Sample records for vehicles product electric

  1. An analysis of battery electric vehicle production projections

    E-Print Network [OSTI]

    Cunningham, John Shamus

    2009-01-01T23:59:59.000Z

    In mid 2008 and early 2009 Deutsche Bank and The Boston Consulting Group each released separate reports detailing projected Battery Electric Vehicle production through 2020. These reports both outlined scenarios in which ...

  2. Electric vehicles

    SciTech Connect (OSTI)

    Not Available

    1990-03-01T23:59:59.000Z

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

  3. Electric Vehicles

    ScienceCinema (OSTI)

    Ozpineci, Burak

    2014-07-23T23:59:59.000Z

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  4. Electric Vehicles

    SciTech Connect (OSTI)

    Ozpineci, Burak

    2014-05-02T23:59:59.000Z

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  5. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation 2010 DOE Vehicle Technologies...

  6. AVTA: 2010 Electric Vehicles International Neighborhood Electric...

    Energy Savers [EERE]

    10 Electric Vehicles International Neighborhood Electric Vehicle Testing Results AVTA: 2010 Electric Vehicles International Neighborhood Electric Vehicle Testing Results The...

  7. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Broader source: Energy.gov (indexed) [DOE]

    Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector...

  8. Richmond Electric Vehicle Initiative Electric Vehicle Readiness...

    Office of Environmental Management (EM)

    MO) Vehicles Home About Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions Alternative Fuels Modeling, Testing, Data & Results Education...

  9. BEEST: Electric Vehicle Batteries

    SciTech Connect (OSTI)

    None

    2010-07-01T23:59:59.000Z

    BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

  10. Massachusetts Electric Vehicle Efforts

    E-Print Network [OSTI]

    California at Davis, University of

    Massachusetts Electric Vehicle Efforts Christine Kirby, MassDEP ZE-MAP Meeting October 24, 2014 #12 · Provide Clean Air · Grow the Clean Energy Economy · Electric vehicles are a key part of the solution #12 is promoting EVs 4 #12;TCI and Electric Vehicles · Established the Northeast Electric Vehicle Network through

  11. Electric Vehicle Research Group

    E-Print Network [OSTI]

    Liley, David

    .................................................................................9 From diesel to electric: a new era in personnel transport for underground coal minesElectric Vehicle Research Group Annual Report 2012 #12;Table of Contents Executive Summary................................................................................8 C2-25 Electric Vehicle Drivetrain

  12. Plug-In Electric Vehicle Handbook for Electrical

    E-Print Network [OSTI]

    Plug-In Electric Vehicle Handbook for Electrical Contractors #12;Plug-In Electric Vehicle Handbook Infrastructure Installing plug-in electric vehicle (PEV) charg- ing infrastructure requires unique knowledge Thanks to the Electric Vehicle Infrastructure Training Program for assisting with the production

  13. The Case for Electric Vehicles

    E-Print Network [OSTI]

    Sperling, Daniel

    2001-01-01T23:59:59.000Z

    land Press, 1995 TESTING ELECTRIC VEHICLE DEMAND IN " HYBRIDThe Case for Electric Vehicles DanieI Sperlmg Reprint UCTCor The Case for Electric Vehicles Darnel Sperling Institute

  14. Electric Vehicle Smart Charging Infrastructure

    E-Print Network [OSTI]

    Chung, Ching-Yen

    2014-01-01T23:59:59.000Z

    for Multiplexed Electric Vehicle Charging”, US20130154561A1,Chynoweth, ”Intelligent Electric Vehicle Charging System”,of RFID Mesh Network for Electric Vehicle Smart Charging

  15. Washington State Electric Vehicle

    E-Print Network [OSTI]

    California at Davis, University of

    Washington State Electric Vehicle Implementation Bryan Bazard Maintenance and Alternate Fuel Technology Manager #12;Executive Order 14-04 Requires the procurement of electric vehicles where and equipment with electricity or biofuel to the "extent practicable" by June 2015 1. The vehicle is due

  16. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    vehicle into an electric power source. Although electricity production may contribute to air pollution, the U.S. Environmental Protection Agency (EPA) considers EVs Hybrid and...

  17. Vehicle Technologies Office: AVTA - Electric Vehicle Community...

    Broader source: Energy.gov (indexed) [DOE]

    Making plug-in electric vehicles (PEVs, also known as electric cars) as affordable and convenient as conventional vehicles, as described in the EV Everywhere Grand Challenge,...

  18. Energy 101: Electric Vehicles

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

  19. Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

    2005-01-01T23:59:59.000Z

    of Vehicle Image in Gasoline-Hybrid Electric Vehicles Reidof Vehicle Image in Gasoline-Hybrid Electric Vehicles Reidhigh demand for gasoline-hybrid electric vehicles (HEVs)?

  20. Accomodating Electric Vehicles

    E-Print Network [OSTI]

    Aasheim, D.

    2011-01-01T23:59:59.000Z

    Accommodating Electric Vehicles Dave Aasheim 214-551-4014 daasheim@ecotality.com A leader in clean electric transportation and storage technologies ECOtality North America Overview Today ? Involved in vehicle electrification... ECOtality North America Overview Today ?Warehouse Material Handling ? Lift trucks ? Pallet Jacks ? Over 200 Customers ? Over 5,000 Installations ECOtality North America Overview Today ? 1990?s involved in EV1 ? EV Chargers ? Vehicle & battery...

  1. Electric-Drive Vehicle Basics (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-04-01T23:59:59.000Z

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  2. NREL: Vehicles and Fuels Research - Hybrid Electric Fleet Vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Electric Fleet Vehicle Testing How Hybrid Electric Vehicles Work Hybrid electric vehicles combine a primary power source, an energy storage system, and an electric motor to...

  3. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Describes...

  4. Electric-Drive Vehicle engineering

    E-Print Network [OSTI]

    Berdichevsky, Victor

    Electric-Drive Vehicle engineering COLLEGE of ENGINEERING Electric-drive engineers for 80 years t Home to nation's first electric-drive vehicle engineering program and alternative-credit EDGE Engineering Entrepreneur Certificate Program is a great addition to an electric-drive vehicle

  5. Vehicle Technologies Office: AVTA - Electric Vehicle Charging...

    Energy Savers [EERE]

    the Alternative Fuel Data Center's page on plug-in electric vehicle infrastructure. For a map of the public EVSE available in the U.S., see the Alternative Fuels Station Locator....

  6. Vehicle Technologies Office Merit Review 2014: Smith Electric...

    Broader source: Energy.gov (indexed) [DOE]

    Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification Vehicle Technologies Office Merit Review 2014: Smith Electric Vehicles: Advanced...

  7. Electric and Hybrid Vehicle Technology: TOPTEC

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today's electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between refueling'' stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  8. Electric and Hybrid Vehicle Technology: TOPTEC

    SciTech Connect (OSTI)

    Not Available

    1992-12-01T23:59:59.000Z

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today`s electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between ``refueling`` stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of ``Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  9. Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle...

    Broader source: Energy.gov (indexed) [DOE]

    nation's vehicle fleet. VTO invested 400 million in 18 projects to demonstrate plug-in electric vehicles (PEVs, also known as electric cars) and infrastructure, including 10...

  10. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  11. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-05-01T23:59:59.000Z

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  12. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP)

    Broader source: Energy.gov [DOE]

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  13. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    49 Table 13. Vehicle and fuel efficiency and electricity14. Timing profiles and vehicle and fuel pathways includedand generation, Table 18. Vehicle demand and system load

  14. Electric Vehicle Site Operator Program

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    Kansas State University, with funding support from federal, state, public, and private companies, is participating in the Department of Energy's Electric Vehicle Site Operator Program. Through participation is this program, Kansas State is demonstrating, testing, and evaluating electric or hybrid vehicle technology. This participation will provide organizations the opportunity to examine the latest EHV prototypes under actual operating conditions. KSU proposes to purchase one (1) electric or hybrid van and four (4) electric cars during the first two years of this five year program. KSU has purchased one G-Van built by Conceptor Industries, Toronto, Canada and has initiated a procurement order to purchase two (2) Soleq 1992 Ford EVcort stationwagons.

  15. AVTA: Neighborhood All-Electric Vehicles

    Broader source: Energy.gov [DOE]

    2013 BRP Commander Electric2010 Electric Vehicles International E-Mega2009 Vantage Pickup EVX10002009 Vantage Van EVC1000

  16. Challenges in Electric Vehicle Adoption and Vehicle-Grid Integration.

    E-Print Network [OSTI]

    Xi, Xiaomin

    2013-01-01T23:59:59.000Z

    ??With rapid innovation in vehicle and battery technology and strong support from governmental bodies and regulators, electric vehicles (EV) sales are poised to rise. While… (more)

  17. Electric Vehicles: Performances, Life Cycle Costs, Emissions, and Recharging Requirements

    E-Print Network [OSTI]

    DeLuchi, Mark A.; Wang, Quanlu; Sperling, Daniel

    1989-01-01T23:59:59.000Z

    Sealed lead-acid electric and vehicle battery development.A. (1987a) ture for electric vehicles. In Resources ElectricInternational Conference. Electric Vehicle De- Universityof

  18. Vehicle Technologies Office: Electric Drive Technologies

    Broader source: Energy.gov [DOE]

    Advanced power electronics and electric motors (APEEM) that make up vehicles' electric drive system are essential to hybrid and plug-in electric vehicles. As such, improvements in these...

  19. Electric vehicle repairs and modifications

    SciTech Connect (OSTI)

    Buffett, R.K.

    1982-11-01T23:59:59.000Z

    This informal report describes the electric vehicle (EV) inspection and the necessary maintenance and repairs required to improve reliable operation of five Volkswagen (VW) Electrotransporter vans and five VW EV buses. The recommendations of TVA, EPRI, GES, Volkswagen, Siemens, and Hoppecke have been carried out in this effort. These modifications were necessary before entering the EPRI/TVA phase II and III continuing program. As new energy storage systems are explored using the VW test-bed vehicles in the battery field testing program, additional modifications may be required. All modifications will be submitted to the vehicle and component manufacturer for general assessment and recommendations. At present three different types of battery systems are being evaluated in six VW vehicles. The two Hoppecke and Exide utilize the modified Hoppecke charging systems. The other batteries being tested require off-board chargers specified by their manufacturer and are separate from the vehicle system.

  20. Electric and Hydrogen Vehicles Past and Progress

    E-Print Network [OSTI]

    Kammen, Daniel M.

    status and TSRC research ­ Future? · Hydrogen Fuel Cell Vehicles ­ 20 years ago ­ 10 years ago ­ Current · Transportation Propulsion, Fuels, & Emissions ­ Electric-drive vehicles (including plug-in hybrid and fuel-cell Electric and Fuel Cell Vehicles?Why Electric and Fuel Cell Vehicles? · Transportation accounts for about 33

  1. Electric Vehicle Charging as an Enabling Technology

    E-Print Network [OSTI]

    Electric Vehicle Charging as an Enabling Technology Prepared for the U.S. Department of Energy technologies, electric vehicles and the appurtenant charging infrastructure, is explored in detail to determine regarding system load profiles, vehicle charging strategies, electric vehicle adoption rates, and storage

  2. Measuring & Mitigating Electric Vehicle Adoption Barriers.

    E-Print Network [OSTI]

    Tommy, Carpenter

    2015-01-01T23:59:59.000Z

    ??Transitioning our cars to run on renewable sources of energy is crucial to addressing concerns over energy security and climate change. Electric vehicles (EVs), vehicles… (more)

  3. How Green Will Electricity beHow Green Will Electricity be When Electric Vehicles Arrive?When Electric Vehicles Arrive?

    E-Print Network [OSTI]

    How Green Will Electricity beHow Green Will Electricity be When Electric Vehicles Arrive?When Electric Vehicles Arrive? Edward S. Rubin Department of Engineering and Public Policy Department-carbon electricity and plug-in hybrid electric vehicles (PHEVs) ? · In light of the above, would adoption of PHEVs

  4. Fuel Savings from Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Bennion, K.; Thornton, M.

    2009-03-01T23:59:59.000Z

    NREL's study shows that hybrid electric vehicles can significantly reduce oil imports for use in light-duty vehicles, particularly if drivers switch to smaller, more fuel-efficient vehicles overall.

  5. ECE 438 Electric and Hybrid Vehicles Catalog Description: History of electric traction. Introduction to electric and hybrid-electric

    E-Print Network [OSTI]

    ECE 438 ­ Electric and Hybrid Vehicles Catalog Description: History of electric traction. Introduction to electric and hybrid-electric vehicle configurations. Vehicle mechanics. Energy sources and storage. Range prediction. Motor for HEVs. Electric drive components. Vehicle transmission system. Credits

  6. Interested but unsure: Public attitudes toward electric vehicles in China

    E-Print Network [OSTI]

    Lo, Kevin

    2013-01-01T23:59:59.000Z

    to pay for electric vehicles and their attributes. Resourceownership and use of electric vehicles–a review ofenvironmental effects of electric vehicles versus compressed

  7. Ultracapacitor Technologies and Application in Hybrid and Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andy

    2009-01-01T23:59:59.000Z

    Moderate Hybrid-electric Vehicles. ESScap06, Switzerland,GH. SIMPLEV: A Simple Electric Vehicle Simulation Program-20 th International Electric Vehicle Symposium, Long Beach,

  8. Optimal Decentralized Protocols for Electric Vehicle Charging

    E-Print Network [OSTI]

    Low, Steven H.

    1 Optimal Decentralized Protocols for Electric Vehicle Charging Lingwen Gan Ufuk Topcu Steven Low Abstract--We propose decentralized algorithms for optimally scheduling electric vehicle (EV) charging. The algorithms exploit the elasticity and controllability of electric vehicle loads in order to fill the valleys

  9. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-05-01T23:59:59.000Z

    Hybrid and plug-in electric vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  10. Electric Vehicle Deployment: Policy Questions and Impacts to...

    Energy Savers [EERE]

    regarding policy questions and impacts to the electric grid from the energy demands of electric vehicles. EAC - Electric Vehicle Deployment - Impacts to the US Electric Grid -...

  11. Plug-In Electric Vehicle Handbook for Electrical Contractors (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, charging equipment installation, and training for electrical contractors.

  12. taking charge : optimizing urban charging infrastructure for shared electric vehicles

    E-Print Network [OSTI]

    Subramani, Praveen

    2012-01-01T23:59:59.000Z

    This thesis analyses the opportunities and constraints of deploying charging infrastructure for shared electric vehicles in urban environments. Existing electric vehicle charging infrastructure for privately owned vehicles ...

  13. Development of High Energy Lithium Batteries for Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lithium Batteries for Electric Vehicles Development of High Energy Lithium Batteries for Electric Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program...

  14. Energy Department Awards Will Promote Electric Vehicles in 24...

    Broader source: Energy.gov (indexed) [DOE]

    Will Promote Electric Vehicles in 24 States and Train a Workforce for Advanced Vehicle Development Energy Department Awards Will Promote Electric Vehicles in 24 States and Train a...

  15. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt066vsskarner2012...

  16. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt066vsskarner2011...

  17. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Energy Savers [EERE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt072vssmackie2011...

  18. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Energy Savers [EERE]

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt072vssmackie2012...

  19. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    EVSE Designed And Manufactured To Allow Power And Energy Data Collection And Demand Response Control Residential EVSE Installed For All Vehicles 1,300...

  20. Salt River Project electric vehicle program

    SciTech Connect (OSTI)

    Morrow, K.P.

    1994-11-01T23:59:59.000Z

    Electric vehicles (EV) promise to be a driving force in the future of America. The quest for cleaner air and efforts to trim the nation's appetite for foreign oil are among the reasons why. America's EV future is rapidly approaching, with major automakers targeting EV mass production and sales before the end of the decade. This article describes the Salt River Project (SRP), a leader among electric utilities involved in EV research and development (R and D). R and D efforts are underway to plan and prepare for a significant number of EVs in SRP's service territory and to understand the associated recharging requirements for EVs.

  1. Advanced Electric Drive Vehicles ? A Comprehensive Education...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting arravt034tiferdowsi2012o.pdf More Documents & Publications Advanced Electric Drive Vehicles A Comprehensive Education, Training, and Outreach Program...

  2. Electric Vehicle Charging Infrastructure Deployment Guidelines...

    Open Energy Info (EERE)

    Guidelines: British Columbia Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Electric Vehicle Charging Infrastructure Deployment Guidelines: British Columbia Agency...

  3. Advanced Electric Drive Vehicles ? A Comprehensive Education...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Peer Evaluation arravt034tiferdowsi2011p.pdf More Documents & Publications Advanced Electric Drive Vehicles A Comprehensive Education, Training, and Outreach Program...

  4. Advanced Electric Drive Vehicles ? A Comprehensive Education...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -- Washington D.C. tiarravt034ferdowsi2010o.pdf More Documents & Publications Advanced Electric Drive Vehicles A Comprehensive Education, Training, and Outreach Program...

  5. Advanced Electric Drive Vehicle Education Program

    Broader source: Energy.gov (indexed) [DOE]

    Training Consortium (NAFTC), together with its partners, will develop an Advanced Electric Drive Vehicle Education Program that will help accelerate mass market introduction...

  6. Plug-In Hybrid Electric Vehicles (Presentation)

    SciTech Connect (OSTI)

    Markel, T.

    2006-05-08T23:59:59.000Z

    Provides an overview on the current status, long-term prospects, and key challenges in the development of plug-in hybrid electric vehicle technology.

  7. Wireless Power Transfer for Electric Vehicles

    SciTech Connect (OSTI)

    Scudiere, Matthew B [ORNL; McKeever, John W [ORNL

    2011-01-01T23:59:59.000Z

    As Electric and Hybrid Electric Vehicles (EVs and HEVs) become more prevalent, there is a need to change the power source from gasoline on the vehicle to electricity from the grid in order to mitigate requirements for onboard energy storage (battery weight) as well as to reduce dependency on oil by increasing dependency on the grid (our coal, gas, and renewable energy instead of their oil). Traditional systems for trains and buses rely on physical contact to transfer electrical energy to vehicles in motion. Until recently, conventional magnetically coupled systems required a gap of less than a centimeter. This is not practical for vehicles of the future.

  8. AVTA: Hybrid-Electric Tractor Vehicles

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following set of reports describes data collected from hybrid-electric tractor vehicles in the Coca-Cola fleet. This research was conducted by the National Renewable Energy Laboratory (NREL).

  9. Fact #796: September 9, 2013 Electric Vehicle and Plug-In Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    September 9, 2013 Electric Vehicle and Plug-In Hybrid Electric Vehicle Sales History Electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) have been available...

  10. Final report on electric vehicle activities, September 1991--October 1994

    SciTech Connect (OSTI)

    Del Monaco, J.L.; Pandya, D.A.

    1995-02-01T23:59:59.000Z

    The data and information collected for the Public Service Electric and Gas Company`s (PSE&G) electric vehicle demonstration program were intended to support and enhance DOE`s Electric and Hybrid Vehicle Site Operator Program. The DOE Site Operator Program is focused on the life cycle and reliability of Electric Vehicles (EVs). Of particular interest are vehicles currently available with features that are likely to be put into production or demonstrate new technology. PSE&G acquired eight GMC Electric G-Vans in 1991, and three TEVans in 1993, and conducted a program plan to test and assess the overall performance of these electric vehicles. To accomplish the objectives of DOE`s Site Operator`s test program, a manual data collection system was implemented. The manual data collection system has provided energy use and mileage data. From September 1991 to October 1994 PSE&G logged 69,368 miles on eleven test vehicles. PSE&G also demonstrated the EVs to diverse groups and associations at fifty seven various events. Included in the report are lessons learned concerning maintenance, operation, public reactions, and driver`s acceptance of the electric vehicles.

  11. Research, development, and demonstration of lead-acid batteries for electric vehicle propulsion. Annual report, 1980

    SciTech Connect (OSTI)

    Not Available

    1981-03-01T23:59:59.000Z

    The progress and status of Eltra's Electric Vehicle Battery Program during FY-80 are presented under five divisional headings: Research on Components and Processes; Development of Cells and Modules for Electric Vehicle Propulsion; Sub-Systems; Pilot Line Production of Electric Vehicle Battery Prototypes; and Program Management.

  12. Integration of Physical Models in the ORQA Framework for Electric Vehicle Energy Management

    E-Print Network [OSTI]

    Boyer, Edmond

    Integration of Physical Models in the ORQA Framework for Electric Vehicle Energy Management Borjan Brest, France ABSTRACT The energy management of electric vehicles is located in the storage system Systems]: Consumer Products--electric vehicle Keywords model driven architecture; energy consumption

  13. PSU TOYOTA ELECTRIC VEHICLE PROGRAM POLICY JULY 2010

    E-Print Network [OSTI]

    Bertini, Robert L.

    PSU ­ TOYOTA ELECTRIC VEHICLE PROGRAM POLICY JULY 2010 Purpose: The University State University ­ Toyota Electric Vehicle Program under which Toyota Motor Sales, U.S.A., Inc. (Toyota Agreement PSU ­ Toyota Electric Vehicle Program Procedures Manual for Individual Users Duration

  14. Hybrid & electric vehicle technology and its market feasibility

    E-Print Network [OSTI]

    Jeon, Sang Yeob

    2010-01-01T23:59:59.000Z

    In this thesis, Hybrid Electric Vehicles (HEV), Plug-In Hybrid Electric Vehicle (PHEV) and Electric Vehicle (EV) technology and their sales forecasts are discussed. First, the current limitations and the future potential ...

  15. Modelling and control strategy development for fuel cell electric vehicles

    E-Print Network [OSTI]

    Peng, Huei

    Modelling and control strategy development for fuel cell electric vehicles Andreas Schell b , Huei applicable to the development of fuel cell electric vehicles (FCEVs) and hybrid electric vehicles (HEVs reserved. Keywords: Fuel cell electric vehicle; Hybrid vehicles; Modelling 1. Introduction Advanced

  16. 2013MIT SOLAR ELECTRIC VEHICLE TEAM The MIT Solar Electric Vehicle Team (SEVT)

    E-Print Network [OSTI]

    Williams, Brian C.

    Challenge in Australia, and the North American Solar Challenge. The vehicles drive during the day and stop2013MIT SOLAR ELECTRIC VEHICLE TEAM #12;The MIT Solar Electric Vehicle Team (SEVT) is a student organization dedicated to demonstrating the viability of alternative energy-based transportation. The team

  17. Modular Electric Vehicle Program (MEVP). Final technical report

    SciTech Connect (OSTI)

    NONE

    1994-03-01T23:59:59.000Z

    The Modular Electric Vehicle Program (MEVP) was an EV propulsion system development program in which the technical effort was contracted by DOE to Ford Motor Company. The General Electric Company was a major subcontractor to Ford for the development of the electric subsystem. Sundstrand Power Systems was also a subcontractor to Ford, providing a modified gas turbine engine APU for emissions and performance testing as well as a preliminary design and producibility study for a Gas Turbine-APU for potential use in hybrid/electric vehicles. The four-year research and development effort was cost-shared between Ford, General Electric, Sundstrand Power Systems and DOE. The contract was awarded in response to Ford`s unsolicited proposal. The program objective was to bring electric vehicle propulsion system technology closer to commercialization by developing subsystem components which can be produced from a common design and accommodate a wide range of vehicles; i.e., modularize the components. This concept would enable industry to introduce electric vehicles into the marketplace sooner than would be accomplished via traditional designs in that the economies of mass production could be realized across a spectrum of product offerings. This would eliminate the need to dedicate the design and capital investment to a limited volume product offering which would increase consumer cost and/or lengthen the time required to realize a return on the investment.

  18. Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues This presentation by...

  19. Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol...

    Broader source: Energy.gov (indexed) [DOE]

    Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Webinar slides from the U.S. Department of Energy...

  20. Environmental Assessment of Plug-In Hybrid Electric Vehicles...

    Energy Savers [EERE]

    Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1:...

  1. AVTA: 2013 BRP Neighborhood Electric Vehicle Testing Results...

    Energy Savers [EERE]

    describe testing results of the 2013 BRP neighborhood electric vehicle. Neighborhood electric vehicles reach speeds of no more than 35 miles per hour and are only allowed on...

  2. System Simulations of Hybrid Electric Vehicles with Focus on...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Simulations of Hybrid Electric Vehicles with Focus on Emissions System Simulations of Hybrid Electric Vehicles with Focus on Emissions Comparative simulations of hybrid...

  3. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Voltage Solid Polymer Batteries for Electric Drive Vehicles High-Voltage Solid Polymer Batteries for Electric Drive Vehicles 2012 DOE Hydrogen and Fuel Cells Program and...

  4. AVTA: 2009 Vantage Neighborhood Electric Vehicle Testing Results...

    Energy Savers [EERE]

    The following reports describe testing results of two 2009 Vantage neighborhood electric vehicles (a pickup truck style and a van style). Neighborhood electric vehicles...

  5. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...

    Broader source: Energy.gov (indexed) [DOE]

    High-Voltage Solid Polymer Batteries for Electric Drive Vehicles High-Voltage Solid Polymer Batteries for Electric Drive Vehicles 2013 DOE Hydrogen and Fuel Cells Program and...

  6. Computer-Aided Engineering for Electric Drive Vehicle Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) 2011 DOE Hydrogen and Fuel Cells...

  7. AVTA: Hybrid-Electric Delivery Vehicles

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following set of reports describes data collected from testing on FedEx Express and UPS hybrid-electric delivery trucks. This research was conducted by the National Renewable Energy Laboratory (NREL).

  8. Planning an itinerary for an electric vehicle

    E-Print Network [OSTI]

    Chale-Gongora, Hugo G.

    The steady increase in oil prices and awareness regarding environmental risks due to carbon dioxide emissions are promoting the current interest in electric vehicles. However, the current relatively low driving range ...

  9. Electric vehicles move closer to market

    SciTech Connect (OSTI)

    O`Connor, L.

    1995-03-01T23:59:59.000Z

    This article reports that though battery technology is currently limiting the growth of EVs, the search for improvements is spurring innovative engineering developments. As battery makers, automakers, national laboratories, and others continue their search for a practical source of electric power that will make electric vehicles (EVs) more viable, engineers worldwide are making progress in other areas of EV development. Vector control, for example, enables better regulation of motor torque and speed; composite and aluminum parts reduce the vehicle`s weight, which in turn reduces the load on the motor and battery; and flywheel energy storage systems, supercapacitors, regenerative brake systems, and hybrid/electric drive trains increase range and acceleration. Despite efforts to develop an electric vehicle from the ground up, most of the early EVs to be sold in the United States will likely be converted from gasoline-powered vehicles. Chrysler Corp., for example, is expected to sell electric versions of its minivans and build them on the same assembly line as its gasoline-powered vehicles to reduce costs. The pace of engineering development in this field is fast and furious. Indeed, it is virtually impossible to monitor all emerging EV technology. To meet their quotas, the major automakers may even consider buying credits from smaller, innovative EV manufacturers. But whatever stopgap measures vehicle makers take, technology development will be the driving force behind long-term EV growth.

  10. Powertrain system for a hybrid electric vehicle

    DOE Patents [OSTI]

    Reed, R.G. Jr.; Boberg, E.S.; Lawrie, R.E.; Castaing, F.J.

    1999-08-31T23:59:59.000Z

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration. 34 figs.

  11. Powertrain system for a hybrid electric vehicle

    DOE Patents [OSTI]

    Reed, Jr., Richard G. (Royal Oak, MI); Boberg, Evan S. (Hazel Park, MI); Lawrie, Robert E. (Whitmore Lake, MI); Castaing, Francois J. (Bloomfield Township, MI)

    1999-08-31T23:59:59.000Z

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.

  12. Plug-In Electric Vehicle Handbook for Public Charging

    E-Print Network [OSTI]

    Plug-In Electric Vehicle Handbook for Public Charging Station Hosts #12;Plug-In Electric Vehicle PEV Charging Stations Establishing plug-in electric vehicle (PEV) charging stations requires unique at www.cleancities.energy.gov . Acknowledgement Thanks to the Electric Vehicle Infrastructure Training

  13. 2010 Plug-In Hybrid and Electric Vehicle Research

    E-Print Network [OSTI]

    2010 Plug-In Hybrid and Electric Vehicle Research Center TRANSPORTATION ENERGY RESEARCH PIER The PlugIn and Hybrid Electric Vehicle Researc Center conducts research in: · Battery second life applications. Plugin hybrid electric vehicles (PHEVs) and electric vehicles (EVs) are promising

  14. Plug-In Electric Vehicle Handbook for Fleet Managers

    E-Print Network [OSTI]

    Plug-In Electric Vehicle Handbook for Fleet Managers #12;Plug-In Electric Vehicle Handbook Infrastructure Successfully deploying plug-in electric vehicles (PEVs) and charging infrastructure requires at www.cleancities.energy.gov. #12;Plug-In Electric Vehicle Handbook for Fleets 3 You've heard the buzz

  15. Influence of Electric Vehicles Connected to the Grid Guangbin Li (gl2423) Influence of Electric Vehicles Connected to the Grid

    E-Print Network [OSTI]

    Lavaei, Javad

    vehicles and its meaning of research An electric vehicle refers to the vehicle powered from batteries that are only powered from internal batteries, called Battery Electric Vehicle (BEV); those that can be powered the fuel cell as its power, called Fuel Cell Electric Vehicle (FCEV). BEV achieves the "zero-release" goal

  16. Electrical system for a motor vehicle

    DOE Patents [OSTI]

    Tamor, M.A.

