Powered by Deep Web Technologies
Note: This page contains sample records for the topic "vehicles model years" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Model Year 2014 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

4 SmartWay Vehicles Updated November 6, 2013* *Vehicles may be added throughout the model year. Please check back for updates. Page 1 of 12 Model Displ Cyl Trans Drive Fuel Sales...

2

Model Year 2013 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

SmartWay Vehicles Updated August 14, 2013* *Vehicles may be added throughout the model year. Please check back for updates. Page 1 of 13 Model Displ Cyl Trans Drive Fuel Sales...

3

Search for Model Year 2014 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Type Model Year: 2014 Select Class... Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Plug-in Hybrid Vehicles...

4

Search for Model Year 2005 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Year: 2005 Select Class... Compressed Natural Gas Vehicles Diesel Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

5

Search for Model Year 2009 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Year: 2009 Select Class... Compressed Natural Gas Vehicles Diesel Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

6

Search for Model Year 2010 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Year: 2010 Select Class... Compressed Natural Gas Vehicles Diesel Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

7

Model Year 2013 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

SmartWay Vehicles SmartWay Vehicles Updated August 14, 2013* *Vehicles may be added throughout the model year. Please check back for updates. Page 1 of 13 Model Displ Cyl Trans Drive Fuel Sales Area Stnd Stnd Description Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas Score SmartWay ACURA ILX 1.5 4 SCV-7 2WD Gasoline FC B3 Federal Tier 2 Bin 3 DHNXV01.5WF2 small car 7 39 38 38 9 yes ACURA ILX 1.5 4 SCV-7 2WD Gasoline FA B2 Federal Tier 2 Bin 2 DHNXV01.5YD2 small car 8 39 38 38 9 yes ACURA ILX 1.5 4 SCV-7 2WD Gasoline CA PZEV California PZEV DHNXV01.5YD2 small car 9 39 38 38 9 yes ACURA ILX 2 4 SemiAuto-5 2WD Gasoline CA U2 California LEV-II ULEV DHNXV02.0CB2 small car 6 24 35 28 7 yes ACURA TSX 2.4 4 SemiAuto-5 2WD Gasoline CA U2 California LEV-II ULEV DHNXV02.4DB3 small car 6 22 31 26 7 yes AUDI A3 2 4 AMS-6 2WD Diesel FA B5 Federal Tier 2 Bin 5

8

Model Year 2014 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

SmartWay Vehicles SmartWay Vehicles Updated December 20, 2013* *Vehicles may be added throughout the model year. Please check back for updates. Page 1 of 14 Model Displ Cyl Trans Drive Fuel Sales Area Stnd Stnd Description Underhood ID Veh Class Smog Rating City MPG Hwy MPG Cmb MPG Greenhouse Gas Rating SmartWay ACURA ILX 1.5 4 SCV-7 2WD Gasoline FA B2 Federal Tier 2 Bin 2 EHNXV01.58D2 small car 9 39 38 38 9 yes ACURA ILX 1.5 4 SCV-7 2WD Gasoline CA PZEV California PZEV EHNXV01.58D2 small car 9 39 38 38 9 yes ACURA ILX 2 4 SemiAuto-5 2WD Gasoline CA U2 California LEV-II ULEV EHNXV02.0EB3 small car 6 24 35 28 7 yes ACURA RLX 3.5 6 SemiAuto-7 4WD Gasoline FA B3 Federal Tier 2 Bin 3 EHNXV03.52G2 midsize car 7 28 32 30 8 yes ACURA RLX 3.5 6 SemiAuto-7 4WD Gasoline CA L3SULEV30 California LEV-III SULEV30 EHNXV03.52G2 midsize car 8 28 32 30 8 yes ACURA TSX 2.4 4 SemiAuto-5

9

Model Year 2003 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

SmartWay Vehicles Page 1 of 2 Model Displ Cyl Trans Drive Fuel Sales Area Stnd Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas Score SmartWay...

10

Model Year 2010 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

SmartWay Vehicles Page 1 of 20 Model Displ Cyl Trans Drive Fuel Sales Area Stnd Description Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas Score...

11

Model Year 2009 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

SmartWay Vehicles Page 1 of 16 Model Displ Cyl Trans Drive Fuel Sales Area Stnd Stnd Description Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas...

12

Model Year 2001 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

SmartWay Vehicles Page 1 of 1 Model Displ Cyl Trans Drive Fuel Sales Area Stnd Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG GHG Score SmartWay HONDA Accord...

13

Model Year 2012 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

SmartWay Vehicles Page 1 of 14 Model Displ Cyl Trans Drive Fuel Sales Area Stnd Stnd Description Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas...

14

Model Year 2007 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

SmartWay Vehicles Page 1 of 18 Model Displ Cyl Trans Drive Fuel Sales Area Stnd Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas Score SmartWay...

15

Model Year 2000 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

SmartWay Vehicles Page 1 of 1 Model Displ Cyl Trans Drive Fuel Sales Area Stnd Stnd Description Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG GHG Score...

16

Model Year 2011 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

SmartWay Vehicles Page 1 of 10 Model Displ Cyl Trans Drive Fuel Sales Area Stnd Stnd Description Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas...

17

Model Year 2008 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

SmartWay Vehicles Page 1 of 20 Model Displ Cyl Trans Drive Fuel Sales Area Stnd Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas Score SmartWay...

18

Search for Model Year 2000 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

19

Model Year 2013: Alternative Fuel Vehicles and Advanced Technology Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

13: Alternative Fuel and Advanced Technology Vehicles 13: Alternative Fuel and Advanced Technology Vehicles 1 (Updated 3/6/13) 1 Source: http:/afdc.energy.gov/vehicles/search/light/ Fuel/Powertrain Type Make Model Vehicle Type Engine Size/Cylinders Transmission Emissions Class 2 Fuel Economy Gasoline 3,4 City/Hwy Fuel Economy Alt Fuel 3,4 City/Hwy HEV Acura ILX Sedan 1.5L I4 ECVT Tier 2 Bin 3 LEVII PZEV 39 / 38 N/A FFV E85 Audi A4 Sedan 2.0 I4 Auto Tier 2 Bin 5 LEVII ULEV 20 / 29 14 / 20 FFV E85 Audi A5 Sedan 2.0 I4 Auto Tier 2 Bin 5 LEVII ULEV 20 / 29 14 / 20 FFV E85 Audi A5 Cabriolet Sedan 2.0 I4 Auto Tier 2 Bin 5 LEVII ULEV 20 / 29 14 / 20 FFV E85 Audi Allroad Quatro Wagon 2.0 I4 Auto Tier 2 Bin 5 LEVII ULEV 20 / 27 14 / 18 FFV E85 Audi Q5 SUV 2.0 I4 Auto Tier 2 Bin 5 LEVII ULEV 20 / 28 14 / 19 HEV Audi Q5 Hybrid SUV 2.0 I4 Auto Tier 2 Bin 5 LEVII ULEV 24 / 30 N/A FFV E85 Bentley

20

Model Year 2012 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

SmartWay Vehicles SmartWay Vehicles Page 1 of 14 Model Displ Cyl Trans Drive Fuel Sales Area Stnd Stnd Description Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas Score SmartWay ACURA TSX 2.4 4 SemiAuto-5 2WD Gasoline CA U2 California LEV-II ULEV CHNXV02.4DB9 small car 6 22 31 26 6 yes ACURA TSX Wagon 2.4 4 SemiAuto-5 2WD Gasoline CA U2 California LEV-II ULEV CHNXV02.4DB9 station wagon 6 22 30 25 6 yes AUDI A3 2 4 SemiAuto-6 2WD Diesel FA B5 Federal Tier 2 Bin 5 CVWXV02.0U5N station wagon 5 30 42 34 7 yes AUDI A3 2 4 SemiAuto-6 2WD Diesel CA U2 California LEV-II ULEV CVWXV02.0U5N station wagon 6 30 42 34 7 yes AUDI A4 2 4 CVT 2WD Gasoline CA U2 California LEV-II ULEV CADXJ02.03UB small car 6 22 30 25 6 yes AUDI A4 2 4 Man-6 4WD Gasoline CA U2 California LEV-II ULEV CADXJ02.03UB small car 6 21 31 25 6 yes AUDI A5 2 4 Man-6 4WD Gasoline CA U2 California LEV-II ULEV

Note: This page contains sample records for the topic "vehicles model years" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Model Year 2004 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

SmartWay Vehicles SmartWay Vehicles Page 1 of 5 Model Displ Cyl Trans Drive Fuel Sales Area Stnd Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas Score SmartWay ACURA RSX 2 (4 cyl) Man-6 2WD Gasoline FA B5 4HNXV02.0RKC small car 6 21 28 24 7 yes ACURA RSX 2 (4 cyl) Auto-S5 2WD Gasoline FA B5 4HNXV02.0XKC small car 6 22 31 25 7 yes ACURA RSX 2 (4 cyl) Man-5 2WD Gasoline FA B5 4HNXV02.0XKC small car 6 24 30 26 8 yes ACURA RSX 2 (4 cyl) Man-6 2WD Gasoline CA LEV 4HNXV02.0RKC small car 6 21 28 24 7 yes ACURA RSX 2 (4 cyl) Auto-S5 2WD Gasoline CA LEV 4HNXV02.0XKC small car 6 22 31 25 7 yes ACURA RSX 2 (4 cyl) Man-5 2WD Gasoline CA LEV 4HNXV02.0XKC small car 6 24 30 26 8 yes ACURA TL 3.2 (6 cyl) Auto-S5 2WD Gasoline CA U2 4HNXV03.2CKR midsize car 7 18 26 21 6 yes ACURA TL 3.2 (6 cyl) Man-6 2WD Gasoline CA U2 4HNXV03.2CKR midsize car 7 18 28 21 6 yes ACURA TSX 2.4 (4 cyl) Auto-S5

