Powered by Deep Web Technologies
Note: This page contains sample records for the topic "vehicles powertrain research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Powertrain & Vehicle Research Centre  

E-Print Network [OSTI]

complexity ·More efficient Vehicles, quicker to market, reduced cost to consumer The Optimisation Task and virtual environments Vehicle baseline testing on rolling road Calibration Control Engine VehiclePowertrain & Vehicle Research Centre Low Carbon Powertrain Development S. Akehurst, EPSRC Advanced

Burton, Geoffrey R.

2

Powertrain & Vehicle Research Centre  

E-Print Network [OSTI]

Simulation Basic Engine Test Vehicle Test Cost & Complexity Towards Final Product Lean Powertrain Development Viewing Trade-Offs and Finding Optima Realism Advanced Engine Test Vehicle Test Rolling Road Powertrain powertrain development tasks to reduce costs and time to market The vehicle powertrain is the system

Burton, Geoffrey R.

3

Advanced Powertrain Research Facility Vehicle Test Cell Thermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Powertrain Research Facility Vehicle Test Cell Thermal Upgrade Advanced Powertrain Research Facility Vehicle Test Cell Thermal Upgrade 2010 DOE Vehicle Technologies and Hydrogen...

4

Vehicle Systems Integration Laboratory Accelerates Powertrain Development  

ScienceCinema (OSTI)

ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

None

2014-06-25T23:59:59.000Z

5

Advanced Powertrain Research Facility Vehicle Test Cell Thermal Upgrade  

Broader source: Energy.gov [DOE]

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

6

Shanghai Fuel Cell Vehicle Powertrain Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Vehicle Powertrain Co Ltd Jump to: navigation, search Name: Shanghai Fuel Cell Vehicle Powertrain Co Ltd Place: Shanghai Municipality, China Sector: Vehicles Product: A high tech...

7

Advanced Powertrain Research Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

95F 95F Vehicle Setup Information Vehicle architecture PHEV Test cell location Front Advanced Powertrain Research Facility Document date 10/18/2013 Vehicle dynamometer Input Revision Number 1 Test weight [lb] 3518 Notes: Target A [lb] 21.47 Target B [lb/mph] 0.21588 Target C [lb/mph^2] 0.012508 Test Fuel Information Revision Number 1 Test weight [lb] 3518 Test Fuel Information Fuel type EPA Tier II EEE HF0437 Fuel density [g/ml] 0.742 Fuel Net HV [BTU/lbm] 18475 Fuel type EPA Tier II EEE HF0437 T e s t I D [ # ] C y c l e C o l d s t a r t ( C S t ) H o t s t a r t [ H S t ] D a t e T e s t C e l l T e m p [ C ] T e s t C e l l R H [ % ] T e s t C e l l B a r o [ i n / H g ] V e h i c l e c o o l i n g f a n s p e e d : S p e e d M a t c h [ S M ] o r c o n s t a n t s p e e d [ C S ] S o l a r L a m p s [ W / m 2 ] V e i c l e C l i m a t e C o n t r o l s e t t i n g s H o o d P o s i t i o n [ U p ] o r [ C l o s e d ] W i n d o w P o s i t i o n [ C l o s e d ] o r [ D o w n ] C y

8

Impact of Vehicle Efficiency Improvements on Powertrain Design  

Broader source: Energy.gov [DOE]

Explores how various chassis and complete vehicle improvements offer opportunities for energy recuperation on long-haul truck duty cycle, and how they impact powertrain requirements

9

Argonne Transportation Technology R&D Center - Advanced Powertrain Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Powertrain Research Facility Advanced Powertrain Research Facility Argonne's Advanced Powertrain Research Facility (APRF) is the principal U.S. Department of Energy (DOE) facility for assessing advanced and hybrid electric vehicle (HEV) technologies for the Vehicle Technologies Program. The APRF is an integrated multi-dynamometer vehicle and component test facility capable of testing conventional and hybrid vehicle propulsion systems and vehicles (two- or four-wheel drive) in a precise laboratory environment using a variety of fuels (including hydrogen). The facility is used to assess powertrain technology for light- and medium-duty propulsion systems with state-of-the-art performance and emissions measurement equipment and techniques. Argonne's Advanced Powertrain Research Facility

10

Method of converting an existing vehicle powertrain to a hybrid powertrain system  

DOE Patents [OSTI]

A method of converting an existing vehicle powertrain including a manual transmission to a hybrid powertrain system with an automated powertrain transmission. The first step in the method of attaching a gear train housing to a housing of said manual transmission, said gear train housing receiving as end of drive shaft of said transmission and rotatably supporting a gear train assembly. Secondly, mounting an electric motor/generator to said gear train housing and attaching a motor/generator drive shaft of said electric motor/generator to said gear train assembly. Lastly, connecting an electro-mechanical clutch actuator to a friction clutch mechanism of said manual transmission.

Reed, Jr., Richard G. (Royal Oak, MI); Boberg, Evan S. (Hazel Park, MI); Lawrie, Robert E. (Whitmore Lake, MI); Castaing, Francois J. (Bloomfield Township, MI)

2001-12-25T23:59:59.000Z

11

Advanced Powertrain Research Facility Document Date  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7/30/2013 7/30/2013 Vehicle Setup Information Downloadable Dynamometer Database (D 3 )- Test Summary Sheet Vehicle Architecture Alt Fuel- CNG Vehicle Dynamometer Input 2012 Honda Civic GX Test Cell Location Front Advanced Powertrain Research Facility Document Date 7/30/2013 Revision Number 1 Vehicle Dynamometer Input Test weight [lb] 3192 Test Fuel Information MPGe derived by EPA calculation methods Revision Number 1 Notes: Test weight [lb] Target A [lb] 3192 22.2037 Target B [lb/mph] Target C [lb/mph^2] 0.45855 0.01263 Test Fuel Information MPGe derived by EPA calculation methods Fuel type Compressed Natural Gas (CNG) MPGe derived by EPA calculation methods Fuel density [g/ml] Fuel Net HV [BTU/lbm] 0.5872 905.3 Fuel type Compressed Natural Gas (CNG) T e s t I D [ # ] C y c l e C o l d s t a r t ( C S t ) H o t s t a r t

12

Advanced Powertrain Research Facility Document Date  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

10/18/2013 10/18/2013 Vehicle Setup Information Downloadable Dynamometer Database (D 3 )- Test Summary Sheet Vehicle Architecture Conventional Vehicle Dynamometer Input 2013 Volkswagen Jetta TDI Test Cell Location Front Advanced Powertrain Research Facility Document Date 10/18/2013 Revision Number 1 Vehicle Dynamometer Input Test weight [lb] 3516 Test Fuel Information Revision Number 1 Notes: Test weight [lb] Target A [lb] 3516 30.1456 Target B [lb/mph] Target C [lb/mph^2] 0.37653 0.015662 Test Fuel Information Fuel type 2007 Certification Diesel HF0583 Fuel density [g/ml] Fuel Net HV [BTU/lbm] 0.855 18355 Fuel type 2007 Certification Diesel HF0583 T e s t I D [ # ] C y c l e C o l d s t a r t ( C S t ) H o t s t a r t [ H S t ] D a t e T e s t C e l l T e m p [ C ] T e s t C e l l R H [ % ] T e s t C e l l B a r o [ i n / H g ] V e h i c l e c o o l i n g f a n s p e e d : S p e e d M a t

13

Plug-In Hybrid Electric Vehicles - PHEV Modeling - Powertrain Configuration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Impact of Powertrain Configuration on Fuel Efficiency To evaluate the fuel efficiency potential of plug-in hybrid electric vehicles, it is necessary to compare the advantages and drawbacks of several powertrain configurations, ranging from power split to parallel and series. PSAT offers the unique ability to simulate and compare hundreds of powertrain configurations. The goal of the effort is to define the most promising configurations depending on the particular usage. Component sizes, fuel efficiency and cost will be used to make appropriate decisions. The configurations currently being considered include, but are not limited to: Pre-transmission parallel HEV Post-transmission parallel HEV Power split HEV (including THS II and GM 2 Mode) Series The figure below shows an example comparison of three powertrain configurations (parallel, series and power split).

14

Research on Fault Analysis and Fault-Tolerant Control of EV/HEV Powertrain  

E-Print Network [OSTI]

presents research works in the topics of fault analysis and fault tolerant control of an electric vehicle mechanism (transition strategy) at sensor fault occurrence. Index Terms--Electric vehicle, induction motor-tolerant AC motor drives in industrial applications [9-10- 41]. II. ELECTRIC VEHICLE POWERTRAIN COMPONENTS

Brest, Université de

15

Heavy-Duty Powertrain and Vehicle Development- A Look Toward 2020  

Broader source: Energy.gov [DOE]

Globalization in emissions regulation will be driving freight efficiency improvements and will require heavy-duty engine and powertrain advancements, vehicle improvements, and optimized system integration

16

Vehicle Technologies Office Merit Review 2014: Powertrain Controls Optimization for Heavy Duty Line Haul Trucks  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about powertrain...

17

Argonne Researchers | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

& electric vehicles ---Hydrogen & fuel cells ---Internal combustion ---Maglev systems ---Powertrain research ---Vehicle testing --Building design ---Construction...

18

Nonlinear adaptive sliding mode control of a powertrain supplying Fuel Cell Hybrid Vehicle  

E-Print Network [OSTI]

Nonlinear adaptive sliding mode control of a powertrain supplying Fuel Cell Hybrid Vehicle M. D switching scheme for controlling DC-DC hybrid powertrain for propulsion of a Fuel Cell / Supercapacitor/dc Boost converter associated to Fuel Cell stack and another Bidirectionnel dc/dc converter associated

Paris-Sud XI, Université de

19

Current Postdoctoral Researchers | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

& electric vehicles ---Hydrogen & fuel cells ---Internal combustion ---Maglev systems ---Powertrain research ---Vehicle testing --Building design ---Construction...

20

Vehicle Technologies Office Merit Review 2014: Next-Generation Ultra Lean Burn Powertrain  

Broader source: Energy.gov [DOE]

Presentation given by MAHLE Powertrain, LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about next-generation ultra...

Note: This page contains sample records for the topic "vehicles powertrain research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Vehicle Technologies Office Merit Review 2014: Volvo SuperTruck- Powertrain Technologies for Efficiency Improvement  

Broader source: Energy.gov [DOE]

Presentation given by Volvo at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Volvo SuperTruck powertrain...

22

DSP-Based Sensor Fault-Tolerant Control of Electric Vehicle Powertrains  

E-Print Network [OSTI]

DSP-Based Sensor Fault-Tolerant Control of Electric Vehicle Powertrains Bekheïra Tabbache, Mohamed-tolerant control for a high performance induction motor drive that propels an electrical vehicle. The proposed and simulations on an electric vehicle are carried-out using a European urban and extra urban driving cycle

Brest, Université de

23

Drive Cycle Powertrain Efficiencies and Trends Derived From EPA Vehicle Dynamometer Results  

SciTech Connect (OSTI)

Vehicle manufacturers among others are putting great emphasis on improving fuel economy (FE) of light-duty vehicles in the U.S. market, with significant FE gains being realized in recent years. The U.S. Environmental Protection Agency (EPA) data indicates that the aggregate FE of vehicles produced for the U.S. market has improved by over 20% from model year (MY) 2005 to 2013. This steep climb in FE includes changes in vehicle choice, improvements in engine and transmission technology, and reducing aerodynamic drag, rolling resistance, and parasitic losses. The powertrain related improvements focus on optimizing in-use efficiency of the transmission and engine as a system, and may make use of what is termed downsizing and/or downspeeding. This study explores quantifying recent improvements in powertrain efficiency, viewed separately from other vehicle alterations and attributes (noting that most vehicle changes are not completely independent). A methodology is outlined to estimate powertrain efficiency for the U.S city and highway cycle tests using data from the EPA vehicle database. Comparisons of common conventional gasoline powertrains for similar MY 2005 and 2013 vehicles are presented, along with results for late-model hybrid electric vehicles, the Nissan Leaf, Chevy Volt and other selected vehicles.

Thomas, John F [ORNL

2014-01-01T23:59:59.000Z

24

Hybrid powertrain optimization with trajectory prediction based on inter-vehicle-communication and vehicle-infrastructure-integration  

Science Journals Connector (OSTI)

Abstract Recent advances in Inter-Vehicle Communications (IVC) and Vehicle-Infrastructure Integration (VII) paved ways to real-time information sharing among vehicles, which are beneficial for vehicle energy management strategies (EMS). This is especially valuable for power-split hybrid electrical vehicles (HEV) in order to determine the optimal power-split between two different power sources at any particular time. Certainly, researches in this area have been done, but tradeoffs between optimality, driving-cycle sensitivity, speed of calculation and charge-sustaining (CS) conditions have not been cohesively addressed before. In light of this, a combined approach of a time-efficient powertrain optimization strategy, utilizing trajectory prediction based on IVC and VII is proposed. First, Gipps car following model for traffic prediction is used to predict the interactions between vehicles, combined with the cell-transmission-model (CTM) for the leading vehicle trajectory prediction. Secondly, a computationally efficient charge-sustaining (CS) HEV powertrain optimization strategy is analytically derived and simulated, based on the Pontryagins Minimum Principle and a CS-condition constraint. A 3D lookup-map, generated offline to interpolate the optimizing parameters based on the predicted speed, is also utilized to speed up the calculations. Simulations are conducted for 6-mile and 15-mile cases with different prediction update timings to test the performance of the proposed strategy against a Rule-Based (RB) control strategy. Results for accurate-prediction cases show 9.6% average fuel economy improvements in miles-per-gallon (MPG) over RB for the 6-mile case and 7% improvements for the 15-mile case. Prediction-with-error cases show smaller average MPGs improvements, with 1.6% to 4.3% improvements for the 6-mile case and 2.6% to 3.4% improvements for the 15-mile case.

Mohd Azrin Mohd Zulkefli; Jianfeng Zheng; Zongxuan Sun; Henry X. Liu

2014-01-01T23:59:59.000Z

25

Optimal power management and powertrain components sizing of fuel cell/battery hybrid electric vehicles based on particle swarm optimisation  

Science Journals Connector (OSTI)

Combining a Fuel Cell (FC), as primary power source, with a Battery Energy System (BES), as an auxiliary source, for high power demands is a promising approach for future hybrid electric vehicles (HEV). The powertrain control strategy and the component sizing significantly affect the vehicle performance, cost, vehicle efficiency and fuel economy. This paper presents a developed control strategy for optimising the power sharing between sources and components sizing by using Particle Swarm Optimisation (PSO) algorithm. This control strategy implemented on FC/Battery hybrid electric vehicle in order to achieve the best performance with minimum fuel consumption and minimum powertrain components sizing for a given driving cycle with high efficiency. The powertrain and the proposed control strategy have been simulated by Matlab/Simulink. The simulation results have demonstrated that the optimal sizing of the powertrain of FC/battery components and the minimum fuel consumption have been improved by applying the PSO control strategy.

Omar Hegazy; Joeri Van Mierlo

2012-01-01T23:59:59.000Z

26

Powertrain Component Inspection from Mid-Level Blends Vehicle Aging Study  

SciTech Connect (OSTI)

The Energy Independence and Security Act of 2007 calls on the nation to significantly increase its use of renewable fuels to meet its transportation energy needs. The law expands the renewable fuel standard to require use of 36 billion gallons of renewable fuel by 2022. Given that ethanol is the most widely used renewable fuel in the U.S. market, ethanol will likely make up a significant portion of the 36-billion-gallon requirement. The vast majority of ethanol used in the United States is blended with gasoline to create E10-gasoline with up to 10% ethanol. The remaining ethanol is sold in the form of E85 - a gasoline blend with as much as 85% ethanol that can only be used in flexible-fuel vehicles (FFVs). Consumption of E85 is at present limited by both the size of the FFV fleet and the number of E85 fueling stations. Gasoline consumption in the United States is currently about 140 billion gallons per year; thus the maximum use of ethanol as E10 is only about 14 billion gallons. While the U.S. Department of Energy (DOE) remains committed to expanding the E85 infrastructure, that market represented less than 1% of the ethanol consumed in 2010 and will not be able to absorb projected volumes of ethanol in the near term. Because of these factors, DOE and others have been assessing the viability of using mid-level ethanol blends (E15 or E20) as a way to accommodate growing volumes of ethanol. The DOE Mid-Level Ethanol Blends Test Program has been under way since 2007, supported jointly by the Office of the Biomass Program and the Vehicle Technologies Program. One of the larger projects, the Catalyst Durability Study, or Vehicle Aging Study, will be completed early in calendar year 2011. The following report describes a subproject of the Vehicle Aging Study in which powertrain components from 18 of the vehicles were examined at Southwest Research Institute under contract to Oak Ridge National Laboratory (ORNL).

Shoffner, Brent [Southwest Research Institute, San Antonio; Johnson, Ryan [Southwest Research Institute, San Antonio; Heimrich, Martin J. [Southwest Research Institute, San Antonio; Lochte, Michael [Southwest Research Institute, San Antonio

2010-11-01T23:59:59.000Z

27

Powertrain Assessment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powertrain Powertrain Systems Analysis Toolkit (PSAT) is used to design and evaluate a series of plug-in hybrid electric vehicles (PHEVs) with various "primary electric" ranges, considering all-electric and charge-depleting strategies. The objective is to quantify the impact of all-electric range on component performance requirements. The concern is that the peak power requirements for the battery and electric drive are much higher to achieve the same performance in electric and hybrid modes. This impacts the vehicle economics; higher energy and power requirements drive up costs of the battery and electric drive components, reducing the likelihood of production. One of the main objectives of the U.S. Department of Energy's Plug-in Hybrid Electric Vehicle R&D Plan is to "determine

28

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 54, NO. 3, MAY 2005 837 Modeling of a Hybrid Electric Vehicle Powertrain  

E-Print Network [OSTI]

of a hybrid electric vehicle (HEV) powertrain test cell is proposed. The test cell consists of a motor combustion engine (ICE) and an electric motor/generator (EM) in series or parallel configurations. The ICE charges the battery or by- passes the battery to propel the wheels via an electric motor. This electric

Mi, Chunting "Chris"

29

Hybrid powertrain controller  

DOE Patents [OSTI]

A hybrid powertrain for a vehicle comprising a diesel engine and an electric motor in a parallel arrangement with a multiple ratio transmission located on the torque output side of the diesel engine, final drive gearing connecting drivably the output shaft of transmission to traction wheels of the vehicle, and an electric motor drivably coupled to the final drive gearing. A powertrain controller schedules fuel delivered to the diesel engine and effects a split of the total power available, a portion of the power being delivered by the diesel and the balance of the power being delivered by the motor. A shifting schedule for the multiple ratio transmission makes it possible for establishing a proportional relationship between accelerator pedal movement and torque desired at the wheels. The control strategy for the powertrain maintains drivability of the vehicle that resembles drivability of a conventional spark ignition vehicle engine powertrain while achieving improved fuel efficiency and low exhaust gas emissions.

Jankovic, Miroslava (Birmingham, MI); Powell, Barry Kay (Belleville, MI)

2000-12-26T23:59:59.000Z

30

Vehicle Systems Integration (VSI) Research Laboratory at ORNL...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Vehicle Technologies Program Annual Merit Review and Peer Evaluation vss035smith2011o.pdf More Documents & Publications The ArvinMeritor Dual Mode Hybrid Powertrain...

31

Future Potential of Hybrid and Diesel Powertrains in the U.S. Light-duty Vehicle Market  

SciTech Connect (OSTI)

Diesel and hybrid technologies each have the potential to increase light-duty vehicle fuel economy by a third or more without loss of performance, yet these technologies have typically been excluded from technical assessments of fuel economy potential on the grounds that hybrids are too expensive and diesels cannot meet Tier 2 emissions standards. Recently, hybrid costs have come down and the few hybrid makes available are selling well. Diesels have made great strides in reducing particulate and nitrogen oxide emissions, and are likely though not certain to meet future standards. In light of these developments, this study takes a detailed look at the market potential of these two powertrain technologies and their possible impacts on light-duty vehicle fuel economy. A nested multinomial logit model of vehicle choice was calibrated to 2002 model year sales of 930 makes, models and engine-transmission configurations. Based on an assessment of the status and outlook for the two technologies, market shares were predicted for 2008, 2012 and beyond, assuming no additional increase in fuel economy standards or other new policy initiatives. Current tax incentives for hybrids are assumed to be phased out by 2008. Given announced and likely introductions by 2008, hybrids could capture 4-7% and diesels 2-4% of the light-duty market. Based on our best guesses for further introductions, these shares could increase to 10-15% for hybrids and 4-7% for diesels by 2012. The resulting impacts on fleet average fuel economy would be about +2% in 2008 and +4% in 2012. If diesels and hybrids were widely available across vehicle classes, makes, and models, they could capture 40% or more of the light-duty vehicle market.

Greene, D.L.

2004-08-23T23:59:59.000Z

32

Vehicle Research Laboratory - FEERC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vehicle Research Laboratory Vehicle Research Laboratory Expertise The overall FEERC team has been developed to encompass the many disciplines necessary for world-class fuels, engines, and emissions-related research, with experimental, analytical, and modeling capabilities. Staff members specialize in areas including combustion and thermodynamics, emissions measurements, analytical chemistry, catalysis, sensors and diagnostics, dynamometer cell operations, engine controls and control theory. FEERC engineers have many years of experience in vehicle research, chassis laboratory development and operation, and have developed specialized systems and methods for vehicle R&D. Selected Vehicle Research Topics In-use investigation of Lean NOx Traps (LNTs). Vehicle fuel economy features such as lean operation GDI engines,

33

Magnesium Powertrain Cast Components Project (AMD 304)  

Broader source: Energy.gov (indexed) [DOE]

February 28, 2008 Task 3 Research Address MPCC-identified critical gaps in fundamental science of Mg for powertrain applications and initiate research in these areas *...

34

Electric Vehicle Research Group  

E-Print Network [OSTI]

.................................................................................9 From diesel to electric: a new era in personnel transport for underground coal minesElectric Vehicle Research Group Annual Report 2012 #12;Table of Contents Executive Summary................................................................................8 C2-25 Electric Vehicle Drivetrain

Liley, David

35

Vehicle Technologies Office Merit Review 2014: Look-Ahead Driver Feedback and Powertrain Management  

Broader source: Energy.gov [DOE]

Presentation given by Eaton at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about look-ahead driver feedback and...

36

DOE Hydrogen Analysis Repository: Powertrain Systems Analysis Toolkit  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powertrain Systems Analysis Toolkit (PSAT) Powertrain Systems Analysis Toolkit (PSAT) Project Summary Full Title: Powertrain Systems Analysis Toolkit (PSAT) Project ID: 122 Principal Investigator: Aymeric Rousseau Brief Description: PSAT is a forward-looking model that simulates fuel economy and performance in a realistic manner -- taking into account transient behavior and control system characteristics. It can simulate an unrivaled number of predefined configurations (conventional, electric, fuel cell, series hybrid, parallel hybrid, and power split hybrid). Keywords: Hybrid electric vehicles (HEV); fuel cell vehicles (FCV); vehicle characteristics Purpose Simulate performance and fuel economy of advanced vehicles to support U.S. DOE R&D activities Performer Principal Investigator: Aymeric Rousseau

37

Vehicle Technologies Office: Workplace Charging Challenge Partner: AVL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AVL Powertrain Engineering, Inc. to someone by E-mail AVL Powertrain Engineering, Inc. to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Partner: AVL Powertrain Engineering, Inc. on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: AVL Powertrain Engineering, Inc. on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: AVL Powertrain Engineering, Inc. on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: AVL Powertrain Engineering, Inc. on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Partner: AVL Powertrain Engineering, Inc. on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Partner: AVL Powertrain Engineering, Inc. on

38

Advancing Next-Generation Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the U.S. Department of Energy's (DOE's) lead laboratory for researching advanced vehicle technologies, including hy- the U.S. Department of Energy's (DOE's) lead laboratory for researching advanced vehicle technologies, including hy- brid, plug-in hybrid, battery electric, and alternative fuel vehicles, Argonne provides transportation research critical to advancing the development of next-generation vehicles. Central to this effort is the Lab's Advanced Powertrain Research Facility (APRF), an integrated four-wheel drive chassis dynamometer and component test facility.

39

Influence of driving patterns on life cycle cost and emissions of hybrid and plug-in electric vehicle powertrains  

E-Print Network [OSTI]

that could be powered entirely by electricity using plug- in vehicles. Thus, plug-in vehicles have assessment Plug-in hybrid electric vehicles a b s t r a c t We compare the potential of hybrid, extended-range plug-in hybrid, and battery electric vehicles to reduce lifetime cost and life cycle greenhouse gas

Michalek, Jeremy J.

40

Vehicle Technologies Office: Propulsion Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Materials Manufacturers use propulsion (or powertrain) materials in the components that move vehicles of every size and shape. Conventional vehicles use these materials in components such as the engine, transmission, fuel system, and exhaust after-treatment systems. Electric drive vehicles use propulsion materials in their electric motors and power electronics. Developing advanced propulsion materials is essential to commercializing new, highly efficient automotive technologies that have technical requirements that existing powertrain materials cannot meet. The Vehicle Technology Office's (VTO) research in propulsion materials focuses on four areas: Materials for hybrid and electric drive systems Materials for high efficiency combustion engines Materials to enable energy recovery systems and control exhaust gases

Note: This page contains sample records for the topic "vehicles powertrain research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Fuel Economy Improvements from a Hybrid-Electric/Diesel Powertrain in a Class 4 Parcel Delivery Vehicle  

Broader source: Energy.gov [DOE]

The goal of this project is to provide data to help bridge the gap between R&D and the commercial availability of advanced vehicle technologies that reduce petroleum use in the U.S. and improve air quality.

42

AVL Powertrain Engineering | Open Energy Information  

Open Energy Info (EERE)

AVL Powertrain Engineering AVL Powertrain Engineering Jump to: navigation, search Name AVL Powertrain Engineering Address 47519 Halyard Drive Place Plymouth, Michigan Zip 48170 Sector Vehicles Website https://www.avl.com Coordinates 42.383974°, -83.511724° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.383974,"lon":-83.511724,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

43

SLH Timing Belt Powertrain  

SciTech Connect (OSTI)

The main goal of this proposal was to develop and test a novel powertrain solution for the SLH hydroEngine?, a low-cost, efficient low-head hydropower technology. Nearly two-thirds of U.S. renewable electricity is produced by hydropower (EIA 2010). According to the U.S. Department of Energy; this amount could be increased by 50% with small hydropower plants, often using already-existing dams (Hall 2004). There are more than 80,000 existing dams, and of these, less than 4% generate power (Blankinship 2009). In addition, there are over 800 irrigation districts in the U.S., many with multiple, non-power, low-head drops. These existing, non-power dams and irrigation drops could be retrofitted to produce distributed, baseload, renewable energy with appropriate technology. The problem is that most existing dams are low-head, or less than 30 feet in height (Ragon 2009). Only about 2% of the available low-head hydropower resource in the U.S. has been developed, leaving more than 70 GW of annual mean potential low-head capacity untapped (Hall 2004). Natel Energy, Inc. is developing a low-head hydropower turbine that operates efficiently at heads less than 6 meters and is cost-effective for deployment across multiple low-head structures. Because of the unique racetrack-like path taken by the prime-movers in the SLH, a flexible powertrain is required. Historically, the only viable technological solution was roller chain. Despite the having the ability to easily attach blades, roller chain is characterized by significant drawbacks, including high cost, wear, and vibration from chordal action. Advanced carbon-#12;fiber-reinforced timing belts have been recently developed which, coupled with a novel belt attachment system developed by Natel Energy, result in a large reduction in moving parts, reduced mass and cost, and elimination of chordal action for increased fatigue life. The work done in this project affirmatively addressed each of the following 3 major uncertainties concerning a timing-belt based hydroEngine ?powertrain: 1. Can a belt handle the high torques and power loads demanded by the SLH? (Yes.) 2. Can the SLH blades be mounted to belt with a connection that can withstand the loads encountered in operation? (Yes.) 3. Can the belt, with blade attachments, live through the required cyclic loading? (Yes.) The research adds to the general understanding of sustainable small hydropower systems by using innovative system testing to develop and demonstrate performance of a novel powertrain solution, enabling a new type of hydroelectric turbine to be commercially developed. The technical effectiveness of the methods investigated has been shown to be positive through an extensive design and testing process accommodating many constraints and goals, with a major emphasis on high cycle fatigue life. Economic feasibility of the innovations has been demonstrated through many iterations of design for manufacturability and cost reduction. The project is of benefit to the public because it has helped to develop a solution to a major problem -- despite the large available potential for new low-head hydropower, high capital costs and high levelized cost of electricity (LCOE) continue to be major barriers to project development. The hydroEngine? represents a significant innovation, leveraging novel fluid mechanics and mechanical configuration to allow lower-cost turbine manufacture and development of low head hydropower resources.

Schneider, Abe

2014-04-09T23:59:59.000Z

44

Double Planetary Gear (PG) power-split hybrid powertrains have been used in production vehicles from Toyota  

E-Print Network [OSTI]

the challenging fuel economy standards set by the EU and US governments [1]. Hybrid and electric car sales.3% of the market, a significant increase from 2.2% market share in 2011[2]. 90% of the strong hybrid vehicle sales machines [4]. It is also possible to have parallel modes, series modes, pure EV modes and fixed-gear modes

Peng, Huei

45

Vehicle Technologies Office: Fuels and Lubricants Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuels and Lubricants Fuels and Lubricants Research to someone by E-mail Share Vehicle Technologies Office: Fuels and Lubricants Research on Facebook Tweet about Vehicle Technologies Office: Fuels and Lubricants Research on Twitter Bookmark Vehicle Technologies Office: Fuels and Lubricants Research on Google Bookmark Vehicle Technologies Office: Fuels and Lubricants Research on Delicious Rank Vehicle Technologies Office: Fuels and Lubricants Research on Digg Find More places to share Vehicle Technologies Office: Fuels and Lubricants Research on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Fuel Effects on Combustion Lubricants Natural Gas Research Biofuels End-Use Research

46

Vehicle Technologies Office: Combustion Engine Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Combustion Engine Combustion Engine Research to someone by E-mail Share Vehicle Technologies Office: Combustion Engine Research on Facebook Tweet about Vehicle Technologies Office: Combustion Engine Research on Twitter Bookmark Vehicle Technologies Office: Combustion Engine Research on Google Bookmark Vehicle Technologies Office: Combustion Engine Research on Delicious Rank Vehicle Technologies Office: Combustion Engine Research on Digg Find More places to share Vehicle Technologies Office: Combustion Engine Research on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Combustion Engines Emission Control Waste Heat Recovery Fuels & Lubricants Materials Technologies Combustion Engine Research

47

The $2000 electric powertrain TRP Project. Baseline program final report, June 22, 1994--January 21, 1996  

SciTech Connect (OSTI)

The program objective was to develop and test technologies which improve the Northrop Grumman electric powertrain and lead to the volume production of an electric powertrain with the power, smoothness, and cost of an internal combustion engine. Accomplishments for this program are summarized in the following six topic areas and selected figures are shown: (1) The 100 hp powertrain was commercialized; (2) The Chrysler EPIC minivan was commercialized; (3) The 230 hp powertrain was commercialized; (4) The Blue Bird electric school and commercial buses were commercialized; (5) Related developments were initiated for DoD and energy systems applications; and (6) Several key powertrain technologies were researched and advanced.

NONE

1997-01-01T23:59:59.000Z

48

Hybrid powertrain system  

DOE Patents [OSTI]

A powertrain system is provided that includes a first prime mover and change-gear transmission having a first input shaft and a second input shaft. A twin clutch is disposed between the first prime mover and the transmission. The twin clutch includes a first main clutch positioned between the first prime mover and the first input shaft and a second main clutch positioned between the first prime mover and the second input shaft. The powertrain system also includes a second prime mover operably connected to one of the first and second input shafts.

Hughes, Douglas A. (Wixom, MI)

2007-09-25T23:59:59.000Z

49

NREL: Vehicles and Fuels Research - Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publications Publications NREL researchers document their findings in technical reports, conference papers, journal articles, and fact sheets. Visit the following online resources to find publications about alternative and advanced transportation technologies and systems. NREL Publications Database This database features a wide variety of publications produced by NREL from 1977 to the present. Search the database or find publications according to these popular key words: Advanced vehicles and systems | Alternative fuels | Batteries | Electric vehicles | Energy storage | Fuel cell vehicles | Hybrid electric vehicles | Plug-in electric vehicles | Vehicle analysis | Vehicle modeling | Vehicle emissions Selected Publications Read selected publications related to our vehicles and fuels projects:

50

NREL: Vehicles and Fuels Research - Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Projects Projects NREL's vehicles and fuels projects focus on developing, evaluating, and demonstrating innovative technologies that reduce the nation's dependence on imported petroleum and improve air quality. We work in partnership with vehicle manufacturers, equipment suppliers, fuel providers, and others to develop and commercialize vehicle and fuel technologies that meet our nation's energy and environmental goals. Advanced Combustion and Fuels Biofuels Electric Vehicle Grid Integration Energy Storage Fleet Test and Evaluation Power Electronics ReFUEL Laboratory Secure Transportation Data Vehicle Ancillary Loads Reduction Vehicle Systems Analysis Printable Version Vehicles & Fuels Research Home Projects Advanced Combustion & Fuels Biofuels Electric Vehicle Grid Integration

51

Workplace Charging Challenge Partner: AVL Powertrain Engineering...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AVL Powertrain Engineering, Inc. Founded in 1948, AVL provides advanced powertrain engineering services and a broad range of testing technology for the development of...

52

Vehicle Technologies Office: Natural Gas Research | Department...  

