1 AU (ACE data). Moreover it changes over the different phases of solar activity cycle.

Suyal, Vinita; Singh, Harinder P

2013-01-01T23:59:59.000Z

275

Seismic wave propagation in cracked porous media Tim Pointer,1,  

E-Print Network (OSTI)

, Pi plays an important role. There is much higher attenuation and dispersion for gas (which is more, as for PARTIAL ALIGN, there is no velocity dispersion; there is also increased P and SV attenuation as the gas in there is high attenuation and dispersion of seismic waves. Fluid £ow may be on either a wavelength scale

Edinburgh, University of

276

Near-Surface Turbulence in the Presence of Breaking Waves  

Science Conference Proceedings (OSTI)

Observations with a three-axis pulse-to-pulse coherent acoustic Doppler profiler and acoustic resonators reveal the turbulence and bubble field beneath breaking waves in the open ocean at wind speeds up to 14 m s?1. About 55%–80% of velocity ...

Johannes R. Gemmrich; David M. Farmer

2004-05-01T23:59:59.000Z

277

The Free Kelvin Wave with Lateral and Vertical Viscosity  

Science Conference Proceedings (OSTI)

Free Kelvin wave solutions of the linear shallow-water equations are described, for an f-plane. Lateral and vertical viscous effects are represented by terms ?2u and du, respectively, where (u,v) is the (onshore, longshore) velocity. Both no-...

Michael K. Davey; William W. Hsieh; Roxana C. Wajsowicz

1983-12-01T23:59:59.000Z

278

Sea-Surface Drift Currents Induced by Wind and Waves  

Science Conference Proceedings (OSTI)

Wind-induced shell currents and wave-induced mass transports at various fetches of both clean and slick sea surfaces are separately estimated. At the clean surface, the ratio between wind-induced current and wind velocity decreases, while the ...

Jin Wu

1983-08-01T23:59:59.000Z

279

Observations of Vortex Rossby Waves Associated with a Mesoscale Cyclone  

Science Conference Proceedings (OSTI)

Short-wavelength (L 100 km) Rossby waves with an eastward zonal phase velocity were observed by high-frequency radio Doppler current meters and moored ADCPs west of Oahu, Hawaii, during spring 2003. They had Rossby numbers Ro = |?/f| = O(1), ...

Cédric P. Chavanne; Pierre Flament; Douglas S. Luther; Klaus-Werner Gurgel

2010-10-01T23:59:59.000Z

280

Gravitational Wave Sources from New Physics  

E-Print Network (OSTI)

Forthcoming advances in direct gravitational wave detection from kilohertz to nanohertz frequencies have unique capabilities to detect signatures from or set meaningful constraints on a wide range of new cosmological phenomena and new fundamental physics. A brief survey is presented of the post-inflationary gravitational radiation backgrounds predicted in cosmologies that include intense new classical sources such as first-order phase transitions, late-ending inflation, and dynamically active mesoscopic extra dimensions. LISA will provide the most sensitive direct probes of such phenomena near TeV energies or Terascale. LISA will also deeply probe the broadband background, and possibly bursts, from loops of cosmic superstrings predicted to form in current models of brane inflation.

Craig J. Hogan

2006-08-25T23:59:59.000Z

Note: This page contains sample records for the topic "velocity wave probe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Application of optical remote sensing to the measurment of wave surface kinematics  

E-Print Network (OSTI)

This research study focused on the development and application of a laboratory instrument utilizing real-time video in conjunction with image processing techniques to accurately measure 3-dimensional wave surface kinematics. This thesis presents the design and results of the instrument in its initial, 2-dimensional measurement, stage of development. The objective was to design a functioning laboratory instrument and use it to measure horizontal surface velocities on a series of waves. These results are compared to those of existing theoretical methods to determine both the accuracy and feasibility of the instrument. Measurement of horizontal surface velocities are conducted on a series of regular and irregular waves. Results of the regular wave measurements are compared to well established higher order wave theory to quantify the accuracy of the laboratory instrument. The results of the irregular wave measurements are compared to predicted velocity time series acquired from the Hybrid Wave Model, Wheeler Stretching and Linear Extrapolation. Adjustments are then made to the measured velocity time series to represent any drift currents that might be present in the flume that theory can not predict. Comparison of the adjusted time series are then made to those predicted by the three theoretical methods. Maximum and Minimum measured velocities for each wave set are also compared to predicted values. Comparisons between measured and theoretical values show that the instrument and the theoretical models are in agreement and thus the laboratory instrument is a capable means of accurately measuring wave surface kinematics. Results also show that considering the agreement between theory and measured values, when taking into account the excessive amount time required to produce velocities from the video images, the instrument, in its current form, is not a practical method for surface kinematic measurements. There is, however, enough evidence to show that expanding the instrument to include 3-dimensional measurement capabilities would produce a valuable laboratory tool.

Riedl, Stephen James

1994-01-01T23:59:59.000Z

282

Strong Shock Waves and Nonequilibrium Response in a One-dimensional Gas: a Boltzmann Equation Approach  

E-Print Network (OSTI)

We investigate the nonequilibrium behavior of a one-dimensional binary fluid on the basis of Boltzmann equation, using an infinitely strong shock wave as probe. Density, velocity and temperature profiles are obtained as a function of the mixture mass ratio \\mu. We show that temperature overshoots near the shock layer, and that heavy particles are denser, slower and cooler than light particles in the strong nonequilibrium region around the shock. The shock width w(\\mu), which characterizes the size of this region, decreases as w(\\mu) ~ \\mu^{1/3} for \\mu-->0. In this limit, two very different length scales control the fluid structure, with heavy particles equilibrating much faster than light ones. Hydrodynamic fields relax exponentially toward equilibrium, \\phi(x) ~ exp[-x/\\lambda]. The scale separation is also apparent here, with two typical scales, \\lambda_1 and \\lambda_2, such that \\lambda_1 ~ \\mu^{1/2} as \\mu-->0$, while \\lambda_2, which is the slow scale controlling the fluid's asymptotic relaxation, increases to a constant value in this limit. These results are discussed at the light of recent numerical studies on the nonequilibrium behavior of similar 1d binary fluids.

Pablo I. Hurtado

2005-05-02T23:59:59.000Z

283

Radiation of Electron in the Field of Plane Light Wave  

SciTech Connect

Results of integration of a Lorentz equation for a relativistic electron moving in the field of running, plane, linear polarized electromagnetic wave are presented in the paper. It is shown that electron velocities in the field of the wave are almost periodic functions of time. For calculations of angular spectrum of electron radiation intensity expansion of the electromagnetic field in a wave zone into generalized Fourier series was used. Expressions for the radiation intensity spectrum are presented in the paper. Derived results are illustrated for electron and laser beam parameters of NSC KIPT X-ray generator NESTOR. It is shown that for low intensity of the interacting electromagnetic wave the results of energy and angular spectrum calculations in the frame of classical electrodynamics completely coincide with calculation results produced using quantum electrodynamics. Simultaneously, derived expressions give possibilities to investigate dependence of energy and angular Compton radiation spectrum on phase of interaction and the interacting wave intensity.

Zelinsky, A.; Drebot, I.V.; Grigorev, Yu.N.; Zvonareva, O.D.; /Kharkov, KIPT; Tatchyn, R.; /SLAC

2006-02-24T23:59:59.000Z

284

pH Meter probe assembly  

DOE Patents (OSTI)

An assembly for mounting a pH probe in a flowing solution, such as a sanitary sewer line, which prevents the sensitive glass portion of the probe from becoming coated with grease, oil, and other contaminants, whereby the probe gives reliable pH indication over an extended period of time. The pH probe assembly utilizes a special filter media and a timed back-rinse feature for flushing clear surface contaminants of the filter. The flushing liquid is of a known pH and is utilized to check performance of the probe.

Hale, Charles J. (San Jose, CA)

1983-01-01T23:59:59.000Z

285

pH Meter probe assembly  

DOE Patents (OSTI)

An assembly for mounting a pH probe in a flowing solution, such as a sanitary sewer line, which prevents the sensitive glass portion of the probe from becoming coated with grease, oil, and other contaminants, whereby the probe gives reliable pH indication over an extended period of time. The pH probe assembly utilizes a special filter media and a timed back-rinse feature for flushing clear surface contaminants of the filter. The flushing liquid is of a known pH and is utilized to check performance of the probe. 1 fig.

Hale, C.J.

1983-11-15T23:59:59.000Z

286

Gravity Waves from Thunderstorms  

Science Conference Proceedings (OSTI)

Gravity waves generated by severe thunderstorms in the eastern Ohio-Pennsylvania area were recorded by an array of microbarovariographs at Palisades, New York and by standard microbarographs across northeastern United States. The waves were ...

Nambath K. Balachandran

1980-06-01T23:59:59.000Z

287

Vehicle Velocity Estimation Based on RSS Measurements  

Science Conference Proceedings (OSTI)

This paper presents a technique which is based on pattern recognition techniques, in order to estimate Mobile Terminal (MT) velocity. The proposed technique applies on received signal strength (RSS) measurements and more precisely on information extracted ... Keywords: HIDden Markov Model, WCDMA, clustering, location based services, pattern recognition, propagation modeling, traffic information

Theodore S. Stamoulakatos; Antonis S. Markopoulos; Miltiadis E. Anagnostou; Michalis E. Theologou

2007-03-01T23:59:59.000Z

288

Aggregate Terminal Velocity/Temperature Relations  

Science Conference Proceedings (OSTI)

Terminal velocities of snow aggregates in storms along the Front Range in eastern Colorado are examined with a ground-based two-dimensional video disdrometer. Power-law relationships for particles having equivalent volume diameters of 0.5–20 mm ...

Edward A. Brandes; Kyoko Ikeda; Gregory Thompson; Michael Schönhuber

2008-10-01T23:59:59.000Z

289

The Rossiter-McLaughlin effect and analytic radial velocity curves for transiting extrasolar planetary systems  

E-Print Network (OSTI)

A transiting extrasolar planet sequentially blocks off the light coming from the different parts of the disk of the host star in a time dependent manner. Due to the spin of the star, this produces an asymmetric distortion in the line profiles of the stellar spectrum, leading to an apparent anomaly of the radial velocity curves, known as the Rossiter - McLaughlin effect. Here, we derive approximate but accurate analytic formulae for the anomaly of radial velocity curves taking account of the stellar limb darkening. The formulae are particularly useful in extracting information of the projected angle between the planetary orbit axis and the stellar spin axis, \\lambda, and the projected stellar spin velocity, V sin I_s. We create mock samples for the radial curves for the transiting extrasolar system HD209458, and demonstrate that constraints on the spin parameters (V sin I_s, \\lambda) may be significantly improved by combining our analytic template formulae and the precision velocity curves from high-resolution spectroscopic observations with 8-10 m class telescopes. Thus future observational exploration of transiting systems using the Rossiter - McLaughlin effect is one of the most important probes to better understanding of the origin of extrasolar planetary systems, especially the origin of their angular momentum.

Yasuhiro Ohta; Atsushi Taruya; Yasushi Suto

2004-10-21T23:59:59.000Z

290

Horizon effects with surface waves on moving water  

E-Print Network (OSTI)

Surface waves on a stationary flow of water are considered, in a linear model that includes the surface tension of the fluid. The resulting gravity-capillary waves experience a rich array of horizon effects when propagating against the flow. In some cases three horizons (points where the group velocity of the wave reverses) exist for waves with a single laboratory frequency. Some of these effects are familiar in fluid mechanics under the name of wave blocking, but other aspects, in particular waves with negative co-moving frequency and the Hawking effect, were overlooked until surface waves were investigated as examples of analogue gravity [Sch\\"utzhold R and Unruh W G 2002 Phys. Rev. D 66 044019]. A comprehensive presentation of the various horizon effects for gravity-capillary waves is given, with emphasis on the deep water/short wavelength case kh>>1 where many analytical results can be derived. A similarity of the state space of the waves to that of a thermodynamic system is pointed out.

Germain Rousseaux; Philippe Maissa; Christian Mathis; Pierre Coullet; Thomas G. Philbin; Ulf Leonhardt

2010-04-30T23:59:59.000Z

291

The Effect of Wave Breaking on the Wave Energy Spectrum  

Science Conference Proceedings (OSTI)

The effect of wave breaking on the wave energy spectral shape is examined. The Stokes wave-breaking criterion is first extended to random waves and a breaking wave model is established in which the elevation of breaking waves is expressed in ...

C. C. Tung; N. E. Huang

1987-08-01T23:59:59.000Z

292

Calculating Reynolds Stresses from ADCP Measurements in the Presence of Surface Gravity Waves Using the Cospectra-Fit Method  

Science Conference Proceedings (OSTI)

Recently, the velocity observations of acoustic Doppler current profilers (ADCPs) have been successfully used to estimate turbulent Reynolds stresses in estuaries and tidal channels. However, the presence of surface gravity waves can ...

Anthony R. Kirincich; Steven J. Lentz; Gregory P. Gerbi

2010-05-01T23:59:59.000Z

293

Gravity Wave – Fine Structure Interactions, Part 1: Influences of Fine-Structure Form and Orientation on Flow Evolution and Instability  

Science Conference Proceedings (OSTI)

Four idealized direct numerical simulations are performed to examine the dynamics arising from the superposition of a monochromatic gravity wave and sinusoidal linear and rotary fine structure in the velocity field. These simulations are motivated ...

David C. Fritts; Ling Wang; Joseph A. Werne

294

Sensitivity of Internal Gravity Waves Solutions to the Time Step of a Semi-Implicit Semi-Lagrangian Nonhydrostatic Model  

Science Conference Proceedings (OSTI)

The combination of semi-implicit and semi-Lagrangian marching algorithms leads to stable integration of the meteorological equations with long time steps even for large advecting velocities and fast-moving free waves. In recent years, however, ...

Philippe Héreil; René Laprise

1996-05-01T23:59:59.000Z

295

Statistical Parameters of the Air Turbulent Boundary Layer over Steep Water Waves Measured by the PIV Technique  

Science Conference Proceedings (OSTI)

A turbulent airflow with a centerline velocity of 4 m s?1 above 2.5-Hz mechanically generated gravity waves of different amplitudes has been studied in experiments using the particle image velocimetry (PIV) technique. Direct measurements of the ...

Yu. Troitskaya; D. Sergeev; O. Ermakova; G. Balandina

2011-08-01T23:59:59.000Z

296

Vorticity and Divergence of Surface Velocities Near Shore  

Science Conference Proceedings (OSTI)

The nearshore environment is complex, with many competing dynamical elements. Surface waves and edge waves (a form of surface wave trapped to the shore) can generally be separated from other forms of motion because of their fast propagation ...

Jerome A. Smith

2008-07-01T23:59:59.000Z

297

Covariant nucleon wave function with S, D, and P-state components  

Science Conference Proceedings (OSTI)

Expressions for the nucleon wave functions in the covariant spectator theory (CST) are derived. The nucleon is described as a system with a off-mass-shell constituent quark, free to interact with an external probe, and two spectator constituent quarks on their mass shell. Integrating over the internal momentum of the on-mass-shell quark pair allows us to derive an effective nucleon wave function that can be written only in terms of the quark and diquark (quark-pair) variables. The derived nucleon wave function includes contributions from S, P and D-waves.

Franz Gross, G. Ramalho, M. T. Pena

2012-05-01T23:59:59.000Z

298

On the theory of turbulent flame velocity  

E-Print Network (OSTI)

The renormalization ideas of self-similar dynamics of a strongly turbulent flame front are applied to the case of a flame with realistically large thermal expansion of the burning matter. In that case a flame front is corrugated both by external turbulence and the intrinsic flame instability. The analytical formulas for the velocity of flame propagation are obtained. It is demonstrated that the flame instability is of principal importance when the integral turbulent length scale is much larger than the cut off wavelength of the instability. The developed theory is used to analyse recent experiments on turbulent flames propagating in tubes. It is demonstrated that most of the flame velocity increase measured experimentally is provided by the large scale effects like the flame instability, and not by the small-scale external turbulence.

Vitaly Bychkov; Vyacheslav Akkerman; Arkady Petchenko

2012-10-19T23:59:59.000Z

299

Microsoft Word - PumpProbe  

NLE Websites -- All DOE Office Websites (Extended Search)

Pump/Probe Pump/Probe Resources Available - BE Current Mid 2014 Mid 2016 Beamline X-ray Source Total Total Total NSLS-I 0.25 0.15 0 U4B Bend 0.05 0 0 U4IR Bend 0.2 0.15 0 APS 4.75 4.75 4.75 4-ID-C CPU 0 0 0 7-ID-C&D Undulator 1 1 1 7-BM-B Bend 1 1 1 10-ID-B Undulator 0.5 0.5 0.5 11-ID-D Undulator 1 1 1 14-ID-B Undulator 1 1 1 20-ID Undulator 0.25 0.25 0.25 ALS 3 3 3 4.0.2 EPU 0 0 0 6.0.1 Undulator 1 1 1 6.0.2 Undulator 1 1 1 6.1.2 Bend 0 0 0 9.0.2 Undulator 1 1 1 11.0.1 EPU 0 0 0 11.0.2 EPU 0 0 0 SSRL 0.15 0.45 0.45

300

Analysis of WACSIS data using a directional hybrid wave model  

E-Print Network (OSTI)

This study focuses on the analysis of measured directional seas using a nonlinear model, named Directional Hybrid Wave Model (DHWM). The model has the capability of decomposing the directional wave field into its free wave components with different frequency, amplitude, direction and initial phase based on three or more time series of measured wave properties. With the information of free waves, the DHWM can predict wave properties accurately up to the second order in wave steepness. In this study, the DHWM is applied to the analyses of the data of Wave Crest Sensor Inter-comparison Study (WACSIS). The consistency between the measurements collected by different sensors in the WACSIS project was examined to ensure the data quality. The wave characteristics at the locations of selected sensors were predicted in time domain and were compared with those recorded at the same location. The degree of agreement between the predictions and the related measurements is an indicator of the consistency among different sensors. To analyze the directional seas in the presence of strong current, the original DHWM was extended to consider the Doppler effects of steady and uniform currents on the directional wave field. The advantage of extended DHWM originates from the use of the intrinsic frequency instead of the apparent frequency to determine the corresponding wavenumber and transfer functions relating wave pressure and velocities to elevation. Furthermore, a new approach is proposed to render the accurate and consistent estimates of the energy spreading parameter and mean wave direction of directional seas based on a cosine-2s model. In this approach, a Maximum Likelihood Method (MLM) is employed. Because it is more tolerant of errors in the estimated cross spectrum than a Directional Fourier Transfer (DFT) used in the conventional approach, the proposed approach is able to estimate the directional spreading parameters more accurately and consistently, which is confirmed by applying the proposed and conventional approach, respectively, to the time series generated by numerical simulation and recorded during the WACSIS project.

