Powered by Deep Web Technologies
Note: This page contains sample records for the topic "vehicles refueling stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

After the gas station : redevelopment opportunities from rethinking America's vehicle refueling infrastructure  

E-Print Network [OSTI]

Gas stations are found throughout the US, but their ubiquity causes them to go largely unnoticed. Because their purpose - refueling vehicles - is so uniform and so integral to the existing automotive transportation system, ...

Turco, Andrew

2014-01-01T23:59:59.000Z

2

Hydrogen Refueling Station Costs in Shanghai  

E-Print Network [OSTI]

Well-to-wheels analysis of hydrogen based fuel-cell vehicleJP, et al. Distributed Hydrogen Fueling Systems Analysis,”Year 2006 UCD—ITS—RR—06—04 Hydrogen Refueling Station Costs

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2006-01-01T23:59:59.000Z

3

On-Site Hydrogen Generation & Refueling Station  

E-Print Network [OSTI]

of FC vehicles under real-world conditions Cost analysis vs. target of $3/gge in 2008 On-site Auto Reforming based refueling station DOE Objectives Public education on hydrogen and fuel cells Evaluation cell & HCNG busses in commercial operation ­ Refueling fuel cell & HCNG street sweepers and cars

4

Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...  

Broader source: Energy.gov (indexed) [DOE]

Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen On April...

5

Method and system for vehicle refueling  

SciTech Connect (OSTI)

Methods and systems are provided for facilitating refueling operations in vehicles operating with multiple fuels. A vehicle operator may be assisted in refueling the multiple fuel tanks of the vehicle by being provided one or more refueling profiles that take into account the vehicle's future trip plans, the predicted environmental conditions along a planned route, and the operator's preferences.

Surnilla, Gopichandra; Leone, Thomas G; Prasad, Krishnaswamy Venkatesh; Agarwal, Apoorv; Hinds, Brett Stanley

2014-06-10T23:59:59.000Z

6

Method and system for vehicle refueling  

DOE Patents [OSTI]

Methods and systems are provided for facilitating refueling operations in vehicles operating with multiple fuels. A vehicle operator may be assisted in refueling the multiple fuel tanks of the vehicle by being provided one or more refueling profiles that take into account the vehicle's future trip plans, the predicted environmental conditions along a planned route, and the operator's preferences.

Surnilla, Gopichandra; Leone, Thomas G; Prasad, Krishnaswamy Venkatesh; Argarwal, Apoorv; Hinds, Brett Stanley

2012-11-20T23:59:59.000Z

7

Refueling Availability for Alternative Fuel Vehicle Markets: Sufficient Urban Station Coverage  

E-Print Network [OSTI]

on the adoption of alternative fuel vehicles: the case ofProgress in Acquiring Alternative Fuel Vehicles and Reachingavailability to choice of alternative fuels and vehicles.

Melaina, Marc W; Bremson, Joel

2008-01-01T23:59:59.000Z

8

Refueling Availability for Alternative Fuel Vehicle Markets: Sufficient Urban Station Coverage  

E-Print Network [OSTI]

ed Basin Dataset on Urban Gasoline Stations. Institute ofavailability Gasoline stations abstract Alternative fueldistribution, the existing gasoline station networks in many

Melaina, Marc W; Bremson, Joel

2008-01-01T23:59:59.000Z

9

Pdc - The Worldwide Leader in Hydrogen Refueling Station Compression...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Pdc - The Worldwide Leader in Hydrogen Refueling Station Compression Pdc - The Worldwide Leader in Hydrogen Refueling Station Compression This presentation by Matther Weaver of Pdc...

10

Optimization of compression and storage requirements at hydrogen refueling stations.  

SciTech Connect (OSTI)

The transition to hydrogen-powered vehicles requires detailed technical and economic analyses of all aspects of hydrogen infrastructure, including refueling stations. The cost of such stations is a major contributor to the delivered cost of hydrogen. Hydrogen refueling stations require not only dispensers to transfer fuel onto a vehicle, but also an array of such ancillary equipment as a cascade charging system, storage vessels, compressors and/or pumps/evaporators. This paper provides detailed information on design requirements for gaseous and liquid hydrogen refueling stations and their associated capital and operating costs, which in turn impact hydrogen selling price at various levels of hydrogen demand. It summarizes an engineering economics approach which captures the effect of variations in station size, seasonal, daily and hourly demand, and alternative dispensing rates and pressures on station cost. Tradeoffs in the capacity of refueling station compressors, storage vessels, and the cascade charging system result in many possible configurations for the station. Total costs can be minimized by optimizing that configuration. Using a methodology to iterate among the costs of compression, storage and cascade charging, it was found that the optimum hourly capacity of the compressor is approximately twice the station's average hourly demand, and the optimum capacity of the cascade charging system is approximately 15% of the station's average daily demand. Further, for an hourly demand profile typical of today's gasoline stations, onsite hydrogen storage equivalent to at least 1/3 of the station's average daily demand is needed to accommodate peak demand.

Elgowainy, A.; Mintz, M.; Kelly, B.; Hooks, M.; Paster, M. (Energy Systems); (Nexant, Inc.); (TIAX LLC)

2008-01-01T23:59:59.000Z

11

Vehicle Technologies Office Merit Review 2014: Refuel Colorado...  

Broader source: Energy.gov (indexed) [DOE]

Refuel Colorado Vehicle Technologies Office Merit Review 2014: Refuel Colorado Presentation given by Colorado Energy Office at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle...

12

Fact #816: February 10, 2014 Natural Gas Refueling Stations Grow...  

Broader source: Energy.gov (indexed) [DOE]

6: February 10, 2014 Natural Gas Refueling Stations Grow Over the Last Ten Years Fact 816: February 10, 2014 Natural Gas Refueling Stations Grow Over the Last Ten Years In 2003...

13

Hydrogen refueling station costs in Shanghai  

E-Print Network [OSTI]

Fueling stations; Cost; Shanghai; Fuel cell vehicles 1.and the delivery cost for fuel cell vehicles, however, itthus hydrogen cost therefore depend on the ?eet of fuel cell

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2007-01-01T23:59:59.000Z

14

Hydrogen Refueling Station Costs in Shanghai  

E-Print Network [OSTI]

and the delivery cost for fuel cell vehicles, however, itfueling stations, cost, Shanghai, fuel cell vehicles 1.0hydrogen cost therefore depend on the fleet of fuel cell

Weinert, Jonathan X.; Shaojun, Liu; Ogden, J; Jianxin, Ma

2006-01-01T23:59:59.000Z

15

Vehicle Technologies Office Merit Review 2014: Refuel Colorado  

Broader source: Energy.gov [DOE]

Presentation given by Colorado Energy Office at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Refuel Colorado.

16

Qualitative Risk Assessment for an LNG Refueling Station and Review of Relevant Safety Issues  

SciTech Connect (OSTI)

This report is a qualitative assessment of the public and worker risk involved with the operation of a liquefied natural gas (LNG) vehicle refueling facility. This study includes facility maintenance and operations, tank truck deliveries, and end-use vehicle fueling; it does not treat the risks of LNG vehicles on roadways. Accident initiating events are identified by using a Master Logic Diagram, a Failure Modes and Effects Analysis, and historical operating experiences. The event trees were drawn to depict possible sequences of mitigating events following the initiating events. The phenomenology of LNG and other vehicle fuels is discussed to characterize the hazard posed by LNG usage. Based on the risk modeling and analysis, recommendations are given to improve the safety of LNG refueling stations in the areas of procedures and training, station design, and the dissemination of ``best practice`` information throughout the LNG community.

Siu, N.; Herring, J.S.; Cadwallader, L.; Reece, W.; Byers, J.

1998-02-01T23:59:59.000Z

17

Interim qualitative risk assessment for an LNG refueling station and review of relevant safety issues  

SciTech Connect (OSTI)

This report is a qualitative assessment of the public and worker risk involved with the operation of a liquefied natural (LNG) vehicle refueling facility. This study includes facility maintenance and operations, tanker truck delivers and end-use vehicle fueling; it does not treat the risks of LNG vehicles on roadways. Accident initiating events are identified by using a Master Logic Diagram, a Failure Modes and Effects analysis and historical operating experiences. The event trees were drawn to depict possible sequences of mitigating events following the initiating events. The phenomenology of LNG and other vehicle fuels is discussed to characterize the hazard posed by LNG usage. Based on the risk modeling and analysis, recommendations are given to improve the safety of LNG refueling stations in the areas of procedures and training, station design, and the dissemination of best practice information throughout the LNG community.

Siu, N.; Herring, S.; Cadwallader, L.; Reece, W.; Byers, J.

1997-07-01T23:59:59.000Z

18

Hydrogen refueling station costs in Shanghai  

E-Print Network [OSTI]

exposure for hydrogen and fuel cell vehicle technologies.10 gasoline hybrids or 20 hydrogen fuel cell vehicles (eachwheels analysis of hydrogen based fuel-cell vehicle pathways

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2007-01-01T23:59:59.000Z

19

Hydrogen Refueling Station Costs in Shanghai  

E-Print Network [OSTI]

exposure for hydrogen and fuel cell vehicle technologies10 gasoline hybrids or 20 hydrogen fuel cell vehicles (eachwheels analysis of hydrogen based fuel-cell vehicle pathways

Weinert, Jonathan X.; Shaojun, Liu; Ogden, J; Jianxin, Ma

2006-01-01T23:59:59.000Z

20

E-Print Network 3.0 - automatic refueling simulation Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Refueling Station Demonstration Projects Appendix B. List of Recent Patents Relevant to Small Scale Hydrogen... at refueling stations for hydrogen- fueled vehicles. Small...

Note: This page contains sample records for the topic "vehicles refueling stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility  

E-Print Network [OSTI]

STORAGE COMPRESSION CNG REFUELING STATION CNG CLV & APCI CLV &CLV & APCIAPCI Figure 1: Overall Integration hydrogen to vehicles. The hydrogen compression, storage, blending and dispensing systems will be installed Venki Raman Air Products and Chemicals Inc. Allentown, PA 18195 Tel: 610-481-8336 E-mail: ramansv

22

Hydrogen Refueling Station Costs in Shanghai  

E-Print Network [OSTI]

Costs Annualized Investment Cost, 1000$/yr Total AnnualizedH2 Fueling Stations Investment Cost Cost ($/yr) OperatingH2 Fueling Stations Investment Cost Cost ($/kg) Operating

Weinert, Jonathan X.; Shaojun, Liu; Ogden, J; Jianxin, Ma

2006-01-01T23:59:59.000Z

23

Fact #832: August 4, 2014 Over Half of the Refueling Stations...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2: August 4, 2014 Over Half of the Refueling Stations in the U.S. and Canada Sell Diesel Fuel Fact 832: August 4, 2014 Over Half of the Refueling Stations in the U.S. and Canada...

24

Hydrogen refueling station costs in Shanghai  

E-Print Network [OSTI]

analysis Costs of storing and transporting hydrogen A comprehensive comparison of fuel options for fuel cell vehicles

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2007-01-01T23:59:59.000Z

25

Hydrogen refueling station costs in Shanghai  

E-Print Network [OSTI]

High-pressure hydrogen compressor Compressed hydrogenapplies to hydrogen storage vessels and compressors. 2.4.4.vehicles. 3. Compressor: compresses hydrogen gas to achieve

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2007-01-01T23:59:59.000Z

26

Hydrogen refueling station costs in Shanghai  

E-Print Network [OSTI]

total installed capital cost (TIC) 1% Of TIC 25% Estimate ofcost estimates for six station types SMR 100 a Equipment capital

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2007-01-01T23:59:59.000Z

27

H2 Refuel H-Prize Aims to Make Fueling Hydrogen Powered Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

H2 Refuel H-Prize Aims to Make Fueling Hydrogen Powered Vehicles Easier than Ever H2 Refuel H-Prize Aims to Make Fueling Hydrogen Powered Vehicles Easier than Ever December 29,...

28

Hydrogen Refueling Station Costs in Shanghai  

E-Print Network [OSTI]

stations and vendors (e.g. Air Products and Chemicals, Inc,including Chevron and Air Products and Chemicals, Inc. , asDiesel a. Verified with Air Products representative, Feb

Weinert, Jonathan X.; Shaojun, Liu; Ogden, J; Jianxin, Ma

2006-01-01T23:59:59.000Z

29

Sandia National Laboratories: Hydrogen Refueling Stations Analysis Model  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStation Technology Infrastructure ResearchRefueling Stations

30

Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen; Workshop Proceedings  

SciTech Connect (OSTI)

DOE sponsored the Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen workshop to understand how lessons from past experiences can inform future efforts to commercialize hydrogen vehicles. This report contains the proceedings from the workshop.

Melaina, M. W.; McQueen, S.; Brinch, J.

2008-07-01T23:59:59.000Z

31

Experimental investigation of onboard storage and refueling systems for liquid-hydrogen-fueled vehicles  

SciTech Connect (OSTI)

A 2-1/2-year baseline experimental hydrogen-fueled automotive vehicle project was conducted to evaluate and document state-of-the-art capabilities in engine conversion for hydrogen operation, liquid-hydrogen onboard storage, and liquid-hydrogen refueling. The engine conversion, onboard liquid-hydrogen storage tank, and liquid-hydrogen refueling system used in the project represented readily available equipment or technology when the project began. The project information documented herein can serve as a basis of comparison with which to evaluate future vehicles that are powered by hydrogen or other alternative fuels, with different engines, and different fuel-storage methods. The results of the project indicate that liquid-hydrogen storage observed an operating vehicle and routine refueling of the vehicle can be accomplished over an extended period without any major difficulty. Two different liquid-hydrogen vehicle onboard storage tanks designed for vehicular applications were tested in actual road operation: the first was an aluminum dewar with a liquid-hydrogen capacity of 110 l; the second was a Dewar with an aluminum outer vessel, two copper, vapor-cooled thermal-radiation shields, and a stainless-steel inner vessel with a liquid-hydrogen capacity of 155 l. The car was refueled with liquid hydrogen at least 65 times involving more than 8.1 kl of liquid hydrogen during the 17 months that the car was operated on liquid hydrogen. The vehicle, a 1979 Buick Century sedan with a 3.8-l-displacement turbocharged V6 engine, was driven for 3633 km over the road on hydrogen. The vehicle had a range without refueling of about 274 km with the first liquid-hydrogen tank and about 362 km with the second tank. The vehicle achieved 2.4 km/l of liquid hydrogen which corresponds to 9.4 km/l gasoline on an equivalent energy basis.

Stewart, W.F.

1982-09-01T23:59:59.000Z

32

Hydrogen Vehicles and Refueling Infrastructure in India | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:GroundtoProductionEnergy Refueling Infrastructure in

33

Determine Vehicle Usage and Refueling Trends to Minimize Greenhouse Gas Emissions  

Broader source: Energy.gov [DOE]

Once a Federal agency has identified its most important mobile greenhouse gas (GHG) emission sources overall, it can work with individual sites to determine vehicle usage and refueling trends. Agencies can compare the results of this analysis to internal standards and requirements to identify GHG mitigation opportunities for assets that are underperforming or underutilized.

34

Alcohol-fueled vehicles: An alternative fuels vehicle, emissions, and refueling infrastructure technology assessment  

SciTech Connect (OSTI)

Interest in alternative motor vehicle fuels has grown tremendously over the last few years. The 1990 Clean Air Act Amendments, the National Energy Policy Act of 1992 and the California Clean Air Act are primarily responsible for this resurgence and have spurred both the motor fuels and vehicle manufacturing industries into action. For the first time, all three U.S. auto manufacturers are offering alternative fuel vehicles to the motoring public. At the same time, a small but growing alternative fuels refueling infrastructure is beginning to develop across the country. Although the recent growth in alternative motor fuels use is impressive, their market niche is still being defined. Environmental regulations, a key driver behind alternative fuel use, is forcing both car makers and the petroleum industry to clean up their products. As a result, alternative fuels no longer have a lock on the clean air market and will have to compete with conventional vehicles in meeting stringent future vehicle emission standards. The development of cleaner burning gasoline powered vehicles has signaled a shift in the marketing of alternative fuels. While they will continue to play a major part in the clean vehicle market, alternative fuels are increasingly recognized as a means to reduce oil imports. This new role is clearly defined in the National Energy Policy Act of 1992. The Act identifies alternative fuels as a key strategy for reducing imports of foreign oil and mandates their use for federal and state fleets, while reserving the right to require private and municipal fleet use as well.

McCoy, G.A.; Kerstetter, J.; Lyons, J.K. [and others

1993-06-01T23:59:59.000Z

35

List of Refueling Stations Incentives | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolarList ofPassive Solar SpaceStations Incentives

36

HH22 Reformer, Fuel Cell Power Plant,Reformer, Fuel Cell Power Plant, & Vehicle Refueling System& Vehicle Refueling System  

E-Print Network [OSTI]

sufficient hydrogen demand develops. #12;4 Relevant DOE Program Objectives Reduce dependence on foreign oil Promote use of diverse, domestic energy resources ­ Natural gas reformation Develop and demonstrate on test fill tank, CNG/H2 ICE vehicles and H2 Fuel Cell vehicles. Fuel dispensing integrated with City

37

Refueling Behavior of Flexible Fuel Vehicle Drivers in the Federal Fleet  

SciTech Connect (OSTI)

Federal fleets are a frequent subject of legislative and executive efforts to lead a national transition to alternative fuels and advanced vehicle technologies. Section 701 of the Energy Policy Act of 2005 requires that all dual-fueled alternative fuel vehicles in the federal fleet be operated on alternative fuel 100% of the time when they have access to it. However, in Fiscal Year (FY) 2012, drivers of federal flex fuel vehicles (FFV) leased through the General Services Administration refueled with E85 24% of the time when it was available--falling well short of the mandate. The U.S. Department of Energy's National Renewable Energy Laboratory completed a 2-year Laboratory Directed Research and Development project to identify the factors that influence the refueling behavior of federal FFV drivers. The project began with two primary hypotheses. First, information scarcity increases the tendency to miss opportunities to purchase E85. Second, even with perfect information, there are limits to how far drivers will go out of their way to purchase E85. This paper discusses the results of the project, which included a June 2012 survey of federal fleet drivers and an empirical analysis of actual refueling behavior from FY 2009 to 2012. This research will aid in the design and implementation of intervention programs aimed at increasing alternative fuel use and reducing petroleum consumption.

Daley, R.; Nangle, J.; Boeckman, G.; Miller, M.

2014-05-01T23:59:59.000Z

38

Fact #832: August 4, 2014 Over Half of the Refueling Stations in the U.S. and Canada Sell Diesel Fuel- Dataset  

Broader source: Energy.gov [DOE]

Excel file with dataset for Fact #832: Over Half of the Refueling Stations in the U.S. and Canada Sell Diesel Fuel

39

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network [OSTI]

4-12: Hydrogen Cost Comparison for Electrolysis Station Withthe hydrogen costs from the HSCM for electrolysis stations

Weinert, Jonathan X.; Lipman, Timothy

2006-01-01T23:59:59.000Z

40

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network [OSTI]

e.g. co-locate with gasoline station, bus-yard, or officeintegrated into existing gasoline stations with 8 dispensersof a liquid H 2 and gasoline station layout. Figure 4-9:

Weinert, Jonathan X.; Lipman, Timothy

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicles refueling stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network [OSTI]

located at an existing gasoline station. One could use othere.g. co-locate with gasoline station, bus-yard, or officeequivalent to about 6% of gasoline stations in California 4.

Lipman, T E; Weinert, Jonathan X.

2006-01-01T23:59:59.000Z

42

An empirical analysis on the adoption of alternative fuel vehicles:The case of natural gas vehicles  

E-Print Network [OSTI]

579–594. IANGV, 1997. Natural Gas Vehicle Industry Positionmarket penetration of natural gas vehicles in Switzerland.of NGVs versus number of natural gas refueling stations in

Yeh, Sonia

2007-01-01T23:59:59.000Z

43

Community Energy: Analysis of Hydrogen Distributed Energy Systems with Photovoltaics for Load Leveling and Vehicle Refueling  

SciTech Connect (OSTI)

Energy storage could complement PV electricity generation at the community level. Because PV generation is intermittent, strategies must be implemented to integrate it into the electricity system. Hydrogen and fuel cell technologies offer possible PV integration strategies, including the community-level approaches analyzed in this report: (1) using hydrogen production, storage, and reconversion to electricity to level PV generation and grid loads (reconversion scenario); (2) using hydrogen production and storage to capture peak PV generation and refuel hydrogen fuel cell electric vehicles (FCEVs) (hydrogen fueling scenario); and (3) a comparison scenario using a battery system to store electricity for EV nighttime charging (electric charging scenario).

Steward, D.; Zuboy, J.

2014-10-01T23:59:59.000Z

44

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network [OSTI]

a Key Link to a Hydrogen Fuel Cell Vehicle Infrastructure? ”kg/day unit. hybrids or 20 hydrogen fuel cell vehicles (eachand Development of a PEM Fuel Cell, Hydrogen Reformer, and

Lipman, T E; Weinert, Jonathan X.

2006-01-01T23:59:59.000Z

45

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network [OSTI]

4-12: Hydrogen Cost Comparison for Electrolysis Station WithAnalysis: Electrolysis, 30 kg/day, grid Hydrogen Cost ($/kg)the hydrogen costs from the HSCM for electrolysis stations

Lipman, T E; Weinert, Jonathan X.

2006-01-01T23:59:59.000Z

46

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network [OSTI]

4: Energy Station Grid electricity Cogen Heat Exhaust (CO2)Recycled Reformate Grid electricity Cogen Heat Electricity

Weinert, Jonathan X.; Lipman, Timothy

2006-01-01T23:59:59.000Z

47

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network [OSTI]

vs. delivered hydrogen, compressor type, storage pressure).pump High-pressure hydrogen compressor Compressed hydrogenpipeline High-pressure hydrogen compressor Pipeline Station:

Weinert, Jonathan X.; Lipman, Timothy

2006-01-01T23:59:59.000Z

48

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network [OSTI]

station. H2Gen’s estimates for capital costs are also lowerestimates and show high variability (26%-117% of capital costs).capital costs of about $250,000. Existing hydrogen station cost analyses tend to under-estimate

Weinert, Jonathan X.; Lipman, Timothy

2006-01-01T23:59:59.000Z

49

Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility  

SciTech Connect (OSTI)

Air Products and Chemicals, Inc. has teamed with Plug Power, Inc. of Latham, NY, and the City of Las Vegas, NV, to develop, design, procure, install and operate an on-site hydrogen generation system, an alternative vehicle refueling system, and a stationary hydrogen fuel cell power plant, located in Las Vegas. The facility will become the benchmark for validating new natural gas-based hydrogen systems, PEM fuel cell power generation systems, and numerous new technologies for the safe and reliable delivery of hydrogen as a fuel to vehicles. Most important, this facility will serve as a demonstration of hydrogen as a safe and clean energy alternative. Las Vegas provides an excellent real-world performance and durability testing environment.

Edward F. Kiczek

2007-08-31T23:59:59.000Z

50

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network [OSTI]

The operating cost for the PEM Fuel Cell/Reformer energyForecasting the Costs of Automotive PEM Fuel Cells UsingCosts of Generating Power with Stationary and Motor Vehicle PEM Fuel Cell

Weinert, Jonathan X.; Lipman, Timothy

2006-01-01T23:59:59.000Z

51

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network [OSTI]

Installed Capital Figure 4-21: Cost Estimates for 1,000 kg/station. H2Gen’s estimates for capital costs are also lowerestimates and show high variability (26%-117% of capital costs).

Lipman, T E; Weinert, Jonathan X.

2006-01-01T23:59:59.000Z

52

Alveolar breath sampling and analysis to assess exposures to methyl tertiary butyl ether (MTBE) during motor vehicle refueling  

SciTech Connect (OSTI)

In this study we present a sampling and analytical methodology that can be used to assess consumers` exposures to methyl tertiary butyl ether (MTBE) that may result from routine vehicle refueling operations. The method is based on the collection of alveolar breath samples using evacuated one-liter stainless steel canisters and analysis using a gas chromatograph-mass spectrometer equipped with a patented `valveless` cryogenic preconcentrator. To demonstrate the utility of this approach, a series of breath samples was collected from two individuals (the person pumping the fuel and a nearby observer) immediately before and for 64 min after a vehicle was refueled with premium grade gasoline. Results demonstrate low levels of MTBE in both subjects` breaths before refueling, and levels that increased by a factor of 35 to 100 after the exposure. Breath elimination models fitted to the post exposure measurements indicate that the half-life of MTBE in the first physiological compartment was between 1.3 and 2.9 min. Analysis of the resulting models suggests that breath elimination of MTBE during the 64 min monitoring period was approximately 155 {mu}g for the refueling subject while it was only 30 {mu}g for the nearby observer. This analysis also shows that the post exposure breath elimination of other gasoline constituents was consistent with previously published observations. 20 refs., 3 figs., 4 tabs.

Lindstrom, A.B.; Pleil, J.D. [U.S. Environmental Protection Agency, Research Triangle Park, NC (United States)

1996-07-01T23:59:59.000Z

53

Status and Prospects of the Global Automotive Fuel Cell Industry and Plans for Deployment of Fuel Cell Vehicles and Hydrogen Refueling Infrastructure  

SciTech Connect (OSTI)

Automobile manufacturers leading the development of mass-market fuel cell vehicles (FCVs) were interviewed in Japan, Korea, Germany and the United States. There is general agreement that the performance of FCVs with respect to durability, cold start, packaging, acceleration, refueling time and range has progressed to the point where vehicles that could be brought to market in 2015 will satisfy customer expectations. However, cost and the lack of refueling infrastructure remain significant barriers. Costs have been dramatically reduced over the past decade, yet are still about twice what appears to be needed for sustainable market success. While all four countries have plans for the early deployment of hydrogen refueling infrastructure, the roles of government, industry and the public in creating a viable hydrogen refueling infrastructure remain unresolved. The existence of an adequate refueling infrastructure and supporting government policies are likely to be the critical factors that determine when and where hydrogen FCVs are brought to market.

Greene, David L [ORNL; Duleep, Gopal [HD Systems

2013-06-01T23:59:59.000Z

54

Vehicles and E85 Stations Needed to Achieve Ethanol Goals  

SciTech Connect (OSTI)

This paper presents an analysis of the numbers of stations and vehicles necessary to achieve future goals for sales of ethanol fuel (E85). The paper does not analyze issues related to the supply of ethanol which may turn out to be of even greater concern. A model of consumers decisions to purchase E85 versus gasoline based on prices, availability, and refueling frequency is derived and preliminary results for 2010, 2017 and 2030 consistent with the President s 2007 biofuels program goals are presented (1). A limited sensitivity analysis is carried out to indicate key uncertainties in the trade-off between the number of stations and fuels. The analysis indicates that to meet a 2017 goal of 26 billion gallons of E85 sold, on the order of 30% to 80% of all stations may need to offer E85, and that 125 to 200 million flexible fuel vehicles (FFVs) may need to be on the road, even if oil prices remain high. These conclusions are tentative for three reasons: (1) there is considerable uncertainty about key parameter values, such as the price elasticity of choice between E85 and gasoline, (2) the future prices of E85 and gasoline are uncertain; and (3) the method of analysis used is highly aggregated; it does not consider the potential benefits of regional strategies nor the possible existence of market segments predisposed to purchase E85. Nonetheless, the preliminary results indicate that the 2017 biofuels program goals are ambitious and will require a massive effort to produce FFVs and insure widespread availability of E85.

Greene, David L [ORNL

2008-01-01T23:59:59.000Z

55

E-Print Network 3.0 - airborne refueling demonstration Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Refueling Station Demonstration Projects Appendix B. List of Recent Patents Relevant to Small Scale Hydrogen... Demonstrations Increasingly, hydrogen refueling infrastructure...

56

Behavioral Response to Hydrogen Fuel Cell Vehicles and Refueling: Results of California Drive Clinics  

E-Print Network [OSTI]

vehicles powered by clean fuel technology. Participants werewith respect to clean vehicle technology. The post-clinic

Martin, Elliot W; Shaheen, Susan A; Lipman, T E; Lidicker, Jeffrey

2009-01-01T23:59:59.000Z

57

Analysis of Cost-Effective Off-Board Hydrogen Storage and Refueling Stations  

SciTech Connect (OSTI)

This report highlights design and component selection considerations for compressed gas hydrogen fueling stations operating at 5000 psig or 350 bar. The primary focus is on options for compression and storage – in terms of practical equipment options as well as various system configurations and how they influence delivery performance and station economics.

Ted Barnes; William Liss

2008-11-14T23:59:59.000Z

58

Competitive Charging Station Pricing for Plug-in Electric Vehicles  

E-Print Network [OSTI]

. To overcome this challenge, we develop a low-complexity algorithm that efficiently computes the pricingCompetitive Charging Station Pricing for Plug-in Electric Vehicles Wei Yuan, Member, IEEE, Jianwei considers the problem of charging station pricing and station selection of plug-in electric vehicles (PEVs

Huang, Jianwei

59

Electric Vehicle Charging Stations, Coming Soon to a City Near...  

Broader source: Energy.gov (indexed) [DOE]

to be available throughout the Orlando area next year. File photo Orlando Plugs into Electric Vehicle Charging Stations Assistant Secretary Patricia Hoffman test drives the...

60

Behavioral Response to Hydrogen Fuel Cell Vehicles and Refueling: Results of California Drive Clinics  

E-Print Network [OSTI]

on the attitude towards hydrogen fuel cell buses in the CUTEthe attitude towards hydrogen fuel cell buses in Stockholm.8680 BEHAVIORAL RESPONSE TO HYDROGEN FUEL CELL VEHICLES AND

Martin, Elliot W; Shaheen, Susan A; Lipman, T E; Lidicker, Jeffrey

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicles refueling stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

An Overview of Automotive Home and Neighborhood Refueling  

E-Print Network [OSTI]

vehicles : the case of compressed natural gas (CNG) vehicleshome refueling for compressed natural gas vehicles, batteryalso includes compressed natural gas (CNG) vehicles, battery

Li, Xuping; Ogden, Joan M.; Kurani, Kenneth S.