    1999-07-20T23:59:59.000Z

    In one embodiment of the present invention, an electrical system for a motor vehicle comprises a capacitor, an engine cranking motor coupled to receive motive power from the capacitor, a storage battery and an electrical generator having an electrical power output, the output coupled to provide electrical energy to the capacitor and to the storage battery. The electrical system also includes a resistor which limits current flow from the battery to the engine cranking motor. The electrical system further includes a diode which allows current flow through the diode from the generator to the battery but which blocks current flow through the diode from the battery to the cranking motor. 2 figs.

  17. Electrical system for a motor vehicle

    DOE Patents [OSTI]

    Tamor, Michael Alan (Toledo, OH)

    1999-01-01T23:59:59.000Z

    In one embodiment of the present invention, an electrical system for a motor vehicle comprises a capacitor, an engine cranking motor coupled to receive motive power from the capacitor, a storage battery and an electrical generator having an electrical power output, the output coupled to provide electrical energy to the capacitor and to the storage battery. The electrical system also includes a resistor which limits current flow from the battery to the engine cranking motor. The electrical system further includes a diode which allows current flow through the diode from the generator to the battery but which blocks current flow through the diode from the battery to the cranking motor.

  18. Electric machine for hybrid motor vehicle

    DOE Patents [OSTI]

    Hsu, John Sheungchun (Oak Ridge, TN)

    2007-09-18T23:59:59.000Z

    A power system for a motor vehicle having an internal combustion engine and an electric machine is disclosed. The electric machine has a stator, a permanent magnet rotor, an uncluttered rotor spaced from the permanent magnet rotor, and at least one secondary core assembly. The power system also has a gearing arrangement for coupling the internal combustion engine to wheels on the vehicle thereby providing a means for the electric machine to both power assist and brake in relation to the output of the internal combustion engine.

  19. Electric Vehicles: Performance, Life-Cycle Costs, Emissions, and Recharging Requirements

    E-Print Network [OSTI]

    DeLuchi, Mark A.; Wang, Quanlu; Sperling, Daniel

    1989-01-01T23:59:59.000Z

    Sealed lead-acid electric and vehicle battery development.A. (1987a) ture for electric vehicles. In Resources ElectricInternational Conference. Electric Vehicle De- Universityof

  20. MIT Electric Vehicle Team Porsche designing a cooling system for the AC24 electric motor

    E-Print Network [OSTI]

    Meenen, Jordan N

    2010-01-01T23:59:59.000Z

    In this thesis I worked on the design and analysis of a cooling system for the electric motor of the MIT Electric Vehicle Team's Porsche 914 Battery Electric Vehicle. The vehicle's Azure Dynamics AC24 motor tended to ...

  1. Power Conditioning for Plug-In Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Farhangi, Babak

    2014-07-25T23:59:59.000Z

    Plugin Hybrid Electric Vehicles (PHEVs) propel from the electric energy stored in the batteries and gasoline stored in the fuel tank. PHEVs and Electric Vehicles (EVs) connect to external sources to charge the batteries. Moreover, PHEVs can supply...

  2. Congestion control in charging of electric vehicles

    E-Print Network [OSTI]

    Carvalho, Rui; Gibbens, Richard; Kelly, Frank

    2015-01-01T23:59:59.000Z

    The increasing penetration of electric vehicles over the coming decades, taken together with the high cost to upgrade local distribution networks, and consumer demand for home charging, suggest that managing congestion on low voltage networks will be a crucial component of the electric vehicle revolution and the move away from fossil fuels in transportation. Here, we model the max-flow and proportional fairness protocols for the control of congestion caused by a fleet of vehicles charging on distribution networks. We analyse the inequality in the charging times as the vehicle arrival rate increases, and show that charging times are considerably more uneven in max-flow than in proportional fairness. We also analyse the onset of instability, and find that the critical arrival rate is indistinguishable between the two protocols.

  3. Electric Drive Vehicle Infrastructure Deployment

    Broader source: Energy.gov (indexed) [DOE]

    pricing encourages off-peak energy * Smart Grid Integration o Charging stations with Demand Response, Time-of-Use Pricing, and AMI compatible with the modern electric grid *...

  4. Predictive energy management for hybrid electric vehicles -Prediction horizon and

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Predictive energy management for hybrid electric vehicles - Prediction horizon and battery capacity of a combined hybrid electric vehicle. Keywords: Hybrid vehicles, Energy Management, Predictive control, Optimal vehicle studied uses a complex transmission composed of planetary gear sets and two electric motors

  5. Electric Drive Vehicles: A Huge New Distributed Energy Resource

    E-Print Network [OSTI]

    Firestone, Jeremy

    with electric power generation and storage capabilities · Three Vehicle Types in Program ­ Full ZEV: true zero) #12;Electric Drive in Vehicles -- All the Ingredients for a Distributed Power System #12;Vehicle and energy storage potential · Electric vehicle charge stations: grid connection points for power

  6. Nissan Hypermini Urban Electric Vehicle Testing

    SciTech Connect (OSTI)

    James Francfort; Robert Brayer

    2006-01-01T23:59:59.000Z

    The U.S. Department of Energy’s (DOE’s) Advanced Vehicle Testing Activity (AVTA), which is part of DOE’s FreedomCAR and Vehicle Technologies Program, in partnership with the California cities of Vacaville and Palm Springs, collected mileage and maintenance and repairs data for a fleet of eleven Nissan Hypermini urban electric vehicles (UEVs). The eleven Hyperminis were deployed for various periods between January 2001 and June 2005. During the combined total of 439 months of use, the eleven Hyperminis were driven a total of 41,220 miles by staff from both cities. This equates to an average use of about 22 miles per week per vehicle. There were some early problems with the vehicles, including a charging problem and a need to upgrade the electrical system. In addition, six vehicles required drive system repairs. However, the repairs were all made under warranty. The Hyperminis were generally well-liked and provided drivers with the ability to travel any of the local roads. Full charging of the Hypermini’s lithiumion battery pack required up to 4 hours, with about 8–10 miles of range available for each hour of battery charging. With its right-side steering wheel, some accommodation of the drivers’ customary driving methods was required to adapt for different blind spots and vehicle manipulation. For that reason, the drivers received orientation and training before using the vehicle. The Hypermini is instrumented in kilometers rather than in miles, which required an adjustment for the drivers to calculate speed and range. As the drivers gained familiarity with the vehicles, there was increased acceptance and a preference for using it over traditional city vehicles. In all cases, the Hyperminis attracted a great amount of attention and interest from the general public.

  7. Fact #750: October 22, 2012 Electric Vehicle Energy Requirements...

    Broader source: Energy.gov (indexed) [DOE]

    efficiencies of electric vehicles can vary significantly; however, compared with conventional vehicles, they are very efficient-converting about 60% of the energy from the grid to...

  8. Electric Drive Vehicle Level Control Development Under Various...

    Broader source: Energy.gov (indexed) [DOE]

    3 The objective is to develop the entire vehicle thermal management system for two electric drive vehicles (HEVs, PHEVs). Limited battery power and low engine efficiency at...

  9. VP 100: Producing Electric Truck Vehicles with a Little Something...

    Broader source: Energy.gov (indexed) [DOE]

    Truck Vehicles with a Little Something Extra Kevin Craft What does this mean for me? Smith Electric Vehicles included in Vice President's report on 100 Recovery Act Projects...

  10. AIR QUALITY IMPACTS OF ELECTRIC VEHICLE ADOPTION IN TEXAS

    E-Print Network [OSTI]

    Kockelman, Kara M.

    by anticipating battery-charging decisions and power plant energy sources across Texas. Life-cycle impacts conventional passenger cars in Texas, after recognizing the emissions and energy impacts of battery provision-duty vehicles. Use of coal for electricity production is a primary concern for PEV growth, but the energy

  11. Testing Electric Vehicle Demand in "Hybrid Households" Using a Reflexive Survey

    E-Print Network [OSTI]

    Kurani, Kenneth S.; Turrentine, Thomas; Sperling, Daniel

    2001-01-01T23:59:59.000Z

    In contrast to a hybrid vehicle whichcombines multipleor 180 mile hybrid electric vehicle. Natural gas vehicles (1994) "Demand Electric Vehicles in Hybrid for Households:

  12. Integrated Vehicle Thermal Management - Combining Fluid Loops in Electric Drive Vehicles (Presentation)

    SciTech Connect (OSTI)

    Rugh, J. P.

    2013-07-01T23:59:59.000Z

    Plug-in hybrid electric vehicles and electric vehicles have increased vehicle thermal management complexity, using separate coolant loop for advanced power electronics and electric motors. Additional thermal components result in higher costs. Multiple cooling loops lead to reduced range due to increased weight. Energy is required to meet thermal requirements. This presentation for the 2013 Annual Merit Review discusses integrated vehicle thermal management by combining fluid loops in electric drive vehicles.

  13. Enhancing Location Privacy for Electric Vehicles (at the right time)

    E-Print Network [OSTI]

    An electric vehicle (also known as EV) is powered by an electric motor instead of a gasoline engine sudden demands for power). In future development, it has been proposed that such use of electric vehiclesEnhancing Location Privacy for Electric Vehicles (at the right time) Joseph K. Liu1 , Man Ho Au2

  14. Ultracapacitor Technologies and Application in Hybrid and Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andy

    2009-01-01T23:59:59.000Z

    Power Battery for Hybrid Vehicle Applications. ProceedingsAF. Electric and Hybrid Vehicle Design and Performance.A, Thornton M. Plug-in Hybrid Vehicle Analysis. NREL/MP-540-

  15. Thermal Batteries for Electric Vehicles

    SciTech Connect (OSTI)

    None

    2011-11-21T23:59:59.000Z

    HEATS Project: UT Austin will demonstrate a high-energy density and low-cost thermal storage system that will provide efficient cabin heating and cooling for EVs. Compared to existing HVAC systems powered by electric batteries in EVs, the innovative hot-and-cold thermal batteries-based technology is expected to decrease the manufacturing cost and increase the driving range of next-generation EVs. These thermal batteries can be charged with off-peak electric power together with the electric batteries. Based on innovations in composite materials offering twice the energy density of ice and 10 times the thermal conductivity of water, these thermal batteries are expected to achieve a comparable energy density at 25% of the cost of electric batteries. Moreover, because UT Austin’s thermal energy storage systems are modular, they may be incorporated into the heating and cooling systems in buildings, providing further energy efficiencies and positively impacting the emissions of current building heating/cooling systems.

  16. Putting electric vehicles to the test

    E-Print Network [OSTI]

    the needs of the daily commuter? Can they match the performance we've come to expect from their fossil fuel sectors. Dr. Swan and his father have three electric vehicles ­ two 2000 Ford Ranger EV trucks and a 2002 uses a full charge in a day. He uses a Ranger to get to work and hauls any cargo or trailers he needs

  17. Hydrogen Fuel Cell Electric Vehicles (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01T23:59:59.000Z

    As nations around the world pursue a variety of sustainable transportation solutions, the hydrogen fuel cell electric vehicle (FCEV) presents a promising opportunity for American consumers and automakers. FCEVs offer a sustainable transportation option, provide a cost-competitive alternative for drivers, reduce dependence on imported oil, and enable global economic leadership and job growth.

  18. International Assessment of Electric-Drive Vehicles: Policies, Markets, and Technologies

    E-Print Network [OSTI]

    Sperling, Daniel; Lipman, Timothy

    2003-01-01T23:59:59.000Z

    Assessmentof Electric-Drive Vehicles: Policies, Markets, andInternational Assessment Electric-Drive Vehicles: Policies,International Assessment Electric-Drive Vehicles Policies,

  19. Economic Assessment of Electric-Drive Vehicle Operation in California and the United States

    E-Print Network [OSTI]

    Lidicker, Jeffrey R.; Lipman, Timothy E.; Shaheen, Susan A.

    2010-01-01T23:59:59.000Z

    ECONOMIC ASSESSMENT OF ELECTRIC-DRIVE VEHICLE OPERATION INECONOMIC ASSESSMENT OF ELECTRIC-DRIVE VEHICLE OPERATION INconsumers to switch to electric-drive vehicles, including a

  20. Optimal investment and scheduling of distributed energy resources with uncertainty in electric vehicles driving schedules

    E-Print Network [OSTI]

    Cardoso, Goncalo

    2014-01-01T23:59:59.000Z

    of Smart Grids with Electric Vehicle Interconnection,”Economy of 2012 Electric Vehicles. ” [Online]. Available:Plug-in Hybrid Electric Vehicle Charging Infrastructure

  1. Interactions between Electric-drive Vehicles and the Power Sector in California

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2009-01-01T23:59:59.000Z

    Battery, Hybrid and Fuel Cell Electric Vehicle SymposiumSystem. 23rd International Electric Vehicle Symposium andof Plug-In Hybrid Electric Vehicles, Volume 1: Nationwide

  2. Electrochemical Capacitors as Energy Storage in Hybrid-Electric Vehicles: Present Status and Future Prospects

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01T23:59:59.000Z

    batteries and ultracapacitors for electric vehicles. EVS24Battery, Hybrid and Fuel Cell Electric Vehicle Symposiumpublications on electric and hybrid vehicle technology and

  3. Electric Vehicles Global Climate Change

    E-Print Network [OSTI]

    Sóbester, András

    it is a greenhouse pollutant. The new acoustic technology, which is in earlydevelopment, could also be used in futureWaste Issues Home News Products Community Resources Features Subscribe Advertising / Services Contact Us Login IndustryDirectory Advertising &Services About Us Sitemap Search Advanced Search Security Products

  4. Battery electric vehicles, hydrogen fuel cells and biofuels. Which will

    E-Print Network [OSTI]

    1 Battery electric vehicles, hydrogen fuel cells and biofuels. Which will be the winner? ICEPT vehicles (BEVs) and hydrogen fuel cell vehicles (FCVs). Hybrid solutions are also possible, such as battery electric vehicles equipped with range extenders (PHEVs), be they internal combustion engines or fuel cells

  5. The future of electric two-wheelers and electric vehicles in China

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Ogden, Joan M.; Sperling, Dan; Burke, Andy

    2008-01-01T23:59:59.000Z

    SAE Hybrid Vehicle Symposium, San Diego CA, 13–14 February.emissions from a plug-in hybrid vehicle (PHEV) in China has2008. Nissan’s Electric and Hybrid Electric Vehicle Program.

  6. The Facts On Electric Vehicles: Interview with Pat Davis | Department...

    Broader source: Energy.gov (indexed) [DOE]

    The Facts On Electric Vehicles: Interview with Pat Davis The Facts On Electric Vehicles: Interview with Pat Davis December 22, 2010 - 2:25pm Addthis Andy Oare Andy Oare Former New...

  7. Stock-Take of Electric Vehicle Interface with Electricity and Smart

    E-Print Network [OSTI]

    Toohey, Darin W.

    Stock-Take of Electric Vehicle Interface with Electricity and Smart Grids across APEC Economies-01.6 group.com m 6 m or #12;Assessment of August 2012 Electric Vehicle Connectivity Conditions in APEC Executive Summary Plug-in electric vehicles (PEVs) are part of a new wave of clean vehicles

  8. Partnership Helps Alleviate Electric Vehicle Range Anxiety (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    NREL, Clean Cities, and industry leaders join forces to create the first comprehensive online locator for electric vehicle charging stations.

  9. Analysis of electric vehicle interconnection with commercial building microgrids

    E-Print Network [OSTI]

    Stadler, Michael

    2011-01-01T23:59:59.000Z

    Judy Lai, and Vincent Battaglia: “The added economic andMarnay, and Vincent Battaglia: “Plug-in Electric Vehicle

  10. Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

    2005-01-01T23:59:59.000Z

    The Images of Hybrid Vehicles Each of the householdsbetween hybrid and non-hybrid vehicles was observed in smallowned Honda Civic Hybrids, vehicles that are virtually

  11. Highway vehicle electric drive in the United States : 2009 status and issues.

    SciTech Connect (OSTI)

    Santini, D. J.; Energy Systems

    2011-02-16T23:59:59.000Z

    The status of electric drive technology in the United States as of early 2010 is documented. Rapidly evolving electric drive technologies discussed include hybrid electric vehicles, multiple types of plug-in hybrid electric vehicles, and battery electric vehicles. Recent trends for hybrids are quantified. Various plug-in vehicles entering the market in the near term are examined. The technical and economic requirements for electric drive to more broadly succeed in a wider range of highway vehicle applications are described, and implications for the most promising new markets are provided. Federal and selected state government policy measures promoting and preparing for electric drive are discussed. Taking these into account, judgment on areas where increased Clean Cities funds might be most productively focused over the next five years are provided. In closing, the request by Clean Cities for opinion on the broad range of research needs providing near-term support to electric drive is fulfilled.

  12. Ultracapacitor Applications and Evaluation for Hybrid Electric Vehicles (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.; Gonder, J.; Keyser, M.

    2009-04-01T23:59:59.000Z

    Describes the use of ultracapacitors in advanced hybrid and electric vehicles and discusses thermal and electrical testing of lithium ion capacitors for HEV applications.

  13. Sneaking Interaction Techniques into Electric Vehicles Sebastian Loehmann

    E-Print Network [OSTI]

    Sneaking Interaction Techniques into Electric Vehicles Sebastian Loehmann University of Munich (LMU Due to the release of several electric vehicles (EV) to the car market, the number of sales from regular combustion engine cars to create electric vehicle information systems (EVIS). We argue

  14. Plug-In Hybrid Electric Vehicle Value Proposition Study

    E-Print Network [OSTI]

    Pennycook, Steve

    Plug-In Hybrid Electric Vehicle Value Proposition Study IInntteerriimm RReeppoorrtt:: PPhhaassee 11 Government or any agency thereof. ORNL/TM-2008/076 #12;Plug-in Hybrid Electric Vehicle Value Proposition 2009 i ACKNOWLEDGEMENTS The Plug-In Hybrid Electric Vehicle (PHEV) Value Proposition Study

  15. "Catching the second wave" of the Plug in Electric Vehicle

    E-Print Network [OSTI]

    California at Davis, University of

    "Catching the second wave" of the Plug in Electric Vehicle Market PEV market update from ITS PHEV on gasoline, diesel, natural gas, biofuels and other liquid or gaseous fuels. · HEV = Hybrid electric vehicles Vehicles are like HEVs, but have bigger batteries, and can store electricity from plugging into the grid

  16. Plug-In Hybrid Electric Vehicle Value Proposition Study

    E-Print Network [OSTI]

    Pennycook, Steve

    Plug-In Hybrid Electric Vehicle Value Proposition Study Phase 1, Task 3:Phase 1, Task 3: Technic Government or any agency thereof. #12;ORNL/TM-2008/068 Plug-in Hybrid Electric Vehicle Value Proposition The Plug-In Hybrid Electric Vehicle (PHEV) Value Proposition Study is a collaborative effort between

  17. Plug-In Hybrid Electric Vehicle Value Proposition Study

    E-Print Network [OSTI]

    Pennycook, Steve

    Plug-In Hybrid Electric Vehicle Value Proposition Study Phase 1, Task 2: Select Value Propositions Government or any agency thereof. #12;ORNL/TM-2008/056 Plug-in Hybrid Electric Vehicle Value Proposition-In Hybrid Electric Vehicle (PHEV) Value Propositions Workshop held in Washington, D.C. in December 2007

  18. Joachim Skov Johansen Fast-Charging Electric Vehicles

    E-Print Network [OSTI]

    Firestone, Jeremy

    Joachim Skov Johansen Fast-Charging Electric Vehicles using AC Master's Thesis, September 2013 #12;#12;Joachim Skov Johansen Fast-Charging Electric Vehicles using AC Master's Thesis, September 2013 #12;#12;Fast-Charging Electric Vehicles using AC This report was prepared by Joachim Skov Johansen Contact

  19. A Sensorless Direct Torque Control Scheme Suitable for Electric Vehicles

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A Sensorless Direct Torque Control Scheme Suitable for Electric Vehicles Farid Khoucha, Khoudir an Electric Vehicle (EV). The proposed scheme uses an adaptive flux and speed observer that is based on a full is a good candidate for EVs propulsion. Index Terms--Electric vehicle, Induction motor, sensorless drive

  20. EVADER: Electric Vehicle Alert for Detection and Emergency Response

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    EVADER: Electric Vehicle Alert for Detection and Emergency Response F. Duboisa , G. Baudeta and J pedestrians' ability to travel safely. One of the objectives of the EVADER (Electric Vehicle Alert to evaluate the auditory detectability of electric vehicles by pedestrians, has to be proposed, taking

  1. Modeling and Simulation of Electric and Hybrid Vehicles

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    , and fuel cell vehicles, such as electric machines, power electronics, electronic continuously variableINVITED P A P E R Modeling and Simulation of Electric and Hybrid Vehicles Tools that can model embedded software as well as components, and can automate the details of electric and hybrid vehicle design

  2. Learning Policies For Battery Usage Optimization in Electric Vehicles

    E-Print Network [OSTI]

    Bejerano, Gill

    algorithmic chal- lenge. 1 Introduction Electric vehicles, partially or fully powered by batteries, are oneLearning Policies For Battery Usage Optimization in Electric Vehicles Stefano Ermon, Yexiang Xue for the widespread adoption of electric vehicles. Multi-battery systems that combine a standard battery

  3. An Energy Transmission and Distribution Network Using Electric Vehicles

    E-Print Network [OSTI]

    Wang, Bing

    An Energy Transmission and Distribution Network Using Electric Vehicles Ping Yi, Ting Zhu, Bo Jiang-to-grid provides a viable approach that feeds the battery energy stored in electric vehicles (EVs) back biggest greenhouse gas producer in the world [1]. Many countries have been developing electric vehicles

  4. Online Mechanism Design for Electric Vehicle Charging Enrico H. Gerding

    E-Print Network [OSTI]

    Chen, Yiling

    Online Mechanism Design for Electric Vehicle Charging Enrico H. Gerding eg@ecs.soton.ac.uk Valentin electric vehicles are expected to place a consid- erable strain on local electricity distribution networks online auction protocol for this prob- lem, wherein vehicle owners use agents to bid for power and also

  5. Comparison of the Fire Consequences of an Electric Vehicle and an Internal Combustion Engine Vehicle.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Comparison of the Fire Consequences of an Electric Vehicle and an Internal Combustion Engine key new technologies in the development of electric vehicles (EV), risks pertaining to them have at presenting the main results of these fire tests. KEYWORDS: electric vehicles, battery, fire, safety

  6. Multilevel Inverters for Electric Vehicle Applications

    SciTech Connect (OSTI)

    Habetler, T.G.; Peng, F.Z.; Tolbert, L.M.

    1998-10-22T23:59:59.000Z

    This paper presents multilevel inverters as an application for all-electric vehicle (EV) and hybrid-electric vehicle (HEV) motor drives. Diode-clamped inverters and cascaded H-bridge inverters, (1) can generate near-sinusoidal voltages with only fundamental frequency switching; (2) have almost no electromagnetic interference (EMI) and common-mode voltage; and (3) make an EV more accessible/safer and open wiring possible for most of an EV'S power system. This paper explores the benefits and discusses control schemes of the cascade inverter for use as an EV motor drive or a parallel HEV drive and the diode-clamped inverter as a series HEV motor drive. Analytical, simulated, and experimental results show the superiority of these multilevel inverters for this new niche.

  7. Alternative Fuels Data Center: Hybrid Electric Vehicles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAreSmartWayElectricity Fuel Basics toWithHybrid Electric Vehicles

  8. Dynamometer tests of the Ford Ecostar Electric Vehicle No. 41

    SciTech Connect (OSTI)

    Cole, G.H.; Richardson, R.A.; Yarger, E.J.

    1995-09-01T23:59:59.000Z

    A Ford Ecostar vehicle was tested in the Idaho National Engineering Laboratory (INEL) Hybrid Electric Vehicle (HEV) Laboratory over several standard driving regimes. The test vehicle was delivered to the INEL in February 19, 1995 under the DOE sponsored Modular Electric Vehicle Program. This report presents the results of several dynamometer driving cycle tests and a constant current discharge, and presents observations regarding the vehicle state-of-charge indicator and remaining range indicator.

  9. Plug-In Electric Vehicle Handbook for Consumers

    E-Print Network [OSTI]

    to compete with-- and complement--the ubiquitous ICE technology. First, advances in electric-drive all- electric driving ranges. Advanced technologies have also created a new breed of EVs that donPlug-In Electric Vehicle Handbook for Consumers #12;Plug-In Electric Vehicle Handbook for Consumers

  10. How green are electric vehicles? It is thought plug-in hybrids and other electric vehicles are more environmental friendly and

    E-Print Network [OSTI]

    Toohey, Darin W.

    How green are electric vehicles? It is thought plug-in hybrids and other electric vehicles are more environmental friendly and produce less pollution. Examining other aspects of electric vehicles besides tailpipe vehicles are a life cycle analysis approach must be used. Electricity: Electric vehicles will require more

  11. Testing hybrid electric vehicle emissions and fuel economy at the 1994 Hybrid Electric Vehicle Challenge

    SciTech Connect (OSTI)

    Duoba, M.; Quong, S.; LeBlanc, N.; Larsen, R.P.

    1995-06-01T23:59:59.000Z

    From June 12--20, 1994, an engineering design competition called the 1994 Hybrid Electric Vehicle (HEV) Challenge was held in Southfield, Michigan. This collegiate-level competition, which involved 36 colleges and universities from across North America, challenged the teams to build a superior HEV. One component of this comprehensive competition was the emissions event. Special HEV testing procedures were developed for the competition to find vehicle emissions and correct for battery state-of-charge while fitting into event time constraints. Although there were some problems with a newly-developed data acquisition system, they were able to get a full profile of the best performing vehicles as well as other vehicles that represent typical levels of performance from the rest of the field. This paper will explain the novel test procedures, present the emissions and fuel economy results, and provide analysis of second-by-second data for several vehicles.

  12. Ultracapacitor Technologies and Application in Hybrid and Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andy

    2009-01-01T23:59:59.000Z

    hybrids with high power electric motors for which it may beusing only a 6 kW electric motor. Vehicle projects inhybrids with high power electric motors for which it may be

  13. EVS-25 Shenzhen, China, Nov. 5-9, 2010 The 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition

    E-Print Network [OSTI]

    Vehicle Symposium & Exhibition Impact Assessment of Plug-in Hybrid Vehicles on the U.S. Power Grid Michael) fleet. This paper discusses a 2030 scenario with 37 million plug-in hybrid electric vehicles (PHEVs. Copyright Form of EVS25. Keywords-- Plug-in hybrid electric vehicles, production cost of electricity

  14. Transportation Center Seminar "Electric Vehicle Recharging: Decision Support

    E-Print Network [OSTI]

    Bustamante, Fabián E.

    Transportation Center Seminar "Electric Vehicle Recharging: Decision Support Tools for Drivers Conference Center Refreshments available at 3:30 pm Abstract: Plug-in electric vehicles (PEVs) have become a practical and affordable alternative in recent years to conventional gasoline-powered vehicles

  15. An Online Mechanism for Multi-Speed Electric Vehicle Charging

    E-Print Network [OSTI]

    Southampton, University of

    range of such vehicles, and EVs are expected to represent close to 10% of all vehicle sales by 2020 in electric vehicles (EVs). New hybrid de- signs, equipped with both an electric motor and an internal- nisms to schedule the charging of EVs, such that the local constraints of the distribution network

  16. Driving Smart Growth: Electric Vehicle Adoption and OffPeak Electricity Rates

    E-Print Network [OSTI]

    Holsinger, Kent

    Driving Smart Growth: Electric Vehicle Adoption and OffPeak Electricity Rates Peter Driving Smart Growth: Electric Vehicle Adoption Page 2 Executive Summary Reducing our dependence to electric vehicles (EVs)1 is core to reducing reliance on fossil fuels and driving smart growth

  17. Electric vehicle fleet operations in the United States

    SciTech Connect (OSTI)

    Francfort, J.E. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.; O`Hara, D. [Dept. of Energy, Washington, DC (United States)

    1998-03-01T23:59:59.000Z

    The US Department of Energy (DOE) is actively supporting the development and commercialization of advanced electric vehicles, batteries, and propulsion systems. As part of this effort, the DOE Field Operations Program is performing commercial validation testing of electric vehicles and supporting the development of an electric vehicle infrastructure. These efforts include the evaluation of electric vehicles in baseline performance, accelerated reliability, and fleet operations testing. The baseline performance testing focuses on parameters such as range, acceleration, and battery charging. This testing, performed in conjunction with EV America, has included the baseline performance testing of 16 electric vehicle models from 1994 through 1997. During 1997, the Chevrolet S10 and Ford Ranger electric vehicles were tested. During 1998, several additional electric vehicles from original equipment manufacturers will also be baseline performance tested. This and additional information is made available to the public via the Program`s web page (http://ev.inel.gov/sop). In conjunction with industry and other groups, the Program also supports the Infrastructure Working Council in its development of electric vehicle communications, charging, health and safety, and power quality standards. The Field Operations Program continues to support the development of electric vehicles and infrastructure in conjunction with its qualified vehicle test partners: Electric Transportation Applications, and Southern California Edison. The Field Operations Program is managed by the Lockheed Martin Idaho Technologies Company at the Idaho National Engineering and Environmental Laboratory.