Energy Savers [EERE]

Natural Gas Research Vehicle Technologies Office: Natural Gas Research Natural gas offers tremendous opportunities for reducing the use of petroleum in transportation. Medium and...

53

AVTA: Ford Escape PHEV Advanced Research Vehicle 2010 Testing...  

Broader source: Energy.gov (indexed) [DOE]

Ford Escape PHEV Advanced Research Vehicle 2010 Testing Results AVTA: Ford Escape PHEV Advanced Research Vehicle 2010 Testing Results The Vehicle Technologies Office's Advanced...

54

DOE Hydrogen Analysis Repository: A Portfolio of Power-Trains for Europe  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Portfolio of Power-Trains for Europe A Portfolio of Power-Trains for Europe Project Summary Full Title: A Portfolio of Power-Trains for Europe: A Fact-Based Analysis Project ID: 266 Principal Investigator: Brief Description: This study reports the results of a factual evaluation of battery electric vehicles, fuel cell electric vehicles, plug-in hybrid electric vehicles, and internal combustion engine vehicles for the European market based on proprietary industry data. Keywords: Alternative fuel vehicles (AFV); Fuel cell vehicles (FCV); Plug-in hybrid electric vehicles (PHEV); Costs; Greenhouse gases (GHG); Emissions; Battery electric vehicles (BEV); Internal combustion engine (ICE); Hydrogen Purpose A group of companies, government organisations and a non-governmental organization - the majority with a specific interest in fuel cell

55

Top 10 Things You Didn't Know About Electric Vehicles | Department of  

Broader source: Energy.gov (indexed) [DOE]

Electric Vehicles Electric Vehicles Top 10 Things You Didn't Know About Electric Vehicles November 30, 2012 - 2:09pm Addthis At Argonne's Advanced Powertrain Research Facility, researchers conduct vehicle benchmarking and testing activities that provide data critical to the development and commercialization of next-generation vehicles.| Photo courtesy of Argonne National Laboratory At Argonne's Advanced Powertrain Research Facility, researchers conduct vehicle benchmarking and testing activities that provide data critical to the development and commercialization of next-generation vehicles.| Photo courtesy of Argonne National Laboratory Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs Want to know more about electric vehicles? Visit the Alternative Fuels Data Center website for more about the

56

Automotive Powertrain Control: A Survey Jeffrey A. Cook, Jing Sun  

E-Print Network [OSTI]

and diesel engines and their aftertreatment systems are reviewed, and chal- lenging control problems for conventional engines, hybrid vehicles and fuel cell powertrains are discussed. Fundamentals are revisited to systems engineering, aftertreatment, and control of advanced technology gasoline and diesel engines

Grizzle, Jessy W.

57

Fuel economy goals for future powertrain and engine options  

Science Journals Connector (OSTI)

Efficiency goals represent one of the key factors governing powertrain choice. These goals are specified for three novel developments in automotive technology which would enable them to compete on this single basis with the conventional four-speed manual or automatic transmission (with torque converter lock-up) coupled with a fixed displacement spark-ignition engine. The fuel consumption figures of continuously variable ratio and infinitely variable ratio automobile transmissions are presented using a simulation model of a vehicle in both urban (EPA cycle) and constant-speed operation. A powertrain utilising a variable displacement engine is also simulated.

D.B. Gilmore

1988-01-01T23:59:59.000Z

58

NREL: Vehicles and Fuels Research - Fuel Cell Electric Vehicle Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vehicle Technologies in the Media Spotlight Vehicle Technologies in the Media Spotlight August 19, 2013 Automakers have made steady progress reducing the cost and increasing the performance of fuel cell propulsion systems, and most major vehicle manufacturers are geared to launch fuel cell electric vehicles in the U.S. market between 2015 and 2020. A recent Denver Post article highlights the National Renewable Energy Laboratory's contribution to the progress that automakers have made in getting their fuel cell electric vehicles ready for production. "When I started working on fuel cells in the '90s, people said it was a good field because a solution would always be five years away," said Brian Pivovar, who leads NREL's fuel cell research. "Not anymore." The article references a variety of NREL's hydrogen and fuel cell

59

Control system for a hybrid powertrain system  

DOE Patents [OSTI]

A vehicle includes a powertrain with an engine, first and second torque machines, and a hybrid transmission. A method for operating the vehicle includes operating the engine in an unfueled state, releasing an off-going clutch which when engaged effects operation of the hybrid transmission in a first continuously variable mode, and applying a friction braking torque to a wheel of the vehicle to compensate for an increase in an output torque of the hybrid transmission resulting from releasing the off-going clutch. Subsequent to releasing the off-going clutch, an oncoming clutch which when engaged effects operation of the hybrid transmission in a second continuously variable mode is synchronized. Subsequent to synchronization of the oncoming clutch, the oncoming clutch is engaged.

Naqvi, Ali K.; Demirovic, Besim; Gupta, Pinaki; Kaminsky, Lawrence A.

2014-09-09T23:59:59.000Z

60

NREL: Vehicles and Fuels Research - Vehicle Ancillary Loads Reduction  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Research Search More Search Options Site Map Photo of Advanced Automotive Manikin Reducing fuel consumption by air conditioning systems is the focus of Vehicle Ancillary Loads Reduction (VALR) activities at NREL. About 7 billion gallons of fuel-about 5.5% of total national light-duty vehicle fuel use-are used annually just to cool light-duty vehicles in the United States. That's why our VALR team works with industry to help increase fuel economy and reduce tailpipe emissions by reducing the ancillary loads requirements in vehicles while maintaining the thermal comfort of the passengers. Approaches include improved cabin insulation, advanced window systems, advanced cooling and venting systems, and heat generated cooling. Another focus of the VALR project is ADAM, the ADvanced Automotive Manikin

Note: This page contains sample records for the topic "vehicles powertrain research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

NREL: Vehicles and Fuels Research - News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vehicles and Fuels Research News Vehicles and Fuels Research News The following news stories highlight vehicles and fuels research at NREL. December 23, 2013 NREL and Thought Leaders Gather at Electric Vehicle Battery Management Summit NREL researchers will gather with U.S. Department of Energy program directors and technology managers, and other thought leaders to exchange strategies for maximizing the performance, safety, and lifespan of electric-drive vehicle batteries. November 7, 2013 NREL Developed Mobile App for Alternative Fueling Station Locations Released iPhone users now have access to a free application that locates fueling stations offering alternative fuels, including electricity, natural gas, biodiesel, e85 Ethanol, propane and hydrogen. The Energy Department's (DOE) National Renewable Energy Laboratory (NREL) developed the new mobile

62

NREL: Vehicles and Fuels Research Home Page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NREL helps industry partners develop the next generation of energy efficient, high performance vehicles and fuels. NREL's transportation research spans from the materials to the systems level. NREL conducts research on the full range of vehicle types, from light-duty passenger cars to heavy-duty freight trucks. NREL's credible transportation research is grounded in real-world data. NREL's integrated approach links automotive technology advances to the full spectrum of renewable energy solutions. NREL researchers examine infrastructure, market conditions and driver behavior, as well as fuels and vehicles. NREL helps put fuel-efficient, low-emission cars and trucks on the road through research and innovation in electric vehicle, biofuel, and conventional automotive technologies. Researchers collaborate with industry

63

Holiday Shopping and Electric Vehicles | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Infrastructure Research: Holiday Shopping & Electric Vehicles Infrastructure Research: Holiday Shopping & Electric Vehicles Jigar Shah 2014.12.03 With Thanksgiving behind us in the...

64

US DRIVE Driving Research and Innovation for Vehicle Efficiency...  

Broader source: Energy.gov (indexed) [DOE]

Driving Research and Innovation for Vehicle Efficiency and Energy Sustainability Partnership Plan US DRIVE Driving Research and Innovation for Vehicle Efficiency and Energy...

65

Vehicle Technologies Office: Applied Battery Research  

Broader source: Energy.gov [DOE]

Applied battery research addresses the barriers facing the lithium-ion systems that are closest to meeting the technical energy and power requirements for hybrid electric vehicle (HEV) and electric...

66

Plug-In Hybrid Electric Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

* Batteries * Batteries * Downloadable Dynanometer Database (D3) * Modeling * Prototypes * Testing * Assessment PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Argonne Leads DOE's Effort to Evaluate Plug-in Hybrid Technology aprf testing Argonne's Advanced Powertrain Research Facility (APRF) enables researchers to conduct vehicle benchmarking and testing activities that provide data critical to the development and commercialization of next-generation vehicles such as PHEVs. Argonne's Research Argonne National Laboratory is the U.S. Department of Energy's lead national laboratory for the simulation, validation and laboratory evaluation of plug-in hybrid electric vehicles and the advanced

67

NREL: Vehicles and Fuels Research - Hybrid Electric Fleet Vehicle...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hybrid Electric Fleet Vehicle Testing How Hybrid Electric Vehicles Work Hybrid electric vehicles combine a primary power source, an energy storage system, and an electric motor to...

68

Kettering University Center for Fuel Cell Systems Powertrain Integration |  

Open Energy Info (EERE)

Kettering University Center for Fuel Cell Systems Powertrain Integration Kettering University Center for Fuel Cell Systems Powertrain Integration Jump to: navigation, search Name Kettering University - Center for Fuel Cell Systems & Powertrain Integration Place Flint, Michigan Zip 48504-4898 Product Focussed on fuel cell research. Coordinates 32.204081°, -95.349009° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.204081,"lon":-95.349009,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

69

Hybrid & Hydrogen Vehicle Research Laboratory  

E-Print Network [OSTI]

such as Challenge X use this facility to develop advanced vehicles. Hydrogen Fueling Station Developed byAir Products and Chemicals, Inc. with funding from US DOE, the commercial hydrogen fueling station was installed at Penn State University Park in Fall 2004. This station will be used to fuel in-service hydrogen

Lee, Dongwon

70

Vehicle Technologies Office Recognizes Leaders in Advanced Vehicle Research, Development and Deployment  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office recently recognized 10 leaders in research, development and deployment for their contributions to the DOE's efforts to improve advanced technology and alternative fuel vehicles.

71

Magnesium Powertrain Cast Components  

Broader source: Energy.gov [DOE]

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

72

Vehicle Technologies Office: Fuels and Lubricants Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuels and Lubricants Research Fuels and Lubricants Research As transportation accounts for two-thirds of the nearly $1 billion the U.S. spends daily on foreign oil, it is vital to increase our use of alternative fuels. Increasing the fuels available to drivers reduces price volatility, supports domestic industries, and increases environmental sustainability. The DOE's Alternative Fuels Data Center provides basic information on alternative fuels, including Biodiesel, Ethanol, Natural Gas, Propane, and Hydrogen. The Vehicle Technologies Office (VTO) supports research to improve how vehicles use these many of these fuels in the future, as well as activities to increase their availability today. It also researches how new petroleum-based fuels affect advanced combustion systems and how lubricants can improve the efficiency of vehicles currently on the road.

73

Mr. Jamie Gertsch Research Engineer, Vehicle Dynamics  

E-Print Network [OSTI]

of an advanced rollover detection system. ODOT provided us the most current five years (1999-2003) of all truckMr. Jamie Gertsch Research Engineer, Vehicle Dynamics DaimlerChrysler Research and Technology North of cooperation between Portland State University's Intelligent Transportation Systems Laboratory and Daimler

Bertini, Robert L.

74

Vehicle Technologies Office: Natural Gas Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Natural Gas Research Natural Gas Research Natural gas offers tremendous opportunities for reducing the use of petroleum in transportation. Medium and heavy-duty fleets, which have significant potential to use natural gas, currently consume more than a third of the petroleum in transportation in the U.S. Natural gas is an excellent fit for a wide range of heavy-duty applications, especially transit buses, refuse haulers, and Class 8 long-haul or delivery trucks. In addition, natural gas can be a very good choice for light-duty vehicle fleets with central refueling. See the Alternative Fuels Data Center for a description of the uses and benefits of natural gas vehicles or its Laws and Incentives database for information on tax incentives. The Vehicle Technologies Office (VTO) supports the development of natural gas engines and research into renewable natural gas production.

75

NREL: Vehicles and Fuels Research - Hydraulic Hybrid Fleet Vehicle...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydraulic Hybrid Fleet Vehicle Testing How Hydraulic Hybrid Vehicles Work Hydraulic hybrid systems can capture up to 70% of the kinetic energy that would otherwise be lost during...

76

Life cycle cost analysis of a car, a city bus and an intercity bus powertrain for year 2005 and 2020  

Science Journals Connector (OSTI)

The international economy, in the beginning of the 20th century, is characterized by uncertainty about the supply and the price of oil. Together with the fast decrease of electrical propulsion component prices, it becomes more and more cost effective to develop vehicles with alternative powertrains. This paper focuses on two questions: Are alternative powertrains especially cost effective for specific applications?; How does an increased fossil fuel price influences the choose of powertrain? To assess these questions, a computer tool named THEPS, developed in a Ph.D. project, is used. Three applications and three scenarios are analysed. The applications, a car, a city bus and an intercity bus, are vehicles all assumed to operate in Sweden. One scenario represents year 2005, the other two year 2020. The two future scenarios are characterized by different fossil fuel prices. The study, presented in the paper, indicates that alternative powertrains can be competitive from a cost perspective, in some applications, already in year 2005. It is for example cost effective to equip a city bus, running in countries with a high fuel price, with a hybrid powertrain. The study also indicates that pure electric, hybrid and/or fuel cell cars will probably be a more cost effective choice than conventional cars in year 2020. Another indication is that it will not be clear which powertrain concept to choose. The reason is that many cost effective powertrain concepts will be offered. The best choice will depend on the application.

Jonas Hellgren

2007-01-01T23:59:59.000Z

77

Alternative Fuels Data Center: Vehicle Research and Development Grants  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Vehicle Research and Vehicle Research and Development Grants to someone by E-mail Share Alternative Fuels Data Center: Vehicle Research and Development Grants on Facebook Tweet about Alternative Fuels Data Center: Vehicle Research and Development Grants on Twitter Bookmark Alternative Fuels Data Center: Vehicle Research and Development Grants on Google Bookmark Alternative Fuels Data Center: Vehicle Research and Development Grants on Delicious Rank Alternative Fuels Data Center: Vehicle Research and Development Grants on Digg Find More places to share Alternative Fuels Data Center: Vehicle Research and Development Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vehicle Research and Development Grants The Indiana Economic Development Corporation (IDEC) administers the Indiana

78

Advanced Methods Approach to Hybrid Powertrain Systems Optimization...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Methods Approach to Hybrid Powertrain Systems Optimization of a Transit Bus Application Advanced Methods Approach to Hybrid Powertrain Systems Optimization of a Transit Bus...

79

Hybrid powertrain for light aircraft  

Science Journals Connector (OSTI)

In this paper, we evaluate the possibility of employing a hybrid powertrain to propel a light aircraft. The work suggests that the incorporation of a hybrid powertrain has little effect on fuel consumption for a light aircraft operating in a condition of straight and level cruise. However, there is a potential decrease in fuel consumption when a light aircraft operates either in climb or when manoeuvring over a conventionally powered aircraft. This is due to three main factors, namely, the energy harvested during descent by a windmilling propeller, the engine being switched off during descent and the fact that the air/fuel mixture does not have to be enriched during climbing phases. Estimating the potential fuel savings is obviously mission dependent, however, an unshrouded propeller could harvest enough energy to provide 39% of the excess power required for climbing. This figure could be significantly increased by use of a shrouded propeller.

John Olsen; John R. Page

2014-01-01T23:59:59.000Z

80

Method for controlling powertrain pumps  

DOE Patents [OSTI]

A method of controlling a pump supplying a fluid to a transmission includes sensing a requested power and an excess power for a powertrain. The requested power substantially meets the needs of the powertrain, while the excess power is not part of the requested power. The method includes sensing a triggering condition in response to the ability to convert the excess power into heat in the transmission, and determining that an operating temperature of the transmission is below a maximum. The method also includes determining a calibrated baseline and a dissipation command for the pump. The calibrated baseline command is configured to supply the fluid based upon the requested power, and the dissipation command is configured to supply additional fluid and consume the excess power with the pump. The method operates the pump at a combined command, which is equal to the calibrated baseline command plus the dissipation command.

Sime, Karl Andrew; Spohn, Brian L; Demirovic, Besim; Martini, Ryan D; Miller, Jean Marie

2013-10-22T23:59:59.000Z

Note: This page contains sample records for the topic "vehicles powertrain research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

NREL: Vehicles and Fuels Research - Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Research Search More Search Options Site Map NREL's Energy Storage Project is leading the charge on battery thermal management, modeling, and systems solutions to enhance the performance of fuel cell, hybrid electric, and electric vehicles (FCVs, HEVs, and EVs) for a cleaner, more secure transportation future. NREL's experts work closely with the U.S. Department of Energy (DOE), industry, and automotive manufacturers to improve energy storage devices, such as battery modules and ultracapacitors, by enhancing their thermal performance and life-cycle cost. Activities also involve modeling and simulation to evaluate technical targets and energy storage parameters, and investigating combinations of energy storage systems to increase vehicle efficiency. Much of this research is conducted at our state-of-the-art energy storage

82

NREL: Vehicles and Fuels Research - Electric Vehicle Grid Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electric Vehicle Grid Integration Project Electric Vehicle Grid Integration Project Plug-in electric vehicle charging at NREL. PEV charging in the VTIF. Photo by Dennis Schroeder, NREL/PIX 19758 The Electric Vehicle Grid Integration Project supports the development and implementation of electrified transportation systems, particularly those that integrate renewable-based vehicle charging systems. Plug-in electric vehicles (PEVs)-including all-electric vehicles and plug-in hybrid electric vehicles (PHEVs)-provide a new opportunity to reduce oil consumption by drawing on power from the electric grid. To maximize the benefits of PEVs, the emerging PEV infrastructure must provide access to clean electricity generated from renewable sources, satisfy driver expectations, and ensure safety. Value creation from systems

83

Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles  

Broader source: Energy.gov [DOE]

This report examines energy use and emissions from primary energy source through vehicle operation to help researchers understand the impact of the upstream mix of electricity generation technologies for recharging PHEVs, as well as the powertrain technology and fuel sources for PHEVs.

84

Ultra Large Castings for Lightweight Vehicle Structures ?AMD...  

Broader source: Energy.gov (indexed) [DOE]

Maryland. merit08mccarty6.pdf More Documents & Publications Ultra Large Castings For Lightweight Vehicle Structures Magnesium Powertrain Cast Components Project (AMD 304)...

85

#LabChat: Innovations Driving More Efficient Vehicles, Dec. 13...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

tweeting from @Argonne. A co-author of several patents related to hybrid powertrain architecture and vehicle operation, Rask explores new technological developments in electric and...

86

Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Vehicle Battery and Vehicle Battery and Engine Research Tax Credits to someone by E-mail Share Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax Credits on Facebook Tweet about Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax Credits on Twitter Bookmark Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax Credits on Google Bookmark Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax Credits on Delicious Rank Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax Credits on Digg Find More places to share Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax Credits on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

87

NREL: Vehicles and Fuels Research - Biofuels Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biofuels Projects Biofuels Projects NREL biofuels projects help overcome technical barriers and expand markets for renewable, biodegradable vehicle fuels. These new liquid fuels include higher-level ethanol blends, butanol, biodiesel, renewable diesel, and other biomass-derived fuels. NREL's biofuels research and development helps improve engine efficiency, reduce polluting emissions, and improve U.S. energy security by reducing petroleum dependency. Biofuels for Diesel Engines NREL's diesel biofuels research and development focuses on developing fuel quality standards and demonstrating compatibility with engines and emission control systems. Highly efficient heavy-duty diesel truck engines are the primary power source for global transportation of freight. Light-duty diesel-fueled passenger vehicles have much higher fuel economy than

88

Ford Escape Advanced Research Vehicle Report Notes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Research Vehicle Advanced Research Vehicle Report Notes 1 "Overall AC electrical energy consumption (AC Wh/mi)" is based on AC electricity consumed during charging events which began during the reporting period and distance driven during all trips in the reporting period. 2 "Overall DC electrical energy consumption (DC Wh/mi)" is based on net DC electricity discharged from or charged to the plug-in battery pack and distance driven during all trips in the reporting period. DC Wh/mi may not be comparable to AC Wh/mi if AC electricity charged prior to the reporting period was discharged during driving within the reporting period, or if AC electricity charged during the reporting period was not discharged during driving within the reporting period.

89

Vehicle Technologies Office: Long-Term Exploratory Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Long-Term Exploratory Long-Term Exploratory Research to someone by E-mail Share Vehicle Technologies Office: Long-Term Exploratory Research on Facebook Tweet about Vehicle Technologies Office: Long-Term Exploratory Research on Twitter Bookmark Vehicle Technologies Office: Long-Term Exploratory Research on Google Bookmark Vehicle Technologies Office: Long-Term Exploratory Research on Delicious Rank Vehicle Technologies Office: Long-Term Exploratory Research on Digg Find More places to share Vehicle Technologies Office: Long-Term Exploratory Research on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Batteries Battery Systems Applied Battery Research Long-Term Exploratory Research Ultracapacitors Advanced Power Electronics & Electrical Machines Advanced Combustion Engines

90

Google+ virtual field trip: "Vehicle Electrification" (11/18/13) | Argonne  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Google+ virtual field trip: "Vehicle Electrification" (11/18/13) Google+ virtual field trip: "Vehicle Electrification" (11/18/13) Share Topic Energy Energy efficiency Vehicles Electric drive technology Browse By - Any - Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Diesel ---Electric drive technology ---Hybrid & electric vehicles ---Powertrain research --Building design ---Construction --Manufacturing -Energy sources --Renewable energy ---Bioenergy ---Solar energy --Fossil fuels ---Natural Gas --Nuclear energy ---Nuclear energy modeling & simulation ---Nuclear fuel cycle ---Reactors -Energy usage --Energy storage ---Batteries ----Lithium-ion batteries ----Lithium-air batteries --Electricity transmission --Smart Grid Environment -Biology --Computational biology --Environmental biology

91

NREL: Vehicles and Fuels Research - Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

graph illustrating three pathways (biofuel, hydrogen, and electric vehicle) to reduce energy use and greenhouse gas emissions. Electric Vehicle Technologies & Targets 3-D...

92

NREL: Vehicles and Fuels Research - Success Stories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electric Vehicle, Grid, and Renewable Synergies Fuel, Engine, and Infrastructure Co-Optimization Red engine. Demo Projects Introduce New Class of Natural Gas Vehicles Graph...

93

Alternative Fuels Data Center: Alternative Fuel Vehicle Research and  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Research and Development Funding to someone by E-mail Research and Development Funding to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle Research and Development Funding on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle Research and Development Funding on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Research and Development Funding on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Research and Development Funding on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle Research and Development Funding on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle Research and Development Funding on AddThis.com... More in this section... Federal State Advanced Search

94

NREL: Vehicles and Fuels Research - Advanced Power Electronics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Research Search More Search Options Site Map The electric drive system is the technology foundation for hybrid electric and fuel cell vehicles. That's why NREL's Advanced Power Electronics project supports and promotes the design, development, and demonstration of power electronic components and systems that will overcome major technical barriers to the commercialization of hybrid, advanced internal combustion, and fuel cell vehicle technologies. In support of DOE's Vehicle Technologies Office, our researchers focus on developing advanced power electronics and electric machinery technologies that improve reliability, efficiency, and ruggedness, and dramatically decrease systems costs for advanced vehicles. Key components for these vehicles include the motor controller, DC to DC converters, and inverters

95

NREL: Vehicles and Fuels Research - NREL Joins Initiative to...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

opportunities in an emerging industry. As a national leader in vehicle power electronics thermal management and reliability R&D, NREL's research in this area focuses on improved...

96

NREL: Vehicles and Fuels Research - Working with Us  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Researchers characterize the thermal properties of vehicle energy storage devices in the Battery Thermal and Test Life Facility. Photo by Dennis Schroeder. NREL offers industry,...

97

Penn State DOE GATE Center of Exellence for In-Vehicle, High...  

Broader source: Energy.gov (indexed) [DOE]

Vehicles * ANL donated licenses for Powertrain Systems Analysis Toolkit (PSAT) * Matlab Sponsored software and hardware * Supporting EcoCAR proposal * Energy storage focus -...

98

Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Amgad Elgowainy and Michael Wang Center for Transportation Research Argonne National Laboratory LDV Workshop July26, 2010 2 2 2 Team Members 2  ANL's Energy Systems (ES) Division  Michael Wang (team leader)  Dan Santini  Anant Vyas  Amgad Elgowainy  Jeongwoo Han  Aymeric Rousseau  ANL's Decision and Information Sciences (DIS) Division:  Guenter Conzelmann  Leslie Poch  Vladimir Koritarov  Matt Mahalik  Thomas Veselka  Audun Botterud  Jianhui Wang  Jason Wang 3 3 3 Scope of Argonne's PHEV WTW Analysis: Vehicle Powertrain Systems and Fuel Pathways 3  Vehicle powertrain systems:  Conventional international combustion engine vehicles (ICEVs)

99

NREL: Transportation Research - Hybrid Electric Fleet Vehicle...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hybrid electric vehicles combine a primary power source, an energy storage system, and an electric motor to achieve a combination of emissions, fuel economy, and range benefits....

100

Advanced Vehicles and Fuels Systems: Cooperative Research and Development Final Report, CRADA number CRD-03-00129  

SciTech Connect (OSTI)

Midwest Research Institute (MRI) and AVL Powertrain Engineering, Inc. (AVL) have executed a Software and Trademark License Agreement (Software License) by which AVL is granted the exclusive right to use, modify and improve and to commercialize by reproducing, distributing and granting sublicenses in, certain computer software known as ADVISOR 2003.

Farrington, R. B.

2010-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicles powertrain research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Argonne Transportation - Plug-in Hybrid Electric Vehicle Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plug-in Hybrid Electric Vehicle Research Capabilities at Argonne National Laboratory and Idaho National Laboratory Plug-in Hybrid Electric Vehicle Research Capabilities at Argonne National Laboratory and Idaho National Laboratory Prius testing by Argonne researchers. The U.S. Department of Energy's (DOE's) FreedomCAR and Vehicle Technologies (FCVT) Program is actively evaluating plug-in hybrid electric vehicle (PHEV) technology and researching the most critical technical barriers to commercializing PHEVs. Argonne National Laboratory, working together with Idaho National Laboratory, leads DOE's efforts to evaluate PHEVs and PHEV technology with the nation’s best vehicle technology evaluation tools and expertise. These two national laboratories are Centers for Excellence that combine state-of-the-art facilities; world-class expertise; long-term collaborative relationships with other DOE national laboratories, industry, and academia;

102

AVTA: Ford Escape PHEV Advanced Research Vehicle 2010 Testing Results  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a plug-in hybrid electric Ford Escape Advanced Research Vehicle, an experimental model not currently for sale. The baseline performance testing provides a point of comparison for the other test results. Taken together, these reports give an overall view of how this vehicle functions under extensive testing. This research was conducted by Idaho National Laboratory.

103

Fact #823: June 2, 2014 Hybrid Vehicles use more Battery Packs but Plug-in Vehicles use More Battery Capacity  

Broader source: Energy.gov [DOE]

Of the battery packs used for electrified vehicle powertrains in model year 2013, the greatest number went into conventional hybrid vehicles which use battery packs that average about 1.3 kilowatt...

104

Vehicle Technologies Office: Closed Solicitations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Closed Solicitations Closed Solicitations Technology Solicitation Title Open Date Close Date Hydrogen and Fuel Cells- Hydrogen and Fuel Cells Request for Information (RFI) on performance, durability, and cost targets for fuel cells designed for Combined Heat and Power (CHP) and Auxiliary Power Unit (APU) applications Office of Energy Efficiency and Renewable Energy 05/28/2009 06/30/2009 Vehicle Technologies- Vehicle Technologies Recovery Act - Systems Level Technology Development, Integration,and Demonstration for Efficient Class 8 Trucks (SuperTruck) and Advanced Technology Powertrains For Light-Duty Vehicles (ATP-LD) Office of Energy Efficiency and Renewable Energy 06/09/2009 09/09/2009 Crosscutting U.S. China Clean Energy Research Center (CERC) Office of Energy Efficiency and Renewable Energy 03/30/2010 05/21/2010

105

Front Vehicle Setup Information Downloadable Dynamometer Database (D  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

10/18/2013 10/18/2013 Advanced Powertrain Research Facility Test weight [lb] 3518 Vehicle dynamometer Input Document date 10/18/2013 Revision Number 1 Advanced Powertrain Research Facility Test weight [lb] Target A [lb] 3518 21.47 Target B [lb/mph] Target C [lb/mph^2] 0.21588 0.012508 Test Fuel Information Due to a failure of the fuel scale during 20F testing, no fuel scale results are reported in the 10Hz data at this temperature Revision Number 1 Notes: Fuel type EPA Tier II EEE HF0437 Test Fuel Information Due to a failure of the fuel scale during 20F testing, no fuel scale results are reported in the 10Hz data at this temperature Fuel type EPA Tier II EEE HF0437 Due to a failure of the fuel scale during 20F testing, no fuel scale results are reported in the 10Hz data at this temperature

106

Vehicle Technologies Office: Exploratory Battery Materials Research  

Broader source: Energy.gov [DOE]

Lowering the cost and improving the performance of batteries for plug-in electric vehicles requires improving every part of the battery, from underlying chemistry to packaging. To reach the EV...

107

NREL: Vehicles and Fuels Research - ReFUEL Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Research Search More Search Options Site Map NREL's Renewable Fuels and Lubricants (ReFUEL) Laboratory is a state-of-the-art research and testing facility for advanced fuels and vehicles. Research and development focuses on overcoming barriers to the increased use of renewable diesel and other nonpetroleum-based fuels, such as biodiesel and synthetic diesel derived from biomass, and improving vehicle efficiency. Using biofuels and improving vehicle efficiency reduces our dependence on imported petroleum and enhances our national energy security. The ReFUEL Laboratory houses the following specialized equipment: Heavy-duty chassis dynamometer with a simulation capability of 8,000 to 80,000 lbs for vehicle performance and emissions research Heavy-duty (up to 600 hp) and light-duty (up to 75 hp) engine

108

NREL: Vehicles and Fuels Research - News Release Archives  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 December 13, 2011 NREL Adds Electric Vehicle to its Advanced Vehicle Fleet NREL will use the new electric vehicle for studies related to charge management and performance, bi-directional charging, and electric vehicle grid integration. December 12, 2011 Energy Department Awards More Than $7 Million for Innovative Hydrogen Storage Technologies in Fuel Cell Electric Vehicles These projects will help lower the costs and increase the performance of hydrogen storage systems by developing innovative materials and advanced tanks for efficient and safe transportation. December 7, 2011 NREL Releases Report on Testing Electric Vehicles to Optimize their Performance with Power Grids Researchers at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) have released a technical report that could help improve

109

The ArvinMeritor Dual Mode Hybrid Powertrain (DMHP): Opportunities...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Vehicle Technologies Program Annual Merit Review and Peer Evaluation vss062smith2011p.pdf More Documents & Publications Vehicle Systems Integration (VSI) Research...

110

Vehicle Technologies Office: Deployment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deployment Deployment Our nation's energy security depends on the efficiency of our transportation system and on which fuels we use. Transportation in the United States already consumes much more oil than we produce here at home and the situation is getting worse. Domestic oil production has been dropping steadily for over 20 years, and experts predict that by 2025, about 70% of our oil will be imported. The U.S. Department of Energy's (DOE's) Vehicle Technologies Office supports research and development (R&D) that will lead to new technologies that reduce our nation's dependence on imported oil, further decrease vehicle emissions, and serve as a bridge from today's conventional powertrains and fuels to tomorrow's hydrogen-powered hybrid fuel cell vehicles. The Vehicle Technologies Office also supports implementation programs that help to transition alternative fuels and vehicles into the marketplace, as well as collegiate educational activities to help encourage engineering and science students to pursue careers in the transportation sector. Following are some of the activities that complement the Vehicle Technologies Office's mission.

111

Experts Guide | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

& electric vehicles ---Hydrogen & fuel cells ---Internal combustion ---Maglev systems ---Powertrain research ---Vehicle testing --Building design ---Construction...

112

Downloads | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

& electric vehicles ---Hydrogen & fuel cells ---Internal combustion ---Maglev systems ---Powertrain research ---Vehicle testing --Building design ---Construction...

113

Press Releases | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

& electric vehicles ---Hydrogen & fuel cells ---Internal combustion ---Maglev systems ---Powertrain research ---Vehicle testing --Building design ---Construction...

114

In The News | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

& electric vehicles ---Hydrogen & fuel cells ---Internal combustion ---Maglev systems ---Powertrain research ---Vehicle testing --Building design ---Construction...

115

Feature Stories | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

& electric vehicles ---Hydrogen & fuel cells ---Internal combustion ---Maglev systems ---Powertrain research ---Vehicle testing --Building design ---Construction...

116

Photos | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

& electric vehicles ---Hydrogen & fuel cells ---Internal combustion ---Maglev systems ---Powertrain research ---Vehicle testing --Building design ---Construction...

117

Employee Spotlights | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

& electric vehicles ---Hydrogen & fuel cells ---Internal combustion ---Maglev systems ---Powertrain research ---Vehicle testing --Building design ---Construction...

118

Success Stories | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

& electric vehicles ---Hydrogen & fuel cells ---Internal combustion ---Maglev systems ---Powertrain research ---Vehicle testing --Building design ---Construction...

119

Science Highlights | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

& electric vehicles ---Hydrogen & fuel cells ---Internal combustion ---Maglev systems ---Powertrain research ---Vehicle testing --Building design ---Construction...