2009-01-01T23:59:59.000Z

62

Refuel Colorado  

Broader source: Energy.gov (indexed) [DOE]

Colorado Propane Gas Association, the West Slope CNG Collaborative, and the Colorado Hydrogen Coalition Colorado Energy Office | www.colorado.govenergy Refuel Colorado - Alt...

63

Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations...  

Office of Environmental Management (EM)

Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations This document establishes the California...

64

Plug-In Electric Vehicle Handbook for Public Charging Station Hosts (Brochure)  

SciTech Connect (OSTI)

This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, and considerations for station owners, property owners, and station hosts.

Not Available

2012-04-01T23:59:59.000Z

65

Turn of the century refueling: A review of innovations in early gasoline refueling methods and analogies for hydrogen  

E-Print Network [OSTI]

NJ. Koenig, R. , 1984. Gasoline alley: service stations area parametric analysis of US gasoline station networks. Inof innovations in early gasoline refueling methods and

Melaina, Marc W

2007-01-01T23:59:59.000Z

66

A Fuel-Cell Vehicle Test Station.  

E-Print Network [OSTI]

??Due to concerns about energy security, rising oil prices, and adverse effects of internal combustion engine vehicles on the environment, the automotive industry is quickly… (more)

Thorne, Michelle I

2008-01-01T23:59:59.000Z

67

Resilient design of recharging station networks for electric transportation vehicles  

SciTech Connect (OSTI)

As societies shift to 'greener' means of transportation using electricity-driven vehicles one critical challenge we face is the creation of a robust and resilient infrastructure of recharging stations. A particular issue here is the optimal location of service stations. In this work, we consider the placement of battery replacing service station in a city network for which the normal traffic flow is known. For such known traffic flow, the service stations are placed such that the expected performance is maximized without changing the traffic flow. This is done for different scenarios in which roads, road junctions and service stations can fail with a given probability. To account for such failure probabilities, the previously developed facility interception model is extended. Results show that service station failures have a minimal impact on the performance following robust placement while road and road junction failures have larger impacts which are not mitigated easily by robust placement.

Kris Villez; Akshya Gupta; Venkat Venkatasubramanian

2011-08-01T23:59:59.000Z

68

Behavioral Response to Hydrogen Fuel Cell Vehicles and Refueling: A Comparative Analysis of Short- and Long-Term Exposure  

E-Print Network [OSTI]

on the attitude towards hydrogen fuel cell buses in the CUTEBEHAVIORAL RESPONSE TO HYDROGEN FUEL CELL VEHICLES ANDBEHAVIORAL RESPONSE TO HYDROGEN FUEL CELL VEHICLES AND

Martin, Elliot; Shaheen, Susan; Lipman, Timothy; Lidicker, Jeffery

2008-01-01T23:59:59.000Z

69

Analysis of the Behavior of Electric Vehicle Charging Stations with Renewable Generations  

E-Print Network [OSTI]

Analysis of the Behavior of Electric Vehicle Charging Stations with Renewable Generations Woongsup between electric vehicle charging stations (EVCSs) with renewable electricity generation facilities (REGFs electricity generation [1]. Therefore, renewable power generation will play a significant role in smart grid

Wong, Vincent

70

Solar-Assisted Electric Vehicle Charging Station Interim Report  

SciTech Connect (OSTI)

Oak Ridge National Laboratory (ORNL) has been awarded $6.8 million in the Department of Energy (DOE) American Recovery and Reinvestment Act (ARRA) funds as part of an overall $114.8 million ECOtality grant with matching funds from regional partners to install 125 solar-assisted Electric Vehicle (EV) charging stations across Knoxville, Nashville, Chattanooga, and Memphis. Significant progress has been made toward completing the scope with the installation of 25 solar-assisted charging stations at ORNL; six stations at Electric Power Research Institute (EPRI); and 27 stations at Nissan's Smyrna and Franklin sites, with three more stations under construction at Nissan's new lithium-ion battery plant. Additionally, the procurement process for contracting the installation of 34 stations at Knoxville, the University of Tennessee Knoxville (UTK), and Nashville sites is underway with completion of installation scheduled for early 2012. Progress is also being made on finalizing sites and beginning installations of 30 stations in Nashville, Chattanooga, and Memphis by EPRI and Tennessee Valley Authority (TVA). The solar-assisted EV charging station project has made great strides in fiscal year 2011. A total of 58 solar-assisted EV parking spaces have been commissioned in East and Middle Tennessee, and progress on installing the remaining 67 spaces is well underway. The contract for the 34 stations planned for Knoxville, UTK, and Nashville should be underway in October with completion scheduled for the end of March 2012; the remaining three Nissan stations are under construction and scheduled to be complete in November; and the EPRI/TVA stations for Chattanooga, Vanderbilt, and Memphis are underway and should be complete by the end of March 2012. As additional Nissan LEAFs are being delivered, usage of the charging stations has increased substantially. The project is on course to complete all 125 solar-assisted EV charging stations in time to collect meaningful data by the end of government fiscal year 2012. Lessons learned from the sites completed thus far are being incorporated and are proving to be invaluable in completion of the remaining sites.

Lapsa, Melissa Voss [ORNL; Durfee, Norman [ORNL; Maxey, L Curt [ORNL; Overbey, Randall M [ORNL

2011-09-01T23:59:59.000Z

71

Webinar: Hydrogen Refueling Protocols  

Broader source: Energy.gov [DOE]

Video recording and text version of the webinar titled, Hydrogen Refueling Protocols, originally presented on February 22, 2013.

72

Estimation algorithm for autonomous aerial refueling using a vision based relative navigation system  

E-Print Network [OSTI]

A new impetus to develop autonomous aerial refueling has arisen out of the growing demand to expand the capabilities of unmanned aerial vehicles (UAVs). With autonomous aerial refueling, UAVs can retain the advantages of being small, inexpensive...

Bowers, Roshawn Elizabeth

2005-11-01T23:59:59.000Z

73

Refueling Stations | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosourceRausWyoming:ReevesInformationAl.,

74

An Analysis of Near-Term Hydrogen Vehicle Rollout Scenarios for Southern California  

E-Print Network [OSTI]

purification Waste stream Figure 12 Hydrogen refueling station employing a small-scalepurification Waste stream Figure B4 Hydrogen refueling station employing a small-scale

Nicholas, Michael A; Ogden, J

2010-01-01T23:59:59.000Z

75

E-Print Network 3.0 - automated aerial refueling Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Texas A&M University Collection: Engineering 10 Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility Summary: Research and...

76

Operating experience with a liquid-hydrogen fueled Buick and refueling system  

SciTech Connect (OSTI)

An investigation of liquid-hydrogen storage and refueling systems for vehicular applications was made in a recently completed project. The vehicle used in the project was a 1979 Buick Century sedan with a 3.8-L displacement turbocharged V6 engine and an automatic transmission. The vehicle had a fuel economy for driving in the high altitude Los Alamos area that was equivalent to 2.4 km/L of liquid hydrogen or 8.9 km/L of gasoline on an equivalent energy basis. About 22% less energy was required using hydrogen rather than gasoline to go a given distance based on the Environmental Protection Agency estimate of 7.2 km/L of gasoline for this vehicle. At the end of the project the engine had been operated for 138 h and the car driven 3633 km during the 17 months that the vehicle was operated on hydrogen . Two types of onboard liquid-hydrogen storage tanks were tested in the vehicle: the first was an aluminum Dewar with a liquid-hydrogen capacity of 110 L; the second was a Dewar with an aluminum outer vessel, two copper vapor-cooled thermal radiation shields, and a stainless steel inner vessel with a liquid-hydrogen capacity of 155 L. The Buick had an unrefueled range of about 274 km with the first liquid-hydrogen tank and about 362 km with the second. The Buick was fueled at least 65 times involving a minimum of 8.1 kL of liquid hydrogen using various liquid-hydrogen storage Dewars at Los Alamos and a semiautomatic refueling station. A refueling time of nine minutes was achieved, and liquid hydrogen losses during refueling were measured. The project has demonstrated that liquid-hydrogen storage onboard a vehicle, and its refueling, can be accomplished over an extended period without any major difficulties; nevertheless, appropriate testing is still needed to quantitatively address the question of safety for liquid-hydrogen storage onboard a vehicle.

Stewart, W.F.

1982-01-01T23:59:59.000Z

77

Assessing the viability of level III electric vehicle rapid-charging stations  

E-Print Network [OSTI]

This is an analysis of the feasibility of electric vehicle rapid-charging stations at power levels above 300 kW. Electric vehicle rapid-charging (reaching above 80% state-of-charge in less than 15 minutes) has been ...

Gogoana, Radu

2010-01-01T23:59:59.000Z

78

An empirical analysis on the adoption of alternative fuel vehicles:The case of natural gas vehicles  

E-Print Network [OSTI]

for conventional gasoline stations. These studies suggestto 194,984 and 168,020 gasoline stations in 1997 and 2003,stations and gasoline refueling stations. Greene (1998),

Yeh, Sonia

2007-01-01T23:59:59.000Z

79

IEEE Workshop on Applications of Computer Vision 3-4 December, 2002, Orlando FL Monocular, Vision Based, Autonomous Refueling System  

E-Print Network [OSTI]

Based, Autonomous Refueling System Aly Farag, Emir Dizdarevic, Ahmed Eid, and Allbert Lörincz of a vision based platform for automated refueling tasks. The platform is an autonomous docking system in principle, with the specific application­ refueling of vehicles. The system is based on monochromatic

Farag, Aly A.

80

Device to facilitate moving an electrical cable of an electric vehicle charging station and method of providing the same  

DOE Patents [OSTI]

Some embodiments include a device to facilitate moving an electrical cable of an electric vehicle charging station. Other embodiments of related systems and methods are also disclosed.

Karner, Donald B

2014-04-29T23:59:59.000Z

Note: This page contains sample records for the topic "vehicles refueling stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Electric Vehicle Performance at McMurdo Station (Antarctica) and Comparison with McMurdo Station Conventional Vehicles  

SciTech Connect (OSTI)

This report examines the performance of two electric vehicles (EVs) at McMurdo, Antarctica (McMurdo). The study examined the performance of two e-ride Industries EVs initially delivered to McMurdo on February 16, 2011, and compared their performance and fuel use with that of conventional vehicles that have a duty cycle similar to that of the EVs used at McMurdo.

Sears, T.; Lammert, M.; Colby, K.; Walter, R.

2014-09-01T23:59:59.000Z

82

Rapidly refuelable fuel cell  

DOE Patents [OSTI]

A rapidly refuelable dual cell of an electrochemical type is described wherein a single anode cooperates with two cathodes and wherein the anode has a fixed position and the cathodes are urged toward opposite faces of the anodes at constant and uniform force. The associated cathodes are automatically retractable to permit the consumed anode remains to be removed from the housing and a new anode inserted between the two cathodes.

Joy, R.W.

1982-09-20T23:59:59.000Z

83

Assessment of institutional barriers to the use of natural gas in automotive vehicle fleets  

SciTech Connect (OSTI)

Institutional barriers to the use of natural gas as a fuel for motor vehicle fleets were identified and assessed. Recommendations for barrier removal were then developed. The research technique was a combination of literature review and interviews of knowledgeable persons in government and industry, including fleet operators and marketers of natural gas vehicles and systems. Eight types of institutional barriers were identified and assessed. The most important were two safety-related barriers: (1) lack of a national standard for the safety design and certification of natural gas vehicles and refueling stations; and (2) excessively conservative or misapplied state and local regulations, including bridge and tunnel restrictions, restrictions on types of vehicles that may be fueled by natural gas, zoning regulations that prohibit operation of refueling stations, parking restrictions, application of LPG standards to LNG vehicles, and unintentionally unsafe vehicle or refueling station requirements. Other barriers addressed include: (3) need for clarification of EPA's tampering enforcement policy; (4) the US hydrocarbon standard; (5) uncertainty concerning state utility commission jurisdiction; (6) sale-for-resale prohibitions imposed by natural gas utility companies or state utility commissions; (7) uncertainty of the effects of conversions to natural gas on vehicle manufacturers warranties; and (8) need for a natural gas to gasoline-equivalent-units conversion factor for use in calculation of state road use taxes. Insurance on natural gas vehicles, and state emissions and anti-tampering regulations were also investigated as part of the research but were not found to be barriers.

Jablonski, J.; Lent, L.; Lawrence, M.; White, L.

1983-08-01T23:59:59.000Z

84

Reactor refueling containment system  

DOE Patents [OSTI]

A method of refueling a nuclear reactor is disclosed whereby the drive mechanism is disengaged and removed by activating a jacking mechanism that raises the closure head. The area between the barrier plate and closure head is exhausted through the closure head penetrations. The closure head, upper drive mechanism, and bellows seal are lifted away and transported to a safe area. The barrier plate acts as the primary boundary and each drive and control rod penetration has an elastomer seal preventing excessive tritium gases from escaping. The individual instrumentation plugs are disengaged allowing the corresponding fuel assembly to be sealed and replaced. 2 figs.

Gillett, J.E.; Meuschke, R.E.

1995-05-02T23:59:59.000Z

85

Reactor refueling containment system  

DOE Patents [OSTI]

A method of refueling a nuclear reactor whereby the drive mechanism is disengaged and removed by activating a jacking mechanism that raises the closure head. The area between the barrier plate and closure head is exhausted through the closure head penetrations. The closure head, upper drive mechanism, and bellows seal are lifted away and transported to a safe area. The barrier plate acts as the primary boundary and each drive and control rod penetration has an elastomer seal preventing excessive tritium gases from escaping. The individual instrumentation plugs are disengaged allowing the corresponding fuel assembly to be sealed and replaced.

Gillett, James E. (Greensburg, PA); Meuschke, Robert E. (Pittsburgh, PA)

1995-01-01T23:59:59.000Z

86

AHTR Refueling Systems and Process Description  

SciTech Connect (OSTI)

The Advanced High-Temperature Reactor (AHTR) is a design concept for a central station-type [1500 MW(e)] Fluoride salt–cooled High-temperature Reactor (FHR) that is currently undergoing development by Oak Ridge National Laboratory for the US. Department of Energy, Office of Nuclear Energy’s Advanced Reactor Concepts program. FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. The AHTR is approaching a preconceptual level of maturity. An initial integrated layout of its major systems, structures, and components (SSCs), and an initial, high-level sequence of operations necessary for constructing and operating the plant is nearing completion. An overview of the current status of the AHTR concept has been recently published [1], and a report providing a more detailed overview of the AHTR structures and mechanical systems is currently in preparation. This report documents the refueling components and processes envisioned at this early development phase. The report is limited to the refueling aspects of the AHTR and does not include overall reactor or power plant design information. The report, however, does include a description of the materials envisioned for the various components and the instrumentation necessary to control the refueling process. The report begins with an overview of the refueling strategy. Next a mechanical description of the AHTR fuel assemblies and core is provided. The reactor vessel upper assemblies are then described. Following this the refueling path structures and the refueling mechanisms and components are described. The sequence of operations necessary to fuel and defuel the reactor is then discussed. The report concludes with a discussion of the levels of maturity of the various SSCs to provide guidance for future technology developments. The conceptual design information presented in this report is very preliminary in nature. Significant uncertainty remains about several aspects of the process and even the radiation and mechanical performance of plate-type coated-particle fuel.

Varma, V.K.; Holcomb, D.E.; Bradley, E.C.; Zaharia, N.M.; Cooper, E.J.

2012-07-15T23:59:59.000Z

87

AHTR Refueling Systems and Process Description  

SciTech Connect (OSTI)

The Advanced High-Temperature Reactor (AHTR) is a design concept for a central station-type [1500 MW(e)] Fluoride salt-cooled High-temperature Reactor (FHR) that is currently undergoing development by Oak Ridge National Laboratory for the US. Department of Energy, Office of Nuclear Energy's Advanced Reactor Concepts program. FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. The AHTR is approaching a preconceptual level of maturity. An initial integrated layout of its major systems, structures, and components (SSCs), and an initial, high-level sequence of operations necessary for constructing and operating the plant is nearing completion. An overview of the current status of the AHTR concept has been recently published and a report providing a more detailed overview of the AHTR structures and mechanical systems is currently in preparation. This report documents the refueling components and processes envisioned at this early development phase. The report is limited to the refueling aspects of the AHTR and does not include overall reactor or power plant design information. The report, however, does include a description of the materials envisioned for the various components and the instrumentation necessary to control the refueling process. The report begins with an overview of the refueling strategy. Next a mechanical description of the AHTR fuel assemblies and core is provided. The reactor vessel upper assemblies are then described. Following this the refueling path structures and the refueling mechanisms and components are described. The sequence of operations necessary to fuel and defuel the reactor is then discussed. The report concludes with a discussion of the levels of maturity of the various SSCs to provide guidance for future technology developments. The conceptual design information presented in this report is very preliminary in nature. Significant uncertainty remains about several aspects of the process and even the radiation and mechanical performance of plate-type coated-particle fuel.

Varma, Venugopal Koikal [ORNL; Holcomb, David Eugene [ORNL; Bradley, Eric Craig [ORNL; Zaharia, Nathaniel M [ORNL; Cooper, Eliott J [ORNL

2012-07-01T23:59:59.000Z

88

E-Print Network 3.0 - air station north Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Refueling Station... . Irvine North ... Source: California Energy Commission Collection: Energy Storage, Conversion and Utilization 3 INTERNATIONAL JOURNAL OF CLIMATOLOGY, VOL....

89

Hydrogen refueling station costs in Shanghai  

E-Print Network [OSTI]

and vendors (e.g. Air Products and Chemicals, Inc. , Stuartin- cluding Chevron and Air Products and Chemicals, Inc. ,$/hr km $/liter with air products representative, February

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2007-01-01T23:59:59.000Z

90

Hydrogen refueling station costs in Shanghai  

E-Print Network [OSTI]

Elec Del Cali: Del Investment Cost Delivery Cost OperatingCost Feedstock Cost Investment Cost Delivery Cost Operatingcosts Annualized investment cost, 1000$/yr Total annualized

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2007-01-01T23:59:59.000Z

91

Hydrogen Refueling Station Costs in Shanghai  

E-Print Network [OSTI]

pieces of hardware: 1. Hydrogen production equipment (e.g.existing industrial hydrogen production capacity might alsotons/yr of existing hydrogen production and 3,600 tons/yr of

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2006-01-01T23:59:59.000Z

92

Hydrogen refueling station costs in Shanghai  

E-Print Network [OSTI]

pieces of hardware: 1. Hydrogen production equipment (e.g.when evaluating hydrogen production costs. Many analyses inrespect to size and hydrogen production method. These costs

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2007-01-01T23:59:59.000Z

93

Hydrogen Refueling Station Costs in Shanghai  

E-Print Network [OSTI]

High-pressure hydrogen compressor Compressed hydrogento hydrogen storage vessels and compressors. Feedstock Costvehicles 3. Compressor: compresses hydrogen gas to achieve

Weinert, Jonathan X.; Shaojun, Liu; Ogden, J; Jianxin, Ma

2006-01-01T23:59:59.000Z

94

Hydrogen refueling station costs in Shanghai  

E-Print Network [OSTI]

storing and transporting hydrogen. Golden, CO: NREL; 1998. [V. Survey of the economics of hydrogen technologies. Golden,liquid or gaseous form. Hydrogen can be produced from a va-

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2007-01-01T23:59:59.000Z

95

Hydrogen Refueling Station Costs in Shanghai  

E-Print Network [OSTI]

to hydrogen storage vessels and compressors. Feedstock CostHydrogen Production Equipment Purifier Storage System Compressor Dispenser Additional Equipment Installation Costshydrogen equipment costs. Meyers [2] provides an in depth analyses of reformer, compressor, and storage equipment costs.

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2006-01-01T23:59:59.000Z

96

Hydrogen refueling station costs in Shanghai  

E-Print Network [OSTI]

Hydrogen production equipment Puri?er Storage system Compressor Dispenser Additional equipment Installation costshydrogen storage vessels and compressors. 2.4.4. Feedstock costhydrogen equipment costs. Meyers [2] pro- vides an in depth analyses of reformer, compressor, and storage equipment costs.

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2007-01-01T23:59:59.000Z

97

Renewable Fuels and Lubricants (ReFUEL) Laboratory (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes the Renewable Fuels and Lubricants (ReFUEL) Laboratory at the U.S. Department of Energy National Renewable Energy Laboratory (NREL) is a state-of-the-art research and testing facility for advanced fuels and vehicles. Research and development aims to improve vehicle efficiency and overcome barriers to the increased use of renewable diesel and other nonpetroleum-based fuels, such as biodiesel and synthetic diesel derived from biomass. The ReFUEL Laboratory features a chassis dynamometer for vehicle performance and emissions research, two engine dynamometer test cells for advanced fuels research, and precise emissions analysis equipment. As a complement to these capabilities, detailed studies of fuel properties, with a focus on ignition quality, are performed at NREL's Fuel Chemistry Laboratory.

Not Available

2012-03-01T23:59:59.000Z

98

Hydrogen Vehicles and Refueling Infrastructure in India  

Broader source: Energy.gov (indexed) [DOE]

in taxis, three-wheelers etc Increase the number of buses to at least 10,000 Impact on air quality Particulate pollution stabilised PM10 at ITO Traffic Intersection (March...

99

Consumer Convenience and the Availability of Retail Stations as a Market Barrier for Alternative Fuel Vehicles: Preprint  

SciTech Connect (OSTI)

The availability of retail stations can be a significant barrier to the adoption of alternative fuel light-duty vehicles in household markets. This is especially the case during early market growth when retail stations are likely to be sparse and when vehicles are dedicated in the sense that they can only be fuelled with a new alternative fuel. For some bi-fuel vehicles, which can also fuel with conventional gasoline or diesel, limited availability will not necessarily limit vehicle sales but can limit fuel use. The impact of limited availability on vehicle purchase decisions is largely a function of geographic coverage and consumer perception. In this paper we review previous attempts to quantify the value of availability and present results from two studies that rely upon distinct methodologies. The first study relies upon stated preference data from a discrete choice survey and the second relies upon a station clustering algorithm and a rational actor value of time framework. Results from the two studies provide an estimate of the discrepancy between stated preference cost penalties and a lower bound on potential revealed cost penalties.

Melaina, M.; Bremson, J.; Solo, K.

2013-01-01T23:59:59.000Z

100

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

for the hydrogen refueling station. Compressor cost: inputcost) Compressor power requirement: input data 288.80 Initial temperature of hydrogen (Compressor cost per unit of output ($/hp/million standard ft [SCF] of hydrogen/

Delucchi, Mark

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicles refueling stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

U.S. Shared-Use Vehicle Survey Findings on Carsharing and Station Car Growth  

E-Print Network [OSTI]

auto insurance for nonprofit car- sharing organizations. Theuse vehicle model. Car- sharing typically aims to assess

Shaheen, Susan

2004-01-01T23:59:59.000Z

102

Hydrogen as a fuel for fuel cell vehicles: A technical and economic comparison  

SciTech Connect (OSTI)

All fuel cells currently being developed for near term use in vehicles require hydrogen as a fuel. Hydrogen can be stored directly or produced onboard the vehicle by reforming methanol, ethanol or hydrocarbon fuels derived from crude oil (e.g., Diesel, gasoline or middle distillates). The vehicle design is simpler with direct hydrogen storage, but requires developing a more complex refueling infrastructure. In this paper, the authors compare three leading options for fuel storage onboard fuel cell vehicles: compressed gas hydrogen storage; onboard steam reforming of methanol; onboard partial oxidation (POX) of hydrocarbon fuels derived from crude oil. Equilibrium, kinetic and heat integrated system (ASPEN) models have been developed to estimate the performance of onboard steam reforming and POX fuel processors. These results have been incorporated into a fuel cell vehicle model, allowing us to compare the vehicle performance, fuel economy, weight, and cost for various fuel storage choices and driving cycles. A range of technical and economic parameters were considered. The infrastructure requirements are also compared for gaseous hydrogen, methanol and hydrocarbon fuels from crude oil, including the added costs of fuel production, storage, distribution and refueling stations. Considering both vehicle and infrastructure issues, the authors compare hydrogen to other fuel cell vehicle fuels. Technical and economic goals for fuel cell vehicle and hydrogen technologies are discussed. Potential roles for hydrogen in the commercialization of fuel cell vehicles are sketched.

Ogden, J.; Steinbugler, M.; Kreutz, T. [Princeton Univ., NJ (United States). Center for Energy and Environmental Studies

1997-12-31T23:59:59.000Z

103

Entering a New Stage of Learning from the U.S. Fuel Cell Electric Vehicle Demonstration Project: Preprint  

SciTech Connect (OSTI)

The National Fuel Cell Electric Vehicle Learning Demonstration is a U.S. Department of Energy (DOE) project that started in 2004. The purpose of this project is to conduct an integrated field validation that simultaneously examines the performance of fuel cell vehicles and the supporting hydrogen infrastructure. The DOE's National Renewable Energy Laboratory (NREL) has now analyzed data from over five years of the seven-year project. During this time, over 144 fuel cell electric vehicles have been deployed, and 23 project refueling stations were placed in use.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Garbak, J.

2010-10-01T23:59:59.000Z

104

Economic Analysis of Hydrogen Energy Station Concepts: Are "H 2E-Stations" a Key Link to a Hydrogen Fuel Cell Vehicle Infrastructure?  

E-Print Network [OSTI]

in the analysis of hydrogen energy stations, additionalattractiveness of the hydrogen energy station scheme in bothECONOMIC ANALYSIS OF HYDROGEN ENERGY STATION CONCEPTS: ARE '

Lipman, Timothy E.; Edwards, Jennifer L.; Kammen, Daniel M.

2002-01-01T23:59:59.000Z

105

Control method for high-pressure hydrogen vehicle fueling station dispensers  

DOE Patents [OSTI]

A method for quick filling a vehicle hydrogen storage vessel with hydrogen, the key component of which is an algorithm used to control the fill process, which interacts with the hydrogen dispensing apparatus to determine the vehicle hydrogen storage vessel capacity.

Kountz, Kenneth John; Kriha, Kenneth Robert; Liss, William E.

2006-06-13T23:59:59.000Z

106

Hydrogen and Hydrogen/Natural Gas Station and Vehicle Operations - 2006 Summary Report  

SciTech Connect (OSTI)

This report is a summary of the operations and testing of internal combustion engine vehicles that were fueled with 100% hydrogen and various blends of hydrogen and compressed natural gas (HCNG). It summarizes the operations of the Arizona Public Service Alternative Fuel Pilot Plant, which produces, compresses, and dispenses hydrogen fuel. Other testing activities, such as the destructive testing of a CNG storage cylinder that was used for HCNG storage, are also discussed. This report highlights some of the latest technology developments in the use of 100% hydrogen fuels in internal combustion engine vehicles. Reports are referenced and WWW locations noted as a guide for the reader that desires more detailed information. These activities are conducted by Arizona Public Service, Electric Transportation Applications, the Idaho National Laboratory, and the U.S. Department of Energy’s Advanced Vehicle Testing Activity.

Francfort; Donald Karner; Roberta Brayer

2006-09-01T23:59:59.000Z

107

Baseline and verification tests of the electric vehicle associates' current fare station wagon. Final test report, March 27, 1980-November 6, 1981  

SciTech Connect (OSTI)

The EVA Current Fare Wagon was manufactured by Electric Vehicle Associates, Incorporated (EVA) of Cleveland, Ohio. It is now available from Lectra Motors Corp. of Las Vegas, Nevada. The vehicle was tested under the direction of MERADCOM from 27 March 1980 to 6 November 1981. The tests are part of a Department of Energy project to assess advances in electric vehicle design. This report presents the performance test results on the EVA Current Fare Wagon. The EVA Current Fare Wagon is a 1980 Ford Fairmont station wagon which has been converted to an electric vehicle. The propulsion system is made up of a Cableform controller, a series-wound 30-hp Reliance Electric Motor, and 22 6-V lead-acid batteries. The Current Fare Wagon is also equipped with regenerative braking. Further details of the vehicle are given in the Vehicle Summary Data Sheet, Appendix A. The results of this testing are given in Table 1.

Dowgiallo, E.J. Jr.; Chapman, R.D.

1983-01-01T23:59:59.000Z

108

Hydrogen-Enhanced Natural Gas Vehicle Program  

SciTech Connect (OSTI)

The project objective is to demonstrate the viability of HCNG fuel (30 to 50% hydrogen by volume and the remainder natural gas) to reduce emissions from light-duty on-road vehicles with no loss in performance or efficiency. The City of Las Vegas has an interest in alternative fuels and already has an existing hydrogen refueling station. Collier Technologies Inc (CT) supplied the latest design retrofit kits capable of converting nine compressed natural gas (CNG) fueled, light-duty vehicles powered by the Ford 5.4L Triton engine. CT installed the kits on the first two vehicles in Las Vegas, trained personnel at the City of Las Vegas (the City) to perform the additional seven retrofits, and developed materials for allowing other entities to perform these retrofits as well. These vehicles were used in normal service by the City while driver impressions, reliability, fuel efficiency and emissions were documented for a minimum of one year after conversion. This project has shown the efficacy of operating vehicles originally designed to operate on compressed natural gas with HCNG fuel incorporating large quantities of exhaust gas recirculation (EGR). There were no safety issues experienced with these vehicles. The only maintenance issue in the project was some rough idling due to problems with the EGR valve and piping parts. Once the rough idling was corrected no further maintenance issues with these vehicles were experienced. Fuel economy data showed no significant changes after conversion even with the added power provided by the superchargers that were part of the conversions. Driver feedback for the conversions was very favorable. The additional power provided by the HCNG vehicles was greatly appreciated, especially in traffic. The drivability of the HCNG vehicles was considered to be superior by the drivers. Most of the converted vehicles showed zero oxides of nitrogen throughout the life of the project using the State of Nevada emissions station.