Zhang, Shaosong

2005-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "velocity wave probe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Cycloidal Wave Energy Converter  

SciTech Connect

This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will exceed this initial performance estimates. In advancing the Technology Readiness Level (TRL) of this type of wave energy converter from 3 to 4, we find the CycWEC to exceed our initial estimates in terms of hydrodynamic performance. Once fully developed and optimized, it has the potential to not just outperform all other WEC technologies, but to also deliver power at a lower LCOE than competing conventional renewables like wind and solar. Given the large wave power resource both domestically and internationally, this technology has the potential to lead to a large improvement in our ability to produce clean electricity at affordable cost.

Stefan G. Siegel, Ph.D.

2012-11-30T23:59:59.000Z

302

Comparison of P-wave and S-wave data processed by DIP moveout  

E-Print Network (OSTI)

One of the major goals of seismic data processing is to produce an accurate image of the subsurface of the earth. Unfortunately, when dipping events or diffractions are present, or when velocities vary laterally, the normal-moveout (NMO) correction applied in common midpoint (CMP) stacking fails to convert even primary events on non-zero offset traces to true zero offset. Dip moveout (DMO) is a process that converts non-zerooffset data to true zero offset after NMO has been applied. Direct comparison of compressional (P) and shear (S) wave data in a fractured reservoir can show whether amplitude anomalies on the P-wave section are associated with the presence of gas or change of lithology. The P-wave and S-wave data selected for this study were shot in Burleson County, Texas. After processing, the P-wave and S-wave sections were interpreted. No gas-related DHf (direct hydrocarbon indicator) was seen in both sections. Comparison of both sections before and after DMO shows that DMO has helped imaging the fractures in the Austin Chalk and provided a clear image of the subsurface after migrating the DMO data. Major reflectors such as the Pecan Gap, "Top-of-the-Austin-Chalk", "Bottom-of-theAustin-Chalk", and Buda correlate well with seismic events on the synthetic seismogram which was generated from the sonic log of the Lancier Brinckman #1 well. The difference in depth between the sonic log and the P-wave seismic section is small. The sonic log depths are deeper than the P-wave seismic section depths. The top and bottom of the Austin Chalk reflectors on both sections display laterally varying amplitudes (surface locations 55 to 68). This region coincides with the high-oil production zone (fractured zone).

Al-Misnid, Abdulaziz Mugbel

1994-01-01T23:59:59.000Z

303

PROBING DENSE NUCLEAR MATTER VIA NUCLEAR COLLISIONS  

E-Print Network (OSTI)

University of California. LBL-12095 Probing Dense NuclearMatter Nuclear Collisions* v~a H. Stocker, M.Gyulassy and J. Boguta Nuclear Science Division Lawrence

Stocker, H.

2012-01-01T23:59:59.000Z

304

Atom Probe Tomography and Transmission Electron Microscopy ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Atom probe tomography (APT) and analytical transmission .... of a Leaking Type 316 Socket Weld in a Boron Injection Tank Sampling Line.

305

Optical Backscatter Probe for Sensing Particulate Matter  

By supplying light from the fiber optic probe into specific engine locations, ... systems to optimize engine performance • On-board diagnostics required by regulatory

306

Versatile Probes for Enhanced Protein Behavior Mapping ...  

Summary. Researchers at PNNL have developed new probes that specifically bind to peptide tags, which are amino acid sequences engineered into any ...

307

Automated Surface Sampling Probe for Mass Spectrometry  

Dr. Gary Van Berkel and colleagues have developed a liquid microjunction surface sampling probe (LMJ?SSP). The LMJ?SSP provides mass spectrometry with ...

308

MIT validation probe acceptance test procedure  

SciTech Connect

As part of the Multi-Functional Instrument Trees (MITs) a Validation Probe is being fabricated by Los Alamos National Laboratories (LANL). The Validation Probe assembly is equipped with a Winch, depth counter, and a Resistance Temperature Detector (RTD) which will render a means for verifying the temperature readings of which will render a means for verifying the temperature readings of the MIT thermocouples. The purpose of this Acceptance Test Procedure (ATP) is to provide verification that the Validation Probe functions properly and accordingly to LANL design and specification. This ATP will be used for all Validation Probes procured from LANL. The ATP consists of a receiving inspection, RTD ambient temperature; RTD electrical failure, RTD insulation resistance, and accurate depth counter operation inspections. The Validation Probe is composed of an intank probe, a cable and winching system, and a riser extension (probe guide) which bolts onto the MIT. The validation`s thermal sensor is an RTD that is housed in a 0.062 inch diameter, magnesium oxide fill, 316 stainless steel tube. The sheath configuration provides a means for spring loading the sensor firmly against the validation tube`s inner wall. A 45 pound cylindrical body is connected above the sheath and is used as a force to lower the probe into the tank. This cylindrical body also provides the means to interconnect both electrically and mechanically to the winch system which lowers the probe to a specified location within the validation tube located in the tank.

Escamilla, S.A.

1994-08-23T23:59:59.000Z

309

Shock Waves in Plane Symmetric Spacetimes  

E-Print Network (OSTI)

We consider Einstein's equations coupled to the Euler equations in plane symmetry, with compact spatial slices and constant mean curvature time. We show that for a wide variety of equations of state and a large class of initial data, classical solutions break down in finite time. The key mathematical result is a new theorem on the breakdown of solutions of systems of balance laws. We also show that an extension of the solution is possible if the spatial derivatives of the energy density and the velocity are bounded, indicating that the breakdown is really due to the formation of shock waves.

Alan D. Rendall; Fredrik Ståhl

2008-06-10T23:59:59.000Z

310

Ion temperature via laser scattering on ion Bernstein waves  

DOE Green Energy (OSTI)

Hydrogen ion temperature has been measured in a warm toroidal plasma with externally launched ion Bernstein waves detected by heterodyne CO/sub 2/ laser scattering. Radial scanning of the laser beam allows precise determination of k/sub perpendicular to/ for the finite ion Larmor radius wave (..omega.. approx. less than or equal to 2..cap omega../sub i/). Knowledge of the magnetic field strength and ion concentration then give a radially resolved ion temperature from the dispersion relation. Probe measurements and Doppler broadening of ArII 4806A give excellent agreement.

Wurden, G.A.; Ono, M.; Wong, K.L.

1981-10-01T23:59:59.000Z

311

Ion-acoustic cnoidal wave and associated non-linear ion flux in dusty plasma  

Science Conference Proceedings (OSTI)

Using reductive perturbation method with appropriate boundary conditions, coupled evolution equations for first and second order potentials are derived for ion-acoustic waves in a collisionless, un-magnetized plasma consisting of hot isothermal electrons, cold ions, and massive mobile charged dust grains. The boundary conditions give rise to renormalization term, which enable us to eliminate secular contribution in higher order terms. Determining the non secular solution of these coupled equations, expressions for wave phase velocity and averaged non-linear ion flux associated with ion-acoustic cnoidal wave are obtained. Variation of the wave phase velocity and averaged non-linear ion flux as a function of modulus (k{sup 2}) dependent wave amplitude are numerically examined for different values of dust concentration, charge on dust grains, and mass ratio of dust grains with plasma ions. It is found that for a given amplitude, the presence of positively (negatively) charged dust grains in plasma decreases (increases) the wave phase velocity. This behavior is more pronounced with increase in dust concentrations or increase in charge on dust grains or decrease in mass ratio of dust grains. The averaged non-linear ion flux associated with wave is positive (negative) for negatively (positively) charged dust grains in the plasma and increases (decreases) with modulus (k{sup 2}) dependent wave amplitude. For given amplitude, it increases (decreases) as dust concentration or charge of negatively (positively) charged dust grains increases in the plasma.

Jain, S. L. [Poornima Group of Institution, Sitapura, Jaipur 302022 (India); Tiwari, R. S. [Regional College for Education, Research and Technology, Jaipur 302022 (India); Mishra, M. K. [Department of Physics, University of Rajasthan, Jaipur 302004 (India)

2012-10-15T23:59:59.000Z

312

Plasma transport induced by kinetic Alfven wave turbulence  

SciTech Connect

At the Earth's magnetopause that separates the hot-tenuous magnetospheric plasma from the cold dense solar wind plasma, often seen is a boundary layer where plasmas of both origins coexist. Plasma diffusions of various forms have been considered as the cause of this plasma mixing. Here, we investigate the plasma transport induced by wave-particle interaction in kinetic Alfven wave (KAW) turbulence, which is one of the candidate processes. We clarify that the physical origin of the KAW-induced cross-field diffusion is the drift motions of those particles that are in Cerenkov resonance with the wave: E Multiplication-Sign B-like drift that emerges in the presence of non-zero parallel electric field component and grad-B drift due to compressional magnetic fluctuations. We find that KAW turbulence, which has a spectral breakpoint at which an MHD inertial range transits to a dissipation range, causes selective transport for particles whose parallel velocities are specified by the local Alfven velocity and the parallel phase velocity at the spectral breakpoint. This finding leads us to propose a new data analysis method for identifying whether or not a mixed plasma in the boundary layer is a consequence of KAW-induced transport across the magnetopause. The method refers to the velocity space distribution function data obtained by a spacecraft that performs in situ observations and, in principle, is applicable to currently available dataset such as that provided by the NASA's THEMIS mission.

Izutsu, T. [Department of Earth and Planetary Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 133-0033 (Japan); Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Hasegawa, H.; Fujimoto, M. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Nakamura, T. K. M. [X-Computational Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2012-10-15T23:59:59.000Z

313

Fractional Fourier approximations for potential gravity waves on deep water  

E-Print Network (OSTI)

In the framework of the canonical model of hydrodynamics, where fluid is assumed to be ideal and incompressible, waves are potential, two-dimensional, and symmetric, the authors have recently reported the existence of a new type of gravity waves on deep water besides well studied Stokes waves (Phys. Rev. Lett., 2002, v. 89, 164502). The distinctive feature of these waves is that horizontal water velocities in the wave crests exceed the speed of the crests themselves. Such waves were found to describe irregular flows with stagnation point inside the flow domain and discontinuous streamlines near the wave crests. Irregular flows produce a simple model for describing the initial stage of the formation of spilling breakers when a localized jet is formed at the crest following by generating whitecaps. In the present work, a new highly efficient method for computing steady potential gravity waves on deep water is proposed to examine the above results in more detail. The method is based on the truncated fractional a...

Lukomsky, V P; Lukomsky, Vasyl P.; Gandzha, Ivan S.

2003-01-01T23:59:59.000Z

314

Solids Fraction Measurement with a Reflective Fiber Optic Probe  

SciTech Connect

A method has been developed to extract solids fraction information from a reflective fiber optic probe. The commercially available reflective fiber optic probe was designed to measure axial particle velocity (both up and down directions). However, the reflected light intensity measured is related to particle size and particle concentration. A light reflection model is used to relate the reflected light intensity to solids fraction. In this model we assume that the reflected light intensity is a fixed fraction, K1, of the total light intensity lost in penetration of a solid layer. Also, the solids fraction is related to particle concentration, N, in the light path, by N = K2 (1- ?), where (1-?) is the solids fraction. The parameters K1 and K2 are determined through a calibration and curve fitting procedure. This paper describes this procedure and the steps taken to derive the values of K1 and K2. It is proposed that the reflective fiber optic can be used for real time measurement of solids fraction in a circulating fluid bed.

Seachman, S.M.; Yue, P.C.; Ludlow, J.C.; Shadle, L.J.

2006-11-01T23:59:59.000Z

315

A Fisheye Lens as a Photonic Doppler Velocimetry Probe  

Science Conference Proceedings (OSTI)

A new fisheye lens design is used as a miniature probe to measure the velocity distribution of an imploding surface along many lines of sight. Laser light, directed and scattered back along each beam on the surface, is Doppler shifted by the moving surface and collected into the launching fiber. The received light is mixed with reference laser light in each optical fiber in a technique called photonic Doppler velocimetry, providing a continuous time record. An array of single-mode optical fibers sends laser light through the fisheye lens. The lens consists of an index-matching positive element, two positive doublet groups, and two negative singlet elements. The optical design minimizes beam diameters, physical size, and back reflections for excellent signal collection. The fiber array projected through the fisheye lens provides many measurement points of surface coverage over a hemisphere with very little crosstalk. The probe measures surface movement with only a small encroachment into the center of the cavity. The fiber array is coupled to the index-matching element using index-matching gel. The array is bonded and sealed into a blast tube for ease of assembly and focusing. This configuration also allows the fiber array to be flat polished at a common object plane. In areas where increased measurement point density is desired, the fibers can be close packed. To further increase surface density coverage, smaller-diameter cladding optical fibers may be used.

Frogget, B C; Cox, B C; DeVore, D O; Esquibel, D L; Frayer, D K; Furlanetto, M R; Holtkamp, D B; Kaufman, M I; Malone, R M

2012-09-01T23:59:59.000Z

316

SUPERGRANULES AS PROBES OF THE SUN'S MERIDIONAL CIRCULATION  

SciTech Connect

Recent analysis revealed that supergranules (convection cells seen at the Sun's surface) are advected by the zonal flows at depths equal to the widths of the cells themselves. Here we probe the structure of the meridional circulation by cross-correlating maps of the Doppler velocity signal using a series of successively longer time lags between maps. We find that the poleward meridional flow decreases in amplitude with time lag and reverses direction to become an equatorward return flow at time lags >24 hr. These cross-correlation results are dominated by larger and deeper cells at longer time lags. (The smaller cells have shorter lifetimes and do not contribute to the correlated signal at longer time lags.) We determine the characteristic cell size associated with each time lag by comparing the equatorial zonal flows measured at different time lags with the zonal flows associated with different cell sizes from a Fourier analysis. This association gives a characteristic cell size of {approx}50 Mm at a 24 hr time lag. This indicates that the poleward meridional flow returns equatorward at depths >50 Mm-just below the base of the surface shear layer. A substantial and highly significant equatorward flow (4.6 {+-} 0.4 m s{sup -1}) is found at a time lag of 28 hr corresponding to a depth of {approx}70 Mm. This represents one of the first positive detections of the Sun's meridional return flow and illustrates the power of using supergranules to probe the Sun's internal dynamics.

Hathaway, David H., E-mail: david.hathaway@nasa.gov [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States)

2012-11-20T23:59:59.000Z

317

RADIATION WAVE DETECTION  

DOE Patents (OSTI)

Radiation waves can be detected by simultaneously measuring radiation- wave intensities at a plurality of space-distributed points and producing therefrom a plot of the wave intensity as a function of time. To this end. a detector system is provided which includes a plurality of nuclear radiation intensity detectors spaced at equal radial increments of distance from a source of nuclear radiation. Means are provided to simultaneously sensitize the detectors at the instant a wave of radiation traverses their positions. the detectors producing electrical pulses indicative of wave intensity. The system further includes means for delaying the pulses from the detectors by amounts proportional to the distance of the detectors from the source to provide an indication of radiation-wave intensity as a function of time.

Wouters, L.F.

1960-08-30T23:59:59.000Z

318

In-situ spectrophotometric probe  

DOE Patents (OSTI)

A spectrophotometric probe is described for in situ absorption spectra measurements comprising a first optical fiber carrying light from a remote light source, a second optical fiber carrying light to a remote spectrophotometer, the proximal ends of the first and second optical fibers parallel and co-terminal, a planoconvex lens to collimate light from the first optical fiber, a reflecting grid positioned a short distance from the lens to reflect the collimated light back to the lens for focusing on the second optical fiber. The lens is positioned with the convex side toward the optical fibers. A substrate for absorbing analyte or an analyte and reagent mixture may be positioned between the lens and the reflecting grid. 5 figs.

Prather, W.S.

1992-12-15T23:59:59.000Z

319

In-situ spectrophotometric probe  

DOE Patents (OSTI)

A spectrophotometric probe for in situ absorption spectra measurements comprising a first optical fiber carrying light from a remote light source, a second optical fiber carrying light to a remote spectrophotometer, the proximal ends of the first and second optical fibers parallel and coterminal, a planoconvex lens to collimate light from the first optical fiber, a reflecting grid positioned a short distance from the lens to reflect the collimated light back to the lens for focussing on the second optical fiber. The lens is positioned with the convex side toward the optical fibers. A substrate for absorbing analyte or an analyte and reagent mixture may be positioned between the lens and the reflecting grid. 3 figs.

Prather, W.S.

1990-02-12T23:59:59.000Z

320

In-situ spectrophotometric probe  

DOE Patents (OSTI)

A spectrophotometric probe for in situ absorption spectra measurements comprising a first optical fiber carrying light from a remote light source, a second optical fiber carrying light to a remote spectrophotometer, the proximal ends of the first and second optical fibers parallel and coterminal, a planoconvex lens to collimate light from the first optical fiber, a reflecting grid positioned a short distance from the lens to reflect the collimated light back to the lens for focussing on the second optical fiber. The lens is positioned with the convex side toward the optical fibers. A substrate for absorbing analyte or an analyte and reagent mixture may be positioned between the lens and the reflecting grid.

Prather, William S. (2419 Dickey Rd., Augusta, GA 30906)

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "velocity wave probe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Shock initiation studies of low density HMX using electromagnetic particle velocity and PVDF stress gauges  

Science Conference Proceedings (OSTI)

Magnetic particle velocity and PVDF stress rate gauges have been used to measure the shock response of low density octotetramethylene tetranitramine (HMX) (1.24 &/cm{sup 3}). In experiments done at LANL, magnetic particle velocity gauges were located on both sides of the explosive. In nearly identical experiments done at SNL, PVDF stress rate gauges were located at the same positions so both particle velocity and stress histories were obtained for a particular experimental condition. Unreacted Hugoniot data were obtained and an EOS was developed by combining methods used by Hayes, Sheffield and Mitchell (for describing the Hugoniot of HNS at various densities) with Hermann`s P-{alpha} model. Using this technique, it is only necessary to know some thermodynamic constants or the Hugoniot of the initially solid material and the porous material sound speed to obtain accurate unreacted Hugoniots for the porous explosive. Loading and reaction paths were established in the stress-particle velocity plane for some experimental conditions. This information was used to determine a global reaction rate of {approx} 0.13 {mu}s{sup {minus}1} for porous HMX shocked to 0.8 GPa. At low input stresses the transmitted wave profiles had long rise times (up to 1 {mu}s) due to the compaction processes.

Sheffield, S.A.; Gustavsen, R.L.; Alcon, R.R. [Los Alamos National Lab., NM (United States); Graham, R.A.; Anderson, M.U. [Sandia National Labs., Albuquerque, NM (United States)

1993-09-01T23:59:59.000Z

322

Compression wave studies in Blair dolomite  

DOE Green Energy (OSTI)

Dynamic compression wave studies have been conducted on Blair dolomite in the stress range of 0-7.0 GPa. Impact techniques were used to generate stress impulse input functions, and diffuse surface laser interferometry provided the dynamic instrumentation. Experimental particle velocity profiles obtained by this method were coupled with the conservation laws of mass and momentum to determine the stress-strain and stress-modulus constitutive properties of the material. Comparison between dynamic and quasistatic uniaxial stress-strain curves uncovered significant differences. Energy dissipated in a complete load and unload cycle differed by almost an order of magnitude and the longitudinal moduli differed by as much as a factor of two. Blair dolomite was observed to yield under dynamic loading at 2.5 GPa. Below 2.5 GPa the loading waves had a finite risetime and exhibited steady propagation. A finite linear viscoelastic constitutive model satisfactorily predicted the observed wave propagation. We speculate that dynamic properties of preexisting cracks provides a physical mechanism for both the rate dependent steady wave behavior and the difference between dynamic and quasistatic response.