22

Model Year 2005 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

SmartWay Vehicles SmartWay Vehicles Page 1 of 9 Model Displ Cyl Trans Drive Fuel Sales Area Stnd Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas Score SmartWay ACURA RSX 2 (4 cyl) Man-6 2WD Gasoline FA B5 5HNXV02.0HKC small car 6 20 28 23 7 yes ACURA RSX 2 (4 cyl) Auto-S5 2WD Gasoline FA B5 5HNXV02.4KBP small car 6 22 31 25 7 yes ACURA RSX 2 (4 cyl) Man-5 2WD Gasoline FA B5 5HNXV02.4KBP small car 6 24 31 26 8 yes ACURA RSX 2 (4 cyl) Man-6 2WD Gasoline CA L2 5HNXV02.0HKC small car 6 20 28 23 7 yes ACURA RSX 2 (4 cyl) Auto-S5 2WD Gasoline CA L2 5HNXV02.4KBP small car 6 22 31 25 7 yes ACURA RSX 2 (4 cyl) Man-5 2WD Gasoline CA L2 5HNXV02.4KBP small car 6 24 31 26 8 yes ACURA TL 3.2 (6 cyl) Auto-S5 2WD Gasoline CA U2 5HNXV03.24B4 midsize car 7 18 26 21 6 yes ACURA TL 3.2 (6 cyl) Man-6 2WD Gasoline CA U2 5HNXV03.24B4 midsize car 7 18 26 21 6 yes ACURA TSX 2.4 (4 cyl) Auto-S5 2WD

23

Model Year 2002 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

SmartWay Vehicles SmartWay Vehicles Page 1 of 1 Model Displ Cyl Trans Drive Fuel Sales Area Stnd Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG GHG Score SmartWay ACURA RSX 2 (4 cyl) Man-6 2WD Gasoline CL LEV 2HNXV02.0EKC small car 6 21 28 24 7 yes ACURA RSX 2 (4 cyl) Auto-S5 2WD Gasoline CL LEV 2HNXV02.0VBP small car 6 21 30 24 7 yes ACURA RSX 2 (4 cyl) Man-5 2WD Gasoline CL LEV 2HNXV02.0VBP small car 6 23 30 26 8 yes HONDA Accord 2.3 (4 cyl) Auto-L4 2WD Gasoline CA SLEV 2HNXV02.3FK6 midsize car 9 20 28 23 7 yes HONDA CR-V 2.4 (4 cyl) Auto-L4 2WD Gasoline NF LEV 2HNXT02.4YBP SUV 6 20 26 23 7 yes HONDA Civic 1.7 (4 cyl) Auto-AV 2WD CNG CA SLEV 2HNXV01.74WN small car 9.5 26 31 28 9 yes HONDA Civic 1.7 (4 cyl) Auto-AV 2WD CNG NL+CF ULEV 2HNXV01.74WN small car 9 26 31 28 9 yes HONDA Civic 2 (4 cyl) Man-5 2WD Gasoline CL LEV 2HNXV02.0VBP small car 6 23 28 25 7 yes HONDA Insight 1 (3 cyl)

24

Model Year 2006 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

SmartWay Vehicles SmartWay Vehicles Page 1 of 11 Model Displ Cyl Trans Drive Fuel Sales Area Stnd Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas Score SmartWay ACURA RSX 2 (4 cyl) Man-6 2WD Gasoline FA B5 6HNXV02.0DKC small car 6 20 28 23 7 yes ACURA RSX 2 (4 cyl) Auto-S5 2WD Gasoline FA B5 6HNXV02.0DKC small car 6 22 31 25 7 yes ACURA RSX 2 (4 cyl) Man-5 2WD Gasoline FA B5 6HNXV02.0DKC small car 6 24 31 26 8 yes ACURA RSX 2 (4 cyl) Man-6 2WD Gasoline CA L2 6HNXV02.0DKC small car 6 20 28 23 7 yes ACURA RSX 2 (4 cyl) Auto-S5 2WD Gasoline CA L2 6HNXV02.0DKC small car 6 22 31 25 7 yes ACURA RSX 2 (4 cyl) Man-5 2WD Gasoline CA L2 6HNXV02.0DKC small car 6 24 31 26 8 yes ACURA TL 3.2 (6 cyl) Auto-S5 2WD Gasoline CA U2 6HNXV03.2NKR midsize car 7 18 26 21 6 yes ACURA TL 3.2 (6 cyl) Man-6 2WD Gasoline CA U2 6HNXV03.2NKR midsize car 7 18 26 21 6 yes ACURA TSX 2.4 (4 cyl) Auto-S5 2WD

25

Model Year 2011 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

SmartWay Vehicles SmartWay Vehicles Page 1 of 10 Model Displ Cyl Trans Drive Fuel Sales Area Stnd Stnd Description Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas Score SmartWay ACURA TSX 2.4 4 SemiAuto-5 2WD Gasoline CA U2 California LEV-II ULEV BHNXV02.4DB9 small car 6 22 31 26 6 yes ACURA TSX Wagon 2.4 4 SemiAuto-5 2WD Gasoline CA U2 California LEV-II ULEV BHNXV02.4DB9 station wagon 6 22 30 25 6 yes AUDI A3 2 4 SemiAuto-6 2WD Diesel CA U2 California LEV-II ULEV BVWXV02.0U5N station wagon 6 30 42 34 7 yes AUDI A3 2 4 SemiAuto-6 2WD Diesel FA B5 Federal Tier 2 Bin 5 BVWXV02.0U5N station wagon 5 30 42 34 7 yes AUDI A4 2 4 Man-6 4WD Gasoline CA U2 California LEV-II ULEV BADXJ02.03UB small car 6 21 31 25 6 yes AUDI A4 2 4 CVT 2WD Gasoline CA U2 California LEV-II ULEV BADXJ02.03UB small car 6 22 30 25 6 yes AUDI A5 2 4 Man-6 4WD Gasoline CA U2 California LEV-II ULEV

26

Search for Model Year 2001 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

(Propane) Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

27

Search for Model Year 2004 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles Bifuel (Propane) Compressed Natural Gas Vehicles Diesel Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

28

Search for Model Year 2008 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Class... Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

29

Search for Model Year 2003 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

(Propane) Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

30

Search for Model Year 2002 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

(Propane) Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

31

Search for Model Year 2013 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Class... Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Plug-in Hybrid Vehicles Search by Make Search by Model Search...

32

Search for Model Year 2012 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Class... Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Plug-in Hybrid Vehicles Search by Make Search by Model Search...

33

Search for Model Year 2011 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Class... Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Plug-in Hybrid Vehicles Search by Make Search by Model Search...

34

Vehicle Technologies Office: Fact #234: September 16, 2002 2003 Model Year  

NLE Websites -- All DOE Office Websites (Extended Search)

4: September 16, 4: September 16, 2002 2003 Model Year Alternative Fuel Vehicles to someone by E-mail Share Vehicle Technologies Office: Fact #234: September 16, 2002 2003 Model Year Alternative Fuel Vehicles on Facebook Tweet about Vehicle Technologies Office: Fact #234: September 16, 2002 2003 Model Year Alternative Fuel Vehicles on Twitter Bookmark Vehicle Technologies Office: Fact #234: September 16, 2002 2003 Model Year Alternative Fuel Vehicles on Google Bookmark Vehicle Technologies Office: Fact #234: September 16, 2002 2003 Model Year Alternative Fuel Vehicles on Delicious Rank Vehicle Technologies Office: Fact #234: September 16, 2002 2003 Model Year Alternative Fuel Vehicles on Digg Find More places to share Vehicle Technologies Office: Fact #234: September 16, 2002 2003 Model Year Alternative Fuel Vehicles on

35

MODEL YEAR 2000 FUEL ECONOMY LEADERS IN POPULAR VEHICLE CLASSES  

NLE Websites -- All DOE Office Websites (Extended Search)

COMPRESSED NATURAL GAS VEHICLES ... 5 LIQUEFIED PETROLEUM GAS (PROPANE) VEHICLES ...... 5 DIESEL VEHICLES ......

36

Model Year 2006: Alternative Fuel and Advanced Technology Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

06: Alternative Fuel and Advanced Technology Vehicles 06: Alternative Fuel and Advanced Technology Vehicles Fuel Type EPAct Compliant? Model Vehicle Type Emission Class Powertrain Fuel Capacity Range American Honda Motor Corporation 888-CCHONDA www.honda.com CNG Dedicated EPAct Yes Civic GX Compact Sedan SULEV Tier 2 Bin II 1.7L, 4-cylinder 8 GGE 200 mi HEV (NiMH) EPAct No Accord Hybrid Sedan ULEV 3.0L V6 144 volt NiMH + 17.1 Gal Gasoline TBD HEV (NiMH) EPAct No Civic Hybrid Sedan CA ULEV 1.3L, 4-cylinder 144 volt NiMH + 13.2 Gal Gasoline TBD HEV (NiMH) EPAct No Insight Two-seater SULEV (CVT model) ULEV (MT model) 1.0L, 3-cylinder 144 volt NiMH + 10.6 Gal Gasoline 636 mi DaimlerChrysler 800-999-FLEET www.fleet.chrysler.com E85 FFV EPAct Yes Dodge Ram Pickup 1500 Series 1 Pickup Tier 2 Bin 10A 4.7L V8 26 Gal 416 mi E85 FFV

37

Search for Model Year 2002 Vehicles by EPA Size Class  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Select Class... Compact Cars Large Cars Midsize Cars Midsize Station Wagons Minicompact Cars Minivan Small Pickup Trucks Small Station Wagons Sport Utility Vehicle Standard...