  18. In-Vehicle Testing and Computer Modeling of Electric Vehicle Batteries

    E-Print Network [OSTI]

    Wang, Chao-Yang

    -extending series hybrid electric vehicle (HEV) by the student members of the Society of Automotive Engineers (SAEIn-Vehicle Testing and Computer Modeling of Electric Vehicle Batteries B. Thomas, W.B. Gu, J driving conditions as opposed to purely experimental testing. The new approach is cost- effective, greatly

  19. Electric vehicle system for charging and supplying electrical power

    DOE Patents [OSTI]

    Su, Gui Jia

    2010-06-08T23:59:59.000Z

    A power system that provides power between an energy storage device, an external charging-source/load, an onboard electrical power generator, and a vehicle drive shaft. The power system has at least one energy storage device electrically connected across a dc bus, at least one filter capacitor leg having at least one filter capacitor electrically connected across the dc bus, at least one power inverter/converter electrically connected across the dc bus, and at least one multiphase motor/generator having stator windings electrically connected at one end to form a neutral point and electrically connected on the other end to one of the power inverter/converters. A charging-sourcing selection socket is electrically connected to the neutral points and the external charging-source/load. At least one electronics controller is electrically connected to the charging-sourcing selection socket and at least one power inverter/converter. The switch legs in each of the inverter/converters selected by the charging-source/load socket collectively function as a single switch leg. The motor/generators function as an inductor.

  20. Optimally controlling hybrid electric vehicles using path forecasting

    E-Print Network [OSTI]

    Katsargyri, Georgia-Evangelina

    2008-01-01T23:59:59.000Z

    Hybrid Electric Vehicles (HEVs) with path-forecasting belong to the class of fuel efficient vehicles, which use external sensory information and powertrains with multiple operating modes in order to increase fuel economy. ...

  1. Electric Vehicle Supply Equipment (EVSE) Test Report: Voltec...

    Broader source: Energy.gov (indexed) [DOE]

    VEhICLE TEChNOLOgIES pROgRAm Electric Vehicle Supply Equipment (EVSE) Test Report: Voltec 240V EVSE Features Integrated Flashlight 25ft of coiled cable Auto-reset EVSE...

  2. Optimally Controlling Hybrid Electric Vehicles using Path Forecasting

    E-Print Network [OSTI]

    Kolmanovsky, Ilya V.

    The paper examines path-dependent control of Hybrid Electric Vehicles (HEVs). In this approach we seek to improve HEV fuel economy by optimizing charging and discharging of the vehicle battery depending on the forecasted ...

  3. Community Readiness Project Helps State Get Ready for Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    Oregon is planning for the large-scale deployment of hybrid and all-electric vehicles to reach the state's goal of 30,000 plug-in vehicles by 2015.

  4. Plug-in electric vehicle introduction in the EU

    E-Print Network [OSTI]

    Sisternes, Fernando J. de $q (Fernando José Sisternes Jiménez)

    2010-01-01T23:59:59.000Z

    Plug-in electric vehicles (PEVs) could significantly reduce gasoline consumption and greenhouse gas (GHG) emissions in the EU's transport sector. However, PEV well-towheel (WTW) emissions depend on improvements in vehicle ...

  5. Visualizing Electric Vehicle Sales | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface. | EMSLVisualizing Electric Vehicle Sales

  6. EVI Electric Vehicles International | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It is classified as ASHRAEDuvalJusticeEPS CorpEVI Electric Vehicles

  7. Hitachi Electric Vehicle Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:NetHealthHigganum,InformationElectric Vehicle,

  8. Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008

    E-Print Network [OSTI]

    Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

    2008-01-01T23:59:59.000Z

    rd International Electric Vehicle Symposium and Exposition (Electric and Hybrid Electric Vehicle Applications, Sandiaand Impacts of Hybrid Electric Vehicle Options EPRI, Palo

  9. and Co-Host Riverside Electric Vehicle Day

    E-Print Network [OSTI]

    Mills, Allen P.

    and Co-Host Riverside Electric Vehicle Day Where: UC Riverside | CE-CERT, 1084 Columbia Ave, 92507 renewable sourc- es, efficiently use electric transporta- tion through advanced vehicles and im- prove our million electric vehi- cles on California's roads by 2023 and to ensure that low-income communities, which

  10. GREEN ENERGY AND ELECTRIC VEHICLES. BMW GROUP TECHNOLOGYOFFICE USA.

    E-Print Network [OSTI]

    California at Davis, University of

    GREEN ENERGY AND ELECTRIC VEHICLES. BMW GROUP TECHNOLOGYOFFICE USA. LT-Z-Z, OCTOBER 2012 #12;GREEN E, LT-Z-Z,OCT 2012 Page 2 BACKGROUND. Markets for green energy and electric vehicles can accelerate Hydro Nuclear Natural Gas Coal The electricity for charging the MINI E should come from...(n=41) Agree

  11. Electric Adsorption Heat Pump for Electric Vehicles: Electric-Powered Adsorption Heat Pump for Electric Vehicles

    SciTech Connect (OSTI)

    None

    2011-11-21T23:59:59.000Z

    HEATS Project: PNNL is developing a new class of advanced nanomaterial called an electrical metal organic framework (EMOF) for EV heating and cooling systems. The EMOF would function similar to a conventional heat pump, which circulates heat or cold to the cabin as needed. However, by directly controlling the EMOF's properties with electricity, the PNNL design is expected to use much less energy than traditional heating and cooling systems. The EMOF-based heat pumps would be light, compact, efficient, and run using virtually no moving parts.

  12. Electric vehicle drive train with contactor protection

    DOE Patents [OSTI]

    Konrad, C.E.; Benson, R.A.

    1994-11-29T23:59:59.000Z

    A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the traction battery and the power drive circuit, a voltage detector across contacts of the main contactor, and a controller for controlling the main contactor to prevent movement of its contacts to the closed position when the voltage across the contacts exceeds a predetermined threshold, to thereby protect the contacts of the contactor. The power drive circuit includes an electric traction motor and a DC-to-AC inverter with a capacitive input filter. The controller also inhibits the power drive circuit from driving the motor and thereby discharging the input capacitor if the contacts are inadvertently opened during motoring. A precharging contactor is controlled to charge the input filter capacitor prior to closing the main contactor to further protect the contacts of the main contactor. 3 figures.

  13. Electric vehicle drive train with contactor protection

    DOE Patents [OSTI]

    Konrad, Charles E. (Roanoke, VA); Benson, Ralph A. (Roanoke, VA)

    1994-01-01T23:59:59.000Z

    A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the traction battery and the power drive circuit, a voltage detector across contacts of the main contactor, and a controller for controlling the main contactor to prevent movement of its contacts to the closed position when the voltage across the contacts exceeds a predetermined threshold, to thereby protect the contacts of the contactor. The power drive circuit includes an electric traction motor and a DC-to-AC inverter with a capacitive input filter. The controller also inhibits the power drive circuit from driving the motor and thereby discharging the input capacitor if the contacts are inadvertently opened during motoring. A precharging contactor is controlled to charge the input filter capacitor prior to closing the main contactor to further protect the contacts of the main contactor.

  14. Methodology for combined Integration of electric vehicles and distributed resources into the electric grid

    E-Print Network [OSTI]

    Gunter, Samantha Joellyn

    2011-01-01T23:59:59.000Z

    Plug-in electric vehicles and distributed generation are expected to appear in growing numbers over the next few decades. Large scale unregulated penetration of plug-in electric vehicles and distributed generation can each ...

  15. Summary of electric vehicle dc motor-controller tests

    SciTech Connect (OSTI)

    McBrien, E F; Tryon, H B

    1982-09-01T23:59:59.000Z

    Available performance data for production motors are usually of marginal value to the electric vehicle designer. To provide at least a partial remedy to this situation, tests of typical dc propulsion motors and controllers were conducted as part of the DOE Electric Vehicle Program. The objectives of this program were to evaluate the differences in the performance of dc motors when operating with chopper-type controllers and when operating on direct current; and to gain an understanding of the interactions between the motor and the controller which cause these differences. Toward this end, motor-controller tests performed by the NASA Lewis Research Center provided some of the first published data that quantified motor efficiency variations for both ripple-free (straight dc) and chopper modes of operation. Test and analysis work at the University of Pittsburgh explored motor-controller relationships in greater depth. And to provide additional data, 3E Vehicles tested two small motors, both on a dynamometer and in a vehicle, and the Eaton Corporation tested larger motors, using sophisticated instrumentation and digital processing techniques. All the motors tested were direct-current types. Of the separately excited types, seven were series wound and two were shunt wound. One self-excited permanent magnet type was also tested. Four of the series wound motors used brush shifting to obtain good commutation. In almost all cases, controller limitations constrained the test envelope so that the full capability of the motors could not be explored.

  16. Electric Vehicle Service Personnel Training Program

    SciTech Connect (OSTI)

    Bernstein, Gerald

    2013-06-21T23:59:59.000Z

    As the share of hybrid, plug-in hybrid (PHEV), electric (EV) and fuel-cell (FCV) vehicles grows in the national automotive fleet, an entirely new set of diagnostic and technical skills needs to be obtained by the maintenance workforce. Electrically-powered vehicles require new diagnostic tools, technique and vocabulary when compared to existing internal combustion engine-powered models. While the manufacturers of these new vehicles train their own maintenance personnel, training for students, independent working technicians and fleet operators is less focused and organized. This DOE-funded effort provided training to these three target groups to help expand availability of skills and to provide more competition (and lower consumer cost) in the maintenance of these hybrid- and electric-powered vehicles. Our approach was to start locally in the San Francisco Bay Area, one of the densest markets in the United States for these types of automobiles. We then expanded training to the Los Angeles area and then out-of-state to identify what types of curriculum was appropriate and what types of problems were encountered as training was disseminated. The fact that this effort trained up to 800 individuals with sessions varying from 2- day workshops to full-semester courses is considered a successful outcome. Diverse programs were developed to match unique time availability and educational needs of each of the three target audiences. Several key findings and observations arising from this effort include: • Recognition that hybrid and PHEV training demand is immediate; demand for EV training is starting to emerge; while demand for FCV training is still over the horizon • Hybrid and PHEV training are an excellent starting point for all EV-related training as they introduce all the basic concepts (electric motors, battery management, controllers, vocabulary, testing techniques) that are needed for all EVs, and these skills are in-demand in today’s market. • Faculty training is widely available and can be relatively quickly achieved. Equipment availability (vehicles, specialized tools, diagnostic software and computers) is a bigger challenge for funding-constrained colleges. • A computer-based emulation system that would replicate vehicle and diagnostic software in one package is a training aid that would have widespread benefit, but does not appear to exist. This need is further described at the end of Section 6.5. The benefits of this project are unique to each of the three target audiences. Students have learned skills they will use for the remainder of their careers; independent technicians can now accept customers who they previously needed to turn away due to lack of familiarity with hybrid systems; and fleet maintenance personnel are able to lower costs by undertaking work in-house that they previously needed to outsource. The direct job impact is estimated at 0.75 FTE continuously over the 3 ½ -year duration of the grant.

  17. Housing assembly for electric vehicle transaxle

    DOE Patents [OSTI]

    Kalns, Ilmars (Northville, MI)

    1981-01-01T23:59:59.000Z

    Disclosed is a drive assembly (10) for an electrically powered vehicle (12). The assembly includes a transaxle (16) having a two-speed transmission (40) and a drive axle differential (46) disposed in a unitary housing assembly (38), an oil-cooled prime mover or electric motor (14) for driving the transmission input shaft (42), an adapter assembly (24) for supporting the prime mover on the transaxle housing assembly, and a hydraulic system (172) providing pressurized oil flow for cooling and lubricating the electric motor and transaxle and for operating a clutch (84) and a brake (86) in the transmission to shift between the two-speed ratios of the transmission. The adapter assembly allows the prime mover to be supported in several positions on the transaxle housing. The brake is spring-applied and locks the transmission in its low-speed ratio should the hydraulic system fail. The hydraulic system pump is driven by an electric motor (212) independent of the prime mover and transaxle.

  18. Electric Vehicle (EV) Carsharing in A Senior Adult Community

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Electric Vehicle (EV) Carsharing in A Senior Adult Community Susan with Nissan Motor Co. to study feasibility of EV carsharing program in senior adult

  19. Electric Vehicle Grid Integration for Sustainable Military Installations (Presentation)

    SciTech Connect (OSTI)

    Simpson, M.

    2011-05-05T23:59:59.000Z

    This presentation discusses electric vehicle grid integration for sustainable military installations. Fort Carson Military Reservation in Colorado Springs is used as a case study.

  20. Electric Vehicle Charging Stations, Coming Soon to a City Near...

    Broader source: Energy.gov (indexed) [DOE]

    to be available throughout the Orlando area next year. File photo Orlando Plugs into Electric Vehicle Charging Stations Assistant Secretary Patricia Hoffman test drives the...

  1. eGallon and Electric Vehicle Sales: The Big Picture

    Office of Energy Efficiency and Renewable Energy (EERE)

    This month, we're updating eGallon prices and taking a look at how the U.S. electric vehicle market continues to strengthen.

  2. Electric Vehicle Supply Equipment (EVSE) Test Report: AeroVironment

    Broader source: Energy.gov (indexed) [DOE]

    pROGRAM Electric Vehicle Supply Equipment (EVSE) Test Report: AeroVironment EVSE Features LED status light EVSE Specifications Grid connection Hardwired Connector type J1772 Test...

  3. Communication and Control of Electric Vehicles Supporting Renewables: Preprint

    SciTech Connect (OSTI)

    Markel, T.; Kuss, M.; Denholm, P.

    2009-08-01T23:59:59.000Z

    Discusses the technologies needed, potential scenarios, limitations, and opportunities for using grid-connected renewable energy to fuel the electric vehicles of the future.

  4. System Simulations of Hybrid Electric Vehicles with Focus on...

    Broader source: Energy.gov (indexed) [DOE]

    System Simulations of Hybrid Electric Vehicles with Focus on Emissions Zhiming Gao Veerathu K. Chakravarthy Josh Pihl C. Stuart Daw Maruthi Devarakonda Jong Lee...

  5. On Minimizing the Energy Consumption of an Electrical Vehicle

    E-Print Network [OSTI]

    Abdelkader Merakeb

    2011-04-20T23:59:59.000Z

    Apr 20, 2011 ... The problem that we focus on, is the minimization of the energy consumption of an electrical vehicle achievable on a given driving cycle.

  6. Analytical Target Cascading Optimization of an Electric Vehicle Powertrain System

    E-Print Network [OSTI]

    Papalambros, Panos

    curves and motor power loss maps produced by an electric vehicle (EV) powertrain system. Three, since the motor performance information (torque curves and power loss map) significantly impacts

  7. National Fuel Cell Electric Vehicle Learning Demonstration Final...

    Broader source: Energy.gov (indexed) [DOE]

    Infrastructure Validation and Demonstration Project, also referred to as the National Fuel Cell Electric Vehicle (FCEV) Learning Demonstration. This report serves as one of many...

  8. Electric Vehicle Battery Thermal Issues and Thermal Management Techniques (Presentation)

    SciTech Connect (OSTI)

    Rugh, J. P.; Pesaran, A.; Smith, K.

    2013-07-01T23:59:59.000Z

    This presentation examines the issues concerning thermal management in electric drive vehicles and management techniques for improving the life of a Li-ion battery in an EDV.

  9. New ORNL electric vehicle technology packs more punch in smaller...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORNL electric vehicle technology packs more punch in smaller package ORNL's 30-kilowatt power inverter offers greater reliability and power in a compact package. ORNL's 30-kilowatt...

  10. Toyota Gen III Prius Hybrid Electric Vehicle Accelerated Testing...

    Broader source: Energy.gov (indexed) [DOE]

    HEV Accelerated Testing - September 2011 Two model year 2010 Toyota Generation III Prius hybrid electric vehicles (HEVs) entered Accelerated testing during July 2009 in a fleet in...

  11. AVTA: EVSE Testing- NYSERDA Electric Vehicle Charging Infrastructure Reports

    Broader source: Energy.gov [DOE]

    These reports describe the charging patterns of drivers participating in the New York State Energy Research and Development Authority's (NYSERDA) electric vehicle (EV) infrastructure project.

  12. Impact of Vehicle Air-Conditioning on Fuel Economy, Tailpipe Emissions, and Electric Vehicle Range: Preprint

    SciTech Connect (OSTI)

    Farrington, R.; Rugh, J.

    2000-09-22T23:59:59.000Z

    Vehicle air-conditioning can significantly impact fuel economy and tailpipe emissions of conventional and hybrid electric vehicles and reduce electric vehicle range. In addition, a new US emissions procedure, called the Supplemental Federal Test Procedure, has provided the motivation for reducing the size of vehicle air-conditioning systems in the US. The SFTP will measure tailpipe emissions with the air-conditioning system operating. Current air-conditioning systems can reduce the fuel economy of high fuel-economy vehicles by about 50% and reduce the fuel economy of today's mid-sized vehicles by more than 20% while increasing NOx by nearly 80% and CO by 70%.

  13. Impact of SiC Devices on Hybrid Electric and Plug-in Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Tolbert, Leon M.

    Impact of SiC Devices on Hybrid Electric and Plug-in Hybrid Electric Vehicles Hui Zhang1 , Leon M -- The application of SiC devices (as battery interface, motor controller, etc.) in a hybrid electric vehicle (HEV, vehicle simulation software). Power loss models of a SiC inverter are incorporated into PSAT powertrain

  14. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  15. Total energy cycle energy use and emissions of electric vehicles.

    SciTech Connect (OSTI)

    Singh, M. K.

    1999-04-29T23:59:59.000Z

    A total energy cycle analysis (TECA) of electric vehicles (EV) was recently completed. The EV energy cycle includes production and transport of fuels used in power plants to generate electricity, electricity generation, EV operation, and vehicle and battery manufacture. This paper summarizes the key assumptions and results of the EVTECA. The total energy requirements of EVS me estimated to be 24-35% lower than those of the conventional, gasoline-fueled vehicles they replace, while the reductions in total oil use are even greater: 55-85%. Greenhouse gases (GHG) are 24-37% lower with EVs. EVs reduce total emissions of several criteria air pollutants (VOC, CO, and NO{sub x}) but increase total emissions of others (SO{sub x}, TSP, and lead) over the total energy cycle. Regional emissions are generally reduced with EVs, except possibly SO{sub x}. The limitations of the EVTECA are discussed, and its results are compared with those of other evaluations of EVs. In general, many of the results (particularly the oil use, GHG, VOC, CO, SO{sub x}, and lead results) of the analysis are consistent with those of other evaluations.

  16. Electric vehicle drive train with rollback detection and compensation

    DOE Patents [OSTI]

    Konrad, Charles E. (Roanoke, VA)

    1994-01-01T23:59:59.000Z

    An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared.

  17. Electric vehicle drive train with rollback detection and compensation

    DOE Patents [OSTI]

    Konrad, C.E.

    1994-12-27T23:59:59.000Z

    An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared. 6 figures.

  18. Fast Charging Electric Vehicle Research & Development Project

    SciTech Connect (OSTI)

    Heny, Michael

    2014-03-31T23:59:59.000Z

    The research and development project supported the engineering, design and implementation of onroad Electric Vehicle (“EV”) charging technologies. It included development of potential solutions for DC fast chargers (“DCFC”) capable of converting high voltage AC power to the DC power required by EVs. Additional development evaluated solutions related to the packaging of power electronic components and enclosure design, as well as for the design and evaluation of EV charging stations. Research compared different charging technologies to identify optimum applications in a municipal fleet. This project collected EV usage data and generated a report demonstrating that EVs, when supported by adequate charging infrastructure, are capable of replacing traditional internal combustion vehicles in many municipal applications. The project’s period of performance has demonstrated various methods of incorporating EVs into a municipal environment, and has identified three general categories for EV applications: ? Short Commute: Defined as EVs performing in limited duration, routine commutes. ? Long Commute: Defined as tasks that require EVs to operate in longer daily mileage patterns. ? Critical Needs: Defined as the need for EVs to be ready at every moment for indefinite periods. Together, the City of Charlottesville, VA (the “City”) and Aker Wade Power Technologies, LLC (“Aker Wade”) concluded that the EV has a viable position in many municipal fleets but with limited recommendation for use in Critical Needs applications such as Police fleets. The report also documented that, compared to internal combustion vehicles, BEVs have lower vehiclerelated greenhouse gas (“GHG”) emissions and contribute to a reduction of air pollution in urban areas. The enhanced integration of EVs in a municipal fleet can result in reduced demand for imported oil and reduced municipal operating costs. The conclusions indicated in the project’s Engineering Report (see Attachment A) are intended to assist future implementation of electric vehicle technology. They are based on the cited research and on the empirical data collected and presented. The report is not expected to represent the entire operating conditions of any of the equipment under consideration within this project, and tested equipment may operate differently under other conditions.

  19. Vehicle Technologies Office Merit Review 2014: Electric Drive Vehicle Climate Control Load Reduction

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric...

  20. Development of a CAN Based Electric Vehicle Control System

    E-Print Network [OSTI]

    Vincent, Stephen Andrew

    2014-08-31T23:59:59.000Z

    Abstract The Intelligent Systems and Automation Lab (ISAL) at the University of Kansas has been working on developing new electric vehicle drivetrain and battery technology using an electric bus as a development platform. In its preexisting state...

  1. The Large Scale Roll-Out of Electric Vehicles

    E-Print Network [OSTI]

    Talaei, Alireza; Begg, Katherine; Jamasb, Tooraj

    2012-10-26T23:59:59.000Z

    the emissions reduction targets. Within the transport sector, electric vehicles (EV) are considered as one of the important mitigation options. However the effect of EVs on emissions and the electricity sector is subject to debate. We use scenario analysis...

  2. Electric-drive tractability indicator integrated in hybrid electric vehicle tachometer

    DOE Patents [OSTI]

    Tamai, Goro; Zhou, Jing; Weslati, Feisel

    2014-09-02T23:59:59.000Z

    An indicator, system and method of indicating electric drive usability in a hybrid electric vehicle. A tachometer is used that includes a display having an all-electric drive portion and a hybrid drive portion. The all-electric drive portion and the hybrid drive portion share a first boundary which indicates a minimum electric drive usability and a beginning of hybrid drive operation of the vehicle. The indicated level of electric drive usability is derived from at least one of a percent battery discharge, a percent maximum torque provided by the electric drive, and a percent electric drive to hybrid drive operating cost for the hybrid electric vehicle.

  3. Analysis of data from electric and hybrid electric vehicle student competitions

    SciTech Connect (OSTI)

    Wipke, K.B. [National Renewable Energy Lab., Golden, CO (United States); Hill, N.; Larsen, R.P. [Argonne National Lab., IL (United States)

    1994-01-01T23:59:59.000Z

    The US Department of Energy sponsored several student engineering competitions in 1993 that provided useful information on electric and hybrid electric vehicles. The electrical energy usage from these competitions has been recorded with a custom-built digital meter installed in every vehicle and used under controlled conditions. When combined with other factors, such as vehicle mass, speed, distance traveled, battery type, and type of components, this information provides useful insight into the performance characteristics of electrics and hybrids. All the vehicles tested were either electric vehicles or hybrid vehicles in electric-only mode, and had an average energy economy of 7.0 km/kwh. Based on the performance of the ``ground-up`` hybrid electric vehicles in the 1993 Hybrid Electric Vehicle Challenge, data revealed a I km/kwh energy economy benefit for every 133 kg decrease in vehicle mass. By running all the electric vehicles at a competition in Atlanta at several different constant speeds, the effects of rolling resistance and aerodynamic drag were evaluated. On average, these vehicles were 32% more energy efficient at 40 km/h than at 72 km/h. The results of the competition data analysis confirm that these engineering competitions not only provide an educational experience for the students, but also show technology performance and improvements in electric and hybrid vehicles by setting benchmarks and revealing trends.

  4. Hybrid & electric vehicle technology and its market feasibility ; Hybrid and electric vehicle technology and its market feasibility ; HEV technology and its market feasibility ; PHEV technology and its market feasibility ; EV technology and its market feasibility .

    E-Print Network [OSTI]

    Jeon, Sang Yeob

    2010-01-01T23:59:59.000Z

    ??In this thesis, Hybrid Electric Vehicles (HEV), Plug-In Hybrid Electric Vehicle (PHEV) and Electric Vehicle (EV) technology and their sales forecasts are discussed. First, the… (more)

  5. Energy Flow: A Multimodal `Ready' Indication For Electric Vehicles

    E-Print Network [OSTI]

    Energy Flow: A Multimodal `Ready' Indication For Electric Vehicles Abstract The lack of sound and vibration while starting the drive system of an electric vehicle (EV) is one of the major differences the energy level to the driver. With Energy Flow (see Figure 1), we test if there will be a benefit in terms

  6. Competitive Charging Station Pricing for Plug-in Electric Vehicles

    E-Print Network [OSTI]

    Huang, Jianwei

    . To overcome this challenge, we develop a low-complexity algorithm that efficiently computes the pricingCompetitive Charging Station Pricing for Plug-in Electric Vehicles Wei Yuan, Member, IEEE, Jianwei considers the problem of charging station pricing and station selection of plug-in electric vehicles (PEVs

  7. Plug-in Electric Vehicle Interactions with a Small Office Building: An Economic Analysis using DER-CAM

    E-Print Network [OSTI]

    Momber, Ilan

    2010-01-01T23:59:59.000Z

    Environmental Benefits of Electric Vehicles Integration onusing plug-in hybrid electric vehicle battery packs for gridwith Connection of Electric Vehicles TABLE IV D ECISION V

  8. Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program

    E-Print Network [OSTI]

    Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

    2009-01-01T23:59:59.000Z

    for plug-in hybrid electric vehicles (PHEVs): Goals and thetechnology: California's electric vehicle program. Scienceand Impacts of Hybrid Electric Vehicle Options for a Compact

  9. Plug-in Electric Vehicle Interactions with a Small Office Building: An Economic Analysis using DER-CAM

    E-Print Network [OSTI]

    Momber, Ilan

    2010-01-01T23:59:59.000Z

    Environmental Benefits of Electric Vehicles Integration onof using plug-in hybrid electric vehicle battery packs forN ATIONAL L ABORATORY Plug-in Electric Vehicle Interactions

  10. Ultracapacitors for Electric and Hybrid Vehicles - Performance Requirements, Status of the Technology, and R&D Needs

    E-Print Network [OSTI]

    Burke, Andrew F

    1995-01-01T23:59:59.000Z

    5. Burke, A.F. , Electric/Hybrid Vehicle Super Car Designsin Electric and Hybrid Vehicles, SAE Paper No. 951951,for Electric and Hybrid Vehicles - A Technology Update,

  11. Roadmap for Testing and Validation of Electric Vehicle Communication Standards

    SciTech Connect (OSTI)

    Pratt, Richard M.; Tuffner, Francis K.; Gowri, Krishnan

    2012-07-12T23:59:59.000Z

    Vehicle to grid communication standards are critical to the charge management and interoperability among plug-in electric vehicles (PEVs), charging stations and utility providers. The Society of Automobile Engineers (SAE), International Organization for Standardization (ISO), International Electrotechnical Commission (IEC) and the ZigBee Alliance are developing requirements for communication messages and protocols. While interoperability standards development has been in progress for more than two years, no definitive guidelines are available for the automobile manufacturers, charging station manufacturers or utility backhaul network systems. At present, there is a wide range of proprietary communication options developed and supported in the industry. Recent work by the Electric Power Research Institute (EPRI), in collaboration with SAE and automobile manufacturers, has identified performance requirements and developed a test plan based on possible communication pathways using power line communication (PLC). Though the communication pathways and power line communication technology options are identified, much work needs to be done in developing application software and testing of communication modules before these can be deployed in production vehicles. This paper presents a roadmap and results from testing power line communication modules developed to meet the requirements of SAE J2847/1 standard.

  12. The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis--A Reflively Designed Survey of New-car-buying, Multi-vehicle California Households

    E-Print Network [OSTI]

    Turrentine, Thomas; Kurani, Kenneth

    1995-01-01T23:59:59.000Z

    by electric and hybrid vehicles", SAE Technical Papers No.household response to hybrid vehicles. Finally, we suggestas electric or hybrid vehicles. Transitions in choices of

  13. Electrochemical Capacitors as Energy Storage in Hybrid-Electric Vehicles: Present Status and Future Prospects

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01T23:59:59.000Z

    ultracapacitors, fuel cells and hybrid vehicle design. Dr.on electric and hybrid vehicle technology and applicationssupervises testing in the Hybrid Vehicle Propulsion Systems

  14. Interactions between Electric-drive Vehicles and the Power Sector in California

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2009-01-01T23:59:59.000Z

    2007) Impacts of Electric-drive Vehicles on California'sInteractions between electric-drive vehicles and the powerin emissions found for electric- drive vehicles is a result

  15. Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andrew

    2009-01-01T23:59:59.000Z

    for Plug-in Hybrid Electric Vehicles (PHEVs): Goals andE. , Plug-in Hybrid-Electric Vehicle Powertrain Design andLithium Batteries for Plug-in Electric Vehicles Andrew Burke

  16. Electric Vehicles Since the invention of the internal combustion engine in 1807 petrol and diesel vehicles have become a

    E-Print Network [OSTI]

    Hickman, Mark

    Electric Vehicles Since the invention of the internal combustion engine in 1807 petrol and diesel and adopted. Electric vehicles (EVs) in particular are leading the charge, with car manufacturers stepping up these vehicles; the current market for electric vehicles; the results from existing pilot project; as well

  17. Electric vehicle regenerative antiskid braking and traction control system

    DOE Patents [OSTI]

    Cikanek, Susan R. (Wixom, MI)

    1995-01-01T23:59:59.000Z

    An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydrualic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control.