Grady, D.E.; Hollenbach, R.E.; Schuler, K.W.; Callender, J.F.

1976-02-01T23:59:59.000Z

323

Group velocity and pulse lengthening of mismatched laser pulses in plasma channels  

SciTech Connect

Analytic solutions are presented to the non-paraxial wave equation describing an ultra-short, low-power, laser pulse propagating in aplasma channel. Expressions for the laser pulse centroid motion and laser group velocity are derived, valid for matched and mismatchedpropagation in a parabolic plasma channel, as well as in vacuum, for an arbitrary Laguerre-Gaussian laser mode. The group velocity of amismatched laser pulse, for which the laser spot size is strongly oscillating, is found to be independent of propagation distance andsignificantly less than that of a matched pulse. Laser pulse lengthening of a mismatched pulse owing to laser mode slippage isexamined and found to dominate over that due to dispersive pulse spreading for sufficiently long pulses. Analytic results are shown tobe in excellent agreement with numerical solutions of the full Maxwell equations coupled to the plasma response. Implications for plasmachannel diagnostics are discussed.

Schroeder, Carl; Benedetti, Carlo; Esarey, Eric; van Tilborg, Jeroen; Leemans, Wim

2011-07-07T23:59:59.000Z

324

Technical Challenges in Low-velocity SRF Development ATLAS 25th Anniversary Celebration  

NLE Websites -- All DOE Office Websites (Extended Search)

Challenges in Low-velocity SRF Development Challenges in Low-velocity SRF Development ATLAS 25th Anniversary Celebration October 22-23, 2010 Physics Division, Argonne National Laboratory Building 203, Auditorium Speaker: Mike Kelly ATLAS Energy Upgrade: Commissioned June 2009 14.5 MV in 5 meters using 7 SC Quarter-wave Cavities Superconductivity 1911 - superconductivity discovered by Kamerlingh Onnes in a sample of Hg at 4 Kelvin 1950's: - Ginsburg-Landau theory developed - 1957 - Bardeen, Cooper, and Schrieffer theory First applications such as SC magnets 1964 - SC resonators developed for accelerator applications at Stanford Leiden, ca. 1910 4 Outline Materials from: Ken Shepard, Joel Fuerst I. Some superconductivity background II. Progress in RF superconductivity

325

The relationship between ELF-VHF waves and magnetic shear at the dayside magnetopause  

SciTech Connect

ELF-VLF waves within the current layer of the dayside magnetopause are studied using ISEE-1 data. The database consists of 272 current layer crossings at the dayside magnetopause from 1977 to 1979. For each crossing, the average intensity of ELF-VLF waves inside the current layer is obtained and the magnetic shear angle across the current layer is calculated from the magnetometer data. It is found that the wave amplitudes (both electric and magnetic fields), after normalization by the average magnetic field strength in the current layer, are proportional to the local magnetic shear angle, i.e. large magnetic shear corresponds to strong wave emission and vice versa. From the dispersion relation of the waves for different shear angles, the phase velocity of the waves increases with the magnetic shear and peaks around 700 Hz to 1 kHz. The dispersion curve of the waves is consistent with that of whistler modes. 21 refs., 3 fig.

Zhu, Z.; Song, P. [National Center for Atmospheric Research, Boulder, CO (United States)] [and others

1996-04-01T23:59:59.000Z

326

WAVE REFLE TOR  

owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration. SAND # 2013-8893 P WAVE REFLE TOR

327

Energy Basics: Wave Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

328

WAVE REFLE TOR  

electromagnetic wave travels through the rods along their axes it receives a 1/4 period of phase delay be- ... delay, creating positive interference that effectively

329

Trimodal steady water waves  

E-Print Network (OSTI)

We construct three-dimensional families of small-amplitude gravity-driven rotational steady water waves on finite depth. The solutions contain counter-currents and multiple crests in each minimal period. Each such wave generically is a combination of three different Fourier modes, giving rise to a rich and complex variety of wave patterns. The bifurcation argument is based on a blow-up technique, taking advantage of three parameters associated with the vorticity distribution, the strength of the background stream, and the period of the wave.

Mats Ehrnström; Erik Wahlén

2013-10-31T23:59:59.000Z

330

RFI Comments - Wave Systems  

Science Conference Proceedings (OSTI)

... These attacks, such as those planted by rootkits ... PwC leveraged the power of TPMs to ... Wave EMBASSY® Remote Administration Server (ERAS) has ...

2013-04-09T23:59:59.000Z

331

Collapse of Alfven waves  

SciTech Connect

The growth rates are calculated for the collapse of Alfven waves in a low-..beta.. plasma. The relationship to rf heating is discussed.(AIP)

Erokhin, N.S.; Moiseev, S.S.; Mukhin, V.V.

1977-07-01T23:59:59.000Z

332

Stress-wave velocity of wood-based panels: Effect of moisture,  

E-Print Network (OSTI)

, Associate Professor, College of Ma- terial Science and Engineering, Northeast Forestry University, China (ghan1@lsu.edu); Professor, School of Renewable Natural Re- sources, Louisiana State University

333

Extensional wave attenuation and velocity in partially-saturated sand in the sonic frequency range  

E-Print Network (OSTI)

sands can be viewed as an end-member of the spectrum of naturally-occurring granular materials, with tight

Liu, Z.; Rector, J.W.; Nihei, K.T.; Tomutsa, L.; Myer, L.R.; Nakagawa, S.

2002-01-01T23:59:59.000Z

334

Extensional wave attenuation and velocity in partially saturated sand in the sonic frequency range  

E-Print Network (OSTI)

sands can be viewed as an end-member of the spectrum of naturally-occurring granular materials, with tight

Liu, Z.; Rector, J.W.; Nihei, K.T.; Tomutsa, L.; Myer, L.R.; Nakagawa, S.

2001-01-01T23:59:59.000Z

335

Constraints on primordial density perturbations from induced gravitational waves  

SciTech Connect

We consider the stochastic background of gravitational waves produced during the radiation-dominated hot big bang as a constraint on the primordial density perturbation on comoving length scales much smaller than those directly probed by the cosmic microwave background or large-scale structure. We place weak upper bounds on the primordial density perturbation from current data. Future detectors such as BBO and DECIGO will place much stronger constraints on the primordial density perturbation on small scales.

Assadullahi, Hooshyar; Wands, David [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth PO1 3FX (United Kingdom)

2010-01-15T23:59:59.000Z

336

Phase-matching enhanced ion heating by nonresonant Alfven waves  

Science Conference Proceedings (OSTI)

Heating of ions by two Alfven waves propagating along an external magnetic field via nonresonant wave-particle interaction in low-{beta} plasmas is studied using test-particle simulation. Due to subcyclotron ion resonance, the heating effect of the left-hand polarized Alfven wave pair is 10% greater than that of the right-hand polarized pair. The results show that the perpendicular and parallel (to the external magnetic field) temperatures, as well as the parallel fluid velocity, vary sinusoidally with the phase difference. Furthermore, the magnitude of the oscillations decreases with the ratio of the frequencies of the two waves. When the frequency ratio reaches above 2, the effect of the phase difference vanishes.

Li Kehua [School of Nuclear Science and Technology, University of South China, Hengyang 421001 (China); Department of Nuclear Engineering and New Energy, The Engineering and Technical College of Chengdu University of Technology, Leshan 614000 (China); Gong Xueyu; Lu Xingqiang; Li Xinxia [School of Nuclear Science and Technology, University of South China, Hengyang 421001 (China); Guo Wei [School of Electrical Engineering, University of South China, Hengyang 421001 (China)

2012-07-15T23:59:59.000Z

337

Unexplored Aspect of Velocity of light  

E-Print Network (OSTI)

In the post-Maxwellian era, sensing that the tide of discoveries in electromagnetim indicated a decline of the mechanical view, Einstein replaced Newton's three absolutes -- space, time and mass, with a single one, the velocity of light. The magnitude of the velocity of light was first determined and proven to be finite independently by Ole Romer and Bradley in the eighteenth century. In the nineteenth century, Fizeau carried out the first successful measurement of the speed of light using an earthbound apparatus. Thereafter, many earthbound experiments were conducted for its determination till 1983, when its magnitude was frozen at a fixed value after it was determined up to an accuracy level of a fraction of a meter per second. Einstein considered the speed of light derived from terrestrial experiments, to be the limiting speed of all natural phenomena. Einstein stated in connection with his general relativity theory that light rays could curve only when the velocity of propagation of light varies with position. Experiments have been conducted to prove the phenomenon of light deflection to higher and higher accuracy levels, but none so far to determine the speed of light at locations closer to the sun. To verify some essential aspects of general relativity, NASA had commendably planned many costly experiments. Hence, NASA can now be expected to expeditiously plan and execute the low cost experiment proposed here, so as to conclusively verify the effect of the solar gravitational field on the speed of light, as regards the important predictions of Einstein's theory of gravitation and of its remodeled form -- the Remodeled Relativity Theory, which retained and incorporated only experimentally proven concepts and principles.

Abhijit Biswas; Krishnan RS Mani

2008-05-13T23:59:59.000Z

338

Laser Doppler Velocimeter particle velocity measurement system  

DOE Green Energy (OSTI)

This report gives a detailed description of the operation of the Laser Doppler Velocimeter (LDV) system maintained by DIAL at MSU. LDV is used for the measurement of flow velocities and turbulence levels in various fluid flow settings. Ills report details the operation and maintenance of the LDV system and provides a first-time user with pertinent information regarding the system`s setup for a particular application. Particular attention has been given to the use of the Doppler signal analyzer (DSA) and the burst spectrum analyzer (BSA) signal processors and data analysis.

Wilson, W.W.; Srikantaiah, D.V.; Philip, T.; George, A.

1993-10-01T23:59:59.000Z

339

The influence of an electromagnetic field on the wave-current interaction  

E-Print Network (OSTI)

We study the propagation of surface waves on a current in the presence of an electromagnetic field. A horizontal (vertical) field strengthens (weakens) the counter-current which blocks the waves. We compute the phase space diagrams (blocking velocities versus period of the waves) with and without surface tension. Three new dimensionless numbers are introduced to compare the relative strengths of gravity, surface tension and field effects. This work shows the importance of an electromagnetic field in order to design wave-breakers or in microfluidics applications.

Germain Rousseaux; Philippe Maïssa

2010-10-11T23:59:59.000Z

340

Generation of Ultrahigh-Velocity Ionizing Shocks with Petawatt-Class Laser Pulses  

Science Conference Proceedings (OSTI)

Ultrahigh-velocity shock waves (approx10 000 km/s or 0.03c) are generated by focusing a 350-TW laser pulse into low-density helium gas. The collisionless ultrahigh-Mach-number electrostatic shock propagates from the plasma into the surrounding gas, ionizing gas as it becomes collisional. The shock undergoes a corrugation instability due to propagation of the ionizing shock within the gas (the Dyakov-Kontorovich instability). This system may be relevant to the study of very high-Mach-number ionizing shocks in astrophysical situations.

Nilson, P. M.; Mangles, S. P. D.; Willingale, L.; Kaluza, M. C.; Thomas, A. G. R.; Najmudin, Z.; Evans, R. G.; Dangor, A. E.; Krushelnick, K. [Department of Physics, Imperial College, London SW7 2AZ United Kingdom (United Kingdom); Tatarakis, M.; Lancaster, K. L. [Technological Educational Institute of Crete, Romanou, 3-GR73133 Chania (Greece); Clarke, R. J. [CLF, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon., OX11 0QX United Kingdom (United Kingdom); Karsch, S. [Max-Planck Institut fuer Quantenoptik, Hans-Kopfermann-Strasse, D-85748, Garching (Germany); Schreiber, J. [Max-Planck Institut fuer Quantenoptik, Hans-Kopfermann-Strasse, D-85748, Garching (Germany); Ludwig-Maximilians-Universistaet Munchen, Am Coulombwall, D-85748, Garching (Germany)

2009-12-18T23:59:59.000Z

Note: This page contains sample records for the topic "velocity wave probe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Microscopic Probes of High-Temperature Superconductivity  

Science Conference Proceedings (OSTI)

The granularity of the cuprate superconductors limits the effectiveness of many experimental probes that average over volumes containing many atoms. This report presents theoretical studies on muon spin relaxation and positron annihilation, two microscopic experimental techniques that can probe the properties of both high- and low-temperature superconductors on the atomic scale.

1992-07-01T23:59:59.000Z

342

Persistent Near-Diurnal Internal Waves Observed above a Site of M2 Barotropic-to-Baroclinic Conversion  

Science Conference Proceedings (OSTI)

Near-diurnal internal waves were observed in velocity and shear measurements from a shipboard survey along a 35-km section of the Kaena Ridge, northwest of Oahu. Individual waves with upward phase propagation could be traced for almost 4 days ...

Glenn S. Carter; Michael C. Gregg

2006-06-01T23:59:59.000Z

343

A Synoptic-Scale Wave of 6–9-Day Period in the Atlantic Tropical Troposphere during Summer 1981  

Science Conference Proceedings (OSTI)

Using the ECMWF analyses, this study documents a tropospheric synoptic-scale wave in the tropical Atlantic during summer 1981. It has a 6–9-day period and a westward velocity of about 8.5° longitude per day. The wave structure has features ...

P. de Felice; A. Viltard; J. Oubuih

1993-05-01T23:59:59.000Z

344

Proximal Probes | Center for Functional Nanomaterials  

NLE Websites -- All DOE Office Websites (Extended Search)

Proximal Probes Facility Proximal Probes Facility proximal probes The Proximal Probes Facility consists of laboratories for microscopy, spectroscopy, and probing of nanostructured materials and their functional properties. At the core of the facility is a suite of instruments for in-situ microscopy of surfaces and nanostructures under extreme conditions, e.g., in reactive gases, and at high or low temperatures. Unique instruments enable in-situ and in-operando studies of surface chemistry and catalysis at pressures from ultrahigh vacuum (UHV) to 5 bar via complementary scanning tunneling microscopy imaging and photoelectron spectroscopy, coupled with real-time gas analysis. Several UHV systems are available for scanning tunneling and atomic force microscopy, as well as low-energy electron microscopy and synchrotron photoelectron microscopy. A

345

Time-resolved multiple probe spectroscopy  

SciTech Connect

Time-resolved multiple probe spectroscopy combines optical, electronic, and data acquisition capabilities to enable measurement of picosecond to millisecond time-resolved spectra within a single experiment, using a single activation pulse. This technology enables a wide range of dynamic processes to be studied on a single laser and sample system. The technique includes a 1 kHz pump, 10 kHz probe flash photolysis-like mode of acquisition (pump-probe-probe-probe, etc.), increasing the amount of information from each experiment. We demonstrate the capability of the instrument by measuring the photolysis of tungsten hexacarbonyl (W(CO){sub 6}) monitored by IR absorption spectroscopy, following picosecond vibrational cooling of product formation through to slower bimolecular diffusion reactions on the microsecond time scale.

Greetham, G. M.; Sole, D.; Clark, I. P.; Parker, A. W.; Pollard, M. R.; Towrie, M. [Central Laser Facility, Science and Technology Facilities Council, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, Oxfordshire, OX11 0QX (United Kingdom)

2012-10-15T23:59:59.000Z

346

Free-Wave Energy Dissipation in Experimental Breaking Waves  

Science Conference Proceedings (OSTI)

Several transient wave trains containing an isolated plunging or spilling breaker at a prescribed location were generated in a two-dimensional wave flume using an energy focusing technique. Surface elevation measurements of each transient wave ...

Eustorgio Meza; Jun Zhang; Richard J. Seymour

2000-09-01T23:59:59.000Z

347

HALO VELOCITY GROUPS IN THE PISCES OVERDENSITY  

Science Conference Proceedings (OSTI)

We report spectroscopic observations of five faint (V {approx} 20) RR Lyrae stars associated with the Pisces overdensity conducted with the Gemini South Telescope. At a heliocentric and galactocentric distance of {approx}80 kpc, this is the most distant substructure in the Galactic halo known to date. We combined our observations with literature data and confirmed that the substructure is composed of two different kinematic groups. The main group contains eight stars and has (V{sub gsr}) = 50 km s{sup -1}, while the second group contains four stars at a velocity of (V{sub gsr}) = -52 km s{sup -1}, where V{sub gsr} is the radial velocity in the galactocentric standard of rest. The metallicity distribution of RR Lyrae stars in the Pisces overdensity is centered on [Fe/H] = -1.5 dex and has a width of 0.3 dex. The new data allowed us to establish that both groups are spatially extended making it very unlikely that they are bound systems, and are more likely to be debris of a tidally disrupted galaxy or galaxies. Due to small sky coverage, it is still unclear whether these groups have the same or different progenitors.

Sesar, Branimir; Ivezic, Zeljko [Department of Astronomy, University of Washington, P.O. Box 351580, Seattle, WA 98195-1580 (United States); Vivas, A. Katherina [Centro de Investigaciones de Astronomia (CIDA), Apartado Postal 264, Merida 5101-A (Venezuela, Bolivarian Republic of); Duffau, Sonia, E-mail: bsesar@u.washington.ed, E-mail: zi@u.washington.ed, E-mail: akvivas@cida.v, E-mail: sonia.duffau@gmail.co [Astronomisches Rechen-Institut, Zentrum fuer Astronomie der Universitaet Heidelberg, Moenchhofstrasse 12-14, D-69120 Heidelberg (Germany)

2010-07-01T23:59:59.000Z

348

Perturbations in high-velocity gas flow  

DOE Green Energy (OSTI)

High velocity explosive products or other low-density gases are often used to accelerate metal plates to high velocities. Perturbations in otherwise uniform flow configurations are sometimes sufficient to cause interactions that can rapidly destroy the integrity of the plates. In this study perturbations were introduced in uniform gas flows of detonated HE products and strongly shocked polyethylene, CH{sub 2}. The primary diagnostics were smear-camera records obtained when these gases impinged on layers of plexiglas separated by small argon-filled gaps. These records show shock-arrival times at various levels and thus determine not only the size of the perturbation but also its strength. Perturbations in HE gases running into H{sub 2} and in CH{sub 2} into H{sub 2} have been studied. Two-dimensional hydrodynamic calculations are in excellent agreement with the experiments, and enable one to study details of the flow not possible from experimental results. 1 ref., 5 figs.