38

Search for Model Year 2000 Vehicles by EPA Size Class  

NLE Websites -- All DOE Office Websites (Extended Search)

0 Select Class... Compact Cars Large Cars Midsize Cars Midsize Station Wagons Minicompact Cars Minivan Small Pickup Trucks Small Station Wagons Sport Utility Vehicle Standard...

39

Search for Model Year 2009 Vehicles by EPA Size Class  

NLE Websites -- All DOE Office Websites (Extended Search)

09 Select Class... Compact Cars Large Cars Midsize Cars Midsize Station Wagons Minicompact Cars Minivan Small Pickup Trucks Small Station Wagons Sport Utility Vehicle Standard...

40

Search for Model Year 2010 Vehicles by EPA Size Class  

NLE Websites -- All DOE Office Websites (Extended Search)

10 Select Class... Compact Cars Large Cars Midsize Cars Midsize Station Wagons Minicompact Cars Minivan Small Pickup Trucks Small Station Wagons Special Purpose Vehicles Sport...

Note: This page contains sample records for the topic "vehicles model years" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Search for Model Year 2008 Vehicles by EPA Size Class  

NLE Websites -- All DOE Office Websites (Extended Search)

08 Select Class... Compact Cars Large Cars Midsize Cars Midsize Station Wagons Minicompact Cars Minivan Small Pickup Trucks Small Station Wagons Sport Utility Vehicle Standard...

42

Search for Model Year 1998 Vehicles by EPA Size Class  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Select Class... Compact Cars Large Cars Midsize Cars Midsize-Large Station Wagons Minicompact Cars Minivan Small Pickup Trucks Small Station Wagons Special Purpose Vehicles...

43

Search for Model Year 1996 Vehicles by EPA Size Class  

NLE Websites -- All DOE Office Websites (Extended Search)

6 Select Class... Compact Cars Large Cars Midsize Cars Midsize-Large Station Wagons Minicompact Cars Minivan Small Pickup Trucks Small Station Wagons Special Purpose Vehicles...

44

Search for Model Year 1990 Vehicles by EPA Size Class  

NLE Websites -- All DOE Office Websites (Extended Search)

0 Select Class... Compact Cars Large Cars Midsize Cars Midsize-Large Station Wagons Minicompact Cars Small Pickup Trucks Small Station Wagons Special Purpose Vehicles Standard...

45

Search for Model Year 2003 Vehicles by EPA Size Class  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Select Class... Compact Cars Large Cars Midsize Cars Midsize Station Wagons Minicompact Cars Minivan Small Pickup Trucks Small Station Wagons Special Purpose Vehicle Cab C...

46

Search for Model Year 2006 Vehicles by EPA Size Class  

NLE Websites -- All DOE Office Websites (Extended Search)

6 Select Class... Compact Cars Large Cars Midsize Cars Midsize Station Wagons Minicompact Cars Minivan Minivan - 2WD Small Station Wagons Sport Utility Vehicle Standard Pickup...

47

Search for Model Year 1997 Vehicles by EPA Size Class  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Select Class... Compact Cars Large Cars Midsize Cars Midsize-Large Station Wagons Minicompact Cars Minivan Small Pickup Trucks Small Station Wagons Special Purpose Vehicles Sport...

48

Search for Model Year 2007 Vehicles by EPA Size Class  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Select Class... Compact Cars Large Cars Midsize Cars Midsize Station Wagons Minicompact Cars Minivan Small Station Wagons Sport Utility Vehicle Standard Pickup Trucks Subcompact...

49

Search for Model Year 1994 Vehicles by EPA Size Class  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Select Class... Compact Cars Large Cars Midsize Cars Midsize-Large Station Wagons Minicompact Cars Small Pickup Trucks Small Station Wagons Special Purpose Vehicles Standard...

50

Search for Model Year 2004 Vehicles by EPA Size Class  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Select Class... Compact Cars Large Cars Midsize Cars Midsize Station Wagons Minicompact Cars Minivan Small Station Wagons Sport Utility Vehicle Standard Pickup Trucks Subcompact...

51

Search for Model Year 1999 Vehicles by EPA Size Class  

NLE Websites -- All DOE Office Websites (Extended Search)

9 Select Class... Compact Cars Large Cars Midsize Cars Midsize Station Wagons Minicompact Cars Minivan Small Pickup Trucks Small Station Wagons Special Purpose Vehicle Sport...

52

Search for Model Year 2001 Vehicles by EPA Size Class  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Select Class... Compact Cars Large Cars Midsize Cars Midsize Station Wagons Minicompact Cars Minivan Small Pickup Trucks Small Station Wagons Special Purpose Vehicle Sport...

53

Model Year 2011 Green Vehicle Guide Model Displ Cyl Trans Drive  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Vehicle Guide Green Vehicle Guide Model Displ Cyl Trans Drive Fuel Sales Area Stnd Stnd Description Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas Score SmartWay ACURA MDX 3.5 6 SemiAuto-6 4WD Gasoline CA U2 California LEV-II ULEV BHNXT03.7M19 SUV 6 16 21 18 3 no ACURA MDX 3.5 6 SemiAuto-6 4WD Gasoline FA B5 Federal Tier 2 Bin 5 BHNXT03.7M19 SUV 5 16 21 18 3 no ACURA RDX 2.3 4 SemiAuto-5 2WD Gasoline CA U2 California LEV-II ULEV BHNXT02.3X19 SUV 6 19 24 21 4 no ACURA RDX 2.3 4 SemiAuto-5 4WD Gasoline CA U2 California LEV-II ULEV BHNXT02.3X19 SUV 6 17 22 19 3 no ACURA RDX 2.3 4 SemiAuto-5 2WD Gasoline FA B5 Federal Tier 2 Bin 5 BHNXT02.3X19 SUV 5 19 24 21 4 no ACURA RDX 2.3 4 SemiAuto-5 4WD Gasoline FA B5 Federal Tier 2 Bin 5 BHNXT02.3X19 SUV 5 17 22 19 3 no ACURA RL 3.7 6 SemiAuto-6 4WD Gasoline CA U2 California LEV-II ULEV BHNXV03.7PB9 midsize car

54

Model Year 2012 Green Vehicle Guide Model Displ Cyl Trans Drive  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Vehicle Guide Green Vehicle Guide Model Displ Cyl Trans Drive Fuel Sales Area Stnd Stnd Description Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas Score SmartWay ACURA MDX 3.7 6 SemiAuto-6 4WD Gasoline FA B5 Federal Tier 2 Bin 5 CHNXT03.7R19 SUV 5 16 21 18 3 no ACURA MDX 3.7 6 SemiAuto-6 4WD Gasoline CA U2 California LEV-II ULEV CHNXT03.7R19 SUV 6 16 21 18 3 no ACURA RDX 2.3 4 SemiAuto-5 4WD Gasoline FA B5 Federal Tier 2 Bin 5 CHNXT02.3Y19 SUV 5 17 22 19 3 no ACURA RDX 2.3 4 SemiAuto-5 4WD Gasoline CA U2 California LEV-II ULEV CHNXT02.3Y19 SUV 6 17 22 19 3 no ACURA RDX 2.3 4 SemiAuto-5 2WD Gasoline FA B5 Federal Tier 2 Bin 5 CHNXT02.3Y19 SUV 5 19 24 21 4 no ACURA RDX 2.3 4 SemiAuto-5 2WD Gasoline CA U2 California LEV-II ULEV CHNXT02.3Y19 SUV 6 19 24 21 4 no ACURA TL 3.5 6 SemiAuto-6 2WD Gasoline FA B5 Federal Tier 2 Bin 5 CHNXV03.5EB3 midsize car 5

55

Model Year 2010 Green Vehicle Guide Model Displ Cyl Trans Drive  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Vehicle Guide Green Vehicle Guide Model Displ Cyl Trans Drive Fuel Sales Area Stnd Stnd Description Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas Score SmartWay ACURA MDX 3.7 6 SemiAuto-6 4WD Gasoline CA U2 California LEV-II ULEV AHNXT03.7W19 SUV 7 16 21 18 4 no ACURA MDX 3.7 6 SemiAuto-6 4WD Gasoline FA B5 Federal Tier 2 Bin 5 AHNXT03.7W19 SUV 6 16 21 18 4 no ACURA RDX 2.3 4 SemiAuto-5 2WD Gasoline CA U2 California LEV-II ULEV AHNXT02.3Y19 SUV 7 19 24 21 5 no ACURA RDX 2.3 4 SemiAuto-5 4WD Gasoline CA U2 California LEV-II ULEV AHNXT02.3Y19 SUV 7 17 22 19 4 no ACURA RDX 2.3 4 SemiAuto-5 2WD Gasoline FA B5 Federal Tier 2 Bin 5 AHNXT02.3Y19 SUV 6 19 24 21 5 no ACURA RDX 2.3 4 SemiAuto-5 4WD Gasoline FA B5 Federal Tier 2 Bin 5 AHNXT02.3Y19 SUV 6 17 22 19 4 no ACURA RL 3.7 6 SemiAuto-5 4WD Gasoline CA U2 California LEV-II ULEV AHNXV03.7PB9 midsize car

56

An Analysis of the Relationship between Casualty Risk Per Crash and Vehicle Mass and Footprint for Model Year 2000-2007 Light-Duty Vehicles-Preliminary report  

E-Print Network (OSTI)

Vehicle manufacturer control variables for vehicle manufacturer results in massAccounting for vehicle manufacturer causes a reduction in

Wenzel, Tom

2013-01-01T23:59:59.000Z

57

An Analysis of the Relationship between Casualty Risk Per Crash and Vehicle Mass and Footprint for Model Year 2000-2007 Light-Duty Vehicles-Preliminary report  

E-Print Network (OSTI)

variables, on 13-state casualty risk per crash, lightvariables, on 13-state casualty risk per crash, lighton crashes with heavier light-duty trucks, by case vehicle

Wenzel, Tom

2013-01-01T23:59:59.000Z

58

Figure 2. Energy Consumption of Vehicles, Selected Survey Years  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Households, Buildings & Industry >Transportation Surveys > Household Vehicles Energy Use > Figure 2 Figure 2. Energy Consumption of Vehicles, Selected Survey Years...