120

Powertrain control strategy determination for computer-controlled transmissions  

Science Journals Connector (OSTI)

An analytical method has been developed for determining the optimal power-train control strategy (engine calibration and shift strategy) on a second-by-second basis through a user specified drive cycle. The optimisation process is subject not only to emission constraints, but also permits the introduction of transmission dynamics and driveability considerations, such as shift frequency, as further operating constraints. With the inclusion of new constraints in the program, the fuel economy projection, the shift strategy, and therefore, the engine speed/road trajectory and the engine calibration are automatically altered by the simulation to reflect the impact of the imposed constraints. The methodology can be applied to both discrete ratio and continuously variable transmissions. In this paper, the optimisation algorithm is detailed and a graphical technique is described for deriving vehicle implementable shift strategies from the optimum. The effects on shift strategy and fuel economy of variation of driveability and emission constraints are also illustrated.

D.M. Kuzak; B.D. Shields; R.J. Freedman; J.J. Lee; D.L. Rittmueller

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicles powertrain research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Experimental aerodynamics research on a hypersonic vehicle  

SciTech Connect (OSTI)

Aerodynamic force and moment measurements and flow visualization results are presented for a hypersonic vehicle configuration at Mach 8. The basic vehicle configuration is a spherically blunted 10[degree] half-angle cone with a slice parallel with the axis of the vehicle. On the slice portion of the vehicle, a flap could be attached so that deflection angles of 10[degree], 20[degree] and 30[degree] could be obtained. All of the experimental results were obtained in the Sandia Mach 8 hypersonic wind tunnel for laminar boundary layer conditions. Flow visualization results include shear stress sensitive liquid crystal photographs, surface streak flow photographs (using liquid crystals), and spark schlieren photographs and video. The liquid crystals were used as an aid in verifying that a laminar boundary layer existed over the entire body. The surface flow photo-graphs show attached and separated flow on both the leeside of the vehicle and near the flap. A detailed uncertainty analysis was conducted to estimate the contributors to body force and moment measurement uncertainty. Comparisons are made with computational results to evaluate both the experimental and numerical results. This extensive set of high-quality experimental force and moment measurements is recommended for use in the calibration and validation of relevant computational aerodynamics codes.

Oberkampf, W.L.; Aeschliman, D.P.; Tate, R.E.; Henfling, J.F.

1993-04-01T23:59:59.000Z

122

Experimental aerodynamics research on a hypersonic vehicle  

SciTech Connect (OSTI)

Aerodynamic force and moment measurements and flow visualization results are presented for a hypersonic vehicle configuration at Mach 8. The basic vehicle configuration is a spherically blunted 10{degree} half-angle cone with a slice parallel with the axis of the vehicle. On the slice portion of the vehicle, a flap could be attached so that deflection angles of 10{degree}, 20{degree} and 30{degree} could be obtained. All of the experimental results were obtained in the Sandia Mach 8 hypersonic wind tunnel for laminar boundary layer conditions. Flow visualization results include shear stress sensitive liquid crystal photographs, surface streak flow photographs (using liquid crystals), and spark schlieren photographs and video. The liquid crystals were used as an aid in verifying that a laminar boundary layer existed over the entire body. The surface flow photo-graphs show attached and separated flow on both the leeside of the vehicle and near the flap. A detailed uncertainty analysis was conducted to estimate the contributors to body force and moment measurement uncertainty. Comparisons are made with computational results to evaluate both the experimental and numerical results. This extensive set of high-quality experimental force and moment measurements is recommended for use in the calibration and validation of relevant computational aerodynamics codes.

Oberkampf, W.L.; Aeschliman, D.P.; Tate, R.E.; Henfling, J.F.

1993-04-01T23:59:59.000Z

123

NREL: Vehicles and Fuels Research - Fleet Test and Evaluation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Research Search More Search Options Site Map The Fleet Test and Evaluation Team at the National Renewable Energy Laboratory works in partnership with commercial and government fleets and industry groups to evaluate the performance of alternative fuels and advanced technologies in medium- and heavy-duty fleet vehicles. The team's project areas include: Fleet DNA: Vehicle Drive Cycle Analysis Hybrid Electric Drive Systems Electric and Plug-in Hybrid Electric Drive Systems Hydraulic Hybrid Drive Systems Truck Stop Electrification Alternative Fuels Truck Efficiency Key aspects of this work involve meeting with industry stakeholders to understand market factors and customer requirements, evaluating the performance of advanced technology vehicles versus their conventional

124

Vehicle Setup Information Downloadable Dynamometer Database (D  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Architecture Architecture Conventional 2013 Nissan Altima Test Cell Location 2WD Advanced Powertrain Research Facility Document Date 8/7/2013 Vehicle Dynamometer Input 2.5L DOHC 16V Inline 4 cylinder Transmission- CVT *AS VEHICLE WAS TESTED ON A 2WD DYNAMOMETER WITHOUT A "DYNO MODE", DECEL FUEL CUTOFF WAS FOUND TO BE LIMITED Revision Number 3 Notes: Test weight [lb] Target A [lb] 3500 42.94 Target B [lb/mph] Target C [lb/mph^2] -0.4448 0.02333 2.5L DOHC 16V Inline 4 cylinder Transmission- CVT *AS VEHICLE WAS TESTED ON A 2WD DYNAMOMETER WITHOUT A "DYNO MODE", DECEL FUEL CUTOFF WAS FOUND TO BE LIMITED Test Fuel Information 2.5L DOHC 16V Inline 4 cylinder Transmission- CVT *AS VEHICLE WAS TESTED ON A 2WD DYNAMOMETER WITHOUT A "DYNO MODE", DECEL FUEL CUTOFF WAS FOUND TO BE

125

Evaluation of high-energy-efficiency powertrain approaches: the 1996 futurecar challenge  

SciTech Connect (OSTI)

Twelve colleges and universities were selected to design, build, and develop a mid-size vehicle that could achieve high energy economy while maintaining the performance characteristics of today`s mid-size vehicle. Many of the teams were able to increase the fuel economy of their vehicles, but most of these increases came at the expense of decreased performance or worsened emissions. This paper evaluates and summarizes the high-energy-efficiency powertrain technology approaches that were utilized in the 1996 FutureCar Challenge, which was the first evaluation of these vehicles in a two-year program. Of the 11 vehicles evaluated in the competition, nine utilized hybrid electric vehicle approaches. This paper discusses the design trade- offs made by the teams to achieve high efficiency while trying to maintain stock performance.

Sluder, S.; Duoba, M.; Larsen, R.

1997-02-01T23:59:59.000Z

126

The University has a number of dedicated automotive research centres, including the Powertrain and Vehicle Research Centre, the Turbo Centre and LARG (Lean and Agile  

E-Print Network [OSTI]

the size of the engine is significantly decreased. This allows a reduction in fuel consumption while still petrol and diesel engines. By incorporating turbocharging into smaller engines, power is maintained while turbocharged engines. The new centre aims to develop new downsizing technologies that can be applied to both

Burton, Geoffrey R.

127

NREL: Vehicles and Fuels Research - Fuel Cell Electric Vehicles: Paving the  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vehicles: Paving the Way to Commercial Success Vehicles: Paving the Way to Commercial Success August 22, 2013 As nations around the world pursue sustainable transportation solutions, the hydrogen fuel cell electric vehicle (FCEV) presents a promising opportunity for consumers and automakers alike. Automakers have made steady progress reducing the cost and increasing the performance of fuel cell propulsion systems, and most major vehicle manufacturers are geared to launch FCEVs in the U.S. market between 2015 and 2020. Although fuel cell technologies are proven and effective, deployment challenges persist-particularly in terms of further reducing the cost and increasing the durability of fuel cells and getting sufficient infrastructure in place to support widespread consumer use. Researchers at the National Renewable Energy Laboratory are collaborating with industry

128

Argonne TTRDC - APRF - Research Activities - Online Database of Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Maintaining an Online Database of Vehicle Test Results Maintaining an Online Database of Vehicle Test Results APRF control room Engineer Henning Lohse-Busch monitors vehicle testing from the APRF control room. In the APRF, vehicle benchmarking combines testing and data analysis to characterize efficiency, performance and emissions, and to help find control strategies under a variety of operating conditions. The valuable data obtained from this effort have been placed in an Internet-accessible database that provides a unique resource not previously available to researchers, students, and industry. This resource is called the Downloadable Dynamometer Database. The APRF's test results are useful to nearly all aspects of the FreedomCAR partnership. It is also used by organizations such as the Department of Energy, Society of Automotive Engineers, California Air Resources Board,

129

Joint computational and experimental aerodynamics research on a hypersonic vehicle  

SciTech Connect (OSTI)

A closely coupled computational and experimental aerodynamics research program was conducted on a hypersonic vehicle configuration at Mach 8. Aerodynamic force and moment measurements and flow visualization results were obtained in the Sandia National Laboratories hypersonic wind tunnel for laminar boundary layer conditions. Parabolized and iterative Navier-Stokes simulations were used to predict flow fields and forces and moments on the hypersonic configuration. The basic vehicle configuration is a spherically blunted 10{degrees} cone with a slice parallel with the axis of the vehicle. On the slice portion of the vehicle, a flap can be attached so that deflection angles of 10{degrees}, 20{degrees}, and 30{degrees} can be obtained. Comparisons are made between experimental and computational results to evaluate quality of each and to identify areas where improvements are needed. This extensive set of high-quality experimental force and moment measurements is recommended for use in the calibration and validation of computational aerodynamics codes. 22 refs.

Oberkampf, W.L.; Aeschliman, D.P.; Walker, M.M.

1992-01-01T23:59:59.000Z

130

NREL: Vehicles and Fuels Research - Fuels Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

about related NREL biomass research projects that focus on converting renewable biomass feedstocks into transportation fuels, chemicals, and products. Facilities NREL conducts...

131

NREL: Vehicles and Fuels Research - Fuels Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

about related NREL biomass research projects that focus on converting renewable biomass feedstocks into transportation fuels, chemicals, and products. For more information, see...

132

NREL: Vehicles and Fuels Research - Sustainable Transportation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Department of Energy's Alternative Fuels Data Center (AFDC) provide an introduction to sustainable transportation. NREL research supports development of electric, hybrid,...

133

The Research about Fire Prevention of Vehicle Refuelling Stations  

Science Journals Connector (OSTI)

Abstract Fuel oil and gas offered by vehicle refuelling stations have combustion and explosion characteristics, serious casualties and economic losses often caused by fire. The research about oil and gas fire risk, refuelling process and facilities, proposing appropriate fire prevention measures possess great significance for reducing refuelling stations fire losses, and ensuring the safety of the station and surrounding environment.

Hong-yu Zhang

2014-01-01T23:59:59.000Z

134

Hydrogen Consumption Measurement Research Platform for Fuel Cell Vehicles  

Science Journals Connector (OSTI)

Hydrogen consumption measurement research platform is designed for fuel economy test of the proton exchange membrane fuel cell vehicle (PEM FCV). Hardware is constructed with industrial PC (IPC), field bus data acquisition module and device control module. ... Keywords: Hydrogen Consumption Measuremen, LabVIEW, Data Acquisition

Fang Maodong; Chen Mingjie; Lu Qingchun; Jin Zhenhua

2010-06-01T23:59:59.000Z

135

NREL: Vehicles and Fuels Research - News Release Archives  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 8 November 25, 2008 NREL Tests New Structure for Jet Impingement Cooling of Power Electronics NREL's Transportation Technologies and Systems researchers tested a novel prototype heat exchanger that uses jet impingement cooling and does not restrict heat flow in the power electronic components of advanced vehicles. Power electronics modules and electric motors are critical systems for advanced plug-in hybrid electric and electric vehicles. Power electronics can generate excessive heat, which degrades their performance, reliability, and life. NREL focuses on developing thermal management technologies that help to increase power density and lower system costs. October 20, 2008 Updated Biodiesel Guide Helps Ensure Optimum Performance Those who operate vehicles that run on biodiesel or who produce, blend,

136

Advanced Powertrain Research Facility | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

emissions benches Particulate measurement system Fast flame ionization detection Fast NOx measurement system Fourier Transform Infrared spectrometer High power...

137

Vehicle Technologies Office's Research Recognized by R&D 100...  

Office of Environmental Management (EM)

Vehicles Home About Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions Alternative Fuels Modeling, Testing, Data & Results Education...

138

NREL: Vehicles and Fuels Research - Systems Analysis and Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

evaluates the impact of emerging technologies on efficiency, performance, cost, and battery life for a full range of vehicles-conventional vehicles, hybrid electric vehicles,...

139

School of Public and Environmental Affairs, Indiana University Electric Vehicle Survey Research Team  

E-Print Network [OSTI]

elsewhere as "electric" vehicles). A plug-in electric vehicle is powered by plugging into a specializedSchool of Public and Environmental Affairs, Indiana University Electric Vehicle Survey Research together with the electric motor. A Nissan Leaf is an example of a plug-in electric vehicle. A plug

Craft, Christopher B.

140

UAVs in climate research: The ARM Unmanned Aerospace Vehicle Program  

SciTech Connect (OSTI)

In the last year, a Department of Energy/Strategic Environmental Research and Development Program project known as ``ARM-UAV`` has made important progress in developing and demonstrating the utility of unmanned aerospace vehicles as platforms for scientific measurements. Recent accomplishments include a series of flights using an atmospheric research payload carried by a General Atomics Gnat UAV at Edwards AFB, California, and over ground instruments located in north-central Oklahoma. The reminder of this discussion will provide background on the program and describe the recent flights.

Bolton, W.R.

1994-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicles powertrain research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Vehicle Technologies Office: Advanced Combustion Engines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Combustion Engines Combustion Engines Improving the efficiency of internal combustion engines is one of the most promising and cost-effective near- to mid-term approaches to increasing highway vehicles' fuel economy. The Vehicle Technologies Office's research and development activities address critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles. This technology has great potential to reduce U.S. petroleum consumption, resulting in greater economic, environmental, and energy security. Already offering outstanding drivability and reliability to over 230 million passenger vehicles, internal combustion engines have the potential to become substantially more efficient. Initial results from laboratory engine tests indicate that passenger vehicle fuel economy can be improved by more than up to 50 percent, and some vehicle simulation models estimate potential improvements of up to 75 percent. Advanced combustion engines can utilize renewable fuels, and when combined with hybrid electric powertrains could have even further reductions in fuel consumption. As the EIA reference case forecasts that by 2035, more than 99 percent of light- and heavy-duty vehicles sold will still have internal combustion engines, the potential fuel savings is tremendous.

142

NREL: Vehicles and Fuels Research - News Release Archives  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 0 December 28, 2010 NREL Helps Corporate Fleets Go Green Researchers work with companies to evaluate the latest technology commercially available in the medium and heavy-duty truck markets. December 14, 2010 Hydrogen Bus Lets Lab Visitors Glimpse Future The hydrogen bus uses the same basic technology as a conventional gasoline-powered engine but runs on renewable hydrogen. October 18, 2010 NREL's Hydrogen-Powered Bus Serves as Showcase for Advanced Vehicle Technologies NREL uses its hydrogen-powered internal combustion engine bus as the primary shuttle vehicle for VIP visitors, members of the media, and new employees. The U.S. Department of Energy funded the lease for the bus to showcase hydrogen's role in our nation's portfolio of sustainable transportation options.

143

Electrification of powertrain systems battery, fuel cell or both?  

Science Journals Connector (OSTI)

The increasing electrification of powertrain systems is driven by the idea of using electric power as an alternative energy source. Fuel cells combined with electric traction are one example. Batteries will have ...

Dr.-Ing. Wolfgang Steiger; Dr.-Ing. Ingo Scholz

2008-05-01T23:59:59.000Z

144

Thermal simulation of batteries for improving E-powertrain performance  

Science Journals Connector (OSTI)

The electrical energy is stored, for example, in battery systems with voltages of between 12 V ... a simulation tool, 3D-Electrical / 3D-Thermal Co-Simulation for improving electric powertrain performance.

Dipl.-Ing. Michael Clauss; Jakob Hennig; Dr. Carolus Grnig

2014-10-01T23:59:59.000Z

145

For further information telephone 1300 275 794 or see swinburne.edu.au Electric Vehicle Research  

E-Print Network [OSTI]

. Lightweighting There are significant cost advantages in lightweighting EVs, primarily because a lighter vehicleFor further information telephone 1300 275 794 or see swinburne.edu.au Electric Vehicle Research at Swinburne Swinburne University of Technology's Electric Vehicle Research Group is one of the leading groups

Liley, David

146

A Preliminary Investigation into the Mitigation of Plug-in Hybrid Electric Vehicle Tailpipe Emissions Through Supervisory Control Methods Part 2: Experimental Evaluation of Emissions Reduction Methodologies  

SciTech Connect (OSTI)

Plug-in hybrid electric vehicle (PHEV) technologies have the potential for considerable petroleum consumption reductions, possibly at the expense of increased tailpipe emissions due to multiple 'cold' start events and improper use of the engine for PHEV specific operation. PHEVs operate predominantly as electric vehicles (EVs) with intermittent assist from the engine during high power demands. As a consequence, the engine can be subjected to multiple cold start events. These cold start events may have a significant impact on the tailpipe emissions due to degraded catalyst performance and starting the engine under less than ideal conditions. On current hybrid electric vehicles (HEVs), the first cold start of the engine dictates whether or not the vehicle will pass federal emissions tests. PHEV operation compounds this problem due to infrequent, multiple engine cold starts. A continuation of previous analytical work, this research, experimentally verifies a vehicle supervisory control system for a pre-transmission parallel PHEV powertrain architecture. Energy management strategies are evaluated and implemented in a virtual environment for preliminary assessment of petroleum displacement benefits and rudimentary drivability issues. This baseline vehicle supervisory control strategy, developed as a result of this assessment, is implemented and tested on actual hardware in a controlled laboratory environment over a baseline test cycle. Engine cold start events are aggressively addressed in the development of this control system, which leads to enhanced pre-warming and energy-based engine warming algorithms that provide substantial reductions in tailpipe emissions over the baseline supervisory control strategy. The flexibility of the PHEV powertrain allows for decreased emissions during any engine starting event through powertrain 'torque shaping' algorithms. The results of the research show that PHEVs do have the potential for substantial reductions in fuel consumption. Tailpipe emissions from a PHEV test platform have been reduced to acceptable levels through the development and refinement of vehicle supervisory control methods only. Impacts on fuel consumption were minimal for the emissions reduction techniques implemented.

Smith, David E [ORNL] [ORNL; Lohse-Busch, Henning [Argonne National Laboratory (ANL)] [Argonne National Laboratory (ANL); Irick, David Kim [ORNL] [ORNL

2010-01-01T23:59:59.000Z

147

Vehicle Technologies Office: Short-Term Lightweight Materials Research (Advanced High-Strength Steel and Aluminum)  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office supports research into replacing heavy steel components with materials such as high-strength steel, aluminum, or glass fiber-reinforced polymer composites in vehicles, which can decrease component weight by 10-60 percent.

148

NREL: Hydrogen and Fuel Cells Research - Fuel Cell Electric Vehicle...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cell Electric Vehicle Evaluations NREL's technology validation team analyzes hydrogen fuel cell electric vehicles (FCEVs) operating in a real-world setting to identify the...

149

Hybrid Electric Vehicles - HEV Modeling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modeling Modeling Background Because of time and cost constraints, designers cannot build and test each of the many possible powertrain configurations for advanced vehicles. Thus, developing fuel cells and hybrid electric vehicles (HEVs) requires accurate, flexible simulation tools. Argonne undertook a collaborative effort to further develop Autonomie in collaboration with General Motors. Autonomie is sponsored by the U.S. Department of Energy (DOE) Vehicle Technologies Program. Autonomie is a Plug-and-Play Powertrain and Vehicle Model Architecture and Development Environment to support the rapid evaluation of new powertrain/propulsion technologies for improving fuel economy through virtual design and analysis in a math-based simulation environment. Autonomie is an open architecture to support the rapid integration and analysis of powertrain/propulsion systems and technologies for rapid technology sorting and evaluation of fuel economy improvement under dynamic/transient testing conditions. The capability to sort technologies rapidly in a virtual design environment results in faster improvements in real-world fuel consumption by reducing the time necessary to develop and bring new technologies onto our roads.

150

NREL: Vehicles and Fuels Research - NREL to Showcase Two Advanced Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to Showcase Two Advanced Vehicles at Estes Park Coolest Car Show on to Showcase Two Advanced Vehicles at Estes Park Coolest Car Show on July 4 July 1, 2013 The National Renewable Energy Laboratory (NREL) will showcase two advanced Toyota vehicles -- a Highlander fuel cell hybrid vehicle (FCHV-adv) and a plug-in Prius hybrid electric vehicle -- at The Coolest Car Show in Colorado in Estes Park on July 4. Representatives from NREL will be on hand to answer questions about the vehicles on display and provide information and educational literature about alternative fuels and advanced vehicles. "We like to reach out to the community and provide information on alternative vehicle technologies and this is a great event to do that with all of the vehicle enthusiasts," said NREL's Melanie Caton. The car show, which is hosted by Estes Park Museum Friends and Foundation,

151

A Vehicle Manufacturers Perspective on Higher-Octane Fuels  

Broader source: Energy.gov [DOE]

Breakout Session 1CFostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels A Vehicle Manufacturers Perspective on Higher-Octane Fuels Tom Leone, Technical Expert, Powertrain Evaluation and Analysis, Ford Motor Company

152

Advanced Vehicle Technology Analysis and Evaluation Team  

E-Print Network [OSTI]

National Impacts Analysis (EERE)Analysis (EERE) #12;4 Past Projects · Development of map-based and engineering attributes · MATLAB/Simulink environment Lab Testing · Advanced Powertrain Research Facility · Re

153

Method and apparatus for controlling hybrid powertrain system in response to engine temperature  

DOE Patents [OSTI]

A method for controlling a hybrid powertrain system including an internal combustion engine includes controlling operation of the hybrid powertrain system in response to a preferred minimum coolant temperature trajectory for the internal combustion engine.

Martini, Ryan D; Spohn, Brian L; Lehmen, Allen J; Cerbolles, Teresa L

2014-10-07T23:59:59.000Z

154

Integrated Vehicle and Powertrain Technology for EPA 2010 and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of 2010 Emissions Regulations over Transient Operation Heavy-Duty Engine Combustion Optimization for High Thermal Efficiency Targeting EPA 2010 Emissions State-of-the-Art and...

155

Vehicle Technologies Office: Software Tools  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Software Tools Software Tools Several software programs are available, either for free or for a nominal charge, that can assist fleet managers and technology developers in assessing the potential impacts of implementing new technologies. Autonomie Autonomie is a Plug-and-Play Powertrain and Vehicle Model Architecture and Development Environment to support the rapid evaluation of new powertrain/propulsion technologies for improving fuel economy through virtual design and analysis in a math-based simulation environment. Developed in partnership with General Motors, Autonomie is an open architecture to support the rapid integration and analysis of powertrain/propulsion systems and technologies for rapid technology sorting and evaluation of fuel economy improvement under dynamic/transient testing conditions. The capability to sort technologies rapidly in a virtual design environment results in faster improvements in real-world fuel consumption by reducing the time necessary to develop and bring new technologies onto our roads.

156

Optimally Controlled Flexible Fuel Powertrain System  

SciTech Connect (OSTI)

The primary objective of this project was to develop a true Flex Fuel Vehicle capable of running on any blend of ethanol from 0 to 85% with reduced penalty in usable vehicle range. A research and development program, targeting 10% improvement in fuel economy using a direct injection (DI) turbocharged spark ignition engine was conducted. In this project a gasoline-optimized high-technology engine was considered and the hardware and configuration modifications were defined for the engine, fueling system, and air path. Combined with a novel engine control strategy, control software, and calibration this resulted in a highly efficient and clean FFV concept. It was also intended to develop robust detection schemes of the ethanol content in the fuel integrated with adaptive control algorithms for optimized turbocharged direct injection engine combustion. The approach relies heavily on software-based adaptation and optimization striving for minimal modifications to the gasoline-optimized engine hardware system. Our ultimate objective was to develop a compact control methodology that takes advantage of any ethanol-based fuel mixture and not compromise the engine performance under gasoline operation.

Hakan Yilmaz; Mark Christie; Anna Stefanopoulou

2010-12-31T23:59:59.000Z

157

High-precision, real-world modeling of a semi-automatic powertrain  

Science Journals Connector (OSTI)

In a mechatronical approach, the design of a highly detailed, physically based model of a semi-automatic powertrain suitable for supervision has been explicated. In each part of the powertrain system, ultimately developed dynamical models have been exploited ... Keywords: Automated manual transmission, gear shift simulation, high-precision modeling, nonlinear modeling, semi-automatic powertrain

Amir Hossein Pasdar, Shahram Azadi, Reza Kazemi

2014-09-01T23:59:59.000Z

158

Vehicle Technologies Office: Vehicle Technologies Office Recognizes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vehicle Technologies Vehicle Technologies Office Recognizes Outstanding Researchers to someone by E-mail Share Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Facebook Tweet about Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Twitter Bookmark Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Google Bookmark Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Delicious Rank Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Digg Find More places to share Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on AddThis.com...

159

Advanced Vehicle Research Center of North Carolina | Open Energy  

Open Energy Info (EERE)

of North Carolina of North Carolina Jump to: navigation, search Name Advanced Vehicle Research Center of North Carolina Place Raleigh, North Carolina Zip 27614-7636 Product Provide a modern automotive testing facility Coordinates 37.760748°, -81.161183° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.760748,"lon":-81.161183,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

160

Next Generation Natural Gas Vehicle Activity: Natural Gas Engine and Vehicle Research & Development (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes the status of the Next Generation Natural Gas Vehicle (NGNGV) activity, including goals, R&D progress, NGV implementation, and the transition to hydrogen.

Not Available

2003-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicles powertrain research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Powertrain with powersplit pump input and method of use thereof  

DOE Patents [OSTI]

A powertrain includes an engine operatively connected to a primary power consuming device to transmit power thereto. The powertrain also includes a motor and a pump. The power output of the motor is independent of the power output of the engine. An epicyclic geartrain includes first, second and third members. The first member is operatively connected to the engine to receive power therefrom. The second member is operatively connected to the motor to receive power therefrom. The third member is operatively connected to the pump to transmit power thereto.

Johnson, Kris W. (Peoria, IL); Rose, Charles E. (Metamora, IL)

2009-04-28T23:59:59.000Z

162

Plug-and-Play Powertrain Model Architecture  

Broader source: Energy.gov [DOE]

Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

163

Magnesium Powertrain Cast Components Project (AMD 304)  

Broader source: Energy.gov [DOE]

Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

164

Supertruck - Improving Transportation Efficiency through Integrated...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Improving Transportation Efficiency through Integrated Vehicle, Engine and Powertrain Research Supertruck - Improving Transportation Efficiency through Integrated Vehicle, Engine...

165

Developing a Test Data Set for Electric Vehicle Applications in Smart Grid Research  

E-Print Network [OSTI]

Developing a Test Data Set for Electric Vehicle Applications in Smart Grid Research Hossein Akhavan data set for PHEV-related research in the field of smart grid. Our developed data set is made available, publicly available data set, smart grid applications, experimental vehicle driving traces, state of charge

Mohsenian-Rad, Hamed

166

Hybrid and Hydrogen Vehicle Research Laboratory 21st Century Automotive Challenge April 17-19, 2009  

E-Print Network [OSTI]

, fuel cell, or alternative fuel. And imagine that you also have the ability to buy and sell energy fromHybrid and Hydrogen Vehicle Research Laboratory 21st Century Automotive Challenge April 17-19, 2009 Contact: J.R. Anstrom, Ph.D., Director Hybrid and Hydrogen Vehicle Research Laboratory The Thomas D

Lee, Dongwon

167

Hybrid Powertrain Design Using a Domain-Specific Modeling Environment  

E-Print Network [OSTI]

tools for automotive engineering. A face-off with modeling and simulation tools in the electronicsHybrid Powertrain Design Using a Domain- Specific Modeling Environment Wenzhong Gao1 , Sandeep--State of the art design tools in automotive engineering still lack the power, sophistication, and automation

Gray, Jeffrey G.

168

NREL: Vehicles and Fuels Research - NREL to Showcase Renewable Electricity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NREL to Showcase Renewable Electricity Generation Systems and Advanced NREL to Showcase Renewable Electricity Generation Systems and Advanced Vehicles at Denver Earth Day Fair April 18, 2013 The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) will showcase two mobile renewable electricity generation systems and three advanced vehicles-a Toyota Highlander fuel cell electric vehicle, a plug-in Toyota Prius hybrid electric vehicle, and a Mitsubishi i-MiEV electric vehicle-at the Denver Earth Day Fair on April 22. The larger of NREL's two renewable electricity generation systems features a 12 kilowatt biodiesel-powered back-up generator as well as a 1.8 kilowatt photovoltaic array that taps into energy from the sun to produce renewable electricity, which will power the fair. The smaller system includes a 384

169

Power electronics and electric machinery challenges and opportunities in electric and hybrid vehicles  

SciTech Connect (OSTI)

The development of power electronics and electric machinery presents significant challenges to the advancement of electric and hybrid vehicles. Electronic components and systems development for vehicle applications have progressed from the replacement of mechanical systems to the availability of features that can only be realized through interacting electronic controls and devices. Near-term applications of power electronics in vehicles will enable integrated powertrain controls, integrated chassis system controls, and navigation and communications systems. Future applications of optimized electric machinery will enable highly efficient and lightweight systems. This paper will explore the areas where research and development is required to ensure the continued development of power electronics and electric machines to meet the rigorous demands of automotive applications. Additionally, recent advances in automotive related power electronics and electric machinery at Oak Ridge National Laboratory will be explained. 3 refs., 5 figs.

Adams, D.J.; Hsu, J.S.; Young, R.W. [Oak Ridge National Lab., TN (United States); Peng, F.Z. [Univ. of Tennessee, Knoxville, TN (United States)

1997-06-01T23:59:59.000Z

170

Thermal Simulation of Advanced Powertrain Systems  

Broader source: Energy.gov [DOE]

Under this project, the Volvo complete vehicle model was modified to include engine and exhaust system thermal outputs and cooling system to enable WHR simulations from a system perspective.

171

Impact of SiC Devices on Hybrid Electric and Plug-in Hybrid Electric Vehicles  

E-Print Network [OSTI]

Impact of SiC Devices on Hybrid Electric and Plug-in Hybrid Electric Vehicles Hui Zhang1 , Leon M -- The application of SiC devices (as battery interface, motor controller, etc.) in a hybrid electric vehicle (HEV, vehicle simulation software). Power loss models of a SiC inverter are incorporated into PSAT powertrain

Tolbert, Leon M.

172

Research into wildlife/vehicle collisions in Jasper National Park  

E-Print Network [OSTI]

that have been used in Jasper National Park is also providedVEHICLE COLLISIONS IN JASPER NATIONAL PARK Jim Bertwistle (M.Sc. , National Park Warden, Jasper National Park, Box 10

Bertwistle, Jim

2003-01-01T23:59:59.000Z

173

DOE to Provide up to $21.5 million for Research to Improve Vehicle  

Broader source: Energy.gov (indexed) [DOE]

up to $21.5 million for Research to Improve Vehicle up to $21.5 million for Research to Improve Vehicle Efficiency DOE to Provide up to $21.5 million for Research to Improve Vehicle Efficiency August 7, 2007 - 3:16pm Addthis BENTON HARBOR, MI - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced the Department will award a total of up to $21.5 million for eleven cost-shared research and development (R&D) projects that aim to improve the fuel efficiency of light-duty vehicle engines. These projects, selected for negotiation of awards, will focus on three areas: improving fuel utilization in ethanol-powered engines (engine optimization), developing advanced lubrication systems, and exploring high efficiency, clean combustion engines. Projects announced today will help advance President Bush's 20-in-10 Initiative, which calls for displacing 20

174

EV Everywhere: Innovative Battery Research Powering Up Plug-In Electric Vehicles  

Broader source: Energy.gov [DOE]

Find out how the Energy Department, in partnership with industry and national laboratories, is helping to improve the efficiency and affordability of plug-in electric vehicles through battery research.

175

Vehicle Technologies Office: Long-Term Lightweight Materials Research (Magnesium and Carbon Fiber)  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office supports research into magnesium and carbon fiber reinforced composites, which could reduce the weight of some components by 50-75 percent in the long-term.

176

Joint computational and experimental aerodynamics research on a reentry vehicle  

SciTech Connect (OSTI)

This paper seeks to improve the synergism between computational aerodynamics and wind tunnel experimentation. In this paper, experimental and computational results are presented for a hypersonic vehicle configuration at Mach 8. Comparisons are made between experimental and computational results in order to improve the accuracy of both approaches. The basic vehicle configuration is a spherically blunted cone with a slice parallel with the axis of the vehicle. The half-angle of the cone is 10 deg. and the ratio of spherical nose radius to base radius in 10%. Onto the slice portion of the vehicle can be attached flaps with three different deflection angles; 10, 20, and 30 deg. All of the experimental results were obtained in the Sandia Mach 8 long duration, blow-down, hypersonic wind tunnel. Flow visualization results include surface oil flow, spark schlieren, and liquid crystal photographs and video. The liquid crystals were used as an aid in verifying that a laminar boundary layer existed over the entire body. An extensive uncertainty analysis was conducted to estimate quantitatively the accuracy of the measurement. Computational aerodynamic force and moment predictions are compared with the wind tunnel data. The Sandia Parabolized Navier-Stokes code is used to generate solutions for the sliced vehicle (no flap) and partial solutions for the flapped vehicle. For the geometry with the flap, an axially separated flow occurs and a time iterative Navier-Stokes code is used to provide comparisons with the data. This paper presents a portion of the results given in earlier works and also discusses new experimental results with this configuration.