Harvey, W.B.; McQueen, R.G. (Los Alamos National Lab., NM (USA))

1989-01-01T23:59:59.000Z

349

Radar Wind Profiler Radial Velocity: A Comparison with Doppler Lidar  

Science Conference Proceedings (OSTI)

The accuracy of the radial wind velocity measured with a radar wind profiler will depend on turbulent variability and instrumental noise. Radial velocity estimates of a boundary layer wind profiler are compared with those estimated by a Doppler ...

Stephen A. Cohn; R. Kent Goodrich

2002-12-01T23:59:59.000Z

350

The Accuracy of Vertical Air Velocities from Doppler Radar Data  

Science Conference Proceedings (OSTI)

Eight methods of calculating vertical air velocity in a column are compared. Each method requires some or all of the following data: horizontal divergence, vertical precipitation velocity, hydrometeor terminal fall speed, and vertical air ...

Thomas Matejka; Diana L. Bartels

1998-01-01T23:59:59.000Z

351

Diagnosing Mesoscale Vertical Motion from Horizontal Velocity and Density Data  

Science Conference Proceedings (OSTI)

The mesoscale vertical velocity is obtained by solving a generalized omega equation (? equation) using density and horizontal velocity data from three consecutive quasi-synoptic high-resolution surveys in the Alboran Sea. The Atlantic Jet (AJ) ...

Enric Pallàs Sanz; Álvaro Viúdez

2005-10-01T23:59:59.000Z

352

Terminal Velocity Adjustments for Plate-like Crystals and Graupel  

Science Conference Proceedings (OSTI)

Velocity adjustments are evaluated for altitude changes using Reynolds number-Davies number correlations of the form Re = aXb which have been obtained from empirical fall velocities of ice particles. In general, the altitude adjustment was found ...

Kenneth V. Beard; Andrew J. Heymsfield

1988-11-01T23:59:59.000Z

353

Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Final Report  

Science Conference Proceedings (OSTI)

The objective of our research was to develop and demonstrate seismic data-acquisition and data-processing technologies that allow geothermal prospects below high-velocity rock outcrops to be evaluated. To do this, we acquired a 3-component seismic test line across an area of exposed high-velocity rocks in Brewster County, Texas, where there is high heat flow and surface conditions mimic those found at numerous geothermal prospects. Seismic contractors have not succeeded in creating good-quality seismic data in this area for companies who have acquired data for oil and gas exploitation purposes. Our test profile traversed an area where high-velocity rocks and low-velocity sediment were exposed on the surface in alternating patterns that repeated along the test line. We verified that these surface conditions cause non-ending reverberations of Love waves, Rayleigh waves, and shallow critical refractions to travel across the earth surface between the boundaries of the fast-velocity and slow-velocity material exposed on the surface. These reverberating surface waves form the high level of noise in this area that does not allow reflections from deep interfaces to be seen and utilized. Our data-acquisition method of deploying a box array of closely spaced geophones allowed us to recognize and evaluate these surface-wave noise modes regardless of the azimuth direction to the surface anomaly that backscattered the waves and caused them to return to the test-line profile. With this knowledge of the surface-wave noise, we were able to process these test-line data to create P-P and SH-SH images that were superior to those produced by a skilled seismic data-processing contractor. Compared to the P-P data acquired along the test line, the SH-SH data provided a better detection of faults and could be used to trace these faults upward to the boundaries of exposed surface rocks. We expanded our comparison of the relative value of S-wave and P-wave seismic data for geothermal applications by inserting into this report a small part of the interpretation we have done with 3C3D data across Wister geothermal field in the Imperial Valley of California. This interpretation shows that P-SV data reveal faults (and by inference, also fractures) that cannot be easily, or confidently, seen with P-P data, and that the combination of P-P and P-SV data allows VP/VS velocity ratios to be estimated across a targeted reservoir interval to show where an interval has more sandstone (the preferred reservoir facies). The conclusion reached from this investigation is that S-wave seismic technology can be invaluable to geothermal operators. Thus we developed a strong interest in understanding the direct-S modes produced by vertical-force sources, particularly vertical vibrators, because if it can be demonstrated that direct-S modes produced by vertical-force sources can be used as effectively as the direct-S modes produced by horizontal-force sources, geothermal operators can acquire direct-S data across many more prospect areas than can be done with horizontal-force sources, which presently are limited to horizontal vibrators. We include some of our preliminary work in evaluating direct-S modes produced by vertical-force sources.

Hardage, Bob A; DeAngelo, Michael V; Ermolaeva, Elena; Hardage, Bob A; Remington, Randy; Sava, Diana; Wagner, Donald; Wei, Shuijion

2013-02-28T23:59:59.000Z

354

Resonantly Forced Rossby Waves  

Science Conference Proceedings (OSTI)

A shallow, rotating layer of fluid that supports Rossby waves is subjected to turbulent friction through an Ekman layer at the bottom and is driven by a wave that exerts a shear stress on the upper boundary and for which the phase approximate ...

John Miles

1985-04-01T23:59:59.000Z

355

The Spin-Resolved Atomic Velocity Distribution and 21-cm Line Profile of Dark-Age Gas  

E-Print Network (OSTI)

The 21-cm hyperfine line of atomic hydrogen (HI) is a promising probe of the cosmic dark ages. In past treatments of 21-cm radiation it was assumed the hyperfine level populations of HI could be characterized by a velocity-independent ``spin temperature'' T_s determined by a competition between 21-cm radiative transitions, spin-changing collisions, and (at lower redshifts) Lyman-alpha scattering. However we show here that, if the collisional time is comparable to the radiative time, the spin temperature will depend on atomic velocity, T_s=T_s(v), and one must replace the usual hyperfine level rate equations with a Boltzmann equation describing the spin and velocity dependence of the HI distribution function. We construct here the Boltzmann equation relevant to the cosmic dark ages and solve it using a basis-function method. Accounting for the actual spin-resolved atomic velocity distribution results in up to a 2 per cent suppression of the 21-cm emissivity, and a redshift and angular-projection dependent suppression or enhancement of the linear power spectrum of 21-cm fluctuations of up to 5 per cent. The effect on the 21-cm line profile is more dramatic -- its full-width at half maximum (FWHM) can be enhanced by up to 60 per cent relative to the velocity-independent calculation. We discuss the implications for 21-cm tomography of the dark ages.

Christopher M. Hirata; Kris Sigurdson

2006-05-02T23:59:59.000Z

356

Wave Energy Conversion Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Wave Energy Conversion Technology Wave Energy Conversion Technology Speaker(s): Mirko Previsic Date: August 2, 2001 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Julie Osborn Scientists have been working on wave power conversion for the past twenty years, but recent advances in offshore and IT technologies have made it economically competitive. Sea Power & Associates is a Berkeley-based renewable energy technology company. We have developed patented technology to generate electricity from ocean wave energy using a system of concrete buoys and highly efficient hydraulic pumps. Our mission is to provide competitively priced, non-polluting, renewable energy for coastal regions worldwide. Mirko Previsic, founder and CEO, of Sea Power & Associates will discuss ocean wave power, existing technologies for its conversion into

357

Surface plasma wave excitation via laser irradiated overdense plasma foil  

SciTech Connect

A laser irradiated overdense plasma foil is seen to be susceptible to parametric excitation of surface plasma wave (SPW) and ion acoustic wave (IAW) on the ion plasma period time scale. The SPW is localised near the front surface of the foil while IAW extends upto the rear. The evanescent laser field and the SPW exert a ponderomotive force on electrons driving the IAW. The density perturbation associated with the latter beats with the laser induced oscillatory electron velocity to drive the SPW. At relativistic laser intensity, the growth rate is of the order of ion plasma frequency.

Kumar, Pawan; Tripathi, V. K. [Department of Physics, Indian Institute of Technology Delhi, New Delhi 110 016 (India)

2012-04-09T23:59:59.000Z

358

LAMINAR BURNING VELOCITY OF GASOLINES WITH ADDITION OF ETHANOL  

E-Print Network (OSTI)

1 LAMINAR BURNING VELOCITY OF GASOLINES WITH ADDITION OF ETHANOL P. Dirrenberger1 , P.A. Glaude*1 (2014) 162-169" DOI : 10.1016/j.fuel.2013.07.015 #12;2 LAMINAR BURNING VELOCITY OF GASOLINES, Sweden Abstract The adiabatic laminar burning velocities of a commercial gasoline and of a model fuel (n

359

Wave Mechanics without Probability  

E-Print Network (OSTI)

The behavior of monochromatic electromagnetic waves in stationary media is shown to be ruled by a frequency dependent function, which we call Wave Potential, encoded in the structure of the Helmholtz equation. Contrary to the common belief that the very concept of "ray trajectory" is reserved to the eikonal approximation, a general and exact ray-based Hamiltonian treatment, reducing to the eikonal approximation in the absence of Wave Potential, shows that its presence induces a mutual, perpendicular ray-coupling, which is the one and only cause of any typically wave-like phenomenon, such as diffraction and interference. Recalling, then, that the time-independent Schroedinger and Klein-Gordon equations (associating stationary "matter waves" to mono-energetic particles) are themselves Helmholtz-like equations, the exact, ray-based treatment developed for classical electromagnetic waves is extended - without resorting to statistical concepts - to the exact, trajectory-based Hamiltonian dynamics of mono-energetic point-like particles, both in the non-relativistic and in the relativistic case. The trajectories turn out to be perpendicularly coupled, once more, by an exact, stationary, energy-dependent Wave Potential, coinciding in the form, but not in the physical meaning, with the statistical, time-varying, energy-independent "Quantum Potential" of Bohm's theory, which views particles, just like the standard Copenhagen interpretation, as traveling wave-packets. These results, together with the connection which is shown to exist between Wave Potential and Uncertainty Principle, suggest a novel, non-probabilistic interpretation of Wave Mechanics.

Adriano Orefice; Raffaele Giovanelli; Domenico Ditto

2013-02-18T23:59:59.000Z

360

PLASMA DIAGNOSTICS OF AN EIT WAVE OBSERVED BY HINODE/EIS AND SDO/AIA  

Science Conference Proceedings (OSTI)

We present plasma diagnostics of an Extreme-Ultraviolet Imaging Telescope (EIT) wave observed with high cadence in Hinode/Extreme-Ultraviolet Imaging Spectrometer (EIS) sit-and-stare spectroscopy and Solar Dynamics Observatory/Atmospheric Imaging Assembly imagery obtained during the HOP-180 observing campaign on 2011 February 16. At the propagating EIT wave front, we observe downward plasma flows in the EIS Fe XII, Fe XIII, and Fe XVI spectral lines (log T Almost-Equal-To 6.1-6.4) with line-of-sight (LOS) velocities up to 20 km s{sup -1}. These redshifts are followed by blueshifts with upward velocities up to -5 km s{sup -1} indicating relaxation of the plasma behind the wave front. During the wave evolution, the downward velocity pulse steepens from a few km s{sup -1} up to 20 km s{sup -1} and subsequently decays, correlated with the relative changes of the line intensities. The expected increase of the plasma densities at the EIT wave front estimated from the observed intensity increase lies within the noise level of our density diagnostics from EIS Fe XIII 202/203 A line ratios. No significant LOS plasma motions are observed in the He II line, suggesting that the wave pulse was not strong enough to perturb the underlying chromosphere. This is consistent with the finding that no H{alpha} Moreton wave was associated with the event. The EIT wave propagating along the EIS slit reveals a strong deceleration of a Almost-Equal-To -540 m s{sup -2} and a start velocity of v{sub 0} Almost-Equal-To 590 km s{sup -1}. These findings are consistent with the passage of a coronal fast-mode MHD wave, pushing the plasma downward and compressing it at the coronal base.

Veronig, A. M.; Kienreich, I. W.; Muhr, N.; Temmer, M. [Institute of Physics, University of Graz, Universitaetsplatz 5, A-8010 Graz (Austria); Goemoery, P. [Astronomical Institute, Slovak Academy of Sciences, SK-05960 Tatranska Lomnica (Slovakia); Vrsnak, B. [Hvar Observatory, Faculty of Geodesy, Kaciceva 26, 1000 Zagreb (Croatia); Warren, H. P., E-mail: astrid.veronig@uni-graz.at [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States)

2011-12-10T23:59:59.000Z

Note: This page contains sample records for the topic "velocity wave probe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

The Case of Sharp Velocity Transitions in High Vertical Wind Shear When Measuring Doppler Velocities with Narrow Nyquist Intervals  

Science Conference Proceedings (OSTI)

An investigation was launched following unexpected observations of step-function transitions in Doppler velocities from scanning radars in regions of high vertical wind shear. It revealed that, if wind velocity transitions are sufficiently sharp ...

Frédéric Fabry; Clotilde Augros; Aldo Bellon

2013-03-01T23:59:59.000Z

362

A Langmuir Probe Diagnostic for Use in Inhomogeneous, Time-Varying Plasmas Produced by High-Energy Laser Ablation  

SciTech Connect

Langmuir probes (LP) are used extensively to characterize plasma environments produced by radio frequency, pulsed plasma thrusters, and laser ablation. We discuss here the development of a LP diagnostic to examine high-density, high-temperature inhomogeneous plasmas such as those that can be created at the University of Rochester's Laboratory for Laser Energetics OMEGA facility. We have configured our diagnostic to examine the velocity of the plasma expanding from the target. We observe velocities of approximately 16-17 cm/{micro}s, with individual LP currents displaying complex structures, perhaps due to the multiple atomic species and ionization states that exist.

Patterson, J R; Emig, J A; Fournier, K B; Jenkins, P P; Trautz, K M; Seiler, S W; Davis, J F

2012-05-01T23:59:59.000Z

363

Acoustic wave propagation in a fluid-filled borehole surrounded by a formation with stress-relief-induced anisotropy  

SciTech Connect

The stress relief associated with the drilling of a borehole may lead to an anisotropic formation in the vicinity of the borehole, where the properties in the radial direction differ from those in the axial and tangential directions. Thus, axial and radial compressional acoustic velocities are different, and similarly, the velocity of an axial shear-wave depends on whether the polarization is radial or tangential. A model was developed to describe acoustic wave propagation in a borehole surrounded by a formation with stress-relief-induced radial transverse isotropy (RTI). Acoustic full waveforms due to a monopole source are computed using the real-axis integration method, and dispersion relations are found by tracing poles in the k[sub z] plane. An analytic expression for the low-frequency Stoneley wave is developed. The numerical results confirm the expectations that the compressional refraction is mainly given by the axial compressional velocity, while the shear refraction arrival is due to the shear wave with radial polarization. As a result, acoustic logging in an RTI formation, will indicate a higher v[sub p]/v[sub s] ratio than that existing in the virgin formation. It also follows that the shear velocity may be a better indicator of a mechanically damaged zone near the borehole than the compressional velocity. The Stoneley-wave velocity was found to decrease with the increasing degree of RTI.

Renlie, L. (IKU Petroleum Research, Trondheim (Norway)); Raaen, A.M. (Statoil, Postuttak, Trondheim (Norway))

1993-09-01T23:59:59.000Z

364

Probing Signal Design for Power System Identification  

Science Conference Proceedings (OSTI)

This paper investigates the design of effective input signals for low-level probing of power systems. In 2005, 2006, and 2008 the Western Electricity Coordinating Council (WECC) conducted four large-scale system wide tests of the western interconnected power system where probing signals were injected by modulating the control signal at the Celilo end of the Pacific DC intertie. A major objective of these tests is the accurate estimation of the inter-area electromechanical modes. A key aspect of any such test is the design of an effective probing signal that leads to measured outputs rich in information about the modes. This paper specifically studies low-level probing signal design for power-system identification. The paper describes the design methodology and the advantages of this new probing signal which was successfully applied during these tests. This probing input is a multi-sine signal with its frequency content focused in the range of the inter-area modes. The period of the signal is over two minutes providing high-frequency resolution. Up to 15 cycles of the signal are injected resulting in a processing gain of 15. The resulting system response is studied in the time and frequency domains. Because of the new probing signal characteristics, these results show significant improvement in the output SNR compared to previous tests.

Pierre, John W.; Zhou, Ning; Tuffner, Francis K.; Hauer, John F.; Trudnowski, Daniel J.; Mittelstadt, William

2010-05-31T23:59:59.000Z

365

Wave Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

turn, rotates a turbine. Specially built seagoing vessels can also capture the energy of offshore waves. These floating platforms create electricity by funneling waves through...

366

Wave Energy | Open Energy Information  

Open Energy Info (EERE)

TODO: Add description List of Wave Energy Incentives Retrieved from "http:en.openei.orgwindex.php?titleWaveEnergy&oldid267203" Category: Articles with outstanding TODO tasks...

367

Force-velocity relations for multiple-molecular-motor transport  

E-Print Network (OSTI)

A transition rate model of cargo transport by $N$ molecular motors is proposed. Under the assumption of steady state, the force-velocity curve of multi-motor system can be derived from the force-velocity curve of single motor. Our work shows, in the case of low load, the velocity of multi-motor system can decrease or increase with increasing motor number, which is dependent on the single motor force-velocity curve. And most commonly, the velocity decreases. This gives a possible explanation to some recent

Ziqing Wang; Ming Li

2009-06-26T23:59:59.000Z

368

Instrument Series: Microscopy Atom Probe The LEAP  

NLE Websites -- All DOE Office Websites (Extended Search)

Atom Probe Atom Probe The LEAP ® 4000 XHR local electrode atom probe tomography instrument enabled the first- ever comprehensive and accurate 3-D chemical imaging studies of low electrical conductivity materials, such as ceramics, semiconductors and oxides. The LEAP capability is assisting EMSL's efforts to further scientific advancements in interface analysis and microstructural characterization, providing a new tool for understanding the relationship between the nanoscale structure of materials and their macroscopic properties. Research Applications Geochemistry - Studying chemical processes that compose rocks and soils has long been used to determine matter cycles and transport in the environment, which supports critical EMSL research in areas including bioremediation.

369

Scanning probe microscopy in the superconductor industry  

SciTech Connect

High-temperature superconductivity and scanning probe microscopy (SPM) have much in common. Both revolutionized their scientific fields and earned Nobel prizes for the original researchers. Both represent small-scale table-top research. Finally, both have emerged from research laboratories into growing industries. Applications of scanning probe microscopy to the superconductor industry range from the straightforward to the exotic. The superior three-dimensional resolution of scanning probe microscopes makes them ideal for routine topographic imaging and profilometry of substrates and thin films. On the other hand, the more esoteric applications of SPM include spectroscopic investigations of various electromagnetic properties of superconductors above and below the critical temperature.