Hyde, Dan; Collier, Kirk

2009-01-22T23:59:59.000Z

109

Effect of propane-air on NGVs and vehicle fueling stations. Topical report, January 1-October 1, 1993  

SciTech Connect (OSTI)

Propane-air (P/A) peakshaving is an important element of peak-load management for some U.S. gas utilities. P/A is used as a supplemental energy medium with natural gas and has been shown to operate satisfactorily in most natural gas applications. The propane levels injected are compatible with the pressures (under 200 psig) and temperatures (over 40 F) found in utility distribution networks. However, P/A can create problems for natural gas vehicles (NGVs) operating on compressed gas as well as NGV fueling stations. This report contains information on P/A peakshaving and its compatibility with NGVs by documenting condensation impacts at nine conditions--i.e., three propane levels and three temperatures. These data portray the depressurization of a vehicle tank, an area selected because it illustrates NGV operation and can discriminate between acceptable and potentially non-acceptable operating points. These analyses show, not surprisingly, a correlation exists between propane level, ambient temperature, and condensation.

Liss, W.E.; Moulton, D.S.

1994-06-01T23:59:59.000Z

110

Fact #795: September 2, 2013 Electric Vehicle Charging Stations by State |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 20112:ofElectric Vehicle PurchasesFuel

111

Plug-In Electric Vehicle Fast Charge Station Operational Analysis with Integrated Renewables: Preprint  

SciTech Connect (OSTI)

The growing, though still nascent, plug-in electric vehicle (PEV) market currently operates primarily via level 1 and level 2 charging in the United States. Fast chargers are still a rarity, but offer a confidence boost to oppose 'range anxiety' in consumers making the transition from conventional vehicles to PEVs. Because relatively no real-world usage of fast chargers at scale exists yet, the National Renewable Energy Laboratory developed a simulation to help assess fast charging needs based on real-world travel data. This study documents the data, methods, and results of the simulation run for multiple scenarios, varying fleet sizes, and the number of charger ports. The grid impact of this usage is further quantified to assess the opportunity for integration of renewables; specifically, a high frequency of fast charging is found to be in demand during the late afternoons and evenings coinciding with grid peak periods. Proper integration of a solar array and stationary battery thus helps ease the load and reduces the need for new generator construction to meet the demand of a future PEV market.

Simpson, M.; Markel, T.

2012-08-01T23:59:59.000Z

112

EFFICIENCY AND SCALING OF CURRENT DRIVE AND REFUELLING  

E-Print Network [OSTI]

EFFICIENCY AND SCALING OF CURRENT DRIVE AND REFUELLING BY SPHEROMAK INJEXTIQN INTO A TOKAMAK M ABSTRACT. The first measurements of current drive (refluxing) and refuelling by spheromak injection injection, and refuelling is attributed to the rapid incorporation of the dense spheromak plasma

Brown, Michael R.

113

Refueling machine with relative positioning capability  

DOE Patents [OSTI]

A refueling machine is disclosed having relative positioning capability for refueling a nuclear reactor. The refueling machine includes a pair of articulated arms mounted on a refueling bridge. Each arm supports a respective telescoping mast. Each telescoping mast is designed to flex laterally in response to application of a lateral thrust on the end of the mast. A pendant mounted on the end of the mast carries an air-actuated grapple, television cameras, ultrasonic transducers and waterjet thrusters. The ultrasonic transducers are used to detect the gross position of the grapple relative to the bail of a nuclear fuel assembly in the fuel core. The television cameras acquire an image of the bail which is compared to a pre-stored image in computer memory. The pendant can be rotated until the television image and the pre-stored image match within a predetermined tolerance. Similarly, the waterjet thrusters can be used to apply lateral thrust to the end of the flexible mast to place the grapple in a fine position relative to the bail as a function of the discrepancy between the television and pre-stored images. 11 figs.

Challberg, R.C.; Jones, C.R.

1998-12-15T23:59:59.000Z

114

Pdc - The Worldwide Leader in Hydrogen Refueling Station Compression |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSalesOE0000652Grow Your EnergyTechnology toPaul M.

115

November 10, 2004: First hydrogen refueling station opens in Washington,  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment of Energy Advanced1, 2014 EIS-0474: EPADepartmentGökhanDC. |

116

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

challenges facing hydrogen storage technologies, refuelinguncertainties surrounding hydrogen storage, fuel-cell-system1) vehicle range/hydrogen storage and 2) home refueling. 1:

Williams, Brett D

2010-01-01T23:59:59.000Z

117

An Overview of Automotive Home and Neighborhood Refueling  

E-Print Network [OSTI]

would be some existing bio-diesel co- ops, where a group ofwaste vegetable oil into bio-diesel. Neighborhood refueling

Li, Xuping; Ogden, Joan M.; Kurani, Kenneth S.

2009-01-01T23:59:59.000Z

118

Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank  

DOE Patents [OSTI]

The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps.

Corletti, Michael M. (New Kensington, PA); Lau, Louis K. (Monroeville, PA); Schulz, Terry L. (Murrysville Boro, PA)

1993-01-01T23:59:59.000Z

119

Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank  

DOE Patents [OSTI]

The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps. 1 figures.

Corletti, M.M.; Lau, L.K.; Schulz, T.L.

1993-12-14T23:59:59.000Z

120

Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergy DataRemediated |Reducing LEDEISA 2007

Note: This page contains sample records for the topic "vehicles refueling stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes OfficeTexas |4 U.S.1:for Hydrogen |

122

Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes OfficeTexas |4 U.S.1:for Hydrogen |Hydrogen |

123

Technical Analysis of the Hydrogen Energy Station Concept, Phase I and Phase II  

SciTech Connect (OSTI)

Phase I Due to the growing interest in establishing a domestic hydrogen infrastructure, several hydrogen fueling stations already have been established around the country as demonstration units. While these stations help build familiarity with hydrogen fuel in their respective communities, hydrogen vehicles are still several years from mass production. This limited number of hydrogen vehicles translates to a limited demand for hydrogen fuel, a significant hurdle for the near-term establishment of commercially viable hydrogen fueling stations. By incorporating a fuel cell and cogeneration system with a hydrogen fueling station, the resulting energy station can compensate for low hydrogen demand by providing both hydrogen dispensing and combined heat and power (CHP) generation. The electrical power generated by the energy station can be fed back into the power grid or a nearby facility, which in turn helps offset station costs. Hydrogen production capacity not used by vehicles can be used to support building heat and power loads. In this way, an energy station can experience greater station utility while more rapidly recovering capital costs, providing an increased market potential relative to a hydrogen fueling station. At an energy station, hydrogen is generated on-site. Part of the hydrogen is used for vehicle refueling and part of the hydrogen is consumed by a fuel cell. As the fuel cell generates electricity and sends it to the power grid, excess heat is reclaimed through a cogeneration system for use in a nearby facility. Both the electrical generation and heat reclamation serve to offset the cost of purchasing the equivalent amount of energy for nearby facilities and the energy station itself. This two-phase project assessed the costs and feasibility of developing a hydrogen vehicle fueling station in conjunction with electricity and cogenerative heat generation for nearby Federal buildings. In order to determine which system configurations and operational patterns would be most viable for an energy station, TIAX developed several criteria for selecting a representative set of technology configurations. TIAX applied these criteria to all possible technology configurations to determine an optimized set for further analysis, as shown in Table ES-1. This analysis also considered potential energy station operational scenarios and their impact upon hydrogen and power production. For example, an energy station with a 50-kWe reformer could generate enough hydrogen to serve up to 12 vehicles/day (at 5 kg/fill) or generate up to 1,200 kWh/day, as shown in Figure ES-1. Buildings that would be well suited for an energy station would utilize both the thermal and electrical output of the station. Optimizing the generation and utilization of thermal energy, hydrogen, and electricity requires a detailed look at the energy transfer within the energy station and the transfer between the station and nearby facilities. TIAX selected the Baseline configuration given in Table ES-1 for an initial analysis of the energy and mass transfer expected from an operating energy station. Phase II The purpose of this technical analysis was to analyze the development of a hydrogen-dispensing infrastructure for transportation applications through the installation of a 50-75 kW stationary fuel cell-based energy station at federal building sites. The various scenarios, costs, designs and impacts of such a station were quantified for a hypothetical cost-shared program that utilizes a natural gas reformer to provide hydrogen fuel for both the stack(s) and a limited number of fuel cell powered vehicles, with the possibility of using cogeneration to support the building heat load.

TIAX, LLC

2005-05-04T23:59:59.000Z

124

New York State-wide Alternative Fuel Vehicle Program for Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

New York State-wide Alternative Fuel Vehicle Program for Vehicles and Fueling Stations New York State-wide Alternative Fuel Vehicle Program for Vehicles and Fueling Stations 2010...

125

Natural Gas as a Fuel Option for Heavy Vehicles  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), Office of Heavy Vehicle Technologies (OHVT) is promoting the use of natural gas as a fuel option in the transportation energy sector through its natural gas vehicle program [1]. The goal of this program is to eliminate the technical and cost barriers associated with displacing imported petroleum. This is achieved by supporting research and development in technologies that reduce manufacturing costs, reduce emissions, and improve vehicle performance and consumer acceptance for natural gas fueled vehicles. In collaboration with Brookhaven National Laboratory, projects are currently being pursued in (1) liquefied natural gas production from unconventional sources, (2) onboard natural gas storage (adsorbent, compressed, and liquefied), (3) natural gas delivery systems for both onboard the vehicle and the refueling station, and (4) regional and enduse strategies. This paper will provide an overview of these projects highlighting their achievements and current status. In addition, it will discuss how the individual technologies developed are being integrated into an overall program strategic plan.

James E. Wegrzyn; Wai Lin Litzke; Michael Gurevich

1999-04-26T23:59:59.000Z

126

Hydrogen Refueling Protocols Webinar (Text Version) | Department...  

Broader source: Energy.gov (indexed) [DOE]

of fuel cell vehicles. Prior to this, Jesse worked at automakers in both the U.S. and Germany with testing and systems integration responsibilities ranging from conventional...

127

Laboratory to change vehicle traffic-screening regimen at vehicle...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Changes to vehicle traffic-screening Laboratory to change vehicle traffic-screening regimen at vehicle inspection station Lanes two through five will be open 24 hours a day and...

128

Minimizing or eliminating refueling of nuclear reactor  

DOE Patents [OSTI]

Demand for refueling of a liquid metal fast nuclear reactor having a life of 30 years is eliminated or reduced to intervals of at least 10 years by operating the reactor at a low linear-power density, typically 2.5 kw/ft of fuel rod, rather than 7.5 or 15 kw/ft, which is the prior art practice. So that power of the same magnitude as for prior art reactors is produced, the volume of the core is increased. In addition, the height of the core and it diameter are dimensioned so that the ratio of the height to the diameter approximates 1 to the extent practicable considering the requirement of control and that the pressure drop in the coolant shall not be excessive. The surface area of a cylinder of given volume is a minimum if the ratio of the height to the diameter is 1. By minimizing the surface area, the leakage of neutrons is reduced. By reducing the linear-power density, increasing core volume, reducing fissile enrichment and optimizing core geometry, internal-core breeding of fissionable fuel is substantially enhanced. As a result, core operational life, limited by control worth requirements and fuel burnup capability, is extended up to 30 years of continuous power operation.

Doncals, Richard A. (Washington, PA); Paik, Nam-Chin (Pittsburgh, PA); Andre, Sandra V. (Hempfield Township, Westmoreland County, PA); Porter, Charles A. (Rostraver Township, Westmoreland County, PA); Rathbun, Roy W. (Greensburg, PA); Schwallie, Ambrose L. (Greensburg, PA); Petras, Diane S. (Penn Township, Westmoreland County, PA)

1989-01-01T23:59:59.000Z

129

Connecting Transitions in Galaxy Properties to Refueling  

E-Print Network [OSTI]

We relate transitions in galaxy structure and gas content to refueling, here defined to include both the external gas accretion and the internal gas processing needed to renew reservoirs for star formation. We analyze two z=0 data sets: a high-quality ~200-galaxy sample (the Nearby Field Galaxy Survey, data release herein) and a volume-limited ~3000-galaxy sample with reprocessed archival data. Both reach down to baryonic masses ~10^9Msun and span void-to-cluster environments. Two mass-dependent transitions are evident: (i) below the "gas-richness threshold" scale (V~125km/s), gas-dominated quasi-bulgeless Sd--Im galaxies become numerically dominant, while (ii) above the "bimodality" scale (V~200km/s), gas-starved E/S0s become the norm. Notwithstanding these transitions, galaxy mass (or V as its proxy) is a poor predictor of gas-to-stellar mass ratio M_gas/M_*. Instead, M_gas/M_* correlates well with the ratio of a galaxy's stellar mass formed in the last Gyr to its preexisting stellar mass, such that the two...

Kannappan, Sheila J; Eckert, Kathleen D; Moffett, Amanda J; Wei, Lisa H; Pisano, D J; Baker, Andrew J; Vogel, Stuart N; Fabricant, Daniel G; Laine, Seppo; Norris, Mark A; Jogee, Shardha; Lepore, Natasha; Hough, Loren E; Weinberg-Wolf, Jennifer

2013-01-01T23:59:59.000Z

130

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network [OSTI]

DOE Hydrogen Program Review, Air Products and Chemicals Inc.data and information. Air Products and Chemicals BOC BP Calstations and vendors (e.g. Air Products, Stuart, H2Gen). All

Weinert, Jonathan X.; Lipman, Timothy

2006-01-01T23:59:59.000Z

131

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network [OSTI]

control valves in the storage system lines, and ensure theSize Cost vs. Size for Storage System Size (kg) PV=100 PV=Equipment Purifier Storage System Compressor Dispenser

Lipman, T E; Weinert, Jonathan X.

2006-01-01T23:59:59.000Z

132

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network [OSTI]

a fuel cell or hydrogen combustion engine “gen-set. ” ByCell H 2 = hydrogen ICE = internal-combustion engine kg =

Lipman, T E; Weinert, Jonathan X.

2006-01-01T23:59:59.000Z

133

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network [OSTI]

pieces of hardware: 1. Hydrogen production equipment (e.g.Hydrogen Production..when evaluating hydrogen production costs and sales prices.

Lipman, T E; Weinert, Jonathan X.

2006-01-01T23:59:59.000Z

134

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network [OSTI]

Hydrogen Production .pieces of hardware: 1. Hydrogen production equipment (e.g.when evaluating hydrogen production costs and sales prices.

Weinert, Jonathan X.; Lipman, Timothy

2006-01-01T23:59:59.000Z

135

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network [OSTI]

hydrogen storage Hydrogen pipeline Gas meter Compressedbuilt near an existing hydrogen pipeline have the advantagetruck delivery. A hydrogen pipeline already exists between

Lipman, T E; Weinert, Jonathan X.

2006-01-01T23:59:59.000Z

136

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network [OSTI]

hydrogen dispenser Hydrogen pipeline High-pressure hydrogenbuilt near an existing hydrogen pipeline have the advantagetruck delivery. A hydrogen pipeline already exists between

Weinert, Jonathan X.; Lipman, Timothy

2006-01-01T23:59:59.000Z

137

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network [OSTI]

Fuel Cell_PAFC Fuel Cell_PEM Cost ($/kW) Primary Author YearForecasting the Costs of Automotive PEM Fuel Cells UsingThe operating cost for the PEM Fuel Cell/Reformer energy

Lipman, T E; Weinert, Jonathan X.

2006-01-01T23:59:59.000Z

138

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network [OSTI]

hydrogen dispenser Reverse osmosis and deionizer waterAlkaline Electrolyzer Reverse osmosis and deionizer water

Lipman, T E; Weinert, Jonathan X.

2006-01-01T23:59:59.000Z

139

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network [OSTI]

hydrogen dispenser Water Reverse osmosis and deionizer waterAlkaline Electrolyzer Reverse osmosis and deionizer water

Weinert, Jonathan X.; Lipman, Timothy

2006-01-01T23:59:59.000Z

140

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network [OSTI]

MCFC Fuel Cell_MCFC Fuel Cell_PAFC Fuel Cell_PEM Fuel Cell_PEM Fuel Cell_PEM Fuel Cell_PEM Fuel Cell_PEM Fuel Cell_PEM Fuel Cell_PEM

Lipman, T E; Weinert, Jonathan X.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicles refueling stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network [OSTI]

of Reciprocating Hydrogen Compressor Costs: (Industry)Summary of Diaphragm Hydrogen Compressor Costs (Industry)vs. delivered hydrogen, compressor type, storage pressure).

Lipman, T E; Weinert, Jonathan X.

2006-01-01T23:59:59.000Z

142

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network [OSTI]

of Reciprocating Hydrogen Compressor Costs: (Industry)of Diaphragm Hydrogen Compressor Costs (Industry) Capacity (kWh/kg includes compressor) Capital Costs Hydrogen Equipment

Lipman, T E; Weinert, Jonathan X.

2006-01-01T23:59:59.000Z

143

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network [OSTI]

3-7: Booster Compressor Costs 3.5 Hydrogen PurificationkWh/kg includes compressor) Capital Costs Hydrogen EquipmentHydrogen Equipment Purifier Storage System Compressor Dispenser Additional Equipment Installation Costs

Weinert, Jonathan X.; Lipman, Timothy

2006-01-01T23:59:59.000Z

144

Refueling Liquid-Salt-Cooled Very High-Temperature Reactors  

SciTech Connect (OSTI)

The liquid-salt-cooled very high-temperature reactor (LS-VHTR), also called the Advanced High-Temperature Reactor (AHTR), is a new reactor concept that combines in a novel way four established technologies: (1) coated-particle graphite-matrix nuclear fuels, (2) Brayton power cycles, (3) passive safety systems and plant designs previously developed for liquid-metal-cooled fast reactors, and (4) low-pressure liquid-salt coolants. Depending upon goals, the peak coolant operating temperatures are between 700 and 1000 deg. C, with reactor outputs between 2400 and 4000 MW(t). Several fluoride salt coolants that are being evaluated have melting points between 350 and 500 deg. C, values that imply minimum refueling temperatures between 400 and 550 deg. C. At operating conditions, the liquid salts are transparent and have physical properties similar to those of water. A series of refueling studies have been initiated to (1) confirm the viability of refueling, (2) define methods for safe rapid refueling, and (3) aid the selection of the preferred AHTR design. Three reactor cores with different fuel element designs (prismatic, pebble bed, and pin-type fuel assembly) are being evaluated. Each is a liquid-salt-cooled variant of a graphite-moderated high-temperature reactor. The refueling studies examined applicable refueling experience from high-temperature reactors (similar fuel element designs) and sodium-cooled fast reactors (similar plant design with liquid coolant, high temperatures, and low pressures). The findings indicate that refueling is viable, and several approaches have been identified. The study results are described in this paper. (authors)

Forsberg, Charles W. [Oak Ridge National Laboratory, P.O. Box 2008 Oak Ridge, TN 37831 (United States); Peterson, Per F. [Nuclear Engineering Department, University of California at Berkeley, 6124a Etcheverry Hall, Berkeley, CA 94720 (United States); Cahalan, James E. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Enneking, Jeffrey A. [Areva NP (United States); Phil MacDonald [Consultant, Cedar Hill, TX (United States)

2006-07-01T23:59:59.000Z

145

Fact #790: July 29, 2013 States Beginning to Tax Electric Vehicles...  

Broader source: Energy.gov (indexed) [DOE]

the pump from the sale of motor fuels. Because electric vehicles (EVs) do not refuel at pumps that collect state and Federal highway taxes, they do not contribute to the upkeep of...

146

Battery Ownership Model: A Tool for Evaluating the Economics of Electrified Vehicles and Related Infrastructure; Preprint  

SciTech Connect (OSTI)

Electric vehicles could significantly reduce greenhouse gas (GHG) emissions and dependence on imported petroleum. However, for mass adoption, EV costs have historically been too high to be competitive with conventional vehicle options due to the high price of batteries, long refuel time, and a lack of charging infrastructure. A number of different technologies and business strategies have been proposed to address some of these cost and utility issues: battery leasing, battery fast-charging stations, battery swap stations, deployment of charge points for opportunity charging, etc. In order to investigate these approaches and compare their merits on a consistent basis, the National Renewable Energy Laboratory (NREL) has developed a new techno-economic model. The model includes nine modules to examine the levelized cost per mile for various types of powertrain and business strategies. The various input parameters such as vehicle type, battery, gasoline, and electricity prices; battery cycle life; driving profile; and infrastructure costs can be varied. In this paper, we discuss the capabilities of the model; describe key modules; give examples of how various assumptions, powertrain configurations, and business strategies impact the cost to the end user; and show the vehicle's levelized cost per mile sensitivity to seven major operational parameters.

O'Keefe, M.; Brooker, A.; Johnson, C.; Mendelsohn, M.; Neubauer, J.; Pesaran, A.

2011-01-01T23:59:59.000Z

147

Moving toward a commercial market for hydrogen fuel cell vehicles...  

Energy Savers [EERE]

Moving toward a commercial market for hydrogen fuel cell vehicles Moving toward a commercial market for hydrogen fuel cell vehicles Fuel cell vehicles and fueling stations...

148

Testing of a refuelable zinc/air bus battery  

SciTech Connect (OSTI)

We report tests of a refuelable zinc/air battery of modular, bipolar-cell design, intended for fleet electric busses and vans. The stack consists of twelve 250-cm{sup 2} cells built of two units: (1) a copper-clad glass-reinforced epoxy board supporting anode and cathode current collectors, and (2) polymer frame providing for air- and electrolyte distribution and zinc fuel storage. The stack was refueled in 4 min. by a hydraulic transfer of zinc particles entrained in solution flow.

Cooper, J.F.; Fleming, D.; Koopman, R.; Hargrove, D.; Maimoni, A.; Peterman, K.

1995-02-22T23:59:59.000Z

149

Advanced Vehicle Technology Analysis and Evaluation Team  

E-Print Network [OSTI]

Set ­ Models · Conventional, hybrid and electric vehicles · Fuel consumption and performance Testing · Advanced Powertrain Research Facility · ReFuel Facility Fleet Testing · Industry/Government LabFuelReFuel FacilityFacility Fleet TestingFleet Testing ·· Industry/GovernmentIndustry/Government ModelModel Validation

150

An Overview of Automotive Home and Neighborhood Refueling  

E-Print Network [OSTI]

early development of the gasoline station network is thatbefore large, public gasoline stations became dominant.Because large, public gasoline stations have been the

Li, Xuping; Ogden, Joan M.; Kurani, Kenneth S.

2009-01-01T23:59:59.000Z

151

Turn of the century refueling: A review of innovations in early gasoline refueling methods and analogies for hydrogen  

E-Print Network [OSTI]

Progress in Acquiring Alternative Fuel Vehicles and Reachinglocation problem for alternative-fuel vehicles. Socio-availability for alternative fuel vehicles: a parametric

Melaina, Marc W

2007-01-01T23:59:59.000Z

152

Vehicle Technologies Office: AVTA - Electric Vehicle Charging...  

Energy Savers [EERE]

the Alternative Fuel Data Center's page on plug-in electric vehicle infrastructure. For a map of the public EVSE available in the U.S., see the Alternative Fuels Station Locator....

153

The Dynamic Context for Sustainable Transportation Energy Research  

E-Print Network [OSTI]

IN VEHICLES time constants: 20-60 years #12;REFUELING STATIONS FOR GASOLINE & ALTERNATIVE FUELS Gasoline CNG MethanolEthanol ~100+ H2refueling stations worldwide #12;HISTORICAL DATA: MAJOR US TRANSPORTATION

Handy, Susan L.

154

Assessment of Fuel Economy Technologies for Light-Duty Vehicles  

SciTech Connect (OSTI)

An analysis of the number of stations and vehicles necessary to achieve future goals for sales of ethanol fuel (E85) is presented. Issues related to the supply of ethanol, which may turn out to be of even greater concern, are not analyzed here. A model of consumers decisions to purchase E85 versus gasoline based on prices, availability, and refueling frequency is derived, and preliminary results for 2010, 2017, and 2030 consistent with the president s 2007 biofuels program goals are presented. A limited sensitivity analysis is carried out to indicate key uncertainties in the trade-off between the number of stations and fuels. The analysis indicates that to meet a 2017 goal of 26 billion gallons of E85 sold, on the order of 30% to 80% of all stations may need to offer E85 and that 125 to 200 million flexible-fuel vehicles (FFVs) may need to be on the road, even if oil prices remain high. These conclusions are tentative for three reasons: there is considerable uncertainty about key parameter values, such as the price elasticity of choice between E85 and gasoline; the future prices of E85 and gasoline are uncertain; and the method of analysis used is highly aggregated it does not consider the potential benefits of regional strategies or the possible existence of market segments predisposed to purchase E85. Nonetheless, the preliminary results indicate that the 2017 biofuels program goals are ambitious and will require a massive effort to produce enough FFVs and ensure widespread availability of E85.

Greene, David L [ORNL

2008-01-01T23:59:59.000Z

155

California’s Energy Future: Transportation Energy Use in California  

E-Print Network [OSTI]

refueling station (equivalent to $3-$4/gallon of gasoline ongasoline on a per-mile basis, but as with vehicle costs, early stations

Yang, Christopher

2011-01-01T23:59:59.000Z

156

Plug-In Electric Vehicle Handbook for Public Charging  

E-Print Network [OSTI]

Plug-In Electric Vehicle Handbook for Public Charging Station Hosts #12;Plug-In Electric Vehicle PEV Charging Stations Establishing plug-in electric vehicle (PEV) charging stations requires unique at www.cleancities.energy.gov . Acknowledgement Thanks to the Electric Vehicle Infrastructure Training

157

An Overview of Automotive Home and Neighborhood Refueling  

E-Print Network [OSTI]

2004. Abbanat, B.A. , Alternative fuel vehicles : the case103 p. USEPA, Clean Alternative Fuels: Compressed Naturalimplications for alternative fuel vehicles today. The

Li, Xuping; Ogden, Joan M.; Kurani, Kenneth S.

2009-01-01T23:59:59.000Z

158

Bridging the Gap Between Transportation and Stationary Power: Hydrogen Energy Stations and their Implications for the Transportation Sector  

E-Print Network [OSTI]

Economic Analysis of Hydrogen Energy Station Concepts,E 2 Four Potential Types of Hydrogen Energy Stations VehicleOperational Toronto Hydrogen Energy Station Stationary PEMFC

Weinert, Jonathan X.; Lipman, Timothy; Unnasch, Stephen

2005-01-01T23:59:59.000Z

159

INFRASTRUCTURE FOR HYDROGEN FUEL CELL VEHICLES: A SOUTHERN CALIFORNIA CASE STUDY  

E-Print Network [OSTI]

station via small scale steamreforming of natural gas, * hydrogenproduced in a large,centralized steamreforming plant, anddelivered via small scale hydrogen gaspipeline to refueling stations, * hydrogen(e.g. excesscapacity in ammonia plants, refineries which have recently upgraded their hydrogen production capacity, etc

160

Interested in Hydrogen and Fuel Cell Technologies? Help Shape the H2 Refuel H-Prize Competition  

Office of Energy Efficiency and Renewable Energy (EERE)

Find out how you can help improve the H-Prize H2 Refuel competition, which involves designing a small-scale hydrogen refueler system for homes, community centers, or businesses.

Note: This page contains sample records for the topic "vehicles refueling stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Fuel Station Procedure Applicability All  

E-Print Network [OSTI]

Fuel Station Procedure Applicability All Last Revised 11/20/12 Procedure Owner Andrew Grant agrant for the purchasing and distribution of fuel for vehicles owned by Bowling Green State University (BGSU). This centralization is important to ensure compliance for BGSU employees who use the centralized fuel station and fuel

Moore, Paul A.

162

Partnership Helps Alleviate Electric Vehicle Range Anxiety (Fact Sheet)  

SciTech Connect (OSTI)

NREL, Clean Cities, and industry leaders join forces to create the first comprehensive online locator for electric vehicle charging stations.

Not Available

2012-04-01T23:59:59.000Z

163

Hybrid & Hydrogen Vehicle Research Laboratory  

E-Print Network [OSTI]

such as Challenge X use this facility to develop advanced vehicles. Hydrogen Fueling Station Developed byAir Products and Chemicals, Inc. with funding from US DOE, the commercial hydrogen fueling station was installed at Penn State University Park in Fall 2004. This station will be used to fuel in-service hydrogen

Lee, Dongwon

164

Integration Of Locational Decisions with the Household Activity Pattern Problem and Its Applications in Transportation Sustainability  

E-Print Network [OSTI]

G. S. (2013), “Refueling Hydrogen Fuel Cell Vehicles with 68CaFCP) (2009). Hydrogen fuel cell vehicle and stationCaFCP) (2010). Hydrogen fuel cell vehicle and station

Kang, Jee E

2013-01-01T23:59:59.000Z

165

Integration of Locational Decisions with the Household Activity Pattern Problem and Its Applications in Transportation Sustainability  

E-Print Network [OSTI]

G. S. (2013), “Refueling Hydrogen Fuel Cell Vehicles with 68CaFCP) (2009). Hydrogen fuel cell vehicle and stationCaFCP) (2010). Hydrogen fuel cell vehicle and station

Kang, Jee Eun

2013-01-01T23:59:59.000Z

166

Integration Of Locational Decisions with the Household Activity Pattern Problem and Its Applications in Transportation Sustainability  

E-Print Network [OSTI]

G. S. (2013), “Refueling Hydrogen Fuel Cell Vehicles with 68CaFCP) (2010). Hydrogen fuel cell vehicle and stationCaFCP) (2012). Hydrogen fuel cell vehicle and station

Kang, Jee E

2013-01-01T23:59:59.000Z

167

Integration of Locational Decisions with the Household Activity Pattern Problem and Its Applications in Transportation Sustainability  

E-Print Network [OSTI]

G. S. (2013), “Refueling Hydrogen Fuel Cell Vehicles with 68CaFCP) (2010). Hydrogen fuel cell vehicle and stationCaFCP) (2012). Hydrogen fuel cell vehicle and station

Kang, Jee Eun

2013-01-01T23:59:59.000Z

168

HYAPPROVAL HANDBOOK FOR THE APPROVAL OF HYDROGEN REFUELLING STATIONS FIRST PRELIMINARY ACHIEVEMENTS  

E-Print Network [OSTI]

economy, but this role is almost exclusively as a raw material for the chemical industry; hydrogen and transportation sector faces hurdles that need to be overcome in the transition to a hydrogen utilising energy for dispensing the same type of fuel). The objectives of HyApproval are to finalise the HRS draft guideline

169

Fact #782: June 3, 2013 Number of Refueling Stations Continues to Shrink |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 20112:of EnergyLastDepartment of

170

Fact #816: February 10, 2014 Natural Gas Refueling Stations Grow Over the  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 20112:ofElectric1975-2012 |10:Department

171

Fact #832: August 4, 2014 Over Half of the Refueling Stations in the U.S.  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFYOxide Emission Standards, Modeland Canada Sell

172

Inventory Rebalancing and Vehicle Routing in Bike Sharing Systems  

E-Print Network [OSTI]

Inventory Rebalancing and Vehicle Routing in Bike Sharing Systems Jasper Schuijbroek School station, and designing (near-)optimal vehicle routes to rebalance the inventory. Since finding provably : vehicle routing and scheduling, inventory, queues: applications, programming: integer, programming

Sadeh, Norman M.