59

Vehicle Technologies Office: Fact #400: November 28, 2005 Model...  

NLE Websites -- All DOE Office Websites (Extended Search)

8, 2005 Model Year 2006 Fuel Economy and Fuel Cost to someone by E-mail Share Vehicle Technologies Office: Fact 400: November 28, 2005 Model Year 2006 Fuel Economy and Fuel Cost...

60

The development of a prescreening model to identify failed and gross polluting vehicles  

E-Print Network (OSTI)

variables de?ned by the vehicle manufacturer or model year.studies often pooled vehicle manufacturers into categories (emissions of a given manufacturer’s vehicles can also vary

Choo, Sangho; Shafizadeh, Kevan; Niemeier, Deb

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicles model years" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Hybrid Electric Vehicles - HEV Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling Modeling Background Because of time and cost constraints, designers cannot build and test each of the many possible powertrain configurations for advanced vehicles. Thus, developing fuel cells and hybrid electric vehicles (HEVs) requires accurate, flexible simulation tools. Argonne undertook a collaborative effort to further develop Autonomie in collaboration with General Motors. Autonomie is sponsored by the U.S. Department of Energy (DOE) Vehicle Technologies Program. Autonomie is a Plug-and-Play Powertrain and Vehicle Model Architecture and Development Environment to support the rapid evaluation of new powertrain/propulsion technologies for improving fuel economy through virtual design and analysis in a math-based simulation environment. Autonomie is an open architecture to support the rapid integration and analysis of powertrain/propulsion systems and technologies for rapid technology sorting and evaluation of fuel economy improvement under dynamic/transient testing conditions. The capability to sort technologies rapidly in a virtual design environment results in faster improvements in real-world fuel consumption by reducing the time necessary to develop and bring new technologies onto our roads.

62

Vehicle Technologies Office: Modeling, Testing and Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling, Testing and Modeling, Testing and Analysis to someone by E-mail Share Vehicle Technologies Office: Modeling, Testing and Analysis on Facebook Tweet about Vehicle Technologies Office: Modeling, Testing and Analysis on Twitter Bookmark Vehicle Technologies Office: Modeling, Testing and Analysis on Google Bookmark Vehicle Technologies Office: Modeling, Testing and Analysis on Delicious Rank Vehicle Technologies Office: Modeling, Testing and Analysis on Digg Find More places to share Vehicle Technologies Office: Modeling, Testing and Analysis on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Community and Fleet Readiness Workforce Development Plug-in Electric Vehicle Basics Modeling, Testing and Analysis The Vehicle Technologies Office's robust portfolio is supported by

63

Measuring and Modeling Emissions from Extremely Low Emitting Vehicles  

E-Print Network (OSTI)

last several years, vehicle manufacturers have started tospecifications by the vehicle manufacturers, and are readilymanufacturers have been producing gasoline-powered vehicles

Barth, M; Collins, J F; Scora, G; Davis, N; Norbeck, J M

2006-01-01T23:59:59.000Z

64

Measuring and Modeling Emissions from Extremely Low-Emitting Vehicles  

E-Print Network (OSTI)

last several years, vehicle manufacturers have started tospecifications by the vehicle manufacturers, and are readilymanufacturers have been producing gasoline-powered vehicles

Barth, M; Collins, J F; Scora, G; Davis, N; Norbeck, J N

2006-01-01T23:59:59.000Z

65

NREL: Vehicle Ancillary Loads Reduction - Integrated Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Modeling Integrated Modeling NREL's Vehicle Ancillary Loads Reduction (VALR) team predicts the impact of advanced vehicle cooling technologies before testing by using an integrated modeling process. Evaluating the heat load on a vehicle under real world conditions is a difficult task. An accepted method to evaluate passenger compartment airflow and heat transfer is computational fluid dynamics. (CFD). Combining analytical models with CFD provides a powerful tool to assist industry both on current vehicles and on future design studies. Flow chart showing the vehicle integrated modeling process which considers solar radiation, air conditioning, and vehicles with CAD, glazing, cabin thermal/fluid, and thermal comfort modeling tools. Results are provided for fuel economy, tailpipe emissions and occupant thermal comfort.

66

Vehicle Technologies Office: Modeling, Testing and Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling, Testing and Analysis Modeling, Testing and Analysis The Vehicle Technologies Office's robust portfolio is supported by modeling, testing, and analysis. This work complements the research on batteries, power electronics, and materials, helping researchers integrate these components and ensure the whole vehicle meets consumer and commercial needs. Modeling allows researchers to build "virtual vehicles" that simulate fuel economy, emissions and performance of a potential vehicle. The Office has supported the development of several software-based analytic tools that researchers can use or license. Integration and Validation allows researchers to test physical component and subsystem prototypes as if they are in a real vehicle. Laboratory and Fleet Testing provides data on PEVs through both dynamometer and on-the-road testing. Researchers use the data to benchmark current vehicles, as well as validate the accuracy of software models.

67

Alternative fuels and vehicles choice model  

DOE Green Energy (OSTI)

This report describes the theory and implementation of a model of alternative fuel and vehicle choice (AFVC), designed for use with the US Department of Energy`s Alternative Fuels Trade Model (AFTM). The AFTM is a static equilibrium model of the world supply and demand for liquid fuels, encompassing resource production, conversion processes, transportation, and consumption. The AFTM also includes fuel-switching behavior by incorporating multinomial logit-type equations for choice of alternative fuel vehicles and alternative fuels. This allows the model to solve for market shares of vehicles and fuels, as well as for fuel prices and quantities. The AFVC model includes fuel-flexible, bi-fuel, and dedicated fuel vehicles. For multi-fuel vehicles, the choice of fuel is subsumed within the vehicle choice framework, resulting in a nested multinomial logit design. The nesting is shown to be required by the different price elasticities of fuel and vehicle choice. A unique feature of the AFVC is that its parameters are derived directly from the characteristics of alternative fuels and vehicle technologies, together with a few key assumptions about consumer behavior. This not only establishes a direct link between assumptions and model predictions, but facilitates sensitivity testing, as well. The implementation of the AFVC model as a spreadsheet is also described.

Greene, D.L. [Oak Ridge National Lab., TN (United States). Center for Transportation Analysis

1994-10-01T23:59:59.000Z

68

Table 2. Percent of Households with Vehicles, Selected Survey Years  

U.S. Energy Information Administration (EIA) Indexed Site

Percent of Households with Vehicles, Selected Survey Years " Percent of Households with Vehicles, Selected Survey Years " ,"Survey Years" ,1983,1985,1988,1991,1994,2001 "Total",85.5450237,89.00343643,88.75545852,89.42917548,87.25590956,92.08566108 "Household Characteristics" "Census Region and Division" " Northeast",77.22222222,"NA",79.16666667,82.9015544,75.38461538,85.09615385 " New England",88.37209302,"NA",81.81818182,82.9787234,82,88.52459016 " Middle Atlantic ",73.72262774,"NA",78.37837838,82.31292517,74.30555556,83.67346939 " Midwest ",85.51401869,"NA",90.66666667,90.17094017,92.30769231,91.47286822 " East North Central",82,"NA",88.81987578,89.88095238,91.51515152,90.55555556

69

Modeling of Future-Year Emissions Control Scenarios for the Lower Fraser Valley: Impacts of Natural Gas and Propane Vehicle Technologies  

Science Conference Proceedings (OSTI)

The MC2–CALGRID photochemical modeling system is used to simulate the impact of two fuel substitution scenarios on ozone levels for a future year in the Lower Fraser Valley of British Columbia, Canada. The relative impacts of selected natural gas ...

M. Hedley; W. Jiang; R. McLaren; D. L. Singleton

1998-10-01T23:59:59.000Z

70

Advanced controls and modeling of a hybrid vehicle.  

E-Print Network (OSTI)

??The Texas Tech University Advanced Vehicle Engineering Team has been working in vehicle competitions for 20 years. From that experience the team designed a hybrid… (more)

Harrison, Matthew

2008-01-01T23:59:59.000Z

71

Modeling Electric Vehicle Benefits Connected to Smart Grids  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Benefits Connected to Smart Grids Title Modeling Electric Vehicle Benefits Connected to Smart Grids Publication Type Conference Proceedings LBNL Report Number...