Howland, R.S.; Kirk, M.D. (Park Scientific Instruments (US))

1991-01-01T23:59:59.000Z

370

Hohlraum Designs for High Velocity Implosions on NIF  

Science Conference Proceedings (OSTI)

In this paper, we compare experimental shock and capsule trajectories to design calculations using the radiation-hydrodynamics code HYDRA. The measured trajectories from surrogate ignition targets are consistent with reducing the x-ray flux on the capsule by about 85%. A new method of extracting the radiation temperature as seen by the capsule from x-ray intensity and image data shows that about half of the apparent 15% flux deficit in the data with respect to the simulations can be explained by HYDRA overestimating the x-ray flux on the capsule. The National Ignition Campaign (NIC) point-design target is designed to reach a peak fuel-layer velocity of 370 km/s by ablating 90% of its plastic (CH) ablator. The 192-beam National Ignition Facility laser drives a gold hohlraum to a radiation temperature (T{sub RAD}) of 300 eV with a 20 ns-long, 420 TW, 1.3 MJ laser pulse. The hohlraum x-rays couple to the CH ablator in order to apply the required pressure to the outside of the capsule. In this paper, we compare experimental measurements of the hohlraum T{sub RAD} and the implosion trajectory with design calculations using the code hydra. The measured radial positions of the leading shock wave and the unablated shell are consistent with simulations in which the x-ray flux on the capsule is artificially reduced by 85%. We describe a new method of inferring the T{sub RAD} seen by the capsule from time-dependent x-ray intensity data and static x-ray images. This analysis shows that hydra overestimates the x-ray flux incident on the capsule by {approx}8%.

Meezan, N B; Hicks, D G; Callahan, D A; Olson, R E; Schneider, M S; Thomas, C A; Robey, H F; Celliers, P M; Kline, J K; Dixit, S N; Michel, P A; Jones, O S; Clark, D S; Ralph, J E; Doeppner, T; MacKinnon, A J; Haan, S W; Landen, O L; Glenzer, S H; Suter, L J; Edwards, M J; Macgowan, B J; Lindl, J D; Atherton, L J

2011-10-19T23:59:59.000Z

371

Evaluation of a Wind-Wave System for Ensemble Tropical Cyclone Wave Forecasting. Part II: Waves  

Science Conference Proceedings (OSTI)

A wind-wave forecast system, designed with the intention of generating unbiased ensemble wave forecasts for extreme wind events, is assessed. Wave hindcasts for 12 tropical cyclones (TCs) are forced using a wind analysis produced from a ...

Steven M. Lazarus; Samuel T. Wilson; Michael E. Splitt; Gary A. Zarillo

2013-04-01T23:59:59.000Z

372

wave | OpenEI  

Open Energy Info (EERE)

9 9 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142281559 Varnish cache server wave Dataset Summary Description This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration's (NOAA's) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. Source Electric Power Research Institute (EPRI) Date Released December 05th, 2011 (3 years ago) Date Updated Unknown Keywords

373

Ultrasonic Plate Wave Evaluation Of Natural Fiber Composite Panels  

Science Conference Proceedings (OSTI)

Two key shortcomings of current ultrasonic nondestructive evaluation (NDE) techniques for plywood, medium density fiberboard (MDF), and oriented strandboard are the reliance on empirical correlations and the neglect of valuable waveform information. The research reported herein examined the feasibility of using fundamental mechanics, wave propagation, and laminated, shear deformable plate theories to nondestructively evaluate material properties in natural fiber-based composite panels. Dispersion curves were constructed exhibiting the variation of flexural plate wave phase velocity with frequency. Based on shear deformable laminated plate wave theory, flexural and transverse shear rigidity values for solid transversely isotropic, laminated transversely isotropic, and solid orthotropic natural fiber-based composite panels were obtained from the dispersion curves. Axial rigidity values were obtained directly from extensional plate wave phase velocity. Excellent agreement (within 3%) of flexural rigidity values was obtained between NDE and mechanical testing for most panels. Transverse shear modulus values obtained from plate wave tests were within 4% of values obtained from through-thickness ultrasonic shear wave speed. Tensile and compressive axial rigidity values obtained from NDE were 22% to 41% higher than mechanical tension and compression test results. These differences between NDE and axial mechanical testing results are likely due to load-rate effects; however, these large differences were not apparent in the flexural and transverse shear comparisons. This fundamental research advances the state-of-the-art of NDE of wood-based composites by replacing empirical approaches with a technique based on fundamental mechanics, shear deformation laminated plate theory, and plate wave propagation theory.

Tucker, Brian J. (BATTELLE (PACIFIC NW LAB)); Bender, Donald A. (Washington State University); Pollock, David G. (Washington State University); Wolcott, Michael P. (Washington State University)

2003-04-01T23:59:59.000Z

374

System and method to estimate compressional to shear velocity (VP/VS) ratio in a region remote from a borehole  

DOE Patents (OSTI)

In some aspects of the disclosure, a method for creating three-dimensional images of non-linear properties and the compressional to shear velocity ratio in a region remote from a borehole using a conveyed logging tool is disclosed. In some aspects, the method includes arranging a first source in the borehole and generating a steered beam of elastic energy at a first frequency; arranging a second source in the borehole and generating a steerable beam of elastic energy at a second frequency, such that the steerable beam at the first frequency and the steerable beam at the second frequency intercept at a location away from the borehole; receiving at the borehole by a sensor a third elastic wave, created by a three wave mixing process, with a frequency equal to a difference between the first and second frequencies and a direction of propagation towards the borehole; determining a location of a three wave mixing region based on the arrangement of the first and second sources and on properties of the third wave signal; and creating three-dimensional images of the non-linear properties using data recorded by repeating the generating, receiving and determining at a plurality of azimuths, inclinations and longitudinal locations within the borehole. The method is additionally used to generate three dimensional images of the ratio of compressional to shear acoustic velocity of the same volume surrounding the borehole.

Vu, Cung; Nihei, Kurt T; Schmitt, Denis P; Skelt, Christopher; Johnson, Paul A; Guyer, Robert; TenCate, James A; Le Bas, Pierre-Yves

2012-10-16T23:59:59.000Z

375

QUASI-PERIODIC FAST-MODE WAVE TRAINS WITHIN A GLOBAL EUV WAVE AND SEQUENTIAL TRANSVERSE OSCILLATIONS DETECTED BY SDO/AIA  

SciTech Connect

We present the first unambiguous detection of quasi-periodic wave trains within the broad pulse of a global EUV wave (so-called EIT wave) occurring on the limb. These wave trains, running ahead of the lateral coronal mass ejection (CME) front of 2-4 times slower, coherently travel to distances {approx}> R{sub Sun }/2 along the solar surface, with initial velocities up to 1400 km s{sup -1} decelerating to {approx}650 km s{sup -1}. The rapid expansion of the CME initiated at an elevated height of 110 Mm produces a strong downward and lateral compression, which may play an important role in driving the primary EUV wave and shaping its front forwardly inclined toward the solar surface. The wave trains have a dominant 2 minute periodicity that matches the X-ray flare pulsations, suggesting a causal connection. The arrival of the leading EUV wave front at increasing distances produces an uninterrupted chain sequence of deflections and/or transverse (likely fast kink mode) oscillations of local structures, including a flux-rope coronal cavity and its embedded filament with delayed onsets consistent with the wave travel time at an elevated (by {approx}50%) velocity within it. This suggests that the EUV wave penetrates through a topological separatrix surface into the cavity, unexpected from CME-caused magnetic reconfiguration. These observations, when taken together, provide compelling evidence of the fast-mode MHD wave nature of the primary (outer) fast component of a global EUV wave, running ahead of the secondary (inner) slow component of CME-caused restructuring.

Liu Wei; Nitta, Nariaki V.; Aschwanden, Markus J.; Schrijver, Carolus J.; Title, Alan M.; Tarbell, Theodore D. [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street, Palo Alto, CA 94304 (United States); Ofman, Leon, E-mail: weiliu@lmsal.com [Department of Physics, Catholic University of America, Washingtom, DC 20064 (United States)

2012-07-01T23:59:59.000Z

376

Dynamics of Wave Breaking at a Coastal Sea Wall  

E-Print Network (OSTI)

Structural designs barely consider the dynamic scenario of a well-developed impinging wave hitting the structure. The usual area of focus is on static and stability factors (e.g. drag, inertia, resistive forces related to weight, buoyancy, sliding etc). Even the "Factor of Safety" which is regularly used in designs to account for unknown and/or unforeseen situations which might occur implies a degree of uncertainty about the dynamic scenario of breaking waves in the coastal environment. In the present study the hydrodynamics of a coastal structure-turbulent bore interaction was studied by examination (two-dimensional) of the singular case of a plunging breaking wave forming a well developed turbulent bore which impacted on a model sea wall structure. The turbulent bore impact event was found to display similar characteristics to the impact event of other wave shapes, in particular that of a plunging breaker. Examination of the impact event confirmed the conversion of nearly all horizontal velocity to vertical velocity during the "flip through" event. In accordance with theoretical expectations the location of maximum pressure was found to occur just below the still water level (SWL). Resulting pressure data in the present study consisted of two blunt spikes as opposed to the "church-roof" (high spike) shape seen in other results. The shape of the pressure data was attributed to the following: firstly, to the initial impact of the protruding jet of the breaking wave which causes the first maxima, secondly, to the sensor encountering the bulk of the entrapped air hence causing the drop in pressure between the blunt spikes and lastly, to the inherent hydrostatic pressure combined with the compression of the entrapped air bubbles, by the subsequent forward motion of the water within the wave, which causes the second maxima. The point of maximum pressure was found to always be within the second maxima. Observation of the turbulent bore-structure interaction showed that the consequential maximum pressure was a direct result of the compression of entrapped air by the weight of the water in the wave as it continued forward onto the structure combined with the inherent hydrostatic pressure of the wave. The project was conducted in an attempt to contribute to the vast knowledge of coastal structure-wave interactions and to add to the understanding of the physics and characteristics of breaking waves. Whilst numerous studies and experiments have been carried out on the phenomenon of breaking waves by previous researchers the current project highlights the advent of new equipment and technological advances in existing methods.

Antoine, Arthur L.

2009-12-01T23:59:59.000Z

377

Linear and nonlinear coupled drift and ion acoustic waves in collisional pair ion-electron magnetoplasma  

SciTech Connect

Linear and nonlinear coupled electrostatic drift and ion acoustic waves are studied in inhomogeneous, collisional pair ion-electron plasma. The Korteweg-de Vries-Burgers (KdVB) equation for a medium where both dispersion and dissipation are present is derived. An attempt is made to obtain exact solution of KdVB equation by using modified tanh-coth method for arbitrary velocity of nonlinear drift wave. Another exact solution for KdVB is obtained, which gives a structure of shock wave. Korteweg-de Vries (KdV) and Burgers equations are derived in limiting cases with solitary and monotonic shock solutions, respectively. Effects of species density, magnetic field, obliqueness, and the acoustic to drift velocity ratio on the solitary and shock solutions are investigated. The results discussed are useful in understanding of low frequency electrostatic waves at laboratory pair ion plasmas.

Mushtaq, A. [Theoretical Plasma Physics Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Nilore, Islamabad 45660 (Pakistan); School of Physics, University of Sydney, New South Wales 2006 (Australia); Saeed, R.; Haque, Q. [Theoretical Plasma Physics Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Nilore, Islamabad 45660 (Pakistan)

2011-04-15T23:59:59.000Z

378

2-M Probe Survey | Open Energy Information  

Open Energy Info (EERE)

2-M Probe Survey 2-M Probe Survey (Redirected from 2-M Probe) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: 2-M Probe Survey Details Activities (27) Areas (21) Regions (0) NEPA(3) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Data Collection and Mapping Parent Exploration Technique: Data Collection and Mapping Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Identify and delineate shallow thermal anomalies Cost Information Low-End Estimate (USD): 200.0020,000 centUSD 0.2 kUSD 2.0e-4 MUSD 2.0e-7 TUSD / station Median Estimate (USD): 300.0030,000 centUSD 0.3 kUSD 3.0e-4 MUSD 3.0e-7 TUSD / station High-End Estimate (USD): 500.0050,000 centUSD 0.5 kUSD 5.0e-4 MUSD

379

Buried Interface Analysis Using Atom Probe Tomography  

Science Conference Proceedings (OSTI)

Contributions of Atom Probe Tomography to the Understanding of Steels · Control of p-n ... Relationships in a Series of Co-Cr-Cu-Fe-Ni-Al High Entropy Alloys.

380

Atom Probe Tomography for Industrial Applications - Programmaster ...  

Science Conference Proceedings (OSTI)

Contributions of Atom Probe Tomography to the Understanding of Steels · Control of p-n ... Relationships in a Series of Co-Cr-Cu-Fe-Ni-Al High Entropy Alloys.

Note: This page contains sample records for the topic "velocity wave probe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Remote Adjustable focus Raman Spectroscopy Probe  

DOE Patents (OSTI)

A remote adjustable focus Raman spectroscopy probe allows for analyzing Raman scattered light from a point of interest external to the probe. An environmental barrier including at least one window separates the probe from the point of interest. An optical tube is disposed adjacent to the environmental barrier and includes along working length compound lens objective next to the window. A beam splitter and a mirror are at the other end. A mechanical means is used to translate the probe body in the X, Y, and Z directions resulting in a variable focus optical apparatus. Laser light is reflected by the beam splitter and directed toward the compound lens objective, then through the window and focused on the point of interest. Raman scattered light is then collected by the compound lens objective and directed through the beam splitter to a mirror. A device for analyzing the light, such as a monochrometer, is coupled to the mirror.

Schmucker, John E.; Blasi, Raymond J.; Archer, William B.

1998-07-28T23:59:59.000Z

382

Modulated microwave microscopy and probes used therewith  

Science Conference Proceedings (OSTI)

A microwave microscope including a probe tip electrode vertically positionable over a sample and projecting downwardly from the end of a cantilever. A transmission line connecting the tip electrode to the electronic control system extends along the cantilever and is separated from a ground plane at the bottom of the cantilever by a dielectric layer. The probe tip may be vertically tapped near or at the sample surface at a low frequency and the microwave signal reflected from the tip/sample interaction is demodulated at the low frequency. Alternatively, a low-frequency electrical signal is also a non-linear electrical element associated with the probe tip to non-linearly interact with the applied microwave signal and the reflected non-linear microwave signal is detected at the low frequency. The non-linear element may be semiconductor junction formed near the apex of the probe tip or be an FET formed at the base of a semiconducting tip.

Lai, Keji; Kelly, Michael; Shen, Zhi-Xun

2012-09-11T23:59:59.000Z

383

Probes of strong-field gravity  

E-Print Network (OSTI)

In this thesis, I investigate several ways to probe gravity in the strong-field regime. These investigations focus on observables from the gravitational dynamics, i.e. when time derivatives are large: thus I focus on sources ...

Stein, Leo Chaim

2012-01-01T23:59:59.000Z

384

Self-referencing remote optical probe  

DOE Patents (OSTI)

A probe for remote spectrometric measurements of fluid samples having a hollow probe body with a sliding reflective plug therein and a lens at one end, ports for admitting and expelling the fluid sample and a means for moving the reflector so that reference measurement can be made with the reflector in a first position near the lens and a sample measurement can be made with the reflector away from the lens and the fluid sample between the reflector and the lens. Comparison of the two measurements will yield the composition of the fluid sample. The probe is preferably used for remote measurements and light is carried to and from the probe via fiber optic cables. 3 figs.

O' Rourke, P.E.; Prather, W.S.; Livingston, R.R.

1990-02-12T23:59:59.000Z

385

Self-referencing remote optical probe  

DOE Patents (OSTI)

A probe is described for remote spectrometric measurements of fluid samples having a hollow probe body with a sliding reflective plug therein and a lens at one end, ports for admitting and expelling the fluid sample and a means for moving the reflector so that reference measurement can be made with the reflector in a first position near the lens and a sample measurement can be made with the reflector away from the lens and the fluid sample between the reflector and the lens. Comparison of the two measurements will yield the composition of the fluid sample. The probe is preferably used for remote measurements and light is carried to and from the probe via fiber optic cables. 3 figures.

O' Rourke, P.E.; Prather, W.S.; Livingston, R.R.

1991-08-13T23:59:59.000Z

386

Surface sampling concentration and reaction probe  

DOE Patents (OSTI)

A method of analyzing a chemical composition of a specimen is described. The method can include providing a probe comprising an outer capillary tube and an inner capillary tube disposed co-axially within the outer capillary tube, where the inner and outer capillary tubes define a solvent capillary and a sampling capillary in fluid communication with one another at a distal end of the probe; contacting a target site on a surface of a specimen with a solvent in fluid communication with the probe; maintaining a plug volume proximate a solvent-specimen interface, wherein the plug volume is in fluid communication with the probe; draining plug sampling fluid from the plug volume through the sampling capillary; and analyzing a chemical composition of the plug sampling fluid with an analytical instrument. A system for performing the method is also described.

Van Berkel, Gary J; Elnaggar, Mariam S

2013-07-16T23:59:59.000Z

387

Forced Trench Waves  

Science Conference Proceedings (OSTI)

A general theory for forced barotropic long trench waves in the presence of linear bottom friction is presented. Two specific forcing mechanisms are considered: (i) transverse fluctuations in a western boundary current as it flows across a trench,...

Lawrence A. Mysak; Andrew J. Willmott

1981-11-01T23:59:59.000Z

388

Complete CFD analysis of a Velocity XL-5 RG with flight-test verification  

E-Print Network (OSTI)

The Texas A&M Flight Research Laboratory (FRL) recently received delivery of its newest aircraft, the Velocity XL-5 RG. The Velocity can fly faster than the other aircraft owned by the FRL and does not have a propeller in the front of the aircraft to disrupt the air flow. These are definite advantages that make the Velocity an attractive addition to the FRL inventory to be used in boundary-layer stability and transition control. Possible mounting locations built into the aircraft for future projects include hard points in the wings and roof of the fuselage. One of the drawbacks of the aircraft is that it has a canard ahead of the main wing that could disrupt the incoming flow for a wing glove or research requiring test pieces mounted to the hard point in the wing. Therefore, it is necessary to understand the influence the canard and the impact of its wake on the wing of the aircraft before any in-depth aerodynamic research could be completed on the aircraft. A combination of in-flight measurements of the canard wake and Computational Fluid Dynamics (CFD) were used to provide a clear picture of the flowfield around the aircraft. The first step of the project consisted of making a 3-D CAD model of the aircraft. This model was then used for the CFD simulations in Fluent. 2-D, 3-D, inviscid, and viscous simulations were preformed on the aircraft. A pressure rake was designed to house a 5-hole probe and 18 Pitot probes that extended forward of the main wing to measure the location and strength of the canard wake at various flight conditions. There were five primary test points that were recorded at multiple times over the course of three flights. Once all of the data were collected from the flights, the freestream conditions became the inputs into the final, 3-D CFD simulations on the aircraft. The good agreement between the CFD results and the in-flight measurements provided the necessary verification of the CFD model of the aircraft. These results can be used in the future planning and execution of experiments involving the Velocity XL-5 RG.