Not Available

1991-01-01T23:59:59.000Z

177

An assessment of research and development leadership in advanced batteries for electric vehicles  

SciTech Connect (OSTI)

Due to the recently enacted California regulations requiring zero emission vehicles be sold in the market place by 1998, electric vehicle research and development (R&D) is accelerating. Much of the R&D work is focusing on the Achilles` heel of electric vehicles -- advanced batteries. This report provides an assessment of the R&D work currently underway in advanced batteries and electric vehicles in the following countries: Denmark, France, Germany, Italy, Japan, Russia, and the United Kingdom. Although the US can be considered one of the leading countries in terms of advanced battery and electric vehicle R&D work, it lags other countries, particularly France, in producing and promoting electric vehicles. The US is focusing strictly on regulations to promote electric vehicle usage while other countries are using a wide variety of policy instruments (regulations, educational outreach programs, tax breaks and subsidies) to encourage the use of electric vehicles. The US should consider implementing additional policy instruments to ensure a domestic market exists for electric vehicles. The domestic is the largest and most important market for the US auto industry.

Bruch, V.L.

1994-02-01T23:59:59.000Z

178

Coupled axisymmetric finite element model of a hydraulically amplified magnetostrictive actuator for active powertrain mounts  

Science Journals Connector (OSTI)

A coupled axisymmetric finite element model is formulated to describe the dynamic performance of a hydraulically amplified magnetostrictive actuator for active powertrain mounts. The formulation is based on the weak form representations of Maxwell's ... Keywords: Active powertrain mount, Actuator, Axisymmetric model, Magnetostriction, Terfenol-D

Suryarghya Chakrabarti; Marcelo J. Dapino

2012-11-01T23:59:59.000Z

179

MECH 461 Project Proposal for Winter 2013 Project on the Intelligent Control of Hybrid Electric Powertrains  

E-Print Network [OSTI]

, pp. 1389-1398. Figure 1. Electric motor test apparatus with hydraulic dynomometer. #12; Electric Powertrains SUPERVISOR: B.W. Surgenor INTRODUCTION Control and management of hybrid electric of the powertrain [2]. Field tests in 2010 were conducted to validate the PSAT model. A laboratory based electric

Surgenor, Brian W.

180

Research on Induction Motor for Mini Electric Vehicles  

Science Journals Connector (OSTI)

The motor of a mini electric vehicle uses dozens of storage batteries as power supply, which has low voltage and large current. Therefore, the loss and temperature raise of the motor is high. In this paper, the loss of different induction motors for mini electric vehicles is calculated and the effects of rotor materials and air gap length on the performance of these motors are studied. The analyses show that the efficiency of the motor with a copper mouse cage rotor is considerably higher than that of the motor with a aluminum rotor. The temperature raise of both an air-cooling and a water-cooling induction motor is analyzed, which demonstrates that the temperature raise of the motor windings is higher than that of the other parts, and the temperature raise of the water-cooling motor is lower than that of the air-cooling motor. To verify the results of the theoretical analyses, four prototype induction motors (aluminum rotor, copper mouse cage rotor, air-cooling and spiral groove machine) have been designed and processed. The experiments to measure the efficiency and temperature raise were carried out on these motors. The experimental results prove that the theoretical analyses are correct.

Shukang Cheng; Cuiping Li; feng Chai; Hailong Gong

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicles powertrain research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

NREL: Vehicles and Fuels Research - NREL and Thought Leaders Gather at  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NREL and Thought Leaders Gather at Electric Vehicle Battery Management NREL and Thought Leaders Gather at Electric Vehicle Battery Management Summit Battery cyclers in NREL's Thermal Test Facility. The January 10 tour will feature NREL's Thermal Test Facility, which houses equipment including these battery cyclers used in AMPED research. Photo by Dennis Schroeder, NREL December 23, 2013 From January 8 to 10, 2014, National Renewable Energy Laboratory (NREL) researchers, U.S. Department of Energy (DOE) program directors and technology managers, and other thought leaders will gather in Denver, Colorado, to exchange strategies for maximizing the performance, safety, and lifespan of the next generation of electric-drive vehicle (EDV) batteries. This annual review of DOE Advanced Research Projects Agency-Energy's (ARPA-E's) Advanced Management and Protection of Energy

182

Vehicle Technologies Office: Long-Term Exploratory Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Long-Term Exploratory Research Long-Term Exploratory Research Long-term research addresses the chemical instabilities that impede the development of advanced batteries. Researchers focus on synthesizing novel components into battery cells and determining failure modes, while maintaining strengths in materials synthesis and evaluation, advanced diagnostics, and improved electrochemical model development. Goals include developing a better understanding of why systems fail, creating models that predict system failure and permit system optimization, and investigating new and promising materials. The work concentrates on six research areas: Advanced cell chemistry, Non-carbonaceous anodes, New electrolytes, Novel cathode materials, Advanced diagnostics and analytical methods, and Phenomenological modeling.

183

Shean Huff - Research Staff - FEERC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Staff Research Staff Shean Huff R&D Staff Member Speciality: Automotive Powertrain Controls Shean has been on staff at Oak Ridge National Laboratory since 2000 after working seven years at Chrysler Corporation. Both at Chrysler and ORNL, Shean's area of focus has been internal combustion engine electronic controls, for which he holds nineteen US patents. His experience in the field of controls has contributed to research in the areas of diesel lean NOx catalysis, advanced diesel combustion, improved engine efficiency, and the implementation of ethanol as a transportation fuel. Most recently, Shean has been involved in researching the effects of intermediate ethanol blends being introduced into the legacy vehicle fleet, as well as other non-road engines. Shean has also been involved with programs to increase

184

PEV Grid Integration Research: Vehicles, Buildings, and Renewables...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Focus Areas o Managed charging systems providing flexibility, demand response capability o Bi-directional power to minimize local demand charge and grid...

185

NREL: Vehicles and Fuels Research - A Vision for Sustainable...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Vision for Sustainable Transportation NREL research, development, and deployment accelerates the process of bringing sustainable transportation technologies to market. Line graph...

186

Impact of Component Sizing in Plug-In Hybrid Electric Vehicles for Energy Resource and Greenhouse Emissions Reduction  

SciTech Connect (OSTI)

Widespread use of alternative hybrid powertrains currently appears inevitable and many opportunities for substantial progress remain. The necessity for environmentally friendly vehicles, in conjunction with increasing concerns regarding U.S. dependency on foreign oil and climate change, has led to significant investment in enhancing the propulsion portfolio with new technologies. Recently, plug-in hybrid electric vehicles (PHEVs) have attracted considerable attention due to their potential to reduce petroleum consumption and greenhouse gas (GHG) emissions in the transportation sector. PHEVs are especially appealing for short daily commutes with excessive stop-and-go driving. However, the high costs associated with their components, and in particular, with their energy storage systems have been significant barriers to extensive market penetration of PEVs. In the research reported here, we investigated the implications of motor/generator and battery size on fuel economy and GHG emissions in a medium duty PHEV. An optimization framework is proposed and applied to two different parallel powertrain configurations, pre-transmission and post-transmission, to derive the Pareto frontier with respect to motor/generator and battery size. The optimization and modeling approach adopted here facilitates better understanding of the potential benefits from proper selection of motor/generator and battery size on fuel economy and GHG emissions. This understanding can help us identify the appropriate sizing of these components and thus reducing the PHEV cost. Addressing optimal sizing of PHEV components could aim at an extensive market penetration of PHEVs.

Malikopoulos, Andreas [ORNL

2013-01-01T23:59:59.000Z

187

Vehicle Technologies Office: Data and Analysis for Transportation Research  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) in conjunction with the national laboratories conducts a wide range of statistical research on energy use, economics, and trends in transportation.

188

Vehicle Technologies Office Merit Review 2014: Overview and Progress of Applied Battery Research (ABR) Activities  

Broader source: Energy.gov [DOE]

Presentation given by the Department of Energy's Energy Storage area at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the research area that addresses near term (less than 5 years) opportunities and barriers as battery materials move from R&D to cell construction and validation.

189

FMCSA Office of Research & Analysis 1 Commercial Motor Vehicle Roadside  

E-Print Network [OSTI]

--Current Applications CMV Inspection System (ComVIS) & Inspection Pit Handheld computer Rugged to military--Prototypes Smart Infrared Inspection System Grant for a demonstration of thermal imaging technologies · Identify Infrared Inspection System Details · $1.4 M Research Grant · Two-year Project · Grant competitively awarded

190

Thermal management in heavy vehicles : a review identifying issues and research requirements.  

SciTech Connect (OSTI)

Thermal management in heavy vehicles is cross-cutting because it directly or indirectly affects engine performance, fuel economy, safety and reliability, engine/component life, driver comfort, materials selection, emissions, maintenance, and aerodynamics. It follows that thermal management is critical to the design of large (class 6-8) trucks, especially in optimizing for energy efficiency and emissions reduction. Heat rejection requirements are expected to increase, and it is industry's goal to develop new, innovative, high-performance cooling systems that occupy less space and are lightweight and cost-competitive. The state of the art in heavy vehicle thermal management is reviewed, and issues and research areas are identified.

Wambsganss, M. W.

1999-01-15T23:59:59.000Z

191

Advanced Methods Approach to Hybrid Powertrain Systems Optimization of a Transit Bus Application  

Broader source: Energy.gov [DOE]

Design refinements of the GTB-40 mass-transit bus include new optimization processes, subsystem, and powertrain system requirements along with traction motor, battery, and APU development and integration

192

Vehicle Setup Information Downloadable Dynamometer Database (D  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Honda Insight Honda Insight Test cell location APRF- 4WD Advanced Powertrain Research Facility Document date 6/25/2013 Vehicle Dynamometer Input All tests performed with vehicle in normal operating mode Revision number 2 Notes: Test weight [lb] Target A [lb] 3088 30.72 Target B [lb/mph] Target C [lb/mph^2] -0.03164 0.019063 Test Fuel Information All tests performed with vehicle in normal operating mode All tests performed with vehicle in normal operating mode Fuel density [g/ml] Fuel Net HV [BTU/lbm] 0.742 18462 Fuel type EPA Tier II EEE Gasoline T e s t I D [ # ] C y c l e C o l d s t a r t ( C S t ) H o t s t a r t [ H S t ] D a t e T e s t C e l l T e m p [ C ] T e s t C e l l R H [ % ] T e s t C e l l B a r o [ i n / H g ] V e h i c l e c o o l i n g f a n s p e e d : S p e e d M a t c h [ S M ] o r c o n s t a n t s p e e d [ C S ] S o l a r L a m p s [ W / m 2 ] V e i c l e C l i m a t e C o n t r o l S e t t i n g s H o o d P o s i t i o n [ U

193

Method and apparatus for operating a powertrain system upon detecting a stuck-closed clutch  

DOE Patents [OSTI]

A powertrain system includes a multi-mode transmission having a plurality of torque machines. A method for controlling the powertrain system includes identifying all presently applied clutches including commanded applied clutches and the stuck-closed clutch upon detecting one of the torque-transfer clutches is in a stuck-closed condition. A closed-loop control system is employed to control operation of the multi-mode transmission accounting for all the presently applied clutches.

Hansen, R. Anthony

2014-02-18T23:59:59.000Z

194

Design and application of hybrid fuel cell engine powertrain test platform  

Science Journals Connector (OSTI)

A test platform for hybrid fuel cell engine powertrain is developed, and the principle and the structure for hardware, software and data acquisition system of the platform are presented in this paper. The platform for hybrid fuel cell engine powertrain consists of hybrid power system, load system, data acquisition system and control system. An experiment for a fuel cell engine is done. The test results indicate that the platform can satisfy the requirement for measuring the performances of fuel cell.

Zhang Bingli; Zhu Yi; Zhang Bingzhan

2010-01-01T23:59:59.000Z

195

Electric Vehicles  

ScienceCinema (OSTI)

Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

Ozpineci, Burak

2014-07-23T23:59:59.000Z

196

Electric Vehicles  

SciTech Connect (OSTI)

Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

Ozpineci, Burak

2014-05-02T23:59:59.000Z

197

Integrated powertrain control to meet future CO2 and Euro-6 emissions targets for a diesel hybrid with SCR-deNOx system  

Science Journals Connector (OSTI)

A new concept is introduced to optimize the performance of the entire powertrain: Integrated Powertrain Control (IPC). In this concept, the synergy between engine, driveline and aftertreatment system is exploited by integrated energy and emission management. ...

Frank Willems; Darren Foster

2009-06-01T23:59:59.000Z

198

Summary of Research on the Use of Intermediate Ethanol Blends in On-Road Vehicles  

Science Journals Connector (OSTI)

This paper covers 30 research projects on IEBs and ethanol flex fuel in U. S. vehicles conducted by Coordinating Research Council (CRC), DOE (NREL, ORNL), EPA, California Air Resources Board (CARB), Minnesota State University, and the University of Minnesota in the period 20062013. ... The report estimated that MIL illumination with IEBs was projected to be on the order of 0.1%0.2%, ... Haskew, H. M., Liberty, T. F., and McClement, D. Fuel Permeation from Automotive Systems: E0, E6, E10, E20 and E85, Project E-65-3. ...

Albert M. Hochhauser; Charles H. Schleyer

2014-04-21T23:59:59.000Z

199

NREL: Vehicles and Fuels Research - NREL Joins Public-Private Partnership  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Joins Public-Private Partnership to Deploy Hydrogen Infrastructure Joins Public-Private Partnership to Deploy Hydrogen Infrastructure July 2, 2013 NREL recently joined H2USA, a new public-private partnership designed to promote the widespread adoption of fuel cell electric vehicles (FCEVs) by overcoming the hurdle of establishing a hydrogen infrastructure. The partnership brings together automakers, government agencies, gas suppliers, and the hydrogen and fuel cell industries to coordinate research and identify cost-effective solutions for deploying hydrogen fueling infrastructure in the United States. Through H2USA, industry and government partners will form a strategy to coordinate vehicle and infrastructure rollout, identify actions to encourage early adopters of FCEVs, and evaluate synergies with other alternative fuels such as natural gas to enable cost reductions and

200

Vehicle Setup Information Downloadable Dynamometer Database (D  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mercedes S400h Mercedes S400h Test cell location APRF- 4WD Vehicle Setup Information Downloadable Dynamometer Database (D 3 )- Test Summary Sheet Vehicle architecture HEV Vehicle Dynamometer Input Document date 6/25/2013 Advanced Powertrain Research Facility Test weight [lb] Target A [lb] 4878 49.31 Target B [lb/mph] Target C [lb/mph^2] 0.41014 0.01722 Revision number 2 Notes: Test Fuel Information Fuel type EPA Tier II EEE Gasoline Fuel density [g/ml] Fuel Net HV [BTU/lbm] 0.741 18459 T e s t I D [ # ] C y c l e C o l d s t a r t ( C S t ) H o t s t a r t [ H S t ] D a t e T e s t C e l l T e m p [ C ] T e s t C e l l R H [ % ] T e s t C e l l B a r o [ i n / H g ] V e h i c l e c o o l i n g f a n s p e e d : S p e e d M a t c h [ S M ] o r c o n s t a n t s p e e d [ C S ] S o l a r L a m p s [ W / m 2 ] V e i c l e C l i m a t e C o n t r o l s e t t i n g s H o o d P o s i t i o n [ U p ] o r [ C l o s e d ] W i n d o w P o s i t i o n [ C l o s e d ] o r [ D o w n ] C y c l e D i s t a n c e [ m i

Note: This page contains sample records for the topic "vehicles powertrain research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Volvo SuperTruck- Powertrain Technologies for Efficiency Improvement  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

202

Heavy Duty Powertrain System Optimization and Emissions Test Procedure Development  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

203

Ihor Hlohowskyj | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

vehicles Hydrogen & fuel cells Internal combustion Powertrain research Vehicle testing Building design Manufacturing Energy sources Renewable energy Bioenergy Solar energy Wind...

204

An Optimization Model for Plug-In Hybrid Electric Vehicles  

SciTech Connect (OSTI)

The necessity for environmentally conscious vehicle designs in conjunction with increasing concerns regarding U.S. dependency on foreign oil and climate change have induced significant investment towards enhancing the propulsion portfolio with new technologies. More recently, plug-in hybrid electric vehicles (PHEVs) have held great intuitive appeal and have attracted considerable attention. PHEVs have the potential to reduce petroleum consumption and greenhouse gas (GHG) emissions in the commercial transportation sector. They are especially appealing in situations where daily commuting is within a small amount of miles with excessive stop-and-go driving. The research effort outlined in this paper aims to investigate the implications of motor/generator and battery size on fuel economy and GHG emissions in a medium-duty PHEV. An optimization framework is developed and applied to two different parallel powertrain configurations, e.g., pre-transmission and post-transmission, to derive the optimal design with respect to motor/generator and battery size. A comparison between the conventional and PHEV configurations with equivalent size and performance under the same driving conditions is conducted, thus allowing an assessment of the fuel economy and GHG emissions potential improvement. The post-transmission parallel configuration yields higher fuel economy and less GHG emissions compared to pre-transmission configuration partly attributable to the enhanced regenerative braking efficiency.

Malikopoulos, Andreas [ORNL] [ORNL; Smith, David E [ORNL] [ORNL

2011-01-01T23:59:59.000Z

205

DoE Optimally Controlled Flexible Fuel Powertrain System  

Broader source: Energy.gov [DOE]

Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

206

DoE Optimally Controlled Flexible Fuel Powertrain System  

Broader source: Energy.gov [DOE]

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

207

Results of Research Engine and Vehicle Drive Cycle Testing during Blended Hydrogen/Methane Operation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Results of Research Engine and Results of Research Engine and Vehicle Drive Cycle Testing during Blended Hydrogen/Methane Operation Thomas Wallner, Henning Lohse-Busch, Henry Ng Argonne National Laboratory Robert Peters University of Alabama at Birmingham NHA Annual Hydrogen Conference 2007 San Antonio/Texas March 19 th - 22 nd 2007 DOE-Sponsors: Lee Slezak, Gurpreet Singh Government license The submitted manuscript was developed by the UChicago Argonne LLC as Operator of Argonne National Laboratory ("Argonne") under Contract No. DE-AC-02-06CH11357 with DOE. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on

208

Vehicle Technologies Office: Hybrid and Vehicle Systems  

Broader source: Energy.gov [DOE]

Hybrid and vehicle systems research provides an overarching vehicle systems perspective to the technology research and development (R&D) activities of the U.S. Department of Energy's (DOE's)...

209

Results from the Microcab fuel cell vehicle demonstration at the University of Birmingham  

Science Journals Connector (OSTI)

The UK's first fleet of hydrogen fuel cell vehicles the Microcab H4 series has been demonstrated at the University of Birmingham for 21 months. The five prototypes have been used interchangeably as four-seat urban taxis and light goods vehicles around campus, accumulating over 4,000 km on the campus road network and being filled with 68 kg of hydrogen. The performance and efficiency of these vehicles have been monitored in-situ throughout the trial, using custom-built data loggers for the fuel cell and other powertrain components. This paper presents the key findings relating to the powertrain performance and efficiency. While the peak tank-to-wheel efficiency was 27%, the Microcabs were found on average to be 18% efficient at converting hydrogen into tractive power. The causes of this loss in efficiency are analysed and discussed, and show that improving the control and interaction of the individual components would result in substantially improved vehicle performance.

Iain Staffell

2011-01-01T23:59:59.000Z

210

Texas A&M AgriLife Research Procedures 21.01.08.A0.03 Vehicle Use Reports: Automobiles/Trucks  

E-Print Network [OSTI]

Texas A&M AgriLife Research Procedures 21.01.08.A0.03 Vehicle Use Reports: Automobiles, 2014 Texas A&M AgriLife Research Procedures 21.01.08.A0.03 Vehicle Use Reports: Automobiles destinations. #12;Texas A&M AgriLife Research Procedures 21.01.08.A0.03 Vehicle Use Reports: Automobiles

211

Well-to-wheels analysis of energy use and greenhouse gas emissions of plug-in hybrid electric vehicles.  

SciTech Connect (OSTI)

Plug-in hybrid electric vehicles (PHEVs) are being developed for mass production by the automotive industry. PHEVs have been touted for their potential to reduce the US transportation sector's dependence on petroleum and cut greenhouse gas (GHG) emissions by (1) using off-peak excess electric generation capacity and (2) increasing vehicles energy efficiency. A well-to-wheels (WTW) analysis - which examines energy use and emissions from primary energy source through vehicle operation - can help researchers better understand the impact of the upstream mix of electricity generation technologies for PHEV recharging, as well as the powertrain technology and fuel sources for PHEVs. For the WTW analysis, Argonne National Laboratory researchers used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed by Argonne to compare the WTW energy use and GHG emissions associated with various transportation technologies to those associated with PHEVs. Argonne researchers estimated the fuel economy and electricity use of PHEVs and alternative fuel/vehicle systems by using the Powertrain System Analysis Toolkit (PSAT) model. They examined two PHEV designs: the power-split configuration and the series configuration. The first is a parallel hybrid configuration in which the engine and the electric motor are connected to a single mechanical transmission that incorporates a power-split device that allows for parallel power paths - mechanical and electrical - from the engine to the wheels, allowing the engine and the electric motor to share the power during acceleration. In the second configuration, the engine powers a generator, which charges a battery that is used by the electric motor to propel the vehicle; thus, the engine never directly powers the vehicle's transmission. The power-split configuration was adopted for PHEVs with a 10- and 20-mile electric range because they require frequent use of the engine for acceleration and to provide energy when the battery is depleted, while the series configuration was adopted for PHEVs with a 30- and 40-mile electric range because they rely mostly on electrical power for propulsion. Argonne researchers calculated the equivalent on-road (real-world) fuel economy on the basis of U.S. Environmental Protection Agency miles per gallon (mpg)-based formulas. The reduction in fuel economy attributable to the on-road adjustment formula was capped at 30% for advanced vehicle systems (e.g., PHEVs, fuel cell vehicles [FCVs], hybrid electric vehicles [HEVs], and battery-powered electric vehicles [BEVs]). Simulations for calendar year 2020 with model year 2015 mid-size vehicles were chosen for this analysis to address the implications of PHEVs within a reasonable timeframe after their likely introduction over the next few years. For the WTW analysis, Argonne assumed a PHEV market penetration of 10% by 2020 in order to examine the impact of significant PHEV loading on the utility power sector. Technological improvement with medium uncertainty for each vehicle was also assumed for the analysis. Argonne employed detailed dispatch models to simulate the electric power systems in four major regions of the US: the New England Independent System Operator, the New York Independent System Operator, the State of Illinois, and the Western Electric Coordinating Council. Argonne also evaluated the US average generation mix and renewable generation of electricity for PHEV and BEV recharging scenarios to show the effects of these generation mixes on PHEV WTW results. Argonne's GREET model was designed to examine the WTW energy use and GHG emissions for PHEVs and BEVs, as well as FCVs, regular HEVs, and conventional gasoline internal combustion engine vehicles (ICEVs). WTW results are reported for charge-depleting (CD) operation of PHEVs under different recharging scenarios. The combined WTW results of CD and charge-sustaining (CS) PHEV operations (using the utility factor method) were also examined and reported. According to the utility factor method, the share of vehicle miles trav

Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

2010-06-14T23:59:59.000Z

212

Design optimization of the electrically peaking hybrid (ELPH) vehicle. Research report  

SciTech Connect (OSTI)

Electrically Peaking Hybrid (ELPH) is a parallel hybrid electric vehicle propulsion concept that was invented at Texas A and M University, by the advanced vehicle systems research group. Over the past six years, design methodologies, component development, and system optimization work has been going on for this invention. This project was a first attempt in integrating the above developments into an optimized design of an ELPH passenger car. Design specifications were chosen for a full size passenger car, performing as well as any conventional car, over the EPA-FTP-75 combined city/highway drive cycles. The results of this design project were two propulsion systems. Both were appropriate for commercial production, from the points of view of cost, availability of the technologies, and components. One utilized regenerative braking and the other did not. Substantial fuel savings and emissions reductions resulted from simulating these designs on the FTP-75 drive cycle. For example, the authors` ELPH full size car, with regenerative braking, was capable of delivering over 50 miles per gallon in city driving, with corresponding reductions in its emissions. This project established the viability of the authors` ELPH concept and their design methodologies, in computer simulations. More work remains to be done on investigating more advanced power plants, such as fuel cells, and more advanced components, such as switched reluctance motor drives, for the authors` designs. Furthermore, the authors` design optimization can be carried out to more detailed levels, for prototyping and production.

Ehsani, M.; Gao, Y.; Butler, K.

1998-10-01T23:59:59.000Z

213

VIA Motors electric vehicle platform  

Broader source: Energy.gov (indexed) [DOE]

Extended-Range Electric Trucks Extended-Range Electric Trucks The fuel economy of a Prius with the payload of a pickup VIA's E-REV powertrain is ideal for America's fleets, cutting fuel costs by up to 75%, while dramatically reducing petroleum consumption and emissions- electricity costs an average of 60 cents per equivalent gallon. Recharging daily, the average driver could expect to refill the gas tank less than 10 times a year rather than once a week. It offers all the advantages of an electric vehicle, without range limitations. Working with vehicle manufacturers, VIA plans to begin delivering E-REV trucks to government and utility fleets in 2011. The onboard generator provides a work site with 15 kW of exportable power Up to 40 miles in all-electric mode and up to 300 miles using the range extender

214

Research on the Torque Dynamic Distribution Algorithm of In-Wheel-Motor Electric Vehicle  

Science Journals Connector (OSTI)

This paper focuses on developing the torque dynamic distribution algorithm of In-Wheel-Motor electric vehicle. The algorithm is developed to regulate ... the vehicle body yaw rate by changing the motor drive torq...

Zhengyi He; Yang Ou; Jingming Yuan

2013-01-01T23:59:59.000Z

215

An adaptable, low cost test-bed for unmanned vehicle systems research.  

E-Print Network [OSTI]

?? An unmanned vehicle systems test-bed has been developed. The test-bed has been designed to accommodate hardware changes and various vehicle types and algorithms. The (more)

Goppert, James M.

2011-01-01T23:59:59.000Z

216

NREL: Vehicles and Fuels Research - July 24 Webinar: DOE Analysis Related  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

July 24 Webinar: DOE Analysis Related to H2USA July 24 Webinar: DOE Analysis Related to H2USA July 18, 2013 The U.S. Department of Energy will present a live webcast titled "DOE Analysis Related to H2USA" on Wednesday, July 24 from 12 to 1:30 p.m. Eastern Daylight Time. The webinar will provide information about models, tools, and various analyses relevant to H2USA, a new public-private partnership focused on advancing hydrogen infrastructure to support more transportation energy options for U.S. consumers, including fuel cell electric vehicles. The new partnership brings together automakers, government agencies, gas suppliers, and the hydrogen and fuel cell industries to coordinate research and identify cost-effective solutions to deploy infrastructure that can deliver affordable, clean hydrogen fuel in the United States.

217

Penn State Hybrid and Hydrogen Vehicle Research Laboratory The Larson Transportation Institute (LTI)  

E-Print Network [OSTI]

on the internal combustion engine and fossil fuels to "greener" fuel cell and hybrid electric technology: · Vehicle integration and control expertise; · Alternative fuel infrastructure including hydrogen, LNG; · Vehicle test track and dynamometer facilities; · Vehicle fabrication facilities; and · Fuel cell

Lee, Dongwon

218

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

Single-shaft ac powertrain. c Integrated permanent-magnet acshafts, and connecting cables and wiring). Motor: The 52-kW ac permanent-magnet

Delucchi, Mark

1992-01-01T23:59:59.000Z

219

Analyzing the Sensitivity of Hydrogen Vehicle Sales to Consumers' Preferences  

SciTech Connect (OSTI)

The success of hydrogen vehicles will depend on consumer behavior as well as technology, energy prices and public policy. This study examines the sensitivity of the future market shares of hydrogen-powered vehicles to alternative assumptions about consumers preferences. The Market Acceptance of Advanced Automotive Technologies model was used to project future market shares. The model has 1,458 market segments, differentiated by travel behavior, geography, and tolerance to risk, among other factors, and it estimates market shares for twenty advanced power-train technologies. The market potential of hydrogen vehicles is most sensitive to the improvement of drive train technology, especially cost reduction. The long-run market success of hydrogen vehicles is less sensitive to the price elasticity of vehicle choice, how consumers evaluate future fuel costs, the importance of fuel availability and limited driving range. The importance of these factors will likely be greater in the early years following initial commercialization of hydrogen vehicles.

Greene, David L [ORNL] [ORNL; Lin, Zhenhong [ORNL] [ORNL; Dong, Jing [Iowa State University] [Iowa State University

2013-01-01T23:59:59.000Z

220

Integrated Powertrain and Vehicle Technologies for Fuel Efficiency Improvement and CO2 Reduction  

Broader source: Energy.gov [DOE]

Meeting the most stringent emission standards in the world (EPA2002, EPA2007, EPA2010) required the strength of global organizations EPA2002 emission regulation was associated with a significant drop in engine thermal efficiency; DOE support of R&D program helped avoid further efficiency drop in 2007; EPA2010 will lead to simultaneous improvements in emissions and fuel efficiency for most manufacturers

Note: This page contains sample records for the topic "vehicles powertrain research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Vehicle Technologies Office Merit Review 2014: Automotive Low Temperature Gasoline Combustion Engine Research  

Broader source: Energy.gov [DOE]

Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about automotive low...

222

Vehicle Technologies Office Merit Review 2014: Fuel Injection and Spray Research Using X-Ray Diagnostics  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about fuel injection...

223

Vehicle Technologies Office Merit Review 2014: Large Eddy Simulation (LES) Applied to Advanced Engine Combustion Research  

Broader source: Energy.gov [DOE]

Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about large eddy...

224

Vehicle Technologies Office Merit Review 2014: Spray Combustion Cross-Cut Engine Research  

Broader source: Energy.gov [DOE]

Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about spray conbustion...

225

Vehicle Technologies Office Merit Review 2014: Cell Analysis, Modeling, and Prototyping (CAMP) Facility Research Activities  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about cell analysis,...

226

Vehicle Technologies Office Merit Review 2014: Advanced Lean-Burn DI Spark Ignition Fuels Research  

Broader source: Energy.gov [DOE]

Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced lean...

227

Vehicle Technologies Office Merit Review 2014: High Efficiency GDI Engine Research, with Emphasis on Ignition Systems  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high efficiency...

228

Front Vehicle Setup Information Downloadable Dynamometer Database (D  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chevrolet Volt- 20F Chevrolet Volt- 20F Test cell location Front Vehicle Setup Information Downloadable Dynamometer Database (D 3 )- Test Summary Sheet Vehicle architecture EREV Vehicle dynamometer Input Document date 8/7/2013 Advanced Powertrain Research Facility Test weight [lb] Target A [lb] 4000 28.66 Target B [lb/mph] Target C [lb/mph^2] -0.0132 0.0202 Revision Number 3 Notes: Test Fuel Information Fuel type EPA Tier II EEE Fuel density [g/ml] Fuel Net HV [BTU/lbm] 0.743 18490 T e s t I D [ # ] C y c l e C o l d s t a r t ( C S t ) H o t s t a r t [ H S t ] D a t e T e s t C e l l T e m p [ C ] T e s t C e l l R H [ % ] T e s t C e l l B a r o [ i n / H g ] V e h i c l e c o o l i n g f a n s p e e d : S p e e d M a t c h [ S M ] o r c o n s t a n t s p e e d [ C S ] S o l a r L a m p s [ W / m 2 ] V e i c l e C l i m a t e C o n t r o l s e t t i n g s H o o d P o s i t i o n [ U p ] o r [ C l o s e d ] W i n d o w P o s i t i o n [ C l o s e d ] o r [ D o w n ] C y c l e D i s t a n c e [ m i ] C y c l e F u

229

On the Simulation of an All Electric Ship Powertrain Utilizing a Surface Piercing Propeller Via a Modular Main Propulsion Plant Model.  

E-Print Network [OSTI]

??A modular simulation model of a marine powertrain consisting of a prime mover, propeller shaft, propulsor, and control system was developed, tested, and used to (more)

Zisman, Zachary Samuel

2011-01-01T23:59:59.000Z

230

Optimal energy management strategy for hybrid electric tracked vehicles  

Science Journals Connector (OSTI)

A Dynamic Programming (DP) technique is used to design an optimal power distribution energy management strategy between the diesel engine-generator and traction battery for a hybrid electric tracked vehicle. A mathematical model incorporating the vehicle's dynamics, driving schedule data from the field tests and powertrain is developed. A control strategy based on the passive power covering concept is initially designed. An optimal one is then designed through the DP approach and DP-based battery sizing is properly adopted. The performance of the new control strategy is tested through simulations. Significant fuel economy improvement is observed.

Yuan Zou; Feng-Chun Sun; Cheng-Ning Zhang; Jun-Qiu Li

2012-01-01T23:59:59.000Z

231

A study aimed at assessing the potential impact of vehicle electrification on grid infrastructure and road-traffic green house emissions  

Science Journals Connector (OSTI)

Abstract In the current paper a thorough analysis is conducted to assess, on one hand, the impact of vehicle electrification on electric grids and their related infrastructures, and, on the other, its potential contribution to GHG emission reduction. Such an analysis covers the timeframe 20112050, thus allowing to assess if the environment friendliness of both PHEV and BEV will be enough contributing, particularly towards the fulfillment of the objectives recently established both by official agreements among governments and research consortia (e.g. the International Energy Agency) as well. The expected time evolution of both PHEV and BEV private car fleets is modeled through a simplified market penetration model, along with the associated contribution in terms of well to tank and tank to wheel GHG emissions, thus providing the needed input data to the scenario analysis. Particularly, a longitudinal vehicle model is adopted to accurately estimate electric vehicle energy consumptions and related GHG emissions as a function of powertrain configuration, dimensions and mass. The analysis was run on several countries, thus providing useful outcomes to assess the suitability of given energy mix to fully exploit vehicle electrification. Such indications will therefore be useful to determine to which extent progressive decarbonization of current grids is required to meet the GHG reduction target by 2050.