  18. Electric vehicle regenerative antiskid braking and traction control system

    DOE Patents [OSTI]

    Cikanek, S.R.

    1995-09-12T23:59:59.000Z

    An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydraulic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control. 10 figs.

  19. 2011 Hyundai Sonata 3539 - Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Matthew Shirk; Tyler Gray; Jeffrey Wishart

    2014-09-01T23:59:59.000Z

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing hybrid electric vehicle batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid (VIN KMHEC4A47BA003539). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  20. Vehicle to Electric Vehicle Supply Equipment Smart Grid Communications Interface Research and Testing Report

    SciTech Connect (OSTI)

    Kevin Morrow; Dimitri Hochard; Jeff Wishart

    2011-09-01T23:59:59.000Z

    Plug-in electric vehicles (PEVs), including battery electric, plug-in hybrid electric, and extended range electric vehicles, are under evaluation by the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) and other various stakeholders to better understand their capability and potential petroleum reduction benefits. PEVs could allow users to significantly improve fuel economy over a standard hybrid electric vehicles, and in some cases, depending on daily driving requirements and vehicle design, PEVs may have the ability to eliminate petroleum consumption entirely for daily vehicle trips. The AVTA is working jointly with the Society of Automotive Engineers (SAE) to assist in the further development of standards necessary for the advancement of PEVs. This report analyzes different methods and available hardware for advanced communications between the electric vehicle supply equipment (EVSE) and the PEV; particularly Power Line Devices and their physical layer. Results of this study are not conclusive, but add to the collective knowledge base in this area to help define further testing that will be necessary for the development of the final recommended SAE communications standard. The Idaho National Laboratory and the Electric Transportation Applications conduct the AVTA for the United States Department of Energy's Vehicle Technologies Program.

  1. Electric Drive Vehicle Climate Control Load Reduction

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  2. Impact of increased electric vehicle use on battery recycling infrastructure

    SciTech Connect (OSTI)

    Vimmerstedt, L.; Hammel, C. [National Renewable Energy Lab., Golden, CO (United States); Jungst, R. [Sandia National Labs., Albuquerque, NM (United States)

    1996-12-01T23:59:59.000Z

    State and Federal regulations have been implemented that are intended to encourage more widespread use of low-emission vehicles. These regulations include requirements of the California Air Resources Board (CARB) and regulations pursuant to the Clean Air Act Amendments of 1990 and the Energy Policy Act. If the market share of electric vehicles increases in response to these initiatives, corresponding growth will occur in quantities of spent electric vehicle batteries for disposal. Electric vehicle battery recycling infrastructure must be adequate to support collection, transportation, recovery, and disposal stages of waste battery handling. For some battery types, such as lead-acid, a recycling infrastructure is well established; for others, little exists. This paper examines implications of increasing electric vehicle use for lead recovery infrastructure. Secondary lead recovery facilities can be expected to have adequate capacity to accommodate lead-acid electric vehicle battery recycling. However, they face stringent environmental constraints that may curtail capacity use or new capacity installation. Advanced technologies help address these environmental constraints. For example, this paper describes using backup power to avoid air emissions that could occur if electric utility power outages disable emissions control equipment. This approach has been implemented by GNB Technologies, a major manufacturer and recycler of lead-acid batteries. Secondary lead recovery facilities appear to have adequate capacity to accommodate lead waste from electric vehicles, but growth in that capacity could be constrained by environmental regulations. Advances in lead recovery technologies may alleviate possible environmental constraints on capacity growth.

  3. Interactions between Electric-drive Vehicles and the Power Sector in California

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2009-01-01T23:59:59.000Z

    and Fuel Cell Electric Vehicle Symposium GHG emissions rate Variable costand Fuel Cell Electric Vehicle Symposium GHG emissions rate (CO 2 -eq/kWh) Cost

  4. School of Public and Environmental Affairs, Indiana University Electric Vehicle Survey Research Team

    E-Print Network [OSTI]

    Craft, Christopher B.

    elsewhere as "electric" vehicles). A plug-in electric vehicle is powered by plugging into a specializedSchool of Public and Environmental Affairs, Indiana University Electric Vehicle Survey Research together with the electric motor. A Nissan Leaf is an example of a plug-in electric vehicle. A plug

  5. Topology, design, analysis and thermal management of power electronics for hybrid electric vehicle

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    Topology, design, analysis and thermal management of power electronics for hybrid electric vehicle an important role in the success of electric, hybrid and fuel cell vehicles. Typical power electronics circuits/DC converter; electric drives; electric vehicles; fuel cell; hybrid electric vehicles; power electronics, motor

  6. GMP- Biomass Electricity Production Incentive

    Broader source: Energy.gov [DOE]

    Green Mountain Power Corporation (GMP), Vermont's largest electric utility, offers a production incentive to farmers who own systems utilizing anaerobic digestion of agricultural products,...

  7. Vehicle Technologies Office: Power Electronics and Electrical...

    Office of Environmental Management (EM)

    vehicles. As such, improvements in these technologies can substantially reduce petroleum consumption in transportation, and help meet national economic, environmental, and...

  8. Analysis of the Behavior of Electric Vehicle Charging Stations with Renewable Generations

    E-Print Network [OSTI]

    Wong, Vincent

    Analysis of the Behavior of Electric Vehicle Charging Stations with Renewable Generations Woongsup between electric vehicle charging stations (EVCSs) with renewable electricity generation facilities (REGFs electricity generation [1]. Therefore, renewable power generation will play a significant role in smart grid

  9. Plug-In Electric Vehicle Handbook for Consumers (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-09-01T23:59:59.000Z

    Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for consumers describes the basics of PEV technology, PEV benefits, how to select the right PEV, charging a PEV, and PEV maintenance.

  10. Plug-In Electric Vehicle Handbook for Fleet Managers (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for fleet managers describes the basics of PEV technology, PEV benefits for fleets, how to select the right PEV, charging a PEV, and PEV maintenance.

  11. Control system design for a parallel hybrid electric vehicle

    E-Print Network [OSTI]

    Buntin, David Leighton

    1994-01-01T23:59:59.000Z

    This thesis addresses the design of control systems for a parallel hybrid electric drive train which is an alternative to conventional passenger vehicles. The principle components of the drive train are a small internal combustion engine...

  12. Optimized control studies of a parallel hybrid electric vehicle

    E-Print Network [OSTI]

    Bougler, Benedicte Bernadette

    1995-01-01T23:59:59.000Z

    This thesis addresses the development of a control scheme to maximize automobile fuel economy and battery state-of-charge (SOC) while meeting exhaust emission standards for parallel hybrid electric vehicles, which are an alternative to conventional...

  13. Comparison of various battery technologies for electric vehicles

    E-Print Network [OSTI]

    Dickinson, Blake Edward

    1993-01-01T23:59:59.000Z

    four technologies; Lead-Acid, Nickel-Cadmium, Nickel-Metal Hydride and Zinc-Bromide. A standard set of testing procedures for electric vehicle batteries, based on industry accepted testing procedures, and any tests which were specific to individual...

  14. 2010 Ford Fusion VIN 4757 Hybrid Electric Vehicle Battery Test...

    Broader source: Energy.gov (indexed) [DOE]

    1 2010 Ford Fusion VIN 4757 Hybrid Electric Vehicle Battery Test Results Tyler Gray Matthew Shirk January 2013 The Idaho National Laboratory is a U.S. Department of Energy National...

  15. 2010 Honda Insight VIN 0141 Hybrid Electric Vehicle Battery Test...

    Broader source: Energy.gov (indexed) [DOE]

    2 2010 Honda Insight VIN 0141 Hybrid Electric Vehicle Battery Test Results Tyler Gray Mathew Shirk January 2013 The Idaho National Laboratory is a U.S. Department of Energy...

  16. 2010 Toyota Prius VIN 0462 Hybrid Electric Vehicle Battery Test...

    Broader source: Energy.gov (indexed) [DOE]

    5 2010 Toyota Prius VIN 0462 Hybrid Electric Vehicle Battery Test Results Tyler Gray Matthew Shirk January 2013 The Idaho National Laboratory is a U.S. Department of Energy...

  17. 2010 Toyota Prius VIN 6063 Hybrid Electric Vehicle Battery Test...

    Broader source: Energy.gov (indexed) [DOE]

    6 2010 Toyota Prius VIN 6063 Hybrid Electric Vehicle Battery Test Results Tyler Gray Matthew Shirk January 2013 The Idaho National Laboratory is a U.S. Department of Energy...

  18. 2010 Honda Insight VIN 1748 Hybrid Electric Vehicle Battery Test...

    Broader source: Energy.gov (indexed) [DOE]

    3 2010 Honda Insight VIN 1748 Hybrid Electric Vehicle Battery Test Results Tyler Gray Matthew Shirk January 2013 The Idaho National Laboratory is a U.S. Department of Energy...

  19. Path dependent receding horizon control policies for hybrid electric vehicles

    E-Print Network [OSTI]

    Kolmanovsky, Ilya V.

    Future hybrid electric vehicles (HEVs) may use path-dependent operating policies to improve fuel economy. In our previous work, we developed a dynamic programming (DP) algorithm for prescribing the battery state of charge ...

  20. Ultracapacitor/Battery Hybrid Energy Storage Systems for Electric Vehicles.

    E-Print Network [OSTI]

    Moshirvaziri, Mazhar

    2012-01-01T23:59:59.000Z

    ??This thesis deals with the design of Hybrid Energy Storage System (HESS) for Light Electric Vehicles (LEV) and EVs. More specifically, a tri-mode high-efficiency non-isolated… (more)

  1. Workplace Plug-in Electric Vehicle Ride and Drive

    Broader source: Energy.gov [DOE]

    Workplace plug-in electric vehicle (PEV) Ride and Drive events are one of the most effective ways to drive PEV adoption. By providing staff the opportunity to experience PEVs first hand, they can...

  2. GE, Berkeley Energy Storage for Electric Vehicles | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Just Add Water: GE, Berkeley Lab Explore Possible Key to Energy Storage for Electric Vehicles Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new...

  3. The lithium-ion battery industry for electric vehicles

    E-Print Network [OSTI]

    Kassatly, Sherif (Sherif Nabil)

    2010-01-01T23:59:59.000Z

    Electric vehicles have reemerged as a viable alternative means of transportation, driven by energy security concerns, pressures to mitigate climate change, and soaring energy demand. The battery component will play a key ...

  4. A Power Presizing Methodology for Electric Vehicle Traction Motors Bekheira Tabbache1,2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A Power Presizing Methodology for Electric Vehicle Traction Motors Bekheira Tabbache1,2 , Sofiane for presizing the power of an electric vehicle traction motor. Based on the vehicle desired performances motor, power presizing, driving cycle. Nomenclature EV = Electric Vehicle; V = Vehicle speed; Vb

  5. Electric vehicle fleet operations in the United States

    SciTech Connect (OSTI)

    Francfort, J.E. [Idaho National Engineering and Environmental Lab., Idaho Falls, ID (United States); O`Hara, D. [Dept. of Energy, Washington, DC (United States)

    1997-10-01T23:59:59.000Z

    The United States Department of Energy (DOE) is actively supporting the development and commercialization of advanced electric vehicles, and advanced batteries and propulsion systems. As part of this effort, the DOE Field Operations Program is performing commercial validation of electric vehicles. These efforts have included on-board data acquisition of electric vehicle operations and baseline performance testing. The baseline performance tests focus on parameters such as range, acceleration, and battery charging. This testing, performed in conjunction with EV America, has included the baseline performance testing of 14 electric vehicles will also be baseline performance tested. The baseline performance testing has documented annual improvements in performance. This and additional information is made available to the public via the internet homepage (http://ev.inel.gov). The Field Operations Program continues to support the development of electric vehicles and infrastructure in conjunction with its new qualified vehicle test partners: Electric Transportation Application of Phoenix, and Southern California Edison. The Field Operations Program is managed by the Lockheed Martin Idaho Technologies Company, at the Idaho National Engineering Laboratory. 4 refs., 5 figs., 2 tabs.

  6. Improving Grid Performance with Electric Vehicle Charging 2011San Diego Gas & Electric Company. All copyright and trademark rights reserved.

    E-Print Network [OSTI]

    California at Davis, University of

    Improving Grid Performance with Electric Vehicle Charging © 2011San Diego Gas & Electric Company · Education SDG&E Goal ­ Grid Integrated Charging · More plug-in electric vehicles · More electric grid to a hairdryer) per PEV in the population · Instantaneous demand, 40 all-electric vehicles for one day (8

  7. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    management in the US electricity sector, Energy Policy, 23(deep reductions in electricity sector GHG emissions requireson the electricity sector. 19 Table 3.

  8. Thermal Management of Power Electronics and Electric Motors for Electric-Drive Vehicles (Presentation)

    SciTech Connect (OSTI)

    Narumanchi, S.

    2014-09-01T23:59:59.000Z

    This presentation is an overview of the power electronics and electric motor thermal management and reliability activities at NREL. The focus is on activities funded by the Department of Energy Vehicle Technologies Office Advanced Power Electronics and Electric Motors Program.

  9. Cost-Benefit Analysis of Plug-in Hybrid Electric Vehicle Technology

    SciTech Connect (OSTI)

    Simpson, A.

    2006-11-01T23:59:59.000Z

    This paper presents a comparison of vehicle purchase and energy costs, and fuel-saving benefits of plug-in hybrid electric vehicles relative to hybrid electric and conventional vehicles.

  10. Testing Electric Vehicle Demand in `Hybrid Households' Using a Reflexive Survey

    E-Print Network [OSTI]

    Kurani, Kenneth; Turrentine, Thomas; Sperling, Daniel

    1996-01-01T23:59:59.000Z

    travel by electric and hybrid vehicles. SAE Technical PapersIn contrast to a hybrid vehicle which combines multipleElectric, Hybrid and Other Alternative Vehicles. A r t h u r

  11. AVTA: Nissan Leaf All-Electric Vehicle 2011 Testing Reports

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on an all-electric 2011 Nissan Leaf. The baseline performance testing provides a point of comparison for the other test results. Taken together, these reports give an overall view of how this vehicle functions under extensive testing. This research was conducted by Idaho National Laboratory.

  12. Project Fever - Fostering Electric Vehicle Expansion in the Rockies

    SciTech Connect (OSTI)

    Swalnick, Natalia

    2013-06-30T23:59:59.000Z

    Project FEVER (Fostering Electric Vehicle Expansion in the Rockies) is a part of the Clean Cities Community Readiness and Planning for Plug-in Electric Vehicles and Charging Infrastructure Funding Opportunity funded by the U.S. Department of Energy (DOE) for the state of Colorado. Tasks undertaken in this project include: Electric Vehicle Grid Impact Assessment; Assessment of Electrical Permitting and Inspection for EV/EVSE (electric vehicle/electric vehicle supply equipment); Assessment of Local Ordinances Pertaining to Installation of Publicly Available EVSE;Assessment of Building Codes for EVSE; EV Demand and Energy/Air Quality Impacts Assessment; State and Local Policy Assessment; EV Grid Impact Minimization Efforts; Unification and Streamlining of Electrical Permitting and Inspection for EV/EVSE; Development of BMP for Local EVSE Ordinances; Development of BMP for Building Codes Pertaining to EVSE; Development of Colorado-Specific Assessment for EV/EVSE Energy/Air Quality Impacts; Development of State and Local Policy Best Practices; Create Final EV/EVSE Readiness Plan; Develop Project Marketing and Communications Elements; Plan and Schedule In-person Education and Outreach Opportunities.

  13. Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A. A.

    2011-05-01T23:59:59.000Z

    This presentation describes NREL's computer aided engineering program for electric drive vehicle batteries.

  14. U.S. Fuel Cell Electric Vehicle Demonstration Project 2010 Status Update (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

    2010-10-21T23:59:59.000Z

    This presentation summarizes U.S. Fuel Cell Electric Vehicle Demonstration Project 2010 Status Update.

  15. Business models for sustainable technologies: Exploring business model evolution in the case of electric vehicles

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of electric vehicles René Bohnsacka , Jonatan Pinkseb , & Ans Kolka a University of Amsterdam Business School in the case of electric vehicles Abstract Sustainable technologies challenge prevailing business practices models for electric vehicles. Based on a qualitative analysis of electric vehicle projects of key

  16. Analysis, Modeling and Neural Network Traction Control of an Electric Vehicle

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Analysis, Modeling and Neural Network Traction Control of an Electric Vehicle without Differential Terms--Electric vehicle, electric motor, speed estimation, neural networks, traction control. I. INTRODUCTION Recently, Electric Vehicles (EVs) including fuel-cell and hybrid vehicles have been developed very

  17. Performance Analysis and Comparison of Three IPMSM with High Homopolar Inductance for Electric Vehicle Applications

    E-Print Network [OSTI]

    Boyer, Edmond

    Synchronous Motor, Zero-Sequence Inductance, Electric Vehicle, Ripple Torque, Fast evaluation, Harmonics three topologies of PMSM according to the specifications of an electric vehicle (EV) with severe and especially for hybrid electric vehicle (HEV) and electric vehicle (EV). Moreover, interior permanent magnet

  18. Electric and Gasoline Vehicle Lifecycle Cost and Energy-Use Model

    E-Print Network [OSTI]

    Delucchi, Mark; Burke, Andy; Lipman, Timothy; Miller, Marshall

    2000-01-01T23:59:59.000Z

    analyses of the manufacturing cost of the key unique components of electric vehicles: batteries, fuel cells,

  19. 2011 Hyundai Sonata 4932 - Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01T23:59:59.000Z

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid HEV (VIN KMHEC4A43BA004932). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  20. Vehicle Technologies Office - AVTA: All Electric USPS Long Life Vehicle

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment of EnergyProgram2-26TheUtility-Scaleof EnergyVehicle TechnologiesConversions

  1. Vehicle Technologies Office - AVTA: Hybrid-Electric Delivery Vehicles |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment of EnergyProgram2-26TheUtility-Scaleof EnergyVehicle

  2. Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment of EnergyProgram2-26TheUtility-Scaleof EnergyVehicleDepartment of Energy

  3. Mobile Applications and Algorithms to Facilitate Electric Vehicle Deployment

    E-Print Network [OSTI]

    de Veciana, Gustavo

    side management, to make better use of volatile renewable generation, makes them an attractive that of traditional vehicles, but the possibility of integrating an electric fleet with the smart grid, using demand component in building an efficient smart grid. Various companies have introduced hybrid electric vehi- cles

  4. City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program

    SciTech Connect (OSTI)

    None

    2013-12-31T23:59:59.000Z

    The City of Las Vegas was awarded Department of Energy (DOE) project funding in 2009, for the City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program. This project allowed the City of Las Vegas to purchase electric and plug-in hybrid electric vehicles and associated electric vehicle charging infrastructure. The City anticipated the electric vehicles having lower overall operating costs and emissions similar to traditional and hybrid vehicles.

  5. The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis -- A Reflexively Designed Survey of New-Car-Buying Multi-Vehicle California Households

    E-Print Network [OSTI]

    Turrentine, Thomas; Kurani, Kenneth S.

    2001-01-01T23:59:59.000Z

    by electric and hybrid vehicles", SAETechmcal Papers No.$ not Q 4. If you chose the Hybrid Vehicle - can you specifymay response to hybrid vehicles Finally, we suggest that

  6. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    Designing Markets for Electricity, Wiley-IEEE Press. CEC (in Major Drivers in U.S. Electricity Markets, NREL/CP-620-and fuel efficiency and electricity demand assumptions used

  7. Electricity Grid: Impacts of Plug-In Electric Vehicle Charging

    E-Print Network [OSTI]

    Yang, Christopher; McCarthy, Ryan

    2009-01-01T23:59:59.000Z

    mail: ccyang@ucdavis.edu. Electricity Grid Impacts of Plug-by either gasoline or electricity, but unlike hybrids, PHEVsto use very low-carbon electricity resources, such as

  8. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    problems, Electric Power Systems Research, 73(2): p. 169-problems, Electric Power Systems Research, 77(3-4): p. 212-decomposition, Electric Power Systems Research, 77(7): p.

  9. Optimal investment and scheduling of distributed energy resources with uncertainty in electric vehicles driving schedules

    E-Print Network [OSTI]

    Cardoso, Goncalo

    2014-01-01T23:59:59.000Z

    management of small electric energy systems including V2Gand renewable energy sources,” Electric Power Systemsof electric-drive vehicles with renewable energy,” Energy,

  10. Distributing Power to Electric Vehicles on a Smart Grid Yingjie Zhou*,

    E-Print Network [OSTI]

    Maxemchuk, Nicholas F.

    Distributing Power to Electric Vehicles on a Smart Grid Yingjie Zhou*, , Student Member, IEEE.edu Abstract--Electric vehicles create a demand for additional electrical power. As the popularity of electric power to electric vehicles on a smart grid. We simulate the mechanisms using published data

  11. Tracking Progress Last updated 7/26/2013 Plug-in Electric Vehicle 1

    E-Print Network [OSTI]

    ) by 2025. ZEVs include all-electric vehicles, plug-in hybrid vehicles, and fuel cell electric vehicles. The Alternative and Renewable Fuel and Vehicle Technology Program (ARFVTP), authorized by Assembly Bill 118 (Nunez, advanced technology cars and trucks, vehicle manufacturing, and fueling infrastructure are intended

  12. Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities

    E-Print Network [OSTI]

    Williams, Brett D; Kurani, Kenneth S

    2007-01-01T23:59:59.000Z

    fuel- cell vehicles: “Mobile Electricity" technologies andFuel-Cell Vehicles: “Mobile Electricity” Technologies, Early4 2 Mobile Electricity technologies and

  13. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    fuel carbon intensity. . 8a function of the lifecycle carbon intensity of electricityCarbon Intensity

  14. US residential charging potential for electric vehicles Elizabeth J. Traut a

    E-Print Network [OSTI]

    Michalek, Jeremy J.

    US residential charging potential for electric vehicles Elizabeth J. Traut a , TsuWei Charlie market, conventional vehicles (CV) make up the vast majority of market share, hy- brid electric vehicles (HEVs) represent less than 4% share, and sales of plug-in electric vehicles (PEVs), including plug-in hy

  15. Performance Characteristics of the First, State-of-the-art Electric Vehicle Implemented in Chile

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    Performance Characteristics of the First, State-of-the-art Electric Vehicle Implemented in Chile@ing.puc.cl *University of Concepción Abstract The first, state-of-the-art electric vehicle implemented in Chile to transform a conventional ICE truck to an electric vehicle. The vehicle used for this transformation

  16. Electric vehicles: How much range is required for a day's driving? Nathaniel S. Pearre a,

    E-Print Network [OSTI]

    Firestone, Jeremy

    Electric vehicles: How much range is required for a day's driving? Nathaniel S. Pearre a, , Willett online xxxx Keywords: Electric vehicle Plug-in vehicle Daily driving range Range requirement Trip timing require- ments of electric vehicles (EVs). We conservatively assume that EV drivers would not change

  17. THE COMPETITIVENESS OF COMMERCIAL ELECTRIC VEHICLES IN THE LTL DELIVERY INDUSTRY

    E-Print Network [OSTI]

    Bertini, Robert L.

    of electric delivery trucks. To this end, equations linking vehicle performance to power consumption, routeTHE COMPETITIVENESS OF COMMERCIAL ELECTRIC VEHICLES IN THE LTL DELIVERY INDUSTRY: #12; #12, energy use, and costs of electric vehicles and comparable diesel internal-combustion engine vehicles

  18. Battery Utilization in Electric Vehicles: Theoretical Analysis and an Almost Optimal Online Algorithm

    E-Print Network [OSTI]

    Tamir, Tami

    powered vehicles [Kirsch, 2000, Anderson and Anderson, 2010]. Electric Vehicles (EVs) are currentlyBattery Utilization in Electric Vehicles: Theoretical Analysis and an Almost Optimal Online n current demands in electric vehicles. When serving a demand, the current allocation might be split

  19. Electric vehicles and renewable energy in the transport sector energy system

    E-Print Network [OSTI]

    energy resources, such as wind power. Economic aspects for electric vehicles interactingElectric vehicles and renewable energy in the transport sector ­ energy system consequences Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles Lars Henrik Nielsen and Kaj

  20. Green Move: a platform for highly configurable, heterogeneous electric vehicle sharing

    E-Print Network [OSTI]

    Cugola, Gianpaolo

    Green Move: a platform for highly configurable, heterogeneous electric vehicle sharing Andrea G the spreading of electric vehicles, in particular for what concerns the high upfront costs of the vehicles benefits. I. INTRODUCTION Electric vehicle sharing has the potential to provide a solution to many

  1. ORIGINAL ARTICLE Multi-objective optimal path selection in electric vehicles

    E-Print Network [OSTI]

    Sait, Sadiq M.

    ORIGINAL ARTICLE Multi-objective optimal path selection in electric vehicles Umair Farooq Siddiqi selection (OPS) in electric vehicles (EVs). The proposed algorithm requires less computational time evolution (SimE) Á Electric vehicles (EVs) 1 Introduction Navigation systems of modern vehicles are equipped

  2. In-Use Performance Results of Medium Duty Electric Vehicles (Presentation)

    SciTech Connect (OSTI)

    Walkowicz, K.

    2012-07-01T23:59:59.000Z

    This presentation describes a DOE program to monitor and report on vehicle performance and energy utilization of medium-duty and heavy-duty electric vehicles.

  3. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    fuel electricity demands, and generation from these plantplants .. 47 Additional generation .. 48 Electricityelectricity demand increases generation from NGCC power plants.

  4. GREAT MINDSTHINK ELECTRIC / WWW.EVS26.ORG Mitigation of Vehicle Fast Charge

    E-Print Network [OSTI]

    GREAT MINDSTHINK ELECTRIC / WWW.EVS26.ORG Mitigation of Vehicle Fast Charge Grid Impacts-55080 #12;GREAT MINDSTHINK ELECTRIC / WWW.EVS26.ORG Electric Vehicle Grid Integration 2 Cross Cutting & TESTING DEPLOYMENT & PARTNERSHIPS Tx Tx Tx #12;GREAT MINDSTHINK ELECTRIC / WWW.EVS26.ORG3 Vehicle Test

  5. SDTC Neural Network Traction Control of an Electric Vehicle without Differential Gears

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    SDTC Neural Network Traction Control of an Electric Vehicle without Differential Gears A. Haddoun1 network traction control approach of an Electric vehicle (EV) without differential gears (electrical that the proposed SDTC neural network approach operates satisfactorily. Keywords--Electric vehicle propulsion

  6. Addendum to 'An innovation and policy agenda for commercially competitive plug-in hybrid electric vehicles'

    E-Print Network [OSTI]

    Kammen, Daniel M.

    to `An innovation and policy agenda for commercially competitive plug-in hybrid electric vehicles' Derek electric vehicles' (D M Lemoine et al 2008 Environ. Res. Lett. 3 014003) to the case of all-electric in which EVs could dramatically change the results we obtained for plug-in hybrid electric vehicles (PHEVs

  7. Proxy Mobile IPv6 for Electric Vehicle Charging Service: Use Cases and Analysis

    E-Print Network [OSTI]

    Gesbert, David

    Proxy Mobile IPv6 for Electric Vehicle Charging Service: Use Cases and Analysis Tien-Thinh Nguyen acknowledged that the key limitation to a raising market deployment of Electric Vehicles (EV) is correlated to the anxiety related to electric vehicle charging services (EVCS). From a user perspective, the electricity

  8. A Simple and Effective Hardware-in-the-Loop Simulation Platform for Urban Electric Vehicles

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A Simple and Effective Hardware-in-the-Loop Simulation Platform for Urban Electric Vehicles B-in-the-loop simulation of urban electric vehicles. The proposed platform, which is expected to be used for electric is coupled to DC machine-based load torque emulator taking into account the electric vehicle mechanics

  9. A STOCHASTIC OPTIMAL CONTROL APPROACH FOR POWER MANAGEMENT IN PLUG-IN HYBRID ELECTRIC VEHICLES

    E-Print Network [OSTI]

    Krstic, Miroslav

    A STOCHASTIC OPTIMAL CONTROL APPROACH FOR POWER MANAGEMENT IN PLUG-IN HYBRID ELECTRIC VEHICLES.e., the engine and electric machines) in a plug-in hybrid electric vehicle (PHEV). Existing studies focus mostly. INTRODUCTION This paper examines plug-in hybrid electric vehicles (PHEVs), i.e., automobiles that can extract

  10. The Canadian Plug-in Electric Vehicle Survey (CPEVS 2013): Anticipating Purchase, Use, and Grid Interactions

    E-Print Network [OSTI]

    electric vehicles (PHEVs) that can be powered by grid electricity for an initial distance, say 60 km, but are otherwise powered by gasoline until the battery is recharged (e.g. the Chevrolet Volt) and Electric vehiclesThe Canadian Plug-in Electric Vehicle Survey (CPEVS 2013): Anticipating Purchase, Use, and Grid

  11. A mean field game analysis of electric vehicles in the smart grid

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 A mean field game analysis of electric vehicles in the smart grid Romain Couillet1, Samir Medina electrical vehicles (EV) or electrical hybrid oil-electricity vehicles (PHEV) in the smart grid energy market to the smart grid and sell their energy surpluses, when needed. It is therefore an important economical

  12. Device to facilitate moving an electrical cable of an electric vehicle charging station and method of providing the same

    DOE Patents [OSTI]

    Karner, Donald B

    2014-04-29T23:59:59.000Z

    Some embodiments include a device to facilitate moving an electrical cable of an electric vehicle charging station. Other embodiments of related systems and methods are also disclosed.