Schouten, Shane Michael

2008-05-01T23:59:59.000Z

389

Multiple spherically converging shock waves in liquid deuterium  

Science Conference Proceedings (OSTI)

To achieve ignition, inertial confinement fusion target designs use a sequence of shocks to compress the target before it implodes. To minimize the entropy acquired by the fuel, the strength and timing of these shocks will be precisely set during a series of tuning experiments that adjust the laser pulse to achieve optimal conditions. We report measurements of the velocity and timing of multiple, converging shock waves inside spherical targets filled with liquid (cryogenic) deuterium. These experiments produced the highest reported shock velocity observed in liquid deuterium (U{sub s} = 135 km/s at {approx}25 Mb) and observed an increase in shock velocity due to spherical convergence. These direct-drive experiments are best simulated when hydrodynamic codes use a nonlocal model for the transport of absorbed laser energy from the coronal plasma to the ablation surface.

Boehly, T. R.; Goncharov, V. N.; Seka, W.; Hu, S. X.; Marozas, J. A. [Laboratory for Laser Energetics, 250 East River Road, Rochester, New York 14423-1299 (United States); Meyerhofer, D. D. [Laboratory for Laser Energetics and Departments of Mechanical Engineering and Physics, University of Rochester, Rochester, New York 14627 (United States); Celliers, P. M.; Hicks, D. G.; Barrios, M. A.; Fratanduono, D.; Collins, G. W. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

2011-09-15T23:59:59.000Z

390

Alfven Waves in the Lower Solar Atmosphere  

E-Print Network (OSTI)

We report the detection of oscillatory phenomena associated with a large bright-point group that is 430,000 square kilometers in area and located near the solar disk center. Wavelet analysis reveals full-width half-maximum oscillations with periodicities ranging from 126 to 700 seconds originating above the bright point and significance levels exceeding 99%. These oscillations, 2.6 kilometers per second in amplitude, are coupled with chromospheric line-of-sight Doppler velocities with an average blue shift of 23 kilometers per second. A lack of cospatial intensity oscillations and transversal displacements rules out the presence of magneto-acoustic wave modes. The oscillations are a signature of Alfven waves produced by a torsional twist of +/-22 degrees. A phase shift of 180 degrees across the diameter of the bright point suggests that these torsional Alfven oscillations are induced globally throughout the entire brightening. The energy flux associated with this wave mode is sufficient to heat the solar coro...

Jess, D B; Erdelyi, R; Crockett, P J; Keenan, F P; Christian, D J

2009-01-01T23:59:59.000Z

391

Fiber optic probe for light scattering measurements  

DOE Patents (OSTI)

A fiber optic probe and a method for using the probe for light scattering analyses of a sample. The probe includes a probe body with an inlet for admitting a sample into an interior sample chamber, a first optical fiber for transmitting light from a source into the chamber, and a second optical fiber for transmitting light to a detector such as a spectrophotometer. The interior surface of the probe carries a coating that substantially prevents non-scattered light from reaching the second fiber. The probe is placed in a region where the presence and concentration of an analyte of interest are to be detected, and a sample is admitted into the chamber. Exciting light is transmitted into the sample chamber by the first fiber, where the light interacts with the sample to produce Raman-scattered light. At least some of the Raman-scattered light is received by the second fiber and transmitted to the detector for analysis. Two Raman spectra are measured, at different pressures. The first spectrum is subtracted from the second to remove background effects, and the resulting sample Raman spectrum is compared to a set of stored library spectra to determine the presence and concentration of the analyte.

Nave, Stanley E. (Evans, GA); Livingston, Ronald R. (Aiken, SC); Prather, William S. (Augusta, GA)

1995-01-01T23:59:59.000Z

392

Fiber optic probe for light scattering measurements  

DOE Patents (OSTI)

This invention is comprised of a fiber optic probe and a method for using the probe for light scattering analyses of a sample. The probe includes a probe body with an inlet for admitting a sample into an interior sample chamber, a first optical fiber for transmitting light from a source into the chamber, and a second optical fiber for transmitting light to a detector such as a spectrophotometer. The interior surface of the probe carries a coating that substantially prevents non-scattered light from reaching the second fiber. The probe is placed in a region where the presence and concentration of an analyte of interest are to be detected, and a sample is admitted into the chamber. Exciting light is transmitted into the sample chamber by the first fiber, where the light interacts with the sample to produce Raman-scattered light. At least some of the Raman- scattered light is received by the second fiber and transmitted to the detector for analysis. Two Raman spectra are measured, at different pressures. The first spectrum is subtracted from the second to remove background effects, and the resulting sample Raman spectrum is compared to a set of stored library spectra to determine the presence and concentration of the analyte.

Nave, S.E.; Livingston, R.R.; Prather, W.S.

1993-01-01T23:59:59.000Z

393

Gravitational-Wave Detection using Multivariate Analysis  

E-Print Network (OSTI)

Searches for gravitational-wave bursts (transient signals, typically of unknown waveform) require identification of weak signals in background detector noise. The sensitivity of such searches is often critically limited by non-Gaussian noise fluctuations which are difficult to distinguish from real signals, posing a key problem for transient gravitational-wave astronomy. Current noise rejection tests are based on the analysis of a relatively small number of measured properties of the candidate signal, typically correlations between detectors. Multivariate analysis (MVA) techniques probe the full space of measured properties of events in an attempt to maximise the power to accurately classify events as signal or background. This is done by taking samples of known background events and (simulated) signal events to train the MVA classifier, which can then be applied to classify events of unknown type. We apply the boosted decision tree (BDT) MVA technique to the problem of detecting gravitational-wave bursts associated with gamma-ray bursts. We find that BDTs are able to increase the sensitive distance reach of the search by as much as 50%, corresponding to a factor of ~3 increase in sensitive volume. This improvement is robust against trigger sky position, large sky localisation error, poor data quality, and the simulated signal waveforms that are used. Critically, we find that the BDT analysis is able to detect signals that have different morphologies to those used in the classifier training and that this improvement extends to false alarm probabilities beyond the 3{\\sigma} significance level. These findings indicate that MVA techniques may be used for the robust detection of gravitational-wave bursts with a priori unknown waveform.

Thomas S. Adams; Duncan Meacher; James Clark; Patrick J. Sutton; Gareth Jones; Ariana Minot

2013-05-24T23:59:59.000Z

394

Standardization of the cumulative absolute velocity  

SciTech Connect

EPRI NP-5930, A Criterion for Determining Exceedance of the Operating Basis Earthquake,'' was published in July 1988. As defined in that report, the Operating Basis Earthquake (OBE) is exceeded when both a response spectrum parameter and a second damage parameter, referred to as the Cumulative Absolute Velocity (CAV), are exceeded. In the review process of the above report, it was noted that the calculation of CAV could be confounded by time history records of long duration containing low (nondamaging) acceleration. Therefore, it is necessary to standardize the method of calculating CAV to account for record length. This standardized methodology allows consistent comparisons between future CAV calculations and the adjusted CAV threshold value based upon applying the standardized methodology to the data set presented in EPRI NP-5930. The recommended method to standardize the CAV calculation is to window its calculation on a second-by-second basis for a given time history. If the absolute acceleration exceeds 0.025g at any time during each one second interval, the earthquake records used in EPRI NP-5930 have been reanalyzed and the adjusted threshold of damage for CAV was found to be 0.16g-set.

O'Hara, T.F.; Jacobson, J.P. (Yankee Atomic Electric Co., Bolton, MA (United States))

1991-12-01T23:59:59.000Z

395

Out-of-plane ultrasonic velocity measurement  

DOE Patents (OSTI)

A method for improving the accuracy of measuring the velocity and time of flight of ultrasonic signals through moving web-like materials such as paper, paperboard and the like, includes a pair of ultrasonic transducers disposed on opposing sides of a moving web-like material. In order to provide acoustical coupling between the transducers and the web-like material, the transducers are disposed in fluid-filled wheels. Errors due to variances in the wheel thicknesses about their circumference which can affect time of flight measurements and ultimately the mechanical property being tested are compensated by averaging the ultrasonic signals for a predetermined number of revolutions. The invention further includes a method for compensating for errors resulting from the digitization of the ultrasonic signals. More particularly, the invention includes a method for eliminating errors known as trigger jitter inherent with digitizing oscilloscopes used to digitize the signals for manipulation by a digital computer. In particular, rather than cross-correlate ultrasonic signals taken during different sample periods as is known in the art in order to determine the time of flight of the ultrasonic signal through the moving web, a pulse echo box is provided to enable cross-correlation of predetermined transmitted ultrasonic signals with predetermined reflected ultrasonic or echo signals during the sample period. By cross-correlating ultrasonic signals in the same sample period, the error associated with trigger jitter is eliminated.

Hall, Maclin S. (Marietta, GA); Brodeur, Pierre H. (Smyrna, GA); Jackson, Theodore G. (Atlanta, GA)

1998-01-01T23:59:59.000Z

396

Out-of-plane ultrasonic velocity measurement  

DOE Patents (OSTI)

A method for improving the accuracy of measuring the velocity and time of flight of ultrasonic signals through moving web-like materials such as paper, paperboard and the like, includes a pair of ultrasonic transducers disposed on opposing sides of a moving web-like material. In order to provide acoustical coupling between the transducers and the web-like material, the transducers are disposed in fluid-filled wheels. Errors due to variances in the wheel thicknesses about their circumference which can affect time of flight measurements and ultimately the mechanical property being tested are compensated by averaging the ultrasonic signals for a predetermined number of revolutions. The invention further includes a method for compensating for errors resulting from the digitization of the ultrasonic signals. More particularly, the invention includes a method for eliminating errors known as trigger jitter inherent with digitizing oscilloscopes used to digitize the signals for manipulation by a digital computer. In particular, rather than cross-correlate ultrasonic signals taken during different sample periods as is known in the art in order to determine the time of flight of the ultrasonic signal through the moving web, a pulse echo box is provided to enable cross-correlation of predetermined transmitted ultrasonic signals with predetermined reflected ultrasonic or echo signals during the sample period. By cross-correlating ultrasonic signals in the same sample period, the error associated with trigger jitter is eliminated. 20 figs.

Hall, M.S.; Brodeur, P.H.; Jackson, T.G.

1998-07-14T23:59:59.000Z

397

Assessment of the 3410 Building Filtered Exhaust Stack Sampling Probe Location  

Science Conference Proceedings (OSTI)

Pacific Northwest National Laboratory performed several tests in the exhaust air discharge from the new 3410 Building Filtered Exhaust Stack to determine whether the air sampling probe for emissions monitoring for radionuclides is acceptable. The method followed involved adopting the results of a previously performed test series from a system with a similar configuration, followed by several tests on the actual system to verify the applicability of the previously performed tests. The qualification criteria for these types of stacks include metrics concerning 1) uniformity of air velocity, 2) sufficiently small flow angle with respect to the axis of the duct, 3) uniformity of tracer gas concentration, and 4) uniformity tracer particle concentration.

Glissmeyer, John A.; Flaherty, Julia E.

2010-07-16T23:59:59.000Z

398

Assessment of the 3420 Building Filtered Exhaust Stack Sampling Probe Location  

Science Conference Proceedings (OSTI)

Pacific Northwest National Laboratory performed several tests in the exhaust air discharge from the new 3420 Building Filtered Exhaust Stack to determine whether the air sampling probe for emissions monitoring for radionuclides is acceptable. The method followed involved adopting the results of a previously performed test series from a system with a similar configuration, followed by several tests on the actual system to verify the applicability of the previously performed tests. The qualification criteria for these types of stacks include metrics concerning 1) uniformity of air velocity, 2) sufficiently small flow angle with respect to the axis of the duct, 3) uniformity of tracer gas concentration, and 4) uniformity tracer particle concentration.

Glissmeyer, John A.; Flaherty, Julia E.

2010-07-16T23:59:59.000Z

399

A Hypothetical Burning-Velocity Formula for Very Lean Hydrogen-Air Mixtures  

E-Print Network (OSTI)

K. Fig. 2 Comparisons of burning-velocity predictions withcurve), when an experimental burning velocity (points) of 53and calculated laminar burning velocities of lean hydrogen-

Grcar, Joseph F

2008-01-01T23:59:59.000Z

400

MHK Technologies/GyroWaveGen | Open Energy Information  

Open Energy Info (EERE)

GyroWaveGen GyroWaveGen < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage GyroWaveGen.jpg Technology Profile Primary Organization Paradyme Systems Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description A gyro wave energy transducer is mounted on the buoyant body for translating the pendulum like motions of the buoyant body into rotational motion The gyro wave energy transducer includes a gimbal comprised of first and second frames with the first frame being pivotally mounted to the second frame and the second frame being pivotally mounted to the buoyant body A gyroscope is mounted to the first frame for rotation about an axis perpendicular to the axes of rotation of the first and second frames A motor generator is coupled to the gyroscope for maintaining a controlled rotational velocity for the gyroscope Transferring members are associated with one of the first and second frames for transferring torque of one of the first and second frames to the gyroscope about an axis that is perpendicular to that of the gyroscope which results in rotation of the other of the first and second frames An electrical generator is responsive to the relative rotational movement of the first and se

Note: This page contains sample records for the topic "velocity wave probe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

ENERGY CONTENT AND PROPAGATION IN TRANSVERSE SOLAR ATMOSPHERIC WAVES  

SciTech Connect

Recently, a significant amount of transverse wave energy has been estimated propagating along solar atmospheric magnetic fields. However, these estimates have been made with the classic bulk Alfven wave model which assumes a homogeneous plasma. In this paper, the kinetic, magnetic, and total energy densities and the flux of energy are computed for transverse MHD waves in one-dimensional cylindrical flux tube models with a piecewise constant or continuous radial density profile. There are fundamental deviations from the properties for classic bulk Alfven waves. (1) There is no local equipartition between kinetic and magnetic energy. (2) The flux of energy and the velocity of energy transfer have, in addition to a component parallel to the magnetic field, components in the planes normal to the magnetic field. (3) The energy densities and the flux of energy vary spatially, contrary to the case of classic bulk Alfven waves. This last property has the important consequence that the energy flux computed with the well known expression for bulk Alfven waves could overestimate the real flux by a factor in the range 10-50, depending on the flux tube equilibrium properties.

Goossens, M.; Van Doorsselaere, T. [Centre for mathematical Plasma Astrophysics, Mathematics Department, Celestijnenlaan 200B bus 2400, B-3001 Heverlee (Belgium); Soler, R. [Solar Physics Group, Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Verth, G., E-mail: tom.vandoorsselaere@wis.kuleuven.be [Solar Physics and Space Plasma Research Centre (SP2RC), School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Hicks Building, Sheffield S3 7RH (United Kingdom)

2013-05-10T23:59:59.000Z

402

Scripps Institution of Oceanography: Probing the Oceans  

E-Print Network (OSTI)

SanDiego,California921 Leucadia CA 92024 Other books by Elizabeth N. Shor: Fossils and Flies. Watching Waves in Land and Sea: The Institute of Geophysics and Planetary Physics ....... 149 8- bles the sound waves, and churns the stomach. But its power and its mystery hold some people in a spell

Constable, Steve

403

Single crystal metal wedges for surface acoustic wave propagation  

DOE Patents (OSTI)

An ultrasonic testing device has been developed to evaluate flaws and inhomogeneities in the near-surface region of a test material. A metal single crystal wedge is used to generate high frequency Rayleigh surface waves in the test material surface by conversion of a slow velocity, bulk acoustic mode in the wedge into a Rayleigh wave at the metal-wedge test material interface. Particular classes of metals have been found to provide the bulk acoustic modes necessary for production of a surface wave with extremely high frequency and angular collimation. The high frequency allows flaws and inhomogeneities to be examined with greater resolution. The high degree of angular collimation for the outgoing ultrasonic beam permits precision angular location of flaws and inhomogeneities in the test material surface.

Fisher, E.S.

1980-05-09T23:59:59.000Z

404

Single crystal metal wedges for surface acoustic wave propagation  

DOE Patents (OSTI)

An ultrasonic testing device has been developed to evaluate flaws and inhomogeneities in the near-surface region of a test material. A metal single crystal wedge is used to generate high frequency Rayleigh surface waves in the test material surface by conversion of a slow velocity, bulk acoustic mode in the wedge into a Rayleigh wave at the metal-wedge test material interface. Particular classes of metals have been found to provide the bulk acoustic modes necessary for production of a surface wave with extremely high frequency and angular collimation. The high frequency allows flaws and inhomogeneities to be examined with greater resolution. The high degree of angular collimation for the outgoing ultrasonic beam permits precision angular location of flaws and inhomogeneities in the test material surface.

Fisher, Edward S. (Wheaton, IL)

1982-01-01T23:59:59.000Z

405

Lollipops and Ice Fishing: Molecular Rulers Used to Probe ...  

Science Conference Proceedings (OSTI)

Lollipops and Ice Fishing: Molecular Rulers Used to Probe Nanopores. For Immediate Release: April 27, 2010. ...

2011-10-03T23:59:59.000Z

406

AnisWave2D: User's Guide to the 2d Anisotropic Finite-DifferenceCode  

Science Conference Proceedings (OSTI)

This document describes a parallel finite-difference code for modeling wave propagation in 2D, fully anisotropic materials. The code utilizes a mesh refinement scheme to improve computational efficiency. Mesh refinement allows the grid spacing to be tailored to the velocity model, so that fine grid spacing can be used in low velocity zones where the seismic wavelength is short, and coarse grid spacing can be used in zones with higher material velocities. Over-sampling of the seismic wavefield in high velocity zones is therefore avoided. The code has been implemented to run in parallel over multiple processors and allows large-scale models and models with large velocity contrasts to be simulated with ease.

Toomey, Aoife

2005-01-06T23:59:59.000Z

407

Simultaneous Measurements of Drop Size and Velocity in ...  

Science Conference Proceedings (OSTI)

... of entrained air velocity. An example is presented in Prahl and Wendt (1988) and Wendt and Prahl (1986) where the authors ...

408

Modified definition of group velocity and electromagnetic energy conservation equation  

E-Print Network (OSTI)

The classical definition of group velocity has two flaws: (a) the group velocity can be greater than the phase velocity in a non-dispersive medium; (b) the definition is not consistent with the principle of relativity. To remove the flaws, a modified definition is proposed. A criterion is set up to identify the justification of group velocity definition. A "superluminal power flow" is constructed to show that the electromagnetic energy conservation equation cannot uniquely define the power flow if the principle of Fermat is not taken into account.

Changbiao Wang

2013-06-13T23:59:59.000Z

409

New Insights Into Deep Convective Core Vertical Velocities Using...  

NLE Websites -- All DOE Office Websites (Extended Search)

Insights Into Deep Convective Core Vertical Velocities Using ARM UHF Wind Profilers For original submission and image(s), see ARM Research Highlights http:www.arm.govscience...