173

Vehicle Technologies Office | Department of Energy  

Energy Savers [EERE]

Find a charging station for plug-in electric vehicles or a fueling station for E85, biodiesel, compressed natural gas, propane and more. Read more Buying a New Car? Buying a New...

174

Development of National Liquid Propane (Autogas) Refueling Network...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt059tiday2012o...

175

Development of National Liquid Propane (Autogas) Refueling Network...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt059tiday2011...

176

Development of National Liquid Propane (Autogas) Refueling Network...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. tiarravt059day2010...

177

Hydrogen Filling Station  

SciTech Connect (OSTI)

Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water District’s land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for hydrogen development; accelerate the development of photovoltaic components Project Objective 4:

Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

2010-02-24T23:59:59.000Z

178

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Broader source: Energy.gov (indexed) [DOE]

Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation 2010 DOE Vehicle Technologies...

179

Department of Energy Announces $64 Million in Hydrogen Research...  

Office of Environmental Management (EM)

of over 64 million in research and development projects aimed at making hydrogen fuel cell vehicles and refueling stations available, practical and affordable for American...

180

Hydrogen Delivery - Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Delivery Hydrogen Delivery - Basics Hydrogen Delivery - Basics Photo of light-duty vehicle at hydrogen refueling station. Infrastructure is required to move hydrogen from the...

Note: This page contains sample records for the topic "vehicles refueling stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Broader source: Energy.gov (indexed) [DOE]

Clean School BusVehicle Initiative & Green Jobs Outreach Program Installation of propane refueling infrastructure at an existing retail gas station. This CX form is for one...

182

New York State-wide Alternative Fuel Vehicle Program for Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Peer Evaluation Meeting arravt053tibolton2012o.pdf More Documents & Publications New York State-wide Alternative Fuel Vehicle Program for Vehicles and Fueling Stations New...

183

New York State-wide Alternative Fuel Vehicle Program for Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Review and Peer Evaluation arravt053tibolton2011p.pdf More Documents & Publications New York State-wide Alternative Fuel Vehicle Program for Vehicles and Fueling Stations New...

184

Behavioral Response to Hydrogen Fuel Cell Vehicles and Refueling: Results of California Drive Clinics  

E-Print Network [OSTI]

combustion engine transit bus demonstration and hydrogenHydrogen FCVs have some important differences from gasoline internal combustion engine (

Martin, Elliot W; Shaheen, Susan A; Lipman, T E; Lidicker, Jeffrey

2009-01-01T23:59:59.000Z

185

Behavioral Response to Hydrogen Fuel Cell Vehicles and Refueling: Results of California Drive Clinics  

E-Print Network [OSTI]

a background on alternative fuel acceptance research, withexperience with alternative fuels, impressions of hydrogenRespondent experience with alternative fuels and hydrogen 3)

Martin, Elliot W; Shaheen, Susan A; Lipman, T E; Lidicker, Jeffrey

2009-01-01T23:59:59.000Z

186

Refueling Behavior of Flexible Fuel Vehicle Drivers in the Federal Fleet  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST 800-53Reference MaterialsRefiners SwitchSlag

187

H2 Refuel H-Prize Aims to Make Fueling Hydrogen Powered Vehicles Easier  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment, Safety andGeothermalGreen Flag for aGuide toandEnergyhogar |Pub.

188

Microgrid V2G Charging Station Interconnection Testing (Presentation)  

SciTech Connect (OSTI)

This presentation by Mike Simpson of the National Renewable Energy Laboratory (NREL) describes NREL's microgrid vehicle-to-grid charging station interconnection testing.

Simpson, M.

2013-07-01T23:59:59.000Z

189

The Fuel-Travel-Back Approach to Hydrogen Station Siting  

E-Print Network [OSTI]

costs of cars with alternative fuels/engines." Energy Policyto the Choice of Alternative Fuels and Vehicles." Energyhydrogen; station location; alternative fuel; optimization

Lin, Zhenhong; Ogden, Joan; Fan, Yueyue; Chen, Chien-Wei

2009-01-01T23:59:59.000Z

190

Hydrogen fueling station development and demonstration  

SciTech Connect (OSTI)

This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project sought to develop and demonstrate a hydrogen fueling station for vehicles. Such stations are an essential infrastructural element in the practical application of hydrogen as vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology that is the link between the local storage facility and the vehicle.

Edeskuty, F.J.; Daney, D.; Daugherty, M.; Hill, D.; Prenger, F.C.

1996-09-01T23:59:59.000Z

191

E-Print Network 3.0 - applications hydrogen vehicle Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Page: << < 1 2 3 4 5 > >> 1 Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations Summary: Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations...

192

REFUEL: an EU road map for biofuels , E. Deurwaarder and S. Lensink, ECN policy Studies, the Netherlands  

E-Print Network [OSTI]

REFUEL: an EU road map for biofuels M. Londo1 , E. Deurwaarder and S. Lensink, ECN policy Studies), Poland K. Könighofer, Joanneum Research, Austria Abstract A successful mid-term development of biofuels calls for a robust road map. REFUEL assesses inter alia least-cost biofuel chain options, their benefits

193

Electric and Hybrid Vehicle Technology: TOPTEC  

SciTech Connect (OSTI)

Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today's electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between refueling'' stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

Not Available

1992-01-01T23:59:59.000Z

194

Electric and Hybrid Vehicle Technology: TOPTEC  

SciTech Connect (OSTI)

Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today`s electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between ``refueling`` stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of ``Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

Not Available

1992-12-01T23:59:59.000Z

195

Nuclear Safety Risk Management in Refueling Outage of Qinshan Nuclear Power Plant  

SciTech Connect (OSTI)

The NPP is used to planning maintenance, in-service inspection, surveillance test, fuel handling and design modification in the refueling outage; the operator response capability will be reduced plus some of the plant systems out of service or loss of power at this time. Based on 8 times refueling outage experiences of the Qinshan NPP, this article provide some good practice and lesson learned for the nuclear safety risk management focus at four safety function areas of Residual Heat Removal Capability, Inventory Control, Power availability and Reactivity control. (authors)

Meijing Wu; Guozhang Shen [Qinshan Nuclear power company (China)

2006-07-01T23:59:59.000Z

196

Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...  

Broader source: Energy.gov (indexed) [DOE]

Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector...

197

RIS0-M-2294 HANDLING OF DEUTERIUM PELLETS FOR PLASMA REFUELLING  

E-Print Network [OSTI]

RIS0-M-2294 HANDLING OF DEUTERIUM PELLETS FOR PLASMA REFUELLING P.s. Jensen and V. Andersen Association Euratom - Ris0 National Laboratory Abstract. The use of a guide tube technique to inject pellets in pellet-plasma experiments guide tube on the mass and (v ~ 150 m/s) is negligible. jectories

198

Development of National Liquid Propane (Autogas) Refueling Network, Clean  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent CompanyaUSAMP AMD 602School Bus/Vehicle Incentive

199

Development of National Liquid Propane (Autogas) Refueling Network, Clean  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent CompanyaUSAMP AMD 602School Bus/Vehicle

200

Development of National Liquid Propane (Autogas) Refueling Network, Clean  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent CompanyaUSAMP AMD 602School Bus/VehicleSchool

Note: This page contains sample records for the topic "vehicles refueling stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Electric Drive Vehicles: A Huge New Distributed Energy Resource  

E-Print Network [OSTI]

with electric power generation and storage capabilities · Three Vehicle Types in Program ­ Full ZEV: true zero) #12;Electric Drive in Vehicles -- All the Ingredients for a Distributed Power System #12;Vehicle and energy storage potential · Electric vehicle charge stations: grid connection points for power

Firestone, Jeremy

202

Plug-In Electric Vehicle Handbook for Electrical Contractors (Brochure)  

SciTech Connect (OSTI)

This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, charging equipment installation, and training for electrical contractors.

Not Available

2012-04-01T23:59:59.000Z

203

GC GUIDANCE ON ELECTRIC VEHICLE RECHARGING STATIONS  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject: Guidance for natural gas as a feedstock for

204

Study on neutronic of very small Pb - Bi cooled no-onsite refueling nuclear power reactor (VSPINNOR)  

SciTech Connect (OSTI)

A conceptual design study on Very Small Pb-Bi No-Onsite Refueling Cooled Nuclear Reactor (VSPINNOR) with Uranium nitride fuel using MCNPX program has been performed. In this design the reactor core is divided into three regions with different enrichment. At the center of the core is laid fuel without enrichment (internal blanket). While for the outer region using fuel enrichment variations. VSPINNOR fast reactor was operated for 10 years without refueling. Neutronic analysis shows optimized result of VSPINNOR has a core of 50 cm radius and 100 cm height with 300 MWth thermal power output at 60% fuel fraction that can be operated 18 years without refueling or fuel shuffling.

Arianto, Fajar, E-mail: ariantofajar@gmail.com [Laboratory of Nuclear and Biophysics, Department of Physics, Bandung Institute of Technology, Jl. Ganesha 10, Bandung 40132, Indonesia and Laboratory of Atom and Nuclear, Department of Physics, Diponegoro University, Jl. Prof. Soedarto, S.H., Tembala (Indonesia); Su'ud, Zaki, E-mail: szaki@fi.itba.c.id [Nuclear Physics and Biophysics Research Group, Faculty of Mathematics and Natural Science, Bandung Institute of Technology (Ganesha 10 Bandung, Indonesia) (Indonesia); Zuhair [Center for Reactor Technology and Nuclear Safety, National Nuclear Energy Agency, Kawasan Puspiptek, Gedung No. 80, Serpong, Tangerang 15310 (Indonesia)

2014-09-30T23:59:59.000Z

205

Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications. Hydrogen vehicle safety report  

SciTech Connect (OSTI)

This report reviews the safety characteristics of hydrogen as an energy carrier for a fuel cell vehicle (FCV), with emphasis on high pressure gaseous hydrogen onboard storage. The authors consider normal operation of the vehicle in addition to refueling, collisions, operation in tunnels, and storage in garages. They identify the most likely risks and failure modes leading to hazardous conditions, and provide potential countermeasures in the vehicle design to prevent or substantially reduce the consequences of each plausible failure mode. They then compare the risks of hydrogen with those of more common motor vehicle fuels including gasoline, propane, and natural gas.

Thomas, C.E. [Directed Technologies, Inc., Arlington, VA (United States)

1997-05-01T23:59:59.000Z

206

Costs Associated With Propane Vehicle Fueling Infrastructure  

SciTech Connect (OSTI)

This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

Smith, M.; Gonzales, J.

2014-08-01T23:59:59.000Z

207

Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle...  

Energy Savers [EERE]

Maximizing Alternative Fuel Vehicle Efficiency Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency Besides their energy security and environmental benefits,...

208

Vehicle Technologies Office: 2009 Advanced Vehicle Technology...  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2009 Advanced Vehicle...

209

Vehicle Technologies Office: 2008 Advanced Vehicle Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2008 Advanced Vehicle...

210

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Early Station Costs Questionnaire  

E-Print Network [OSTI]

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Early Station Costs Questionnaire the hydrogen community and government agencies by increasing awareness of the status of refueling

211

Optimal Fleet Management Plan Excerpt from the Vehicle Allocation Methodology (VAM) required by  

E-Print Network [OSTI]

's Alternative Fuels and Advanced Vehicles Data Center: http://www.afdc.energy.gov/afdc/locator/stations/ which by Presidential Memorandum ­ Federal Fleet Performance, 24 May 2011 Alternative Fuel Vehicles (AFV): A) USACE has to AFV fueling stations during vehicle acquisitions beyond 31 DEC 2015; the Transportation Division

US Army Corps of Engineers

212

Fuel Cell Vehicles and Hydrogen in Preparing for market launch  

E-Print Network [OSTI]

Fuel Cell Vehicles and Hydrogen in California Preparing for market launch Catherine Dunwoody June 27, 2012 #12;2 A fuel cell vehicle is electric! 2 · 300-400 mile range · Zero-tailpipe emissions · To launch market and build capacity #12;12 H2 stations and vehicle growth #12;13 California Fuel Cell

California at Davis, University of

213

Electric vehicles  

SciTech Connect (OSTI)

Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

Not Available

1990-03-01T23:59:59.000Z

214

The Health Effects Institute assessment of refueling vapors; A case study  

SciTech Connect (OSTI)

In 1985, the Health Effects Institute (HEI) published an analysis it conducted of the informational basis for quantifying cancer risks from exposure to unleaded refueling vapors, an exposure that, for the general public, occurs most frequently at the self-service pump. Using the National Research Council's framework for risk assessment, the HEI analysis concluded that important information was lacking in the three areas that lead to the actual quantification of risk. The three are: hazard identification, dose-response assessment, and exposure assessment. The author presents details of the analysis, and a description of the Health Effects Institute.

Kavet, R. (Environmental Research Information, Inc., New York, NY (US))

1987-01-01T23:59:59.000Z

215

Energy Department Launches H2 Refuel H-Prize Competition for Small-Scale  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department ofto Cellulosic BioenergyatDepartment ofHydrogen Refueling

216

Control of Multiple Robotic Sentry Vehicles  

SciTech Connect (OSTI)

As part of a project for the Defense Advanced Research Projects Agency, Sandia National Laboratories is developing and testing the feasibility of using of a cooperative team of robotic sentry vehicles to guard a perimeter and to perform surround and diversion tasks. This paper describes on-going activities in the development of these robotic sentry vehicles. To date, we have developed a robotic perimeter detection system which consists of eight ''Roving All Terrain Lunar Explorer Rover'' (RATLER{trademark}) vehicles, a laptop-based base-station, and several Miniature Intrusion Detection Sensors (MIDS). A radio frequency receiver on each of the RATLER vehicles alerts the sentry vehicles of alarms from the hidden MIDS. When an alarm is received, each vehicle decides whether it should investigate the alarm based on the proximity of itself and the other vehicles to the alarm. As one vehicle attends an alarm, the other vehicles adjust their position around the perimeter to better prepare for another alarm. We have also demonstrated the ability to drive multiple vehicles in formation via tele-operation or by waypoint GPS navigation. This is currently being extended to include mission planning capabilities. At the base-station, the operator can draw on an aerial map the goal regions to be surrounded and the repulsive regions to be avoided. A potential field path planner automatically generates a path from the vehicles' current position to the goal regions while avoiding the repulsive regions and the other vehicles. This path is previewed to the operator before the regions are downloaded to the vehicles. The same potential field path planner resides on the vehicle, except additional repulsive forces from on-board proximity sensors guide the vehicle away from unplanned obstacles.

Feddema, J.; Klarer, P.; Lewis, C.

1999-04-01T23:59:59.000Z

217

City of College Station's Thermographic Mobile Scan  

E-Print Network [OSTI]

During the first quarter of 1986, the City of College Station conducted a thermographic mobile scan of the entire city. A thermographic mobile scan is a process by which heat loss/heat gain data is accumulated by a vehicle traveling the city...

Shear, C. K.

1986-01-01T23:59:59.000Z

218

Electric Vehicles  

ScienceCinema (OSTI)

Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

Ozpineci, Burak

2014-07-23T23:59:59.000Z

219

Electric Vehicles  

SciTech Connect (OSTI)

Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

Ozpineci, Burak

2014-05-02T23:59:59.000Z

220

DEVELOPMENT OF A TURNKEY COMMERCIAL HYDROGEN FUELING STATION  

E-Print Network [OSTI]

of the hydrogen fuel economy for buses, fleet vehicles, and ultimately personal vehicles. In order to demonstrate to the reforming of natural gas to produce a reformate stream; · Develop an efficient, cost-effective means the basis for future commercial Fueling Stations. 1 Proceedings of the 2002 U.S. DOE Hydrogen Program Review

Note: This page contains sample records for the topic "vehicles refueling stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Feasibility study: utilization of landfill gas for a vehicle fuel system, Rossman's landfill, Clackamas County, Oregon  

SciTech Connect (OSTI)

In 1978, a landfill operator in Oregon became interested in the technical and economic feasibility of recovering the methane generated in the landfill for the refueling of vehicles. DOE awarded a grant for a site-specific feasibility study of this concept. This study investigated the expected methane yield and the development of a conceptual gas-gathering system; gas processing, compressing, and storage systems; and methane-fueled vehicle systems. Cost estimates were made for each area of study. The results of the study are presented. Reasoning that gasoline prices will continue to rise and that approximately 18,000 vehicles in the US have been converted to operate on methane, a project is proposed to use this landfill as a demonstration site to produce and process methane and to fuel a fleet (50 to 400) vehicles with the gas produced in order to obtain performance and economic data on the systems used from gas collection through vehicle operation. (LCL)

None

1981-01-01T23:59:59.000Z

222

Richmond Electric Vehicle Initiative Electric Vehicle Readiness...  

Office of Environmental Management (EM)

MO) Vehicles Home About Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions Alternative Fuels Modeling, Testing, Data & Results Education...

223

Commercial Vehicle Classification using Vehicle Signature Data  

E-Print Network [OSTI]

Traffic Measurement and Vehicle Classification with SingleG. Ritchie. Real-time Vehicle Classification using InductiveReijmers, J.J. , "On-line vehicle classification," Vehicular

Liu, Hang; Jeng, Shin-Ting; Andre Tok, Yeow Chern; Ritchie, Stephen G.

2008-01-01T23:59:59.000Z

224

Preliminary Assessment of Overweight Mainline Vehicles  

SciTech Connect (OSTI)

The Federal Motor Carrier Safety Administration requested information regarding overweight and oversized vehicle traffic entering inspection stations (ISs) in order to develop strategies for future research efforts and possibly help guide regulatory issues involving overweight commercial motor vehicles (CMVs). For a period of one month, inspection stations in Knox County and Greene County, Tennessee, recorded overweight and oversized vehicles that entered these ISs. During this period, 435 CMVs were recorded using an electronic form filled out by enforcement personnel at the IS. Of the 435 CMVs recorded, 381 had weight information documented with them. The majority (52.2%) of the vehicles recorded were five-axle combination vehicles, and 50.6% of all the vehicles were permitted to operate above the legal weight limit in Tennessee, which is 80,000 lb for vehicles with five or more axles. Only 16.8% of the CMVs recorded were overweight gross (11.5% of permitted vehicles) and 54.1% were overweight on an axle group. The low percentage of overweight gross CMVs was because only 45 of the vehicles over 80,000 lb. were not permitted. On average, axles that were overweight were 2,000 lb. over the legal limit for an axle or group of axles. Of the vehicles recorded, 172 vehicles were given a North American Standard (NAS) inspection during the assessment. Of those, 69% of the inspections were driver-only inspections (Level III) and only 25% of the inspections had a vehicle component (such as a Level I or Level II). The remaining 6% of inspections did not have valid Aspen numbers; the type of was inspection unknown. Data collected on the types of trailers of each vehicle showed that about half of the recorded CMVs could realistically be given a Level I (full vehicle and driver) inspection; this estimate was solely based on trailer type. Enforcement personnel at ISs without an inspection pit have difficulty fully inspecting certain vehicles due to low clearance below the trailer. Because of this, overweight and oversized vehicles were normally only given a Level III (driver) inspection; thus, little is known about the safety of these vehicles. The out-of-service (OOS) rate of all the inspected vehicles (driver and vehicle inspections) was 18.6%, while the OOS rate for vehicle inspections (Level I and II) was 52.4%. Future work will focus on performing Level I inspections on five-axle combination tractor-trailers and the types of violations that overweight vehicles may have. This research will be conducted in Tennessee and possibly in other states as well.

Siekmann, Adam [ORNL; Capps, Gary J [ORNL; Lascurain, Mary Beth [ORNL

2011-11-01T23:59:59.000Z

225

Roadmap for Hydrogen and Fuel Cell Vehicles in California: A Transition Strategy through 2017  

E-Print Network [OSTI]

also novel new on-site hydrogen storage systems. In relationfor fuel cells and hydrogen storage), fuel cell durability,firms) on vehicle hydrogen storage pressure and station

Ogden, J; Cunningham, Joshua M; Nicholas, Michael A

2010-01-01T23:59:59.000Z

226

Roadmap for Hydrogen and Fuel Cell Vehicles in California: A Transition Strategy through 2017  

E-Print Network [OSTI]

on technical and cost issues for hydrogen and fuel cellvehicle component costs (for fuel cells and hydrogenfuel cell durability, vehicle range and hydrogen station capacity and costs.

Ogden, J; Cunningham, Joshua M; Nicholas, Michael A

2010-01-01T23:59:59.000Z

227

Behavioral Response to Hydrogen Fuel Cell Vehicles and Refueling: A Comparative Analysis of Short- and Long-Term Exposure  

E-Print Network [OSTI]

combustion engine transit bus demonstration and hydrogenHydrogen FCVs have some important differences from gasoline internal combustion engine (

Martin, Elliot; Shaheen, Susan; Lipman, Timothy; Lidicker, Jeffery

2008-01-01T23:59:59.000Z

228

Hydrogen Refueling System Based on Autothermal Cyclic Reforming Ravi V. Kumar, George N. Kastanas, Shawn Barge,  

E-Print Network [OSTI]

the hydrogen from the storage tanks to the hydrogen vehicle. Praxair will develop the PSA unit, the hydrogen

229

Robotic vehicle  

DOE Patents [OSTI]

A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

Box, W. Donald (Oak Ridge, TN)

1997-01-01T23:59:59.000Z

230

Robotic vehicle  

DOE Patents [OSTI]

A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

Box, W. Donald (Oak Ridge, TN)

1998-01-01T23:59:59.000Z

231

Safety Issues with Hydrogen as a Vehicle Fuel  

SciTech Connect (OSTI)

This report is an initial effort to identify and evaluate safety issues associated with the use of hydrogen as a vehicle fuel in automobiles. Several forms of hydrogen have been considered: gas, liquid, slush, and hydrides. The safety issues have been discussed, beginning with properties of hydrogen and the phenomenology of hydrogen combustion. Safety-related operating experiences with hydrogen vehicles have been summarized to identify concerns that must be addressed in future design activities and to support probabilistic risk assessment. Also, applicable codes, standards, and regulations pertaining to hydrogen usage and refueling have been identified and are briefly discussed. This report serves as a safety foundation for any future hydrogen safety work, such as a safety analysis or a probabilistic risk assessment.

L. C. Cadwallader; J. S. Herring

1999-09-01T23:59:59.000Z

232

Safety Issues with Hydrogen as a Vehicle Fuel  

SciTech Connect (OSTI)

This report is an initial effort to identify and evaluate safety issues associated with the use of hydrogen as a vehicle fuel in automobiles. Several forms of hydrogen have been considered: gas, liquid, slush, and hydrides. The safety issues have been discussed, beginning with properties of hydrogen and the phenomenology of hydrogen combustion. Safety-related operating experiences with hydrogen vehicles have been summarized to identify concerns that must be addressed in future design activities and to support probabilistic risk assessment. Also, applicable codes, standards, and regulations pertaining to hydrogen usage and refueling have been identified and are briefly discussed. This report serves as a safety foundation for any future hydrogen safety work, such as a safety analysis or a probabilistic risk assessment.

Cadwallader, Lee Charles; Herring, James Stephen

1999-10-01T23:59:59.000Z

233

Development of a dedicated ethanol ultra-low emission vehicle (ULEV) -- Phase 2 report  

SciTech Connect (OSTI)

The objective of this 3.5-year project is to develop a commercially competitive vehicle powered by ethanol (or an ethanol blend) that can meet California`s ultra-low emission vehicle (ULEV) standards and equivalent corporate average fuel economy (CAFE) energy efficiency for a light-duty passenger car application. The definition of commercially competitive is independent of fuel cost, but does include technical requirements for competitive power, performance, refueling times, vehicle range, driveability, fuel handling safety, and overall emissions performance. This report summarizes the second phase of this project, which lasted 12 months. This report documents two baseline vehicles, the engine modifications made to the original equipment manufacturer (OEM) engines, advanced aftertreatment testing, and various fuel tests to evaluate the flammability, lubricity, and material compatibility of the ethanol fuel blends.

Dodge, L.G.; Bourn, G.; Callahan, T.J.; Naegeli, D.W.; Shouse, K.R.; Smith, L.R.; Whitney, K.A. [Southwest Research Inst., San Antonio, TX (United States)

1995-09-01T23:59:59.000Z

234

Autonomous vehicles  

SciTech Connect (OSTI)

There are various kinds of autonomous vehicles (AV`s) which can operate with varying levels of autonomy. This paper is concerned with underwater, ground, and aerial vehicles operating in a fully autonomous (nonteleoperated) mode. Further, this paper deals with AV`s as a special kind of device, rather than full-scale manned vehicles operating unmanned. The distinction is one in which the AV is likely to be designed for autonomous operation rather than being adapted for it as would be the case for manned vehicles. The authors provide a survey of the technological progress that has been made in AV`s, the current research issues and approaches that are continuing that progress, and the applications which motivate this work. It should be noted that issues of control are pervasive regardless of the kind of AV being considered, but that there are special considerations in the design and operation of AV`s depending on whether the focus is on vehicles underwater, on the ground, or in the air. The authors have separated the discussion into sections treating each of these categories.

Meyrowitz, A.L. [Navy Center for Applied Research in Artificial Intelligence, Washington, DC (United States)] [Navy Center for Applied Research in Artificial Intelligence, Washington, DC (United States); Blidberg, D.R. [Autonomous Undersea Systems Inst., Lee, NH (United States)] [Autonomous Undersea Systems Inst., Lee, NH (United States); Michelson, R.C. [Georgia Tech Research Inst., Smyrna, GA (United States)] [Georgia Tech Research Inst., Smyrna, GA (United States); [International Association for Unmanned Vehicle Systems, Smyrna, GA (United States)

1996-08-01T23:59:59.000Z

235

Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles  

E-Print Network [OSTI]

of Vehicle Image in Gasoline-Hybrid Electric Vehicles Reidof Vehicle Image in Gasoline-Hybrid Electric Vehicles Reidhigh demand for gasoline-hybrid electric vehicles (HEVs)?

Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

2005-01-01T23:59:59.000Z

236

Vehicle Technologies Office: Hybrid and Vehicle Systems | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hybrid and Vehicle Systems Vehicle Technologies Office: Hybrid and Vehicle Systems Hybrid and vehicle systems research provides an overarching vehicle systems perspective to the...

237

Chevrolet Volt Vehicle Demonstration  

Broader source: Energy.gov (indexed) [DOE]

Chevrolet Volt Vehicle Demonstration Fleet Summary Report Reporting period: October 2011 through December 2011 Number of vehicles: 135 Number of vehicle days driven: 4,746 All...

238

SOUTH STATION TAmtrak, Commuter  

E-Print Network [OSTI]

SOUTH STATION TAmtrak, Commuter Rail, Bus Station, MBTA Red Line Knapp St. Kneeland St. Stuart St) T BOYLSTON (MBTA Green Line) T NEW ENGLAND MEDICAL CENTER (MBTA Orange Line) Boston Campus Accessibility Map

Dennett, Daniel

239

Vehicle Technologies Office: AVTA - Electric Vehicle Community...  

Broader source: Energy.gov (indexed) [DOE]

Making plug-in electric vehicles (PEVs, also known as electric cars) as affordable and convenient as conventional vehicles, as described in the EV Everywhere Grand Challenge,...

240

Vehicle Technologies Office: Advanced Vehicle Testing Activity...  

Energy Savers [EERE]

initative. Together, these projects make up the largest ever deployment of all-electric vehicles, plug-in hybrid electric vehicles, and charging infrastructure in the...

Note: This page contains sample records for the topic "vehicles refueling stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Advanced Vehicle Testing & Evaluation  

Broader source: Energy.gov (indexed) [DOE]

Provide benchmark data for advanced technology vehicles Develop lifecycle cost data for production vehicles utilizing advanced power trains Provide fleet...

242

Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure  

SciTech Connect (OSTI)

This document is designed to help fleets understand the cost factors associated with fueling infrastructure for compressed natural gas (CNG) vehicles. It provides estimated cost ranges for various sizes and types of CNG fueling stations and an overview of factors that contribute to the total cost of an installed station. The information presented is based on input from professionals in the natural gas industry who design, sell equipment for, and/or own and operate CNG stations.

Smith, M.; Gonzales, J.

2014-09-01T23:59:59.000Z

243

AVTA: Reports on Plug-in Electric Vehicle Readiness at 3 DOD Facilities  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports analyze data and survey results on readiness for the use of plug-in electric vehicles on the Naval Air Station Jacksonville, Naval Station Mayport, and Joint Base Lewis McChord, as informed by the AVTA's testing on plug-in electric vehicle charging equipment. This research was conducted by Idaho National Laboratory.