  13. American Electric Vehicles, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergy Systems Place:AlwitraAmberley,AmerecoAmericanVehicles, Inc

  14. FreedomCAR :electrical energy storage system abuse test manual for electric and hybrid electric vehicle applications.

    SciTech Connect (OSTI)

    Doughty, Daniel Harvey; Crafts, Chris C.

    2006-08-01T23:59:59.000Z

    This manual defines a complete body of abuse tests intended to simulate actual use and abuse conditions that may be beyond the normal safe operating limits experienced by electrical energy storage systems used in electric and hybrid electric vehicles. The tests are designed to provide a common framework for abuse testing various electrical energy storage systems used in both electric and hybrid electric vehicle applications. The manual incorporates improvements and refinements to test descriptions presented in the Society of Automotive Engineers Recommended Practice SAE J2464 ''Electric Vehicle Battery Abuse Testing'' including adaptations to abuse tests to address hybrid electric vehicle applications and other energy storage technologies (i.e., capacitors). These (possibly destructive) tests may be used as needed to determine the response of a given electrical energy storage system design under specifically defined abuse conditions. This manual does not provide acceptance criteria as a result of the testing, but rather provides results that are accurate and fair and, consequently, comparable to results from abuse tests on other similar systems. The tests described are intended for abuse testing any electrical energy storage system designed for use in electric or hybrid electric vehicle applications whether it is composed of batteries, capacitors, or a combination of the two.

  15. Electricity Grid: Impacts of Plug-In Electric Vehicle Charging

    E-Print Network [OSTI]

    Yang, Christopher; McCarthy, Ryan

    2009-01-01T23:59:59.000Z

    Table 1. Energy and carbon intensity values for conventionalin “hybrid mode” kWh/mi Fuel Carbon Intensity (C) gCO 2 /ggegCO 2 /kWh Vehicle Carbon Intensity (ExC) gCO 2 /mi BEVs /

  16. Assessment of US electric vehicle programs with ac powertrains

    SciTech Connect (OSTI)

    Kevala, R.J. (Booz, Allen and Hamilton, Inc., Bethesda, MD (USA). Transportation Consulting Div.)

    1990-02-01T23:59:59.000Z

    AC powertrain technology is a promising approach to improving the performance of electric vehicles. Four major programs are now under way in the United States to develop ac powertrains: the Ford/General Electric single-shaft electric propulsion system (ETX-II), the Eaton dual-shaft electric propulsion system (DSEP), the Jet Propulsion Laboratories (JPL) integrated ac motor drive and recharge system, and the Massachusetts Institute of Technology (MIT) variable reluctance motor (VRM) drive. The JPL program is sponsored by EPRI; the other three programs are funded by the US Department of Energy. This preliminary assessment of the four powertrain programs focuses on potential performance, costs, safety, and commercial feasibility. Interviews with program personnel were supplemented by computer simulations of electric vehicle performance using the four systems. Each of the four powertrains appears superior to standard dc powertrain technology in terms of performance and weight. The powertrain technologies studied in this assessment are at varying degrees of technological maturity. One or more of the systems may be ready for incorporation into an advanced electric vehicle during the early 1990s. Each individual report will have a separate abstract. 5 refs., 37 figs., 29 tabs.

  17. Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Jeffrey R. Belt

    2010-09-01T23:59:59.000Z

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

  18. Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Jeffrey R. Belt

    2010-12-01T23:59:59.000Z

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

  19. Comparison of advanced battery technologies for electric vehicles

    SciTech Connect (OSTI)

    Dickinson, B.E.; Lalk, T.R. [Texas A and M Univ., College Station, TX (United States). Mechanical Engineering Dept.; Swan, D.H. [Univ. of California, Davis, CA (United States). Inst. of Transportation Studies

    1993-12-31T23:59:59.000Z

    Battery technologies of different chemistries, manufacture and geometry were evaluated as candidates for use in Electric Vehicles (EV). The candidate batteries that were evaluated include four single cell and seven multi-cell modules representing four technologies: Lead-Acid, Nickel-Cadmium, Nickel-Metal Hydride and Zinc-Bromide. A standard set of testing procedures for electric vehicle batteries, based on industry accepted testing procedures, and any tests which were specific to individual battery types were used in the evaluations. The batteries were evaluated by conducting performance tests, and by subjecting them to cyclical loading, using a computer controlled charge--discharge cycler, to simulate typical EV driving cycles. Criteria for comparison of batteries were: performance, projected vehicle range, cost, and applicability to various types of EVs. The four battery technologies have individual strengths and weaknesses and each is suited to fill a particular application. None of the batteries tested can fill every EV application.

  20. Adaptive powertrain control for plugin hybrid electric vehicles

    DOE Patents [OSTI]

    Kedar-Dongarkar, Gurunath; Weslati, Feisel

    2013-10-15T23:59:59.000Z

    A powertrain control system for a plugin hybrid electric vehicle. The system comprises an adaptive charge sustaining controller; at least one internal data source connected to the adaptive charge sustaining controller; and a memory connected to the adaptive charge sustaining controller for storing data generated by the at least one internal data source. The adaptive charge sustaining controller is operable to select an operating mode of the vehicle's powertrain along a given route based on programming generated from data stored in the memory associated with that route. Further described is a method of adaptively controlling operation of a plugin hybrid electric vehicle powertrain comprising identifying a route being traveled, activating stored adaptive charge sustaining mode programming for the identified route and controlling operation of the powertrain along the identified route by selecting from a plurality of operational modes based on the stored adaptive charge sustaining mode programming.

  1. Electric vehicle test and evaluation data: preliminary analysis

    SciTech Connect (OSTI)

    Friedman, K.; Magro, W.

    1983-06-01T23:59:59.000Z

    The data in this paper summarizes the current experience of DOE private sector site operators and is based on information gathered from electric vehicle (EV) private sector site operators by Booz, Allen and Hamilton under contract to the U.S. Department of Energy. Since January 1980, Booz, Allen has collected and computerized on an IBM Personnel computer data from 16 private sector site operators covering nine vehicle types and over 1.3 million miles of vehicle travel. The paper summarizes key indicators of vehicle performance including energy consumption per mile and miles travelled per charge and reports on results of and plans for special analyses. More detailed information is available from the authors.

  2. EV Project Electric Vehicle Charging Infrastructure Summary Report...

    Broader source: Energy.gov (indexed) [DOE]

    units 2,413 0 170 0 2,583 Number of charging events 118,239 0 2,258 0 120,497 Electricity consumed (AC MWh) 852.17 0.00 14.15 0.00 866.31 Percent of time with a vehicle...

  3. EV Project Electric Vehicle Charging Infrastructure Summary Report

    Broader source: Energy.gov (indexed) [DOE]

    units 3,338 0 1,483 0 4,821 Number of charging events 223,930 0 27,023 0 250,953 Electricity consumed (AC MWh) 1,885.86 0.00 208.63 0.00 2,094.49 Percent of time with a vehicle...

  4. The Charging-Scheduling Problem for Electric Vehicle Networks

    E-Print Network [OSTI]

    and Design, Singapore University of New Mexico, USA {zhumingpassional, yanglet, linghe.kong, rmshen, shu, mwu}@sjtu.edu.cn Abstract--Electric vehicle (EV) is a promising transportation with plenty of advantages, e.g., low carbon emission, high energy efficiency. However, it requires frequent and long time charging. In public charging

  5. Control system and method for a hybrid electric vehicle

    DOE Patents [OSTI]

    Phillips, Anthony Mark (Northville, MI); Blankenship, John Richard (Dearborn, MI); Bailey, Kathleen Ellen (Dearborn, MI); Jankovic, Miroslava (Birmingham, MI)

    2001-01-01T23:59:59.000Z

    A vehicle system controller (20) is presented for a LSR parallel hybrid electric vehicle having an engine (10), a motor (12), wheels (14), a transmission (16) and a battery (18). The vehicle system controller (20) has a state machine having a plurality of predefined states (22-32) that represent operating modes for the vehicle. A set of rules is defined for controlling the transition between any two states in the state machine. The states (22-32) are prioritized according to driver demands, energy management concerns and system fault occurrences. The vehicle system controller (20) controls the transitions from a lower priority state to a higher priority state based on the set of rules. In addition, the vehicle system controller (20) will control a transition to a lower state from a higher state when the conditions no longer warrant staying in the current state. A unique set of output commands is defined for each state for the purpose of controlling lower level subsystem controllers. These commands serve to achieve the desire vehicle functionality within each state and insure smooth transitions between states.

  6. Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 1: technical report

    SciTech Connect (OSTI)

    Cuenca, R.; Formento, J.; Gaines, L.; Marr, B.; Santini, D.; Wang, M. [Argonne National Lab., IL (United States); Adelman, S.; Kline, D.; Mark, J.; Ohi, J.; Rau, N. [National Renewable Energy Lab., Golden, CO (United States); Freeman, S.; Humphreys, K.; Placet, M. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-01-01T23:59:59.000Z

    This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline-powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume I contains the major results, a discussion of the conceptual framework of the study, and summaries of the vehicle, utility, fuel production, and manufacturing analyses. It also contains summaries of comments provided by external peer reviewers and brief responses to these comments.

  7. High reduction transaxle for electric vehicle

    DOE Patents [OSTI]

    Kalns, Ilmars (Plymouth, MI)

    1987-01-01T23:59:59.000Z

    A drivetrain (12) includes a transaxle assembly (16) for driving ground engaging wheels of a land vehicle powered by an AC motor. The transaxle includes a ratio change section having planetary gear sets (24, 26) and brake assemblies (28, 30). Sun gears (60, 62) of the gear sets are directly and continuously connected to an input drive shaft (38) driven by the motor. A first drive (78a) directly and continuously connects a planetary gear carrier (78) of gear sets (24) with a ring gear (68) of gear set (26). A second drive (80a) directly and continuously connects a planetary gear carrier (80) of gear set (26) with a sun gear (64) of a final speed reduction gear set (34) having a planetary gear carrier directly and continuously connected to a differential (22). Brakes (28, 30) are selectively engageable to respectively ground a ring gear 66 of gear set 24 and ring gear 68 of gear set 26.

  8. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    fuel-cell vehicles: “Mobile Electricity" technologies andFuel-Cell Vehicles: “Mobile Electricity” Technologies, EarlyFuel-Cell Vehicles: “Mobile Electricity” Technologies, Early

  9. Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07

    E-Print Network [OSTI]

    Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

    2008-01-01T23:59:59.000Z

    Assessment for Battery Electric Vehicles, PowerAssist Hybrid Electric Vehicles, and Plug-in Hybrid Electric Vehicles. EPRI: Palo Alto, CA.

  10. Vehicle and Heavy Equipment Integrated Product & Process Development (IPPD)

    E-Print Network [OSTI]

    Beckermann, Christoph

    Vehicle and Heavy Equipment Integrated Product & Process Development (IPPD) Technology Development City, IA 52242 Beckermann, C., and Fischer, G.W., "Vehicle and Heavy Equipment Integrated Product, 1993. #12;Abstract An overview is presented of the recently proposed Vehicle and Heavy Equipment

  11. DSP Based Ultracapacitor System for Hybrid-Electric Vehicles Juan W. Dixon

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    DSP Based Ultracapacitor System for Hybrid-Electric Vehicles Juan W. Dixon Department of Electrical vehicles has been implemented and tested successfully. The system can work with different primary power the vehicle with minimum help of the primary power source. The vehicle uses a brushless dc motor

  12. Project Information Form Project Title Structural Determinants of Electric Vehicle Market Growth

    E-Print Network [OSTI]

    California at Davis, University of

    of Electric Vehicle Market Growth University UC Davis Principal Investigator---in electric vehicle (PEV) markets are facing and how they are likely to evolve--political, technological, economic, and societal--that drives the development, deployment and use

  13. Fact #843: October 20, 2014 Cumulative Plug-in Electric Vehicle...

    Broader source: Energy.gov (indexed) [DOE]

    than Hybrid Electric Vehicle Sales in the First 45 Months since Market Introduction - Dataset Fact 843: October 20, 2014 Cumulative Plug-in Electric Vehicle Sales are Two and a...

  14. Secretary Chu Highlights More Than 1,800 Electric Vehicle Chargers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    under the Recovery Act. "President Obama has set an ambitious goal of putting 1 million electric vehicles on the road by 2015. Investing in the U.S. electric vehicle industry...

  15. E-Print Network 3.0 - anl electric vehicle Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electric vehicle Search Powered by Explorit Topic List Advanced Search Sample search results for: anl electric vehicle Page: << < 1 2 3 4 5 > >> 1 GREET InclGREET Includes More...

  16. A First Look at the Impact of Electric Vehicle Charging on the...

    Broader source: Energy.gov (indexed) [DOE]

    EVS26 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 EVS26 Los Angeles, California, May 6-9, 2012 A First Look at the Impact of Electric Vehicle Charging...

  17. A simulation-based assessment of plug-in hybrid electric vehicle architectures

    E-Print Network [OSTI]

    Sotingco, Daniel (Daniel S.)

    2012-01-01T23:59:59.000Z

    Plug-in hybrid electric vehicles (PHEVs) are vehicles that utilize power from both an internal combustion engine and an electric battery that can be recharged from the grid. Simulations of series, parallel, and split-architecture ...

  18. Charging and Storage Infrastructure Design for Electric Vehicles MARJAN MOMTAZPOUR and PATRICK BUTLER, Virginia Tech

    E-Print Network [OSTI]

    Ramakrishnan, Naren

    A Charging and Storage Infrastructure Design for Electric Vehicles MARJAN MOMTAZPOUR and PATRICK charging and storage infrastructure design for electric vehicles. We develop coordinated clustering. 2012. Charging and Storage Infrastructure Design for EVs. ACM Trans. Intell. Syst. Technol. V, N

  19. A global analysis and market strategy in the electric vehicle battery industry

    E-Print Network [OSTI]

    Kim, Young Hee, S.M. Massachusetts Institute of Technology

    2014-01-01T23:59:59.000Z

    As use of electric vehicles has been expected to grow, the batteries for the electric vehicles have become critical because the batteries are a key part of the paradigm shift in the automotive industry. However, the demand ...

  20. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    System Operator. WECC (2006) Information Summary, Westernx SDG&E SMR SMUD TID v VMT WECC San Diego Gas & ElectricCoordinating Council (WECC) differ somewhat from the CEC and

  1. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    Palm Springs solar insolation, and California electricityConcentrating Solar Power in California, NREL/SR-550-39291,generation from wind and solar in California could be very

  2. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    al Scott et al (2007) [97] EPRI and NRDC (2007) [6, StephanAir Resources Board. EPRI and NRDC (2007) Environmentalin the hydrogen-electric economy, EPRI. Lemoine, D.M. , D.M.

  3. Electricity Grid: Impacts of Plug-In Electric Vehicle Charging

    E-Print Network [OSTI]

    Yang, Christopher; McCarthy, Ryan

    2009-01-01T23:59:59.000Z

    in the context of regional grid structure and operations,and Regional U.S. Power Grids. Part 1: Technical Analysis;ccyang@ucdavis.edu. Electricity Grid Impacts of Plug-In

  4. Fuel Cell and Battery Electric Vehicles Compared

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergy Frozen TelescopeRenewable 0AgencyLevel PHEVs

  5. Plug-in Electric Vehicle Outreach

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket |21, 2015 7:00AM to 10:30AMPlayPlug-in Electric

  6. Energy 101: Electric Vehicles | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia Nanoparticles asSecond stage ofDefects on . GradeCool RoofsElectric

  7. Electric Vehicle Charging Infrastructure Deployment Guidelines: British

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It is classified asThisEcoGridCounty,Portal,105.ElectricSiting Jump

  8. Recovery Act - Sustainable Transportation: Advanced Electric Drive Vehicle Education Program

    SciTech Connect (OSTI)

    Caille, Gary

    2013-12-13T23:59:59.000Z

    The collective goals of this effort include: 1) reach all facets of this society with education regarding electric vehicles (EV) and plug–in hybrid electric vehicles (PHEV), 2) prepare a workforce to service these advanced vehicles, 3) create web–based learning at an unparalleled level, 4) educate secondary school students to prepare for their future and 5) train the next generation of professional engineers regarding electric vehicles. The Team provided an integrated approach combining secondary schools, community colleges, four–year colleges and community outreach to provide a consistent message (Figure 1). Colorado State University Ventures (CSUV), as the prime contractor, plays a key program management and co–ordination role. CSUV is an affiliate of Colorado State University (CSU) and is a separate 501(c)(3) company. The Team consists of CSUV acting as the prime contractor subcontracted to Arapahoe Community College (ACC), CSU, Motion Reality Inc. (MRI), Georgia Institute of Technology (Georgia Tech) and Ricardo. Collaborators are Douglas County Educational Foundation/School District and Gooru (www.goorulearning.org), a nonprofit web–based learning resource and Google spin–off.

  9. P1.2 -- Hybrid Electric Vehicle and Lithium Polymer NEV Testing

    SciTech Connect (OSTI)

    J. Francfort

    2006-06-01T23:59:59.000Z

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity tests hybrid electric, pure electric, and other advanced technology vehicles. As part of this testing, 28 hybrid electric vehicles (HEV) are being tested in fleet, dynamometer, and closed track environments. This paper discusses some of the HEV test results, with an emphasis on the battery performance of the HEVs. It also discusses the testing results for a small electric vehicle with a lithium polymer traction battery.

  10. Neural Network Based Energy Storage System Modeling for Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Bhatikar, S. R.; Mahajan, R. L.; Wipke, K.; Johnson, V.

    1999-08-01T23:59:59.000Z

    Demonstrates the application of an artificial neural network (ANN) for modeling the energy storage system of a hybrid electric vehicle.

  11. Energy Storage Systems Considerations for Grid-Charged Hybrid Electric Vehicles: Preprint

    SciTech Connect (OSTI)

    Markel, T.; Simpson, A.

    2005-09-01T23:59:59.000Z

    This paper calculates battery power and energy requirements for grid-charged hybrid electric vehicles (HEVs) with different operating strategies.

  12. Cost-Benefit Analysis of Plug-In Hybrid-Electric Vehicle Technology (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.; Markel, T.; Simpson, A.

    2006-10-01T23:59:59.000Z

    Presents a cost-benefit of analysis of plug-in hybrid electric vehicle technology, including potential petroleum use reduction.

  13. Modeling of Plug-in Electric Vehicles Interactions with a Sustainable Community Grid in the Azores

    E-Print Network [OSTI]

    Mendes, Goncalo

    2013-01-01T23:59:59.000Z

    Distributed Generation, Plug-in Electric Vehicles (PEVs), Energy Management, Multi-Building Modeling and Simulation Introduction The Green Islands

  14. Smart buildings with electric vehicle interconnection as buffer for local renewables?

    E-Print Network [OSTI]

    Stadler, Michael

    2012-01-01T23:59:59.000Z

    Judy Lai, and Vincent Battaglia: “The added economic andMarnay, and Vincent Battaglia: “Plug-in Electric Vehicle

  15. Smart buildings with electric vehicle interconnection as buffer for local renewables?

    E-Print Network [OSTI]

    Stadler, Michael

    2012-01-01T23:59:59.000Z

    and integrated in smart buildings Is it that simple or doesN ATIONAL L ABORATORY Smart buildings with electric vehicleopportunity employer. Smart buildings with electric vehicle

  16. Control system and method for a hybrid electric vehicle

    DOE Patents [OSTI]

    Tamor, Michael Alan (Toledo, OH)

    2001-03-06T23:59:59.000Z

    Several control methods are presented for application in a hybrid electric vehicle powertrain including in various embodiments an engine, a motor/generator, a transmission coupled at an input thereof to receive torque from the engine and the motor generator coupled to augment torque provided by the engine, an energy storage device coupled to receive energy from and provide energy to the motor/generator, an engine controller (EEC) coupled to control the engine, a transmission controller (TCM) coupled to control the transmission and a vehicle system controller (VSC) adapted to control the powertrain.

  17. Constitution of the MIT Solar Electric Vehicle Team We, the workers of the Solar Electric Vehicle Team, in order to form a more

    E-Print Network [OSTI]

    Williams, Brian C.

    Constitution of the MIT Solar Electric Vehicle Team 1 PURPOSE We, the workers of the Solar Electric the blessings of fast Solar Cars to ourselves and our Posterity, do ordain and establish this Constitution for the Solar Electric Vehicle Team of the Massachusetts Institute of Technology (henceforth "TFP"). 2

  18. Hybrid Cascaded H-bridges Multilevel Motor Drive Control for Electric Vehicles

    E-Print Network [OSTI]

    Tolbert, Leon M.

    Hybrid Cascaded H-bridges Multilevel Motor Drive Control for Electric Vehicles Zhong Du1 , Leon M vehicle motor drive applications and hybrid electric vehicle motor drive applications. Keywords: hybrid cascaded H-bridge multilevel converter, DC voltage balance control, multilevel motor drive, electric

  19. ANL/ESD/10-9 Highway Vehicle Electric Drive in the United States

    E-Print Network [OSTI]

    Kemner, Ken

    ANL/ESD/10-9 Highway Vehicle Electric Drive in the United States: 2009 Status and Issues Energy Laboratory, or UChicago Argonne, LLC. #12;ANL/ESD/10-9 Highway Vehicle Electric Drive in the United States .............................................................................................................. 1 2 STATE OF ELECTRIC DRIVE VEHICLE TECHNOLOGY .......................................... 4 2

  20. Planning an Itinerary for an Electric Vehicle Hugo G. Chale-Gongora*1

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Planning an Itinerary for an Electric Vehicle Hugo G. Chale-Gongora*1 , Olivier de Weck#2 to their development. In order to reassure a driver of an electric vehicle and allow him to reach his destinations present in this paper the electric vehicle ecosystem and we focus on the contribution of using

  1. Paper No. 09-3009 Plug-In Hybrid Electric Vehicles' Potential for

    E-Print Network [OSTI]

    Kemner, Ken

    Paper No. 09-3009 Plug-In Hybrid Electric Vehicles' Potential for Petroleum Use Reduction: Issues of the Government. #12;Vyas, Santini, and Johnson Page 1 Plug-In Hybrid Electric Vehicles' Potential for Petroleum of petroleum use reduction by widespread introduction of plug-in hybrid electric vehicles (PHEVs). Travel day

  2. CREATING A PLUG-IN ELECTRIC VEHICLE INDUSTRY CLUSTER IN MICHIGAN

    E-Print Network [OSTI]

    Lyon, Thomas P.

    303 CREATING A PLUG-IN ELECTRIC VEHICLE INDUSTRY CLUSTER IN MICHIGAN: PROSPECTS AND POLICY OPTIONS a Plug-In Electric Vehicle Industry Cluster in Michigan: Prospects and Policy Options, 18 MICH. TELECOMM.......................................................308 II. Will the Electric Vehicle Industry Cluster?....................309 A. Why Do Industries

  3. Probabilistic Modelling of Plug-in Hybrid Electric Vehicle Impacts on Distribution Networks in

    E-Print Network [OSTI]

    Victoria, University of

    Probabilistic Modelling of Plug-in Hybrid Electric Vehicle Impacts on Distribution Networks Committee Probabilistic Modelling of Plug-in Hybrid Electric Vehicle Impacts on Distribution Networks) Departmental Member Plug-in hybrid electric vehicles (PHEVs) represent a promising future direction

  4. Electric Vehicle Induction Motor DSVM-DTC with Torque Ripple Minimization

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Electric Vehicle Induction Motor DSVM-DTC with Torque Ripple Minimization Farid Khoucha1 a sensorless DSVM-DTC of an induction motor that propels an electrical vehicle or a hybrid one. The drive uses, as demonstrated in experimental results. Keywords: Electric vehicle (EV), induction motor, Discrete Space Vector

  5. Willingness to pay for electric vehicles and their attributes MichaelK.Hidrue a

    E-Print Network [OSTI]

    Firestone, Jeremy

    Willingness to pay for electric vehicles and their attributes§ MichaelK.Hidrue a , George classification: Q42 Q51 Keywords: Electric vehicles Stated preference Discrete choice A B S T R A C T This article presents a stated preference study of electric vehicle choice using data from a national survey

  6. PWM Inverter-Fed Induction Motor-Based Electrical Vehicles Fault-Tolerant Control

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    PWM Inverter-Fed Induction Motor-Based Electrical Vehicles Fault-Tolerant Control Bekheïra Tabbache proposes a fault-tolerant control scheme for PWM inverter-fed induction motor-based electric vehicles and simulations on an electric vehicle are carried-out using a European urban driving cycle to assess the FTC

  7. SDTC-EKF Control of an Induction Motor Based Electric Vehicle B. Tabbache1,2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    SDTC-EKF Control of an Induction Motor Based Electric Vehicle B. Tabbache1,2 , A. Kheloui2 , M torque control of an induction motor based electric vehicle. In this case, stator flux and rotational for an electric vehicle control. Keywords: Sensorless Direct Torque Control (SDTC), Extented Kalman Filter (EKF

  8. Page 1 of 6 Electric Vehicle Performance in a Highly Polluted City.

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    Page 1 of 6 Electric Vehicle Performance in a Highly Polluted City. Esteban J. Pino Eduardo P at peak hours. Experimental results from driving an electric vehicle in this particular environment's environment. Index Terms: electric vehicle performance, polluted cities, heavy traffic cities. I. INTRODUCTION

  9. 2001-01-1334 Integrated, Feed-Forward Hybrid Electric Vehicle

    E-Print Network [OSTI]

    Peng, Huei

    1 2001-01-1334 Integrated, Feed-Forward Hybrid Electric Vehicle Simulation in SIMULINK and its Use of Automotive Engineers, Inc. ABSTRACT A hybrid electric vehicle simulation tool (HE-VESIM) has been developed global crude oil supplies stimulate research aimed at new, fuel-efficient vehicle technologies. Hybrid-electric

  10. Charging Games in Networks of Electrical Vehicles Olivier Beaude, Samson Lasaulce, and Martin Hennebel

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Charging Games in Networks of Electrical Vehicles Olivier Beaude, Samson Lasaulce, and Martin charging in electrical vehicle (EV) networks is proposed. This formulation allows one to model games, electrical vehicle, distribution net- works, potential games, Nash equilibrium, price of anarchy

  11. Parizet et al., Applied Acoustics 86 (2014), 50-58 1 Auditory Warnings for Electric Vehicles

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    2014-01-01T23:59:59.000Z

    Parizet et al., Applied Acoustics 86 (2014), 50-58 1 Auditory Warnings for Electric Vehicles@psychologie.tu-darmstadt.de Abstract Electrical vehicles operating at low speed are often too quiet to be detected by pedestrians studied and compared with the recording of an unfitted electrical vehicle (EV) and a conventional diesel

  12. Regenerative Braking for an Electric Vehicle Using Ultracapacitors and a Buck-Boost Converter

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    Regenerative Braking for an Electric Vehicle Using Ultracapacitors and a Buck-Boost Converter Juan for an Electric Vehicle has been simulated. The purpose of this device is to allow higher accelerations, similar in shape and size to a Chevrolet S-10. This vehicle was already converted to an electric car

  13. Optimal Decentralized Protocol for Electric Vehicle Charging Lingwen Gan Ufuk Topcu Steven Low

    E-Print Network [OSTI]

    Low, Steven H.