Marco Sorrentino; Gianfranco Rizzo; Luca Sorrentino

2014-01-01T23:59:59.000Z

232

Vehicle Technologies Office: Propulsion Systems  

Broader source: Energy.gov [DOE]

Vehicle Technologies Office research focuses much of its effort on improving vehicle fuel economy while meeting increasingly stringent emissions standards. Achieving these goals requires a...

233

Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility  

Broader source: Energy.gov [DOE]

Technical paper on the development of a hydrogen reformer, vehicle refueling facility, and PEM fuel cell for Las Vegas, NV presented at the 2002 Annual Hydrogen Review held May 6-8, 2002 in Golden, CO.

234

Vehicle Technologies Office Merit Review 2014: Low-Temperature Gasoline Combustion (LTGC) Engine Research  

Broader source: Energy.gov [DOE]

Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about low-temperature...

235

Model Year 2013: Alternative Fuel Vehicles and Advanced Technology Vehicles  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

13: Alternative Fuel and Advanced Technology Vehicles 13: Alternative Fuel and Advanced Technology Vehicles 1 (Updated 3/6/13) 1 Source: http:/afdc.energy.gov/vehicles/search/light/ Fuel/Powertrain Type Make Model Vehicle Type Engine Size/Cylinders Transmission Emissions Class 2 Fuel Economy Gasoline 3,4 City/Hwy Fuel Economy Alt Fuel 3,4 City/Hwy HEV Acura ILX Sedan 1.5L I4 ECVT Tier 2 Bin 3 LEVII PZEV 39 / 38 N/A FFV E85 Audi A4 Sedan 2.0 I4 Auto Tier 2 Bin 5 LEVII ULEV 20 / 29 14 / 20 FFV E85 Audi A5 Sedan 2.0 I4 Auto Tier 2 Bin 5 LEVII ULEV 20 / 29 14 / 20 FFV E85 Audi A5 Cabriolet Sedan 2.0 I4 Auto Tier 2 Bin 5 LEVII ULEV 20 / 29 14 / 20 FFV E85 Audi Allroad Quatro Wagon 2.0 I4 Auto Tier 2 Bin 5 LEVII ULEV 20 / 27 14 / 18 FFV E85 Audi Q5 SUV 2.0 I4 Auto Tier 2 Bin 5 LEVII ULEV 20 / 28 14 / 19 HEV Audi Q5 Hybrid SUV 2.0 I4 Auto Tier 2 Bin 5 LEVII ULEV 24 / 30 N/A FFV E85 Bentley

236

Vehicle Technologies Office: Ambassadors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ambassadors to someone Ambassadors to someone by E-mail Share Vehicle Technologies Office: Ambassadors on Facebook Tweet about Vehicle Technologies Office: Ambassadors on Twitter Bookmark Vehicle Technologies Office: Ambassadors on Google Bookmark Vehicle Technologies Office: Ambassadors on Delicious Rank Vehicle Technologies Office: Ambassadors on Digg Find More places to share Vehicle Technologies Office: Ambassadors on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness Workforce Development Plug-in Electric Vehicle Basics Ambassadors Workplace Charging Challenge Clean Cities Coalitions Clean Cities logo. Clean Cities National: A network of nearly 100 Clean Cities coalitions, supported by the

237

Vehicle Technologies Office: Lubricants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lubricants to someone by Lubricants to someone by E-mail Share Vehicle Technologies Office: Lubricants on Facebook Tweet about Vehicle Technologies Office: Lubricants on Twitter Bookmark Vehicle Technologies Office: Lubricants on Google Bookmark Vehicle Technologies Office: Lubricants on Delicious Rank Vehicle Technologies Office: Lubricants on Digg Find More places to share Vehicle Technologies Office: Lubricants on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Fuel Effects on Combustion Lubricants Natural Gas Research Biofuels End-Use Research Materials Technologies Lubricants As most vehicles are on the road for more than 15 years before they are retired, investigating technologies that will improve today's vehicles is

238

Research Positionsfor Development of Novel Green Air Conditioning and Refrigeration Systems for Transportation Vehicles  

E-Print Network [OSTI]

in refrigeration and heat pump systems, HVAC, porous media development/characterization, transport phenomena of compact and lightweight heat exchangers for evaporator and condenser; v) Development of heatdriven adsorption chillers tailored to service vehicles; vi) Development and implementation of thermal energy

Bahrami, Majid

239

UA researchers develop develop a device for moving industrial vehicles without drivers  

E-Print Network [OSTI]

in warehouse management, are based on the use of previously established paths, that is, guided by painted lines driven vehicle into a high-performed mobile robot to suit the working environment where it is going processes mapping, association and location of robots over SLAM conventional techniques (Simultaneous

Escolano, Francisco

240

Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility  

E-Print Network [OSTI]

STORAGE COMPRESSION CNG REFUELING STATION CNG CLV & APCI CLV &CLV & APCIAPCI Figure 1: Overall Integration hydrogen to vehicles. The hydrogen compression, storage, blending and dispensing systems will be installed Venki Raman Air Products and Chemicals Inc. Allentown, PA 18195 Tel: 610-481-8336 E-mail: ramansv

Note: This page contains sample records for the topic "vehicles powertrain research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Model-based development and calibration of last generation diesel powertrains for passenger cars  

Science Journals Connector (OSTI)

This paper presents an original model-based approach to the system level development and calibration of diesel powertrains for passenger cars, implemented in a comprehensive software tool. The models for the different subsystems are coupled to execute optimisation loops, involving also the system calibration, and are characterised by flexibility of usage, limited tuning effort and reduced computational time. As an example of the general approach, the engine model is described and some results from its execution are shown and compared with the measurements. Finally, a practical example is given of the usage of the tool for system level optimisation through a specifically developed methodology.

Fabio Mallamo; Federico Millo; Luciano Rolando

2014-01-01T23:59:59.000Z

242

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Broader source: Energy.gov (indexed) [DOE]

Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation 2010 DOE Vehicle Technologies...

243

Comparative Study of Hybrid Powertrains on Fuel Saving, Emissions, and Component Energy Loss in HD Trucks  

SciTech Connect (OSTI)

We compared parallel and series hybrid powertrains on fuel economy, component energy loss, and emissions control in Class 8 trucks over both city and highway driving. A comprehensive set of component models describing battery energy, engine fuel efficiency, emissions control, and power demand interactions for heavy duty (HD) hybrids has been integrated with parallel and series hybrid Class 8 trucks in order to identify the technical barriers of these hybrid powertrain technologies. The results show that series hybrid is absolutely negative for fuel economy benefit of long-haul trucks due to an efficiency penalty associated with the dual-step conversions of energy (i.e. mechanical to electric to mechanical). The current parallel hybrid technology combined with 50% auxiliary load reduction could elevate 5-7% fuel economy of long-haul trucks, but a profound improvement of long-haul truck fuel economy requires additional innovative technologies for reducing aerodynamic drag and rolling resistance losses. The simulated emissions control indicates that hybrid trucks reduce more CO and HC emissions than conventional trucks. The simulated results further indicate that the catalyzed DPF played an important role in CO oxidations. Limited NH3 emissions could be slipped from the Urea SCR, but the average NH3 emissions are below 20 ppm. Meanwhile our estimations show 1.5-1.9% of equivalent fuel-cost penalty due to urea consumption in the simulated SCR cases.

Gao, Zhiming [ORNL; FINNEY, Charles E A [ORNL; Daw, C Stuart [ORNL; LaClair, Tim J [ORNL; Smith, David E [ORNL

2014-01-01T23:59:59.000Z

244

Vehicle Technologies Office: Directions in Engine-Efficiency and Emissions Research (DEER) Conference  

Broader source: Energy.gov [DOE]

The Directions in Engine-Efficiency and Emissions Research (DEER) Conference gathers professionals in the engine community to share the latest in advanced combustion engine research and development...

245

2014 Annual Merit Review Results Report - Vehicle Analysis |...  

Energy Savers [EERE]

Review Results Report - Vehicle Analysis 2014 Annual Merit Review Results Report - Vehicle Analysis Merit review of DOE Vehicle Technologies research activities 2014amr09.pdf...

246

2014 Annual Merit Review Results Report - Hybrid Vehicle Systems...  

Energy Savers [EERE]

Hybrid Vehicle Systems Technologies 2014 Annual Merit Review Results Report - Hybrid Vehicle Systems Technologies Merit review of DOE Vehicle Technologies research activities...

247

US DRIVE Vehicle Systems and Analysis Technical Team Roadmap...  

Energy Savers [EERE]

US DRIVE Driving Research and Innovation for Vehicle Efficiency and Energy Sustainability Partnership Plan Vehicle Technologies Office: 2013 Vehicle and Systems Simulation...

248

2009 VW Jetta TDI Test Cell Location Front Vehicle Setup Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

VW Jetta TDI VW Jetta TDI Test Cell Location Front Vehicle Setup Information Downloadable Dynamometer Database (D 3 )- Test Summary Sheet Vehicle Architecture Conventional- Diesel Vehicle Dynamometer Input Document Date 8/7/2013 Advanced Powertrain Research Facility Test weight [lb] Target A [lb] 3625 35 Target B [lb/mph] Target C [lb/mph^2] 0.18 0.0193 Revision Number 3 Notes: Test Fuel Information Fuel type 2007 Certification Diesel Fuel density [g/ml] Fuel Net HV [BTU/lbm] 0.855 18355 T e s t I D [ # ] C y c l e C o l d s t a r t ( C S t ) H o t s t a r t [ H S t ] D a t e T e s t C e l l T e m p [ C ] T e s t C e l l R H [ % ] T e s t C e l l B a r o [ i n / H g ] V e h i c l e c o o l i n g f a n s p e e d : S p e e d M a t c h [ S M ] o r c o n s t a n t s p e e d [ C S ] S o l a r L a m p s [ W / m 2 ] V e i c l e C l i m a t e C o n t r o l s e t t i n g s H o o d P o s i t i o n [ U p ] o r [ C l o s e d ] W i n d o w P o s i t i o n [ C l o s e d ] o r [ D o w n ] C y c l e D i s t a n c e

249

Vehicle Technologies Office: Partners  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Partners to someone by Partners to someone by E-mail Share Vehicle Technologies Office: Partners on Facebook Tweet about Vehicle Technologies Office: Partners on Twitter Bookmark Vehicle Technologies Office: Partners on Google Bookmark Vehicle Technologies Office: Partners on Delicious Rank Vehicle Technologies Office: Partners on Digg Find More places to share Vehicle Technologies Office: Partners on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness Workforce Development Plug-in Electric Vehicle Basics Partners The interactive map below highlights Workplace Charging Challenge Partners across the country who are installing plug-in electric vehicle charging infrastructure for their employees. Select a worksite to learn more about

250

Ethanol Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet), NREL (National Renewable Energy Laboratory)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

pipeline safety) CONTROLLING AUTHORITIES: State and Local Government (zoning, building permits) CONTROLLING AUTHORITIES: State and Local Government (zoning, building permits) CONTROLLING AUTHORITIES: DOT/NHTS (crashworthiness) EPA (emissions) Many standards development organizations (SDOs) are working to develop codes and standards needed for the utilization of alternative fuel vehicle technologies. This chart shows the SDOs responsible for leading the support and development of key codes and standards for ethanol. Ethanol Vehicle and Infrastructure Codes and Standards Chart Engine Testing: Fuel Systems: Fuel Lubricants: Powertrain Systems: Containers: Dispensing Operations: Dispensing Components: Containers: Transfer Operations: Container Components: Container Siting:

251

Hybrid Vehicle Technology - Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

* Batteries * Batteries * Modeling * Testing Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Hybrid Vehicle Technology revolutionize transportation Argonne's Research Argonne researchers are developing and testing various hybrid electric vehicles (HEVs) and their components to identify the technologies, configurations, and engine control strategies that provide the best combination of high fuel economy and low emissions. Vehicle Validation Argonne also serves as the lead laboratory for hardware-in-the-loop (HIL) and technology validation for the U.S. Department of Energy (DOE). HIL is a

252

European Lean Gasoline Direct Injection Vehicle Benchmark  

SciTech Connect (OSTI)

Lean Gasoline Direct Injection (LGDI) combustion is a promising technical path for achieving significant improvements in fuel efficiency while meeting future emissions requirements. Though Stoichiometric Gasoline Direct Injection (SGDI) technology is commercially available in a few vehicles on the American market, LGDI vehicles are not, but can be found in Europe. Oak Ridge National Laboratory (ORNL) obtained a European BMW 1-series fitted with a 2.0l LGDI engine. The vehicle was instrumented and commissioned on a chassis dynamometer. The engine and after-treatment performance and emissions were characterized over US drive cycles (Federal Test Procedure (FTP), the Highway Fuel Economy Test (HFET), and US06 Supplemental Federal Test Procedure (US06)) and steady state mappings. The vehicle micro hybrid features (engine stop-start and intelligent alternator) were benchmarked as well during the course of that study. The data was analyzed to quantify the benefits and drawbacks of the lean gasoline direct injection and micro hybrid technologies from a fuel economy and emissions perspectives with respect to the US market. Additionally that data will be formatted to develop, substantiate, and exercise vehicle simulations with conventional and advanced powertrains.

Chambon, Paul H [ORNL] [ORNL; Huff, Shean P [ORNL] [ORNL; Edwards, Kevin Dean [ORNL] [ORNL; Norman, Kevin M [ORNL] [ORNL; Prikhodko, Vitaly Y [ORNL] [ORNL; Thomas, John F [ORNL] [ORNL

2011-01-01T23:59:59.000Z

253

Vehicle Technologies Office: Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Batteries to someone by Batteries to someone by E-mail Share Vehicle Technologies Office: Batteries on Facebook Tweet about Vehicle Technologies Office: Batteries on Twitter Bookmark Vehicle Technologies Office: Batteries on Google Bookmark Vehicle Technologies Office: Batteries on Delicious Rank Vehicle Technologies Office: Batteries on Digg Find More places to share Vehicle Technologies Office: Batteries on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Batteries Battery Systems Applied Battery Research Long-Term Exploratory Research Ultracapacitors Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Materials Technologies Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various

254

Vehicles | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Vehicles Vehicles Vehicles EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. Image of three semi truck cabs. The one on the left is yellow, the middle is green, and the far right truck is red. The U.S. Department of Energy (DOE) supports the development and deployment of advanced vehicle technologies, including advances in electric vehicles, engine efficiency, and lightweight materials. Since 2008, the Department of

255

AVTA: 2010 Electric Vehicles International Neighborhood Electric Vehicle Testing Results  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe testing results of the 2010 Electric Vehicles International neighborhood electric vehicle. Neighborhood electric vehicles reach speeds of no more than 35 miles per hour and are only allowed on roads with speed limits of up to 35 miles per hour. This research was conducted by Idaho National Laboratory.

256

PEV Grid Integration Research: Vehicles, Buildings, and Renewables Working Together (Presentation)  

SciTech Connect (OSTI)

Presented at the Electric Power Research Institute (EPRI) Infrastructure Working Council (IWC) Meeting, 18-19 June 2014, White Plains, New York

Markel, T.

2014-06-01T23:59:59.000Z

257

Solid Oxide Membrane (SOM) Electrolysis of Magnesium: Scale-Up Research and Engineering for Light-Weight Vehicles  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

258

Energy use and CO2 emissions reduction potential in passenger car fleet using zero emission vehicles and lightweight materials  

Science Journals Connector (OSTI)

Introduction of \\{ZEVs\\} (zero emission vehicles) and lightweight materials in a conventional steel-intensive internal combustion engine vehicle fleet will affect energy consumption and automotive material requirements. We developed a bottom-up dynamic accounting model of the light-duty vehicle fleet, including vehicle production and disposal, with detailed coverage of powertrains and automotive materials. The model was used to study the potential for energy consumption and CO2 emissions reduction of \\{ZEVs\\} and lightweight materials in the Colombian passenger car fleet from 2010 to 2050. Results indicate that passenger car stock in Colombia is increased by 6.6 times between 2010 and 2050. In the base scenario energy consumption and CO2 emissions are increased by 5.5 and 4.9 times respectively. Lightweighting and battery electric vehicles offer the largest tank-to-wheel energy consumption and CO2 emissions reductions, 48 and 61% respectively, compared to 2050 baseline values. Slow stock turnover and fleet size increment prevent larger reductions. Switching to electric powertrains has larger impact than lightweighting on energy consumption and CO2 emissions. Iron and steel remain major materials in new cars. Aluminum consumption increases in all scenarios; while carbon fiber reinforced polymer consumption only increases due to fuel cell hybrid electric vehicle or lightweight vehicle use.

Juan C. Gonzlez Palencia; Takaaki Furubayashi; Toshihiko Nakata

2012-01-01T23:59:59.000Z

259

Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...  

Broader source: Energy.gov (indexed) [DOE]

Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector...

260

Technology and System Level Demonstration of Highly Efficient...  

Broader source: Energy.gov (indexed) [DOE]

Engine Speed) - Powertrain Components - VibrationCustomer Acceptance * Trailer Aerodynamic Devices that Meet Operational Requirements * Vehicle and Powertrain Communication...

Note: This page contains sample records for the topic "vehicles powertrain research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Vehicle Technologies Office: Power Electronics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Electronics to Power Electronics to someone by E-mail Share Vehicle Technologies Office: Power Electronics on Facebook Tweet about Vehicle Technologies Office: Power Electronics on Twitter Bookmark Vehicle Technologies Office: Power Electronics on Google Bookmark Vehicle Technologies Office: Power Electronics on Delicious Rank Vehicle Technologies Office: Power Electronics on Digg Find More places to share Vehicle Technologies Office: Power Electronics on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Power Electronics Electrical Machines Thermal Control & System Integration Advanced Combustion Engines Fuels & Lubricants Materials Technologies Power Electronics The power electronics activity focuses on research and development (R&D)

262

Sliding mode-based DTC-SVM control of permanent magnet synchronous motors for plug-in electric and hybrid vehicles  

Science Journals Connector (OSTI)

This paper presents a sliding mode controller design for a permanent magnet synchronous motor used in an integrated powertrain for plug-in electric and hybrid vehicles. In order to adapt to complicated driving environment and improve the robustness of the system, a sliding mode-based torque controller is developed. At the same time, a sliding mode speed controller is also proposed to meet the need of gear shift of the integrated powertrain. The stability and robustness of the proposed controllers are analysed. Computer simulations are performed to verify the effectiveness of the proposed control system. The simulation results illustrate that fast response and small ripples are achieved using the proposed control scheme. It is also shown that the control system is robust against load variations, measurement errors and parameter uncertainty. In addition, the transition during shift is smooth. Therefore, the proposed control scheme is suitable for control of the propulsion motor for plug-in electric and hybrid vehicles.

Hong Fu; Yaobin Chen; Guangyu Tian; Quanshi Chen

2011-01-01T23:59:59.000Z

263

Infrastructure, Components and System Level Testing and Analysis of Electric Vehicles: Cooperative Research and Development Final Report, CRADA Number CRD-09-353  

SciTech Connect (OSTI)

Battery technology is critical for the development of innovative electric vehicle networks, which can enhance transportation sustainability and reduce dependence on petroleum. This cooperative research proposed by Better Place and NREL will focus on predicting the life-cycle economics of batteries, characterizing battery technologies under various operating and usage conditions, and designing optimal usage profiles for battery recharging and use.

Neubauer, J.

2013-05-01T23:59:59.000Z

264

Vehicle Technologies Office: Key Activities in Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Activities in Vehicles Activities in Vehicles We conduct work in four key areas to develop and deploy vehicle technologies that reduce the use of petroleum while maintaining or improving performance, power, and comfort. Research and development (R&D); testing and analysis; government and community stakeholder support; and education help people access and use efficient, clean vehicles that meet their transportation needs. Researcher loads a sample mount of battery cathode materials for X-ray diffraction, an analysis tool for obtaining information on the crystallographic structure and composition of materials. Research and Development of New Technologies Develop durable and affordable advanced batteries as well as other forms of energy storage. Improve the efficiency of combustion engines.

265

Near term hybrid passenger vehicle development program. Phase I. Appendices C and D. Final report  

SciTech Connect (OSTI)

The derivation of and actual preliminary design of the Near Term Hybrid Vehicle (NTHV) are presented. The NTHV uses a modified GM Citation body, a VW Rabbit turbocharged diesel engine, a 24KW compound dc electric motor, a modified GM automatic transmission, and an on-board computer for transmission control. The following NTHV information is presented: the results of the trade-off studies are summarized; the overall vehicle design; the selection of the design concept and the base vehicle (the Chevrolet Citation), the battery pack configuration, structural modifications, occupant protection, vehicle dynamics, and aerodynamics; the powertrain design, including the transmission, coupling devices, engine, motor, accessory drive, and powertrain integration; the motor controller; the battery type, duty cycle, charger, and thermal requirements; the control system (electronics); the identification of requirements, software algorithm requirements, processor selection and system design, sensor and actuator characteristics, displays, diagnostics, and other topics; environmental system including heating, air conditioning, and compressor drive; the specifications, weight breakdown, and energy consumption measures; advanced technology components, and the data sources and assumptions used. (LCL)

Not Available

1980-01-01T23:59:59.000Z

266

The ArvinMeritor Dual Mode Hybrid Powertrain (DMHP): Opportunities and Potential for Systems Optimization  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

267

Vehicle Technologies Office: Benchmarking  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Benchmarking Benchmarking Research funded by the Vehicle Technologies Office produces a great deal of valuable data, but it is important to compare those research results with similar work done elsewhere in the world. Through laboratory testing, researchers can compare vehicles and components to validate models, support technical target-setting, and provide data to help guide technology development tasks. Benchmarking activities fall into two primary areas: Vehicle and component testing, in which researchers test and analyze emerging technologies obtained from sources throughout the world. The results are used to continually assess program efforts. Model validation, in which researchers use test data to validate the accuracy of vehicle and component computer models including: overall measures such as fuel economy, state-of-charge energy storage across the driving cycle, and transient component behavior, such as fuel rate and torque.

268

Vehicle Technologies Office Merit Review 2014: The Voltage Fade Project, A New Paradigm for Applied Battery Research  

Broader source: Energy.gov [DOE]

Presentation given by the Department of Energy's Energy Storage area at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about a new approach to the challenge of voltage fade in batteries for plug-in electric vehicles.

269

CMVRTC: Overweight Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

overweight vehicle data collection overweight vehicle data collection scale The Federal Motor Carrier Safety Administration requested information regarding overweight and oversized vehicle traffic entering inspection stations (ISs) in order to develop strategies for future research efforts and possibly help guide regulatory issues involving overweight commercial motor vehicles (CMVs). For a period of one month, inspection stations in Knox County and Greene County, Tennessee, recorded overweight and oversized vehicles that entered these ISs. During this period, 435 CMVs were recorded using an electronic form filled out by enforcement personnel at the IS. Of the 435 CMVs recorded, 381 had weight information documented with them. The majority (52.2%) of the vehicles recorded were five-axle combination

270

Vehicle Technologies Office: Lubricants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lubricants Lubricants As most vehicles are on the road for more than 15 years before they are retired, investigating technologies that will improve today's vehicles is essential. Because 11.5 percent of fuel energy is consumed by engine friction, decreasing this friction through lubricants can lead to substantial improvements in the fuel economy of current vehicles, without needing to wait for the fleet to turn over. In fact, a 1 percent fuel savings in the existing vehicle fleet possible through lubricants could save 97 thousand barrels of oil a day or $3.5 billion a year. Because of these benefits, the Vehicle Technologies Office supports research on lubricants that can improve the efficiency of internal combustion engine vehicles, complementing our work on advanced combustion engine technology.

271

Vehicle Ancillary Load Reduction Project Close-Out Report: An Overview of the Task and a Compilation of the Research Results  

SciTech Connect (OSTI)

The amount of fuel used for climate control in U.S. vehicles reduces the fuel economy of more than 200 million light-duty conventional vehicles and thus affects U.S. energy security. Researchers at the DOE National Renewable Energy Laboratory estimated that the United States consumes about 7 billion gallons of fuel per year for air-conditioning (A/C) light-duty vehicles. Using a variety of tools, NREL researchers developed innovative techniques and technologies to reduce the amount of fuel needed for these vehicles' ancillary loads. For example, they found that the A/C cooling capacity of 5.7 kW in a Cadillac STS could be reduced by 30% while maintaining a cooldown performance of 30 minutes. A simulation showed that reducing the A/C load by 30% decreased A/C fuel consumption by 26%. Other simulations supported the great potential for improving fuel economy by using new technologies and techniques developed to reduce ancillary loads.

Rugh, J.; Farrington, R.

2008-01-01T23:59:59.000Z

272

Future Potential of Hybrid and Diesel Powertrains in the U.S. Light-Duty Vehicle Market  

Broader source: Energy.gov [DOE]

2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Oak Ridge National Laboratory

273

Vehicle Technologies Office: Active Solicitations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Active Solicitations to Active Solicitations to someone by E-mail Share Vehicle Technologies Office: Active Solicitations on Facebook Tweet about Vehicle Technologies Office: Active Solicitations on Twitter Bookmark Vehicle Technologies Office: Active Solicitations on Google Bookmark Vehicle Technologies Office: Active Solicitations on Delicious Rank Vehicle Technologies Office: Active Solicitations on Digg Find More places to share Vehicle Technologies Office: Active Solicitations on AddThis.com... Active Solicitations To explore current financial opportunity solicitations, click on the opportunity titles in the table below. To sort the list, click on the arrows in the column headings. Technology Solicitation Title Open Date Close Date Hydrogen and Fuel Cells Research and Development for Hydrogen Storage

274

Vehicle Technologies Office: Key Activities in Vehicles | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in four key areas to develop and deploy vehicle technologies that reduce the use of petroleum while maintaining or improving performance, power, and comfort. Research and...

275

Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office supports research to design engines optimized for alternative fuels that increases efficiency and takes advantage of these fuels' unique properties.

276

Combining stated and revealed choice research to simulate the neighbor effect: The case of hybrid-electric vehicles  

E-Print Network [OSTI]

ciency (FE) d (L/100 km) Fuel price (FP) d (CAN $ per liter)vehicle, and the relative fuel price. For example, if thefuel ef?ciency at a 150% fuel price, the presented attribute

Axsen, Jonn; Mountain, Dean C.; Jaccard, Mark

2009-01-01T23:59:59.000Z

277

Beyond The Green Myopia: Vehicle Efficiency  

Science Journals Connector (OSTI)

Enhancing powertrain technology with highly efficient diesel and gasoline engines, efficient transmissions, electric steering, active air conditioning, and efficient drivelines has gradually improved this overall...

Dr Arun Jaura

2014-01-01T23:59:59.000Z

278

Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle...  

Energy Savers [EERE]

Maximizing Alternative Fuel Vehicle Efficiency Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency Besides their energy security and environmental benefits,...

279

Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...  

Energy Savers [EERE]

Confidential, 4222013 2013 DOE VEHICLE TECHNOLOGIES PROGRAM REVIEW PRESENTATION Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification...

280

Vehicle Technologies Office: Hybrid and Vehicle Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hybrid and Vehicle Hybrid and Vehicle Systems to someone by E-mail Share Vehicle Technologies Office: Hybrid and Vehicle Systems on Facebook Tweet about Vehicle Technologies Office: Hybrid and Vehicle Systems on Twitter Bookmark Vehicle Technologies Office: Hybrid and Vehicle Systems on Google Bookmark Vehicle Technologies Office: Hybrid and Vehicle Systems on Delicious Rank Vehicle Technologies Office: Hybrid and Vehicle Systems on Digg Find More places to share Vehicle Technologies Office: Hybrid and Vehicle Systems on AddThis.com... Just the Basics Hybrid & Vehicle Systems Modeling & Simulation Integration & Validation Benchmarking Parasitic Loss Reduction Propulsion Systems Advanced Vehicle Evaluations Energy Storage Advanced Power Electronics & Electrical Machines

Note: This page contains sample records for the topic "vehicles powertrain research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Vehicle Technologies Office: 2009 Advanced Vehicle Technology...  

Office of Environmental Management (EM)

Vehicle Technologies Office: 2009 Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle...

282

Vehicle Technology and Alternative Fuel Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Technology and Alternative Fuel Basics Vehicle Technology and Alternative Fuel Basics Vehicle Technology and Alternative Fuel Basics Photo of an electric car plugged in and charging. Learn more about exciting technologies and ongoing research in alternative and advanced vehicles-or vehicles that run on fuels other than traditional petroleum. Alternative Vehicles There are a variety of alternative vehicle fuels available. Learn more about: Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane Vehicles Also learn about: Vehicle Battery Basics Vehicle Emissions Basics Alternative Fuels There are a number of alternative fuel and advanced technology vehicles. Learn more about the following types of vehicles: Biodiesel Electricity Ethanol Hydrogen Natural Gas

283

Efficiency Improvement through Reduction in Friction and Wear in Powertrain Systems  

Broader source: Energy.gov [DOE]

Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

284

Impact of Driving Behavior on PHEV Fuel Consumption for Different Powertrain, Component Sizes and Control  

Broader source: Energy.gov [DOE]

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

285

Vehicle Technologies Office: Intermediate Ethanol Blends  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Intermediate Ethanol Intermediate Ethanol Blends to someone by E-mail Share Vehicle Technologies Office: Intermediate Ethanol Blends on Facebook Tweet about Vehicle Technologies Office: Intermediate Ethanol Blends on Twitter Bookmark Vehicle Technologies Office: Intermediate Ethanol Blends on Google Bookmark Vehicle Technologies Office: Intermediate Ethanol Blends on Delicious Rank Vehicle Technologies Office: Intermediate Ethanol Blends on Digg Find More places to share Vehicle Technologies Office: Intermediate Ethanol Blends on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Fuel Effects on Combustion Lubricants Natural Gas Research Biofuels End-Use Research

286

Apps for Vehicles: What is OpenXC and how is it different than  

Open Energy Info (EERE)

Apps for Vehicles: What is OpenXC and how is it different than Apps for Vehicles: What is OpenXC and how is it different than commercially-available hardware/software? Home > Groups > Developer This question relates to energy hackathons and the OpenXC platform. More information at http://en.openei.org/wiki/Help:Energy_Hackathon_Resources Submitted by Rmckeel on 24 September, 2012 - 10:37 1 answer Points: 1 Why not just use one of the many commercial OBD-II scanners instead of OpenXC? Certainly, OBD-II has the advantage of being a standard across all vehicles sold in North America since 1996, but the standard message set primarily concerns the emissions powertrain. The rest of the diagnostic messages are non-standard and not available to the public (and certainly not an open source project). AutoEnginuity, an OBD-II scanner manufacturer

287

A two-step optimisation method for the preliminary design of a hybrid electric vehicle  

Science Journals Connector (OSTI)

In the present investigation an innovative procedure to design a hybrid electric vehicle (HEV) is proposed, based on two steps: optimisation and decision-making. Both steps require a multi-objective approach due to the many goals to be taken into account in the design of a complex system like an HEV. The method has been applied to the preliminary design of the powertrain and tuning of the control strategy of a series hybrid vehicle, simulated with a Matlab-Simulink code. The hardware parameters included the number of axles in the vehicle, number of electric motors per axle, and type and quantity of energy storage system devices (batteries and/or electrochemical capacitors). The control parameters are related to fuel economy conversion factors and the maximum and minimum state of charge allowed to the secondary energy storage systems. Several attributes of performance and fuel consumption evaluated with respect to seven driving cycles were considered as optimisation goals.

Teresa Donateo; Lorenzo Serrao; Giorgio Rizzoni

2008-01-01T23:59:59.000Z

288

Biodiesel Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet), NREL (National Renewable Energy Laboratory)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Many standards development organizations (SDOs) are working to develop codes and standards needed for the utilization of alternative fuel Many standards development organizations (SDOs) are working to develop codes and standards needed for the utilization of alternative fuel vehicle technologies. This chart shows the SDOs responsible for leading the support and development of key codes and standards for biodiesel. Biodiesel Vehicle and Infrastructure Codes and Standards Chart Vehicles Storage Dispensing Infrastructure Engine Testing: Fuel Systems: Fuel Lubricants: Powertrain Systems: Containers: Dispensing Operations: Dispensing Components: Containers: Transfer Operations: Container Components: Container Siting: Test Methods and Specifications for Fuels: Pipeline and Piping Infrastructure: Building and Fire Code Requirements: CONTROLLING AUTHORITIES: DOT/NHTS (crashworthiness) EPA (emissions) CONTROLLING AUTHORITIES:

289

Vehicle Technologies Office: Annual Progress Reports  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Annual Progress Reports Annual Progress Reports 2013 DOE Vehicle Technologies Office Annual Merit Review 2012 Advanced Combustion Engine Research and Development Advanced Power Electronics and Electric Motors DOE Vehicle Technologies Office Annual Merit Review Energy Storage Research and Development Fuel & Lubricant Technologies Lightweight Materials Propulsion Materials Vehicle and Systems Simulation and Testing 2011 Advanced Combustion Engine Research and Development Advanced Power Electronics and Electric Motors DOE Vehicle Technologies Office Annual Merit Review Energy Storage Research and Development Lightweighting Materials Propulsion Materials Vehicle and Systems Simulation and Testing 2010 Advanced Combustion Engine Research and Development Advanced Power Electronics and Electric Motors

290

Vehicle Technologies Office Merit Review 2014: High Efficiency...  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Technologies Office Merit Review 2014: High Efficiency GDI Engine Research, with Emphasis on Ignition Systems Vehicle Technologies Office Merit Review 2014: High Efficiency...