410

HIGH-RESOLUTION SEISMIC VELOCITY AND ATTENUATION MODELS OF THE CAUCASUS-CASPIAN REGION  

SciTech Connect

The southwest edge of Eurasia is a tectonically and structurally complex region that includes the Caspian and Black Sea basins, the Caucasus Mountains, and the high plateaus south of the Caucasus. Using data from 25 broadband stations located in the region, new estimates of crustal and upper mantle thickness, velocity structure, and attenuation are being developed. Receiver functions have been determined for all stations. Depth to Moho is estimated using slant stacking of the receiver functions, forward modeling, and inversion. Moho depths along the Caspian and in the Kura Depression are in general poorly constrained using only receiver functions due to thick sedimentary basin sediments. The best fitting models suggest a low velocity upper crust with Moho depths ranging from 30 to 40 km. Crustal thicknesses increase in the Greater Caucasus with Moho depths of 40 to 50 km. Pronounced variations with azimuth of source are observed indicating 3D structural complexity and upper crustal velocities are higher than in the Kura Depression to the south. In the Lesser Caucasus, south and west of the Kura Depression, the crust is thicker (40 to 50 km) and upper crustal velocities are higher. Work is underway to refine these models with the event based surface wave dispersion and ambient noise correlation measurements from continuous data. Regional phase (Lg and Pg) attenuation models as well as blockage maps for Pn and Sn are being developed. Two methods are used to estimate Q: the two-station method to estimate inter-station Q and the reversed, two-station, two event method. The results are then inverted to create Lg and Pg Q maps. Initial results suggest substantial variations in both Pg and Lg Q in the region. A zone of higher Pg Q extends west from the Caspian between the Lesser and Greater Caucasus and a narrow area of higher Lg Q is observed.

Mellors, R; Gok, R; Pasyanos, M; Skobeltsyn, G; Teoman, U; Godoladze, T; Sandvol, E

2008-07-01T23:59:59.000Z

411

Initial Results in Power System Identification from Injected Probing Signals Using a Subspace Method  

SciTech Connect

In this paper, the authors use the Numerical algorithm for Subspace State Space System IDentification (N4SID) to extract dynamic parameters from phasor measurements collected on the western North American Power Grid. The data were obtained during tests on June 7, 2000, and they represent wide area response to several kinds of probing signals including Low-Level Pseudo-Random Noise (LLPRN) and Single-Mode Square Wave (SMSW) injected at the Celilo terminal of the Pacific HVDC In-tertie (PDCI). An identified model is validated using a cross vali-dation method. Also, the obtained electromechanical modes are compared with the results from Prony analysis of a ringdown and with signal analysis of ambient data measured under similar op-erating conditions. The consistent results show that methods in this class can be highly effective even when the probing signal is small.

Zhou, Ning; Pierre, John W.; Hauer, John F.

2006-08-01T23:59:59.000Z

412

Measurement of electron density with the phase-resolved cut-off probe method  

Science Conference Proceedings (OSTI)

The phase resolved cut-off probe method, a precise measurement method for the electron density, was recently proposed [J. H. Kwon et al., Appl. Phys. Lett. 96, 081502 (2010)]. This paper presents the measurements of electron density using the method under various experimental conditions (different pressures, powers, chamber volumes, and discharge sources). The result shows that the method is not only in good agreement with the previous method using wave transmittance under various experimental conditions but it is also able to find the cut-off point clearly even under difficult conditions such as high pressure ({approx} 1 Torr), high discharge power, and small plasma volume. The details of the experimental setup, the operating mechanism of the probe method, and the data processing procedure (algorithm) are also addressed. Furthermore, the reliability of the measurement method is investigated by using an electromagnetic field simulation with cold plasma model (CST-Drude model, Computer Simulation Technology).

Kwon, J. H.; Kim, D. W.; Na, B. K. [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, Korea 305-701 (Korea, Republic of); You, S. J.; Kim, J. H.; Shin, Y. H. [Center for Vacuum Technology, Korea Research Institute of Standards and Science, Daejeon, Korea 305-306 (Korea, Republic of)

2011-07-15T23:59:59.000Z

413

Standing wave compressor  

DOE Green Energy (OSTI)

A compressor for compression-evaporation cooling systems, which requires no moving parts. A gaseous refrigerant inside a chamber is acoustically compressed and conveyed by means of a standing acoustic wave which is set up in the gaseous refrigerant. This standing acoustic wave can be driven either by a transducer, or by direct exposure of the gas to microwave and infrared sources, including solar energy. Input and output ports arranged along the chamber provide for the intake and discharge of the gaseous refrigerant. These ports can be provided with optional valve arrangements, so as to increase the compressor's pressure differential. The performance of the compressor in either of its transducer or electromagnetically driven configurations, can be optimized by a controlling circuit. This controlling circuit holds the wavelength of the standing acoustical wave constant, by changing the driving frequency in response to varying operating conditions.

Lucas, Timothy S. (4614 River Mill Ct., Glen Allen, VA 23060)

1991-01-01T23:59:59.000Z

414

Standing wave compressor  

DOE Patents (OSTI)

A compressor for compression-evaporation cooling systems, which requires no moving parts. A gaseous refrigerant inside a chamber is acoustically compressed and conveyed by means of a standing acoustic wave which is set up in the gaseous refrigerant. This standing acoustic wave can be driven either by a transducer, or by direct exposure of the gas to microwave and infrared sources, including solar energy. Input and output ports arranged along the chamber provide for the intake and discharge of the gaseous refrigerant. These ports can be provided with optional valve arrangements, so as to increase the compressor's pressure differential. The performance of the compressor in either of its transducer or electromagnetically driven configurations, can be optimized by a controlling circuit. This controlling circuit holds the wavelength of the standing acoustical wave constant, by changing the driving frequency in response to varying operating conditions.

Lucas, Timothy S. (4614 River Mill Ct., Glen Allen, VA 23060)

1991-01-01T23:59:59.000Z

415

Piezoelectric wave motor  

DOE Patents (OSTI)

A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.

Yerganian, Simon Scott (Lee' s Summit, MO)

2001-07-17T23:59:59.000Z

416

Piezoelectric wave motor  

DOE Patents (OSTI)

A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase-shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in the direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.

Yerganian, Simon Scott (Lee' s Summit, MO)

2003-02-11T23:59:59.000Z

417

TIMING OF SHOCK WAVES  

DOE Patents (OSTI)

This patent relates to means for ascertaining the instant of arrival of a shock wave in an exploslve charge and apparatus utilizing this means to coordinate the timing of two operations involving a short lnterval of time. A pair of spaced electrodes are inserted along the line of an explosive train with a voltage applied there-across which is insufficient to cause discharge. When it is desired to initiate operation of a device at the time the explosive shock wave reaches a particular point on the explosive line, the device having an inherent time delay, the electrodes are located ahead of the point such that the ionization of the area between the electrodes caused by the traveling explosive shock wave sends a signal to initiate operation of the device to cause it to operate at the proper time. The operated device may be photographic equipment consisting of an x-ray illuminating tube.

Tuck, J.L.

1955-03-01T23:59:59.000Z

418

Laser-Doppler acoustic probing of granular media with in-depth property gradient and varying pore pressures  

Science Conference Proceedings (OSTI)

Non-contacting ultrasonic techniques recently proved to be efficient in the physical modeling of seismic-wave propagation at various application scales, as for instance in the context of geological analogue and seismic modeling. An innovative experimental set-up is proposed here to perform laser-Doppler acoustic probing of unconsolidated granular media with varying pore pressures. The preliminary experiments presented here provide reproducible results and exploitable data, thus validating both the proposed medium preparation and pressure gradient generation procedure.

Bodet, L.; Dhemaied, A.; Mourgues, R.; Tournat, V.; Rejiba, F. [LPG, UMR CNRS 6112, Universite du Maine, Le Mans (France); UMR CNRS 7619 Sisyphe, Universite Pierre et Marie Curie-Paris 6 (France); LPG, UMR CNRS 6112, Universite du Maine, Le Mans (France); LAUM, CNRS, Universite du Maine, Le Mans (France); UMR CNRS 7619 Sisyphe, Universite Pierre et Marie Curie-Paris 6 (France)

2012-05-24T23:59:59.000Z

419

The stability and the growth rate of the electron acoustic traveling wave under transverse perturbations in a magnetized quantum plasma  

Science Conference Proceedings (OSTI)

Theoretical and numerical studies are carried out for the stability of the electron acoustic waves under the transverse perturbation in a magnetized quantum plasma. The Zakharov-Kuznetsov (ZK) equation of the electron-acoustic waves (EAWs) is given by using the reductive perturbation technique. The cut-off frequency is obtained by applying a transverse sinusoidal perturbation to the plane soliton solution of the ZK equation. The propagation velocity of solitary waves, the real cut-off frequency, as well as the growth rate of the higher order perturbation to the traveling solitary wave are obtained.

Gao Dongning; Wang Canglong; Yang Xue; Duan Wenshan [College of Physics and Electronic Engineering and Joint Laboratory of Atomic and Molecular Physics of NWNU and IMP CAS, Northwest Normal University, Lanzhou, 730070 (China) and Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Yang Lei [College of Physics and Electronic Engineering and Joint Laboratory of Atomic and Molecular Physics of NWNU and IMP CAS, Northwest Normal University, Lanzhou, 730070 (China) and Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Department of Physics, Lanzhou University, Lanzhou 730000 (China)

2012-12-15T23:59:59.000Z

420

Ion beam driven ion-acoustic waves in a plasma cylinder with negatively charged dust grains  

SciTech Connect

An ion beam propagating through a magnetized potassium plasma cylinder having negatively charged dust grains drives electrostatic ion-acoustic waves to instability via Cerenkov interaction. The phase velocity of sound wave increases with the relative density of negatively charged dust grains. The unstable wave frequencies and the growth rate increase, with the relative density of negatively charged dust grains. The growth rate of the unstable mode scales as one-third power of the beam density. The real part of frequency of the unstable mode increases with the beam energy and scales as almost the one-half power of the beam energy.

Sharma, Suresh C.; Walia, Ritu [Department of Physics, Maharaja Agrasen Institute of Technology, PSP Area Plot No.-1, Sector-22, Rohini, Delhi 110 086 (India); Sharma, Kavita [Department of Physics, Bhagwan Parshuram Institute of Technology, Sector-17, Rohini, New Delhi 110 089 (India)

2012-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "velocity wave probe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Expanding impulsive gravitational waves  

E-Print Network (OSTI)

We explicitly demonstrate that the known solutions for expanding impulsive spherical gravitational waves that have been obtained by a "cut and paste" method may be considered to be impulsive limits of the Robinson-Trautman vacuum type N solutions. We extend these results to all the generically distinct subclasses of these solutions in Minkowski, de Sitter and anti-de Sitter backgrounds. For these we express the solutions in terms of a continuous metric. Finally, we also extend the class of spherical shock gravitational waves to include a non-zero cosmological constant.

J. Podolsky; J. B. Griffiths

1999-07-06T23:59:59.000Z

422

Lightning strokes can probe the ionosphere  

NLE Websites -- All DOE Office Websites (Extended Search)

Lightning Strokes Can Probe Ionosphere Lightning Strokes Can Probe Ionosphere Lightning strokes can probe the ionosphere Researchers have made measurements during thunderstorms to study the affect of lightning on the lower ionosphere and radiofrequency signals. April 11, 2013 Lightning. Credit: National Oceanic and Atmospheric Administration (NOAA) The team found that the electron density in the lower ionosphere decreased in response to lightning discharges. Thunderstorms, and the resulting partially ionized plasma of the ionosphere, can distort radio signals traveling to satellites important to communications, navigation or national security Los Alamos researchers and a collaborator have made measurements during thunderstorms to study the affect of lightning on the lower ionosphere and radiofrequency signals. This study supports one theory for how tropospheric

423

Probing Organic Transistors with Infrared Beams  

NLE Websites -- All DOE Office Websites (Extended Search)

Probing Organic Transistors with Infrared Beams Print Probing Organic Transistors with Infrared Beams Print Silicon-based transistors are well-understood, basic components of contemporary electronic technology. In contrast, there is growing need for the development of electronic devices based on organic polymer materials. Organic field-effect transistors (FETs) are ideal for special applications that require large areas, light weight, and structural flexibility. They also have the advantage of being easy to mass-produce at very low cost. However, even though this class of devices is finding a growing number of applications, electronic processes in organic materials are still not well understood. A group of researchers from the University of California and the ALS has succeeded in probing the intrinsic electronic properties of the charge carriers in organic FETs using infrared spectromicroscopy. The results of their study could help in the future development of sensors, large-area displays, and other plastic electronic components.

424

Lightning strokes can probe the ionosphere  

NLE Websites -- All DOE Office Websites (Extended Search)

Lightning Strokes Can Probe Ionosphere Lightning Strokes Can Probe Ionosphere Lightning strokes can probe the ionosphere Researchers have made measurements during thunderstorms to study the affect of lightning on the lower ionosphere and radiofrequency signals. April 11, 2013 Lightning. Credit: National Oceanic and Atmospheric Administration (NOAA) The team found that the electron density in the lower ionosphere decreased in response to lightning discharges. Thunderstorms, and the resulting partially ionized plasma of the ionosphere, can distort radio signals traveling to satellites important to communications, navigation or national security Los Alamos researchers and a collaborator have made measurements during thunderstorms to study the affect of lightning on the lower ionosphere and radiofrequency signals. This study supports one theory for how tropospheric

425

Remote adjustable focus Raman spectroscopy probe  

DOE Patents (OSTI)

A remote adjustable focus Raman spectroscopy probe allows for analyzing Raman scattered light from a point of interest external probe. An environmental barrier including at least one window separates the probe from the point of interest. An optical tube is disposed adjacent to the environmental barrier and includes a long working length compound lens objective next to the window. A beam splitter and a mirror are at the other end. A mechanical means is used to translated the prove body in the X, Y, and Z directions resulting in a variable focus optical apparatus. Laser light is reflected by the beam splitter and directed toward the compound lens objective, then through the window and focused on the point of interest. Raman scattered light is then collected by the compound lens objective and directed through the beam splitter to a mirror. A device for analyzing the light, such as a monochrometer, is coupled to the mirror.

Schmucker, John E. (Hurt, VA); Blasi, Raymond J. (Harrison City, PA); Archer, William B. (Bethel Park, PA)

1999-01-01T23:59:59.000Z

426

Gamma-ray blind beta particle probe  

DOE Patents (OSTI)

An intra-operative beta particle probe is provided by placing a suitable photomultiplier tube (PMT), micro channel plate (MCP) or other electron multiplier device within a vacuum housing equipped with: 1) an appropriate beta particle permeable window; and 2) electron detection circuitry. Beta particles emitted in the immediate vicinity of the probe window will be received by the electron multiplier device and amplified to produce a detectable signal. Such a device is useful as a gamma insensitive, intra-operative, beta particle probe in surgeries where the patient has been injected with a beta emitting radiopharmaceutical. The method of use of such a device is also described, as is a position sensitive such device.

Weisenberger, Andrew G. (Grafton, VA)

2001-01-01T23:59:59.000Z

427

2-M Probe Survey | Open Energy Information  

Open Energy Info (EERE)

2-M Probe Survey 2-M Probe Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: 2-M Probe Survey Details Activities (27) Areas (21) Regions (0) NEPA(3) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Data Collection and Mapping Parent Exploration Technique: Data Collection and Mapping Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Identify and delineate shallow thermal anomalies Cost Information Low-End Estimate (USD): 200.0020,000 centUSD 0.2 kUSD 2.0e-4 MUSD 2.0e-7 TUSD / station Median Estimate (USD): 300.0030,000 centUSD 0.3 kUSD 3.0e-4 MUSD 3.0e-7 TUSD / station High-End Estimate (USD): 500.0050,000 centUSD 0.5 kUSD 5.0e-4 MUSD 5.0e-7 TUSD / station

428

Solar off-limb line widths: Alfven waves, ion-cyclotron waves, and preferential heating  

E-Print Network (OSTI)

Alfven waves and ion-cyclotron absorption of high-frequency waves are frequently brought into models devoted to coronal heating and fast solar-wind acceleration. Signatures of ion-cyclotron resonance have already been observed in situ in the solar wind (HELIOS spacecrafts) and, recently, in the upper corona (UVCS/SOHO remote-sensing results). We propose a method to constrain both the Alfven wave amplitude and the preferential heating induced by ion-cyclotron resonance, above a partially developed polar coronal hole observed with the SUMER/SOHO spectrometer. The instrumental stray light contribution is first substracted from the spectra. By supposing that the non-thermal velocity is related to the Alfven wave amplitude, it is constrained through a density diagnostic and the gradient of the width of the Mg X 625 A line. The temperatures of several coronal ions, as functions of the distance above the limb, are then determined by substracting the non-thermal component to the observed line widths. The effect of stray light explains the apparent decrease with height in the width of several spectral lines, this decrease usually starting about 0.1-0.2 Rs above the limb. This result rules out any direct evidence of damping of the Alfven waves, often suggested by other authors. We also find that the ions with the smallest charge-to-mass ratios are the hottest ones at a fixed altitude and that they are subject to a stronger heating, as compared to the others, between 57" and 102" above the limb. This constitutes a serious clue to ion-cyclotron preferential heating.

L. Dolla; J. Solomon

2008-04-18T23:59:59.000Z

429

Annual Cycle and Depth Penetration of Wind-Generated Near-Inertial Internal Waves at Ocean Station Papa in the Northeast Pacific  

Science Conference Proceedings (OSTI)

The downward propagation of near-inertial internal waves following winter storms is examined in the context of a 2-yr record of velocity in the upper 800 m at Ocean Station Papa. The long time series allow accurate estimation of wave frequency, ...

Matthew H. Alford; Meghan F. Cronin; Jody M. Klymak

2012-06-01T23:59:59.000Z

430

EVOLUTION OF QUIESCENT AND STAR-FORMING GALAXIES SINCE z {approx} 1.5 AS A FUNCTION OF THEIR VELOCITY DISPERSIONS  

SciTech Connect

We measure stellar masses and structural parameters for 5500 quiescent and 20,000 star-forming galaxies at 0.3 < z {<=} 1.5 in the Newfirm Medium Band Survey COSMOS and UKIDSS UDS fields. We combine these measurements to infer velocity dispersions and determine how the number density of galaxies at fixed inferred dispersion, or the velocity dispersion function (VDF), evolves with time for each population. We show that the number of galaxies with high velocity dispersions appears to be surprisingly stable with time, regardless of their star formation history. Furthermore, the overall VDF for star-forming galaxies is constant with redshift, extending down to the lowest velocity dispersions probed by this study. The only galaxy population showing strong evolution are quiescent galaxies with low inferred dispersions, whose number density increases by a factor of {approx}4 since z = 1.5. This buildup leads to an evolution in the quiescent fraction of galaxies such that the threshold dispersion above which quiescent galaxies dominate the counts moves to lower velocity dispersion with time. We show that our results are qualitatively consistent with a simple model in which star-forming galaxies quench and are added to the quiescent population. In order to compensate for the migration into the quiescent population, the velocity dispersions of star-forming galaxies must increase, with a rate that increases with dispersion.