72

A Statistical Model of Vehicle Emissions and Fuel Consumption  

E-Print Network (OSTI)

A number of vehicle emission models are overly simple, such as static speed-dependent models widely used in

Cappiello, Alessandra

2002-09-17T23:59:59.000Z

73

Vehicle Technologies Office: Fact #777: April 29, 2013 For the Second Year  

NLE Websites -- All DOE Office Websites (Extended Search)

7: April 29, 7: April 29, 2013 For the Second Year in a Row, Survey Respondents Consider Fuel Economy Most Important When Purchasing a Vehicle to someone by E-mail Share Vehicle Technologies Office: Fact #777: April 29, 2013 For the Second Year in a Row, Survey Respondents Consider Fuel Economy Most Important When Purchasing a Vehicle on Facebook Tweet about Vehicle Technologies Office: Fact #777: April 29, 2013 For the Second Year in a Row, Survey Respondents Consider Fuel Economy Most Important When Purchasing a Vehicle on Twitter Bookmark Vehicle Technologies Office: Fact #777: April 29, 2013 For the Second Year in a Row, Survey Respondents Consider Fuel Economy Most Important When Purchasing a Vehicle on Google Bookmark Vehicle Technologies Office: Fact #777: April 29, 2013 For

74

Modeling Electric Vehicle Benefits Connected to Smart Grids  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling Electric Vehicle Benefits Connected to Smart Grids Modeling Electric Vehicle Benefits Connected to Smart Grids Title Modeling Electric Vehicle Benefits Connected to Smart Grids Publication Type Conference Paper Year of Publication 2011 Authors Stadler, Michael, Chris Marnay, Ratnesh Sharma, Gonçalo Mendes, Maximillian Kloess, Gonçalo Cardoso, Olivier Mégel, and Afzal S. Siddiqui Conference Name 7th IEEE Vehicle Power and Propulsion Conference Date Published 09/2011 Publisher LBNL Conference Location Chicago, IL Keywords electricity markets and policy group, energy analysis and environmental impacts department Abstract Connecting electric storage technologies to smartgrids will have substantial implications in building energy systems. Local storage will enable demand response. Mobile storage devices in electric vehicles (EVs) are in direct competition with conventional stationary sources at the building. EVs will change the financial as well as environmental attractiveness of on-site generation (e.g. PV, or fuel cells). In order to examine the impact of EVs on building energy costs and CO2 emissions in 2020, a distributed-energy-resources adoption problem is formulated as a mixed-integer linear program with minimization of annual building energy costs or CO2 emissions. The mixed-integer linear program is applied to a set of 139 different commercial buildings in California and example results as well as the aggregated economic and environmental benefits are reported. The research shows that considering second life of EV batteries might be very beneficial for commercial buildings.

75

DOD/NREL Model Integrates Vehicles, Renewables & Microgrid (Fact Sheet)  

DOE Green Energy (OSTI)

Fact sheet on microgrid model created by the Electric Vehicle Grid Integration program at the Fort Carson Army facility.

Not Available

2011-02-01T23:59:59.000Z

76

Modeling and Simulation of Electric and Hybrid Vehicles  

E-Print Network (OSTI)

INVITED P A P E R Modeling and Simulation of Electric and Hybrid Vehicles Tools that can model embedded software as well as components, and can automate the details of electric and hybrid vehicle design of electric and hybrid vehicles. Different modeling methods such as physics-based Resistive Companion Form

Mi, Chunting "Chris"

77

Modeling and Validation of a Fuel Cell Hybrid Vehicle  

E-Print Network (OSTI)

This paper describes the design and construction of a fuel cell hybrid electric vehicle based on the conversion of a five passenger production sedan. The vehicle uses a relatively small fuel cell stack to provide average power demands, and a battery pack to provide peak power demands for varied driving conditions. A model of this vehicle was developed using ADVISOR, an A__dvanced Vehicle Simulator that tracks energy flow and fuel usage within the vehicle drivetrain and energy conversion components.

Michael J. Ogburn; Douglas J. Nelson; Keith Wipke; Tony Markel

2000-01-01T23:59:59.000Z

78

Vehicle technologies program Government Performance and Results Act (GPA) report for fiscal year 2012  

SciTech Connect

The U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy has defined milestones for its Vehicle Technologies Program (VTP). This report provides estimates of the benefits that would accrue from achieving these milestones relative to a base case that represents a future in which there is no VTP-supported vehicle technology development. Improvements in the fuel economy and reductions in the cost of light- and heavy-duty vehicles were estimated by using Argonne National Laboratory's Autonomie powertrain simulation software and doing some additional analysis. Argonne also estimated the fraction of the fuel economy improvements that were attributable to VTP-supported development in four 'subsystem' technology areas: batteries and electric drives, advanced combustion engines, fuels and lubricants, and materials (i.e., reducing vehicle mass, called 'lightweighting'). Oak Ridge National Laboratory's MA{sup 3}T (Market Acceptance of Advanced Automotive Technologies) tool was used to project the market penetration of light-duty vehicles, and TA Engineering's TRUCK tool was used to project the penetrations of medium- and heavy-duty trucks. Argonne's VISION transportation energy accounting model was used to estimate total fuel savings, reductions in primary energy consumption, and reductions in greenhouse gas emissions that would result from achieving VTP milestones. These projections indicate that by 2030, the on-road fuel economy of both light- and heavy-duty vehicles would improve by more than 20%, and that this positive impact would be accompanied by a reduction in oil consumption of nearly 2 million barrels per day and a reduction in greenhouse gas emissions of more than 300 million metric tons of CO{sub 2} equivalent per year. These benefits would have a significant economic value in the U.S. transportation sector and reduce its dependency on oil and its vulnerability to oil price shocks.

Ward, J.; Stephens, T. S.; Birky, A. K. (Energy Systems); (DOE-EERE); (TA Engineering)

2012-08-10T23:59:59.000Z

79

Model Year 1999 Fuel Economy Guide  

NLE Websites -- All DOE Office Websites (Extended Search)

FUEL FUEL ECONOMY GUIDE MODEL YEAR 1999 DOE/EE-0178 Fuel Economy Estimates October 1998 1 CONTENTS PAGE Purpose of the Guide ..................................................... 1 Interior Volume ................................................................ 1 How the Fuel Economy Estimates are Obtained ........... 1 Factors Affecting MPG .................................................... 2 Fuel Economy and Climate Change ............................... 2 Gas Guzzler Tax ............................................................. 2 Vehicle Classes Used in This Guide. .............................. 2 Annuel Fuel Costs .......................................................... 3 How to Use the Guide .................................................... 4 Where to Re-order Guides

80

Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

6: December 2, 6: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 to someone by E-mail Share Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Facebook Tweet about Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Twitter Bookmark Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Google Bookmark Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Delicious Rank Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Digg Find More places to share Vehicle Technologies Office: Fact #806:

Note: This page contains sample records for the topic "vehicles model years" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

NREL: Vehicle Ancillary Loads Reduction - Physiological Model  

NLE Websites -- All DOE Office Websites (Extended Search)

Physiological Model Physiological Model The Vehicle Ancillary Loads Reduction team developed a three-dimensional model to simulate human internal thermal physiological systems (muscle, blood, etc.) and thermoregulatory responses such as metabolic heat generation. The model was developed with ANSYS, a finite element software which computes heat flow by conduction, convection, and mass transport of the blood. A human tissue system model represents the human body, including the physiological and thermal properties of the tissues. The arms and legs consist of bone, muscle, fat, and skin. There are additional lung, abdominal, and brain tissues in the torso and head zones. The model calculates the conduction heat transfer based on the temperature gradients between the tissue nodes. Blood flow is modeled with a network of supply

82

Modelling vehicle emissions from an urban air-quality perspective:testing vehicle emissions interdependencies.  

E-Print Network (OSTI)

??Abstract This thesis employs a statistical regression method to estimate models for testing the hypothesis of the thesis of vehicle emissions interdependencies. The thesis at… (more)

Dabbas, Wafa M

2010-01-01T23:59:59.000Z

83

Vehicle Technologies Office: Modeling and Simulation  

NLE Websites -- All DOE Office Websites (Extended Search)

and low emissions in advanced internal combustion engine, advanced diesel engine, hybrid electric, and fuel cell vehicles. Advanced technology vehicles can incorporate any of a...

84

Model Year 2013 Green Vehicle Guide  

NLE Websites -- All DOE Office Websites (Extended Search)

ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas Score SmartWay Comb CO2 ACURA ILX 1.5 4 SCV-7 2WD Gasoline FC B3 Federal Tier 2 Bin 3 DHNXV01.5WF2...

85

Total Cost of Ownership Model for Current Plug-in Electric Vehicles  

Science Conference Proceedings (OSTI)

The plug-in electric vehicle (PEV) market has grown dramatically in the past three years, but the central question concerning PEV acceptance in the marketplace still remains: When compared to a hybrid or conventional vehicle, is a PEV worth the additional up-front cost to consumers? Given the incomplete understanding of changes in driving patterns due to vehicle purchases, the baseline analysis described in this report does not model customer adaptation, nor does it attempt to address non-tangible ...

2013-06-10T23:59:59.000Z

86

Modeling of Plug-in Electric Vehicles Interactions with a Sustainable Community Grid in the Azores  

E-Print Network (OSTI)

Mégel. 2011. “Modeling Electric Vehicle Benefits Connectedenvironmental value of plug-in electric vehicles connectedBattaglia. 2010. “Plug-in Electric Vehicle Interactions with

Mendes, Goncalo

2013-01-01T23:59:59.000Z

87

Modeling Grid-Connected Hybrid Electric Vehicles Using ADVISOR  

DOE Green Energy (OSTI)

Presents an electric utility grid-connected energy management strategy for a parallel hybrid electric vehicle using ADVISOR, a modeling tool.

Markel, T.; Wipke, K.

2001-01-01T23:59:59.000Z

88

Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) supports the development and deployment of advanced vehicle technologies, including advances in electric vehicles, engine efficiency, and lightweight materials....