291

2010 DOE EERE Vehicle Technologies Program Merit Review - Energy...  

Broader source: Energy.gov (indexed) [DOE]

0 DOE EERE Vehicle Technologies Program Merit Review - Energy Storage 2010 DOE EERE Vehicle Technologies Program Merit Review - Energy Storage Energy storage research and...

292

Plug-In Hybrid Electric Vehicles - PHEV Modeling - Control Strategy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Control Strategy Assessment of PHEVs Control Strategy Assessment of PHEVs A generic global optimization algorithm for plug-in hybrid electric vehicle (PHEV) powertrain flows has been developed based on the Bellman optimality principle. Optimization results are used to isolate control patterns, both dependent and independent of the cycle characteristics, in order to develop real-time control strategies in Simulink/Stateflow. These controllers are then implemented in PSAT to validate their performances. Heuristic optimization algorithms (such as DIRECT or genetic algorithms) are then used to tune the parameters of the real-time controller implemented in PSAT. The control strategy development process is described below. PHEV control strategy development process diagram Control Strategy Development Process

293

Appending High-Resolution Elevation Data to GPS Speed Traces for Vehicle Energy Modeling and Simulation  

SciTech Connect (OSTI)

Accurate and reliable global positioning system (GPS)-based vehicle use data are highly valuable for many transportation, analysis, and automotive considerations. Model-based design, real-world fuel economy analysis, and the growing field of autonomous and connected technologies (including predictive powertrain control and self-driving cars) all have a vested interest in high-fidelity estimation of powertrain loads and vehicle usage profiles. Unfortunately, road grade can be a difficult property to extract from GPS data with consistency. In this report, we present a methodology for appending high-resolution elevation data to GPS speed traces via a static digital elevation model. Anomalous data points in the digital elevation model are addressed during a filtration/smoothing routine, resulting in an elevation profile that can be used to calculate road grade. This process is evaluated against a large, commercially available height/slope dataset from the Navteq/Nokia/HERE Advanced Driver Assistance Systems product. Results will show good agreement with the Advanced Driver Assistance Systems data in the ability to estimate road grade between any two consecutive points in the contiguous United States.

Wood, E.; Burton, E.; Duran, A.; Gonder, J.

2014-06-01T23:59:59.000Z

294

Vehicle Technologies Office: 2008 Advanced Vehicle Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

8 Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2008 Advanced...

295

Richmond Electric Vehicle Initiative Electric Vehicle Readiness...  

Office of Environmental Management (EM)

MO) Vehicles Home About Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions Alternative Fuels Modeling, Testing, Data & Results Education...

296

Influence of Electric Vehicles Connected to the Grid Guangbin Li (gl2423) Influence of Electric Vehicles Connected to the Grid  

E-Print Network [OSTI]

vehicles and its meaning of research An electric vehicle refers to the vehicle powered from batteries that are only powered from internal batteries, called Battery Electric Vehicle (BEV); those that can be powered the fuel cell as its power, called Fuel Cell Electric Vehicle (FCEV). BEV achieves the "zero-release" goal

Lavaei, Javad

297

Diesel Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vehicles Vehicles Audi A3 Diesel vehicles may be making a comeback. Diesel engines are more powerful and fuel-efficient than similar-sized gasoline engines (about 30-35% more fuel efficient). Plus, today's diesel vehicles are much improved over diesels of the past. Better Performance Improved fuel injection and electronic engine control technologies have Increased power Improved acceleration Increased efficiency New engine designs, along with noise- and vibration-damping technologies, have made them quieter and smoother. Cold-weather starting has been improved also. Cleaner Mercedes ML320 BlueTEC Today's diesels must meet the same emissions standards as gasoline vehicles. Advances in engine technologies, ultra-low sulfur diesel fuel, and improved exhaust treatment have made this possible.

298

Making the case for direct hydrogen storage in fuel cell vehicles  

SciTech Connect (OSTI)

Three obstacles to the introduction of direct hydrogen fuel cell vehicles are often states: (1) inadequate onboard hydrogen storage leading to limited vehicle range; (2) lack of an hydrogen infrastructure, and (3) cost of the entire fuel cell system. This paper will address the first point with analysis of the problem/proposed solutions for the remaining two obstacles addressed in other papers. Results of a recent study conducted by Directed Technologies Inc. will be briefly presented. The study, as part of Ford Motor Company/DOE PEM Fuel Cell Program, examines multiple pure hydrogen onboard storage systems on the basis of weight, volume, cost, and complexity. Compressed gas, liquid, carbon adsorption, and metal hydride storage are all examined with compressed hydrogen storage at 5,000 psia being judged the lowest-risk, highest benefit, near-term option. These results are combined with recent fuel cell vehicle drive cycle simulations to estimate the onboard hydrogen storage requirement for full vehicle range (380 miles on the combined Federal driving schedule). The results indicate that a PNGV-like vehicle using powertrain weights and performance realistically available by the 2004 PNGV target data can achieve approximate fuel economy equivalent to 100 mpg on gasoline (100 mpg{sub eq}) and requires storage of approximately 3.6 kg hydrogen for full vehicle storage quantity allows 5,000 psia onboard storage without altering the vehicle exterior lines or appreciably encroaching on the passenger or trunk compartments.

James, B.D.; Thomas, C.E.; Baum, G.N.; Lomas, F.D. Jr.; Kuhn, I.F. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

1997-12-31T23:59:59.000Z

299

The sound quality of vehicle interior noise: a challenge for the NVH-engineers  

Science Journals Connector (OSTI)

The sound quality of vehicle interior noise has become a very important task for the acoustic engineers since more than 20 years. As vehicles become more and more quiet, the customer's sensitiveness for the acoustical comfort increases. On the one hand, no disturbing noises should be heard and on the other hand, the perceived sound quality, for example from the powertrain, should fulfill the expectations of the listener with respect to the sound design. The development of a good sound quality is in conflict with other targets. The development time of a new car has to be reduced and the production costs have to be lower, the total weight of the car should not increase ?? without any negative influence on the sound quality. For the acoustical engineer it becomes important to know what kind of tools are available to measure, to analyse and to describe sound quality on the one hand and how to improve it on the other hand.

Klaus Genuit

2004-01-01T23:59:59.000Z

300

Vehicle Technologies Office: Directions in Engine-Efficiency and Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Directions in Directions in Engine-Efficiency and Emissions Research (DEER) Conference to someone by E-mail Share Vehicle Technologies Office: Directions in Engine-Efficiency and Emissions Research (DEER) Conference on Facebook Tweet about Vehicle Technologies Office: Directions in Engine-Efficiency and Emissions Research (DEER) Conference on Twitter Bookmark Vehicle Technologies Office: Directions in Engine-Efficiency and Emissions Research (DEER) Conference on Google Bookmark Vehicle Technologies Office: Directions in Engine-Efficiency and Emissions Research (DEER) Conference on Delicious Rank Vehicle Technologies Office: Directions in Engine-Efficiency and Emissions Research (DEER) Conference on Digg Find More places to share Vehicle Technologies Office: Directions in

Note: This page contains sample records for the topic "vehicles powertrain research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Vehicle Technologies Office: Key Activities in Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Key Activities in Key Activities in Vehicles to someone by E-mail Share Vehicle Technologies Office: Key Activities in Vehicles on Facebook Tweet about Vehicle Technologies Office: Key Activities in Vehicles on Twitter Bookmark Vehicle Technologies Office: Key Activities in Vehicles on Google Bookmark Vehicle Technologies Office: Key Activities in Vehicles on Delicious Rank Vehicle Technologies Office: Key Activities in Vehicles on Digg Find More places to share Vehicle Technologies Office: Key Activities in Vehicles on AddThis.com... Key Activities Mission, Vision, & Goals Plans, Implementation, & Results Organization & Contacts National Laboratories Budget Partnerships Key Activities in Vehicles We conduct work in four key areas to develop and deploy vehicle technologies that reduce the use of petroleum while maintaining or

302

Vehicle Technologies Office: 2008 Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 Archive to someone 8 Archive to someone by E-mail Share Vehicle Technologies Office: 2008 Archive on Facebook Tweet about Vehicle Technologies Office: 2008 Archive on Twitter Bookmark Vehicle Technologies Office: 2008 Archive on Google Bookmark Vehicle Technologies Office: 2008 Archive on Delicious Rank Vehicle Technologies Office: 2008 Archive on Digg Find More places to share Vehicle Technologies Office: 2008 Archive on AddThis.com... 2008 Archive #551 Truck Stop Electrification Sites December 29, 2008 #550 Clean Cities Coalitions December 22, 2008 #549 Biofuels Corridor extends from the Great Lakes to the Gulf of Mexico December 15, 2008 #548 Number of Gasoline Stations Continues to Decline in 2007 December 8, 2008 #547 Research and Development (R&D) Spending in the Automotive Industry December 1, 2008

303

VEHICLE SPECIFICATIONS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Page 1 of 5 Page 1 of 5 VEHICLE SPECIFICATIONS 1 Vehicle Features Base Vehicle: 2011 Nissan Leaf VIN: JN1AZ0CP5BT000356 Class: Mid-size Seatbelt Positions: 5 Type: EV Motor Type: Three-Phase, Four-Pole Permanent Magnet AC Synchronous Max. Power/Torque: 80 kW/280 Nm Max. Motor Speed: 10,390 rpm Cooling: Active - Liquid cooled Battery Manufacturer: Automotive Energy Supply Corporation Type: Lithium-ion - Laminate type Cathode/Anode Material: LiMn 2 O 4 with LiNiO 2 /Graphite Pack Location: Under center of vehicle Number of Cells: 192 Cell Configuration: 2 parallel, 96 series Nominal Cell Voltage: 3.8 V Nominal System Voltage: 364.8 V Rated Pack Capacity: 66.2 Ah Rated Pack Energy: 24 kWh Max. Cell Charge Voltage 2 : 4.2 V Min. Cell Discharge Voltage 2 : 2.5 V

304

Vehicle Technologies Office: Modeling Collaboration Is a Win-Win Situation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modeling Collaboration Modeling Collaboration Is a Win-Win Situation for Vehicle Research to someone by E-mail Share Vehicle Technologies Office: Modeling Collaboration Is a Win-Win Situation for Vehicle Research on Facebook Tweet about Vehicle Technologies Office: Modeling Collaboration Is a Win-Win Situation for Vehicle Research on Twitter Bookmark Vehicle Technologies Office: Modeling Collaboration Is a Win-Win Situation for Vehicle Research on Google Bookmark Vehicle Technologies Office: Modeling Collaboration Is a Win-Win Situation for Vehicle Research on Delicious Rank Vehicle Technologies Office: Modeling Collaboration Is a Win-Win Situation for Vehicle Research on Digg Find More places to share Vehicle Technologies Office: Modeling Collaboration Is a Win-Win Situation for Vehicle Research on AddThis.com...

305

A structural analysis of vehicle design responses to Corporate Average Fuel Economy policy  

Science Journals Connector (OSTI)

The US Corporate Average Fuel Economy (CAFE) regulations are intended to influence automaker vehicle design and pricing choices. CAFE policy has been in effect for the past three decades, and new legislation has raised standards significantly. We present a structural analysis of automaker responses to generic CAFE policies. We depart from prior CAFE analyses by focusing on vehicle design responses in long-run oligopolistic equilibrium, and we view vehicles as differentiated products, taking demand as a general function of price and product attributes. We find that under general cost, demand, and performance functions, single-product profit maximizing firm responses to CAFE standards follow a distinct pattern: firms ignore CAFE when the standard is low, treat CAFE as a vehicle design constraint for moderate standards, and violate CAFE when the standard is high. Further, the point and extent of first violation depends upon the penalty for violation, and the corresponding vehicle design is independent of further standard increases. Thus, increasing CAFE standards will eventually have no further impact on vehicle design if the penalty for violation is also not increased. We implement a case study by incorporating vehicle physics simulation, vehicle manufacturing and technology cost models, and a mixed logit demand model to examine equilibrium powertrain design and price decisions for a fixed vehicle body. Results indicate that equilibrium vehicle design is not bound by current CAFE standards, and vehicle design decisions are directly determined by market competition and consumer preferences. We find that with increased fuel economy standards, a higher violation penalty than the current stagnant penalty is needed to cause firms to increase their design fuel economy at equilibrium. However, the maximum attainable improvement can be modest even if the penalty is doubled. We also find that firms design responses are more sensitive to variation in fuel prices than to CAFE standards, within the examined ranges.

Ching-Shin Norman Shiau; Jeremy J. Michalek; Chris T. Hendrickson

2009-01-01T23:59:59.000Z

306

Model Year 2006: Alternative Fuel and Advanced Technology Vehicles  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

06: Alternative Fuel and Advanced Technology Vehicles 06: Alternative Fuel and Advanced Technology Vehicles Fuel Type EPAct Compliant? Model Vehicle Type Emission Class Powertrain Fuel Capacity Range American Honda Motor Corporation 888-CCHONDA www.honda.com CNG Dedicated EPAct Yes Civic GX Compact Sedan SULEV Tier 2 Bin II 1.7L, 4-cylinder 8 GGE 200 mi HEV (NiMH) EPAct No Accord Hybrid Sedan ULEV 3.0L V6 144 volt NiMH + 17.1 Gal Gasoline TBD HEV (NiMH) EPAct No Civic Hybrid Sedan CA ULEV 1.3L, 4-cylinder 144 volt NiMH + 13.2 Gal Gasoline TBD HEV (NiMH) EPAct No Insight Two-seater SULEV (CVT model) ULEV (MT model) 1.0L, 3-cylinder 144 volt NiMH + 10.6 Gal Gasoline 636 mi DaimlerChrysler 800-999-FLEET www.fleet.chrysler.com E85 FFV EPAct Yes Dodge Ram Pickup 1500 Series 1 Pickup Tier 2 Bin 10A 4.7L V8 26 Gal 416 mi E85 FFV

307

Plug-In Hybrid Electric Vehicles - PHEV Modeling - Component Requirement  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Requirement Definition for PHEVs Requirement Definition for PHEVs One of the main objectives of the U.S. Department of Energy's (DOE's) Plug-in Hybrid Electric Vehicle R&D Plan (2.2Mb pdf) is to "determine component development requirements" through simulation analysis. PSAT has been used to design and evaluate a series of PHEVs to define the requirements of different components, focusing on the energy storage system's power and energy. Several vehicle classes (including midsize car, crossover SUV and midsize SUV) and All Electric Range (AER from 10 to 40 miles) were considered. The preliminary simulations were performed at Argonne using a pre-transmission parallel hybrid configuration with an energy storage system sized to run the Urban Dynanometer Driving Schedule (UDDS) in electric mode. Additional powertrain configurations and sizing algorithm are currently being considered. Trade-off studies are being performed as ways to achieve some level of performance while easing requirements on one area or another. As shown in the figure below, the FreedomCAR Energy Storage Technical Team selected a short term and a long term All Electric Range (AER) goals based on several vehicle simulations.

308

LD Vehicles AFDC 11 25 13 TC.xlsx  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Model Year 2014: Alternative Fuel and Advanced Technology Vehicles Model Year 2014: Alternative Fuel and Advanced Technology Vehicles 1 (Updated 11/25/2013) MY Fuel/Powertrain Type Make Model Vehicle Type Engine Size/Cylinders Transmission Emissions Class 2 Fuel Economy Gasoline 3,4 City/Hwy Fuel Economy Alt Fuel 3,4 City/Hwy 2014 B20 Chevrolet Cruze Sedan 2.0L I4 diesel Auto Tier II Bin 5 LEV III LEV160 27/46 N/A 2014 B20 Chevrolet Express 2500/3500 2WD Van 6.6L V8 diesel Auto N/A N/A N/A 2014 B20 Chevrolet Silverado 2500/3500 HD 2WD/4WD Pickup 6.6L V8 diesel Auto N/A N/A N/A 2014 B20 Ford Super Duty F-250/350/450 Pickup 6.7L V8 diesel Auto N/A N/A N/A 2014 B20 Ford Super Duty F-650/750 Pickup 6.7L I6 diesel Auto N/A N/A N/A 2014 B20 Ford Transit Van 3.2L I5 diesel Auto N/A N/A N/A 2014 B20 GMC Savana 2500/3500 2WD Van 6.6L V8 diesel Auto N/A

309

Vehicle Technologies Office: Workplace Charging Challenge Partner:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bloomberg LP to someone by E-mail Bloomberg LP to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Partner: Bloomberg LP on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: Bloomberg LP on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Bloomberg LP on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Bloomberg LP on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Partner: Bloomberg LP on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Partner: Bloomberg LP on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness

310

Vehicle Technologies Office: Modeling, Testing and Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modeling, Testing and Analysis Modeling, Testing and Analysis The Vehicle Technologies Office's robust portfolio is supported by modeling, testing, and analysis. This work complements the research on batteries, power electronics, and materials, helping researchers integrate these components and ensure the whole vehicle meets consumer and commercial needs. Modeling allows researchers to build "virtual vehicles" that simulate fuel economy, emissions and performance of a potential vehicle. The Office has supported the development of several software-based analytic tools that researchers can use or license. Integration and Validation allows researchers to test physical component and subsystem prototypes as if they are in a real vehicle. Laboratory and Fleet Testing provides data on PEVs through both dynamometer and on-the-road testing. Researchers use the data to benchmark current vehicles, as well as validate the accuracy of software models.

311

Vehicles News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

News News Vehicles News RSS September 4, 2013 Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies Thirty-eight projects will accelerate the research and development of technologies to improve vehicle fuel efficiency, lower transportation costs, and cut carbon pollution. Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies Building on President Obama's Climate Action Plan to build a 21st century transportation sector and reduce greenhouse gas emissions, the Energy Department announced today more than $45 million for thirty-eight new projects that accelerate the research and development of vehicle technologies to improve fuel efficiency, lower transportation costs, and protect the environment in communities nationwide.

312

Light Duty Vehicle CNG Tanks  

Broader source: Energy.gov (indexed) [DOE]

Vehicle CNG Tanks Dane A. Boysen, PhD Program Director Advanced Research Projects Agency-Energy, US DOE dane.boysen@doe.gov Fiber Reinforced Polymer Composite Manufacturing...

313

Vehicle Technologies Office: 2008 Energy Storage R&D Annual Progress Report  

Broader source: Energy.gov [DOE]

The energy storage research and development effort within the Vehicle Technologies Office is responsible for researching and improving advanced batteries and ultracapacitors for a wide range of vehicle applications, including HEVs, PHEVs, EVs, and fuel cell vehicles (FCVs).

314

Vehicle Technologies Office: 2009 Energy Storage R&D Annual Progress Report  

Broader source: Energy.gov [DOE]

The energy storage research and development effort within the Vehicle Technologies Office is responsible for researching and improving advanced batteries and ultracapacitors for a wide range of vehicle applications, including HEVs, PHEVs, EVs, and fuel cell vehicles (FCVs).

315

Well-to-wheels energy use and greenhouse gas emissions analysis of plug-in hybrid electric vehicles.  

SciTech Connect (OSTI)

Researchers at Argonne National Laboratory expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model and incorporated the fuel economy and electricity use of alternative fuel/vehicle systems simulated by the Powertrain System Analysis Toolkit (PSAT) to conduct a well-to-wheels (WTW) analysis of energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW results were separately calculated for the blended charge-depleting (CD) and charge-sustaining (CS) modes of PHEV operation and then combined by using a weighting factor that represented the CD vehicle-miles-traveled (VMT) share. As indicated by PSAT simulations of the CD operation, grid electricity accounted for a share of the vehicle's total energy use, ranging from 6% for a PHEV 10 to 24% for a PHEV 40, based on CD VMT shares of 23% and 63%, respectively. In addition to the PHEV's fuel economy and type of on-board fuel, the marginal electricity generation mix used to charge the vehicle impacted the WTW results, especially GHG emissions. Three North American Electric Reliability Corporation regions (4, 6, and 13) were selected for this analysis, because they encompassed large metropolitan areas (Illinois, New York, and California, respectively) and provided a significant variation of marginal generation mixes. The WTW results were also reported for the U.S. generation mix and renewable electricity to examine cases of average and clean mixes, respectively. For an all-electric range (AER) between 10 mi and 40 mi, PHEVs that employed petroleum fuels (gasoline and diesel), a blend of 85% ethanol and 15% gasoline (E85), and hydrogen were shown to offer a 40-60%, 70-90%, and more than 90% reduction in petroleum energy use and a 30-60%, 40-80%, and 10-100% reduction in GHG emissions, respectively, relative to an internal combustion engine vehicle that used gasoline. The spread of WTW GHG emissions among the different fuel production technologies and grid generation mixes was wider than the spread of petroleum energy use, mainly due to the diverse fuel production technologies and feedstock sources for the fuels considered in this analysis. The PHEVs offered reductions in petroleum energy use as compared with regular hybrid electric vehicles (HEVs). More petroleum energy savings were realized as the AER increased, except when the marginal grid mix was dominated by oil-fired power generation. Similarly, more GHG emissions reductions were realized at higher AERs, except when the marginal grid generation mix was dominated by oil or coal. Electricity from renewable sources realized the largest reductions in petroleum energy use and GHG emissions for all PHEVs as the AER increased. The PHEVs that employ biomass-based fuels (e.g., biomass-E85 and -hydrogen) may not realize GHG emissions benefits over regular HEVs if the marginal generation mix is dominated by fossil sources. Uncertainties are associated with the adopted PHEV fuel consumption and marginal generation mix simulation results, which impact the WTW results and require further research. More disaggregate marginal generation data within control areas (where the actual dispatching occurs) and an improved dispatch modeling are needed to accurately assess the impact of PHEV electrification. The market penetration of the PHEVs, their total electric load, and their role as complements rather than replacements of regular HEVs are also uncertain. The effects of the number of daily charges, the time of charging, and the charging capacity have not been evaluated in this study. A more robust analysis of the VMT share of the CD operation is also needed.

Elgowainy, A.; Burnham, A.; Wang, M.; Molburg, J.; Rousseau, A.; Energy Systems

2009-03-31T23:59:59.000Z

316

The Evolution of Sustainable Personal Vehicles  

E-Print Network [OSTI]

Enabling Platform for Sustainable Energy Pathways. Presentedin Road Vehicles. Sustainable Energy Research Group, Schooland W. A. Peters (2005). Sustainable Energy: Choosing Among

Jungers, Bryan D

2009-01-01T23:59:59.000Z

317

Vehicle Technologies Office: Budget | Department of Energy  

Energy Savers [EERE]

funding does not include Small Business Innovation Research and Small Business Technology Transfer Programs. For more information on the Vehicle Technologies Office's Fiscal Year...

318

Topology-Based Vehicle Systems Modelling.  

E-Print Network [OSTI]

??The simulation tools that are used to model vehicle systems have not been advancing as quickly as the growth of research and technology surrounding the (more)

Yam, Edward

2013-01-01T23:59:59.000Z

319

Vehicle Technologies Office: Education and Workforce Development  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office (VTO) offers a variety of resources and opportunities for students, university researchers and professionals. It also provides information for consumers through...

320

Vehicles Success Stories | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

is a group that funds electrochemical storage research and development. April 15, 2013 Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half...

Note: This page contains sample records for the topic "vehicles powertrain research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

VEHICLE SPECIFICATIONS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

VEHICLE SPECIFICATIONS 1 Vehicle Features Base Vehicle: 2011 Chevrolet Volt VIN: 1G1RD6E48BUI00815 Class: Compact Seatbelt Positions: 4 Type 2 : Multi-Mode PHEV (EV, Series, and Power-split) Motor Type: 12-pole permanent magnet AC synchronous Max. Power/Torque: 111 kW/370 Nm Max. Motor Speed: 9500 rpm Cooling: Active - Liquid cooled Generator Type: 16-pole permanent magnet AC synchronous Max. Power/Torque: 55 kW/200 Nm Max. Generator Speed: 6000 rpm Cooling: Active - Liquid cooled Battery Manufacturer: LG Chem Type: Lithium-ion Cathode/Anode Material: LiMn 2 O 4 /Hard Carbon Number of Cells: 288 Cell Config.: 3 parallel, 96 series Nominal Cell Voltage: 3.7 V Nominal System Voltage: 355.2 V Rated Pack Capacity: 45 Ah Rated Pack Energy: 16 kWh Weight of Pack: 435 lb

322

Evaluation of Powertrain Options and Component Sizing for MD and HD Applications on Real World Drive Cycles  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

323

Vehicle Technologies Office: Batteries  

Broader source: Energy.gov [DOE]

Improving the batteries for electric drive vehicles, including hybrid electric (HEV) and plug-in electric (PEV) vehicles, is key to improving vehicles' economic, social, and environmental...

324

Vehicles News  

Broader source: Energy.gov (indexed) [DOE]

news Office of Energy Efficiency & news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies http://energy.gov/eere/articles/energy-department-announces-45-million-advance-next-generation Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies

325

Smart Thermal Skins for Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 8 Smart Thermal Skins for Vehicles With a modest effort, many of the energy-efficient technologies developed for buildings can be transferred to the transportation sector. The goal of vehicle thermal management research at LBL is to save the energy equivalent of one to two billion gallons of gasoline per year, and improve the marketability of next-generation vehicles using advanced solar control glazings and insulating shell components to reduce accessory loads. Spectrally selective and electrochromic window glass and lightweight insulating materials improve the fuel efficiency of conventional and hybrid vehicles and extend the range of electric vehicles by reducing the need for air conditioning and heating, and by allowing the downsizing of equipment.

326

Propane Vehicle Demonstration Grant Program  

SciTech Connect (OSTI)

Project Description: Propane Vehicle Demonstration Grants The Propane Vehicle Demonstration Grants was established to demonstrate the benefits of new propane equipment. The US Department of Energy, the Propane Education & Research Council (PERC) and the Propane Vehicle Council (PVC) partnered in this program. The project impacted ten different states, 179 vehicles, and 15 new propane fueling facilities. Based on estimates provided, this project generated a minimum of 1,441,000 new gallons of propane sold for the vehicle market annually. Additionally, two new off-road engines were brought to the market. Projects originally funded under this project were the City of Portland, Colorado, Kansas City, Impco Technologies, Jasper Engines, Maricopa County, New Jersey State, Port of Houston, Salt Lake City Newspaper, Suburban Propane, Mutual Liquid Propane and Ted Johnson.

Jack Mallinger

2004-08-27T23:59:59.000Z

327

Vehicle Technologies Office: Modeling, Testing and Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modeling, Testing and Modeling, Testing and Analysis to someone by E-mail Share Vehicle Technologies Office: Modeling, Testing and Analysis on Facebook Tweet about Vehicle Technologies Office: Modeling, Testing and Analysis on Twitter Bookmark Vehicle Technologies Office: Modeling, Testing and Analysis on Google Bookmark Vehicle Technologies Office: Modeling, Testing and Analysis on Delicious Rank Vehicle Technologies Office: Modeling, Testing and Analysis on Digg Find More places to share Vehicle Technologies Office: Modeling, Testing and Analysis on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Community and Fleet Readiness Workforce Development Plug-in Electric Vehicle Basics Modeling, Testing and Analysis The Vehicle Technologies Office's robust portfolio is supported by

328

Vehicle Technologies Office: 2008 Diesel Engine-Efficiency and Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 Diesel 8 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations to someone by E-mail Share Vehicle Technologies Office: 2008 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Facebook Tweet about Vehicle Technologies Office: 2008 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Twitter Bookmark Vehicle Technologies Office: 2008 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Google Bookmark Vehicle Technologies Office: 2008 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Delicious Rank Vehicle Technologies Office: 2008 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Digg

329

Vehicle Technologies Office: 2012 Directions in Engine-Efficiency and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Directions in Directions in Engine-Efficiency and Emissions Research (DEER) Conference Presentations to someone by E-mail Share Vehicle Technologies Office: 2012 Directions in Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Facebook Tweet about Vehicle Technologies Office: 2012 Directions in Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Twitter Bookmark Vehicle Technologies Office: 2012 Directions in Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Google Bookmark Vehicle Technologies Office: 2012 Directions in Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Delicious Rank Vehicle Technologies Office: 2012 Directions in Engine-Efficiency and Emissions Research (DEER) Conference Presentations on

330

Vehicle Technologies Office: 2007 Diesel Engine-Efficiency and Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 Diesel 7 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations to someone by E-mail Share Vehicle Technologies Office: 2007 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Facebook Tweet about Vehicle Technologies Office: 2007 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Twitter Bookmark Vehicle Technologies Office: 2007 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Google Bookmark Vehicle Technologies Office: 2007 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Delicious Rank Vehicle Technologies Office: 2007 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Digg

331

Vehicle Technologies Office: 2010 Directions in Engine-Efficiency and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 Directions in 0 Directions in Engine-Efficiency and Emissions Research (DEER) Conference Presentations to someone by E-mail Share Vehicle Technologies Office: 2010 Directions in Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Facebook Tweet about Vehicle Technologies Office: 2010 Directions in Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Twitter Bookmark Vehicle Technologies Office: 2010 Directions in Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Google Bookmark Vehicle Technologies Office: 2010 Directions in Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Delicious Rank Vehicle Technologies Office: 2010 Directions in Engine-Efficiency and Emissions Research (DEER) Conference Presentations on

332

Global Assessment of Hydrogen Technologies - Task 1 Report Technology Evaluation of Hydrogen Light Duty Vehicles  

SciTech Connect (OSTI)

This task analyzes the candidate hydrogen-fueled vehicles for near-term use in the Southeastern U.S. The purpose of this work is to assess their potential in terms of efficiency and performance. This report compares conventional, hybrid electric vehicles (HEV) with gasoline and hydrogen-fueled internal combustion engines (ICEs) as well as fuel cell and fuel cell hybrids from a technology as well as fuel economy point of view. All the vehicles have been simulated using the Powertrain System Analysis Toolkit (PSAT). First, some background information is provided on recent American automotive market trends and consequences. Moreover, available options are presented for introducing cleaner and more economical vehicles in the market in the future. In this study, analysis of various candidate hydrogen-fueled vehicles is performed using PSAT and, thus, a brief description of PSAT features and capabilities are provided. Detailed information on the simulation analysis performed is also offered, including methodology assumptions, fuel economic results, and conclusions from the findings.

Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Rousseau, Aymeric

2007-12-01T23:59:59.000Z

333

Development of a dedicated ethanol ultra-low emission vehicle (ULEV) system design  

SciTech Connect (OSTI)

The objective of this 3.5 year project is to develop a commercially competitive vehicle powered by ethanol (or ethanol blend) that can meet California`s ultra-low emission vehicle (ULEV) standards and equivalent corporate average fuel economy (CAFE) energy efficiency for a light-duty passenger car application. The definition of commercially competitive is independent of fuel cost, but does include technical requirements for competitive power, performance, refueling times, vehicle range, driveability, fuel handling safety, and overall emissions performance. This report summarizes a system design study completed after six months of effort on this project. The design study resulted in recommendations for ethanol-fuel blends that shall be tested for engine low-temperature cold-start performance and other criteria. The study also describes three changes to the engine, and two other changes to the vehicle to improve low-temperature starting, efficiency, and emissions. The three engine changes are to increase the compression ratio, to replace the standard fuel injectors with fine spray injectors, and to replace the powertrain controller. The two other vehicle changes involve the fuel tank and the aftertreatment system. The fuel tank will likely need to be replaced to reduce evaporative emissions. In addition to changes in the main catalyst, supplemental aftertreatment systems will be analyzed to reduce emissions before the main catalyst reaches operating temperature.

Bourn, G.; Callahan, T.; Dodge, L.; Mulik, J.; Naegeli, D.; Shouse, K.; Smith, L.; Whitney, K. [Southwest Research Inst., San Antonio, TX (United States)

1995-02-01T23:59:59.000Z

334

Laboratory to change vehicle traffic-screening regimen at vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Changes to vehicle traffic-screening Changes to vehicle traffic-screening Laboratory to change vehicle traffic-screening regimen at vehicle inspection station Lanes two through five will be open 24 hours a day and won't be staffed by a Laboratory protective force officer. September 1, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

335

Advanced Vehicle Testing & Evaluation  

Broader source: Energy.gov (indexed) [DOE]

Provide benchmark data for advanced technology vehicles Develop lifecycle cost data for production vehicles utilizing advanced power trains Provide fleet...

336

Heavy-Duty Powertrain DevelopmentCurrent Status and Future Opportunities  

Broader source: Energy.gov [DOE]

Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

337

Heavy-Duty Powertrain DevelopmentCurrent Status and Future Opportuniti...  

Broader source: Energy.gov (indexed) [DOE]

Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. deer10aneja.pdf More Documents & Publications BLUETEC - Heading...

338

EV Everywhere: Electric Drive Systems Bring Power to Plug-in Electric Vehicles  

Broader source: Energy.gov [DOE]

Find out how the Energy Department's Vehicles Technologies Office is helping reduce the cost of plug-in electric vehicles through research and development of electric drive technologies.

339

Vehicle Technologies Office: Long-Term Lightweight Materials...  

Energy Savers [EERE]

Long-Term Lightweight Materials Research (Magnesium and Carbon Fiber) Vehicle Technologies Office: Long-Term Lightweight Materials Research (Magnesium and Carbon Fiber) In the long...

340

Vehicle Technologies Office Merit Review 2014: Fuel Injection...  

Broader source: Energy.gov (indexed) [DOE]

Fuel Injection and Spray Research Using X-Ray Diagnostics Vehicle Technologies Office Merit Review 2014: Fuel Injection and Spray Research Using X-Ray Diagnostics Presentation...

Note: This page contains sample records for the topic "vehicles powertrain research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Analysis and Simulation of Fuel Consumption and Energy Throughput on a Parallel Diesel-Electric Hybrid Powertrain.  