    Abstract-- Motivated by the power-grid-side challenges in the integration of electric vehicles, we proposeOptimal Decentralized Protocol for Electric Vehicle Charging Lingwen Gan Ufuk Topcu Steven Low a decentralized protocol for negotiating day-ahead charging schedules for electric vehicles. The overall goal

  14. Monitoring Battery System for Electric Vehicle, Based On "One Wire" Technology

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    Santiago, Chile jdixon@ing.puc.cl Abstract-- A monitoring system for a battery powered electric vehicle (EV- powered electric vehicles, the need for fast information related to different components and equipmentMonitoring Battery System for Electric Vehicle, Based On "One Wire" Technology Javier Ibáñez Vial

  15. An Optimal Fuzzy Logic Power Sharing Strategy for Parallel Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Brest, Université de

    An Optimal Fuzzy Logic Power Sharing Strategy for Parallel Hybrid Electric Vehicles F. Khoucha1 presents a fuzzy logic controller for a Parallel Hybrid Electric Vehicle (PHEV). The PHEV required driving economy, and emissions. Index Terms--Parallel Hybrid Electric Vehicle (PHEV), Internal Combustion Engine

  16. Diagnostic Characterization of High-Power Lithium-Ion Batteries For Use in Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Diagnostic Characterization of High-Power Lithium-Ion Batteries For Use in Hybrid Electric Vehicles and electric vehicles due to their relatively high specific energy and specific power. The Advanced Technology of lithium-ion batteries for hybrid electric vehicle (HEV) applications. The ATD Program is a joint effort

  17. State-of-Health Aware Optimal Control of Plug-in Electric Vehicles

    E-Print Network [OSTI]

    Pedram, Massoud

    ), which utilize electric motors for propulsion, differ from fossil fuel powered vehiclesState-of-Health Aware Optimal Control of Plug-in Electric Vehicles Yanzhi Wang, Siyu Yue, USA {yanzhiwa, siyuyue, pedram}@usc.edu Abstract--Plug-in electric vehicles (PEVs) are key new energy

  18. Modelling and Design Optimization of Low Speed Fuel Cell Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Victoria, University of

    optimization of PEM fuel cell power system, and fuel cell powered, low speed electric vehicles. #12;iii TABLEModelling and Design Optimization of Low Speed Fuel Cell Hybrid Electric Vehicles by Matthew Blair Supervisors: Dr. Zuomin Dong ABSTRACT Electric vehicles, as an emerging transportation platform, have been

  19. Diagnostic Characterization of High Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Diagnostic Characterization of High Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles are a fast-growing technology that is attrac- tive for use in portable electronics and electric vehicles due electric vehicle HEV applications.c A baseline cell chemistry was identified as a carbon anode negative

  20. Electric Vehicle Charging in Smart Grid: Optimality and Valley-filling Algorithms

    E-Print Network [OSTI]

    Tan, Chee Wei

    different settings. Index Terms--Optimal power flow, electric vehicle charging, valley-filling, onlineForReview Only 1 Electric Vehicle Charging in Smart Grid: Optimality and Valley-filling Algorithms, IEEE. Abstract--Electric vehicles (EVs) offer an attractive long-term solution to reduce the dependence

  1. Control of a Fuel-Cell Powered DC Electric Vehicle Motor

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Control of a Fuel-Cell Powered DC Electric Vehicle Motor Federico Zenith Sigurd Skogestad of a Fuel-Cell Powered DC Electric Vehicle Motor #12;3 Currently Available Models and Control Strategies Skogestad, Control of a Fuel-Cell Powered DC Electric Vehicle Motor #12;3 Currently Available Models

  2. FC/Battery Power Management for Electric Vehicle Based Interleaved dc-dc Boost Converter Topology

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    FC/Battery Power Management for Electric Vehicle Based Interleaved dc- dc Boost Converter Topology power systems in electric vehicle application, in order to decrease the FC current ripple. Therefore the performance of the FC system during transient and instantaneous peak power demands in electric vehicle

  3. Monitoring System for Testing the Performance of an Electric Vehicle Using Ultracapacitors

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    Monitoring System for Testing the Performance of an Electric Vehicle Using Ultracapacitors Juan W. Dixon, Micah Ortúzar and Jorge Moreno Abstract A monitoring system for an Electric Vehicle, which uses of ultracapacitors in combination with batteries in electric vehicles. The efficiency gain is being monitored

  4. Implementation and Evaluation of an Ultracapacitor-Based Auxiliary Energy System for Electric Vehicles

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    of an ultracapacitor bank and a buck- boost converter, was installed in an electric vehicle, which is powered by a lead Vehicles Micah Ortúzar, Jorge Moreno and Juan Dixon (SM IEEE) Department of Electrical Engineering system for electric vehicles was designed, implemented and tested. The system, composed

  5. BATTERY-POWERED, ELECTRIC-DRIVE VEHICLES PROVIDING BUFFER STORAGE FOR PV CAPACITY VALUE

    E-Print Network [OSTI]

    Perez, Richard R.

    BATTERY-POWERED, ELECTRIC-DRIVE VEHICLES PROVIDING BUFFER STORAGE FOR PV CAPACITY VALUE Steven requirements that will result in a number of new battery-powered electric drive vehicles being sold beginning as vehicle-to-grid (V2G) power. In a recent press release, the Electric Power Research Institute speculates

  6. Design of Electric or Hybrid vehicle alert sound system for pedestrian

    E-Print Network [OSTI]

    Boyer, Edmond

    Design of Electric or Hybrid vehicle alert sound system for pedestrian J.-C. Chamard and V, France 1691 #12;The arrival of fully or hybrid electric vehicles raised safety problems respect the environment to warn of his approach. However, hybrid and electric vehicles can potentially be dangerous

  7. DSP-Based Sensor Fault-Tolerant Control of Electric Vehicle Powertrains

    E-Print Network [OSTI]

    Brest, Université de

    DSP-Based Sensor Fault-Tolerant Control of Electric Vehicle Powertrains Bekheïra Tabbache, Mohamed-tolerant control for a high performance induction motor drive that propels an electrical vehicle. The proposed and simulations on an electric vehicle are carried-out using a European urban and extra urban driving cycle

  8. Introduction Electrical vehicle Problem Combinatorial approach Conclusions and future works A Combinatorial Optimization Approach for

    E-Print Network [OSTI]

    Ingrand, François

    Introduction Electrical vehicle Problem Combinatorial approach Conclusions and future works`emes, LAAS-CNRS February 18, 2013 1/23 #12;Introduction Electrical vehicle Problem Combinatorial approach Conclusions and future works 1 Introduction 2 Electrical vehicle Description of the energy system Input data 3

  9. An Improved MPPT Interleaved Boost Converter for Solar Electric Vehicle Application

    E-Print Network [OSTI]

    Boyer, Edmond

    during transient and instantaneous peak power demands of an electric vehicle (EV) and to recover energyAn Improved MPPT Interleaved Boost Converter for Solar Electric Vehicle Application F. Khoucha, A and lower device stress than conventional designs, for solar electric vehicle (SEV) applications

  10. Design and Control of the Induction Motor Propulsion of an Electric Vehicle

    E-Print Network [OSTI]

    Brest, Université de

    Design and Control of the Induction Motor Propulsion of an Electric Vehicle B. Tabbache1,2 , A for presizing the induction motor propulsion of an Electric Vehicle (EV). Based on the EV desired performances for different induction motor-based EVs using a siding mode control technique. Index Terms--Electric Vehicle (EV

  11. 2010MIT SOLAR ELECTRIC VEHICLE TEAM A MESSAGE FROM THE PRESIDENT

    E-Print Network [OSTI]

    2010MIT SOLAR ELECTRIC VEHICLE TEAM #12;A MESSAGE FROM THE PRESIDENT President Hockfield poses with SEVT members at an outreach event ONE #12;The MIT Solar Electric Vehicle Team (SEVT) is a student electric vehicles through international participation and competition. Give our sponsors publicity through

  12. S/EV 91: Solar and electric vehicle symposium, car and trade show. Proceedings

    SciTech Connect (OSTI)

    Not Available

    1991-12-31T23:59:59.000Z

    These proceedings cover the fundamentals of electric vehicles. Papers on the design, testing and performance of the power supplies, drive trains, and bodies of solar and non-solar powered electric vehicles are presented. Results from demonstrations and races are described. Public policy on the economics and environmental impacts of using electric powered vehicles is also presented.

  13. PREDICTING THE MARKET POTENTIAL OF PLUG-IN ELECTRIC VEHICLES USING MULTIDAY GPS DATA

    E-Print Network [OSTI]

    Kockelman, Kara M.

    Seattle households illuminate how plug-in electric vehicles can match household needs. The results suggest vehicle (PHEV) with 40-mile all-electric-range. Households owning two or more vehicles can electrify 50 PHEV suggest that when gas prices are $3.50 per gallon and electricity rates at 11.2 ct per k

  14. Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 2: appendices A-D to technical report

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline- powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume II contains additional details on the vehicle, utility, and materials analyses and discusses several details of the methodology.

  15. Evaluation Of Potential Hybrid Electric Vehicle Applications: Vol I

    E-Print Network [OSTI]

    Gris, Arturo E.

    1991-01-01T23:59:59.000Z

    Vehicle Symposium, "The Hybrid Vehicle Revisited", OctoberBus Hv REFERENCES “Hybrid Vehicle Assessment, Phase I,Laboratory, March 1984 “Hybrid Vehicle Engineering Task”

  16. Sensitivity of Battery Electric Vehicle Economics to Drive Patterns, Vehicle Range, and Charge Strategies

    SciTech Connect (OSTI)

    Neubauer, J.; Brooker, A.; Wood, E.

    2012-07-01T23:59:59.000Z

    Battery electric vehicles (BEVs) offer the potential to reduce both oil imports and greenhouse gas emissions, but high upfront costs discourage many potential purchasers. Making an economic comparison with conventional alternatives is complicated in part by strong sensitivity to drive patterns, vehicle range, and charge strategies that affect vehicle utilization and battery wear. Identifying justifiable battery replacement schedules and sufficiently accounting for the limited range of a BEV add further complexity to the issue. The National Renewable Energy Laboratory developed the Battery Ownership Model to address these and related questions. The Battery Ownership Model is applied here to examine the sensitivity of BEV economics to drive patterns, vehicle range, and charge strategies when a high-fidelity battery degradation model, financially justified battery replacement schedules, and two different means of accounting for a BEV's unachievable vehicle miles traveled (VMT) are employed. We find that the value of unachievable VMT with a BEV has a strong impact on the cost-optimal range, charge strategy, and battery replacement schedule; that the overall cost competitiveness of a BEV is highly sensitive to vehicle-specific drive patterns; and that common cross-sectional drive patterns do not provide consistent representation of the relative cost of a BEV.

  17. Electric Vehicle Preparedness Task 3: Detailed Assessment of Charging Infrastructure for Plug-in Electric Vehicles at Joint Base Lewis McChord

    SciTech Connect (OSTI)

    Steve Schey; Jim Francfort

    2014-10-01T23:59:59.000Z

    This report provides an assessment of charging infrastructure required to support the suggested plug-in electric vehicle replacements at Joint Base Lewis McChord.

  18. Electric Vehicle Preparedness Task 3: Detailed Assessment of Target Electrification Vehicles at Joint Base Lewis McChord Utilization

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort

    2014-08-01T23:59:59.000Z

    Task 2 involved identifying daily operational characteristics of select vehicles and initiating data logging of vehicle movements in order to characterize the vehicle’s mission. Individual observations of these selected vehicles provide the basis for recommendations related to PEV adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements and provides observations related to placement of PEV charging infrastructure. This report provides the results of the data analysis and observations related to the replacement of current vehicles with PEVs. This fulfills part of the Task 3 requirements. Task 3 also includes an assessment of charging infrastructure required to support this replacement. That is the subject of a separate report.

  19. Vehicle remote charge-all electric transportation system

    SciTech Connect (OSTI)

    Parise, R.J.

    1998-07-01T23:59:59.000Z

    The development of a pollution-free transportation system that utilizes technology from the defense industry combines two industries in a commercial venture. In conjunction with the abatement of pollution that an all-electric transportation system would realize, the defense industry is looking for a commercial market for the technology that it has developed over the years. This new transportation system will accomplish both these goals. To date, the most reliable electric source has been overhead tethered lines or on-ground tracks in public transportation. But these greatly reduce the convenience of route changes and are at the mercy of small traffic pattern changes which can cause traffic tie-ups. The ideal electric bus would have a completely mobile energy source, such as a battery pack. But the limited range of a battery powered vehicle has diminished its use to only specific cases. In private vehicles also, the limited range of zero-pollution battery power has reduced the desirability of all-electric transportation. The electric transportation system proposed here will eliminate these problems. Buses will be sent out on their routes with convenient in-route charging. There will be minimum route changes to accommodate vehicle recharging. The buses will have full mobility and can avoid any traffic tie-ups. The charging of these on-board electrical energy storage systems will take place via a wireless power transmission network that will be established along the roadside on existing power line (telephone) poles or new stand-alone poles that would be in conjunction with the existing poles. Radio frequency (RF) wavelengths such as a microwave or a millimeterwave system or optical frequencies (OF), a laser based system, are wireless energy transmission systems. Utilizing this means to establish a nationwide transportation system will take a technology that has been defense based and use it in a commercial application.

  20. Robust Broadcast-Communication Control of Electric Vehicle Charging

    E-Print Network [OSTI]

    Turitsyn, Konstantin; Backhaus, Scott; Chertkov, Misha

    2010-01-01T23:59:59.000Z

    The anticipated increase in the number of plug-in electric vehicles (EV) will put additional strain on electrical distribution circuits. Many control schemes have been proposed to control EV charging. Here, we develop control algorithms based on randomized EV charging start times and simple one-way broadcast communication allowing for a time delay between communication events. Using arguments from queuing theory and statistical analysis, we seek to maximize the utilization of excess distribution circuit capacity while keeping the probability of a circuit overload negligible.

  1. Fuzzy logic approach in determining the range of electric vehicle

    SciTech Connect (OSTI)

    Singh, H.; Bawa, H.S.; Barada, S.; Bryant, B.; Anneberg, L. [Wayne State Univ., Detroit, MI (United States). Dept. of Electrical and Computer Engineering

    1994-12-31T23:59:59.000Z

    Some efforts are underway in the automobile industry to determine the distance which an electric car will be able to traverse based on some typical battery conditions. A software package DIANE for modelling battery performance in electric vehicles has recently been developed by Marr, Walsh and Symons (1990). The objective of this paper is to introduce fuzzy logic approach in applying correction factor to the range determined by DIANE. The overall algorithm has been implemented for 8 different cars and 5 different batteries. 5 refs.

  2. Energy control strategy for a hybrid electric vehicle

    DOE Patents [OSTI]

    Phillips, Anthony Mark (Northville, MI); Blankenship, John Richard (Dearborn, MI); Bailey, Kathleen Ellen (Dearborn, MI); Jankovic, Miroslava (Birmingham, MI)

    2002-01-01T23:59:59.000Z

    An energy control strategy (10) for a hybrid electric vehicle that controls an electric motor during bleed and charge modes of operation. The control strategy (10) establishes (12) a value of the power level at which the battery is to be charged. The power level is used to calculate (14) the torque to be commanded to the electric motor. The strategy (10) of the present invention identifies a transition region (22) for the electric motor's operation that is bounded by upper and lower speed limits. According to the present invention, the desired torque is calculated by applying equations to the regions before, during and after the transition region (22), the equations being a function of the power level and the predetermined limits and boundaries.

  3. Energy control strategy for a hybrid electric vehicle

    DOE Patents [OSTI]

    Phillips, Anthony Mark (Northville, MI); Blankenship, John Richard (Dearborn, MI); Bailey, Kathleen Ellen (Dearborn, MI); Jankovic, Miroslava (Birmingham, MI)

    2002-08-27T23:59:59.000Z

    An energy control strategy (10) for a hybrid electric vehicle that controls an electric motor during bleed and charge modes of operation. The control strategy (10) establishes (12) a value of the power level at which the battery is to be charged. The power level is used to calculate (14) the torque to be commanded to the electric motor. The strategy (10) of the present invention identifies a transition region (22) for the electric motor's operation that is bounded by upper and lower speed limits. According to the present invention, the desired torque is calculated by applying equations to the regions before, during and after the transition region (22), the equations being a function of the power level and the predetermined limits and boundaries.

  4. Optimization and Comparison of Heuristic Control Strategies for Parallel Hybrid-Electric Vehicles

    E-Print Network [OSTI]

    Paderborn, Universität

    , Electrical Engineering and Mathematics Institute of Power Electronics and Electrical Drives, D-33095 vehicles are composed of a combination of a combustion engine, one ore more electrical drivesOptimization and Comparison of Heuristic Control Strategies for Parallel Hybrid-Electric Vehicles

  5. Questions, Answers and Clarifications Used MediumDuty Electric Vehicle Repower Demonstration

    E-Print Network [OSTI]

    ). Q5. A plug-in hybrid electric vehicle repower could provide some electric drive with an engine a hybrid solution (i.e. electric + renewable based pneumatic for hilly drive) as a part-duty gasoline and diesel vehicles to all-electric drive. The demonstration projects will identify and address

  6. Progress and forecast in electric-vehicle batteries

    SciTech Connect (OSTI)

    Webster, W.H. Jr.; Yao, N.P.

    1980-01-01T23:59:59.000Z

    With impetus provided by US Public Law 94-413 (Electric and Hybrid Vehicle Research, Development, and Demonstration Act of 1976), the Department of Energy (DOE) launched a major battery development program early in 1978 for near-term electric vehicles. The program's overall objective is to develop commercially viable batteries for commuter vehicles (with an urban driving range of 100 miles) and for vans and trucks (with a range of 50 miles) by the mid-1980's. Three near-term battery candidates are receiving major developmental emphasis - improved lead-acid, nickel/iron and nickel/zinc systems. Sharing the cost with the government, nine industrial firms (battery developers) are participating in the DOE battery project. They are Eltra Corp., Exide Management and Technology Co., and Globe-Union Inc., for the lead-acid battery; Eagle-Picher Industries, Inc., and Westinghouse Electric Corp. for the nickel/iron battery; and Energy Research Corp., Exide Management and Technology Co., and Gould Inc., for the nickel/zinc battery. Good progress has been made in improving the specific energy, specific power, and manufacturing processes of these three battery technologies. Current emphasis is directed toward reduction of manufacturing cost and enhancement of battery cycle life and reliability. Recently, the zinc-chloride battery was added as the fourth candidate to the near-term battery list. Testing of the zinc-chloride battery in a vehicle and evaluation of its operating characteristics are currently under way. This paper presents the development goals, the status, and the outlook for the near-term battery program.

  7. Onboard Plasmatron Hydrogen Production for Improved Vehicles

    SciTech Connect (OSTI)

    Daniel R. Cohn; Leslie Bromberg; Kamal Hadidi

    2005-12-31T23:59:59.000Z

    A plasmatron fuel reformer has been developed for onboard hydrogen generation for vehicular applications. These applications include hydrogen addition to spark-ignition internal combustion engines, NOx trap and diesel particulate filter (DPF) regeneration, and emissions reduction from spark ignition internal combustion engines First, a thermal plasmatron fuel reformer was developed. This plasmatron used an electric arc with relatively high power to reform fuels such as gasoline, diesel and biofuels at an oxygen to carbon ratio close to 1. The draw back of this device was that it has a high electric consumption and limited electrode lifetime due to the high temperature electric arc. A second generation plasmatron fuel reformer was developed. It used a low-current high-voltage electric discharge with a completely new electrode continuation. This design uses two cylindrical electrodes with a rotating discharge that produced low temperature volumetric cold plasma., The lifetime of the electrodes was no longer an issue and the device was tested on several fuels such as gasoline, diesel, and biofuels at different flow rates and different oxygen to carbon ratios. Hydrogen concentration and yields were measured for both the thermal and non-thermal plasmatron reformers for homogeneous (non-catalytic) and catalytic reforming of several fuels. The technology was licensed to an industrial auto part supplier (ArvinMeritor) and is being implemented for some of the applications listed above. The Plasmatron reformer has been successfully tested on a bus for NOx trap regeneration. The successful development of the plasmatron reformer and its implementation in commercial applications including transportation will bring several benefits to the nation. These benefits include the reduction of NOx emissions, improving engine efficiency and reducing the nation's oil consumption. The objective of this program has been to develop attractive applications of plasmatron fuel reformer technology for onboard applications in internal combustion engine vehicles using diesel, gasoline and biofuels. This included the reduction of NOx and particulate matter emissions from diesel engines using plasmatron reformer generated hydrogen-rich gas, conversion of ethanol and bio-oils into hydrogen rich gas, and the development of new concepts for the use of plasmatron fuel reformers for enablement of HCCI engines.

  8. EA-1723: General Motors LLC Electric Drive Vehicle Battery and Component Manufacturing Initiative Application White Marsh, Maryland and Wixom, Michigan

    Broader source: Energy.gov [DOE]

    DOE’s Proposed Action is to provide GM with $105,387,000 in financial assistance in a cost sharing arrangement to facilitate construction and operation of a manufacturing facility to produce electric motor components and assemble an electric drive unit. This Proposed Action through the Vehicle Technologies Program will accelerate the development and production of electric-drive vehicle systems and reduce the United States’ consumption of petroleum. This Proposed Action will also meaningfully assist in the nation’s economic recovery by creating manufacturing jobs in the United States in accordance with the objectives of the Recovery Act.

  9. Electrochemical Capacitors as Energy Storage in Hybrid-Electric Vehicles: Present Status and Future Prospects

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01T23:59:59.000Z

    of the engine and electric drive system. In the case of apower rating of the electric drive system in the vehicle. Aswas to operate on the electric drive when possible and to

  10. S/EV 92 (Solar and Electric Vehicles): Proceedings. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1992-12-01T23:59:59.000Z

    Volume I of these proceedings presents current research on solar and electric powered vehicles. Both fundamental and advanced concepts concerning electric vehicles are presented. The use of photovoltaic cells in electric vehicles and in a broader sense as a means of power generation are discussed. Information on electric powered fleets and races is included. And policy and regulations, especially pertaining to air quality and air pollution abatement are presented.

  11. Hybrid Electric Vehicle Fleet and Baseline Performance Testing

    SciTech Connect (OSTI)

    J. Francfort; D. Karner

    2006-04-01T23:59:59.000Z

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity (AVTA) conducts baseline performance and fleet testing of hybrid electric vehicles (HEV). To date, the AVTA has completed baseline performance testing on seven HEV models and accumulated 1.4 million fleet testing miles on 26 HEVs. The HEV models tested or in testing include: Toyota Gen I and Gen II Prius, and Highlander; Honda Insight, Civic and Accord; Chevrolet Silverado; Ford Escape; and Lexus RX 400h. The baseline performance testing includes dynamometer and closed track testing to document the HEV’s fuel economy (SAE J1634) and performance in a controlled environment. During fleet testing, two of each HEV model are driven to 160,000 miles per vehicle within 36 months, during which maintenance and repair events, and fuel use is recorded and used to compile life-cycle costs. At the conclusion of the 160,000 miles of fleet testing, the SAE J1634 tests are rerun and each HEV battery pack is tested. These AVTA testing activities are conducted by the Idaho National Laboratory, Electric Transportation Applications, and Exponent Failure Analysis Associates. This paper discusses the testing methods and results.

  12. For further information telephone 1300 275 794 or see swinburne.edu.au Electric Vehicle Research

    E-Print Network [OSTI]

    Liley, David

    . Lightweighting There are significant cost advantages in lightweighting EVs, primarily because a lighter vehicleFor further information telephone 1300 275 794 or see swinburne.edu.au Electric Vehicle Research at Swinburne Swinburne University of Technology's Electric Vehicle Research Group is one of the leading groups

  13. Prospects for Plug-in Hybrid Electric Vehicles in the United States: A General Equilibrium Analysis

    E-Print Network [OSTI]

    for internal combustion engine (ICE)-only vehicles. Engineering cost estimates for the PHEV, as well Engineering ABSTRACT The plug-in hybrid electric vehicle (PHEV) could significantly contribute to reductions, depending on the cost-competitiveness of the vehicle, the relative cost of refined fuels and electricity

  14. Electric and hybrid vehicle project. Quarterly report of private-sector operations, first quarter 1982

    SciTech Connect (OSTI)

    None

    1982-06-01T23:59:59.000Z

    As of January 1, 1982 sixteen private-sector site operators at 30 sites in the US were involved in electric and hybrid electric-powered vehicle demonstration programs. Data for 1981 and the first quarter of 1982 are presented on vehicle selection, miles accumulated, energy usage, maintenance requirements, reliability and operating performance for demonstration vehicles at each site. (LCL)

  15. Automatic parallel parking and platooning to redistribute electric vehicles in a car-sharing application

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Automatic parallel parking and platooning to redistribute electric vehicles in a car subscribers , as well as the electric car-sharing system autolib, comprising 2000 vehicles, 1200 stations this imbalance, vehicle redistribution strategies must be elaborated. As automatic relocation cannot be in place

  16. PLUG-IN ELECTRIC VEHICLE CHARGING ONLY Must be ACTIVELY Charging

    E-Print Network [OSTI]

    Bigelow, Stephen

    PLUG-IN ELECTRIC VEHICLE CHARGING ONLY Must be ACTIVELY Charging All Others Subject to Citation. PLUG-IN ELECTRIC VEHICLE CHARGING RATES Monday­Friday, 7:30am­5pm Hours Power Parking Power+Parking 1://chargepoint.net PAYMENT IS REQUIRED FOR USE OF A CHARGING STATION The rate for charging your vehicle is $1/hour. Please

  17. Energy Management System for an Hybrid Electric Vehicle, Using Ultracapacitors and Neural Networks

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    Energy Management System for an Hybrid Electric Vehicle, Using Ultracapacitors and Neural Networks management system for hybrid electric vehicles (HEV), using neural networks (NN), was developed and tested. The system minimizes the energy requirement of the vehicle and can work with different primary power sources

  18. Independent Control of Two Induction Motors Fed by a Five Legs PWM Inverter for Electric Vehicles

    E-Print Network [OSTI]

    Boyer, Edmond

    Independent Control of Two Induction Motors Fed by a Five Legs PWM Inverter for Electric Vehicles B. NOMENCLATURE EV = Electric vehicle; IM = Induction motor; IFOC = Indirect field oriented control; PWM= Pulse force; Fcr = Climbing and downgrade resistance force; Pv = Vehicle driving power; J = Total inertia

  19. The State of the Art of Electric, Hybrid, and Fuel Cell Vehicles

    E-Print Network [OSTI]

    Leung, Ka-Cheong

    such as wind and solar energy and from nuclear energy. Fuel cell vehicles (FCV) use hydrogen as fuel to produceINVITED P A P E R The State of the Art of Electric, Hybrid, and Fuel Cell Vehicles, and constraints on energy resources, the electric, hybrid, and fuel cell vehicles have attracted more and more

  20. Prospects for Plug-in Hybrid Electric Vehicles in the United States and Japan: A General Equilibrium Analysis

    E-Print Network [OSTI]

    Reilly, John M.

    The plug-in hybrid electric vehicle (PHEV) may offer a potential near term, low carbon alternative to today's gasoline- and diesel-powered vehicles. A representative vehicle technology that runs on electricity in addition ...

  1. Field Operations Program Neighborhood Electric Vehicles - Fleet Survey

    SciTech Connect (OSTI)

    Francfort, James Edward; Carroll, M.

    2001-07-01T23:59:59.000Z

    This report summarizes a study of 15 automotive fleets that operate neighborhood electric vehicles(NEVs) in the United States. The information was obtained to help Field Operations Program personnel understand how NEVs are being used, how many miles they are being driven, and if they are being used to replace other types of fleet vehicles or as additions to fleets. (The Field Operations Program is a U.S. Department of Energy Program within the DOE Office of Energy Efficiency and Renewable Energy, Transportation Technologies). The NEVs contribution to petroleum avoidance and cleaner air can be estimated based on the miles driven and by assuming gasoline use and air emissions values for the vehicles being replaced. Gasoline and emissions data for a Honda Civic are used as the Civic has the best fuel use for a gasoline-powered vehicle and very clean emissions. Based on these conservation assumptions, the 348 NEVs are being driven a total of about 1.2 million miles per year. This equates to an average of 3,409 miles per NEV annually or 9 miles per day. It is estimated that 29,195 gallons of petroleum use is avoided annually by the 348 NEVs. This equates to 87 gallons of petroleum use avoided per NEV, per year. Using the 348 NEVs avoids the generation of at least 775 pounds of smog- forming emissions annually.

  2. Field Operations Program - Neighborhood Electric Vehicle Fleet Use

    SciTech Connect (OSTI)

    Francfort, J. E.; Carroll, M. R.

    2001-07-02T23:59:59.000Z

    This report summarizes a study of 15 automotive fleets that operate neighborhood electric vehicles (NEVs) in the United States. The information was obtained to help Field Operations Program personnel understand how NEVs are being used, how many miles they are being driven, and if they are being used to replace other types of fleet vehicles or as additions to fleets. (The Field Operations Program is a U.S. Department of Energy Program within the DOE Office of Energy Efficiency and Renewable Energy, Transportation Technologies). The NEVs contribution to petroleum avoidance and cleaner air can be estimated based on the miles driven and by assuming gasoline use and air emissions values for the vehicles being replaced. Gasoline and emissions data for a Honda Civic are used as the Civic has the best fuel use for a gasoline-powered vehicle and very clean emissions. Based on these conservation assumptions, the 348 NEVs are being driven a total of about 1.2 million miles per year. This equates to an average of 3,409 miles per NEV annually or 9 miles per day. It is estimated that 29,195 gallons of petroleum use is avoided annually by the 348 NEVs. This equates to 87 gallons of petroleum use avoided per NEV, per year. Using the 348 NEVs avoids the generation of at least 775 pounds of smog-forming emissions annually.

  3. Interpersonal Influence within Car Buyers’ Social Networks: Five Perspectives on Plug-in Hybrid Electric Vehicle Demonstration Participants

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S.

    2009-01-01T23:59:59.000Z

    promoted electric and hybrid vehicles to reduce urban airthe vehicle, and from hybrid vehicles, i.e. , adding batteryHaving researched hybrid vehicle and other pro-environmental

  4. Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles

    E-Print Network [OSTI]

    ) Note: PSAT included after-treatment thermal efficiency penalty to the diesel fuel economy · CD ElectricWell-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Amgad engine vehicles (ICEVs) Regular hybrid electric vehicles (HEVs) Plug-in hybrid electric vehicles (PHEVs

  5. Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 4: peer review comments on technical report

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline-powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume IV includes copies of all the external peer review comments on the report distributed for review in July 1997.

  6. Covered Product Category: Residential Electric Resistance Water...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Resistance Water Heaters Covered Product Category: Residential Electric Resistance Water Heaters The Federal Energy Management Program (FEMP) sets Federal efficiency...