89

VISION Model for Vehicle Technologies and Alternative Fuels | Open Energy  

Open Energy Info (EERE)

VISION Model for Vehicle Technologies and Alternative Fuels VISION Model for Vehicle Technologies and Alternative Fuels Jump to: navigation, search Tool Summary LAUNCH TOOL Name: VISION Model for Vehicle Technologies and Alternative Fuels Agency/Company /Organization: Argonne National Laboratory Sector: Energy Focus Area: Transportation Phase: Create a Vision Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.transportation.anl.gov/modeling_simulation/VISION/ OpenEI Keyword(s): EERE tool, VISION Model for Vehicle Technologies and Alternative Fuels References: The VISION Model [1] Estimate the potential energy use, oil use, and carbon emission impacts of advanced light and heavy-duty vehicle technologies and alternative fuels through 2050. The VISION model has been developed to provide estimates of the potential

90

Personal vehicles preferred by urban Americans: household automobile holdings and new car purchases projected to the year 2000  

DOE Green Energy (OSTI)

A procedure is described for modeling the choices made in urban American households among personal vehicles on the bases of cost, passenger capacity, and engine technology, and it projects those preferences to the year 1990 and 2000. The results of this disaggregate technique are used by the other predictive research tasks undertaken by Argonne National Laboratory in a project entitled Technology Assessment of Productive Conservation in Urban Transportation (TAPCUT). The vehicle preferences reported here furnish data for the overall TAPCUT objective of forecasting the probable effects of energy conservation policies in transportation. In our projections, vehicles with standard spark-ignition (Otto-cycle) engines continue to dominate automobile holdings and new car purchases in either of two socioeconomic scenarios under any of three settings (an existing policy set and two alternative conservation strategies). From 1990, small cars (seating four or fewer passengers) dominate urban holdings and sales in two of the three TAPCUT energy strategies - the exception being the strategy that emphasizes individual travel - and this holds true with only a minor variation for both socioeconomic scenarios (an optimistic one and a slightly pessimistic one). Advanced-technology vehicles are most successful under the Individual Travel Strategy. It appears that vehicle charateristics are far more significant than demographic descriptors in estimating household vehicle choice using this modeling approach.

Saricks, C.L.; Vyas, A.D.; Bunch, J.A.

1982-01-01T23:59:59.000Z

91

Emissions Modeling for Electric Vehicles: Progress Report  

Science Conference Proceedings (OSTI)

There has been considerable debate and numerous publications comparing the emissions from alternative fuel vehicles with those of internal combustion engine vehicles. Considering the highly competitive nature of the automotive industry, the size of the automotive fuels markets, and intense regulatory scrutiny of emissions, there is no easy method of establishing agreement on all of the analytical factors involved in emissions analysis from vehicles. However, agreement on many of the factual parameters sh...

1999-12-09T23:59:59.000Z

92

TAFV Alternative Fuels and Vehicles Choice Model Documentation  

DOE Green Energy (OSTI)

A model for predicting choice of alternative fuel and among alternative vehicle technologies for light-duty motor vehicles is derived. The nested multinomial logit (NML) mathematical framework is used. Calibration of the model is based on information in the existing literature and deduction based on assuming a small number of key parameters, such as the value of time and discount rates. A spreadsheet model has been developed for calibration and preliminary testing of the model.

Greene, D.L.

2001-07-27T23:59:59.000Z

93

Modeling Electric Vehicle Benefits Connected to Smart Grids  

E-Print Network (OSTI)

Modeling Electric Vehicle Benefits Connected to Smart Grids Michael Stadler1,2 , Chris Marnay1 to be presented at the 7th IEEE Vehicle Power and Propulsion Conference Chicago, IL, Sept 6-9 2011 http, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement

94

Vehicle Technologies Office: Modeling Collaboration Is a Win-Win Situation  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling Collaboration Modeling Collaboration Is a Win-Win Situation for Vehicle Research to someone by E-mail Share Vehicle Technologies Office: Modeling Collaboration Is a Win-Win Situation for Vehicle Research on Facebook Tweet about Vehicle Technologies Office: Modeling Collaboration Is a Win-Win Situation for Vehicle Research on Twitter Bookmark Vehicle Technologies Office: Modeling Collaboration Is a Win-Win Situation for Vehicle Research on Google Bookmark Vehicle Technologies Office: Modeling Collaboration Is a Win-Win Situation for Vehicle Research on Delicious Rank Vehicle Technologies Office: Modeling Collaboration Is a Win-Win Situation for Vehicle Research on Digg Find More places to share Vehicle Technologies Office: Modeling Collaboration Is a Win-Win Situation for Vehicle Research on AddThis.com...

95

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

. . Trends in Household Vehicle Stock The 1991 RTECS counted more than 150 million vehicles in use by U.S. households. This chapter examines recent trends in the vehicle stock, as measured by the RTECS and other reputable vehicle surveys. It also provides some details on the type and model year of the household vehicle stock, and identifies regional differences in vehicle stock. Because vehicles are continuously being bought and sold, this chapter also reports findings relating to turnover of the vehicle stock in 1991. Finally, it examines the average vehicle stock in 1991 (which takes into account the acquisition and disposal of household vehicles over the course of the year) and identifies variations in the average number of household vehicles based on differences in household characteristics. Number of Household Vehicles Over the past 8 years, the stock of household vehicles has

96

Electric and hybrid vehicles program. 5th annual report to Congress for Fiscal Year 1981  

Science Conference Proceedings (OSTI)

This fifth annual report on the implementation of the Electric and Hybrid Vehicle Research, Development and Demonstration Act of 1976 (Public Law 94-413, as amended by Public Law 95-238, referred to as the Act) complies with the reporting requirements established in Section 14 of the Act. In addition to informing the Congress of the progress and plans of the Department of Energy Electric and Hybrid Vehicles Program, this report is intended to serve as a communication link between the Department and all of the public and private interests involved in making the program a success. The Annual Report represents the major summary of the Electric and Hybrid Vehicles Program activities; since July 1981, DOE has ceased publication of the EHV Quarterly Reports with Congressional approval. The fourth quarter activities for FY 1981 are included in this report. During FY 1981, significant progress was made toward implementing the policies established by Congress in the Act. There has been a noticeable increase in interest shown by both the automobile manufacturing and the supply sectors of our economy in electric and hybrid vehicles. This year, the emphasis in the Electric and Hybrid Vehicles Program shifted from vehicle demonstration and preparation for production readiness to research, development, test, and evaluation of advanced technologies to achieve the attributes necessary to make electric and hybrid vehicles a practical transportation alternative. Research and development efforts in batteries and propulsion components, as well as total vehicle systems, continue to reveal significant progress toward providing industry with technology options that will result in vehicles with greater public acceptance.

None

1982-03-01T23:59:59.000Z

97

Incorporating stakeholders' perspectives into models of new technology diffusion: The case of fuel-cell vehicles  

E-Print Network (OSTI)

J.D. Power, et al. , Hybrid Vehicle Market Share Expected tosales Year Number of new hybrid vehicles sold Number of newsold Market share of hybrid vehicles G.O. Collantes /

Collantes, Gustavo O

2007-01-01T23:59:59.000Z

98

Foreseeing the Market for Hydrogen Fuel-Cell Vehicles: Stakeholders' Perspectives and Models of New Technology Diffusion  

E-Print Network (OSTI)

and Associates (2005). Hybrid Vehicle Market Share Expectedsales Year Number of new hybrid vehicles sold Number of newsold Market share of hybrid vehicles It can be observed that

Collantes, Gustavo O

2005-01-01T23:59:59.000Z

99

FORESEEING THE MARKET FOR HYDROGEN FUEL-CELL VEHICLES: STAKEHOLDERS’ PERSPECTIVES AND MODELS OF NEW TECHNOLOGY DIFFUSION  

E-Print Network (OSTI)

and Associates (2005). Hybrid Vehicle Market Share Expectedsales Year Number of new hybrid vehicles sold Number of newsold Market share of hybrid vehicles It can be observed that

Collantes, Gustavo

2005-01-01T23:59:59.000Z

100

Designing On-Road Vehicle Test Programs for the Development of Effective Vehicle Emission Models  

E-Print Network (OSTI)

HC Reduction in S.E. (%) NOx Reduction in S.E. (%) Table 2:c) HC, d) NOx Younglove/Scora/Barth VSP Bin CO2 Reduction inNOx Table 1: Vehicle Specific Power bins used in preliminary MOVES model (4). Table 2: Percent reduction

Younglove, T; Scora, G; Barth, M

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicles model years" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Modeling of Plug-in Electric Vehicles' Interactions with a Sustainable...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Plug-in Electric Vehicles' Interactions with a Sustainable Community Grid in the Azores Title Modeling of Plug-in Electric Vehicles' Interactions with a Sustainable Community...

102

Heavy Vehicle and Engine Resource Guide  

DOE Green Energy (OSTI)

The Heavy Vehicle and Engine Resource Guide is a catalog of medium- and heavy-duty engines and vehicles with alternative fuel and advanced powertrain options. This edition covers model year 2003 engines and vehicles.

Not Available

2004-03-01T23:59:59.000Z

103

Emergency Department Visits by Older Adults for Motor Vehicle Collisions: A Five-Year National Study  

E-Print Network (OSTI)

KM, Esserman DA, et al. Motor vehicle collision-relatedVisits by Older Adults for Motor Vehicle Collisions * Denvervisits by older adults for motor vehicle collisions (MVC) in

Vogel, Jody A; Ginde, Adit A.; Lowenstein, Steven R.; Betz, Marian E.