E-Print Network [OSTI]

??The aim of this master thesis is to study the energy throughput and fuel consumption of a parallel diesel-electric hybrid vehicle. This has been done (more)

Gustafsson, Johanna

2009-01-01T23:59:59.000Z

342

Argonne Transportation Technology R&D Center - Research Facilities - APRF,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Research Facilities Transportation Research Facilities Argonne provides a wide range of facilities and laboratories for conducting cutting-edge transportation research and testing. The facilities offer state-of-the-art equipment and capabilities. APRF Advanced Powertrain Research Facility Battery Post-Test Facility Battery Post-Test Facility Battery testing at the EADL Electrochemical Analysis and Diagnostics Laboratory Engine Research Facility Engine Research Facility Fuel cell research Fuel Cell Test Facility Materials Engineering Research Facility Materials Engineering Research Facility Transportation APS Beamline Transportation Beamline at Argonne's Advanced Photon Source tribology lab Tribology Laboratory TRACC Transportation Research and Analysis Computing Center

343

Overcoming the Range Limitation of Medium-Duty Battery Electric Vehicles through the use of Hydrogen Fuel-Cells  

SciTech Connect (OSTI)

Battery electric vehicles possess great potential for decreasing lifecycle costs in medium-duty applications, a market segment currently dominated by internal combustion technology. Characterized by frequent repetition of similar routes and daily return to a central depot, medium-duty vocations are well positioned to leverage the low operating costs of battery electric vehicles. Unfortunately, the range limitation of commercially available battery electric vehicles acts as a barrier to widespread adoption. This paper describes the National Renewable Energy Laboratory's collaboration with the U.S. Department of Energy and industry partners to analyze the use of small hydrogen fuel-cell stacks to extend the range of battery electric vehicles as a means of improving utility, and presumably, increasing market adoption. This analysis employs real-world vocational data and near-term economic assumptions to (1) identify optimal component configurations for minimizing lifecycle costs, (2) benchmark economic performance relative to both battery electric and conventional powertrains, and (3) understand how the optimal design and its competitiveness change with respect to duty cycle and economic climate. It is found that small fuel-cell power units provide extended range at significantly lower capital and lifecycle costs than additional battery capacity alone. And while fuel-cell range-extended vehicles are not deemed economically competitive with conventional vehicles given present-day economic conditions, this paper identifies potential future scenarios where cost equivalency is achieved.

Wood, E.; Wang, L.; Gonder, J.; Ulsh, M.

2013-10-01T23:59:59.000Z

344

Frazer Nash Research | Open Energy Information  

Open Energy Info (EERE)

Frazer Nash Research Jump to: navigation, search Name: Frazer-Nash Research Place: United Kingdom Sector: Vehicles Product: UK-based developer of electric vehicles, not to be...

345

Advanced Vehicle Testing Activity (AVTA) - Vehicle Testing and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

- Vehicle Testing and Demonstration Activities Advanced Vehicle Testing Activity (AVTA) - Vehicle Testing and Demonstration Activities 2009 DOE Hydrogen Program and Vehicle...

346

Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

347

Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Apps for Vehicles Apps for Vehicles Challenge Spurs Innovation in Vehicle Data to someone by E-mail Share Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Facebook Tweet about Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Twitter Bookmark Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Google Bookmark Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Delicious Rank Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Digg Find More places to share Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on AddThis.com... Apps for Vehicles Challenge Spurs Innovation in Vehicle Data

348

The U.S. Army's Vehicle Intelligence Program (AVIP): The Future of Manned, Wheeled Tactical Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vehicle The U.S. Army's Vehicle Vehicle The U.S. Army's Vehicle Intelligence Program (AVIP): Intelligence Program (AVIP): The Future of Manned, Wheeled The Future of Manned, Wheeled Tactical Vehicles Tactical Vehicles H. E. (Bill) Knéé Oak Ridge National Laboratory National Transportation Research Center 2360 Cherahala Blvd. Knoxville, Tennessee 37932 USA Phone: (865) 946-1300 Fax: (865) 946-1314 E-mail: kneehe@ornl.gov David J. Gorsich U.S. Army Tank-Automotive and Armaments Command AMSTA-TR-N, Warren, Michigan 49397-5000 USA Phone: (810) 574-7413 Fax: (810) 574-6996 E-mail: GorsichD@tacom.army.mil IV2001 IEEE Intelligent Vehicles Symposium Tokyo, Japan http://www.ornl.gov/ORNLReview/v33_3_00/features.htm 1. Propulsion, Vehicle and Power Systems 2. Information and Decision Support Systems 3. Materials, Structures, and Mechanical Systems

349

AVTA: Vehicle to EVSE Smart Grid Communications Report  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report describes results from research and testing on vehicle to EVSE smart grid communications interfaces, as informed by the AVTA's testing on plug-in electric vehicle charging equipment. This research was conducted by Idaho National Laboratory.

350

Technical benefits and cultural barriers of networked Autonomous Undersea Vehicles  

E-Print Network [OSTI]

The research presented in this thesis examines the technical benefits to using a collaborative network of Autonomous Undersea Vehicles (AUVs) in place of individual vehicles. Benefits could be achieved in the areas of ...

Wineman, Patrick L

2013-01-01T23:59:59.000Z

351

A parallel hypothesis method of autonomous underwater vehicle navigation  

E-Print Network [OSTI]

This research presents a parallel hypothesis method for autonomous underwater vehicle navigation that enables a vehicle to expand the operating envelope of existing long baseline acoustic navigation systems by incorporating ...

LaPointe, Cara Elizabeth Grupe

2009-01-01T23:59:59.000Z

352

Chevrolet Volt Vehicle Demonstration  

Broader source: Energy.gov (indexed) [DOE]

Volt Vehicle Demonstration Fleet Summary Report Reporting period: January 2013 through March 2013 Number of vehicles: 146 Number of vehicle days driven: 6,680 4292013 2:38:13 PM...

353

Hybrid Electric Vehicle Testing (Batteries and Fuel Economies)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Hybrid Electric Vehicle Energy Hybrid Electric Vehicle Battery and Fuel Economy Testing Donald Karner a , James Francfort b a Electric Transportation Applications 401 South 2nd Avenue, Phoenix, AZ 85003, USA b Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415, USA Abstract The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy's FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August, 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and research and development programs. The AVTA has tested over 200 advanced technology vehicles including full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles.

354

Vehicle suspension  

SciTech Connect (OSTI)

This patent describes a vehicle consisting of sprung and unsprung masses, the combination of struts and support springs for the weight of the sprung mass, an axis defined by pivots between sprung and unsprung masses, with a front pivot approximately midway between the wheels and near the vertical and horizontal planes through the front axles, with a rear pivot lying in an axis through the front pivot and in a plane through the center-of-gravity of the sprung mass, with the plane parallel to the centrifugal force vector through the center-of-gravity of the sprung mass, and with the rear pivot positioned approximately midway between the rear wheels, means for transmitting the centrifugal force component on the front pivot to the front wheels and ground, and means for transmitting the centrifugal force component on the rear pivot to the rear wheels and ground.

Mikina, S.J.

1986-08-05T23:59:59.000Z

355

Hybrid Electric Vehicle Testing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Association Conference Transportation Association Conference Vancouver, Canada December 2005 Hybrid Electric Vehicle Testing Jim Francfort U.S. Department of Energy - FreedomCAR & Vehicle Technologies Program, Advanced Vehicle Testing Activity INL/CON-05-00964 Presentation Outline * Background & goals * Testing partners * Hybrid electric vehicle testing - Baseline performance testing (new HEV models) - 1.5 million miles of HEV fleet testing (160k miles per vehicle in 36 months) - End-of-life HEV testing (rerun fuel economy & conduct battery testing @ 160k miles per vehicle) - Benchmark data: vehicle & battery performance, fuel economy, maintenance & repairs, & life-cycle costs * WWW information location Background * Advanced Vehicle Testing Activity (AVTA) - part of the

356

Vehicle & Systems Simulation & Testing  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

penetration of advanced vehicles and systems to displace petroleum consumption, reduce GHG emissions, and achieve vehicle electrification goals. Evaluate technology targets...

357

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Broader source: Energy.gov (indexed) [DOE]

Utilities Employers Develop long-range Plan Deployment area Vehicle penetration Infrastructure requirements Develop EV Micro-Climate Support...

358

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Broader source: Energy.gov (indexed) [DOE]

Utilities Employers Develop Long-Range Plan Deployment Area Vehicle Penetration Infrastructure Requirements Develop EV Micro-Climate Initial...

359

NREL: Learning - Advanced Vehicle Systems and Components  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Vehicle Systems and Components Advanced Vehicle Systems and Components Photo of a man checking out an advanced battery using testing equipment that includes a long metal tube on a table top. NREL's researchers test new batteries developed for hybrid electric vehicles. Credit: Warren Gretz Researchers and engineers at the NREL work closely with those in the automotive industry to develop new technologies, such as advanced batteries, for storing energy in cars, trucks, and buses. They also help to develop and test new technologies for using that energy more efficiently. And they work on finding new, energy-efficient ways to reduce the amount of fuel needed to heat and cool the interiors, or cabins, of vehicles. To help develop these new technologies, NREL's researchers are improving the efficiency of vehicle systems and components like these:

360

Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Maximizing Alternative Maximizing Alternative Fuel Vehicle Efficiency to someone by E-mail Share Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Facebook Tweet about Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Twitter Bookmark Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Google Bookmark Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Delicious Rank Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Digg Find More places to share Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines

Note: This page contains sample records for the topic "vehicles powertrain research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Advanced Vehicle Testing Activity: Light-Duty Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Light-Duty Light-Duty Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Light-Duty Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Light-Duty Vehicles on Twitter Bookmark Advanced Vehicle Testing Activity: Light-Duty Vehicles on Google Bookmark Advanced Vehicle Testing Activity: Light-Duty Vehicles on Delicious Rank Advanced Vehicle Testing Activity: Light-Duty Vehicles on Digg Find More places to share Advanced Vehicle Testing Activity: Light-Duty Vehicles on AddThis.com... Home Overview Light-Duty Vehicles Alternative Fuel Vehicles Plug-in Hybrid Electric Vehicles Hybrid Electric Vehicles Micro Hybrid Vehicles ARRA Vehicle and Infrastructure Projects EVSE Testing Energy Storage Testing Hydrogen Internal Combustion Engine Vehicles Other ICE

362

Heavy Duty Vehicle Futures Analysis.  

SciTech Connect (OSTI)

This report describes work performed for an Early Career Research and Development project. This project developed a heavy-duty vehicle (HDV) sector model to assess the factors influencing alternative fuel and efficiency technology adoption. This model builds on a Sandia light duty vehicle sector model and provides a platform for assessing potential impacts of technological advancements developed at the Combustion Research Facility. Alternative fuel and technology adoption modeling is typically developed around a small set of scenarios. This HDV sector model segments the HDV sector and parameterizes input values, such as fuel prices, efficiencies, and vehicle costs. This parameterization enables sensitivity and trade space analyses to identify the inputs that are most associated with outputs of interest, such as diesel consumption and greenhouse gas emissions. Thus this analysis tool enables identification of the most significant HDV sector drivers that can be used to support energy security and climate change goals.

Askin, Amanda Christine; Barter, Garrett; West, Todd H.; Manley, Dawn Kataoka

2014-05-01T23:59:59.000Z

363

Argonne TTRDC - D3 (Downloadable Dynamometer Database)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Advanced Powertrain Research Facility - Downloadable Dynamometer Database (D3) aprf Advanced Powertrain Research Facility The Downloadable Dynamometer Database (D3) offers publicly available testing data regarding advanced technology vehicles. Derived from independent laboratory testing, the data is intended to enhance the understanding of advanced vehicle technologies for researchers, students, and professionals engaged in energy efficient vehicle research, development and education. Data from this website can only be used with the following attribution: "This data is from the Downloadable Dynamometer Database (http://www.transportation.anl.gov/D3/) and was generated at the Advanced

364

Vehicle Technologies Office: Lightweight Materials Long-Term Applied  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Long-Term Applied Research: Magnesium and Carbon Fiber to someone by E-mail Long-Term Applied Research: Magnesium and Carbon Fiber to someone by E-mail Share Vehicle Technologies Office: Lightweight Materials Long-Term Applied Research: Magnesium and Carbon Fiber on Facebook Tweet about Vehicle Technologies Office: Lightweight Materials Long-Term Applied Research: Magnesium and Carbon Fiber on Twitter Bookmark Vehicle Technologies Office: Lightweight Materials Long-Term Applied Research: Magnesium and Carbon Fiber on Google Bookmark Vehicle Technologies Office: Lightweight Materials Long-Term Applied Research: Magnesium and Carbon Fiber on Delicious Rank Vehicle Technologies Office: Lightweight Materials Long-Term Applied Research: Magnesium and Carbon Fiber on Digg Find More places to share Vehicle Technologies Office: Lightweight

365

Vehicle Specifications Battery Type: Li-Ion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Under hood above powertrain Under hood above powertrain Nominal System Voltage: 333 V Rated Capacity (C/3): 40 Ah Cooling Method: Glycol / Water mix Powertrain Motor Type: DC Brushless Number of Motors: One Motor Cooling Type: Glycol / Water mix Drive Wheels: Rear Wheel Drive Transmission: None (gear ratio only in rear axle) Charger Location: Underhood Charger Port: Driver's side, front quarter panel Type: Conductive (J1772 connector) Input Voltage(s): 120 or 240 VAC Chassis Aluminum Body on Steel Frame Rear Suspension: Solid Axle with Leaf Springs Front Suspension: Dual A-arm with Coil Springs Weights Design Curb Weight: 3250 lbs Delivered Curb Weight: 3310 lbs 7 Distribution F/R: 55.2/44.8% GVWR: 4450 lbs Max Payload: 940 lbs + 200 lbs driver 1 Performance Goal Payload: 1000 lbs + 200 lbs driver

366

Clean Cities: Natural Gas Vehicle Technology Forum  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Forum Forum Natural Gas Vehicle Technology Form (NGVTF) logo The Natural Gas Vehicle Technology Forum (NGVTF) supports development and deployment of commercially competitive natural gas engines, vehicles, and infrastructure. Learn about NGVTF's purpose, activities, meetings, stakeholders, steering committee, and webinars. Purpose Led by the National Renewable Energy Laboratory in partnership with the U.S. Department of Energy and the California Energy Commission, NGVTF unites a diverse group of stakeholders to: Share information and resources Identify natural gas engine, vehicle, and infrastructure technology targets Facilitate government-industry research, development, demonstration, and deployment (RDD&D) to achieve targets Communicate high-priority needs of natural gas vehicle end users to natural gas equipment and vehicle manufacturers

367

Vehicle Technologies Office: Workplace Charging Challenge Partner:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

lynda.com to someone by E-mail lynda.com to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Partner: lynda.com on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: lynda.com on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: lynda.com on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: lynda.com on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Partner: lynda.com on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Partner: lynda.com on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness Workforce Development

368

Vehicle Technologies Office: Workplace Charging Challenge Partner:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BookFactory to someone by E-mail BookFactory to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Partner: BookFactory on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: BookFactory on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: BookFactory on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: BookFactory on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Partner: BookFactory on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Partner: BookFactory on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness

369

Vehicle Technologies Office: About the Vehicle Technologies Office: Moving  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About the Vehicle About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles to someone by E-mail Share Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Facebook Tweet about Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Twitter Bookmark Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Google Bookmark Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Delicious Rank Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Digg Find More places to share Vehicle Technologies Office: About the

370

Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9: August 6, 9: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts to someone by E-mail Share Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Facebook Tweet about Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Twitter Bookmark Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Google Bookmark Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Delicious

371

Massachusetts Electric Vehicle Efforts  

E-Print Network [OSTI]

Massachusetts Electric Vehicle Efforts Christine Kirby, MassDEP ZE-MAP Meeting October 24, 2014 #12 · Provide Clean Air · Grow the Clean Energy Economy · Electric vehicles are a key part of the solution #12 is promoting EVs 4 #12;TCI and Electric Vehicles · Established the Northeast Electric Vehicle Network through

California at Davis, University of

372

Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5: November 25, 5: November 25, 2013 Vehicle Technology Penetration to someone by E-mail Share Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Facebook Tweet about Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Twitter Bookmark Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Google Bookmark Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Delicious Rank Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Digg Find More places to share Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on AddThis.com... Fact #805: November 25, 2013

373

Dynamics in Behavioral Response to a Fuel Cell Vehicle Fleet and Hydrogen Fueling Infrastructure: An Exploratory Study  

E-Print Network [OSTI]

primary motivation for alternative fuel vehicles, such astowards hydrogen and alternative fuel vehicles of F-Cellbehavioral research on alternative fuels, a brief discussion

Shaheen, Susan; Martin, Elliot; Lipman, Timothy

2007-01-01T23:59:59.000Z

374

Vehicle Technologies Office: Workplace Charging Challenge Partner: Dominion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dominion Resources, Inc. to someone by E-mail Dominion Resources, Inc. to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Partner: Dominion Resources, Inc. on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: Dominion Resources, Inc. on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Dominion Resources, Inc. on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Dominion Resources, Inc. on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Partner: Dominion Resources, Inc. on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Partner: Dominion Resources, Inc. on AddThis.com... Goals Research & Development

375

Vehicle Technologies Office: Workplace Charging Challenge Partner: Pepco  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pepco Holdings, Inc. to someone by E-mail Pepco Holdings, Inc. to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Partner: Pepco Holdings, Inc. on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: Pepco Holdings, Inc. on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Pepco Holdings, Inc. on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Pepco Holdings, Inc. on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Partner: Pepco Holdings, Inc. on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Partner: Pepco Holdings, Inc. on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging

376

Vehicle Technologies Office: Workplace Charging Challenge Partner: DTE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DTE Energy to someone by E-mail DTE Energy to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Partner: DTE Energy on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: DTE Energy on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: DTE Energy on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: DTE Energy on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Partner: DTE Energy on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Partner: DTE Energy on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness

377

Vehicle Technologies Office: Workplace Charging Challenge Partner: Ford  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ford Motor Company to someone by E-mail Ford Motor Company to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Partner: Ford Motor Company on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: Ford Motor Company on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Ford Motor Company on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Ford Motor Company on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Partner: Ford Motor Company on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Partner: Ford Motor Company on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging

378

Vehicle Technologies Office: Workplace Charging Challenge Partner: OSRAM  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

OSRAM SYLVANIA to someone by E-mail OSRAM SYLVANIA to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Partner: OSRAM SYLVANIA on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: OSRAM SYLVANIA on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: OSRAM SYLVANIA on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: OSRAM SYLVANIA on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Partner: OSRAM SYLVANIA on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Partner: OSRAM SYLVANIA on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources

379

Vehicle Technologies Office: Workplace Charging Challenge Partner: National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Grid to someone by E-mail National Grid to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Partner: National Grid on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: National Grid on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: National Grid on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: National Grid on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Partner: National Grid on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Partner: National Grid on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness

380

Vehicle Technologies Office: Workplace Charging Challenge Partner: The  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hartford to someone by E-mail Hartford to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Partner: The Hartford on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: The Hartford on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: The Hartford on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: The Hartford on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Partner: The Hartford on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Partner: The Hartford on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness

Note: This page contains sample records for the topic "vehicles powertrain research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Vehicle Technologies Office: Workplace Charging Challenge Partner: Verizon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Verizon to someone by E-mail Verizon to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Partner: Verizon on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: Verizon on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Verizon on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Verizon on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Partner: Verizon on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Partner: Verizon on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness Workforce Development

382

Vehicle Technologies Office: Workplace Charging Challenge Partner: JLA  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

JLA Public Involvement to someone by E-mail JLA Public Involvement to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Partner: JLA Public Involvement on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: JLA Public Involvement on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: JLA Public Involvement on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: JLA Public Involvement on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Partner: JLA Public Involvement on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Partner: JLA Public Involvement on AddThis.com... Goals Research & Development Testing and Analysis

383

Vehicle Technologies Office: Workplace Charging Challenge Partner: Facebook  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facebook to someone by E-mail Facebook to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Partner: Facebook on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: Facebook on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Facebook on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Facebook on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Partner: Facebook on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Partner: Facebook on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness Workforce Development

384

Vehicle Technologies Office: Workplace Charging Challenge Pledge and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Workplace Charging Workplace Charging Challenge Pledge and Benefits to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Pledge and Benefits on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Pledge and Benefits on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Pledge and Benefits on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Pledge and Benefits on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Pledge and Benefits on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Pledge and Benefits on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors

385

Vehicle Technologies Office: Workplace Charging Challenge Partner: Dell  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dell Inc. to someone by E-mail Dell Inc. to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Partner: Dell Inc. on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: Dell Inc. on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Dell Inc. on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Dell Inc. on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Partner: Dell Inc. on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Partner: Dell Inc. on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness Workforce Development

386

Vehicle Technologies Office: Workplace Charging Challenge Partner: Eli  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Eli Lilly to someone by E-mail Eli Lilly to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Partner: Eli Lilly on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: Eli Lilly on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Eli Lilly on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Eli Lilly on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Partner: Eli Lilly on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Partner: Eli Lilly on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness Workforce Development

387

Vehicle Technologies Office: Workplace Charging Challenge Partner: City of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sacramento to someone by E-mail Sacramento to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Partner: City of Sacramento on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: City of Sacramento on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: City of Sacramento on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: City of Sacramento on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Partner: City of Sacramento on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Partner: City of Sacramento on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners

388

Vehicle Technologies Office: Workplace Charging Challenge Partner: Samsung  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Samsung Electronics to someone by E-mail Samsung Electronics to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Partner: Samsung Electronics on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: Samsung Electronics on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Samsung Electronics on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Samsung Electronics on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Partner: Samsung Electronics on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Partner: Samsung Electronics on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging

389

Vehicle Technologies Office: FY 2004 Progress Report for Advanced  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Progress Report 4 Progress Report for Advanced Combustion Engine Research and Development to someone by E-mail Share Vehicle Technologies Office: FY 2004 Progress Report for Advanced Combustion Engine Research and Development on Facebook Tweet about Vehicle Technologies Office: FY 2004 Progress Report for Advanced Combustion Engine Research and Development on Twitter Bookmark Vehicle Technologies Office: FY 2004 Progress Report for Advanced Combustion Engine Research and Development on Google Bookmark Vehicle Technologies Office: FY 2004 Progress Report for Advanced Combustion Engine Research and Development on Delicious Rank Vehicle Technologies Office: FY 2004 Progress Report for Advanced Combustion Engine Research and Development on Digg Find More places to share Vehicle Technologies Office: FY 2004

390

Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel and Alternative Fuel and Advanced Vehicle Research and Development Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Research and Development Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Research and Development Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Research and Development Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Research and Development Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Research and Development Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative

391

Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel and Alternative Fuel and Advanced Vehicle Technology Research and Demonstration Bonds to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Technology Research and Demonstration Bonds on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Technology Research and Demonstration Bonds on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Technology Research and Demonstration Bonds on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Technology Research and Demonstration Bonds on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Technology Research and Demonstration Bonds on Digg Find More places to share Alternative Fuels Data Center: Alternative

392

Argonne Transportation Site Index  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Site Index General Information About TTRDC Media Center Current News News Archive Photo Archive Transportation Links Awards Contact Us Interesting Links Working with Argonne Research Resources Experts Batteries Engines & Fuels Fuel Cells Management Materials Systems Assessment Technology Analysis Tribology Vehicle Recycling Vehicle Systems Facilities Advanced Powertrain Research Facility Powertrain Test Cell 4-Wheel Drive Chassis Dynamometer Battery Test Facility Engine Research Facility Fuel Cell Test Facility Tribology Laboratory Tribology Laboratory Photo Tour Vehicle Recycling Partnership Plant Publications Searchable Database: patents, technical papers, presentations

393

NREL: Learning - Vehicle Testing and Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vehicle Testing and Analysis Vehicle Testing and Analysis Photo of two large semi-trailer truck cabs parked side by side on a hillside with a shrub-covered hill and sky in the background. Researchers at NREL obtain useful data on energy efficiency during tests conducted both in the laboratory and outdoors in truck cabs like these. Credit: Ken Proc Researchers and engineers test new technologies and vehicles to find out if they will help manufacturers produce more energy-efficient cars, vans, trucks, and buses. They also carry out studies using computer simulations. These studies help to identify the vehicles and components that will provide the best fuel economy and performance at the lowest cost. Fleet Tests and Evaluations NREL's engineers use the latest equipment and techniques to conduct vehicle

394

Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6: February 9, 6: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled to someone by E-mail Share Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Facebook Tweet about Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Twitter Bookmark Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Google Bookmark Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Delicious Rank Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Digg Find More places to share Vehicle Technologies Office: Fact #306:

395

FY 2014 Vehicles FOA 991 Selection Table  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department announced more than $55 million for 31 new projects to accelerate research and development of critical vehicle technologies that will improve fuel efficiency and reduce costs.

396

Vehicle Technologies Office: U.S. DRIVE  

Broader source: Energy.gov [DOE]

U.S. DRIVE stands for Driving Research and Innovation for Vehicle efficiency and Energy sustainability. It is a non-binding and voluntary government-industry partnership focused on advanced...

397

A MODULAR, SCALABLE, ARCHITECTURE FOR UNMANNED VEHICLES  

E-Print Network [OSTI]

1 A MODULAR, SCALABLE, ARCHITECTURE FOR UNMANNED VEHICLES David G. Armstrong II, Carl D. Crane III://www.me.ufl.edu/CIMAR Ralph English Wintec, Inc. Ft. Walton Beach, Florida Phillip Adsit Applied Research Associates Tyndall

Florida, University of

398

Ultracapacitor Boosted Fuel Cell Hybrid Vehicle  

E-Print Network [OSTI]

With the escalating number of vehicles on the road, great concerns are drawn to the large amount of fossil fuels they use and the detrimental environmental impacts from their emissions. A lot of research and development have been conducted...

Chen, Bo

2010-01-14T23:59:59.000Z

399

Vehicle Technologies Office: Advanced Battery Development, System...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

learn how batteries are used in plug-in electric vehicles, visit the Alternative Fuels Data Center's page on batteries. Through the USABC, VTO supports a variety of research,...

400

Vehicle Technologies Office: Integration and Validation  

Broader source: Energy.gov [DOE]

Once vehicle components and subsystems prove out in the initial modeling and simulation research phases, it is time to build, integrate, and validate prototypes of those components and subsystems....

Note: This page contains sample records for the topic "vehicles powertrain research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Fuel Efficiency of New European HD Vehicles  

Broader source: Energy.gov [DOE]

Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

402

Laser Range Finder Mapping of Floating Vehicle  

E-Print Network [OSTI]

Using laser range finders as a method of navigation is popular with mobile land robots; however, there has been little research using it with water vehicles. Therefore, this thesis explores the usage and data flow of a ...

Hui, Corinna

2009-01-01T23:59:59.000Z

403

An Optimized International Vehicle Monitor  

SciTech Connect (OSTI)

This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this project was to evaluate detector configurations to achieve a vehicle monitor that is economical, practical to install, and has adequate sensitivity to be an effective barrier to illegal transportation of special nuclear materials. We designed a new detector configuration that improves the sensitivity of available drive-through vehicle monitors by more than a factor of 5 while not changing the nuisance alarm rate.

York, R.L.; Close, D.A.; Fehlau, P.E.

1999-07-16T23:59:59.000Z

404

EV Everywhere: Innovative Battery Research Powering Up Plug-In...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EV Everywhere: Innovative Battery Research Powering Up Plug-In Electric Vehicles EV Everywhere: Innovative Battery Research Powering Up Plug-In Electric Vehicles January 24, 2014 -...

405

VEHICLE USAGE LOG Department ________________________________________ Vehicle Homebase ____________________________ Week Ended (Sunday) _________________  

E-Print Network [OSTI]

VEHICLE USAGE LOG Department ________________________________________ Vehicle Homebase (rev. 10/2005-ecb) #12;Vehicle Usage Log Instructions General instructions: The details of the use

Yang, Zong-Liang

406

Fact #842: October 13, 2014 Vehicles and Vehicle Travel Trends...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

drivers, number of vehicles in operation, and total vehicle miles traveled. Fact 842 Dataset Supporting Information Population and Vehicle Growth Comparison, 1950-2012 Year...

407

AVTA: EVSE Testing- NYSERDA Electric Vehicle Charging Infrastructure Reports  

Broader source: Energy.gov [DOE]

These reports describe the charging patterns of drivers participating in the New York State Energy Research and Development Authority's (NYSERDA) electric vehicle (EV) infrastructure project.

408

Vehicle Technologies Office: Fuel Effects on Advanced Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

million. Now, all new diesel vehicles meet the EPA requirements, substantially reducing pollution and improving air quality. Currently, VTO is supporting research to increase our...

409

Sandia National Laboratories: fuel-cell electric vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fuel-cell electric vehicle High-Efficiency Solar Thermochemical Reactor for Hydrogen Production On July 9, 2014, in Center for Infrastructure Research and Innovation (CIRI),...

410

Chapter 2. Vehicle Characteristics  

U.S. Energy Information Administration (EIA) Indexed Site

2. Vehicle Characteristics 2. Vehicle Characteristics Chapter 2. Vehicle Characteristics U.S. households used a fleet of nearly 157 million vehicles in 1994. Despite remarkable growth in the number of minivans and sport-utility vehicles, passenger cars continued to predominate in the residential vehicle fleet. This chapter looks at changes in the composition of the residential fleet in 1994 compared with earlier years and reviews the effect of technological changes on fuel efficiency (how efficiently a vehicle engine processes motor fuel) and fuel economy (how far a vehicle travels on a given amount of fuel). Using data unique to the Residential Transportation Energy Consumption Survey, it also explores the relationship between residential vehicle use and family income.

411

Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Medium- and Medium- and Heavy-Duty Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Twitter Bookmark Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Google Bookmark Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Delicious Rank Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Digg Find More places to share Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on AddThis.com... Home Overview Light-Duty Vehicles Medium- and Heavy-Duty Vehicles Transit Vehicles Trucks Idle Reduction Oil Bypass Filter Airport Ground Support Equipment Medium and Heavy Duty Hybrid Electric Vehicles

412

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Broader source: Energy.gov (indexed) [DOE]

EVSE Designed And Manufactured To Allow Power And Energy Data Collection And Demand Response Control Residential EVSE Installed For All Vehicles 1,300 Commercial EVSE...

413

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt066vsskarner2012...

414

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt066vsskarner2011...

415

Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...  

Energy Savers [EERE]

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt072vssmackie2011...

416

Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...  

Energy Savers [EERE]

2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt072vssmackie2012...

417

Vehicle Technologies Office: 2010 Energy Storage R&D Annual Progress Report  

Broader source: Energy.gov [DOE]

The energy storage research and development effort within the Vehicle Technologies Office (VTO) is responsible for researching and improving advanced batteries and ultracapacitors for a wide range of vehicleapplications, including HEVs, PHEVs, EVs, and fuel cell vehicles (FCVs).

418

PASSIVE DETECTION OF VEHICLE LOADING  

SciTech Connect (OSTI)

The Digital Imaging and Remote Sensing Laboratory (DIRS) at the Rochester Institute of Technology, along with the Savannah River National Laboratory is investigating passive methods to quantify vehicle loading. The research described in this paper investigates multiple vehicle indicators including brake temperature, tire temperature, engine temperature, acceleration and deceleration rates, engine acoustics, suspension response, tire deformation and vibrational response. Our investigation into these variables includes building and implementing a sensing system for data collection as well as multiple full-scale vehicle tests. The sensing system includes; infrared video cameras, triaxial accelerometers, microphones, video cameras and thermocouples. The full scale testing includes both a medium size dump truck and a tractor-trailer truck on closed courses with loads spanning the full range of the vehicle's capacity. Statistical analysis of the collected data is used to determine the effectiveness of each of the indicators for characterizing the weight of a vehicle. The final sensing system will monitor multiple load indicators and combine the results to achieve a more accurate measurement than any of the indicators could provide alone.

Garrett, A.

2012-01-03T23:59:59.000Z

419

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

vehicle aging have an additional but unknown effect on the MPG of individual vehicles. Energy Information AdministrationHousehold Vehicles Energy Consumption 1991 27 Of the...

420

Bosch Powertrain Technologies  

Broader source: Energy.gov (indexed) [DOE]

70 mm 80 mm Laser drilling Standard EDM Laser drilling, opt. Standard Individual spray beams Flexible hole design of single beams Improved homogenization Reduced wall...

Note: This page contains sample records for the topic "vehicles powertrain research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network [OSTI]

Electricity H2 Gasoline, bio-fuel, H2, electricity Gasoline,bio-diesel, DME, CH2/LH2 Gasoline, electricity, H2 Powertrains ICE, hybrid, plug-in hybrid, battery, fuel

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

422

Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth...  

Broader source: Energy.gov (indexed) [DOE]

- VW Jetta TSI: Advanced engine and powertrain evaluation - Sonata: P2 hybrid architecture versus power-split type systems - Volt: Evaluation of first OEM EREV plug-in hybrid...