244

Automatic parallel parking and platooning to redistribute electric vehicles in a car-sharing application  

E-Print Network [OSTI]

Automatic parallel parking and platooning to redistribute electric vehicles in a car subscribers , as well as the electric car-sharing system autolib, comprising 2000 vehicles, 1200 stations this imbalance, vehicle redistribution strategies must be elaborated. As automatic relocation cannot be in place

Paris-Sud XI, Université de

245

PLUG-IN ELECTRIC VEHICLE CHARGING ONLY Must be ACTIVELY Charging  

E-Print Network [OSTI]

PLUG-IN ELECTRIC VEHICLE CHARGING ONLY Must be ACTIVELY Charging All Others Subject to Citation. PLUG-IN ELECTRIC VEHICLE CHARGING RATES Monday­Friday, 7:30am­5pm Hours Power Parking Power+Parking 1://chargepoint.net PAYMENT IS REQUIRED FOR USE OF A CHARGING STATION The rate for charging your vehicle is $1/hour. Please

Bigelow, Stephen

246

Revolutionizing Our Roadways The Challenges and Benefits of Making Automated Vehicles a Reality  

E-Print Network [OSTI]

Revolutionizing Our Roadways The Challenges and Benefits of Making Automated Vehicles a Reality #12 of Making Automated Vehicles a Reality by Jason Wagner Associate Transportation Researcher Texas A Station, Texas 77843-3135 #12;iv | REVOLUTIONIZING OUR ROADWAYS #12;v Contents 1.0 Automated Vehicles

247

A zinc-air battery and flywheel zero emission vehicle  

SciTech Connect (OSTI)

In response to the 1990 Clean Air Act, the California Air Resources Board (CARB) developed a compliance plan known as the Low Emission Vehicle Program. An integral part of that program was a sales mandate to the top seven automobile manufacturers requiring the percentage of Zero Emission Vehicles (ZEVs) sold in California to be 2% in 1998, 5% in 2001 and 10% by 2003. Currently available ZEV technology will probably not meet customer demand for range and moderate cost. A potential option to meet the CARB mandate is to use two Lawrence Livermore National Laboratory (LLNL) technologies, namely, zinc-air refuelable batteries (ZARBs) and electromechanical batteries (EMBs, i. e., flywheels) to develop a ZEV with a 384 kilometer (240 mile) urban range. This vehicle uses a 40 kW, 70 kWh ZARB for energy storage combined with a 102 kW, 0.5 kWh EMB for power peaking. These technologies are sufficiently near-term and cost-effective to plausibly be in production by the 1999-2001 time frame for stationary and initial vehicular applications. Unlike many other ZEVs currently being developed by industry, our proposed ZEV has range, acceleration, and size consistent with larger conventional passenger vehicles available today. Our life-cycle cost projections for this technology are lower than for Pb-acid battery ZEVs. We have used our Hybrid Vehicle Evaluation Code (HVEC) to simulate the performance of the vehicle and to size the various components. The use of conservative subsystem performance parameters and the resulting vehicle performance are discussed in detail.

Tokarz, F.; Smith, J.R.; Cooper, J.; Bender, D.; Aceves, S.

1995-10-03T23:59:59.000Z

248

Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

249

2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle...  

Energy Savers [EERE]

- Vehicle Systems Simulation and Testing 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle Systems Simulation and Testing Vehicle systems research and development...

250

Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies...  

Broader source: Energy.gov (indexed) [DOE]

Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Describes...

251

MOUNTAIN LAKE BIOLOGICAL STATION  

E-Print Network [OSTI]

. . . . . 11 Garbage / Recycling . . . . 11 Vehicles / Parking . . . . 11 Guests collec ng has led to the deple on of the habitats surrounding many field sta ons. Therefore, please

Acton, Scott

252

Chevrolet Volt Vehicle Demonstration  

Broader source: Energy.gov (indexed) [DOE]

Volt Vehicle Demonstration Fleet Summary Report Reporting period: January 2013 through March 2013 Number of vehicles: 146 Number of vehicle days driven: 6,680 4292013 2:38:13 PM...

253

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September bycost than both. Solar-hydrogen fuel- cell vehicles would becost than both. Solar-hydrogen fuel- cell vehicles would be

Delucchi, Mark

1992-01-01T23:59:59.000Z

254

Steam Dryer Segmentation and Packaging at Grand Gulf Nuclear Station - 13577  

SciTech Connect (OSTI)

Entergy recently performed an Extended Power Up-rate (EPU) on their Grand Gulf Nuclear Station, near Port Gibson, Mississippi. To support the EPU, a new Steam Dryer Assembly was installed during the last refueling outage. Due to limited access into the containment, the large Replacement Steam Dryer (RSD) had to be brought into the containment in pieces and then final assembly was completed on the refueling floor before installation into the reactor. Likewise, the highly contaminated Original Steam Dryer (OSD) had to be segmented into manageable sections, loaded into specially designed shielded containers, and rigged out of containment where they will be safely stored until final disposal is accomplished at an acceptable waste repository. Westinghouse Nuclear Services was contracted by Entergy to segment, package and remove the OSD from containment. This work was performed on critical path during the most recent refueling outage. The segmentation was performed underwater to minimize radiation exposure to the workers. Special hydraulic saws were developed for the cutting operations based on Westinghouse designs previously used in Sweden to segment ABB Reactor Internals. The mechanical cutting method was selected because of its proven reliability and the minimal cutting debris that is generated by the process. Maintaining stability of the large OSD sections during cutting was accomplished using a custom built support stand that was installed into the Moisture Separator Pool after the Moisture Separator was installed back in the reactor vessel. The OSD was then moved from the Steam Dryer Pool to the Moisture Separator Pool for segmentation. This scenario resolved the logistical challenge of having two steam dryers and a moisture separator in containment simultaneously. A water filtration/vacuum unit was supplied to maintain water clarity during the cutting and handling operations and to collect the cutting chips. (authors)

Kreitman, Paul J.; Sirianni, Steve R.; Pillard, Mark M. [Westinghouse Nuclear Services, 1 Energy Drive, Lake Bluff, Illinois 60044 (United States)] [Westinghouse Nuclear Services, 1 Energy Drive, Lake Bluff, Illinois 60044 (United States)

2013-07-01T23:59:59.000Z

255

Locating PHEV Exchange Stations in V2G  

E-Print Network [OSTI]

Plug-in hybrid electric vehicles (PHEVs) are an environmentally friendly technology that is expected to rapidly penetrate the transportation system. Renewable energy sources such as wind and solar have received considerable attention as clean power options for future generation expansion. However, these sources are intermittent and increase the uncertainty in the ability to generate power. The deployment of PHEVs in a vehicle-to-grid (V2G) system provide a potential mechanism for reducing the variability of renewable energy sources. For example, PHEV supporting infrastructures like battery exchange stations that provide battery service to PHEV customers could be used as storage devices to stabilize the grid when renewable energy production is fluctuating. In this paper, we study how to best site these stations in terms of how they can support both the transportation system and the power grid. To model this problem we develop a two-stage stochastic program to optimally locate the stations prior to the realizat...

Pan, Feng; Berscheid, Alan; Izraelevitz, David

2010-01-01T23:59:59.000Z

256

Clean Cities 2012 Vehicle Buyer's Guide (Brochure)  

SciTech Connect (OSTI)

The expanding availability of alternative fuels and advanced vehicles makes it easier than ever to reduce petroleum use, cut emissions, and save on fuel costs. The Clean Cities 2012 Vehicle Buyer's Guide features a comprehensive list of model year 2012 vehicles that can run on ethanol, biodiesel, electricity, propane or natural gas. Drivers and fleet managers across the country are looking for ways to reduce petroleum use, fuel costs, and vehicle emissions. As you'll find in this guide, these goals are easier to achieve than ever before, with an expanding selection of vehicles that use gasoline or diesel more efficiently, or forego them altogether. Plug-in electric vehicles made a grand entrance onto U.S. roadways in model year (MY) 2011, and their momentum in the market is poised for continued growth in 2012. Sales of the all-electric Nissan Leaf surpassed 8,000 in the fall of 2011, and the plug-in hybrid Chevy Volt is now available nationwide. Several new models from major automakers will become available throughout MY 2012, and drivers are benefiting from a rapidly growing network of charging stations, thanks to infrastructure development initiatives in many states. Hybrid electric vehicles, which first entered the market just a decade ago, are ubiquitous today. Hybrid technology now allows drivers of all vehicle classes, from SUVs to luxury sedans to subcompacts, to slash fuel use and emissions. Alternative fueling infrastructure is expanding in many regions, making natural gas, propane, ethanol, and biodiesel attractive and convenient choices for many consumers and fleets. And because fuel availability is the most important factor in choosing an alternative fuel vehicle, this growth opens up new possibilities for vehicle ownership. This guide features model-specific information about vehicle specs, manufacturer suggested retail price (MSRP), fuel economy, and emissions. You can use this information to compare vehicles and help inform your buying decisions. This guide includes city and highway fuel economy estimates from the U.S. Environmental Protection Agency (EPA). The estimates are based on laboratory tests conducted by manufacturers in accordance with federal regulations. EPA retests about 10% of vehicle models to confirm manufacturer results. Fuel economy estimates are also available on FuelEconomy.gov. For some newer vehicle models, EPA data was not available at the time of this guide's publication; in these cases, manufacturer estimates are provided, if available.

Not Available

2012-03-01T23:59:59.000Z

257

Energy Jobs: Electric Vehicle Charging Station Installer | Department of  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember 2011District | Department ofTrackingEnergy

258

GC GUIDANCE ON ELECTRIC VEHICLE RECHARGING STATIONS | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of Energy Freeport LNGEnergy Researchof EnergyELECTRIC

259

Orlando Plugs into Electric Vehicle Charging Stations | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDiesel Enginesthe U.S.Solar CompanyEngine |Energy

260

DOE Issues Guidance on Electric Vehicle Recharging Stations | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebratePartnersDepartmentfor Energy Delivery Systems |Energy

Note: This page contains sample records for the topic "vehicles refueling stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Washington DC's First Electric Vehicle Charging Station | Department of  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of EnergyofProject is onModeling andReportandVDepartmentWarmWashPotomac

262

Alternative Fuels Data Center: Electric Vehicle Charging Station Locations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAreSmartWay TransportEthanolAll-ElectricCNGDieselDrop-InE85:

263

Alternative Fuels Data Center: Electric Vehicle Charging Stations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAreSmartWay

264

Integration Of Locational Decisions with the Household Activity Pattern Problem and Its Applications in Transportation Sustainability  

E-Print Network [OSTI]

ubiquitous nature of gasoline stations, refueling an ICEVa refueling trip to a gasoline station typically does not6.8 % of current gasoline stations to provide hydrogen

Kang, Jee E

2013-01-01T23:59:59.000Z

265

Integration of Locational Decisions with the Household Activity Pattern Problem and Its Applications in Transportation Sustainability  

E-Print Network [OSTI]

ubiquitous nature of gasoline stations, refueling an ICEVa refueling trip to a gasoline station typically does not6.8 % of current gasoline stations to provide hydrogen

Kang, Jee Eun

2013-01-01T23:59:59.000Z

266

Powertrain & Vehicle Research Centre  

E-Print Network [OSTI]

complexity ·More efficient Vehicles, quicker to market, reduced cost to consumer The Optimisation Task and virtual environments Vehicle baseline testing on rolling road Calibration Control Engine VehiclePowertrain & Vehicle Research Centre Low Carbon Powertrain Development S. Akehurst, EPSRC Advanced

Burton, Geoffrey R.

267

Massachusetts Electric Vehicle Efforts  

E-Print Network [OSTI]

Massachusetts Electric Vehicle Efforts Christine Kirby, MassDEP ZE-MAP Meeting October 24, 2014 #12 · Provide Clean Air · Grow the Clean Energy Economy · Electric vehicles are a key part of the solution #12 is promoting EVs 4 #12;TCI and Electric Vehicles · Established the Northeast Electric Vehicle Network through

California at Davis, University of

268

Alternative Fuel Vehicle Data  

Reports and Publications (EIA)

Annual data released on the number of on-road alternative fuel vehicles and hybrid vehicles made available by both the original equipment manufacturers and aftermarket vehicle conversion facilities. Data on the use of alternative fueled vehicles and the amount of fuel they consume is also available.

2013-01-01T23:59:59.000Z

269

AVTA: 2010 Electric Vehicles International Neighborhood Electric...  

Energy Savers [EERE]

10 Electric Vehicles International Neighborhood Electric Vehicle Testing Results AVTA: 2010 Electric Vehicles International Neighborhood Electric Vehicle Testing Results The...

270

AGGREGATION ALGORITHMS IN A VEHICLE-TO-VEHICLE-TO-  

E-Print Network [OSTI]

-to-infrastructure (V2V2I) architecture, which is a hybrid of the vehicle-to-vehicle (V2V) and vehicle proposing is a hybrid of the V2I and V2V architectures, which is the vehicle-to-vehicle-to-infrastructure (VAGGREGATION ALGORITHMS IN A VEHICLE-TO-VEHICLE-TO- INFRASTRUCTURE (V2V2I) INTELLIGENT

Miller, Jeffrey A.

271

Rebalancing the rebalancers: Optimally routing vehicles and drivers in mobility-on-demand systems  

E-Print Network [OSTI]

In this paper we study rebalancing strategies for a mobility-on-demand urban transportation system blending customer-driven vehicles with a taxi service. In our system, a customer arrives at one of many designated stations ...

Smith, Stephen L.

272

Vehicle Technologies Office: 2012 Vehicle and Systems Simulation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2012vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

273

Vehicle Technologies Office: 2011 Vehicle and Systems Simulation...  

Energy Savers [EERE]

vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2011vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

274

DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle...  

Broader source: Energy.gov (indexed) [DOE]

1.pdf More Documents & Publications DOE Vehicle Technologies Program 2009 Merit Review Report DOE Vehicle Technologies Program 2009 Merit Review Report - Energy Storage DOE Vehicle...

275

Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles  

E-Print Network [OSTI]

The Images of Hybrid Vehicles Each of the householdsbetween hybrid and non-hybrid vehicles was observed in smallowned Honda Civic Hybrids, vehicles that are virtually

Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

2005-01-01T23:59:59.000Z

276

NREL: Vehicles and Fuels Research - Hybrid Electric Fleet Vehicle...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hybrid Electric Fleet Vehicle Testing How Hybrid Electric Vehicles Work Hybrid electric vehicles combine a primary power source, an energy storage system, and an electric motor to...

277

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt066vsskarner2012...

278

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt066vsskarner2011...

279

Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...  

Energy Savers [EERE]

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt072vssmackie2011...

280

Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...  

Energy Savers [EERE]

2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt072vssmackie2012...

Note: This page contains sample records for the topic "vehicles refueling stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Broader source: Energy.gov (indexed) [DOE]

EVSE Designed And Manufactured To Allow Power And Energy Data Collection And Demand Response Control Residential EVSE Installed For All Vehicles 1,300...

282

Advanced Technology Vehicle Testing  

SciTech Connect (OSTI)

The light-duty vehicle transportation sector in the United States depends heavily on imported petroleum as a transportation fuel. The Department of Energy’s Advanced Vehicle Testing Activity (AVTA) is testing advanced technology vehicles to help reduce this dependency, which would contribute to the economic stability and homeland security of the United States. These advanced technology test vehicles include internal combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban electric vehicles, and electric ground support vehicles. The AVTA tests and evaluates these vehicles with closed track and dynamometer testing methods (baseline performance testing) and accelerated reliability testing methods (accumulating lifecycle vehicle miles and operational knowledge within 1 to 1.5 years), and in normal fleet environments. The Arizona Public Service Alternative Fuel Pilot Plant and H2-fueled vehicles are demonstrating the feasibility of using H2 as a transportation fuel. Hybrid, neighborhood, and urban electric test vehicles are demonstrating successful applications of electric drive vehicles in various fleet missions. The AVTA is also developing electric ground support equipment (GSE) test procedures, and GSE testing will start during the fall of 2003. All of these activities are intended to support U.S. energy independence. The Idaho National Engineering and Environmental Laboratory manages these activities for the AVTA.

James Francfort

2003-11-01T23:59:59.000Z

283

The Case for Electric Vehicles  

E-Print Network [OSTI]

land Press, 1995 TESTING ELECTRIC VEHICLE DEMAND IN " HYBRIDThe Case for Electric Vehicles DanieI Sperlmg Reprint UCTCor The Case for Electric Vehicles Darnel Sperling Institute

Sperling, Daniel

2001-01-01T23:59:59.000Z

284

Electric Vehicle Smart Charging Infrastructure  

E-Print Network [OSTI]

for Multiplexed Electric Vehicle Charging”, US20130154561A1,Chynoweth, ”Intelligent Electric Vehicle Charging System”,of RFID Mesh Network for Electric Vehicle Smart Charging

Chung, Ching-Yen

2014-01-01T23:59:59.000Z

285

Coordinating Automated Vehicles via Communication  

E-Print Network [OSTI]

1.1 Vehicle Automation . . . . . . . . . . . 1.1.1 Controlareas of technology in vehicle automation and communicationChapter 1 Introduction Vehicle Automation Automation is an

Bana, Soheila Vahdati

2001-01-01T23:59:59.000Z

286

M Station, Austin  

E-Print Network [OSTI]

SUNSHINE MATHON, M. Arch., LEED Homes AP Design + Development Director sunshine.mathon@foundcom.org FOUNDATION COMMUNITIES Austin, TX T.O.D. District Area T.O.D. District Area T.O.D. District Area T.O.D. District Area 8.5 ACRE SITE 5-1.../2 Acres Buildable Boggy Creek Floodplain 8.5 ACRE SITE 5-1/2 Acres Buildable Boggy Creek Floodplain 4 Acres Concrete Abandoned Grayfield M STATION 80% 2 & 3-Bedrooms 150 1,2 & 3-Bedroom Apts M STATION 80% 2 & 3-Bedrooms 150 1,2 & 3-Bedroom Apts...

Mathon, S.

2011-01-01T23:59:59.000Z

287

Vehicle Technologies Office: AVTA - Diesel Internal Combusion...  

Energy Savers [EERE]

Vehicle Technologies Office: AVTA - Diesel Internal Combusion Engine Vehicles Vehicle Technologies Office: AVTA - Diesel Internal Combusion Engine Vehicles The Advanced Vehicle...

288

VEHICLE USAGE LOG Department ________________________________________ Vehicle Homebase ____________________________ Week Ended (Sunday) _________________  

E-Print Network [OSTI]

VEHICLE USAGE LOG Department ________________________________________ Vehicle Homebase ____________________________ Week Ended (Sunday) _________________ Door #____________ License Plate ____________________ Vehicle/Supplies (Enter Description such as grade sheets, artifacts, money, etc.) 6. Taking vehicle to Automotive Shop

Yang, Zong-Liang

289

Development of a dedicated ethanol ultra-low emission vehicle (ULEV): Final report  

SciTech Connect (OSTI)

The objective of this project was to develop a commercially competitive vehicle powered by ethanol (or an ethanol blend) that can meet California`s ultra-low emission vehicle (ULEV) standards and equivalent corporate average fuel economy (CAFE) energy efficiency for a light-duty passenger car application. The definition of commercially competitive is independent of fuel cost, but does include technical requirements for competitive power, performance, refueling times, vehicle range, driveability, fuel handling safety, and overall emissions performance. This report summarizes the fourth and final phase of this project, and also the overall project. The focus of this report is the technology used to develop a dedicated ethanol-fueled ULEV, and the emissions results documenting ULV performance. Some of the details for the control system and hardware changes are presented in two appendices that are SAE papers. The demonstrator vehicle has a number of advanced technological features, but it is currently configured with standard original equipment manufacturer (OEM) under-engine catalysts. Close-coupled catalysts would improve emissions results further, but no close-coupled catalysts were available for this testing. Recently, close-coupled catalysts were obtained, but installation and testing will be performed in the future. This report also briefly summarizes work in several other related areas that supported the demonstrator vehicle work.

Dodge, L.; Bourn, G.; Callahan, T.; Grogan, J.; Leone, D.; Naegeli, D.; Shouse, K.; Thring, R.; Whitney, K. [Southwest Research Inst., San Antonio, TX (United States)

1998-09-01T23:59:59.000Z

290

Development of a dedicated ethanol ultra-low emission vehicle (ULEV) system design  

SciTech Connect (OSTI)

The objective of this 3.5 year project is to develop a commercially competitive vehicle powered by ethanol (or ethanol blend) that can meet California`s ultra-low emission vehicle (ULEV) standards and equivalent corporate average fuel economy (CAFE) energy efficiency for a light-duty passenger car application. The definition of commercially competitive is independent of fuel cost, but does include technical requirements for competitive power, performance, refueling times, vehicle range, driveability, fuel handling safety, and overall emissions performance. This report summarizes a system design study completed after six months of effort on this project. The design study resulted in recommendations for ethanol-fuel blends that shall be tested for engine low-temperature cold-start performance and other criteria. The study also describes three changes to the engine, and two other changes to the vehicle to improve low-temperature starting, efficiency, and emissions. The three engine changes are to increase the compression ratio, to replace the standard fuel injectors with fine spray injectors, and to replace the powertrain controller. The two other vehicle changes involve the fuel tank and the aftertreatment system. The fuel tank will likely need to be replaced to reduce evaporative emissions. In addition to changes in the main catalyst, supplemental aftertreatment systems will be analyzed to reduce emissions before the main catalyst reaches operating temperature.

Bourn, G.; Callahan, T.; Dodge, L.; Mulik, J.; Naegeli, D.; Shouse, K.; Smith, L.; Whitney, K. [Southwest Research Inst., San Antonio, TX (United States)

1995-02-01T23:59:59.000Z

291

Skate Station UF Services  

E-Print Network [OSTI]

friends, practice your English, and try new activities! Where: Skate Station Funworks We will be meeting and more orderly manner. Everyone will be served eventually. Fire Drills/Alarms: Whenever you hear a fire should park your bike in well-lighted areas and lock it up when you park it. The best lock is a U

Pilyugin, Sergei S.

292

Intelligent pothole repair vehicle  

E-Print Network [OSTI]

This thesis presents an endeavor to design and construct a prototype of an automated road repair vehicle called the Intelligent Pothole Repair Vehicle (IPRV). The IPRV is capable of automatically detecting and filling potholes on road surfaces...

Minocher Homji, Ruzbeh Adi

2006-10-30T23:59:59.000Z

293

Social networking in vehicles  

E-Print Network [OSTI]

In-vehicle, location-aware, socially aware telematic systems, known as Flossers, stand to revolutionize vehicles, and how their drivers interact with their physical and social worlds. With Flossers, users can broadcast and ...

Liang, Philip Angus

2006-01-01T23:59:59.000Z

294

Electric Vehicle Research Group  

E-Print Network [OSTI]

.................................................................................9 From diesel to electric: a new era in personnel transport for underground coal minesElectric Vehicle Research Group Annual Report 2012 #12;Table of Contents Executive Summary................................................................................8 C2-25 Electric Vehicle Drivetrain

Liley, David

295

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September byet al. , 1988,1989 HYDROGEN FUEL-CELL VEHICLES: TECHNICALIn the FCEV, the hydrogen fuel cell could supply the "net"

Delucchi, Mark

1992-01-01T23:59:59.000Z

296

Consumer Vehicle Technology Data  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

297

Automated Vehicle-to-Vehicle Collision Avoidance at Intersections  

E-Print Network [OSTI]

Automated Vehicle-to-Vehicle Collision Avoidance at Intersections M. R. Hafner1 , D. Cunningham2 on modified Lexus IS250 test vehicles. The system utilizes vehicle-to-vehicle (V2V) Dedicated Short the velocities of both vehicles with automatic brake and throttle commands. Automatic commands can never cause

Del Vecchio, Domitilla

298

Motor Vehicle Record Procedure Objective  

E-Print Network [OSTI]

Motor Vehicle Record Procedure Objective Outline the procedure for obtaining motor vehicle record (MVR) through Fleet Services. Vehicle Operator Policy 3. Operators with 7 or more points on their motor vehicle record

Kirschner, Denise

299

Powertrain & Vehicle Research Centre  

E-Print Network [OSTI]

Simulation Basic Engine Test Vehicle Test Cost & Complexity Towards Final Product Lean Powertrain Development Viewing Trade-Offs and Finding Optima Realism Advanced Engine Test Vehicle Test Rolling Road Powertrain powertrain development tasks to reduce costs and time to market The vehicle powertrain is the system

Burton, Geoffrey R.

300

Washington State Electric Vehicle  

E-Print Network [OSTI]

Washington State Electric Vehicle Implementation Bryan Bazard Maintenance and Alternate Fuel Technology Manager #12;Executive Order 14-04 Requires the procurement of electric vehicles where and equipment with electricity or biofuel to the "extent practicable" by June 2015 1. The vehicle is due

California at Davis, University of

Note: This page contains sample records for the topic "vehicles refueling stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Energy 101: Electric Vehicles  

ScienceCinema (OSTI)

This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

None

2013-05-29T23:59:59.000Z

302

Automotive vehicle sensors  

SciTech Connect (OSTI)

This report is an introduction to the field of automotive vehicle sensors. It contains a prototype data base for companies working in automotive vehicle sensors, as well as a prototype data base for automotive vehicle sensors. A market analysis is also included.

Sheen, S.H.; Raptis, A.C.; Moscynski, M.J.

1995-09-01T23:59:59.000Z

303

Breaking the paradigm: Revitalizing the liquid radwaste program at River Bend Station  

SciTech Connect (OSTI)

In December 1995, River Bend Station established the goal of becoming a liquid radwaste {open_quotes}zero discharge{close_quotes} plant by 1998. A new paradigm was required to reduce River Bend Station`s annual discharge volume from over 7.5 million gallons in 1995 to {open_quotes}zero{close_quotes} gallons in two years. Changes instituted to date include. (1) Creation of a cross-discipline natural work team (NWT) responsible for radwaste improvements. (2) Enhanced walnut shell filter performance using a polymer filter aid. (3) Activated charcoal to reduce total organic carbon (TOC). (4) Improved operating practices based upon data review and trending. (5) Improved operability of radwaste equipment. Results are encouraging. The volume discharged January through May 1996, including a 39 day refueling outage, is 1.25 million gallons. Only one discharge has occurred since March 2. Historically, discharge volume during a similar five month period has exceeded 3 million gallons. No additional discharges are planned for 1996. Additional improvements are being actively evaluated. These include more effective radwaste train media, UV/O3 decomposition of TOC, adding non-precoated filters to the radwaste stream, reverse osmosis and real-time trending of inleakage volume and TOC and source term reduction.

Mallory, C.C. II; Lewis, C.A. [Entergy, St. Francisville, LA (United States)

1996-10-01T23:59:59.000Z

304

SOLID STATE HYDRIDE SYSTEM ENGINEERING  

SciTech Connect (OSTI)

A typical hydrogen refueling station was designed based on DOE targets and existing gasoline filling station operations. The purpose of this design was to determine typical heat loads, how these heat loads will be handled, and approximate equipment sizes. For the station model, two DOE targets that had the most impact on the design were vehicle driving range and refueling time. The target that hydrogen fueled vehicles should have the equivalent driving range as present automobiles, requires 5 kg hydrogen storage. Assuming refueling occurs when the tank is 80% empty yields a refueling quantity of 4 kg. The DOE target for 2010 of a refueling time of 3 minutes was used in this design. There is additional time needed for payment of the fuel, and connecting and disconnecting hoses and grounds. It was assumed that this could be accomplished in 5 minutes. Using 8 minutes for each vehicle refueling gives a maximum hourly refueling rate of 7.5 cars per hour per fueling point.

Anton, D; Mark Jones, M; Bruce Hardy, B

2007-10-31T23:59:59.000Z

305

Pacific Southwest Research Station Publications  

E-Print Network [OSTI]

Bulletins 1- 28 1965-1989 Soil- Vegetation Tables -- 1965-1980 Solar Irradiation and Shadow Length Tables-1971 1938 California Forest and Range Experiment Station Annual Report 1939 California Forest and Range Experiment Station Annual Report 1940 California Forest and Range Experiment Station Annual Report 1951

Standiford, Richard B.

306

William and Mary Athletics State Vehicle / Rental Vehicle / Personal Vehicle Policies  

E-Print Network [OSTI]

William and Mary Athletics State Vehicle / Rental Vehicle / Personal Vehicle Policies Last Update: 2/14/14 W&M's vehicle use policy requires that a driver authorization form be completed and approved before driving any vehicle (including a personal vehicle) for university business or a university

Swaddle, John

307

Evaluation of potential severe accidents during low power and shutdown operations at Grand Gulf, Unit 1: Evaluation of severe accident risks for plant operational state 5 during a refueling outage. Main report and appendices, Volume 6, Part 1  

SciTech Connect (OSTI)

Traditionally, probabilistic risk assessments (PRAS) of severe accidents in nuclear power plants have considered initiating events potentially occurring only during full power operation. Recent studies and operational experience have, however, implied that accidents during low power and shutdown could be significant contributors to risk. In response to this concern, in 1989 the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the potential risks during low power and shutdown operations. Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the plants to be studied. The program consists of two parallel projects being performed by Brookhaven National Laboratory (Surry) and Sandia National Laboratories (Grand Gulf). The program objectives include assessing the risks of severe accidents initiated during plant operational states other than full power operation and comparing the estimated risks with the risk associated with accidents initiated during full power operation as assessed in NUREG-1150. The scope of the program is that of a Level-3 PRA. The subject of this report is the PRA of the Grand Gulf Nuclear Station, Unit 1. The Grand Gulf plant utilizes a 3833 MWt BUR-6 boiling water reactor housed in a Mark III containment. The Grand Gulf plant is located near Port Gibson, Mississippi. The regime of shutdown analyzed in this study was plant operational state (POS) 5 during a refueling outage, which is approximately Cold Shutdown as defined by Grand Gulf Technical Specifications. The entire PRA of POS 5 is documented in a multi-volume NUREG report (NUREG/CR-6143). The internal events accident sequence analysis (Level 1) is documented in Volume 2. The Level 1 internal fire and internal flood analyses are documented in Vols 3 and 4, respectively.

Brown, T.D.; Kmetyk, L.N.; Whitehead, D.; Miller, L. [Sandia National Labs., Albuquerque, NM (United States); Forester, J. [Science Applications International Corp., Albuquerque, NM (United States); Johnson, J. [GRAM, Inc., Albuquerque, NM (United States)

1995-03-01T23:59:59.000Z

308

Design for implementation : fully integrated charging & docking infrastructure used in Mobility-on-Demand electric vehicle fleets  

E-Print Network [OSTI]

As the technology used in electric vehicles continues to advance, there is an increased demand for urban-appropriate electric charging stations emphasizing a modern user interface, robust design, and reliable functionality. ...