  7. Life-cycle energy analyses of electric vehicle storage batteries. Final report

    SciTech Connect (OSTI)

    Sullivan, D; Morse, T; Patel, P; Patel, S; Bondar, J; Taylor, L

    1980-12-01T23:59:59.000Z

    The results of several life-cycle energy analyses of prospective electric vehicle batteries are presented. The batteries analyzed were: Nickel-zinc; Lead-acid; Nickel-iron; Zinc-chlorine; Sodium-sulfur (glass electrolyte); Sodium-sulfur (ceramic electrolyte); Lithium-metal sulfide; and Aluminum-air. A life-cycle energy analysis consists of evaluating the energy use of all phases of the battery's life, including the energy to build it, operate it, and any credits that may result from recycling of the materials in it. The analysis is based on the determination of three major energy components in the battery life cycle: Investment energy, i.e., The energy used to produce raw materials and to manufacture the battery; operational energy i.e., The energy consumed by the battery during its operational life. In the case of an electric vehicle battery, this energy is the energy required (as delivered to the vehicle's charging circuit) to power the vehicle for 100,000 miles; and recycling credit, i.e., The energy that could be saved from the recycling of battery materials into new raw materials. The value of the life-cycle analysis approach is that it includes the various penalties and credits associated with battery production and recycling, which enables a more accurate determination of the system's ability to reduce the consumption of scarce fuels. The analysis of the life-cycle energy requirements consists of identifying the materials from which each battery is made, evaluating the energy needed to produce these materials, evaluating the operational energy requirements, and evaluating the amount of materials that could be recycled and the energy that would be saved through recycling. Detailed descriptions of battery component materials, the energy requirements for battery production, and credits for recycling, and the operational energy for an electric vehicle, and the procedures used to determine it are discussed.

  8. Hybrid Electric and Plug-in Hybrid Electric Vehicle Testing Activities

    SciTech Connect (OSTI)

    Donald Karner

    2007-12-01T23:59:59.000Z

    The Advanced Vehicle Testing Activity (AVTA) conducts hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV) testing in order to provide benchmark data for technology modeling and research and development programs, and to be an independent source of test data for fleet managers and other early adaptors of advanced-technology vehicles. To date, the AVTA has completed baseline performance testing on 12 HEV models and accumulated 2.7 million fleet testing miles on 35 HEVs. The HEV baseline performance testing includes dynamometer and closed-track testing to document HEV performance in a controlled environment. During fleet testing, two of each HEV model accumulate 160,000 test miles within 36 months, during which maintenance and repair events and fuel use were recorded. Three models of PHEVs, from vehicle converters Energy CS and Hymotion and the original equipment manufacturer Renault, are currently in testing. The PHEV baseline performance testing includes 5 days of dynamometer testing with a minimum of 26 test drive cycles, including the Urban Dynamometer Driving Schedule, the Highway Fuel Economy Driving Schedule, and the US06 test cycle, in charge-depleting and charge-sustaining modes. The PHEV accelerated testing is conducted with dedicated drivers for 4,240 miles, over a series of 132 driving loops that range from 10 to 200 miles over various combinations of defined 10-mile urban and 10-mile highway loops, with 984 hours of vehicle charging. The AVTA is part of the U.S. Department of Energy’s FreedomCAR and Vehicle Technologies Program. These AVTA testing activities were conducted by the Idaho National Laboratory and Electric Transportation Applications, with dynamometer testing conducted at Argonne National Laboratory. This paper discusses the testing methods and results.

  9. A study of alternative drive control interfaces for next-generation electric vehicles

    E-Print Network [OSTI]

    Post, C. Christopher (Charles Christopher)

    2011-01-01T23:59:59.000Z

    The drive control interface in automobiles has not significantly changed for almost a century. Recent advances in electric vehicles and drive-by-wire technology allow for new alternative interfaces that enable novel vehicle ...

  10. Getting Ready for Electric Drive: the Plug-In Vehicle and Infrastructure Workshop

    Broader source: Energy.gov [DOE]

    Local government leaders, utilities, car makers and electric-vehicle infrastructure providers came together to discuss how they can best coordinate their efforts at the Plug-in Vehicle and Infrastructure Workshop.

  11. Fact #843: October 20, 2014 Cumulative Plug-in Electric Vehicle...

    Broader source: Energy.gov (indexed) [DOE]

    2003) there were a total of 95,778 hybrid vehicles sold. The first mass-marketed plug-in electric vehicles arrived in December 2010. By August 2014 (45 months later), cumulative...

  12. Electrochemical Capacitors as Energy Storage in Hybrid-Electric Vehicles: Present Status and Future Prospects

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01T23:59:59.000Z

    to assist the energy storage battery (12 kWh) in providingbattery and ultracapacitors in the vehicles when the characteristics of the energy storageBattery, Hybrid and Fuel Cell Electric Vehicle Symposium the energy storage

  13. Electrochemical Capacitors as Energy Storage in Hybrid-Electric Vehicles: Present Status and Future Prospects

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01T23:59:59.000Z

    hybrid vehicle applications ultracap energy stored Wh ultracap peak power kW systemhybrid-electric vehicles Type of hybrid System Useable energysystem. In the case of a charge sustaining hybrid, the useable energy

  14. Prospects for plug-in hybrid electric vehicles in the United States : a general equilibrium analysis

    E-Print Network [OSTI]

    Karplus, Valerie Jean

    2008-01-01T23:59:59.000Z

    The plug-in hybrid electric vehicle (PHEV) could significantly contribute to reductions in carbon dioxide emissions from personal vehicle transportation in the United States over the next century, depending on the ...

  15. Fuel Cell Electric Vehicle Powered by Renewable Hydrogen

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL) recently received a Borrego fuel cell electric vehicle (FCEV) on loan from Kia for display at a variety of summer events. The Borrego is fueled using renewable hydrogen that is produced and dispensed at NREL's National Wind Technology Center near Boulder, Colorado. The hydrogen dispensed at the station is produced via renewable electrolysis as part of the wind-to-hydrogen project, which uses wind turbines and photovoltaic arrays to power electrolyzer stacks that split water into hydrogen and oxygen. The FCEV features state-of-the-art technology with zero harmful emissions.

  16. National Fuel Cell Electric Vehicle Learning Demonstration Final Report

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C.; Saur, G.

    2012-07-01T23:59:59.000Z

    This report discusses key analysis results based on data from early 2005 through September 2011 from the U.S. Department of Energy's (DOE's) Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project, also referred to as the National Fuel Cell Electric Vehicle (FCEV) Learning Demonstration. This report serves as one of many mechanisms to help transfer knowledge and lessons learned within various parts of DOE's Fuel Cell Technologies Program, as well as externally to other stakeholders. It is the fifth and final such report in a series, with previous reports being published in July 2007, November 2007, April 2008, and September 2010.

  17. Fuel Cell Electric Vehicle Powered by Renewable Hydrogen

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL) recently received a Borrego fuel cell electric vehicle (FCEV) on loan from Kia for display at a variety of summer events. The Borrego is fueled using renewable hydrogen that is produced and dispensed at NREL's National Wind Technology Center near Boulder, Colorado. The hydrogen dispensed at the station is produced via renewable electrolysis as part of the wind-to-hydrogen project, which uses wind turbines and photovoltaic arrays to power electrolyzer stacks that split water into hydrogen and oxygen. The FCEV features state-of-the-art technology with zero harmful emissions.

  18. Wanxiang Electric Vehicle Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS data JumpWakullaWanxiang Electric Vehicle Co Ltd Jump to:

  19. Fact #797: September 16, 2013 Driving Ranges for Electric Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 20112:ofElectric Vehicle

  20. Alternative Fuels Data Center: All-Electric Vehicles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAreSmartWay TransportEthanolAll-Electric Vehicles to someone by

  1. Additional dynamometer tests of the Ford Ecostar Electric Vehicle No. 41

    SciTech Connect (OSTI)

    Cole, G.H.; Richardson, R.A.; Yarger, E.J.

    1996-06-01T23:59:59.000Z

    A Ford Ecostar vehicle was tested in the Idaho National Engineering Laboratory (INEL) Hybrid Electric Vehicle (HEV) Laboratory over two standard driving regimes, coastdown testing, and typical charge testing. The test vehicle was delivered to the INEL in February 19, 1995 under the DOE sponsored Modular Electric Vehicle Program. This report presents the results of dynamometer driving cycle tests, charge data, and coastdown testing for California Air Resources Board (CARB) under a CRADA with the Department Of Energy (DOE).

  2. The City of Vancouver's Approach to Electric Vehicles: Malcolm Shield, Climate Policy Manager

    E-Print Network [OSTI]

    California at Davis, University of

    ' Drives, Community Events, EV Ambassadors #12;Thank-you! 10 10 Questions? #12;Electric Vehicles: Timeline1 The City of Vancouver's Approach to Electric Vehicles: 7 Pillars Malcolm Shield, Climate Policy. Integrated EV Charging and Cellular Infrastructure Trial 6 #12;5. CoV Fleet EVs 7 · First Mitsubishi Electric

  3. NREL's Isothermal Battery Calorimeters are Crucial Tools for Advancing Electric-Drive Vehicles

    E-Print Network [OSTI]

    NREL's Isothermal Battery Calorimeters are Crucial Tools for Advancing Electric-Drive Vehicles, and plug-in hybrids. But before more Americans switch to electric-drive vehicles, automakers need batteries to the safety and performance of electric-drive batteries. The innovative Isothermal Battery Calorimeters (IBCs

  4. An agent-based model to study market penetration of plug-in hybrid electric vehicles

    E-Print Network [OSTI]

    Vermont, University of

    An agent-based model to study market penetration of plug-in hybrid electric vehicles Margaret J 2011 Available online 29 April 2011 Keywords: Plug-in hybrid electric vehicles Market penetration Agent-based models. A recent joint report by the Electric Power Research Institute (EPRI) and the Natural Resources

  5. 2014 NSERC USRA Summer Projects Power Line Communications for Electric Vehicles

    E-Print Network [OSTI]

    Leung, Victor C.M.

    2014 NSERC USRA Summer Projects Power Line Communications for Electric Vehicles Prof. Victor C become significant, especially in electric vehicles (EVs) of the future, which are highly sophisticated.M. Leung (vleung@ece.ubc.ca) 1. Project description In today's electric and conventional combustion engine

  6. Computer Aided Design Tool for Electric, Hybrid Electric and Plug-in Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Eskandari Halvaii, Ali

    2012-07-16T23:59:59.000Z

    This research is focused on designing a new generation of CAD tools that could help a ”hybrid vehicle” designer with the design process to come up with better vehicle configurations. The conventional design process for any type of hybrid...

  7. Modeling Electric Vehicle Benefits Connected to Smart Grids

    SciTech Connect (OSTI)

    Stadler, Michael; Marnay, Chris; Mendes, Goncalo; Kloess, Maximillian; Cardoso, Goncalo; Mégel, Olivier; Siddiqui, Afzal

    2011-07-01T23:59:59.000Z

    Connecting electric storage technologies to smartgrids will have substantial implications in building energy systems. Local storage will enable demand response. Mobile storage devices in electric vehicles (EVs) are in direct competition with conventional stationary sources at the building. EVs will change the financial as well as environmental attractiveness of on-site generation (e.g. PV, or fuel cells). In order to examine the impact of EVs on building energy costs and CO2 emissions in 2020, a distributed-energy-resources adoption problem is formulated as a mixed-integer linear program with minimization of annual building energy costs or CO2 emissions. The mixed-integer linear program is applied to a set of 139 different commercial buildings in California and example results as well as the aggregated economic and environmental benefits are reported. The research shows that considering second life of EV batteries might be very beneficial for commercial buildings.

  8. Electric vehicle drive train with direct coupling transmission

    DOE Patents [OSTI]

    Tankersley, J.B.; Boothe, R.W.; Konrad, C.E.

    1995-04-04T23:59:59.000Z

    An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox. 6 figures.

  9. Electric vehicle drive train with direct coupling transmission

    DOE Patents [OSTI]

    Tankersley, Jerome B. (Fredericksburg, VA); Boothe, Richard W. (Roanoke, VA); Konrad, Charles E. (Roanoke, VA)

    1995-01-01T23:59:59.000Z

    An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox.

  10. Traction Drive System for Electric Vehicles, Using Multilevel Converters Juan W. Dixon, Micah Ortzar and Felipe Ros

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    Traction Drive System for Electric Vehicles, Using Multilevel Converters Juan W. Dixon, Micah converters for electric vehicles using multilevel inverters. They are being compared with inverters using. Introduction Power Electronics technologies contribute with important part in the development of electric

  11. Using Electric Vehicles to Meet Balancing Requirements Associated with Wind Power

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Kintner-Meyer, Michael CW

    2011-07-31T23:59:59.000Z

    Many states are deploying renewable generation sources at a significant rate to meet renewable portfolio standards. As part of this drive to meet renewable generation levels, significant additions of wind generation are planned. Due to the highly variable nature of wind generation, significant energy imbalances on the power system can be created and need to be handled. This report examines the impact on the Northwest Power Pool (NWPP) region for a 2019 expected wind scenario. One method for mitigating these imbalances is to utilize plug-in hybrid electric vehicles (PHEVs) or battery electric vehicles (BEVs) as assets to the grid. PHEVs and BEVs have the potential to meet this demand through both charging and discharging strategies. This report explores the usage of two different charging schemes: V2GHalf and V2GFull. In V2GHalf, PHEV/BEV charging is varied to absorb the additional imbalance from the wind generation, but never feeds power back into the grid. This scenario is highly desirable to automotive manufacturers, who harbor great concerns about battery warranty if vehicle-to-grid discharging is allowed. The second strategy, V2GFull, varies not only the charging of the vehicle battery, but also can vary the discharging of the battery back into the power grid. This scenario is currently less desirable to automotive manufacturers, but provides an additional resource benefit to PHEV/BEVs in meeting the additional imbalance imposed by wind. Key findings in the report relate to the PHEV/BEV population required to meet the additional imbalance when comparing V2GHalf to V2GFull populations, and when comparing home-only-charging and work-and-home-charging scenarios. Utilizing V2GFull strategies over V2GHalf resulted in a nearly 33% reduction in the number of vehicles required. This reduction indicates fewer vehicles are needed to meet the unhandled energy, but they would utilize discharging of the vehicle battery into the grid. This practice currently results in the voiding of automotive manufacturer's battery warranty, and is not feasible for many customers. The second key finding is the change in the required population when PHEV/BEV charging is available at both home and work. Allowing 10% of the vehicle population access to work charging resulted in nearly 80% of the grid benefit. Home-only charging requires, at best, 94% of the current NWPP light duty vehicle fleet to be a PHEV or BEV. With the introduction of full work charging availability, only 8% of the NWPP light duty vehicle fleet is required. Work charging has primarily been associated with mitigating range anxiety in new electric vehicle owners, but these studies indicate they have significant potential for improving grid reliability. The V2GHalf and V2GFull charging strategies of the report utilize grid frequency as an indication of the imbalance requirements. The introduction of public charging stations, as well as the potential for PHEV/BEVs to be used as a resource for renewable generation integration, creates conditions for additional products into the ancillary services market. In the United Kingdom, such a capability would be bid as a frequency product in the ancillary services market. Such a market could create the need for larger, third-party aggregators or services to manage the use of electric vehicles as a grid resource. Ultimately, customer adoption, usage patterns and habits, and feedback from the power and automotive industries will drive the need.

  12. A Comparative Study on Emerging Electric Vehicle Technology Assessments

    SciTech Connect (OSTI)

    Ford, Jonathan [Sentech, Inc.; Khowailed, Gannate [Sentech, Inc.; Blackburn, Julia [Sentech, Inc.; Sikes, Karen [Sentech, Inc.

    2011-03-01T23:59:59.000Z

    Numerous organizations have published reports in recent years that investigate the ever changing world of electric vehicle (EV) technologies and their potential effects on society. Specifically, projections have been made on greenhouse gas (GHG) emissions associated with these vehicles and how they compare to conventional vehicles or hybrid electric vehicles (HEVs). Similar projections have been made on the volumes of oil that these vehicles can displace by consuming large amounts of grid electricity instead of petroleum-based fuels. Finally, the projected rate that these new vehicle fleets will enter the market varies significantly among organizations. New ideas, technologies, and possibilities are introduced often, and projected values are likely to be refined as industry announcements continue to be made. As a result, over time, a multitude of projections for GHG emissions, oil displacement, and market penetration associated with various EV technologies has resulted in a wide range of possible future outcomes. This leaves the reader with two key questions: (1) Why does such a collective range in projected values exist in these reports? (2) What assumptions have the greatest impact on the outcomes presented in these reports? Since it is impractical for an average reader to review and interpret all the various vehicle technology reports published to date, Sentech Inc. and the Oak Ridge National Laboratory have conducted a comparative study to make these interpretations. The primary objective of this comparative study is to present a snapshot of all major projections made on GHG emissions, oil displacement, or market penetration rates of EV technologies. From the extensive data found in relevant publications, the key assumptions that drive each report's analysis are identified and 'apples-to-apples' comparisons between all major report conclusions are attempted. The general approach that was taken in this comparative study is comprised of six primary steps: (1) Search Relevant Literature - An extensive search of recent analyses that address the environmental impacts, market penetration rates, and oil displacement potential of various EV technologies was conducted; (2) Consolidate Studies - Upon completion of the literature search, a list of analyses that have sufficient data for comparison and that should be included in the study was compiled; (3) Identify Key Assumptions - Disparity in conclusions very likely originates from disparity in simple assumptions. In order to compare 'apples-to-apples,' key assumptions were identified in each study to provide the basis for comparing analyses; (4) Extract Information - Each selected report was reviewed, and information on key assumptions and data points was extracted; (5) Overlay Data Points - Visual representations of the comprehensive conclusions were prepared to identify general trends and outliers; and (6) Draw Final Conclusions - Once all comparisons are made to the greatest possible extent, the final conclusions were draw on what major factors lead to the variation in results among studies.

  13. Well-to-wheels analysis of energy use and greenhouse gas emissions of plug-in hybrid electric vehicles.

    SciTech Connect (OSTI)

    Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

    2010-06-14T23:59:59.000Z

    Plug-in hybrid electric vehicles (PHEVs) are being developed for mass production by the automotive industry. PHEVs have been touted for their potential to reduce the US transportation sector's dependence on petroleum and cut greenhouse gas (GHG) emissions by (1) using off-peak excess electric generation capacity and (2) increasing vehicles energy efficiency. A well-to-wheels (WTW) analysis - which examines energy use and emissions from primary energy source through vehicle operation - can help researchers better understand the impact of the upstream mix of electricity generation technologies for PHEV recharging, as well as the powertrain technology and fuel sources for PHEVs. For the WTW analysis, Argonne National Laboratory researchers used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed by Argonne to compare the WTW energy use and GHG emissions associated with various transportation technologies to those associated with PHEVs. Argonne researchers estimated the fuel economy and electricity use of PHEVs and alternative fuel/vehicle systems by using the Powertrain System Analysis Toolkit (PSAT) model. They examined two PHEV designs: the power-split configuration and the series configuration. The first is a parallel hybrid configuration in which the engine and the electric motor are connected to a single mechanical transmission that incorporates a power-split device that allows for parallel power paths - mechanical and electrical - from the engine to the wheels, allowing the engine and the electric motor to share the power during acceleration. In the second configuration, the engine powers a generator, which charges a battery that is used by the electric motor to propel the vehicle; thus, the engine never directly powers the vehicle's transmission. The power-split configuration was adopted for PHEVs with a 10- and 20-mile electric range because they require frequent use of the engine for acceleration and to provide energy when the battery is depleted, while the series configuration was adopted for PHEVs with a 30- and 40-mile electric range because they rely mostly on electrical power for propulsion. Argonne researchers calculated the equivalent on-road (real-world) fuel economy on the basis of U.S. Environmental Protection Agency miles per gallon (mpg)-based formulas. The reduction in fuel economy attributable to the on-road adjustment formula was capped at 30% for advanced vehicle systems (e.g., PHEVs, fuel cell vehicles [FCVs], hybrid electric vehicles [HEVs], and battery-powered electric vehicles [BEVs]). Simulations for calendar year 2020 with model year 2015 mid-size vehicles were chosen for this analysis to address the implications of PHEVs within a reasonable timeframe after their likely introduction over the next few years. For the WTW analysis, Argonne assumed a PHEV market penetration of 10% by 2020 in order to examine the impact of significant PHEV loading on the utility power sector. Technological improvement with medium uncertainty for each vehicle was also assumed for the analysis. Argonne employed detailed dispatch models to simulate the electric power systems in four major regions of the US: the New England Independent System Operator, the New York Independent System Operator, the State of Illinois, and the Western Electric Coordinating Council. Argonne also evaluated the US average generation mix and renewable generation of electricity for PHEV and BEV recharging scenarios to show the effects of these generation mixes on PHEV WTW results. Argonne's GREET model was designed to examine the WTW energy use and GHG emissions for PHEVs and BEVs, as well as FCVs, regular HEVs, and conventional gasoline internal combustion engine vehicles (ICEVs). WTW results are reported for charge-depleting (CD) operation of PHEVs under different recharging scenarios. The combined WTW results of CD and charge-sustaining (CS) PHEV operations (using the utility factor method) were also examined and reported. According to the utility factor method, the share of vehicle miles trav

  14. Nuclear reactor power for an electrically powered orbital transfer vehicle

    SciTech Connect (OSTI)

    Jaffe, L.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Fujita, T.; Grossman, M.; Kia, T.; Nesmith, B.

    1987-01-01T23:59:59.000Z

    To help determine the systems requirements for a 300-kWe space nuclear reactor power system, a mission and spacecraft have been examined which utilize electric propulsion and this nuclear reactor power for multiple transfers of cargo between low Earth orbit (LEO) and geosynchronous Earth orbit (GEO). A propulsion system employing ion thrusters and xenon propellant was selected. Propellant and thrusters are replaced after each sortie to GEO. The mass of the Orbital Transfer Vehicle (OTV), empty and dry, is 11,000 kg; nominal propellant load is 5000 kg. The OTV operates between a circular orbit at 925 km altitude, 28.5 deg inclination, and GEO. Cargo is brought to the OTV by Shuttle and an Orbital Maneuvering Vehicle (OMV); the OTV then takes it to GEO. The OTV can also bring cargo back from GEO, for transfer by OMV to the Shuttle. OTV propellant is resupplied and the ion thrusters are replaced by the OMV before each trip to GEO. At the end of mission life, the OTV's electric propulsion is used to place it in a heliocentric orbit so that the reactor will not return to Earth. The nominal cargo capability to GEO is 6000 kg with a transit time of 120 days; 1350 kg can be transferred in 90 days, and 14,300 kg in 240 days. These capabilities can be considerably increased by using separate Shuttle launches to bring up propellant and cargo, or by changing to mercury propellant.

  15. Electric and Hybrid Vehicle Program; Site Operator Program

    SciTech Connect (OSTI)

    Warren, J.F.

    1992-01-01T23:59:59.000Z

    Activities during the first quarter centered around integrating the new participants into the program. A meeting of the Site Operators, in conjunction with the first meeting of the Electric Vehicle Users Task Force, was held in October. A second meeting of the Task Force was held in December. During these meetings the new contractual requirements were explained to the participants. The Site Operator Data Base was distributed and explained. The Site Operators will begin using the data base in December 1991 and will supply the operating and maintenance data to the INEL on a monthly basis. The Operators requested that they be able to have access to the data of the other Operators and it was agreed that they would be provided this on floppy disk monthly from the INEL. Presentations were made to the DOE sponsored Automotive Technology Development-Contractors Coordination Meeting in October. An overview of the program was given by EG G. Representatives from Arizona Public Service, Texas A M University, and York Technical College provided details of their programs and the results and future goals. Work was begun on commercializing the Versatile Data Acquisition System (VDAS). A Scope of Work has been written for a Cooperative Research and Development Agreement (CRADA) to be submitted to the USABC. If implemented, the CRADA will provide funds for the development and commercialization of the VDAS. Participants in the Site Operator Program will test prototypes of the system within their fleets, making the data available to the USABC and other interested organizations. The USABC will provide recommendations on the data to be collected. Major activities by the majority of the Operators were involved with the continued operation and demonstration of existing vehicles. In addition, several of the operators were involved in identifying and locating vehicles to be added to their fleets. A list of the vehicles in each Site Operator fleet is included as Appendix A to this report.

  16. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01T23:59:59.000Z

    fuel- cell vehicles: “Mobile Electricity" technologies andFuel-Cell Vehicles: “Mobile Electricity” Technologies, Early4 2 Mobile Electricity technologies and

  17. Fact #796: September 9, 2013 Electric Vehicle and Plug-In Hybrid Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 20112:ofElectric Vehicle PurchasesFuelVehicle

  18. Measuring and Reporting Fuel Economy of Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Gonder, J.; Simpson, A.

    2006-11-01T23:59:59.000Z

    This paper reviews techniques used to characterize plug-in hybrid electric vehicle fuel economy, discussing their merits, limitations, and best uses.

  19. Battery Requirements for Plug-In Hybrid Electric Vehicles -- Analysis and Rationale

    SciTech Connect (OSTI)

    Pesaran, A. A.; Markel, T.; Tataria, H. S.; Howell, D.

    2009-07-01T23:59:59.000Z

    Presents analysis, discussions, and resulting requirements for plug-in hybrid electric vehicle batteries adopted by the US Advanced Battery Consortium.

  20. Plug-In Electric Vehicle Handbook for Public Charging Station Hosts (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, and considerations for station owners, property owners, and station hosts.

  1. Impacts of Cooling Technology on Solder Fatigue for Power Modules in Electric Traction Drive Vehicles: Preprint

    SciTech Connect (OSTI)

    O'Keefe, M.; Vlahinos, A.

    2009-08-01T23:59:59.000Z

    Describes three power module cooling topologies for electric traction drive vehicles: two advanced options using jet impingement cooling and one option using pin-fin liquid cooling.

  2. Webinar: BNL's Low-Platinum Electrocatalysts for Fuel Cell Electric Vehicles (FCEVs)

    Broader source: Energy.gov [DOE]

    Video recording for the webinar, BNL's Low-Platinum Electrocatalysts for Fuel Cell Electric Vehicles (FCEVs), originally held on June 19, 2012.

  3. Vehicle Technologies Office Merit Review 2014: Electric PCM Assisted Thermal Heating System

    Broader source: Energy.gov [DOE]

    Presentation given by Delphi Automotive at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric PCM assisted...

  4. Minimum Cost Path Problem for Plug-in Hybrid Electric Vehicles

    E-Print Network [OSTI]

    2014-07-22T23:59:59.000Z

    Modeling grid-connected hybrid electric vehicles using advisor, in: Applications and Advances, 2001. The Sixteenth Annual Battery Con- ference on, IEEE. pp.

  5. Optimal Control of Plug-In Hybrid Electric Vehicles with Market ...

    E-Print Network [OSTI]

    Lai Wei

    2014-01-13T23:59:59.000Z

    Jan 13, 2014 ... Optimal Control of Plug-In Hybrid Electric Vehicles with Market Impact and Risk Attitude. Lai Wei (laiwei ***at*** ufl.edu) Yongpei Guan (guan ...

  6. Fact #854 January 5, 2015 Driving Ranges for All-Electric Vehicles...

    Broader source: Energy.gov (indexed) [DOE]

    Driving ranges for all-electric vehicles vary considerably. Based on the official Environmental Protection Agency (EPA) range values reported on window stickers, the Mitsubishi...

  7. Smart buildings with electric vehicle interconnection as buffer for local renewables?

    E-Print Network [OSTI]

    Stadler, Michael

    2012-01-01T23:59:59.000Z

    as buffer for local renewables? Michael Stadler, Gonçaloas buffer for local renewables? *) Michael Stadler Gonçaloowners to integrate renewables and electric vehicles?

  8. Plug-In Electric Vehicle R&D on High Energy Materials

    Broader source: Energy.gov (indexed) [DOE]

    Plug-In Electric Vehicle R&D on High Energy Materials Presented by John Vaughey Principal Investigator: Dennis Dees Chemical Sciences and Engineering Division Argonne National...

  9. Future States: The Convergence of Smart Grid, Renewables, Shale Gas, and Electric Vehicles

    SciTech Connect (OSTI)

    Dick Cirillo; Guenter Conzelmann

    2013-03-20T23:59:59.000Z

    Dick Cirillo and Guenter Conzelmann present on research involving renewable energy sources, the use of natural gas, electric vehicles, and the SMART grid.

  10. NREL Uses Fuel Cells to Increase the Range of Battery Electric Vehicles (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-01-01T23:59:59.000Z

    NREL analysis identifies potential cost-effective scenarios for using small fuel cell power units to increase the range of medium-duty battery electric vehicles.

  11. Electrochemical Capacitors as Energy Storage in Hybrid-Electric Vehicles: Present Status and Future Prospects

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01T23:59:59.000Z

    Capacitors as Energy Storage in Hybrid- Electric Vehicles:uncertainty regarding the energy storage technologies.Whether a particular energy storage technology is suitable

  12. Future States: The Convergence of Smart Grid, Renewables, Shale Gas, and Electric Vehicles

    ScienceCinema (OSTI)

    Dick Cirillo; Guenter Conzelmann

    2013-06-07T23:59:59.000Z

    Dick Cirillo and Guenter Conzelmann present on research involving renewable energy sources, the use of natural gas, electric vehicles, and the SMART grid.

  13. Webinar: Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs)

    Broader source: Energy.gov [DOE]

    Recording and text version of the webinar titled "Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs)," originally presented on June 24, 2014.

  14. Influence of driving patterns on life cycle cost and emissions of hybrid and plug-in electric vehicle powertrains

    E-Print Network [OSTI]

    Michalek, Jeremy J.

    that could be powered entirely by electricity using plug- in vehicles. Thus, plug-in vehicles have assessment Plug-in hybrid electric vehicles a b s t r a c t We compare the potential of hybrid, extended-range plug-in hybrid, and battery electric vehicles to reduce lifetime cost and life cycle greenhouse gas

  15. 246 Int. J. Electric and Hybrid Vehicles, Vol. 3, No. 3, 2011 Copyright 2011 Inderscience Enterprises Ltd.