2013-01-01T23:59:59.000Z

104

Combined quasi-static backward modeling and look-ahead fuzzy control of vehicles  

Science Conference Proceedings (OSTI)

Vehicle modeling can play an important role in vehicle power train design, control and energy management investigation. This paper presents a method for vehicle power train modeling. The key feature of the method is its presentation of the dynamic of ... Keywords: Fuzzy logic, Look-ahead controller, Power train vehicle modeling, Quasi-static backward facing, Simulation

Behnam Ganji; Abbas Z. Kouzani

2012-01-01T23:59:59.000Z

105

Electric and Hybrid Vehicles Program 18th annual report to Congress for Fiscal Year 1994  

DOE Green Energy (OSTI)

The Department remains focused on the technologies that are critical to making electric and hybrid vehicles commercially viable and competitive with current production gasoline-fueled vehicles in performance, reliability, and affordability. During Fiscal Year 1994, significant progress was made toward fulfilling the intent of Congress. The Department and the United States Advanced Battery Consortium (a partnership of the three major domestic automobile manufacturers) continued to work together and to focus the efforts of battery developers on the battery technologies that are most likely to be commercialized in the near term. Progress was made in industry cost-shared contracts toward demonstrating the technical feasibility of fuel cells for passenger bus and light duty vehicle applications. Two industry teams which will develop hybrid vehicle propulsion technologies have been selected through competitive procurement and have initiated work, in Fiscal Year 1994. In addition, technical studies and program planning continue, as required by the Energy Policy Act of 1992, to achieve the goals of reducing the transportation sector dependence on imported oil, reducing the level of environmentally harmful emissions, and enhancing industrial productivity and competitiveness.

NONE

1995-04-01T23:59:59.000Z

106

Development and applications of GREET 2.7 -- The Transportation Vehicle-CycleModel.  

DOE Green Energy (OSTI)

Argonne National Laboratory has developed a vehicle-cycle module for the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model. The fuel-cycle GREET model has been cited extensively and contains data on fuel cycles and vehicle operations. The vehicle-cycle model evaluates the energy and emission effects associated with vehicle material recovery and production, vehicle component fabrication, vehicle assembly, and vehicle disposal/recycling. With the addition of the vehicle-cycle module, the GREET model now provides a comprehensive, lifecycle-based approach to compare the energy use and emissions of conventional and advanced vehicle technologies (e.g., hybrid electric vehicles and fuel cell vehicles). This report details the development and application of the GREET 2.7 model. The current model includes six vehicles--a conventional material and a lightweight material version of a mid-size passenger car with the following powertrain systems: internal combustion engine, internal combustion engine with hybrid configuration, and fuel cell with hybrid configuration. The model calculates the energy use and emissions that are required for vehicle component production; battery production; fluid production and use; and vehicle assembly, disposal, and recycling. This report also presents vehicle-cycle modeling results. In order to put these results in a broad perspective, the fuel-cycle model (GREET 1.7) was used in conjunction with the vehicle-cycle model (GREET 2.7) to estimate total energy-cycle results.

Burnham, A.; Wang, M. Q.; Wu, Y.

2006-12-20T23:59:59.000Z

107

Battery modeling for electric vehicle applications using neural networks  

SciTech Connect

Neural networking is a new approach to modeling batteries for electric vehicle applications. This modeling technique is much less complex then a first principles model but can consider more parameters then classic empirical modeling. Test data indicates that individual cell size and geometry and operating conditions affect a battery performance (energy density, power density and life). Given sufficient battery data, system parameters and operating conditions a neural network model could be used to interpolate and perhaps even extrapolate battery performance under wide variety of operating conditions. As a result the method could be a valuable design tool for electric vehicle battery design and application. This paper describes the on going modeling method at Texas A and M University and presents preliminary results of a tubular lead acid battery model. The ultimate goal of this modeling effort is to develop the values necessary to be able to predict performance for batteries as wide ranging as sodium sulfur to zinc bromine.

Swan, D.H.; Arikara, M.P.; Patton, A.D.

1993-12-31T23:59:59.000Z

108

Federal Alternative Fuel Program Light Duty Vehicle Operations. Second annual report to Congress for fiscal year 1992  

DOE Green Energy (OSTI)

This annual report to Congress details the second year of the Federal light duty vehicle operations as required by Section 400AA(b)(1)(B) of the Energy Policy and Conservation Act as amended by the Alternative Motor Fuels Act of 1988, Public Law 100-494. In 1992, the Federal alternative fuel vehicle fleet expanded significantly, from the 65 M85 (85 percent methanol and 15 percent unleaded gasoline) vehicles acquired in 1991 to an anticipated total of 3,267 light duty vehicles. Operating data are being collected from slightly over 20 percent, or 666, of these vehicles. The 601 additional vehicles that were added to the data collection program in 1992 include 75 compressed natural gas Dodge full-size (8-passenger) vans, 25 E85 (85 percent denatured ethanol and 15 percent unleaded gasoline) Chevrolet Lumina sedans, 250 M85 Dodge Spirit sedans (planned to begin operation in fiscal year 1993), and 251 compressed natural gas Chevrolet C-20 pickup trucks. Figure ES-1 illustrates the locations where the Federal light duty alternative fuel vehicles that are participating in the data collection program are operating. The primary criteria for placement of vehicles will continue to include air quality attainment status and the availability of an alternative fuel infrastructure to support the vehicles. This report details the second year of the Federal light duty vehicle operations, from October 1991 through September 1992.

Not Available

1993-07-01T23:59:59.000Z

109

Electric Vehicle Site Operator Program. Year 1 third quarter report, January 1, 1992--March 31, 1992  

DOE Green Energy (OSTI)

Kansas State University, with funding support from federal, state, public, and private companies, is participating in the Department of Energy`s Electric Vehicle Site Operator Program. Through participation is this program, Kansas State is demonstrating, testing, and evaluating electric or hybrid vehicle technology. This participation will provide organizations the opportunity to examine the latest EHV prototypes under actual operating conditions. KSU proposes to purchase one (1) electric or hybrid van and four (4) electric cars during the first two years of this five year program. KSU has purchased one G-Van built by Conceptor Industries, Toronto, Canada and has initiated a procurement order to purchase two (2) Soleq 1992 Ford EVcort stationwagons.

Not Available

1992-06-01T23:59:59.000Z

110

Vehicle Technologies Office: Favorites  

NLE Websites -- All DOE Office Websites (Extended Search)

Favorites to someone by Favorites to someone by E-mail Share Vehicle Technologies Office: Favorites on Facebook Tweet about Vehicle Technologies Office: Favorites on Twitter Bookmark Vehicle Technologies Office: Favorites on Google Bookmark Vehicle Technologies Office: Favorites on Delicious Rank Vehicle Technologies Office: Favorites on Digg Find More places to share Vehicle Technologies Office: Favorites on AddThis.com... Favorites #248 Top Ten Net Petroleum Importing Countries, 2000 December 23, 2002 #246 U.S. Oil Imports - Top 10 Countries of Origin December 9, 2002 #244 Sport Utility Vehicle Spotlight November 25, 2002 #243 Fuel Economy Leaders for 2003 Model Year Light Trucks November 18, 2002 #242 Fuel Economy Leaders for 2003 Model Year Cars November 11, 2002 #238 Automobile and Truck Population by Vehicle Age, 2001 October 14, 2002

111

Vehicle-track-underground modeling of rail induced wave propagation  

Science Conference Proceedings (OSTI)

A moving rail vehicle may cause propagating waves to the surroundings potentially leading to detrimental effects for the track construction, nuisances for the surroundings and interference with delicate electronic equipment. A full computational model ... Keywords: Finite element analysis, Rigid body dynamics, Vibrations

Håkan Lane; Torbjörn Ekevid; Per Kettil; Chun Yuen Ching; Nils-Erik Wiberg

2007-08-01T23:59:59.000Z

112

MOBILE6 Vehicle Emission Modeling Software | Open Energy Information  

Open Energy Info (EERE)

MOBILE6 Vehicle Emission Modeling Software MOBILE6 Vehicle Emission Modeling Software Jump to: navigation, search Tool Summary Name: MOBILE6 Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy Focus Area: Transportation Topics: GHG inventory Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.epa.gov/oms/m6.htm Cost: Free References: http://www.epa.gov/oms/m6.htm MOBILE6 is an emission factor model for predicting gram per mile emissions of Hydrocarbons (HC), Carbon Monoxide (CO), Nitrogen Oxides (NOx), Carbon Dioxide (CO2), Particulate Matter (PM), and toxics from cars, trucks, and motorcycles under various conditions. MOBILE6 is an emission factor model for predicting gram per mile emissions of Hydrocarbons (HC), Carbon Monoxide (CO), Nitrogen Oxides (NOx), Carbon

113

Model year 2010 Ford Fusion Level-1 testing report.  

SciTech Connect

As a part of the US Department of Energy's Advanced Vehicle Testing Activity (AVTA), a model year 2010 Ford Fusion was procured by eTec (Phoenix, AZ) and sent to ANL's Advanced Powertrain Research Facility for the purposes of vehicle-level testing in support of the Advanced Vehicle Testing Activity. Data was acquired during testing using non-intrusive sensors, vehicle network information, and facilities equipment (emissions and dynamometer). Standard drive cycles, performance cycles, steady-state cycles, and A/C usage cycles were conducted. Much of this data is openly available for download in ANL's Downloadable Dynamometer Database. The major results are shown in this report. Given the benchmark nature of this assessment, the majority of the testing was done over standard regulatory cycles and sought to obtain a general overview of how the vehicle performs. These cycles include the US FTP cycle (Urban) and Highway Fuel Economy Test cycle as well as the US06, a more aggressive supplemental regulatory cycle. Data collection for this testing was kept at a fairly high level and includes emissions and fuel measurements from an exhaust emissions bench, high-voltage and accessory current/voltage from a DC power analyzer, and CAN bus data such as engine speed, engine load, and electric machine operation. The following sections will seek to explain some of the basic operating characteristics of the MY2010 Fusion and provide insight into unique features of its operation and design.

Rask, E.; Bocci, D.; Duoba, M.; Lohse-Busch, H.; Energy Systems

2010-11-23T23:59:59.000Z

114

Model year 2010 Honda insight level-1 testing report.  