Martin, Jean Mario Nations

2012-01-01T23:59:59.000Z

309

Vehicle underbody fairing  

DOE Patents [OSTI]

A vehicle underbody fairing apparatus for reducing aerodynamic drag caused by a vehicle wheel assembly, by reducing the size of a recirculation zone formed under the vehicle body immediately downstream of the vehicle wheel assembly. The fairing body has a tapered aerodynamic surface that extends from a front end to a rear end of the fairing body with a substantially U-shaped cross-section that tapers in both height and width. Fasteners or other mounting devices secure the fairing body to an underside surface of the vehicle body, so that the front end is immediately downstream of the vehicle wheel assembly and a bottom section of the tapered aerodynamic surface rises towards the underside surface as it extends in a downstream direction.

Ortega, Jason M. (Pacifica, CA); Salari, Kambiz (Livermore, CA); McCallen, Rose (Livermore, CA)

2010-11-09T23:59:59.000Z

310

Advanced Technology Vehicle Testing  

SciTech Connect (OSTI)

The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

James Francfort

2004-06-01T23:59:59.000Z

311

General Vehicle Performance Specifications for the UPRM AUV Vehicle Specifications  

E-Print Network [OSTI]

General Vehicle Performance Specifications for the UPRM AUV Vehicle Specifications Vehicle Characteristics Specification Maximum Depth 700m with 1.5 safety factor Vehicle power 2kWHr Li Ion Rechargeable Transducer 700m rated Paroscientific Depth Sensor will be integrated into the vehicle navigation stream

Gilbes, Fernando

312

VEHICLE USE RECORD M/Y DEPARTMENT VEHICLE LOCATION  

E-Print Network [OSTI]

VEHICLE USE RECORD M/Y DEPARTMENT VEHICLE LOCATION Date Origin/Destination Purpose Time Out Time) Accuracy of Information (b) Valid Driver's License VEHICLE # TAG # VEHICLE MAKE, MODEL, AND YEAR NOTE: Vehicle logs must be maintained for audit purposes. It is important that all of the required information

Watson, Craig A.

313

Accomodating Electric Vehicles  

E-Print Network [OSTI]

Accommodating Electric Vehicles Dave Aasheim 214-551-4014 daasheim@ecotality.com A leader in clean electric transportation and storage technologies ECOtality North America Overview Today ? Involved in vehicle electrification... ECOtality North America Overview Today ?Warehouse Material Handling ? Lift trucks ? Pallet Jacks ? Over 200 Customers ? Over 5,000 Installations ECOtality North America Overview Today ? 1990?s involved in EV1 ? EV Chargers ? Vehicle & battery...

Aasheim, D.

2011-01-01T23:59:59.000Z

314

Transit Infrastructure Finance Through Station Location Auctions  

E-Print Network [OSTI]

Numerous route and station options Strong real estate marketreal estate market Transit friendly constituents Numerous route and station options

Ian Carlton

2009-01-01T23:59:59.000Z

315

DOE/BNL Liquid Natural Gas Heavy Vehicle Program  

SciTech Connect (OSTI)

As a means of lowering greenhouse gas emissions, increasing economic growth, and reducing the dependency on imported oil, the Department of Energy and Brookhaven National Laboratory (DOE/ BNL) is promoting the substitution of liquefied natural gas (LNG) in heavy-vehicles that are currently being fueled by diesel. Heavy vehicles are defined as Class 7 and 8 trucks (> 118,000 pounds GVVV), and transit buses that have a fuel usage greater than 10,000 gallons per year and driving range of more than 300 miles. The key in making LNG market-competitive with all types of diesel fuels is in improving energy efficiency and reducing costs of LNG technologies through systems integration. This paper integrates together the three LNG technologies of: (1) production from landfills and remote well sites; (2) cryogenic fuel delivery systems; and (3) state-of-the-art storage tank and refueling facilities, with market end-use strategies. The program's goal is to develop these technologies and strategies under a ''green'' and ''clean'' strategy. This ''green'' approach reduces the net contribution of global warming gases by reducing levels of methane and carbon dioxide released by heavy vehicles usage to below recoverable amounts of natural gas from landfills and other natural resources. Clean technology refers to efficient use of energy with low environmental emissions. The objective of the program is to promote fuel competition by having LNG priced between $0.40 - $0.50 per gallon with a combined production, fuel delivery and engine systems efficiency approaching 45%. This can make LNG a viable alternative to diesel.

James E. Wegrzyn; Wai-Lin Litzke; Michael Gurevich

1998-08-11T23:59:59.000Z

316

Quadrennial Technology Review Vehicle Efficiency and Electrification...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Review Vehicle Efficiency and Electrification Workshop Documents Quadrennial Technology Review Vehicle Efficiency and Electrification Workshop Documents QTR Vehicle Efficiency and...

317

Alternative Fuel Vehicle Resources  

Broader source: Energy.gov [DOE]

Alternative fuel vehicles use fuel types other than petroleum and include such fuels as electricity, ethanol, biodiesel, natural gas, hydrogen, and propane. Compared to petroleum, these...

318

Vehicle Emissions Review - 2012  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Emissions Review - 2012 Tim Johnson October 16, 2012 2 Environmental Technologies Summary * Regulations - LEVIII finalized, Tier 3? RDE in Europe developing and very...

319

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

Research Institute 1990 Fuel Cell Status," Proceedings ofMiller, "Introduction: Fuel-Cell-Powered Vehicle DevelopmentPrograms," presented at Fuel Cells for Transportation,

Delucchi, Mark

1992-01-01T23:59:59.000Z

320

Georgia Tech Vehicle Acquisition and  

E-Print Network [OSTI]

1 2012 Georgia Tech 10/10/2012 Vehicle Acquisition and Disposition Manual #12;2 Vehicle Procedures Regardless of value, all vehicles should be included in this process. Acquisition of a Vehicle 1. Contact Fleet Coordinator to guide the departments in the purchasing process for all vehicles. 2. Fill out

Note: This page contains sample records for the topic "vehicles refueling stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Electric-Drive Vehicle Basics (Brochure)  

SciTech Connect (OSTI)

Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

Not Available

2011-04-01T23:59:59.000Z

322

Vehicle Technologies Office: AVTA - Evaluating Military Bases...  

Energy Savers [EERE]

Military Bases and Fleet Readiness for Electric Vehicles Vehicle Technologies Office: AVTA - Evaluating Military Bases and Fleet Readiness for Electric Vehicles The Vehicle...

323

2012 U.S. Vehicle Analysis  

E-Print Network [OSTI]

Electric Vehicles …………………………………………………………. Dieselperformance of electric vehicles Diesel Vehicle From Tableelectric vehicles ……………………… 3.15: Emission and fuel efficiency performance of diesel

Lam, Ho Yeung Michael

2012-01-01T23:59:59.000Z

324

Vehicle Technologies Office Merit Review 2014: In-Vehicle Evaluation...  

Broader source: Energy.gov (indexed) [DOE]

In-Vehicle Evaluation of Lower-Energy Energy Storage System (LEESS) Devices Vehicle Technologies Office Merit Review 2014: In-Vehicle Evaluation of Lower-Energy Energy Storage...

325

Workplace Charging Case Study: Charging Station Utilization at a Work Site with AC Level 1, AC Level 2, and DC Fast Charging Units  

SciTech Connect (OSTI)

This paper describes the use of electric vehicle charging stations installed at a large corporate office complex. It will be published to the INL website for viewing by the general public.

John Smart; Don Scoffield

2014-06-01T23:59:59.000Z

326

> 070131-073Vehicle  

E-Print Network [OSTI]

-how developed with the design ofthe ROAZ ASV [3] [4]. Power is provided by electric batteries. The computer> 070131-073Vehicle for Network Centric Operations H. Ferreira-The design and development of the Swordfish Autonomous Surface Vehicle (ASV) system is discussed. Swordfish

Marques, Eduardo R. B.

327

Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle...  

Broader source: Energy.gov (indexed) [DOE]

nation's vehicle fleet. VTO invested 400 million in 18 projects to demonstrate plug-in electric vehicles (PEVs, also known as electric cars) and infrastructure, including 10...

328

Challenges in Electric Vehicle Adoption and Vehicle-Grid Integration.  

E-Print Network [OSTI]

??With rapid innovation in vehicle and battery technology and strong support from governmental bodies and regulators, electric vehicles (EV) sales are poised to rise. While… (more)

Xi, Xiaomin

2013-01-01T23:59:59.000Z

329

Vehicle Technologies Office: 2010 Vehicle and Systems Simulation...  

Broader source: Energy.gov (indexed) [DOE]

vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2010vsstreport.pdf More Documents & Publications AVTA PHEV Demonstrations and...

330

Vehicle Technologies Office: 2013 Vehicle and Systems Simulation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and field evaluations, codes and standards, industry projects, and vehicle systems optimization. 2013vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

331

NREL: Vehicles and Fuels Research - Hydraulic Hybrid Fleet Vehicle...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydraulic Hybrid Fleet Vehicle Testing How Hydraulic Hybrid Vehicles Work Hydraulic hybrid systems can capture up to 70% of the kinetic energy that would otherwise be lost during...

332

May 19-22, 2003 DTE Hydrogen Power Park  

E-Print Network [OSTI]

with electrolysis and stationary PEM fuel cell technology to take advantage of low-cost power during off-peak hours at +5,000 psi (proven, safe, relatively cost effective) 25 ­ 75 kW fuel cell bank (quiet, clean 50 kW Fuel Cell Bank Biomass and/or Central Station power Distribution Grid Vehicle refueling station

333

Wachs Cutter Tooling Station (4495)  

Broader source: Energy.gov (indexed) [DOE]

purchase, build and install Wachs cutter tooling. The Wachs Cutter Tooling Station is similar to previously operated facility tooling and will utilize an existing hydraulic unit....

334

Station design using orifice meters  

SciTech Connect (OSTI)

This paper reports that proper meter station design using gas orifice meters must include consideration of a number of factors to minimize operation and maintenance problems while obtaining the best accuracy over the life of the station. A station should provide accuracy, be safe, functional, economical and free of undue maintenance. It should comply with all codes, reports and specifications but most of all it should be able to comply with terms set forth in the contract. All measuring stations should be designed with considerations of growth or reductions in volume. It should be attractive and built to last for many years.

Upp, E.L. (Daniel Industries, Inc., Houston, TX (United States))

1992-07-01T23:59:59.000Z

335

The Vehicle Technologies Market Report  

E-Print Network [OSTI]

The Vehicle Technologies Market Report Center for Transportation Analysis 2360 Cherahala Boulevard Efficiency Transportation: Energy Environment Safety Security Vehicle Technologies T he Oak Ridge National Laboratory's Center for Transportation Analysis developed and published the first Vehicle Technologies Market

336

SOLAR-POWERED AUTONOMOUS UNDERWATER VEHICLE DEVELOPMENT James Jalbert, John Baker, John Duchesney, Paul Pietryka, William Dalton  

E-Print Network [OSTI]

batteries daily using solar panels to convert solar energy to electrical energy. #12;· Operate at depthsSOLAR-POWERED AUTONOMOUS UNDERWATER VEHICLE DEVELOPMENT James Jalbert, John Baker, John Duchesney in such applications. The concept of a vehicle that would allow on-station recharging of batteries, using solar cells

337

Vehicle Technologies Office: Propulsion Systems  

Broader source: Energy.gov [DOE]

Vehicle Technologies Office research focuses much of its effort on improving vehicle fuel economy while meeting increasingly stringent emissions standards. Achieving these goals requires a...

338

Gasoline Ultra Fuel Efficient Vehicle  

Broader source: Energy.gov (indexed) [DOE]

Principal Investigator 13MY11 2011 DOE Vehicle Technologies Review Gasoline Ultra Fuel Efficient Vehicle ACE064 "This presentation does not contain any proprietary,...

339

Advanced Vehicle Electrification and Transportation Sector Electrifica...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Advanced Vehicle Electrification and Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector...

340

A Verified Hybrid Controller For Automated Vehicles  

E-Print Network [OSTI]

con- trollers for vehicle automation," in American ControlTomizuka, Vehicle lateral control for highway automation,"

Lygeros, J.; Godbole, D. N.; Sastry, S.

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicles refueling stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Blast resistant vehicle seat  

DOE Patents [OSTI]

Disclosed are various seats for vehicles particularly military vehicles that are susceptible to attack by road-bed explosive devices such as land mines or improvised explosive devices. The seats often have rigid seat shells and may include rigid bracing for rigidly securing the seat to the chassis of the vehicle. Typically embodiments include channels and particulate media such as sand disposed in the channels. A gas distribution system is generally employed to pump a gas through the channels and in some embodiments the gas is provided at a pressure sufficient to fluidize the particulate media when an occupant is sitting on the seat.

Ripley, Edward B

2013-02-12T23:59:59.000Z

342

Rapid road repair vehicle  

DOE Patents [OSTI]

Disclosed are improvments to a rapid road repair vehicle comprising an improved cleaning device arrangement, two dispensing arrays for filling defects more rapidly and efficiently, an array of pre-heaters to heat the road way surface in order to help the repair material better bond to the repaired surface, a means for detecting, measuring, and computing the number, location and volume of each of the detected surface imperfection, and a computer means schema for controlling the operation of the plurality of vehicle subsystems. The improved vehicle is, therefore, better able to perform its intended function of filling surface imperfections while moving over those surfaces at near normal traffic speeds.

Mara, Leo M. (Livermore, CA)

1999-01-01T23:59:59.000Z

343

ROBUST SCALABLE VEHICLE CONTROL VIA NON-DIMENSIONAL VEHICLE DYNAMICS  

E-Print Network [OSTI]

- 1 - ROBUST SCALABLE VEHICLE CONTROL VIA NON-DIMENSIONAL VEHICLE DYNAMICS S. Brennan & A. Alleyne and spatial re-parameterization of the linear vehicle Bicycle Model is presented utilizing non-dimensional ratios of vehicle parameters called -groups. Investigation of the -groups using compiled data from 44

Brennan, Sean

344

ROBUST SCALABLE VEHICLE CONTROL VIA NON-DIMENSIONAL VEHICLE DYNAMICS  

E-Print Network [OSTI]

ROBUST SCALABLE VEHICLE CONTROL VIA NON-DIMENSIONAL VEHICLE DYNAMICS S. Brennan & A. Alleyne Dept, IL 61801 ABSTRACT A temporal and spatial re-parameterization of the well- known linear vehicle Bicycle Model is presented. This parameterization utilizes non-dimensional ratios of vehicle parameters

Brennan, Sean

345

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

Rechargeable Zinc-Air Battery System for Electric Vehicles,"hthium/polymer* Zinc-air battery (Electric Fuel)* NickelThe discharge rate for the zinc/air battery was 5 hours at a

Delucchi, Mark

1992-01-01T23:59:59.000Z

346

Durability study of a vehicle-scale hydrogen storage system.  

SciTech Connect (OSTI)

Sandia National Laboratories has developed a vehicle-scale demonstration hydrogen storage system as part of a Work for Others project funded by General Motors. This Demonstration System was developed based on the properties and characteristics of sodium alanates which are complex metal hydrides. The technology resulting from this program was developed to enable heat and mass management during refueling and hydrogen delivery to an automotive system. During this program the Demonstration System was subjected to repeated hydriding and dehydriding cycles to enable comparison of the vehicle-scale system performance to small-scale sample data. This paper describes the experimental results of life-cycle studies of the Demonstration System. Two of the four hydrogen storage modules of the Demonstration System were used for this study. A well-controlled and repeatable sorption cycle was defined for the repeated cycling, which began after the system had already been cycled forty-one times. After the first nine repeated cycles, a significant hydrogen storage capacity loss was observed. It was suspected that the sodium alanates had been affected either morphologically or by contamination. The mechanisms leading to this initial degradation were investigated and results indicated that water and/or air contamination of the hydrogen supply may have lead to oxidation of the hydride and possibly kinetic deactivation. Subsequent cycles showed continued capacity loss indicating that the mechanism of degradation was gradual and transport or kinetically limited. A materials analysis was then conducted using established methods including treatment with carbon dioxide to react with sodium oxides that may have formed. The module tubes were sectioned to examine chemical composition and morphology as a function of axial position. The results will be discussed.

Johnson, Terry Alan; Dedrick, Daniel E.; Behrens, Richard, Jr.

2010-11-01T23:59:59.000Z

347

Alternative Fuel Vehicles: The Case of Compressed Natural Gas (CNG) Vehicles in California Households  

E-Print Network [OSTI]

VEHICLES: THE CASE OF COMPRESSED NATURAL GAS (CNG) VEHICLESyou first learn about compressed natural gas (CNG) vehicles?VEHICLES: THE CASE OF COMPRESSED NATURAL GAS (CNG) VEHICLES

Abbanat, Brian A.

2001-01-01T23:59:59.000Z

348

Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP)  

Broader source: Energy.gov [DOE]

Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

349

Vehicle Technologies Office Merit Review 2014: Smith Electric...  

Broader source: Energy.gov (indexed) [DOE]

Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification Vehicle Technologies Office Merit Review 2014: Smith Electric Vehicles: Advanced...

350

Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis  

SciTech Connect (OSTI)

The Department of Energy Hydrogen & Fuel Cells Program Plan (September 2011) identifies the use of hydrogen for government and fleet electric vehicles as a key step for achieving “reduced greenhouse gas emissions; reduced oil consumption; expanded use of renewable power …; highly efficient energy conversion; fuel flexibility …; reduced air pollution; and highly reliable grid-support.” This report synthesizes several pieces of existing information that can inform a decision regarding the viability of deploying a hydrogen (H2) fueling station at the Fort Armstrong site in Honolulu, Hawaii.

Porter Hill; Michael Penev

2014-08-01T23:59:59.000Z

351

A High-Altitude, Station-Keeping Astronomical Platform  

E-Print Network [OSTI]

Several commercial telecommunication ventures together with a well funded US military program make it a likely possibility that an autonomous, high-altitude, light-than-air (LTA) vehicle which could maneuver and station-keep for weeks to many months will be a reality in a few years. Here I outline how this technology could be used to develop a high-altitude astronomical observing platform which could return high-resolution optical data rivaling those from space-based platforms but at a fraction of the cost.

Robert A. Fesen

2006-06-15T23:59:59.000Z

352

A High-Altitude, Station-Keeping Astronomical Platform  

E-Print Network [OSTI]

Several commercial telecommunication ventures together with a well funded US military program make it a likely possibility that an autonomous, high-altitude, light-than-air (LTA) vehicle which could maneuver and station-keep for weeks to many months will be a reality in a few years. Here I outline how this technology could be used to develop a high-altitude astronomical observing platform which could return high-resolution optical data rivaling those from space-based platforms but at a fraction of the cost.

Fesen, R A

2006-01-01T23:59:59.000Z

353

Vehicle Repair Policy Outline the policy regarding vehicle repair on University of Michigan (U-M) vehicles.  

E-Print Network [OSTI]

Vehicle Repair Policy Objective Outline the policy regarding vehicle repair on University of Michigan (U-M) vehicles. Policy 1. All vehicle repairs performed on U-M vehicles must be coordinated facility to repair their fleet vehicles. 2. U-M vehicles leased through Fleet Services include routine

Kirschner, Denise

354

Energy Department Launches Alternative Fueling Station Locator...  

Broader source: Energy.gov (indexed) [DOE]

Launches Alternative Fueling Station Locator App Energy Department Launches Alternative Fueling Station Locator App November 7, 2013 - 11:16am Addthis As part of the Obama...

355

Rapidly refuelable fuel cell  

DOE Patents [OSTI]

This invention is directed to a metal-air fuel cell where the consumable metal anode is movably positioned in the cell and an expandable enclosure, or bladder, is used to press the anode into contact with separating spacers between the cell electrodes. The bladder may be depressurized to allow replacement of the anode when consumed.

Joy, Richard W. (Santa Clara, CA)

1983-01-01T23:59:59.000Z

356

Methylotroph cloning vehicle  

DOE Patents [OSTI]

A cloning vehicle comprising: a replication determinant effective for replicating the vehicle in a non-C.sub.1 -utilizing host and in a C.sub.1 -utilizing host; DNA effective to allow the vehicle to be mobilized from the non-C.sub.1 -utilizing host to the C.sub.1 -utilizing host; DNA providing resistance to two antibiotics to which the wild-type C.sub.1 -utilizing host is susceptible, each of the antibiotic resistance markers having a recognition site for a restriction endonuclease; a cos site; and a means for preventing replication in the C.sub.1 -utilizing host. The vehicle is used for complementation mapping as follows. DNA comprising a gene from the C.sub.1 -utilizing organism is inserted at the restriction nuclease recognition site, inactivating the antibiotic resistance marker at that site. The vehicle can then be used to form a cosmid structure to infect the non-C.sub.1 -utilizing (e.g., E. coli) host, and then conjugated with a selected C.sub.1 -utilizing mutant. Resistance to the other antibiotic by the mutant is a marker of the conjugation. Other phenotypical changes in the mutant, e.g., loss of an auxotrophic trait, is attributed to the C.sub.1 gene. The vector is also used to inactivate genes whose protein products catalyze side reactions that divert compounds from a biosynthetic pathway to a desired product, thereby producing an organism that makes the desired product in higher yields.

Hanson, Richard S. (Deephaven, MN); Allen, Larry N. (Excelsior, MN)

1989-04-25T23:59:59.000Z

357

Apparatus for stopping a vehicle  

DOE Patents [OSTI]

An apparatus for externally controlling one or more brakes on a vehicle having a pressurized fluid braking system. The apparatus can include a pressurizable vessel that is adapted for fluid-tight coupling to the braking system. Impact to the rear of the vehicle by a pursuit vehicle, shooting a target mounted on the vehicle or sending a signal from a remote control can all result in the fluid pressures in the braking system of the vehicle being modified so that the vehicle is stopped and rendered temporarily inoperable. A control device can also be provided in the driver's compartment of the vehicle for similarly rendering the vehicle inoperable. A driver or hijacker of the vehicle preferably cannot overcome the stopping action from the driver's compartment.

Wattenburg, Willard H. (Walnut Creek, CA); McCallen, David B. (Livermore, CA)

2007-03-20T23:59:59.000Z

358

The Evolution of Sustainable Personal Vehicles  

E-Print Network [OSTI]

energy resource conversion (NREL, 2004). Sustainable Vehicle Energy StorageEnergy, Fuel, & Vehicle Technologies.41 Introduction41 Sustainable Energy Resources..42 Sustainable Vehicle Energy Storage..43 Sustainable

Jungers, Bryan D

2009-01-01T23:59:59.000Z

359

Achieving and Demonstrating Vehicle Technologies Engine Fuel...  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Technologies Engine Fuel Efficiency Milestones Achieving and Demonstrating Vehicle Technologies Engine Fuel Efficiency Milestones 2010 DOE Vehicle Technologies and Hydrogen...

360

Demonstration of Automated Heavy-Duty Vehicles  

E-Print Network [OSTI]

a future in which vehicle automation technologies are ableto support the heavy vehicle automation including PrecisionCommittee on Vehicle-Highway Automation, and the attendees

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicles refueling stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Vehicle Technologies Office: Annual Progress Reports | Department...  

Energy Savers [EERE]

Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program DOE Vehicle Technologies Office Annual Merit Review Energy Storage Research...

362

Vehicle Technologies Office Merit Review 2014: Thermoelectric...  

Broader source: Energy.gov (indexed) [DOE]

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles Vehicle Technologies Office Merit Review 2014: Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...

363

The Evolution of Sustainable Personal Vehicles  

E-Print Network [OSTI]

Propulsion Systems for Hybrid Vehicles. The Institution ofA.B. (1996). Ultralight-Hybrid Vehicle Design: OvercomingLightweight Electric/Hybrid Vehicle Design. Reel Educational

Jungers, Bryan D

2009-01-01T23:59:59.000Z

364

Hydrogen Vehicle and Infrastructure Demonstration and Validation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vehicle and Infrastructure Demonstration and Validation Hydrogen Vehicle and Infrastructure Demonstration and Validation 2009 DOE Hydrogen Program and Vehicle Technologies Program...

365

Vehicle brake testing system  

DOE Patents [OSTI]

This invention relates to a force measuring system capable of measuring forces associated with vehicle braking and of evaluating braking performance. The disclosure concerns an invention which comprises a first row of linearly aligned plates, a force bearing surface extending beneath and beside the plates, vertically oriented links and horizontally oriented links connecting each plate to a force bearing surface, a force measuring device in each link, a transducer coupled to each force measuring device, and a computing device coupled to receive an output signal from the transducer indicative of measured force in each force measuring device. The present invention may be used for testing vehicle brake systems.

Stevens, Samuel S. (Harriman, TN); Hodgson, Jeffrey W. (Lenoir City, TN)

2002-11-19T23:59:59.000Z

366

BEEST: Electric Vehicle Batteries  

SciTech Connect (OSTI)

BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

None

2010-07-01T23:59:59.000Z

367

International Space Station: Access and Operations  

E-Print Network [OSTI]

flights per year · JAXA H-II Transfer Vehicle (HTV) and ESA Automated Transfer Vehicle (ATV) flights · Begin SpaceX and OSC Commercial Resupply Services (CRS) flights #12;ISS: CY 2011 Visiting Vehicle Plans*ISS: CY 2011 Visiting Vehicle Plans* Launches: RS = 10 US = 3 JAXA = 1 ESA = 1 SpaceX = 2 * As of January

368

Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

369

Vehicle Mass Impact on Vehicle Losses and Fuel Economy  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

370

Control device for vehicle speed  

SciTech Connect (OSTI)

This patent describes a control device for vehicle speed comprising: a throttle driving means operatively coupled to a throttle valve of a vehicle; a set switch means for commanding memorization of the vehicle speed; a resume switch means for commanding read of the vehicle speed; a vehicle speed detecting means for generating a signal in accordance with the vehicle speed; a vehicle speed memory; an electronical control means for memorizing in the vehicle speed memory vehicle speed information corresponding to the signal obtained from the vehicle speed detecting means in response to actuation of the set switch means. The control means is also for reading out the content of the vehicle speed memory in response to actuation of the resume switch means to control the throttle driving means in accordance with the read-out content; a power supply means for supplying power to the electronical control means; and a power supply control switch means for controlling supply of power to the electronical control means in response to the state of at least one of the set switch means and the resume switch means and the state of the electronical control means. The improvement described here comprises the electronical control means sets the power supply control switch means into such a state that supply of power to the electronical control means is turned OFF, when vehicle speed information is not memorized in the vehicle speed memory.

Kawata, S.; Hyodo, H.

1987-03-03T23:59:59.000Z

371

Parametrized maneuvers for autonomous vehicles  

E-Print Network [OSTI]

This thesis presents a method for creating continuously parametrized maneuver classes for autonomous vehicles. These classes provide useful tools for motion planners, bundling sets of related vehicle motions based on a ...

Dever, Christopher W. (Christopher Walden), 1972-

2004-01-01T23:59:59.000Z

372

Commercial Vehicles Collaboration for  

E-Print Network [OSTI]

events (level derived from integrated design and safety analysis) · Protection against fire, depress Vehicle Transition Concepts Astronaut Office letter (June, 2010) describes position on crew suit as a resource to expedite this transition to the commercial market The current astronaut corps can be used

Waliser, Duane E.

373

Retail Infrastructure Costs Comparison for Hydrogen and Electricity for Light-Duty Vehicles: Preprint  

SciTech Connect (OSTI)

Both hydrogen and plug-in electric vehicles offer significant social benefits to enhance energy security and reduce criteria and greenhouse gas emissions from the transportation sector. However, the rollout of electric vehicle supply equipment (EVSE) and hydrogen retail stations (HRS) requires substantial investments with high risks due to many uncertainties. We compare retail infrastructure costs on a common basis - cost per mile, assuming fueling service to 10% of all light-duty vehicles in a typical 1.5 million person city in 2025. Our analysis considers three HRS sizes, four distinct types of EVSE and two distinct EVSE scenarios. EVSE station costs, including equipment and installation, are assumed to be 15% less than today's costs. We find that levelized retail capital costs per mile are essentially indistinguishable given the uncertainty and variability around input assumptions. Total fuel costs per mile for battery electric vehicle (BEV) and plug-in hybrid vehicle (PHEV) are, respectively, 21% lower and 13% lower than that for hydrogen fuel cell electric vehicle (FCEV) under the home-dominant scenario. Including fuel economies and vehicle costs makes FCEVs and BEVs comparable in terms of costs per mile, and PHEVs are about 10% less than FCEVs and BEVs. To account for geographic variability in energy prices and hydrogen delivery costs, we use the Scenario Evaluation, Regionalization and Analysis (SERA) model and confirm the aforementioned estimate of cost per mile, nationally averaged, but see a 15% variability in regional costs of FCEVs and a 5% variability in regional costs for BEVs.

Melaina, M.; Sun, Y.; Bush, B.

2014-08-01T23:59:59.000Z

374

Gasoline Ultra Fuel Efficient Vehicle  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

375

A Dynamic Algorithm for Facilitated Charging of Plug-In Electric Vehicles  

E-Print Network [OSTI]

Plug-in Electric Vehicles (PEVs) are a rapidly developing technology that can reduce greenhouse gas emissions and change the way vehicles obtain power. PEV charging stations will most likely be available at home and at work, and occasionally be publicly available, offering flexible charging options. Ideally, each vehicle will charge during periods when electricity prices are relatively low, to minimize the cost to the consumer and maximize societal benefits. A Demand Response (DR) service for a fleet of PEVs could yield such charging schedules by regulating consumer electricity use during certain time periods, in order to meet an obligation to the market. We construct an automated DR mechanism for a fleet of PEVs that facilitates vehicle charging to ensure the demands of the vehicles and the market are met. Our dynamic algorithm depends only on the knowledge of a few hundred driving behaviors from a previous similar day, and uses a simple adjusted pricing scheme to instantly assign feasible and satisfactory c...