Bezanson, Rachel; Van Dokkum, Pieter [Department of Astronomy, Yale University, New Haven, CT 06520-8101 (United States); Franx, Marijn [Sterrewacht Leiden, Leiden University, NL-2300 RA Leiden (Netherlands)

2012-11-20T23:59:59.000Z

431

Kinetic Alfven Waves at the Magnetopause--Mode Conversion, Transport and Formation of LLBL  

DOE Green Energy (OSTI)

At the magnetopause, large amplitude, low-frequency (ULF), transverse MHD waves are nearly always observed. These waves likely result from mode conversion of compressional MHD waves observed in the magnetosheath to kinetic Alfven waves at the magnetopause where there is a steep gradient in the Alfven velocity [Johnson and Cheng, Geophys. Res. Lett. 24 (1997) 1423]. The mode-conversion process can explain the following wave observations typically found during satellite crossings of the magnetopause: (1) a dramatic change in wave polarization from compressional in the magnetosheath to transverse at the magnetopause, (2) an amplification of wave amplitude at the magnetopause, (3) a change in Poynting flux from cross-field in the magnetosheath to field-aligned at the magnetopause, and (4) a steepening in the wave power spectrum at the magnetopause. We examine magnetic field data from a set of ISEE1, ISEE2, and WIND magnetopause crossings and compare with the predictions of theoretical wave solutions based on the kinetic-fluid model with particular attention to the role of magnetic field rotation across the magnetopause. The results of the study suggest a good qualitative agreement between the observations and the theory of mode conversion to kinetic Alfven waves. Because mode-converted kinetic Alfven waves readily decouple particles from the magnetic field lines, efficient quasilinear transport (D {approx} 109m2/s) can occur. Moreover, if the wave amplitude is sufficiently large (Bwave/B0 > 0.2) stochastic particle transport also occurs. This wave-induced transport can lead to significant heating and particle entry into the low latitude boundary layer across closed field lines.At the magnetopause, large amplitude, low-frequency (ULF), transverse MHD waves are nearly always observed. These waves likely result from mode conversion of compressional MHD waves observed in the magnetosheath to kinetic Alfven waves at the magnetopause where there is a steep gradient in the Alfven velocity [Johnson and Cheng, Geophys. Res. Lett. 24 (1997) 1423]. The mode-conversion process can explain the following wave observations typically found during satellite crossings of the magnetopause: (1) a dramatic change in wave polarization from compressional in the magnetosheath to transverse at the magnetopause, (2) an amplification of wave amplitude at the magnetopause, (3) a change in Poynting flux from cross-field in the magnetosheath to field-aligned at the magnetopause, and (4) a steepening in the wave power spectrum at the magnetopause. We examine magnetic field data from a set of ISEE1, ISEE2, and WIND magnetopause crossings and compare with the predictions of theoretical wave solutions based on the kinetic-fluid model with particular attention to the role of magnetic field rotation across the magnetopause. The results of the study suggest a good qualitative agreement between the observations and the theory of mode conversion to kinetic Alfven waves. Because mode-converted kinetic Alfven waves readily decouple particles from the magnetic field lines, efficient quasilinear transport (D {approx} 10{sup 9}m{sup 2}/s) can occur. Moreover, if the wave amplitude is sufficiently large (B{sub wave}/B{sub 0} > 0.2) stochastic particle transport also occurs. This wave-induced transport can lead to significant heating and particle entry into the low latitude boundary layer across closed field lines.

Jay R. Johnson; C.Z. Cheng

2002-05-31T23:59:59.000Z

432

Measurements of Laminar Flame Velocity for Components of Natural Gas  

E-Print Network (OSTI)

Measurements of Laminar Flame Velocity for Components of Natural Gas Patricia Dirrenberger1 flame velocity of components of natural gas, methane, ethane, propane, and nbutane as well as of binary and tertiary mixtures of these compounds proposed as surrogates for natural gas. These measurements have been

433

Wave refraction in left-handed materials  

E-Print Network (OSTI)

We examine the response of a plane wave incident on a flat surface of a medium characterized by simultaneously negative electric and magnetic susceptibilities by solving Maxwell's equations explicitly and without making any assumptions on the way. In the literature up to date, it has been assumed that negative refractive materials are necessarily frequency dispersive. We propose an alternative to this assumption by suggesting that the requirement of positive energy density should be relaxed, and discuss the implications of such a proposal. More specifically, we show that once negative energy solutions are accepted, the necessity for frequency dispersion is no longer necessary. Finally, we argue that, for the purposes of discussing negative index materials, the use of group velocity as the physically significant quantity is misleading, and suggest that any discussion involving it should be carefully reconsidered.

Chimonidou, Antonia

2008-01-01T23:59:59.000Z

434

Probing the structure of local magnetic field of solar features with helioseismology  

E-Print Network (OSTI)

Motivated by the problem of local solar subsurface magnetic structure, we have used numerical simulation to investigate the propagation of waves through monolithic magnetic flux tubes of different size. A cluster model can be a good approximation to simulate sunspots as well as solar plage regions which are composed of an ensemble of compactly packed thin flux tubes. Simulations of this type is a powerful tool to probe the structure and the dynamic of various solar features which are related directly to solar magnetic field activity.

Daiffallah, Khalil

2013-01-01T23:59:59.000Z

435

Scintillation probe with photomultiplier tube saturation indicator  

SciTech Connect

A photomultiplier tube saturation indicator is formed by supplying a supplemental light source, typically an light emitting diode (LED), adjacent to the photomultiplier tube. A switch allows the light source to be activated. The light is forwarded to the photomultiplier tube by an optical fiber. If the probe is properly light tight, then a meter attached to the indicator will register the light from the LED. If the probe is no longer light tight, and the saturation indicator is saturated, no signal will be registered when the LED is activated. 2 figs.

Ruch, J.F.; Urban, D.J.

1996-10-01T23:59:59.000Z

436

Scintillation probe with photomultiplier tube saturation indicator  

DOE Patents (OSTI)

A photomultiplier tube saturation indicator is formed by supplying a supplemental light source, typically an light emitting diode (LED), adjacent to the photomultiplier tube. A switch allows the light source to be activated. The light is forwarded to the photomultiplier tube by an optical fiber. If the probe is properly light tight, then a meter attached to the indicator will register the light from the LED. If the probe is no longer light tight, and the saturation indicator is saturated, no signal will be registered when the LED is activated.

Ruch, Jeffrey F. (Bethel Park, PA); Urban, David J. (Glassport, PA)

1996-01-01T23:59:59.000Z

437

Wave–Turbulence Interactions in a Breaking Mountain Wave  

Science Conference Proceedings (OSTI)

The mean and turbulent structures in a breaking mountain wave are considered through an ensemble of high-resolution (essentially large-eddy simulation) wave-breaking calculations. Of particular interest are the turbulent heat and momentum fluxes ...

Craig C. Epifanio; Tingting Qian

2008-10-01T23:59:59.000Z

438

Effects of Long Waves on Wind-Generated Waves  

Science Conference Proceedings (OSTI)

A model is developed to explain the observation made in several laboratory experiments that short wind-generated waves are suppressed by a train of long, mechanically generated waves. A sheltering mechanism is responsible for generation of the ...

Gang Chen; Stephen E. Belcher

2000-09-01T23:59:59.000Z

439

Direct observation of dynamic surface acoustic wave controlled carrier injection into single quantum posts using phase-resolved optical spectroscopy  

E-Print Network (OSTI)

A versatile stroboscopic technique based on active phase-locking of a surface acoustic wave to picosecond laser pulses is used to monitor dynamic acoustoelectric effects. Time-integrated multi-channel detection is applied to probe the modulation of the emission of a quantum well for different frequencies of the surface acoustic wave. For quantum posts we resolve dynamically controlled generation of neutral and charged excitons and preferential injection of holes into localized states within the nanostructure.

Völk, S; Schülein, F J R; Truong, T A; Kim, H; Petroff, P M; Wixforth, A; Krenner, H J

2010-01-01T23:59:59.000Z

440

Direct observation of dynamic surface acoustic wave controlled carrier injection into single quantum posts using phase-resolved optical spectroscopy  

E-Print Network (OSTI)

A versatile stroboscopic technique based on active phase-locking of a surface acoustic wave to picosecond laser pulses is used to monitor dynamic acoustoelectric effects. Time-integrated multi-channel detection is applied to probe the modulation of the emission of a quantum well for different frequencies of the surface acoustic wave. For quantum posts we resolve dynamically controlled generation of neutral and charged excitons and preferential injection of holes into localized states within the nanostructure.

S. Völk; F. Knall; F. J. R. Schülein; T. A. Truong; H. Kim; P. M. Petroff; A. Wixforth; H. J. Krenner

2010-11-08T23:59:59.000Z

Note: This page contains sample records for the topic "velocity wave probe" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Mass Flux and Vertical Distribution of Currents Caused by Strong Winds in a Wave Tank  

Science Conference Proceedings (OSTI)

The velocity fields of wind-driven currents under strong winds were measured in a wind-wave tank with a double bottom. The tank has the characteristics to satisfy partially the continuity of the mass flux and to reduce return-flow effects on the ...

Toshinori Ogasawara; Takashi Yasuda

2004-12-01T23:59:59.000Z

442

Changes in fluctuation waves in coherent airflow structures with input perturbation  

Science Conference Proceedings (OSTI)

We predict the development and propagation of the fluctuations in a perturbed ideally-expanded air jet. A non-propagating harmonic perturbation in the density, axial velocity, and pressure is introduced at the inflow with different frequencies to produce ... Keywords: acoustic, air, coherent, fluctuation, jet, perturbation, synchronized, waves

Osama A. Marzouk

2008-10-01T23:59:59.000Z

443

Measurement of Ocean Wave Directional Spectra Using Doppler Side-Scan Sonar Arrays  

Science Conference Proceedings (OSTI)

A technique is presented for extraction of ocean wave directional spectra using Doppler side-scan sonars. Two 103-kHz steerable side-scan beams from a freely drifting subsurface platform are used to estimate horizontal water surface velocity due ...

Mark V. Trevorrow

1995-06-01T23:59:59.000Z

444

An Experimental Study of Baroclinic Flows with and without Two-Wave Bottom Topography  

Science Conference Proceedings (OSTI)

A series of laboratory experiments was performed in a thermally-driven rotating annulus of fluid with and without two-wave bottom topography. Velocity measurements were made by illuminating a thin layer of fluid at mid-depth and photographing ...

Guo-Qing Li; Robin Kung; Richard L. Pfeffer

1986-11-01T23:59:59.000Z

445

Multiple mapping conditioning of velocity in turbulent jet flames  

Science Conference Proceedings (OSTI)

Multiple mapping conditioning (MMC) has emerged as a new approach to model turbulent reacting flows. This study revises the standard MMC closure for velocity in turbulent jet flows from linearity in the reference space to linearity in the composition space. This modeling amendment ensures that the standard velocity model in conditional moment closure studies can now be used for MMC computation as well. A simplified model for the velocity-dependence of MMC drift coefficients is derived without loss of generality and is implemented for the revised velocity closure. Modeling results have been corroborated against the Direct Numerical Simulation database of a spatially evolving, planar turbulent jet flame. The revised model shows marked improvement over standard MMC closure in predicting velocity statistics close to the nozzle. (author)

Vaishnavi, P. [Mechanical Engineering Department, Imperial College, London SW7 2AZ (United Kingdom); Kronenburg, A. [Institut fuer Technische Verbrennung, Universitaet Stuttgart, 70174 Stuttgart (Germany)

2010-10-15T23:59:59.000Z

446

Pulsed wave interconnect  

Science Conference Proceedings (OSTI)

Pulsed wave interconnect is proposed for global interconnect applications. Signals are represented by localized wavepackets that propagate along the interconnect lines at the local speed of light to trigger the receivers. Energy consumption is reduced ... Keywords: CMOS, VLSI, high-speed interconnect, nonlinear transmission line, pulse compression, soliton, wafer-scale-integration

Pingshan Wang; Gen Pei; Edwin Chih-Chuan Kan

2004-05-01T23:59:59.000Z

447

Deflagration Wave Profiles  

SciTech Connect

Shock initiation in a plastic-bonded explosives (PBX) is due to hot spots. Current reactive burn models are based, at least heuristically, on the ignition and growth concept. The ignition phase occurs when a small localized region of high temperature (or hot spot) burns on a fast time scale. This is followed by a growth phase in which a reactive front spreads out from the hot spot. Propagating reactive fronts are deflagration waves. A key question is the deflagration speed in a PBX compressed and heated by a shock wave that generated the hot spot. Here, the ODEs for a steady deflagration wave profile in a compressible fluid are derived, along with the needed thermodynamic quantities of realistic equations of state corresponding to the reactants and products of a PBX. The properties of the wave profile equations are analyzed and an algorithm is derived for computing the deflagration speed. As an illustrative example, the algorithm is applied to compute the deflagration speed in shock compressed PBX 9501 as a function of shock pressure. The calculated deflagration speed, even at the CJ pressure, is low compared to the detonation speed. The implication of this are briefly discussed.

Menikoff, Ralph [Los Alamos National Laboratory

2012-04-03T23:59:59.000Z

448

Water Waves and Integrability  

E-Print Network (OSTI)

The Euler's equations describe the motion of inviscid fluid. In the case of shallow water, when a perturbative asymtotic expansion of the Euler's equations is taken (to a certain order of smallness of the scale parameters), relations to certain integrable equations emerge. Some recent results concerning the use of integrable equation in modeling the motion of shallow water waves are reviewed in this contribution.

Rossen I. Ivanov

2007-07-12T23:59:59.000Z

449

Evolution of a Random Directional Wave and Freak Wave Occurrence  

Science Conference Proceedings (OSTI)

The evolution of a random directional wave in deep water was studied in a laboratory wave tank (50 m long, 10 m wide, 5 m deep) utilizing a directional wave generator. A number of experiments were conducted, changing the various spectral ...

Takuji Waseda; Takeshi Kinoshita; Hitoshi Tamura

2009-03-01T23:59:59.000Z

450

Distinguishing Propagating Waves and Standing Modes: An Internal Wave Model  

Science Conference Proceedings (OSTI)

This paper examines high-frequency (0.1-0.5 cph) internal waves, waves previously characterized by the Garrett and Munk spectral fits (GM72, GM75, GM79) as being vertically symmetric propagating waves (or equivalently “smeared” standing modes—...

M. Benno Blumenthal; Melbourne G. Briscoe

1995-06-01T23:59:59.000Z

451

Wave Activity Diagnostics Applied to Baroclinic Wave Life Cycles  

Science Conference Proceedings (OSTI)

Wave activity diagnostics are calculated for four different baroclinic wave life cycles, including the LC1 and LC2 cases studied by Thorncroft, Hoskins, and McIntyre. The wave activity is a measure of the disturbance relative to some zonally ...

Gudrun Magnusdottir; Peter H. Haynes

1996-08-01T23:59:59.000Z

452

Wave Breaking Dissipation in the Wave-Driven Ocean Circulation  

Science Conference Proceedings (OSTI)

If wave breaking modifies the Lagrangian fluid paths by inducing an uncertainty in the orbit itself and this uncertainty on wave motion time scales is observable as additive noise, it is shown that within the context of a wave–current interaction ...

Juan M. Restrepo

2007-07-01T23:59:59.000Z

453

Fast wave current drive on DIII-D  

SciTech Connect

The physics of electron heating and current drive with the fast magnetosonic wave has been demonstrated on DIII-D, in reasonable agreement with theoretical modeling. A recently completed upgrade to the fast wave capability should allow full noninductive current drive in steady state advanced confinement discharges and provide some current density profile control for the Advanced Tokamak Program. DIII-D now has three four-strap fast wave antennas and three transmitters, each with nominally 2 MW of generator power. Extensive experiments have been conducted with the first system, at 60 MHz, while the two newer systems have come into operation within the past year. The newer systems are configured for 60 to 120 MHz. The measured FWCD efficiency is found to increase linearly with electron temperature as {gamma} = 0.4 {times} 10{sup 18} T{sub eo} (keV) [A/m{sup 2}W], measured up to central electron temperature over 5 keV. A newly developed technique for determining the internal noninductive current density profile gives efficiencies in agreement with this scaling and profiles consistent with theoretical predictions. Full noninductive current drive at 170 kA was achieved in a discharge prepared by rampdown of the Ohmic current. Modulation of microwave reflectometry signals at the fast wave frequency is being used to investigate fast wave propagation and damping. Additionally, rf pick-up probes on the internal boundary of the vessel provide a comparison with ray tracing codes, with dear evidence for a toroidally directed wave with antenna phasing set for current drive. There is some experimental evidence for fast wave absorption by energetic beam ions at high cyclotron harmonic resonances.

deGrassie, J.S.; Petty, C.C.; Pinsker, R.I. [and others

1995-07-01T23:59:59.000Z

454

P wave anisotropy, stress, and crack distribution at Coso geothermal field,  

Open Energy Info (EERE)

wave anisotropy, stress, and crack distribution at Coso geothermal field, wave anisotropy, stress, and crack distribution at Coso geothermal field, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: P wave anisotropy, stress, and crack distribution at Coso geothermal field, California Details Activities (1) Areas (1) Regions (0) Abstract: A new inversion method for P wave anisotropy (Wu and Lees, 1999a) has been applied to high-precision, microseismic traveltime data collected at Coso geothermal region, California. Direction-dependent P wave velocity and thus its perturbation, are represented by a symmetric positive definite matrix A instead of a scalar. The resulting anisotropy distribution is used to estimate variations in crack density, stress distribution and permeability within the producing geothermal field. A circular dome-like

455

An Adaptive Dealiasing Method Based on Variational Analysis for Radar Radial Velocities Scanned with Small Nyquist Velocities  

Science Conference Proceedings (OSTI)

Previous velocity–azimuth display (VAD)-based methods of dealiasing folded radial velocities have relied heavily on the VAD uniform-wind assumption and, thus, can fail when the uniform-wind assumption becomes poor around azimuthal circles in a ...

Qin Xu; Kang Nai

2012-12-01T23:59:59.000Z

456

Numerical Dispersion of Gravity Waves  

Science Conference Proceedings (OSTI)

When atmospheric gravity waves are simulated in numerical models, they are not only dispersive for physical but also for numerical reasons. Their wave properties (e.g., damping or propagation speed and direction) can depend on grid spacing as ...

Guido Schroeder; K. Heinke Schlünzen

2009-12-01T23:59:59.000Z

457

Sodium Nightglow and Gravity Waves  

Science Conference Proceedings (OSTI)

Oscillations in intensity of NaD nightglow attributed to mesospheric gravity waves have bean studied. Fractional atmospheric density perturbations have been obtained by means of the linear gravity waves theory of Hines. Values of other parameters ...

A. Molina

1983-10-01T23:59:59.000Z

458