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    @ieee.org *Corresponding author Abstract: This paper studies the power management of a plug-in hybrid electric vehicle vehicles and plug-in hybrid electric vehicles. #12;Power management of PHEV using quadratic programming 247. Pure battery powered electric vehicle (EV) is considered as the future because it does not rely

  16. Electric and Hybrid Vehicles Program 18th annual report to Congress for Fiscal Year 1994

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    The Department remains focused on the technologies that are critical to making electric and hybrid vehicles commercially viable and competitive with current production gasoline-fueled vehicles in performance, reliability, and affordability. During Fiscal Year 1994, significant progress was made toward fulfilling the intent of Congress. The Department and the United States Advanced Battery Consortium (a partnership of the three major domestic automobile manufacturers) continued to work together and to focus the efforts of battery developers on the battery technologies that are most likely to be commercialized in the near term. Progress was made in industry cost-shared contracts toward demonstrating the technical feasibility of fuel cells for passenger bus and light duty vehicle applications. Two industry teams which will develop hybrid vehicle propulsion technologies have been selected through competitive procurement and have initiated work, in Fiscal Year 1994. In addition, technical studies and program planning continue, as required by the Energy Policy Act of 1992, to achieve the goals of reducing the transportation sector dependence on imported oil, reducing the level of environmentally harmful emissions, and enhancing industrial productivity and competitiveness.

  17. An assessment of research and development leadership in advanced batteries for electric vehicles

    SciTech Connect (OSTI)

    Bruch, V.L.

    1994-02-01T23:59:59.000Z

    Due to the recently enacted California regulations requiring zero emission vehicles be sold in the market place by 1998, electric vehicle research and development (R&D) is accelerating. Much of the R&D work is focusing on the Achilles` heel of electric vehicles -- advanced batteries. This report provides an assessment of the R&D work currently underway in advanced batteries and electric vehicles in the following countries: Denmark, France, Germany, Italy, Japan, Russia, and the United Kingdom. Although the US can be considered one of the leading countries in terms of advanced battery and electric vehicle R&D work, it lags other countries, particularly France, in producing and promoting electric vehicles. The US is focusing strictly on regulations to promote electric vehicle usage while other countries are using a wide variety of policy instruments (regulations, educational outreach programs, tax breaks and subsidies) to encourage the use of electric vehicles. The US should consider implementing additional policy instruments to ensure a domestic market exists for electric vehicles. The domestic is the largest and most important market for the US auto industry.

  18. Optimal Planning and Operation of Smart Grids with Electric Vehicle Interconnection

    E-Print Network [OSTI]

    Stadler, Michael

    2012-01-01T23:59:59.000Z

    Planning and Operation of Smart Grids with Electric VehiclePlanning and Operation of Smart Grids with Electric Vehicleenergy costs at the smart grid or commercial building due to

  19. A Stochastic Control Strategy for Hybrid Electric Vehicles Chan-Chiao Lin1

    E-Print Network [OSTI]

    Grizzle, Jessy W.

    A Stochastic Control Strategy for Hybrid Electric Vehicles Chan-Chiao Lin1 , Huei Peng1 , and J-2122 grizzle@umich.edu Abstract The supervisory control strategy of a hybrid vehicle coordinates the operation-based control strategy trained from deterministic DP results. 1. Introduction Hybrid vehicle powertrains have

  20. Heat engine and electric motor torque distribution strategy for a hybrid electric vehicle

    DOE Patents [OSTI]

    Boberg, Evan S. (Hazel Park, MI); Gebby, Brian P. (Hazel Park, MI)

    1999-09-28T23:59:59.000Z

    A method is provided for controlling a power train system for a hybrid electric vehicle. The method includes a torque distribution strategy for controlling the engine and the electric motor. The engine and motor commands are determined based upon the accelerator position, the battery state of charge and the amount of engine and motor torque available. The amount of torque requested for the engine is restricted by a limited rate of rise in order to reduce the emissions from the engine. The limited engine torque is supplemented by motor torque in order to meet a torque request determined based upon the accelerator position.

  1. University partners with China to help it develop electric vehicle fleet Anne C. Mulkern, E&E reporter

    E-Print Network [OSTI]

    California at Davis, University of

    the purchase of battery electric and fuel cell powered vehicles." ARB and the Chinese government agencyUniversity partners with China to help it develop electric vehicle fleet Anne C. Mulkern, E to speed adoption of plug-in electric and fuel-cell electric vehicles, the school said yesterday. UC Davis

  2. Preliminary Assessment of Plug-in Hybrid Electric Vehicles on Wind Energy Markets

    SciTech Connect (OSTI)

    Short, W.; Denholm, P.

    2006-04-01T23:59:59.000Z

    This report examines a measure that may potentially reduce oil use and also more than proportionately reduce carbon emissions from vehicles. The authors present a very preliminary analysis of plug-in hybrid electric vehicles (PHEVs) that can be charged from or discharged to the grid. These vehicles have the potential to reduce gasoline consumption and carbon emissions from vehicles, as well as improve the viability of renewable energy technologies with variable resource availability. This paper is an assessment of the synergisms between plug-in hybrid electric vehicles and wind energy. The authors examine two bounding cases that illuminate this potential synergism.

  3. AVTA: Reports on Plug-in Electric Vehicle Readiness at 3 DOD Facilities

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports analyze data and survey results on readiness for the use of plug-in electric vehicles on the Naval Air Station Jacksonville, Naval Station Mayport, and Joint Base Lewis McChord, as informed by the AVTA's testing on plug-in electric vehicle charging equipment. This research was conducted by Idaho National Laboratory.

  4. Resilient design of recharging station networks for electric transportation vehicles

    SciTech Connect (OSTI)

    Kris Villez; Akshya Gupta; Venkat Venkatasubramanian

    2011-08-01T23:59:59.000Z

    As societies shift to 'greener' means of transportation using electricity-driven vehicles one critical challenge we face is the creation of a robust and resilient infrastructure of recharging stations. A particular issue here is the optimal location of service stations. In this work, we consider the placement of battery replacing service station in a city network for which the normal traffic flow is known. For such known traffic flow, the service stations are placed such that the expected performance is maximized without changing the traffic flow. This is done for different scenarios in which roads, road junctions and service stations can fail with a given probability. To account for such failure probabilities, the previously developed facility interception model is extended. Results show that service station failures have a minimal impact on the performance following robust placement while road and road junction failures have larger impacts which are not mitigated easily by robust placement.

  5. Polymer selection and cell design for electric-vehicle supercapacitors

    SciTech Connect (OSTI)

    Mastragostino, M.; Arbizzani, C.; Paraventi, R.; Zanelli, A.

    2000-02-01T23:59:59.000Z

    Supercapacitors are devices for applications requiring high operating power levels, such as secondary power sources in electric vehicles (EVs) to provide peak power for acceleration and hill climbing. While electronically conducting polymers yield different redox supercapacitor configurations, devices with the n-doped polymer as the negative electrode and the p-doped polymer as the positive one are the most promising for EV applications. Indeed, this type of supercapacitor has a high operating potential, is able to deliver all the doping charge and, when charged, has both electrodes in the conducting (p- and n-doped) states. This study reports selection criteria for polymer materials and cell design for high performance EV supercapacitors and experimental results of selected polymer materials.

  6. PWM Inverter control and the application thereof within electric vehicles

    DOE Patents [OSTI]

    Geppert, Steven (Bloomfield Hills, MI)

    1982-01-01T23:59:59.000Z

    An inverter (34) which provides power to an A.C. machine (28) is controlled by a circuit (36) employing PWM control strategy whereby A.C. power is supplied to the machine at a preselectable frequency and preselectable voltage. This is accomplished by the technique of waveform notching in which the shapes of the notches are varied to determine the average energy content of the overall waveform. Through this arrangement, the operational efficiency of the A.C. machine is optimized. The control circuit includes a micro-computer and memory element which receive various parametric inputs and calculate optimized machine control data signals therefrom. The control data is asynchronously loaded into the inverter through an intermediate buffer (38). In its preferred embodiment, the present invention is incorporated within an electric vehicle (10) employing a 144 VDC battery pack (32) and a three-phase induction motor (18).

  7. Semiotics and Advanced Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Why it Matters to Consumers

    E-Print Network [OSTI]

    Heffner, Reid R.

    2007-01-01T23:59:59.000Z

    Would You Buy a Hybrid Vehicle? Study #715238, conducted forcars/high-cost-of-hybrid-vehicles- 406/overview.htm ConsumerRelease. (2005) Most Hybrid Vehicles Not as Cost-Effective

  8. Laboratory testing of high energy density capacitors for electric vehicles

    SciTech Connect (OSTI)

    Burke, A.F.

    1991-10-01T23:59:59.000Z

    Laboratory tests of advanced, high energy density capacitors in the Battery Test Laboratory of the Idaho National Engineering Laboratory have been performed to investigate their suitability for load-leveling the battery in an electric vehicle. Two types of devices were tested -- 3 V, 70 Farad, spiral wound, carbon-based, single cell devices and 20 V, 3. 5 Farad, mixed-oxide, multi-cell bipolar devices. The energy density of the devices, based on energy stored during charge to the rated voltage, was found to be 1--2 Wh/kg, which agreed well with that claimed by the manufacturers. Constant power discharge tests were performed at power densities up to 1500 W/kg. Discharges at higher power densities could have been performed had equipment been available to maintain constant power during discharges of less than one second. It was found that the capacitance of the devices were rate dependent with the rate dependency of the carbon-based devices being higher than that of the mixed-oxide devices. The resistance of both types of devices were relatively low being 20--30 milliohms. Testing done in the study showed that the advanced high energy density capacitors can be charged and discharged over cycles (PSFUDS) which approximate the duty cycle that would be encountered if the devices are used to load-level the battery in an electric vehicle. Thermal tests of the advanced capacitors in an insulated environment using the PSFUDS cycle showed the devices do not overheat with their temperatures increasing only 4--5{degrees}C for tests that lasted 5--7 hours. 7 refs., 33 figs., 11 tabs.

  9. Assessing the viability of level III electric vehicle rapid-charging stations

    E-Print Network [OSTI]

    Gogoana, Radu

    2010-01-01T23:59:59.000Z

    This is an analysis of the feasibility of electric vehicle rapid-charging stations at power levels above 300 kW. Electric vehicle rapid-charging (reaching above 80% state-of-charge in less than 15 minutes) has been ...

  10. Space Vector PWM Control Synthesis for a H-Bridge Drive in Electric Vehicles

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Space Vector PWM Control Synthesis for a H-Bridge Drive in Electric Vehicles A. Kolli1 , Student Magnet Synchronous Machine in Electric Vehicle application. First, a short survey of existing power control methods are compared with three innovative ones using EV-drive specifications in the normal

  11. Innovation Dynamics in the Development of Nuclear Energy and Electric Vehicles in France

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Innovation Dynamics in the Development of Nuclear Energy and Electric Vehicles in France Abdelkrim-- innovation processes; nuclear energy; electric vehicles ; technological trajectory. I. INTRODUCTION of national energy security policy in France after the 1973 oil crisis that catalyzed a shift from dependence

  12. Electric and Hybrid Vehicles Program. Seventeenth annual report to Congress for Fiscal Year 1993

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    This program, in cooperation with industry, is conducting research, development, testing, and evaluation activities to develop the technologies that would lead to production and introduction of low-and zero-emission electric and hybrid vehicles into the Nation`s transportation fleet. This annual report describes program activities in the areas of advanced battery, fuel cell, and propulsion systems development. Testing and evaluation of new technology in fleet site operations and laboratories are also provided. Also presented is status on incentives (CAFE, 1992 Energy Policy Act) and use of foreign components, and a listing of publications by DOE, national laboratories, and contractors.

  13. Environmental Assessment of the US Department of Energy Electric and Hybrid Vehicle Program

    SciTech Connect (OSTI)

    Singh, M.K.; Bernard, M.J. III; Walsh, R.F

    1980-11-01T23:59:59.000Z

    This environmental assessment (EA) focuses on the long-term (1985-2000) impacts of the US Department of Energy (DOE) electric and hybrid vehicle (EHV) program. This program has been designed to accelerate the development of EHVs and to demonstrate their commercial feasibility as required by the Electric and Hybrid Vehicle Research, Development and Demonstration Act of 1976 (P.L. 94-413), as amended (P.L. 95-238). The overall goal of the program is the commercialization of: (1) electric vehicles (EVs) acceptable to broad segments of the personal and commercial vehicle markets, (2) hybrid vehicles (HVs) with range capabilities comparable to those of conventional vehicles (CVs), and (3) advanced EHVs completely competitive with CVs with respect to both cost and performance. Five major EHV projects have been established by DOE: market demonstration, vehicle evaluation and improvement, electric vehicle commercialization, hybrid vehicle commercialization, and advanced vehicle development. Conclusions are made as to the effects of EV and HV commercialization on the: consumption and importation of raw materials; petroleum and total energy consumption; ecosystems impact from the time of obtaining raw material through vehicle use and materials recycling; environmental impacts on air and water quality, land use, and noise; health and safety aspects; and socio-economic factors. (LCL)

  14. Fact #843: October 20, 2014 Cumulative Plug-in Electric Vehicle Sales are Two and a Half Times Higher than Hybrid Electric Vehicle Sales in the First 45 Months since Market Introduction – Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #843: Cumulative Plug-in Electric Vehicle Sales are Two and a Half Times Higher than Hybrid Electric Vehicle Sales in the First 45 Months since Market Introduction

  15. On-road evaluation of advanced hybrid electric vehicles over a wide range of ambient temperatures.

    SciTech Connect (OSTI)

    Carlson, R.; Duoba, M. J.; Bocci, D.; Lohse-Busch, H. (Energy Systems)

    2007-01-01T23:59:59.000Z

    In recent years, Hybrid Electric Vehicles (HEV's) have become a production viable and effective mode of efficient transportation. HEV's can provide increased fuel economy over convention technology vehicle, but these advantages can be affected dramatically by wide variations in operating temperatures. The majority of data measured for benchmarking HEV technologies is generated from ambient test cell temperatures at 22 C. To investigate cold and hot temperature affects on HEV operation and efficiency, an on-road evaluation protocol is defined and conducted over a six month study at widely varying temperatures. Two test vehicles, the 2007 Toyota Camry HEV and 2005 Ford Escape HEV, were driven on a pre-defined urban driving route in ambient temperatures ranging from -14 C to 31 C. Results from the on-road evaluation were also compared and correlated to dynamometer testing of the same drive cycle. Results from this on-road evaluation show the battery power control limits and engine operation dramatically change with temperature. These changes decrease fuel economy by more than two times at -14 C as compared to 25 C. The two vehicles control battery temperature in different manners. The Escape HEV uses the air conditioning system to provide cool air to the batteries at high temperatures and is therefore able to maintain battery temperature to less than 33 C. The Camry HEV uses cabin air to cool the batteries. The observed maximum battery temperature was 44 C.

  16. U.S. Department of Energy FreedomCAR and Vehicle Technologies Program Advanced Vehicle Testing Activity Federal Fleet Use of Electric Vehicles

    SciTech Connect (OSTI)

    Mindy Kirpatrick; J. E. Francfort

    2003-11-01T23:59:59.000Z

    Per Executive Order 13031, “Federal Alternative Fueled Vehicle Leadership,” the U.S. Department of Energy’s (DOE’s) Advanced Vehicle Testing Activity provided $998,300 in incremental funding to support the deployment of 220 electric vehicles in 36 Federal fleets. The 145 electric Ford Ranger pickups and 75 electric Chrysler EPIC (Electric Powered Interurban Commuter) minivans were operated in 14 states and the District of Columbia. The 220 vehicles were driven an estimated average of 700,000 miles annually. The annual estimated use of the 220 electric vehicles contributed to 39,000 fewer gallons of petroleum being used by Federal fleets and the reduction in emissions of 1,450 pounds of smog-forming pollution. Numerous attempts were made to obtain information from all 36 fleets. Information responses were received from 25 fleets (69% response rate), as some Federal fleet personnel that were originally involved with the Incremental Funding Project were transferred, retired, or simply could not be found. In addition, many of the Department of Defense fleets indicated that they were supporting operations in Iraq and unable to provide information for the foreseeable future. It should be noted that the opinions of the 25 fleets is based on operating 179 of the 220 electric vehicles (81% response rate). The data from the 25 fleets is summarized in this report. Twenty-two of the 25 fleets reported numerous problems with the vehicles, including mechanical, traction battery, and charging problems. Some of these problems, however, may have resulted from attempting to operate the vehicles beyond their capabilities. The majority of fleets reported that most of the vehicles were driven by numerous drivers each week, with most vehicles used for numerous trips per day. The vehicles were driven on average from 4 to 50 miles per day on a single charge. However, the majority of the fleets reported needing gasoline vehicles for missions beyond the capabilities of the electric vehicles, usually because of range limitations. Twelve fleets reported experiencing at least one charge depletion while driving, whereas nine fleets reported not having this problem. Twenty-four of the 25 fleets responded that the electric vehicles were easy to use and 22 fleets indicated that the payload was adequate. Thirteen fleets reported charging problems; eleven fleets reported no charging problems. Nine fleets reported the vehicles broke down while driving; 14 fleets reported no onroad breakdowns. Some of the breakdowns while driving, however, appear to include normal flat tires and idiot lights coming on. In spite of operation and charging problems, 59% of the fleets responded that they were satisfied, very satisfied, or extremely satisfied with the performance of the electric vehicles. As of September 2003, 74 of the electric vehicles were still being used and 107 had been returned to the manufacturers because the leases had concluded.

  17. Model-Free Learning-Based Online Management of Hybrid Electrical Energy Storage Systems in Electric Vehicles

    E-Print Network [OSTI]

    Pedram, Massoud

    Model-Free Learning-Based Online Management of Hybrid Electrical Energy Storage Systems in Electric@elpl.snu.ac.kr Abstract--To improve the cycle efficiency and peak output power density of energy storage systems in electric vehicles (EVs), supercapacitors have been proposed as auxiliary energy storage elements

  18. Photovoltaic electric power applied to Unmanned Aerial Vehicles (UAV)

    SciTech Connect (OSTI)

    Geis, J.; Arnold, J.H. [Rockwell International Corp., Canoga Park, CA (United States)

    1994-09-01T23:59:59.000Z

    Photovoltaic electric-powered flight is receiving a great deal of attention in the context of the United States` Unmanned Aerial Vehicle (UAV) program. This paper addresses some of the enabling technical areas and their potential solutions. Of particular interest are the long-duration, high-altitude class of UAV`s whose mission it is to achieve altitudes between 60,000 and 100,000 feet, and to remain at those altitudes for prolonged periods performing various mapping and surveillance activities. Addressed herein are studies which reveal the need for extremely light-weight and efficient solar cells, high-efficiency electric motor-driven propeller modules, and power management and distribution control elements. Since the potential payloads vary dramatically in their power consumption and duty cycles, a typical load profile has been selected to provide commonality for the propulsion power comparisons. Since missions vary widely with respect to ground coverage requirements, from repeated orbiting over a localized target to long-distance routes over irregular terrain, the authors have also averaged the power requirements for on-board guidance and control power, as well as ground control and communication link utilization. In the context of the national technology reinvestment program, wherever possible they modeled components and materials which have been qualified for space and defense applications, yet are compatible with civilian UAV activities. These include, but are not limited to, solar cell developments, electric storage technology for diurnal operation, local and ground communications, power management and distribution, and control servo design. And finally, the results of tests conducted by Wright Laboratory on ultralight, highly efficient MOCVD GaAs solar cells purchased from EPI Materials Ltd. (EML) of the UK are presented. These cells were also used for modeling the flight characteristics of UAV aircraft.

  19. Implementations of electric vehicle system based on solar energy in Singapore assessment of lithium ion batteries for automobiles

    E-Print Network [OSTI]

    Fu, Haitao

    2009-01-01T23:59:59.000Z

    In this thesis report, both quantitative and qualitative approaches are used to provide a comprehensive analysis of lithium ion (Li-ion) batteries for plug-in hybrid electric vehicle (PHEV) and battery electric vehicle ...

  20. Electric Vehicle Performance at McMurdo Station (Antarctica) and Comparison with McMurdo Station Conventional Vehicles

    SciTech Connect (OSTI)

    Sears, T.; Lammert, M.; Colby, K.; Walter, R.

    2014-09-01T23:59:59.000Z

    This report examines the performance of two electric vehicles (EVs) at McMurdo, Antarctica (McMurdo). The study examined the performance of two e-ride Industries EVs initially delivered to McMurdo on February 16, 2011, and compared their performance and fuel use with that of conventional vehicles that have a duty cycle similar to that of the EVs used at McMurdo.

  1. An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data

    E-Print Network [OSTI]

    Recker, W. W.; Kang, J. E.

    2010-01-01T23:59:59.000Z

    of Plug-in Hybrid Electric Vehicle Technology, Nationalof Plug-In Hybrid Electric Vehicles on Energy and Emissionsof Plug-In Hybrid Electric Vehicles on Energy and Emissions

  2. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Electric Vehicle Charging Impact Review for MultiUser Residential Buildings in British Columbia

    E-Print Network [OSTI]

    596 Electric Vehicle Charging ­ Impact Review for Multi User Residential Buildings in British .......................................................................................................................................... 4 3 Electric Vehicles in British Columbia .................................................................................................................................... 27 6.1 City of Vancouver ­ Electric Vehicle Provision Regulations

  3. Fuzzy logic electric vehicle regenerative antiskid braking and traction control system

    DOE Patents [OSTI]

    Cikanek, S.R.

    1994-10-25T23:59:59.000Z

    An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control. 123 figs.

  4. Fuzzy logic electric vehicle regenerative antiskid braking and traction control system

    DOE Patents [OSTI]

    Cikanek, Susan R. (Wixom, MI)

    1994-01-01T23:59:59.000Z

    An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control.

  5. Estimating the potential of controlled plug-in hybrid electric vehicle charging to reduce operational and capacity expansion costs for electric

    E-Print Network [OSTI]

    Michalek, Jeremy J.

    expansion Plug-in hybrid electric vehicles Controlled charging Wind power integration a b s t r a c vehicles (BEVs), create additional electricity demand, resulting in additional air emissions from powerEstimating the potential of controlled plug-in hybrid electric vehicle charging to reduce

  6. Entropy production by simple electrical circuits

    E-Print Network [OSTI]

    E. N. Miranda; S. Nikolskaia

    2012-08-13T23:59:59.000Z

    The entropy production by simple electrical circuits (R, RC, RL) is analyzed. It comes out that the entropy production is minimal, in agreement with a well known theorem due to Prigogine. In this way, it is wrong a recent result by Zupanovic, Juretic and Botric (Physica Review E 70, 056198) who claimed that the entropy production in simple electrical circuits is a maximum

  7. Near-term electric test vehicle ETV-2. Phase II. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-04-01T23:59:59.000Z

    A unique battery-powered passenger vehicle has been developed that provides a significant improvement over conventional electric vehicle performance, particularly during stop-and-go driving. The vehicle is unique in two major respects: (1) the power system incorporates a flywheel that stores energy during regenerative braking and makes possible the acceleration capability needed to keep up with traffic without reducing range to unacceptable values; and (2) lightweight plastic materials are used for the vehicle unibody to minimize weight and increase range. These features were analyzed and demonstrated in an electric test vehicle, ETV-2. Characteristics of this vehicle are summarized. Information is presented on: vehicle design, fabrication, safety testing, and performance testing; power system design and operation; flywheel; battery pack performance; and controls and electronic equipment. (LCL)

  8. Entering a New Stage of Learning from the U.S. Fuel Cell Electric Vehicle Demonstration Project (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Garbak, J.

    2010-11-08T23:59:59.000Z

    This presentation summarizes Entering a New Stage of Learning from the U.S. Fuel Cell Electric Vehicle Demonstration Project.

  9. Fact #857 January 26, 2015 Number of Partner Workplaces Offering Electric Vehicle Charging More Than Tripled Since 2011 – Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Number of Partner Workplaces Offering Electric Vehicle Charging More Than Tripled Since 2011

  10. Evaluation of a Lower-Energy Energy Storage System (LEESS) for Full-Hybrid Electric Vehicles (HEVs) (Presentation)

    SciTech Connect (OSTI)

    Gonder, J.; Ireland, J.; Cosgrove, J.

    2013-04-01T23:59:59.000Z

    This presentation discusses the evaluation of a lower-energy energy storage system for full-hybrid electric vehicles.

  11. Optimizing and Diversifying the Electric Range of Plug-in Hybrid Electric Vehicles for U.S. Drivers

    SciTech Connect (OSTI)

    Lin, Zhenhong [ORNL

    2012-01-01T23:59:59.000Z

    To provide useful information for automakers to design successful plug-in hybrid electric vehicle (PHEV) products and for energy and environmental analysts to understand the social impact of PHEVs, this paper addresses the question of how many of the U.S. consumers, if buying a PHEV, would prefer what electric ranges. The Market-oriented Optimal Range for PHEV (MOR-PHEV) model is developed to optimize the PHEV electric range for each of 36,664 sampled individuals representing U.S. new vehicle drivers. The optimization objective is the minimization of the sum of costs on battery, gasoline, electricity and refueling hassle. Assuming no battery subsidy, the empirical results suggest that: 1) the optimal PHEV electric range approximates two thirds of one s typical daily driving distance in the near term, defined as $450/kWh battery delivered price and $4/gallon gasoline price. 2) PHEVs are not ready to directly compete with HEVs at today s situation, defined by the $600/kWh battery delivered price and the $3-$4/gallon gasoline price, but can do so in the near term. 3) PHEV10s will be favored by the market over longer-range PHEVs in the near term, but longer-range PHEVs can dominate the PHEV market if gasoline prices reach as high as $5-$6 per gallon and/or battery delivered prices reach as low as $150-$300/kWh. 4) PHEVs can become much more attractive against HEVs in the near term if the electric range can be extended by only 10% with multiple charges per day, possible with improved charging infrastructure or adapted charging behavior. 5) the impact of a $100/kWh decrease in battery delivered prices on the competiveness of PHEVs against HEVs can be offset by about $1.25/gallon decrease in gasoline prices, or about 7/kWh increase in electricity prices. This also means that the impact of a $1/gallon decrease in gasoline prices can be offset by about 5/kWh decrease in electricity prices.

  12. Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008

    E-Print Network [OSTI]

    Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

    2008-01-01T23:59:59.000Z

    a PHEV has both an electric motor and a heat engine—usuallythe vehicle only by an electric motor using electricity fromand forth with the electric motor to maximize efficiency.

  13. New Energy 101 Video: Electric Vehicles | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    low. Visit the Vehicle Cost Calculator on DOE's Alternative Fuels and Advanced Vehicles Data Center to make side-by-side comparisons of a broad array of EVs, hybrids and...

  14. DC Bus Capacitor Manufacturing Facility for Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  15. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  16. EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 Stavanger, Norway, May 13-16, 2009

    E-Print Network [OSTI]

    Boyer, Edmond

    EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 EVS24 Stavanger and Fuel Cell Electric Vehicle Symposium & Exhibition, Stavanger : Norway (2009)" #12;EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 2 that Discrete MDCM (Multi Criteria Decision

  17. Sensor Fault-Tolerant Control of an Induction Motor Based Electric Vehicle Bekhera Tabbache1,2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Sensor Fault-Tolerant Control of an Induction Motor Based Electric Vehicle Bekheïra Tabbache1://www.lbms.fr Keywords Electric Vehicle (EV), Induction motor, Sensor fault, Fault-tolerant control (FTC), Direct torque a reconfigurable direct torque control of an induction motor-based electric vehicle. The proposed strategy concerns

  18. Shaheen, Cano, and Camel. TRB 2013. November 15, 2012 ELECTRIC VEHICLE CARSHARING IN A SENIOR ADULT COMMUNITY

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Shaheen, Cano, and Camel. TRB 2013. November 15, 2012 ELECTRIC VEHICLE CARSHARING IN A SENIOR ADULT 1 ELECTRIC VEHICLE CARSHARING IN A SENIOR ADULT COMMUNITY IN THE SAN FRANCISCO BAY AREA, and will likely be active and healthy well past retirement. This paper examines an electric vehicle (EV

  19. FROM TECHNOLOGY COMPETITION TO REINVENTING INDIVIDUAL MOBILITY FOR A SUSTAINABLE FUTURE: CHALLENGES FOR NEW DESIGN STRATEGIES FOR ELECTRIC VEHICLE

    E-Print Network [OSTI]

    Boyer, Edmond

    FOR NEW DESIGN STRATEGIES FOR ELECTRIC VEHICLE MIDLER Christophe Ecole polytechnique BEAUME Romain Ecole-going revival of full battery electric vehicles (EV). Our analysis is drawn in two axes. First, we analyse In the automotive history, Electric Vehicle (EV) has been seen as an option for more than a century but lost

  20. Proper Use of Electric/Gas UtilityType Vehicles (FS4) Form FS-4 8/24/2011

    E-Print Network [OSTI]

    Beex, A. A. "Louis"

    Proper Use of Electric/Gas UtilityType Vehicles (FS4) Form FS-4 8/24/2011 Regulation Governing Use of Electric/Gas Utility­Type Vehicles (EGUV): Individual operators will use their judgment on whether. · Electric vehicles will be recharged at a location appropriate for such use. Use of extension cords from