423

Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5: September 15, 5: September 15, 2003 Vehicles per Thousand People: An International Comparison to someone by E-mail Share Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Facebook Tweet about Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Twitter Bookmark Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Google Bookmark Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Delicious Rank Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Digg

424

Vehicle Technologies Office: Favorites  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Favorites to someone by Favorites to someone by E-mail Share Vehicle Technologies Office: Favorites on Facebook Tweet about Vehicle Technologies Office: Favorites on Twitter Bookmark Vehicle Technologies Office: Favorites on Google Bookmark Vehicle Technologies Office: Favorites on Delicious Rank Vehicle Technologies Office: Favorites on Digg Find More places to share Vehicle Technologies Office: Favorites on AddThis.com... Favorites #248 Top Ten Net Petroleum Importing Countries, 2000 December 23, 2002 #246 U.S. Oil Imports - Top 10 Countries of Origin December 9, 2002 #244 Sport Utility Vehicle Spotlight November 25, 2002 #243 Fuel Economy Leaders for 2003 Model Year Light Trucks November 18, 2002 #242 Fuel Economy Leaders for 2003 Model Year Cars November 11, 2002 #238 Automobile and Truck Population by Vehicle Age, 2001 October 14, 2002

425

Vehicle Technologies Office: News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News News Site Map Printable Version Share this resource Send a link to Vehicle Technologies Office: News to someone by E-mail Share Vehicle Technologies Office: News on Facebook Tweet about Vehicle Technologies Office: News on Twitter Bookmark Vehicle Technologies Office: News on Google Bookmark Vehicle Technologies Office: News on Delicious Rank Vehicle Technologies Office: News on Digg Find More places to share Vehicle Technologies Office: News on AddThis.com... Vehicle Technologies News Blog Newsletters Information for Media Subscribe to News Updates News December 18, 2013 USDA Offers $118 Million for Renewable Energy, Smart Grid Projects The U.S. Department of Agriculture (USDA) announced $73 million in funding for renewable energy projects and $45 million for smart grid technology as

426

Social networking in vehicles  

E-Print Network [OSTI]

In-vehicle, location-aware, socially aware telematic systems, known as Flossers, stand to revolutionize vehicles, and how their drivers interact with their physical and social worlds. With Flossers, users can broadcast and ...

Liang, Philip Angus

2006-01-01T23:59:59.000Z

427

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September byet al. , 1988,1989 HYDROGEN FUEL-CELL VEHICLES: TECHNICALIn the FCEV, the hydrogen fuel cell could supply the "net"

Delucchi, Mark

1992-01-01T23:59:59.000Z

428

Vehicles | Open Energy Information  

Open Energy Info (EERE)

renewable and alternative fuels. Advanced vehicles and fuels can also put the brakes on air pollution and improve our environment. At least 250 million vehicles are in use in the...

429

TTRDC - Facilities - APRF - Environmental Test Cell  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Powertrain Research Facility: Advanced Powertrain Research Facility: Environmental Test Cell Allows Extremes of Hot and Cold environmental test cell Environmental Test Cell showing its solar lamps on the ceiling. Inside Argonne's new Environmental Test Cell (ETC), vehicle researchers are able to simulate a range of external temperatures-from frigid cold to blistering heat-in order to study the impact of temperature on the performance of electrified vehicles (EVs). The ETC is a major upgrade to Argonne's world-class Advanced Powertrain Research Facility (APRF). The ETC allows vehicles to be tested at a temperature range between 20°F to 95°F under simulated sunshine. Previously, Argonne researchers were only able to test from 72°F to 95°F without a solar load. In addition, in the upgraded test cell researchers can now perform the new

430

NREL: Learning - Advanced Vehicles and Fuels Basics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Vehicles and Fuels Basics Advanced Vehicles and Fuels Basics Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player This video provides an overview of the Center for Transportation Technologies and Systems and its research. Video produced for NREL by Fireside Production. Text Version We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. And we can help to reduce our nation's growing reliance on imported oil by running our vehicles on renewable and alternative fuels. Advanced vehicles and fuels can also put the brakes on air pollution and improve our environment. At least 250 million vehicles are in use in the United States today. They include all kinds of passenger cars, trucks, vans, buses, and large

431

Advanced Vehicle Electrification  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

432

Advanced Vehicle Electrification  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

433

Consumer Vehicle Technology Data  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

434

Advanced Electric Drive Vehicles  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

435

American Institute of Aeronautics and Astronautics Exploring Mass Trade-Offs In Preliminary Vehicle Design  

E-Print Network [OSTI]

, as this both lowers development cost and reduces time to market. Thus vehicle manufacturers have invested Vehicle Design Using Pareto Sets Joseph Donndelinger1 General Motors Research & Development Center, Warren of balanced and compatible sets of vehicle specifications in the early stages of vehicle development

Lewis, Kemper E.

436

urrent practice in the vehicle dynamics and control community is to validate detailed  

E-Print Network [OSTI]

the cost and inherent danger in testing aggressive vehicle controllers using full-sized vehicles, a scaleC urrent practice in the vehicle dynamics and control community is to validate detailed simulation results using a full-sized vehicle. For university-based research, this ap- proach is often prohibitively

Brennan, Sean

437

PREPARING A NATION FOR AUTONOMOUS VEHICLES:1 OPPORTUNITIES, BARRIERS AND POLICY RECOMMENDATIONS FOR2  

E-Print Network [OSTI]

1 PREPARING A NATION FOR AUTONOMOUS VEHICLES:1 OPPORTUNITIES, BARRIERS AND POLICY RECOMMENDATIONS in Transportation Research Part A (July 2013)21 22 23 Key Words: Vehicle automation, autonomous vehicles, cost Abstract27 28 Autonomous vehicles (AVs) represent a potentially disruptive and beneficial change to the way

Kockelman, Kara M.

438

Energy 101: Electric Vehicles  

ScienceCinema (OSTI)

This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

None

2013-05-29T23:59:59.000Z

439

Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2: October 3, 2: October 3, 2005 Household Vehicle Ownership to someone by E-mail Share Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Facebook Tweet about Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Twitter Bookmark Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Google Bookmark Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Delicious Rank Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Digg Find More places to share Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on AddThis.com... Fact #392: October 3, 2005 Household Vehicle Ownership Household vehicle ownership has changed significantly over the last 40

440

Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5: February 5, 5: February 5, 2007 Household Vehicle Miles to someone by E-mail Share Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Facebook Tweet about Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Twitter Bookmark Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Google Bookmark Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Delicious Rank Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Digg Find More places to share Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on AddThis.com... Fact #455: February 5, 2007 Household Vehicle Miles The graphs below show the average vehicle miles of travel (VMT) - daily

Note: This page contains sample records for the topic "vehicles powertrain research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Argonne TTRDC - APRF - Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Powertrain Research Facility (APRF) APRF dyno Instrumented car on the dyno. Researcher Forrest Jehlik at the APRF Researcher Forrest Jehlik watches over dynamometer testing. Environmental Test Cell The Environmental Test Cell Argonne's Advanced Powertrain Research Facility (APRF) enables researchers to conduct vehicle benchmarking and testing activities that provide data critical to the development and commercialization of next-generation vehicles. APRF engineers use the facility's two-wheel drive (2WD) and four-wheel drive (4WD) dynamometers and state-of-the-art instrumentation to reveal important information on performance, fuel economy, energy consumption and emissions output. The APRF is capable of testing conventional, hybrid and advanced electrical

442

TRANSPORTATION ENERGY RESEARCH PIER Transportation Research  

E-Print Network [OSTI]

engine and an Eaton Fuller 10speed manual transmission as the study's representative baseline vehicle beginning in 2017 while providing net savings over the life of the vehicle. Also, fuel cost savings far.energy.ca.gov/research/ transportation/ January 2011 Heavy-Duty Vehicle Emissions and Fuel Consumption Improvement Illustration

443

Plug-In Hybrid Electric Vehicles - Prototypes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Prototypes Prototypes A PHEV prototype being prepared for testing. A plug-in electric vehicle (PHEV) prototype is prepared for testing at Argonne National Laboratory. What is a PHEV? A plug-in hybrid electric vehicle, or PHEV, is similar to today's hybrid electric vehicles on the market today, but with a larger battery that is charged both by the vehicle's gasoline engine and from plugging into a standard 110 V electrical outlet for a few hours each day. PHEVs and HEVs both use battery-powered motors and gasoline-powered engines for high fuel efficiency, but PHEVs can further reduce fuel usage by employing electrical energy captured through daily charging. Prototype as Rolling Test Bed As part of Argonne's multifaceted PHEV research program, Argonne researchers have constructed a PHEV prototype that serves as a rolling test

444

Transient in cab noise investigation on a light duty diesel passenger vehicle.  

Science Journals Connector (OSTI)

A diesel engine in cab sound quality for passenger car market is scrutinized more closely than in the mid? to heavy duty diesel truck applications. This is obviously due to the increasing expectations from the customers for gasolinelike sound quality. This paper deals with a sound quality issue recently investigated on a light duty diesel engine for a passenger van application. The objectionable noise complaint occurred during the vehicle transient operating conditions and was found to be caused by the change in the pilot quantity over a very short period of time. The root cause of the noise complaint was investigated on the noise complaint vehicle as well as simultaneously on a standalone engine in the noise test cell. Several critical combustion and performance parameters were recorded for diagnosing the issue. In addition various standard sound quality metrics were employed to differentiate the sound quality of the objectionable noise. The issue was resolved and verified by making appropriate changes to the engine calibration without affecting key requirements such as emissions and fuel economy. Finally the findings from the experimental tests are summarized and appropriate conclusions are drawn with respect to understanding characterizing and resolving this transient combustion related impulsive powertrain interior noise issue.

Dhanesh Purekar

2010-01-01T23:59:59.000Z

445

Advanced Wireless Power Transfer Vehicle and Infrastructure Analysis (Presentation)  

SciTech Connect (OSTI)

This presentation discusses current research at NREL on advanced wireless power transfer vehicle and infrastructure analysis. The potential benefits of E-roadway include more electrified driving miles from battery electric vehicles, plug-in hybrid electric vehicles, or even properly equipped hybrid electric vehicles (i.e., more electrified miles could be obtained from a given battery size, or electrified driving miles could be maintained while using smaller and less expensive batteries, thereby increasing cost competitiveness and potential market penetration). The system optimization aspect is key given the potential impact of this technology on the vehicles, the power grid and the road infrastructure.

Gonder, J.; Brooker, A.; Burton, E.; Wang, J.; Konan, A.

2014-06-01T23:59:59.000Z

446

Vehicle Technologies Office: Deployment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deployment Deployment Site Map Printable Version Share this resource Send a link to Vehicle Technologies Office: Deployment to someone by E-mail Share Vehicle Technologies Office: Deployment on Facebook Tweet about Vehicle Technologies Office: Deployment on Twitter Bookmark Vehicle Technologies Office: Deployment on Google Bookmark Vehicle Technologies Office: Deployment on Delicious Rank Vehicle Technologies Office: Deployment on Digg Find More places to share Vehicle Technologies Office: Deployment on AddThis.com... Energy Policy Act (EPAct) Clean Cities Educational Activities Deployment Our nation's energy security depends on the efficiency of our transportation system and on which fuels we use. Transportation in the United States already consumes much more oil than we produce here at home

447

Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1: January 8, 1: January 8, 2007 Household Vehicle Trips to someone by E-mail Share Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Facebook Tweet about Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Twitter Bookmark Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Google Bookmark Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Delicious Rank Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Digg Find More places to share Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on AddThis.com... Fact #451: January 8, 2007 Household Vehicle Trips In a day, the average household traveled 32.7 miles in 2001 (the latest

448

Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3: March 8, 2010 3: March 8, 2010 Vehicle Occupancy Rates to someone by E-mail Share Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Facebook Tweet about Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Twitter Bookmark Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Google Bookmark Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Delicious Rank Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Digg Find More places to share Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on AddThis.com... Fact #613: March 8, 2010 Vehicle Occupancy Rates The average number of persons occupying a car is 1.59 and has not changed

449

Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FY 2008 DOE Vehicle FY 2008 DOE Vehicle Technologies Office Annual Merit Review to someone by E-mail Share Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Facebook Tweet about Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Twitter Bookmark Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Google Bookmark Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Delicious Rank Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Digg Find More places to share Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on AddThis.com... Publications

450

Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8: February 16, 8: February 16, 2009 Transit Vehicle Age and Cost to someone by E-mail Share Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on Facebook Tweet about Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on Twitter Bookmark Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on Google Bookmark Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on Delicious Rank Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on Digg Find More places to share Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on AddThis.com... Fact #558: February 16, 2009 Transit Vehicle Age and Cost

451

Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3: January 22, 3: January 22, 2007 Household Vehicle Ownership to someone by E-mail Share Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Facebook Tweet about Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Twitter Bookmark Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Google Bookmark Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Delicious Rank Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Digg Find More places to share Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on AddThis.com... Fact #453: January 22, 2007 Household Vehicle Ownership

452

Simulated Real-World Energy Impacts of a Thermally Sensitive Powertrain Considering Viscous Losses and Enrichment (Presentation)  

SciTech Connect (OSTI)

It is widely understood that cold-temperature engine operation negatively impacts vehicle fuel use due to a combination of increased friction (high-viscosity engine oil) and temporary enrichment (accelerated catalyst heating). However, relatively little effort has been dedicated to thoroughly quantifying these impacts across a large number of driving cycles and ambient conditions. This work leverages high-quality dynamometer data collected at various ambient conditions to develop a modeling framework for quantifying engine cold-start fuel penalties over a wide array of real-world usage profiles. Additionally, mitigation strategies including energy retention and exhaust heat recovery are explored with benefits quantified for each approach.

Wood, E.; Gonder, J.; Lopp, S.; Jehlik, F.

2014-09-01T23:59:59.000Z

453

Vehicle Technologies Office: Advanced Battery Development, System Analysis, and Testing  

Broader source: Energy.gov [DOE]

To develop better lithium-ion (Li-ion) batteries for plug-in electric vehicles, researchers must integrate the advances made in exploratory battery materials and applied battery research into full...

454

Vehicle Technologies Office: Power Electronics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Electronics Power Electronics The power electronics activity focuses on research and development (R&D) for flexible, integrated, modular power electronics for power conditioning and control, including a power switch stage capable of running a variety of motors and loads. Efforts are underway to reduce overall system costs for these vehicles through the elimination of additional cooling loops to keep the power electronics within their safe operation ranges. These challenges are being met within the program through research in: Silicon carbide and Gallium Nitride semiconductors, which can be operated at much higher temperatures than current silicon semiconductors; Packaging innovations for higher temperature operation; Improved thermal control technologies; and

455

Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

39: October 6, 39: October 6, 2008 Light Vehicle Production by State to someone by E-mail Share Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Facebook Tweet about Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Twitter Bookmark Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Google Bookmark Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Delicious Rank Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Digg Find More places to share Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on AddThis.com... Fact #539: October 6, 2008

456

Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1: January 23, 1: January 23, 2012 Top Vehicles around the Globe, 2011 to someone by E-mail Share Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on Facebook Tweet about Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on Twitter Bookmark Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on Google Bookmark Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on Delicious Rank Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on Digg Find More places to share Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on AddThis.com...

457

Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Progress Report 4 Progress Report for Heavy Vehicle Propulsion Materials Program to someone by E-mail Share Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Facebook Tweet about Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Twitter Bookmark Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Google Bookmark Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Delicious Rank Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Digg Find More places to share Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on

458

Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9: May 10, 2004 9: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison to someone by E-mail Share Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on Facebook Tweet about Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on Twitter Bookmark Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on Google Bookmark Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on Delicious Rank Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on Digg Find More places to share Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on

459

Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

300: December 29, 300: December 29, 2003 World Vehicle Production by Country/Region to someone by E-mail Share Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on Facebook Tweet about Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on Twitter Bookmark Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on Google Bookmark Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on Delicious Rank Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on Digg Find More places to share Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on

460

Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Progress Report 3 Progress Report for Heavy Vehicle Propulsion Materials Program to someone by E-mail Share Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Facebook Tweet about Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Twitter Bookmark Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Google Bookmark Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Delicious Rank Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Digg Find More places to share Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on

Note: This page contains sample records for the topic "vehicles powertrain research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5: January 11, 5: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 to someone by E-mail Share Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Facebook Tweet about Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Twitter Bookmark Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Google Bookmark Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Delicious Rank Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Digg Find More places to share Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on AddThis.com...

462

Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8: November 23, 8: November 23, 2009 Hybrid Vehicle Sales by Model to someone by E-mail Share Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Facebook Tweet about Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Twitter Bookmark Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Google Bookmark Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Delicious Rank Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Digg Find More places to share Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on AddThis.com... Fact #598: November 23, 2009

463

Vehicle Technologies Office: Favorites  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Favorites Favorites #248 Top Ten Net Petroleum Importing Countries, 2000 December 23, 2002 #246 U.S. Oil Imports - Top 10 Countries of Origin December 9, 2002 #244 Sport Utility Vehicle Spotlight November 25, 2002 #243 Fuel Economy Leaders for 2003 Model Year Light Trucks November 18, 2002 #242 Fuel Economy Leaders for 2003 Model Year Cars November 11, 2002 #238 Automobile and Truck Population by Vehicle Age, 2001 October 14, 2002 #234 2003 Model Year Alternative Fuel Vehicles September 16, 2002 #233 Vehicles per Thousand People: U.S. Compared to Other Countries September 9, 2002 #230 Hybrid Electric Vehicles in the United States August 19, 2002 #229 Medium and Heavy Truck Sales August 12, 2002 #228 New Light Vehicle Sales Shares, 1976-2001 August 5, 2002

464

Vehicle underbody fairing  

DOE Patents [OSTI]

A vehicle underbody fairing apparatus for reducing aerodynamic drag caused by a vehicle wheel assembly, by reducing the size of a recirculation zone formed under the vehicle body immediately downstream of the vehicle wheel assembly. The fairing body has a tapered aerodynamic surface that extends from a front end to a rear end of the fairing body with a substantially U-shaped cross-section that tapers in both height and width. Fasteners or other mounting devices secure the fairing body to an underside surface of the vehicle body, so that the front end is immediately downstream of the vehicle wheel assembly and a bottom section of the tapered aerodynamic surface rises towards the underside surface as it extends in a downstream direction.

Ortega, Jason M. (Pacifica, CA); Salari, Kambiz (Livermore, CA); McCallen, Rose (Livermore, CA)

2010-11-09T23:59:59.000Z

465

Advanced Technology Vehicle Testing  

SciTech Connect (OSTI)

The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

James Francfort

2004-06-01T23:59:59.000Z

466

Accomodating Electric Vehicles  

E-Print Network [OSTI]

Accommodating Electric Vehicles Dave Aasheim 214-551-4014 daasheim@ecotality.com A leader in clean electric transportation and storage technologies ECOtality North America Overview Today ? Involved in vehicle electrification... ECOtality North America Overview Today ?Warehouse Material Handling ? Lift trucks ? Pallet Jacks ? Over 200 Customers ? Over 5,000 Installations ECOtality North America Overview Today ? 1990?s involved in EV1 ? EV Chargers ? Vehicle & battery...

Aasheim, D.

2011-01-01T23:59:59.000Z

467

Quadrennial Technology Review Vehicle Efficiency and Electrification...  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Efficiency and Electrification Workshop Documents Quadrennial Technology Review Vehicle Efficiency and Electrification Workshop Documents QTR Vehicle Efficiency and...

468

Advanced Technology Vehicles Manufacturing Incentive Program...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program A fact sheet detailling the advanced technology vehicles...

469

Plug-In Hybrid Electric Vehicles | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Plug-In Hybrid Electric Vehicles Plug-In Hybrid Electric Vehicles Plug-In Hybrid Electric Vehicles A new study released on Plug-in Hybrid Electric Vehicles (PHEVs) found there is enough electric capacity to power plug-in vehicles across much of the nation. The Office of Electricity Delivery and Energy Reliability supported researchers at the Pacific Northwest National Laboratory to develop this study that found "off-peak" electricity production and transmission capacity could fuel 84 percent of the 198 million cars, pickup trucks, and sport utility vehicles (SUVs) in the nation if they were plug-in hybrid electrics. This is the first review of what the impacts would be of very high market penetrations of PHEVs. Plug-In Hybrid Electric Vehicles More Documents & Publications

470

Vehicle Investment and Operating Costs and Savings for Greenhouse Gas  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Investment and Operating Costs and Savings for Greenhouse Vehicle Investment and Operating Costs and Savings for Greenhouse Gas Mitigation Strategies Vehicle Investment and Operating Costs and Savings for Greenhouse Gas Mitigation Strategies October 7, 2013 - 1:17pm Addthis YOU ARE HERE: Step 4 To help estimate costs of implementing greenhouse gas (GHG) mitigation strategies for vehicles, the table below provides the initial investment, operating costs, and operating savings for each strategy. Table 1. Types and Ranges of Initial Investment Requirements and Annual Operating Costs and Savings. Strategies Initial Investment Operating Costs Operating Savings Consolidate trips Time to research & coordinate routes None Eliminate fleet vehicle trips; reduce cost & time (fuel, maintenance, etc) associated with fleet vehicle use. Could result in decreasing inventory & need for vehicles leading to long-term savings

471

Vehicle Technologies Office: Workplace Charging Challenge Partner: GM  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

GM to someone by E-mail GM to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Partner: GM on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: GM on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: GM on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: GM on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Partner: GM on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Partner: GM on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness Workforce Development Plug-in Electric Vehicle Basics Workplace Charging Challenge Partner: GM

472

EERE: Vehicle Technologies Office - PreSICE Report Now Available  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PreSICE Report Now Available PreSICE Report Now Available Site Map Printable Version Share this resource Send a link to EERE: Vehicle Technologies Office - PreSICE Report Now Available to someone by E-mail Share EERE: Vehicle Technologies Office - PreSICE Report Now Available on Facebook Tweet about EERE: Vehicle Technologies Office - PreSICE Report Now Available on Twitter Bookmark EERE: Vehicle Technologies Office - PreSICE Report Now Available on Google Bookmark EERE: Vehicle Technologies Office - PreSICE Report Now Available on Delicious Rank EERE: Vehicle Technologies Office - PreSICE Report Now Available on Digg Find More places to share EERE: Vehicle Technologies Office - PreSICE Report Now Available on AddThis.com... PreSICE Report Now Available Cover of A Workshop to Identify Research Needs and Impacts in Predictive Simulation for Internal Combustion Engines (PreSICE) report.

473

Advanced Vehicle Electrification  

Broader source: Energy.gov [DOE]

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

474

Vehicle Modeling and Simulation  

Broader source: Energy.gov [DOE]

Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

475

Flex Fuel Vehicle Systems  

Broader source: Energy.gov [DOE]

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

476

Electric Vehicle Supply Equipment  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Procurement of Electric Vehicle Supply Equipment This Guidance provides a description of the types of requirements to be included in an employer's workplace charging request for...

477

Vehicle Technologies Office: Conferences  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office supports and sponsors conferences related to the Office's goals and objectives. When such conferences are planned and conference information becomes available, it...

478

Alternative Fuel Vehicle Resources  

Broader source: Energy.gov [DOE]

Alternative fuel vehicles use fuel types other than petroleum and include such fuels as electricity, ethanol, biodiesel, natural gas, hydrogen, and propane. Compared to petroleum, these...

479

Vehicle Emissions Review - 2012  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Emissions Review - 2012 Tim Johnson October 16, 2012 2 Environmental Technologies Summary * Regulations - LEVIII finalized, Tier 3? RDE in Europe developing and very...

480

Vehicle highway automation.  

E-Print Network [OSTI]

??Vehicle Highway Automation has been studied for several years but a practical system has not been possible because of technology limitations. New advances in sensing (more)

Challa, Dinesh Kumar

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicles powertrain research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Vehicles | Department of Energy  

Energy Savers [EERE]

Calculator is an interactive tool that helps you plan a route, pick a car and estimate a fuel costs. Subtopics Alternative Fuel Vehicles Batteries Hydrogen & Fuel Cells Bioenergy...

482

Integrated Vehicle Thermal Management  

Broader source: Energy.gov [DOE]

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

483

The 1991 natural gas vehicle challenge: Developing dedicated natural gas vehicle technology  

SciTech Connect (OSTI)

An engineering research and design competition to develop and demonstrate dedicated natural gas-powered light-duty trucks, the Natural Gas Vehicle (NGV) Challenge, was held June 6--11, 1191, in Oklahoma. Sponsored by the US Department of Energy (DOE), Energy, Mines, and Resources -- Canada (EMR), the Society of Automative Engineers (SAE), and General Motors Corporation (GM), the competition consisted of rigorous vehicle testing of exhaust emissions, fuel economy, performance parameters, and vehicle design. Using Sierra 2500 pickup trucks donated by GM, 24 teams of college and university engineers from the US and Canada participated in the event. A gasoline-powered control testing as a reference vehicle. This paper discusses the results of the event, summarizes the technologies employed, and makes observations on the state of natural gas vehicle technology.

Larsen, R.; Rimkus, W. (Argonne National Lab., IL (United States)); Davies, J. (General Motors of Canada Ltd., Toronto, ON (Canada)); Zammit, M. (AC Rochester, NY (United States)); Patterson, P. (USDOE, Washington, DC (United States))

1992-01-01T23:59:59.000Z

484

The 1991 natural gas vehicle challenge: Developing dedicated natural gas vehicle technology  

SciTech Connect (OSTI)

An engineering research and design competition to develop and demonstrate dedicated natural gas-powered light-duty trucks, the Natural Gas Vehicle (NGV) Challenge, was held June 6--11, 1191, in Oklahoma. Sponsored by the US Department of Energy (DOE), Energy, Mines, and Resources -- Canada (EMR), the Society of Automative Engineers (SAE), and General Motors Corporation (GM), the competition consisted of rigorous vehicle testing of exhaust emissions, fuel economy, performance parameters, and vehicle design. Using Sierra 2500 pickup trucks donated by GM, 24 teams of college and university engineers from the US and Canada participated in the event. A gasoline-powered control testing as a reference vehicle. This paper discusses the results of the event, summarizes the technologies employed, and makes observations on the state of natural gas vehicle technology.

Larsen, R.; Rimkus, W. [Argonne National Lab., IL (United States); Davies, J. [General Motors of Canada Ltd., Toronto, ON (Canada); Zammit, M. [AC Rochester, NY (United States); Patterson, P. [USDOE, Washington, DC (United States)

1992-02-01T23:59:59.000Z

485

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

. . Trends in Household Vehicle Stock The 1991 RTECS counted more than 150 million vehicles in use by U.S. households. This chapter examines recent trends in the vehicle stock, as measured by the RTECS and other reputable vehicle surveys. It also provides some details on the type and model year of the household vehicle stock, and identifies regional differences in vehicle stock. Because vehicles are continuously being bought and sold, this chapter also reports findings relating to turnover of the vehicle stock in 1991. Finally, it examines the average vehicle stock in 1991 (which takes into account the acquisition and disposal of household vehicles over the course of the year) and identifies variations in the average number of household vehicles based on differences in household characteristics. Number of Household Vehicles Over the past 8 years, the stock of household vehicles has

486

Vehicle Technologies Office: 2008 Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 Archive 8 Archive #551 Truck Stop Electrification Sites December 29, 2008 #550 Clean Cities Coalitions December 22, 2008 #549 Biofuels Corridor extends from the Great Lakes to the Gulf of Mexico December 15, 2008 #548 Number of Gasoline Stations Continues to Decline in 2007 December 8, 2008 #547 Research and Development (R&D) Spending in the Automotive Industry December 1, 2008 #546 Automotive Sales Down in all Major World Markets for the Third Quarter of 2008 November 24, 2008 #545 Historical Alternative Fuel Prices Compared to Gasoline and Diesel November 17, 2008 #544 New Vehicle Leasing, 1997-2007 November 10, 2008 #543 Vehicle Trips to Work November 3, 2008 #542 Transit Trips to Increase in 2008 October 27, 2008 #541 New Car Prices: The Past 100 Years October 20, 2008

487

Propulsion Materials R&D | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Propulsion Materials Propulsion Materials SHARE Propulsion Materials Improve Powertrains Oak Ridge National Laboratory's transportation research and development in the area of Propulsion Materials is designed to identify and develop advanced materials and processes that improve powertrain system efficiency and reduce emissions. Cutting-edge materials research is crucial to enabling new vehicle technologies that are reliable, fuel efficient, and clean. ORNL researchers, in close collaboration with US industry, are focusing on materials for advanced engines, hybrid and electric drive systems, and vehicle exhaust systems. These materials promote a variety of performance benefits, including lightweighting, higher temperature capabilities, emissions reduction, thermal management, and corrosion mitigation.

488

2012 U.S. Vehicle Analysis  

E-Print Network [OSTI]

Electric Vehicles . Dieselperformance of electric vehicles Diesel Vehicle From Tableelectric vehicles 3.15: Emission and fuel efficiency performance of diesel

Lam, Ho Yeung Michael

2012-01-01T23:59:59.000Z

489

Vehicle Technologies Office: Community and Fleet Readiness  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Community and Fleet Readiness Community and Fleet Readiness As researchers work to lower the costs and increase the convenience of plug-in electric vehicles (PEVs), it's also necessary to make similar strides on the local level. State and local incentives, such as tax credits or access to HOV lanes, can encourage consumers and vehicle fleets to purchase PEVs. In contrast, difficult permitting procedures for chargers or a lack of signage can discourage adoption. To help communities prepare themselves for plug-in and other alternative fuel vehicles, the Office works with nearly 100 Clean Cities coalitions across the country. Clean Cities offers a wide variety of resources to cities and regions that want to encourage citizens and businesses to drive PEVs. They also offer resources to both public and private fleets that wish to adopt these vehicles.

490

Hydrogen Vehicles and Fueling Infrastructure in China  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Vehicles and Fueling Infrastructure in China Hydrogen Vehicles and Fueling Infrastructure in China Prof. Jinyang Zheng Director of IPE, Zhejiang University Director of Engineering Research Center for High Pressure Process Equipment and Safety, Ministry of Education Vice Director of China National Safety Committee of Pressure Vessels Vice President of CMES-P.R. China China Representative of ISO/TC197 and ISO/TC58 U.S. Department of Transportation and U. S. Department of Energy Workshop: Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Development of Vehicles,Dec.10-11,2009, Washington Safety and Regulatory Structure for CNG,CNG-H2,H2 Vehicles and Fuels in China Content Hydrogen Production CNG Refueling Station Hydrogen Refueling Station Shanxi HCNG Project U.S. Department of Transportation and U. S. Department of Energy Workshop: Compressed Natural Gas and

491

E-Print Network 3.0 - advanced hybrid vehicle Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Saving Cash Toyota Supra HV-R Hybrid Race Car Trends: GM Natural Gas Vehicles See All Search Honda... Vehicles Search Our Inventory of Quality Used Hybrids, Research & more...

492

Computer Aided Design Tool for Electric, Hybrid Electric and Plug-in Hybrid Electric Vehicles  

E-Print Network [OSTI]

This research is focused on designing a new generation of CAD tools that could help a hybrid vehicle designer with the design process to come up with better vehicle configurations. The conventional design process for any type of hybrid...

Eskandari Halvaii, Ali

2012-07-16T23:59:59.000Z

493

Improvements to a queue and delay estimation algorithm utilized in video imaging vehicle detection systems  

E-Print Network [OSTI]

Video Imaging Vehicle Detection Systems (VIVDS) are steadily becoming the dominant method for the detection of vehicles at a signalized traffic approach. This research is intended to investigate the improvement of a queue and delay estimation...

Cheek, Marshall Tyler

2007-09-17T23:59:59.000Z

494

Roadmap for Hydrogen and Fuel Cell Vehicles in California: A Transition Strategy through 2017  

E-Print Network [OSTI]

commitment to hydrogen and fuel cell vehicles has beenrecently re-instated hydrogen and fuel cell vehicle researchTM_2007_094.pdf 6. Hydrogen and Fuel Cell Technical Advisory

Ogden, J; Cunningham, Joshua M; Nicholas, Michael A

2010-01-01T23:59:59.000Z

495

Improving Vehicle Efficiency, Reducing Dependence on Foreign Oil (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides an overview of the U.S. Department of Energy's Vehicle Technologies Program. Today, the United States spends about $400 billion each year on imported oil. To realize a secure energy future, America must break its dependence on imported oil and its volatile costs. The transportation sector accounts for about 70% of U.S. oil demand and holds tremendous opportunity to increase America's energy security by reducing oil consumption. That's why the U.S. Department of Energy (DOE) conducts research and development (R and D) on vehicle technologies which can stem America's dependence on oil, strengthen the economy, and protect the environment. Hybrid-electric and plug-in hybrid-electric vehicles can significantly improve fuel economy, displacing petroleum. Researchers are making batteries more affordable and recyclable, while enhancing battery range, performance, and life. This research supports President Obama's goal of putting 1 million electric vehicles on the road by 2015. The program is also working with businesses to develop domestic battery and electric-drive component plants to improve America's economic competitiveness globally. The program facilitates deployment of alternative fuels (ethanol, biodiesel, hydrogen, electricity, propane, and natural gas) and fuel infrastructures by partnering with state and local governments, universities, and industry. Reducing vehicle weight directly improves vehicle efficiency and fuel economy, and can potentially reduce vehicle operating costs. Cost-effective, lightweight, high-strength materials can significantly reduce vehicle weight without compromising safety. Improved combustion technologies and optimized fuel systems can improve near-and mid-term fuel economy by 25% for passenger vehicles and 20% for commercial vehicles by 2015, compared to 2009 vehicles. Reducing the use of oil-based fuels and lubricants in vehicles has more potential to improve the nation's energy security than any other action; even a 1% improvement in vehicle fuel efficiency would save consumers more than $4 billion annually.

Not Available

2012-03-01T23:59:59.000Z

496

Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4: January 26, 4: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions to someone by E-mail Share Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Facebook Tweet about Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Twitter Bookmark Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Google Bookmark Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Delicious Rank Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Digg Find More places to share Vehicle Technologies Office: Fact #304:

497

Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6: December 2, 6: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 to someone by E-mail Share Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Facebook Tweet about Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Twitter Bookmark Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Google Bookmark Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Delicious Rank Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Digg Find More places to share Vehicle Technologies Office: Fact #806:

498

Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8: April 12, 8: April 12, 2010 Vehicles per Household and Other Demographic Statistics to someone by E-mail Share Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Facebook Tweet about Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Twitter Bookmark Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Google Bookmark Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Delicious Rank Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Digg Find More places to share Vehicle Technologies Office: Fact #618:

499

Vehicle Technologies Office: 2010 Vehicle and Systems Simulation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Office: 2010 Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and Testing R&D Annual Progress...

500

Vehicle Technologies Office: 2012 Vehicle and Systems Simulation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2 Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2012 Vehicle and Systems Simulation and Testing R&D Annual Progress Report FY...