Taheri, Nicole; Ye, Yinyu

2011-01-01T23:59:59.000Z

376

Methylotroph cloning vehicle  

DOE Patents [OSTI]

A cloning vehicle comprising: a replication determinant effective for replicating the vehicle in a non-C[sub 1]-utilizing host and in a C[sub 1]-utilizing host; DNA effective to allow the vehicle to be mobilized from the non-C[sub 1]-utilizing host to the C[sub 1]-utilizing host; DNA providing resistance to two antibiotics to which the wild-type C[sub 1]-utilizing host is susceptible, each of the antibiotic resistance markers having a recognition site for a restriction endonuclease; a cos site; and a means for preventing replication in the C[sub 1]-utilizing host. The vehicle is used for complementation mapping as follows. DNA comprising a gene from the C[sub 1]-utilizing organism is inserted at the restriction nuclease recognition site, inactivating the antibiotic resistance marker at that site. The vehicle can then be used to form a cosmid structure to infect the non-C[sub 1]-utilizing (e.g., E. coli) host, and then conjugated with a selected C[sub 1]-utilizing mutant. Resistance to the other antibiotic by the mutant is a marker of the conjugation. Other phenotypical changes in the mutant, e.g., loss of an auxotrophic trait, is attributed to the C[sub 1] gene. The vector is also used to inactivate genes whose protein products catalyze side reactions that divert compounds from a biosynthetic pathway to a desired product, thereby producing an organism that makes the desired product in higher yields. 3 figs.

Hanson, R.S.; Allen, L.N.

1989-04-25T23:59:59.000Z

377

Battery Electric Vehicles: Range Optimization and Diversification for the U.S. Drivers  

SciTech Connect (OSTI)

Properly selecting the driving range is critical for accurately predicting the market acceptance and the resulting social benefits of BEVs. Analysis of transportation technology transition could be biased against battery electric vehicles (BEV) and mislead policy making, if BEVs are not represented with optimal ranges. This study proposes a coherent method to optimize the BEV driving range by minimizing the range-related cost, which is formulated as a function of range, battery cost, energy prices, charging frequency, access to backup vehicles, and the cost and refueling hassle of operating the backup vehicle. This method is implemented with a sample of 36,664 drivers, representing U.S. new car drivers, based on the 2009 National Household Travel Survey data. Key findings are: 1) Assuming the near term (2015) battery cost at $405/kWh, about 98% of the sampled drivers are predicted to prefer a range below 200 miles, and about 70% below 100 miles. The most popular 20-mile band of range is 57 to77 miles, unsurprisingly encompassing the Leaf s EPA-certified 73-mile range. With range limited to 4 or 7 discrete options, the majority are predicted to choose a range below 100 miles. 2) Found as a statistically robust rule of thumb, the BEV optimal range is approximately 0.6% of one s annual driving distance. 3) Reducing battery costs could motivate demand for larger range, but improving public charging may cause the opposite. 4) Using a single range to represent BEVs in analysis could significantly underestimate their competitiveness e.g. by $3226/vehicle if BEVs are represented with 73-mile range only or by $7404/BEV if with 150-mile range only. Range optimization and diversification into 4 or 7 range options reduce such analytical bias by 78% or 90%, respectively.

Lin, Zhenhong [ORNL] [ORNL

2012-01-01T23:59:59.000Z

378

Utility vehicle safety Operator training program  

E-Print Network [OSTI]

Utility vehicle safety Operator training program #12;Permissible use Utility Vehicles may only Utility Vehicle operator · When equipped with the "Required Equipment" · On public roadways within Drivers" · Obey all traffic regulations · Trained; update training every two years · Operate vehicles

Minnesota, University of

379

VEHICLE OPERATING PROCEDURES DEPARTMENT OF BIOLOGICAL SCIENCE  

E-Print Network [OSTI]

VEHICLE OPERATING PROCEDURES DEPARTMENT OF BIOLOGICAL SCIENCE GENERAL INFORMATION Vehicles resposniblity and disciplinary action. Vehicles may be used by faculty or staff from other departments complete the vehicle usage agreement form certifying that they have a valid driver's license

Ronquist, Fredrik

380

Electric-Drive Vehicle engineering  

E-Print Network [OSTI]

Electric-Drive Vehicle engineering COLLEGE of ENGINEERING Electric-drive engineers for 80 years t Home to nation's first electric-drive vehicle engineering program and alternative-credit EDGE Engineering Entrepreneur Certificate Program is a great addition to an electric-drive vehicle

Berdichevsky, Victor

Note: This page contains sample records for the topic "vehicles refueling stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Vehicle Operation and Parking Policy  

E-Print Network [OSTI]

Vehicle Operation and Parking Policy Responsible Administrative Unit: Finance & Administration in this policy. 2.0 POLICY STATEMENT This policy is intended to promote safe driving by operators of all vehicles are in effect at all times and apply to all persons and vehicles physically present on the CSM campus

382

UWO Vehicle ACCIDENT REPORTING FORM  

E-Print Network [OSTI]

UWO Vehicle ­ ACCIDENT REPORTING FORM To be completed at the scene. (Important: Do not admit liability or discuss any settlement.) If there are personal injuries or severe damage to the vehicle, call 911. If vehicle is drivable and if it's safe to do so, pull to the side of road away from traffic. Put

Sinnamon, Gordon J.

383

VEHICLE NETWORKS: ACHIEVING REGULAR FORMATION  

E-Print Network [OSTI]

VEHICLE NETWORKS: ACHIEVING REGULAR FORMATION MADALENA CHAVES, ROBERT DAY, LUCIA GOMEZ a network of vehicles exchanging information among themselves with the intention of achieving a specified the performance of the vehicle network. A stochastic model for information flow is also considered, allowing

384

Vehicle Operation and Parking Policy  

E-Print Network [OSTI]

Vehicle Operation and Parking Policy Responsible Administrative Unit: Finance & Administration STATEMENT This policy is intended to promote safe driving by operators of all vehicles utilizing streets and apply to all persons and vehicles physically present on the CSM campus. For the purpose of this policy

385

Vehicle Management Driver Safety Program  

E-Print Network [OSTI]

Vehicle Management and Driver Safety Program Manual Facilities & Operations / Finance & Administration Version 2 April 2012 #12;© 2012 University of Alberta. #12;The Vehicle Management and Driver of employment. Driver Acknowledgement I have received the University of Alberta, Vehicle Management and Driver

Machel, Hans

386

Advanced Vehicle Electrification and Transportation Sector Electrifica...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and...

387

Advanced Vehicle Electrification & Transportation Sector Electrificati...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector Electrification 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies...

388

Achieving and Demonstrating Vehicle Technologies Engine Fuel...  

Broader source: Energy.gov (indexed) [DOE]

Engine Fuel Efficiency Milestones Achieving and Demonstrating Vehicle Technologies Engine Fuel Efficiency Milestones 2009 DOE Hydrogen Program and Vehicle Technologies...

389

2012 U.S. Vehicle Analysis  

E-Print Network [OSTI]

Vehicles …………………………………………………………….. Ethanol Fuel Mixturesperformance of ethanol fuel mixtures vehicles ……….. Summaryon diesel, electricity, and ethanol fuel mixtures (ethanol/

Lam, Ho Yeung Michael

2012-01-01T23:59:59.000Z

390

Vehicle Technologies Office: Financial Opportunities - Active...  

Energy Savers [EERE]

Vehicle Technologies Office: Financial Opportunities - Active Solicitations Vehicle Technologies Office: Financial Opportunities - Active Solicitations To explore current financial...

391

Natural Gas Vehicle Cylinder Safety, Training and Inspection Project  

SciTech Connect (OSTI)

Under the auspices of the National Energy Technology Laboratory and the US Department of Energy, the Clean Vehicle Education Foundation conducted a three-year program to increase the understanding of the safe and proper use and maintenance of vehicular compressed natural gas (CNG) fuel systems. High-pressure fuel systems require periodic inspection and maintenance to insure safe and proper operation. The project addressed the needs of CNG fuel containers (cylinders) and associated high-pressure fuel system components related to existing law, codes and standards (C&S), available training and inspection programs, and assured coordination among vehicle users, public safety officials, fueling station operators and training providers. The program included a public and industry awareness campaign, establishment and administration of a cylinder inspector certification training scholarship program, evaluation of current safety training and testing practices, monitoring and investigation of CNG vehicle incidents, evaluation of a cylinder recertification program and the migration of CNG vehicle safety knowledge to the nascent hydrogen vehicle community.

Hank Seiff

2008-12-31T23:59:59.000Z

392

Sandia National Laboratories proof-of-concept robotic security vehicle  

SciTech Connect (OSTI)

Several years ago Sandia National Laboratories developed a prototype interior robot that could navigate autonomously inside a large complex building to air and test interior intrusion detection systems. Recently the Department of Energy Office of Safeguards and Security has supported the development of a vehicle that will perform limited security functions autonomously in a structured exterior environment. The goal of the first phase of this project was to demonstrate the feasibility of an exterior robotic vehicle for security applications by using converted interior robot technology, if applicable. An existing teleoperational test bed vehicle with remote driving controls was modified and integrated with a newly developed command driving station and navigation system hardware and software to form the Robotic Security Vehicle (RSV) system. The RSV, also called the Sandia Mobile Autonomous Navigator (SANDMAN), has been successfully used to demonstrate that teleoperated security vehicles which can perform limited autonomous functions are viable and have the potential to decrease security manpower requirements and improve system capabilities. 2 refs., 3 figs.

Harrington, J.J.; Jones, D.P.; Klarer, P.R.; Morrow, J.D.; Workhoven, R.M.; Wunderlin, F.

1989-01-01T23:59:59.000Z

393

Optimizing Locations for a Vehicle Sharing System V. Prem Kumar Michel Bierlaire  

E-Print Network [OSTI]

.bierlaire]@epfl.ch Car-sharing business provides members access to a fleet of shared-use vehicles in a network use without the costs and responsibilities of ownership. The primary advantage of car sharing by the car-sharing businesses is that of finding the "best" stations to place the facility. These locations

Bierlaire, Michel

394

NREL Vehicle Testing and Integration Facility (VTIF): Rotating Shadowband Radiometer (RSR); Golden, Colorado (Data)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This measurement station at NREL's Vehicle Testing and Integration Facility (VTIF) monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment.

Lustbader, J.; Andreas, A.

395

Miniature Autonomous Robotic Vehicle (MARV)  

SciTech Connect (OSTI)

Sandia National Laboratories (SNL) has recently developed a 16 cm{sup 3} (1 in{sup 3}) autonomous robotic vehicle which is capable of tracking a single conducting wire carrying a 96 kHz signal. This vehicle was developed to assess the limiting factors in using commercial technology to build miniature autonomous vehicles. Particular attention was paid to the design of the control system to search out the wire, track it, and recover if the wire was lost. This paper describes the test vehicle and the control analysis. Presented in the paper are the vehicle model, control laws, a stability analysis, simulation studies and experimental results.

Feddema, J.T.; Kwok, K.S.; Driessen, B.J.; Spletzer, B.L.; Weber, T.M.

1996-12-31T23:59:59.000Z

396

Mobile Alternative Fueling Station Locator  

SciTech Connect (OSTI)

The Department of Energy's Alternative Fueling Station Locator is available on-the-go via cell phones, BlackBerrys, or other personal handheld devices. The mobile locator allows users to find the five closest biodiesel, electricity, E85, hydrogen, natural gas, and propane fueling sites using Google technology.

Not Available

2009-04-01T23:59:59.000Z

397

NOAA PMEL Station Chemistry Data  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Submicron and supermicron samples are analyzed by ion chromatography for Cl-, NO3-, SO4-2, Na+, NH4+, K+, Mg2+, and Ca+2. The analysis of MSA-, Br-, and oxalate has been added to some stations. Samples also are analyzed for total mass by gravimetric analysis at 55 +/- 5% RH.

Quinn, Patricia

398

Presented by Climate End Station  

E-Print Network [OSTI]

.S. Department of Energy Bettge_LCF Climate_SC10 CESM working groups · Application ­ Climate change, paleoclimate climate change projections for IPCC AR5 Gerald Meehl and Warren Washington, NCAR · Climate changePresented by Climate End Station Thomas Bettge National Center for Atmospheric Research James B

399

Rapid road repair vehicle  

DOE Patents [OSTI]

Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find an the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was was heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past.

Mara, Leo M. (Livermore, CA)

1998-01-01T23:59:59.000Z

400

Vehicle rear suspension mechanism  

SciTech Connect (OSTI)

A vehicle rear suspension mechanism is described which consists of: a suspension member connected with a vehicle body; wheel hub means supporting a rear wheel having a wheel center plane for rotation about a rotating axis; and connecting means for connecting the wheel hub means with the suspension member. The connecting means include ball joint means having a pivot center located forwardly of and below the rotating axis of the rear wheel and connecting the wheel hub means to the suspension member pivotably about the pivot center, first resilient means located between the wheel hub means and the suspension member rearwardly of and above the rotating axis of the rear wheel, and second resilient means located between the wheel hub means and the suspension member forwardly of and above the rotating axis of the rear wheel.

Kijima, T.; Maebayashi, J.

1986-08-05T23:59:59.000Z

Note: This page contains sample records for the topic "vehicles refueling stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Unmanned Aerospace Vehicle Workshop  

SciTech Connect (OSTI)

The Unmanned Aerospace Vehicle (UAV) Workshop concentrated on reviewing and refining the science experiments planned for the UAV Demonstration Flights (UDF) scheduled at the Oklahoma Cloud and Radiation Testbed (CART) in April 1994. These experiments were focused around the following sets of parameters: Clear sky, daylight; Clear-sky, night-to-day transition; Clear sky - improve/validate the accuracy of radiative fluxes derived from satellite-based measurements; Daylight, clouds of opportunity; and, Daylight, broken clouds.

Vitko, J. Jr. [Sandia National Labs., Livermore, CA (United States)

1995-04-01T23:59:59.000Z

402

Alternative Fuel Vehicle  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative Fuel Vehicle & Fueling Infrastructure

403

Advanced underground Vehicle Power and Control: The locomotive Research Platform  

SciTech Connect (OSTI)

Develop a fuelcell mine locomotive with metal-hydride hydrogen storage. Test the locomotive for fundamental limitations preventing successful commercialization of hydride fuelcells in underground mining. During Phase 1 of the DOE-EERE sponsored project, FPI and its partner SNL, completed work on the development of a 14.4 kW fuelcell power plant and metal-hydride energy storage. An existing battery-electric locomotive with similar power requirements, minus the battery module, was used as the base vehicle. In March 2001, Atlas Copco Wagner of Portland, OR, installed the fuelcell power plant into the base vehicle and initiated integration of the system into the vehicle. The entire vehicle returned to Sandia in May 2001 for further development and integration. Initial system power-up took place in December 2001. A revision to the original contract, Phase 2, at the request of DOE Golden Field Office, established Vehicle Projects LLC as the new prime contractor,. Phase 2 allowed industry partners to conduct surface tests, incorporate enhancements to the original design by SNL, perform an extensive risk and safety analysis, and test the fuelcell locomotive underground under representative production mine conditions. During the surface tests one of the fuelcell stacks exhibited reduced power output resulting in having to replace both fuelcell stacks. The new stacks were manufactured with new and improved technology resulting in an increase of the gross power output from 14.4 kW to 17 kW. Further work by CANMET and Hatch Associates, an engineering consulting firm specializing in safety analysis for the mining industry, both under subcontract to Vehicle Projects LLC, established minimum requirements for underground testing. CANMET upgraded the Programmable Logic Control (PLC) software used to monitor and control the fuelcell power plant, taking into account locomotive operator's needs. Battery Electric, a South Africa manufacturer, designed and manufactured (at no cost to the project) a new motor controller capable of operating the higher rpm motor and different power characteristics of the fuelcells. In early August 2002, CANMET, with the technical assistance of Nuvera Fuel Cells and Battery Electric, installed the new PLC software, installed the new motor controller, and installed the new fuelcell stacks. After minor adjustments, the fuelcell locomotive pulled its first fully loaded ore cars on a surface track. The fuelcell-powered locomotive easily matched the battery powered equivalent in its ability to pull tonnage and equaled the battery-powered locomotive in acceleration. The final task of Phase 2, testing the locomotive underground in a production environment, occurred in early October 2002 in a gold mine. All regulatory requirements to allow the locomotive underground were completed and signed off by Hatch Associates prior to going underground. During the production tests, the locomotive performed flawlessly with no failures or downtime. The actual tests occurred during a 2-week period and involved moving both gold ore and waste rock over a 1,000 meter track. Refueling, or recharging, of the metal-hydride storage took place on the surface. After each shift, the metal-hydride storage module was removed from the locomotive, transported to surface, and filled with hydrogen from high-pressure tanks. The beginning of each shift started with taking the fully recharged metal-hydride storage module down into the mine and re-installing it onto the locomotive. Each 8 hour shift consumed approximately one half to two thirds of the onboard hydrogen. This indicates that the fuelcell-powered locomotive can work longer than a similar battery-powered locomotive, which operates about 6 hours, before needing a recharge.

Vehicle Projects LLC

2003-01-28T23:59:59.000Z

404

Stabilizer for motor vehicle  

SciTech Connect (OSTI)

This patent describes a stabilizer for a motor vehicle comprising: a rod-shaped torsion section extending in the transverse direction of a motor vehicle; a pair of arm sections continuous with both ends of the torsion section and extending in the longitudinal direction of the motor vehicle; a first member attached to the torsion section or at least one of the arm sections and formed with an axially penetrating cylindrical bore; a columnar second member inserted in the bore of the first member; at least one coil spring disposed between the inner peripheral surface of the bore of the first member and the outer peripheral surface of the second member and wound around the second member, at least one end of the coil spring being a free end; an operating member connected to the free end of the coil spring, at least a part of the operating member being located outside the first member; and drive means coupled to the operating member and adapted to apply a force in a direction such that the diameter of the coil spring is increased or reduced.

Takadera, I.; Kuroda, S.

1986-11-11T23:59:59.000Z

405

An Analysis of Near-Term Hydrogen Vehicle Rollout Scenarios for Southern California  

E-Print Network [OSTI]

Water High-pressure hydrogen compressor Compressed hydrogenWater High-pressure hydrogen compressor Compressed hydrogenReciprocating gas compressor Figure 13 Hydrogen refueling

Nicholas, Michael A; Ogden, J

2010-01-01T23:59:59.000Z

406

Roadmap for Testing and Validation of Electric Vehicle Communication Standards  

SciTech Connect (OSTI)

Vehicle to grid communication standards are critical to the charge management and interoperability among plug-in electric vehicles (PEVs), charging stations and utility providers. The Society of Automobile Engineers (SAE), International Organization for Standardization (ISO), International Electrotechnical Commission (IEC) and the ZigBee Alliance are developing requirements for communication messages and protocols. While interoperability standards development has been in progress for more than two years, no definitive guidelines are available for the automobile manufacturers, charging station manufacturers or utility backhaul network systems. At present, there is a wide range of proprietary communication options developed and supported in the industry. Recent work by the Electric Power Research Institute (EPRI), in collaboration with SAE and automobile manufacturers, has identified performance requirements and developed a test plan based on possible communication pathways using power line communication (PLC). Though the communication pathways and power line communication technology options are identified, much work needs to be done in developing application software and testing of communication modules before these can be deployed in production vehicles. This paper presents a roadmap and results from testing power line communication modules developed to meet the requirements of SAE J2847/1 standard.

Pratt, Richard M.; Tuffner, Francis K.; Gowri, Krishnan

2012-07-12T23:59:59.000Z

407

Advanced Vehicle Testing and Evaluation  

SciTech Connect (OSTI)

The objective of the United States (U.S.) Department of Energy?s (DOEs) Advanced Vehicle Testing and Evaluation (AVTE) project was to provide test and evaluation services for advanced technology vehicles, to establish a performance baseline, to determine vehicle reliability, and to evaluate vehicle operating costs in fleet operations. Vehicles tested include light and medium-duty vehicles in conventional, hybrid, and all-electric configurations using conventional and alternative fuels, including hydrogen in internal combustion engines. Vehicles were tested on closed tracks and chassis dynamometers, as well as operated on public roads, in fleet operations, and over prescribed routes. All testing was controlled by procedures developed specifically to support such testing. Testing and evaluations were conducted in the following phases: ? Development of test procedures, which established testing procedures; ? Baseline performance testing, which established a performance baseline; ? Accelerated reliability testing, which determined vehicle reliability; ? Fleet testing, used to evaluate vehicle economics in fleet operation, and ? End of test performance evaluation. Test results are reported by two means and posted by Idaho National Laboratory (INL) to their website: quarterly progress reports, used to document work in progress; and final test reports. This final report documents work conducted for the entirety of the contract by the Clarity Group, Inc., doing business as ECOtality North America (ECOtality). The contract was performed from 1 October 2005 through 31 March 2013. There were 113 light-duty on-road (95), off-road (3) and low speed (15) vehicles tested.

Garetson, Thomas

2013-03-31T23:59:59.000Z

408

automated vehicle control for ground vehicles: Topics by E-print...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a Robot Vehicle James L. Crowley Patrick Cartesian coordinate space. In the same sense, robot vehicles require a "vehicle controller" to command. This paper presents the design of...

409

Myths Regarding Alternative Fuel Vehicle Demand by Light-Duty Vehicle Fleets  

E-Print Network [OSTI]

eet demand for alternative-fuel vehicles in California.Britain MYTHS REGARDING ALTERNATIVE FUEL VEHICLE DEMAND BYinitial market for alternative fuel vehicles (AFVs). We

Nesbitt, Kevin; Sperling, Daniel

1998-01-01T23:59:59.000Z

410

Vehicle to Grid Communication Standards Development, Testing and Validation - Status Report  

SciTech Connect (OSTI)

In the US, more than 10,000 electric vehicles (EV) have been delivered to consumers during the first three quarters of 2011. A large majority of these vehicles are battery electric, often requiring 220 volt charging. Though the vehicle manufacturers and charging station manufacturers have provided consumers options for charging preferences, there are no existing communications between consumers and the utilities to manage the charging demand. There is also wide variation between manufacturers in their approach to support vehicle charging. There are in-vehicle networks, charging station networks, utility networks each using either cellular, Wi-Fi, ZigBee or other proprietary communication technology with no standards currently available for interoperability. The current situation of ad-hoc solutions is a major barrier to the wide adoption of electric vehicles. SAE, the International Standards Organization/International Electrotechnical Commission (ISO/IEC), ANSI, National Institute of Standards and Technology (NIST) and several industrial organizations are working towards the development of interoperability standards. PNNL has participated in the development and testing of these standards in an effort to accelerate the adoption and development of communication modules.

Gowri, Krishnan; Pratt, Richard M.; Tuffner, Francis K.; Kintner-Meyer, Michael CW

2011-09-01T23:59:59.000Z

411

COMPARATIVE COSTS OF CALIFORNIA CENTRAL STATION ELECTRICITY  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION COMPARATIVE COSTS OF CALIFORNIA CENTRAL STATION ELECTRICITY GENERATION .............................................................................13 Definition of Levelized Cost ........................................................................................................13 Levelized Cost Components

412

COMPARATIVE COSTS OF CALIFORNIA CENTRAL STATION ELECTRICITY  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION COMPARATIVE COSTS OF CALIFORNIA CENTRAL STATION ELECTRICITY GENERATION............................................................ 3 Definition of Levelized Cost.................................................................................... 3 Levelized Cost Categories

Laughlin, Robert B.

413

Advanced Vehicle Testing Activity (AVTA) - Vehicle Testing and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced Vehicle Testing Activity (AVTA) Non-PHEV Evaluations and Data Collection AVTA HEV, NEV, BEV and HICEV Demonstrations and Testing Benchmarking of Advanced HEVs and...

414

Vehicle Technologies Office Merit Review 2014: Advanced Vehicle Testing & Evaluation  

Broader source: Energy.gov [DOE]

Presentation given by Intertek at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about testing and evaluating advanced...

415

Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies...  

Broader source: Energy.gov (indexed) [DOE]

vehicle into an electric power source. Although electricity production may contribute to air pollution, the U.S. Environmental Protection Agency (EPA) considers EVs Hybrid and...

416

Vehicle Technologies Office Merit Review 2014: Consumer Vehicle Technology Data  

Broader source: Energy.gov [DOE]

Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about consumer...

417

Vehicle Technologies Office Merit Review 2014: Vehicle & Systems...  

Energy Savers [EERE]

& Testing Presentation given by U.S. Department of Energy at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

418

Delivery Tech Team Oak Ridge National Laboratory  

E-Print Network [OSTI]

, Barge, Ships Including mixed pathways #12;Budget · FY04: $0.25M · FY05: ~$4M Why Federal Support, and dispensing at refueling stations and stationary power sites to less than 2015 of use in vehicles or stationary power units to 2015, develop

419

7.1.1. Fernbahnhof / Rail Station  

E-Print Network [OSTI]

Fernbahnhofs 7.1.1.4.5 Kälteversorgung des Fernbahnhofs / Cooling Supply of Rail Station 7 Abwasserversorgung des Fernbahnhofs / Fresh and Used Water Supply of Rail Stations 7.1.1.4.1.1 Verfahren zur Fernbahnhofs 7.1.1.4.2 Stromversorgung des Fernbahnhofs / Power Supply of Rail Station 7

Berlin,Technische Universität

420

The Fuel-Travel-Back Approach to Hydrogen Station Siting  

E-Print Network [OSTI]

the experience of gasoline stations. Driven by the notion "percentages of existing gasoline stations, for a successfulsubset of the existing gasoline station network [14]. These

Lin, Zhenhong; Ogden, Joan; Fan, Yueyue; Chen, Chien-Wei

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicles refueling stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Mack LNG vehicle development  

SciTech Connect (OSTI)

The goal of this project was to install a production-ready, state-of-the-art engine control system on the Mack E7G natural gas engine to improve efficiency and lower exhaust emissions. In addition, the power rating was increased from 300 brake horsepower (bhp) to 325 bhp. The emissions targets were oxides of nitrogen plus nonmethane hydrocarbons of less than 2.5 g/bhp-hr and particulate matter of less than 0.05 g/bhp-hr on 99% methane. Vehicle durability and field testing were also conducted. Further development of this engine should include efficiency improvements and oxides of nitrogen reductions.

Southwest Research Institute

2000-01-05T23:59:59.000Z

422

Hybrid vehicle motor alignment  

DOE Patents [OSTI]

A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.

Levin, Michael Benjamin (Ann Arbor, MI)

2001-07-03T23:59:59.000Z

423

Vehicles | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudha Patri MechanicalofVehicles - ORNL inverter

424

Vehicle Technologies Office News  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research PetroleumDepartment of Energy KavehHeavy Vehicle FuelCombustion

425

Hybrid Vehicle Program. Final report  

SciTech Connect (OSTI)

This report summarizes the activities on the Hybrid Vehicle Program. The program objectives and the vehicle specifications are reviewed. The Hybrid Vehicle has been designed so that maximum use can be made of existing production components with a minimum compromise to program goals. The program status as of the February 9-10 Hardware Test Review is presented, and discussions of the vehicle subsystem, the hybrid propulsion subsystem, the battery subsystem, and the test mule programs are included. Other program aspects included are quality assurance and support equipment. 16 references, 132 figures, 47 tables.

None

1984-06-01T23:59:59.000Z

426

Vehicle Technologies Office: Information Resources  

Broader source: Energy.gov [DOE]

From here you can access additional information on advanced transportation technologies; view programmatic publications and technical information; learn the basics of hybrid vehicle technology;...

427

Electric Drive Vehicle Infrastructure Deployment  

Broader source: Energy.gov (indexed) [DOE]

pricing encourages off-peak energy * Smart Grid Integration o Charging stations with Demand Response, Time-of-Use Pricing, and AMI compatible with the modern electric grid *...

428

Fast Charging Electric Vehicle Research & Development Project  

SciTech Connect (OSTI)

The research and development project supported the engineering, design and implementation of onroad Electric Vehicle (“EV”) charging technologies. It included development of potential solutions for DC fast chargers (“DCFC”) capable of converting high voltage AC power to the DC power required by EVs. Additional development evaluated solutions related to the packaging of power electronic components and enclosure design, as well as for the design and evaluation of EV charging stations. Research compared different charging technologies to identify optimum applications in a municipal fleet. This project collected EV usage data and generated a report demonstrating that EVs, when supported by adequate charging infrastructure, are capable of replacing traditional internal combustion vehicles in many municipal applications. The project’s period of performance has demonstrated various methods of incorporating EVs into a municipal environment, and has identified three general categories for EV applications: ? Short Commute: Defined as EVs performing in limited duration, routine commutes. ? Long Commute: Defined as tasks that require EVs to operate in longer daily mileage patterns. ? Critical Needs: Defined as the need for EVs to be ready at every moment for indefinite periods. Together, the City of Charlottesville, VA (the “City”) and Aker Wade Power Technologies, LLC (“Aker Wade”) concluded that the EV has a viable position in many municipal fleets but with limited recommendation for use in Critical Needs applications such as Police fleets. The report also documented that, compared to internal combustion vehicles, BEVs have lower vehiclerelated greenhouse gas (“GHG”) emissions and contribute to a reduction of air pollution in urban areas. The enhanced integration of EVs in a municipal fleet can result in reduced demand for imported oil and reduced municipal operating costs. The conclusions indicated in the project’s Engineering Report (see Attachment A) are intended to assist future implementation of electric vehicle technology. They are based on the cited research and on the empirical data collected and presented. The report is not expected to represent the entire operating conditions of any of the equipment under consideration within this project, and tested equipment may operate differently under other conditions.

Heny, Michael

2014-03-31T23:59:59.000Z

429

Hybrid and Plug-In Electric Vehicles (Brochure)  

SciTech Connect (OSTI)

Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

Not Available

2011-10-01T23:59:59.000Z

430

Hybrid and Plug-In Electric Vehicles (Brochure)  

SciTech Connect (OSTI)

Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

Not Available

2011-05-01T23:59:59.000Z

431

Water Emissions from Fuel Cell Vehicles | Department of Energy  

Energy Savers [EERE]

Water Emissions from Fuel Cell Vehicles Water Emissions from Fuel Cell Vehicles Hydrogen fuel cell vehicles (FCVs) emit approximately the same amount of water per mile as vehicles...

432

Fact #706: December 19, 2011 Vocational Vehicle Fuel Consumption...  

Broader source: Energy.gov (indexed) [DOE]

recently published final fuel consumption standards for heavy vehicles called "vocational" vehicles. A vocational vehicle is generally a single-unit work vehicle over 8,500 lbs...

433

Evaluation Of Potential Hybrid Electric Vehicle Applications: Vol I  

E-Print Network [OSTI]

Vehicle Symposium, "The Hybrid Vehicle Revisited", OctoberBus Hv REFERENCES “Hybrid Vehicle Assessment, Phase I,Laboratory, March 1984 “Hybrid Vehicle Engineering Task”

Gris, Arturo E.

1991-01-01T23:59:59.000Z

434

Prospects on fuel economy improvements for hydrogen powered vehicles.  

SciTech Connect (OSTI)

Fuel cell vehicles are the subject of extensive research and development because of their potential for high efficiency and low emissions. Because fuel cell vehicles remain expensive and the demand for hydrogen is therefore limited, very few fueling stations are being built. To try to accelerate the development of a hydrogen economy, some original equipment manufacturers (OEM) in the automotive industry have been working on a hydrogen-fueled internal combustion engine (ICE) as an intermediate step. Despite its lower cost, the hydrogen-fueled ICE offers, for a similar amount of onboard hydrogen, a lower driving range because of its lower efficiency. This paper compares the fuel economy potential of hydrogen-fueled vehicles to their conventional gasoline counterparts. To take uncertainties into account, the current and future status of both technologies were considered. Although complete data related to port fuel injection were provided from engine testing, the map for the direct-injection engine was developed from single-cylinder data. The fuel cell system data represent the status of the current technology and the goals of FreedomCAR. For both port-injected and direct-injected hydrogen engine technologies, power split and series Hybrid Electric Vehicle (HEV) configurations were considered. For the fuel cell system, only a series HEV configuration was simulated.

Rousseau, A.; Wallner, T.; Pagerit, S.; Lohse-Bush, H. (Energy Systems)

2008-01-01T23:59:59.000Z

435

Fuel Cell Electric Vehicle Powered by Renewable Hydrogen  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory (NREL) recently received a Borrego fuel cell electric vehicle (FCEV) on loan from Kia for display at a variety of summer events. The Borrego is fueled using renewable hydrogen that is produced and dispensed at NREL's National Wind Technology Center near Boulder, Colorado. The hydrogen dispensed at the station is produced via renewable electrolysis as part of the wind-to-hydrogen project, which uses wind turbines and photovoltaic arrays to power electrolyzer stacks that split water into hydrogen and oxygen. The FCEV features state-of-the-art technology with zero harmful emissions.

None

2011-01-01T23:59:59.000Z

436

Fuel Cell Electric Vehicle Powered by Renewable Hydrogen  

ScienceCinema (OSTI)

The National Renewable Energy Laboratory (NREL) recently received a Borrego fuel cell electric vehicle (FCEV) on loan from Kia for display at a variety of summer events. The Borrego is fueled using renewable hydrogen that is produced and dispensed at NREL's National Wind Technology Center near Boulder, Colorado. The hydrogen dispensed at the station is produced via renewable electrolysis as part of the wind-to-hydrogen project, which uses wind turbines and photovoltaic arrays to power electrolyzer stacks that split water into hydrogen and oxygen. The FCEV features state-of-the-art technology with zero harmful emissions.

None

2013-05-29T23:59:59.000Z

437

Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment...  

Broader source: Energy.gov (indexed) [DOE]

Road Map Develop station network * 68 stations to launch * 100 stations to self-sustaining Accelerate station implementation * Timeliness, performance, path to...

438

Timber Mountain Precipitation Monitoring Station  

SciTech Connect (OSTI)

A precipitation monitoring station was placed on the west flank of Timber Mountain during the year 2010. It is located in an isolated highland area near the western border of the Nevada National Security Site (NNSS), south of Pahute Mesa. The cost of the equipment, permitting, and installation was provided by the Environmental Monitoring Systems Initiative (EMSI) project. Data collection, analysis, and maintenance of the station during fiscal year 2011 was funded by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office Environmental Restoration, Soils Activity. The station is located near the western headwaters of Forty Mile Wash on the Nevada Test and Training Range (NTTR). Overland flows from precipitation events that occur in the Timber Mountain high elevation area cross several of the contaminated Soils project CAU (Corrective Action Unit) sites located in the Forty Mile Wash watershed. Rain-on-snow events in the early winter and spring around Timber Mountain have contributed to several significant flow events in Forty Mile Wash. The data from the new precipitation gauge at Timber Mountain will provide important information for determining runoff response to precipitation events in this area of the NNSS. Timber Mountain is also a groundwater recharge area, and estimation of recharge from precipitation was important for the EMSI project in determining groundwater flowpaths and designing effective groundwater monitoring for Yucca Mountain. Recharge estimation additionally provides benefit to the Underground Test Area Sub-project analysis of groundwater flow direction and velocity from nuclear test areas on Pahute Mesa. Additionally, this site provides data that has been used during wild fire events and provided a singular monitoring location of the extreme precipitation events during December 2010 (see data section for more details). This letter report provides a summary of the site location, equipment, and data collected in fiscal year 2011.

Lyles Brad,McCurdy Greg,Chapman Jenny,Miller Julianne

2012-01-01T23:59:59.000Z

439

Hanford Meteorological Station - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCIResearchGulf of MexicoDidYouKnowForStation

440

ARMY VEHICLE DURABILITY OPTIMIZATION & RELIABILITY  

E-Print Network [OSTI]

ARMY VEHICLE DURABILITY OPTIMIZATION & RELIABILITY How to Optimize the Vehicle Design to Minimize/Reduce the Weight? Under These Uncertainties, How to Achieve Component Level Reliability? Under These Uncertainties, How to Achieve System Level Reliability? Dynamics Analysis FE Model System Model Dynamic Stress

Kusiak, Andrew

Note: This page contains sample records for the topic "vehicles refueling stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

EV Project Chevrolet Volt Vehicle Summary Report  

Broader source: Energy.gov (indexed) [DOE]

charging events per day when the vehicle was driven 1.5 EV Project Chevrolet Volt Vehicle Summary Report Region: ALL Number of vehicles: 1895 Reporting period: April 2013 through...

442

Fuel Savings from Hybrid Electric Vehicles  

SciTech Connect (OSTI)

NREL's study shows that hybrid electric vehicles can significantly reduce oil imports for use in light-duty vehicles, particularly if drivers switch to smaller, more fuel-efficient vehicles overall.

Bennion, K.; Thornton, M.

2009-03-01T23:59:59.000Z

443

Anonymous vehicle reidentification using heterogeneous detection systems  

E-Print Network [OSTI]

C. A. MacCarley, Video-Based Vehicle Signature Analysis andRamachandran, and S. Ritchie, “Vehicle reidenti?cation usingand R. Jayakrishnan, “Use of vehicle signature analysis and

Oh, Cheol; Jeng, Shin-Ting; Ritchie, Stephen G.

2007-01-01T23:59:59.000Z

444

2012 U.S. Vehicle Analysis  

E-Print Network [OSTI]

and Air Quality. Green Vehicle Guide. Web. May 2012. 2. "Los Angeles 2012 U.S. Vehicle Analysis A thesis submitted inOF THE THESIS 2012 U.S. Vehicle Analysis by Ho Yeung Michael

Lam, Ho Yeung Michael

2012-01-01T23:59:59.000Z

445

Quantifying the benefits of hybrid vehicles  

E-Print Network [OSTI]

The Emergence of Hybrid Vehicles: Ending oil’s strangleholdthe benefits of hybrid vehicles Dr. Thomas Turrentine Dr.the benefits of hybrid vehicles Report prepared for CSAA Dr.

Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

2006-01-01T23:59:59.000Z

446

Solar-Hydrogen Fuel-Cell Vehicles  

E-Print Network [OSTI]

M. A. (1992). Hydrogen Fuel-Cell Vehicles. Re- koebensteinthan both. Solar-hydrogen and fuel-cell vehicles wouldberegulation. Solar-Hydrogen Fuel-Cell Vehicles MarkA. DeLuchi

DeLuchi, Mark A.; Ogden, Joan M.

1993-01-01T23:59:59.000Z

447

Electric vehicle repairs and modifications  

SciTech Connect (OSTI)

This informal report describes the electric vehicle (EV) inspection and the necessary maintenance and repairs required to improve reliable operation of five Volkswagen (VW) Electrotransporter vans and five VW EV buses. The recommendations of TVA, EPRI, GES, Volkswagen, Siemens, and Hoppecke have been carried out in this effort. These modifications were necessary before entering the EPRI/TVA phase II and III continuing program. As new energy storage systems are explored using the VW test-bed vehicles in the battery field testing program, additional modifications may be required. All modifications will be submitted to the vehicle and component manufacturer for general assessment and recommendations. At present three different types of battery systems are being evaluated in six VW vehicles. The two Hoppecke and Exide utilize the modified Hoppecke charging systems. The other batteries being tested require off-board chargers specified by their manufacturer and are separate from the vehicle system.

Buffett, R.K.

1982-11-01T23:59:59.000Z

448

Aggregate vehicle travel forecasting model  

SciTech Connect (OSTI)

This report describes a model for forecasting total US highway travel by all vehicle types, and its implementation in the form of a personal computer program. The model comprises a short-run, econometrically-based module for forecasting through the year 2000, as well as a structural, scenario-based longer term module for forecasting through 2030. The short-term module is driven primarily by economic variables. It includes a detailed vehicle stock model and permits the estimation of fuel use as well as vehicle travel. The longer-tenn module depends on demographic factors to a greater extent, but also on trends in key parameters such as vehicle load factors, and the dematerialization of GNP. Both passenger and freight vehicle movements are accounted for in both modules. The model has been implemented as a compiled program in the Fox-Pro database management system operating in the Windows environment.

Greene, D.L.; Chin, Shih-Miao; Gibson, R. [Tennessee Univ., Knoxville, TN (United States)

1995-05-01T23:59:59.000Z

449

Hydrogen ICE Vehicle Testing Activities  

SciTech Connect (OSTI)

The Advanced Vehicle Testing Activity teamed with Electric Transportation Applications and Arizona Public Service to develop and monitor the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant. The Pilot Plant provides 100% hydrogen, and hydrogen and compressed natural gas (H/CNG)-blended fuels for the evaluation of hydrogen and H/CNG internal combustion engine (ICE) vehicles in controlled and fleet testing environments. Since June 2002, twenty hydrogen and H/CNG vehicles have accumulated 300,000 test miles and 5,700 fueling events. The AVTA is part of the Department of Energy’s FreedomCAR and Vehicle Technologies Program. These testing activities are managed by the Idaho National Laboratory. This paper discusses the Pilot Plant design and monitoring, and hydrogen ICE vehicle testing methods and results.

J. Francfort; D. Karner

2006-04-01T23:59:59.000Z

450

2012 Vehicle Technologies Market Report  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory s Center for Transportation Analysis developed and published the first Vehicle Technologies Market Report in 2008. Three editions of the report have been published since that time. This 2012 report details the major trends in U.S. light vehicle and medium/heavy truck markets as well as the underlying trends that caused them. The opening section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national scale. The following section examines light-duty vehicle use, markets, manufacture, and supply chains. The discussion of medium and heavy trucks offers information on truck sales and fuel use. The technology section offers information on alternative fuel vehicles and infrastructure, and the policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standards.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

2013-03-01T23:59:59.000Z

451

Propane Vehicle Demonstration Grant Program  

SciTech Connect (OSTI)

Project Description: Propane Vehicle Demonstration Grants The Propane Vehicle Demonstration Grants was established to demonstrate the benefits of new propane equipment. The US Department of Energy, the Propane Education & Research Council (PERC) and the Propane Vehicle Council (PVC) partnered in this program. The project impacted ten different states, 179 vehicles, and 15 new propane fueling facilities. Based on estimates provided, this project generated a minimum of 1,441,000 new gallons of propane sold for the vehicle market annually. Additionally, two new off-road engines were brought to the market. Projects originally funded under this project were the City of Portland, Colorado, Kansas City, Impco Technologies, Jasper Engines, Maricopa County, New Jersey State, Port of Houston, Salt Lake City Newspaper, Suburban Propane, Mutual Liquid Propane and Ted Johnson.

Jack Mallinger

2004-08-27T23:59:59.000Z

452

Security enhanced with increased vehicle inspections  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Security enhanced with increased vehicle inspections Security measures increase as of March: vehicle inspections won't delay traffic New increased security procedures meet LANL's...

453

Blog Feed: Vehicles | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Pat Davis, the Director of our Vehicle Technologies Program, doles out the facts on the costs and benefits of owning an electric vehicle. December 14, 2010 Nanotechnology: Small...

454

Clean Cities Recovery Act: Vehicle & Infrastructure Deployment  

Broader source: Energy.gov (indexed) [DOE]

project through collection of vehicle, infrastructure and training information. RELEVANCE Alternative Fuel & Advance Technology Vehicles Pilot Program Clean Cities Recovery Act:...

455

Vehicle Technologies Office: Transitioning the Transportation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Office: Transitioning the Transportation Sector - Exploring the Intersection of H2 Fuel Cell and Natural Gas Vehicles Vehicle Technologies Office: Transitioning the Transportation...

456

NREL: Vehicles and Fuels Research - Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

graph illustrating three pathways (biofuel, hydrogen, and electric vehicle) to reduce energy use and greenhouse gas emissions. Electric Vehicle Technologies & Targets 3-D...

457

Vehicle Technologies Office Merit Review 2014: Demonstration...  

Broader source: Energy.gov (indexed) [DOE]

for High Efficiency, Low Emissions Vehicle Applications Presentation given by Wisconsin Engine Research Consultants at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle...

458

Vehicle Technologies Office: AVTA - Evaluating National Parks...  

Energy Savers [EERE]

National Parks and Forest Service Fleets for Plug-in Electric Vehicles Vehicle Technologies Office: AVTA - Evaluating National Parks and Forest Service Fleets for Plug-in Electric...

459

EV Project Chevrolet Volt Vehicle Summary Report  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Summary Report Region: ALL Number of vehicles: 1766 Reporting period: January 2013 through March 2013 1 A trip is defined as all the driving done between consecutive...

460

Measuring & Mitigating Electric Vehicle Adoption Barriers.  

E-Print Network [OSTI]

??Transitioning our cars to run on renewable sources of energy is crucial to addressing concerns over energy security and climate change. Electric vehicles (EVs), vehicles… (more)

Tommy, Carpenter

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicles refueling stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Vehicle Technologies Office | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Efficient Vehicle Technologies Secretary Moniz Announces 55 M to Advance Fuel Efficient Vehicle Technologies Energy Secretary Moniz spoke at the Washington Auto Show,...

462

Advanced Technology Vehicles Manufacturing Incentive Program...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program This is an interim final rule that establishes the...

463

Advanced Vehicle Testing Activity (AVTA) ? PHEV Evaluations...  

Broader source: Energy.gov (indexed) [DOE]

1.pdf More Documents & Publications Advanced Vehicle Testing Activity (AVTA) - Vehicle Testing and Demonstration Activities AVTA PHEV Demonstrations and Testing Argonne...

464

NREL: Vehicles and Fuels Research - Success Stories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electric Vehicle, Grid, and Renewable Synergies Fuel, Engine, and Infrastructure Co-Optimization Red engine. Demo Projects Introduce New Class of Natural Gas Vehicles Graph...

465

Blog Feed: Vehicles | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

The MV-1, a new wheelchair accessible, fuel-efficient vehicle | Photo Courtesy of Vehicle Production Group Automotive Accessibility and Efficiency Meet in the Innovative MV-1 A...

466

Kansas Nuclear Profile - Wolf Creek Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

April 2012" "Next Release Date: February 2013" "Wolf Creek Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor...

467

Washington Nuclear Profile - Columbia Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

Columbia Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

468

Illinois Nuclear Profile - Dresden Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

Dresden Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

469

Illinois Nuclear Profile - Clinton Power Station  

U.S. Energy Information Administration (EIA) Indexed Site

Clinton Power Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

470

Illinois Nuclear Profile - Byron Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

Byron Generating Station" ,"Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

471

Massachusetts Nuclear Profile - Pilgrim Nuclear Power Station  

U.S. Energy Information Administration (EIA) Indexed Site

Pilgrim Nuclear Power Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer cpacity factor (percent)","Type","Commercial operation date","License...

472

Illinois Nuclear Profile - Braidwood Generation Station  

U.S. Energy Information Administration (EIA) Indexed Site

Braidwood Generation Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

473

Computational Optimization of Gas Compressor Stations: MINLP ...  

E-Print Network [OSTI]

Feb 26, 2015 ... Abstract: When considering cost-optimal operation of gas transport networks, compressor stations play the most important role. Proper ...

Daniel Rose

2015-02-26T23:59:59.000Z

474

Hydrogen Fueling Infrastructure Research and Station Technology...  

Energy Savers [EERE]

Infrastructure Research and Station Technology Download presentation slides from the DOE Fuel Cell Technologies Office webinar "An Overview of the Hydrogen Fueling Infrastructure...

475

Vehicle-to-Vehicle-to-Infrastructure (V2V2I) Intelligent Transportation System Architecture  

E-Print Network [OSTI]

is a hybrid of the vehicle-to-vehicle (V2V) and vehicle-to- infrastructure (V2I) architectures. The V2V2I I am proposing is a hybrid of the V2I and V2V architectures, which is the vehicle-to-vehicleVehicle-to-Vehicle-to-Infrastructure (V2V2I) Intelligent Transportation System Architecture Jeffrey

Miller, Jeffrey A.

476

Corrective action decision document, Second Gas Station, Tonopah test range, Nevada (Corrective Action Unit No. 403)  

SciTech Connect (OSTI)

This Corrective Action Decision Document (CADD) for Second Gas Station (Corrective Action Unit [CAU] No. 403) has been developed for the U.S. Department of Energy`s (DOE) Nevada Environmental Restoration Project to meet the requirements of the Federal Facility Agreement and Consent Order (FFACO) of 1996 as stated in Appendix VI, {open_quotes}Corrective Action Strategy{close_quotes} (FFACO, 1996). The Second Gas Station Corrective Action Site (CAS) No. 03-02-004-0360 is the only CAS in CAU No. 403. The Second Gas Station CAS is located within Area 3 of the Tonopah Test Range (TTR), west of the Main Road at the location of former Underground Storage Tanks (USTs) and their associated fuel dispensary stations. The TTR is approximately 225 kilometers (km) (140 miles [mi]) northwest of Las Vegas, Nevada, by air and approximately 56 km (35 mi) southeast of Tonopah, Nevada, by road. The TTR is bordered on the south, east, and west by the Nellis Air Force Range and on the north by sparsely populated public land administered by the Bureau of Land Management and the U.S. Forest Service. The Second Gas Station CAS was formerly known as the Underground Diesel Tank Site, Sandia Environmental Restoration Site Number 118. The gas station was in use from approximately 1965 to 1980. The USTs were originally thought to be located 11 meters (m) (36 feet [ft]) east of the Old Light Duty Shop, Building 0360, and consisted of one gasoline UST (southern tank) and one diesel UST (northern tank) (DOE/NV, 1996a). The two associated fuel dispensary stations were located northeast (diesel) and southeast (gasoline) of Building 0360 (CAU 423). Presently the site is used as a parking lot, Building 0360 is used for mechanical repairs of vehicles.

NONE

1997-11-01T23:59:59.000Z

477

Smog Check II Evaluation Part II: Overview of Vehicle  

E-Print Network [OSTI]

Smog Check II Evaluation Part II: Overview of Vehicle Emissions . . . . . . . . . . . . Prepared in Later Sections ____________________ 1 3. Older Vehicles Have Higher Emissions on Average _____________ 3 4. The Vehicle Fleet Is Dominated by Newer Vehicles______________ 8 5. More Recent Vehicle Models

Denver, University of

478

Adaptive control of hypersonic vehicles  

E-Print Network [OSTI]

The guidance, navigation and control of hypersonic vehicles are highly challenging tasks due to the fact that the dynamics of the airframe, propulsion system and structure are integrated and highly interactive. Such a ...

Gibson, Travis Eli

2008-01-01T23:59:59.000Z

479

Riverside, CA Vehicle Purchase Incentives  

Broader source: Energy.gov [DOE]

City of Riverside residents and employees are eligible to receive a rebate toward the purchase of qualified natural gas or hybrid electric vehicles purchased from a City of Riverside automobile...

480

Gasoline Ultra Fuel Efficient Vehicle  

Broader source: Energy.gov (indexed) [DOE]

at Wayne State University May 18, 2012 Slide 13 2011 Sonata 6MT, 2.0L GDI Theta Turbo Technologies on Vehicle: EMS Control Algorithms Calibration GDi Pump ECM...

Note: This page contains sample records for the topic "vehicles refueling stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Light Duty Vehicle CNG Tanks  

Broader source: Energy.gov (indexed) [DOE]

Vehicle CNG Tanks Dane A. Boysen, PhD Program Director Advanced Research Projects Agency-Energy, US DOE dane.boysen@doe.gov Fiber Reinforced Polymer Composite Manufacturing...

482

Prediction of vehicle impact forces  

E-Print Network [OSTI]

PREDICTION OF VEHICLE IMPACT FORCES A Thesis by DARRELL LAINE KADERKA Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1990 Major Subject...: Civil Engineering PREDICTION OF VEHICLE IMPACT FORCES A Thesis by DARRELL LAINE KADERKA Approved as to style and content by: C. Eugene Buth (Chair of Committee) W. ynn Beason (Member) I? D n E. B ay (Member) es T. P. Yao (Departmen Head) May...

Kaderka, Darrell Laine

1990-01-01T23:59:59.000Z

483

Nonlinear Dynamics of Longitudinal Ground Vehicle Traction  

E-Print Network [OSTI]

asphalt b) Wet asphalt c) Gravel d) Packed Snow Nonlinear Dynamics of Longitudinal Ground Vehicle Traction

Shaw, Steven W.

484

Plugging Vehicles into Clean Energy October, 2012  

E-Print Network [OSTI]

Plugging Vehicles into Clean Energy 1 October, 2012 Plugging Vehicles into Clean Energy Max-in electric vehicles and clean energy. Giving consumers options to offset energy and emissions associated briefly summarizes the relationship between clean energy and vehicle electrification and describes five

California at Davis, University of

485

Electric and Hydrogen Vehicles Past and Progress  

E-Print Network [OSTI]

status and TSRC research ­ Future? · Hydrogen Fuel Cell Vehicles ­ 20 years ago ­ 10 years ago ­ Current · Transportation Propulsion, Fuels, & Emissions ­ Electric-drive vehicles (including plug-in hybrid and fuel-cell Electric and Fuel Cell Vehicles?Why Electric and Fuel Cell Vehicles? · Transportation accounts for about 33

Kammen, Daniel M.

486

Electric Vehicle Charging as an Enabling Technology  

E-Print Network [OSTI]

Electric Vehicle Charging as an Enabling Technology Prepared for the U.S. Department of Energy technologies, electric vehicles and the appurtenant charging infrastructure, is explored in detail to determine regarding system load profiles, vehicle charging strategies, electric vehicle adoption rates, and storage

487

Explosion proof vehicle for tank inspection  

DOE Patents [OSTI]

An Explosion Proof Vehicle (EPV) having an interior substantially filled with an inert fluid creating an interior pressure greater than the exterior pressure. One or more flexible tubes provide the inert fluid and one or more electrical conductors from a control system to the vehicle. The vehicle is preferably used in subsurface tank inspection, whereby the vehicle is submerged in a volatile fluid.

Zollinger, William T. (Idaho Falls, ID); Klingler, Kerry M. (Idaho Falls, ID); Bauer, Scott G. (Idaho Falls, ID)

2012-02-28T23:59:59.000Z

488

Feasible Path Synthesis for Automated Guided Vehicles  

E-Print Network [OSTI]

Feasible Path Synthesis for Automated Guided Vehicles Reijer Idema 2005 TU Delft FROG Navigation for Automated Guided Vehicles Author: Reijer Idema Supervisors: prof.dr.ir. P. Wesseling (TU Delft) dr.ir. Kees is a manufacturer of Automated Guided Vehicles. They have developed a multitude of vehicles that transport products

Vuik, Kees

489

VEHICLE USAGE AGREEMENT DEPARTMENT OF BIOLOGICAL SCIENCE  

E-Print Network [OSTI]

VEHICLE USAGE AGREEMENT DEPARTMENT OF BIOLOGICAL SCIENCE All drivers of vehicles must certify to the following: 1. I certify that I have a valid driver's license appropriate for the vehicle type and will abide belts. 2. I have read and understand the vehicle operating policies and procedures as defined

Ronquist, Fredrik

490

VEHICLE RESERVATION DO NOT WRITE IN  

E-Print Network [OSTI]

VEHICLE RESERVATION DO NOT WRITE IN SHADED AREAS For Information Call 764-2485 FAX # (76)3-1470 Vehicle No. License OK VEHICLE DAMAGE INSPECTION Circle area of damage and/or describe below: OUTGOING for Rules & Regulations for Vehicle Rentals Reference Number 5 digit # Date Department Short code Requestor

Kirschner, Denise

491

Master Thesis Proposal: Simulation of Vehicle  

E-Print Network [OSTI]

Master Thesis Proposal: Simulation of Vehicle Driving Behavior Based on External Excitations Background For vehicle manufacturers it is important to know how their vehicles are used during the components and also for designing the controls of the vehicle. For example, the load characteristics

Zhao, Yuxiao

492

VEHICLE SERVICES POLICY Table of Contents  

E-Print Network [OSTI]

VEHICLE SERVICES POLICY Table of Contents 1. Policy 2. Procedures a. Vehicle Services Oversight b. Vehicle Maintenance and Inspection c. Authorized Drivers d. Responsibilities Back to Top (To download requirements for AUB's vehicles, the University has adopted a policy of centralizing these activities under one

Shihadeh, Alan

493

VEHICLE RENTAL FACT SHEET January 20, 2012  

E-Print Network [OSTI]

VEHICLE RENTAL FACT SHEET January 20, 2012 When Smithsonian travelers rent a vehicle during official travel, the vehicle should be rented using an individual travel card (if available) and using are not reimbursable so the rental car company CDW should be declined if the vehicle is rented under the government

494

Planning for Autonomous Underwater Vehicles Zeyn Saigol  

E-Print Network [OSTI]

, 2007 4 / 25 #12;Autonomous Underwater Vehicles Unmanned, untethered submersibles Autosub, developedPlanning for Autonomous Underwater Vehicles Zeyn Saigol Intelligent Robotics Lab meeting July 31 in Southampton Cheaper than manned vehicles Can get to places tethered vehicles can't No need for human

Yao, Xin

495

Using Vehicle Taxes to Reduce Carbon Dioxide Emissions Rates of New Passenger Vehicles: Evidence from France, Germany, and Sweden  

E-Print Network [OSTI]

France, Germany, and Sweden link vehicle taxes to the carbon dioxide (CO2) emissions rates of passenger vehicles. Based on new vehicle registration data from 2005–2010, a vehicle’s tax is negatively correlated with its ...

Klier, Thomas

496

(Hydrogen) Service Stations 101 Steven M. Schlasner  

E-Print Network [OSTI]

(Hydrogen) Service Stations 101 Steven M. Schlasner September 22, 2004 #12;2 DISCLAIMER Opinions · Comparison of Conventional with Hydrogen Fueling Stations · Hydrogen Fueling Life Cycle · Practical Design,000 retail outlets (350 company-owned) in 44 states · Brands: Conoco, Phillips 66, 76 · 32,800 miles pipeline

497

Protection against malevolent use of vehicles at Nuclear Power Plants. Vehicle barrier system selection guidance  

SciTech Connect (OSTI)

This manual provides a simplified procedure for selecting land vehicle barriers that will stop the design basis vehicle threat adopted by the U.S. Nuclear Regulatory Commission. Proper selection and construction of vehicle barriers should prevent intrusion of the design basis vehicle. In addition, vital safety related equipment should survive a design basis vehicle bomb attack when vehicle barriers are properly selected, sited, and constructed. This manual addresses passive vehicle barriers, active vehicle barriers, and site design features that can be used to reduce vehicle impact velocity.

Nebuda, D.T.

1994-08-01T23:59:59.000Z

498

EMPLOYEE FUEL ACCESS APPLICATION Use this application to request access for employees to use the campus service stations in conjunction with a fuel  

E-Print Network [OSTI]

EMPLOYEE FUEL ACCESS APPLICATION Use this application to request access for employees to use the campus service stations in conjunction with a fuel access device. In order to obtain fuel from for access. Employee access is not required for the U-M fleet vehicle equipped with an automated fuel device

Kirschner, Denise

499

Hydrogen as a transportation fuel: Costs and benefits  

SciTech Connect (OSTI)

Hydrogen fuel and vehicles are assessed and compared to other alternative fuels and vehicles. The cost, efficiency, and emissions of hydrogen storage, delivery, and use in hybrid-electric vehicles (HEVs) are estimated. Hydrogen made thermochemically from natural gas and electrolytically from a range of electricity mixes is examined. Hydrogen produced at central plants and delivered by truck is compared to hydrogen produced on-site at filling stations, fleet refueling centers, and residences. The impacts of hydrogen HEVs, fueled using these pathways, are compared to ultra-low emissions gasoline internal-combustion-engine vehicles (ICEVs), advanced battery-powered electric vehicles (BPEVs), and HEVs using gasoline or natural gas.

Berry, G.D.

1996-03-01T23:59:59.000Z

500

Multi-lane Vehicle-to-Vehicle Networks with Time-Varying Radio Ranges  

E-Print Network [OSTI]

Multi-lane Vehicle-to-Vehicle Networks with Time-Varying Radio Ranges: Information Propagation propagation speed in multi-lane vehicle-to-vehicle networks such as roads or highways. We focus on the impact of time-varying radio ranges and of multiple lanes of vehicles, varying in speed and in density. We assess

Paris-Sud XI, Université de