DOE Green Energy (OSTI)

As a part of the US Department of Energy's Advanced Vehicle Testing Activity (AVTA), a model year 2010 Honda Insight was procured by eTec (Phoenix, AZ) and sent to ANL's Advanced Powertrain Research Facility for the purposes of vehicle-level testing in support of the Advanced Vehicle Testing Activity (AVTA). Data was acquired during testing using non-intrusive sensors, vehicle network information, and facilities equipment (emissions and dynamometer data). Standard drive cycles, performance cycles, steady-state cycles and A/C usage cycles were tested. Much of this data is openly available for download in ANL's Downloadable Dynamometer Database (D3). The major results are shown here in this report. Given the preliminary nature of this assessment, the majority of the testing was done over standard regulatory cycles and seeks to obtain a general overview of how the vehicle performs. These cycles include the US FTP cycle (Urban) and Highway Fuel Economy Test cycle as well as the US06, a more aggressive supplemental regulatory cycle. Data collection for this testing was kept at a fairly high level and includes emissions and fuel measurements from an exhaust emissions bench, high-voltage and accessory current and voltage from a DC power analyzer, and CAN bus data such as engine speed, engine load, and electric machine operation when available. The following sections will seek to explain some of the basic operating characteristics of the MY2010 Insight and provide insight into unique features of its operation and design.

Rask, E.; Bocci, D.; Duoba, M.; Lohse-Busch, H. (Energy Systems)

2011-03-22T23:59:59.000Z

115

EIA projects rapid growth in unconventional vehicle sales - Today ...  

U.S. Energy Information Administration (EIA)

Unconventional vehicles - vehicles using diesel, ... Manufacturers receive credits towards meeting CAFE standards by selling FFVs for all model years through 2016.

116

Vehicle Technologies Office: Fact #387: August 29, 2005 Light...  

NLE Websites -- All DOE Office Websites (Extended Search)

details. Note: Market share is based on model year sales projections submitted to EPA by vehicle manufacturers. Supporting Information New Light Vehicle Market Shares by EPA Size...

117

Vehicle Research Laboratory - FEERC  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Research Laboratory Vehicle Research Laboratory Expertise The overall FEERC team has been developed to encompass the many disciplines necessary for world-class fuels, engines, and emissions-related research, with experimental, analytical, and modeling capabilities. Staff members specialize in areas including combustion and thermodynamics, emissions measurements, analytical chemistry, catalysis, sensors and diagnostics, dynamometer cell operations, engine controls and control theory. FEERC engineers have many years of experience in vehicle research, chassis laboratory development and operation, and have developed specialized systems and methods for vehicle R&D. Selected Vehicle Research Topics In-use investigation of Lean NOx Traps (LNTs). Vehicle fuel economy features such as lean operation GDI engines,

118

Plug-In Hybrid Electric Vehicles - PHEV Modeling - Model Validation  

NLE Websites -- All DOE Office Websites (Extended Search)

Chevy Equinox, Ford Explorer) have been validated within 1% of fuel economy. Hybrid electric vehicles (e.g., Honda Insight, Toyota Prius, Lexus RX400h) have been validated...

119

Nonlinear and linear models for losses of plug in hybrid electric vehicle: A computation approach  

Science Conference Proceedings (OSTI)

This paper presents nonlinear and linear models for the losses of Plug in Hybrid Electric Vehicle (PHEV). An accurate model to calculate the PHEV losses for just one vehicle is not remarkable. However

2013-01-01T23:59:59.000Z

120

Lean NOx Trap Modeling in Vehicle Systems Simulations  

DOE Green Energy (OSTI)

A one-dimensional model for simulating lean NOx trap (LNT) performance is developed and validated using both steady state cycling data and transient data from FTP testing cycles. The model consists of the conservation equations for chemical species and energy in the bulk flow, energy of the solid walls, O2 storage and NOx storage (in the form of nitrites and nitrates). Nitrites and nitrates are formed by diffusion of NO and NO2, respectively, into sorbent particles (assumed to be hemi-spherical in shape) along with O2 and their formation rates are controlled by chemical kinetics as well as solid-phase diffusion rates of NOx species. The model also accounts for thermal aging and sulfation of LNTs. Empirical correlations are developed on the basis of published experimental data to capture these effects. These empirical correlations depend on total mileage for which the LNT has been in use, the mileage accumulated since the last desulfation event in addition to the freshly degreened catalyst characteristics. The model has been used in studies of vehicle systems (integration, performance etc.) including hybrid powertrain configurations. Since the engines in hybrid vehicles turn on and off multiple number of times during single drive cycles, the exhaust systems may encounter multiple cold start transients. Accurate modeling of catalyst warm-up and cooling is, therefore, very important to simulate LNT performance in such vehicles. For this purpose, the convective heat loss from the LNT to the ambient is modeled using a Nusselt number correlation that includes effects of both forced convection and natural convection (with later being important when vehicle is stationary). Using the model, the fuel penalty associated with operating LNTs on small diesel engine powered car during FTP drive cycles is estimated.

Gao, Zhiming [ORNL; Chakravarthy, Veerathu K [ORNL; Daw, C Stuart [ORNL; Conklin, Jim [ORNL

2010-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicles model years" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

A Multi-Year Program Plan for the Aerodynamic Design of Heavy Vehicles  

DOE Green Energy (OSTI)

The project tasks and deliverables are as follows: Computations and Experiments--(1) Simulation and analysis of a range of generic shapes, simplified to more complex, representative of tractor and integrated tractor-trailer flow characteristics using computational tools, (2) The establishment of an experimental data base for tractor-trailer models for code/computational method development and validation. The first shapes to be considered will be directed towards the investigation of tractor-trailer gaps and mismatch of tractor-trailer heights. (3) The evaluation and documentation of effective computational approaches for application to heavy vehicle aerodynamics based on the benchmark results with existing and advanced computational tools compared to experimental data, and (4) Computational tools and experimental methods for use by industry, National Laboratories, and universities for the aerodynamic modeling of heavy truck vehicles. Evaluation of current and new technologies--(1) The evaluation and documentation of current and new technologies for drag reduction based on published literature and continued communication with the heavy vehicle industry (e.g., identification and prioritization of tractor-trailer drag-sources, blowing and/or suction devices, body shaping, new experimental methods or facilities), and the identification and analysis of tractor and integrated tractor-trailer aerodynamic problem areas and possible solution strategies. (2) Continued industrial site visits. It should be noted that ''CFD tools'' are not only the actual computer codes, but descriptions of appropriate numerical solution methods. Part of the project effort will be to determine the restrictions or avenues for technology transfer.

None

2001-09-01T23:59:59.000Z

122

Kansas State University electric vehicle site operator program. Year 1, second quarter report, October 1, 1991--December 30, 1991  

DOE Green Energy (OSTI)

K-State is presently working with Grumman Allied and Unique Mobility to establish a working agreement for the research and development of a pure electric postal vehicle. K-State has worked on the design of this vehicle for the past year and is working to establish the appropriate consortium to bring this vehicle to commercial realization. K-State is working to establish infrastructure support for electric vehicles. Presently, a Kansas company is working with K-State to bring its patented low-cost vehicle metering product to market. An anticipated second year DOE project would provide 100 electric metering stations to Southern California for a large scale electric vehicle infrastructure demonstration project. This project would allow a parking lot(s) to be made EV ready. K-State`s Site Operator Program continues to get the ``word-out`` about electric vehicles. From a personal visit by Senator Bob Dole, to Corporate Board of Director Meetings, to school classrooms, to shopping mall demonstrations; K-State Employees are increasing public access and awareness about the electric vehicle industry. As has been shown in this report, K-State`s G-Van has logged an average eighteen miles per day while maintaining a full schedule of public relations tours within the state of Kansas and Missouri. K-State has now been contacted by companies in Nebraska and Iowa requesting information and involvement in this program. Kansas and Kansas State will continue its work to contribute to the Site Operator Program effort. With the purchase of two additional electric vehicles and the pending request to purchase two more electric vehicles during the next contractual year, K-states`s program will grow. When vehicle development plans and infrastructure requirements are solidified, K-State`s program will be ready to participate and be a major contributor to the development and introduction of this technology.

Hague, J.R.; Steinert, R.A.; Nissen-Pfrang, T.

1991-12-31T23:59:59.000Z

123

Vehicle Technologies Office: Hybrid and Vehicle Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid and Vehicle Hybrid and Vehicle Systems to someone by E-mail Share Vehicle Technologies Office: Hybrid and Vehicle Systems on Facebook Tweet about Vehicle Technologies Office: Hybrid and Vehicle Systems on Twitter Bookmark Vehicle Technologies Office: Hybrid and Vehicle Systems on Google Bookmark Vehicle Technologies Office: Hybrid and Vehicle Systems on Delicious Rank Vehicle Technologies Office: Hybrid and Vehicle Systems on Digg Find More places to share Vehicle Technologies Office: Hybrid and Vehicle Systems on AddThis.com... Just the Basics Hybrid & Vehicle Systems Modeling & Simulation Integration & Validation Benchmarking Parasitic Loss Reduction Propulsion Systems Advanced Vehicle Evaluations Energy Storage Advanced Power Electronics & Electrical Machines

124

Alternative fuel vehicles for the state fleets: Results of the 5-year planning process  

DOE Green Energy (OSTI)

This report documents the first attempt by the Department of Energy (DOE) to work with states to prepare five-year Alternative Fuel Vehicle (AFV) acquisition plans to identify alternative fuels and vehicles that they are planning on or would like to acquire. The DOE Regional Support Offices (RSOs) met with representatives from the states in their regions and assisted in the preparation of the plans. These plans will be used in conjunction with previously gathered Federal five-year plans to encourage Original Equipment Manufacturers (OEMs) to expand the variety of AFVs produced, reduce the incremental cost of AFVs, and to encourage fuel suppliers to expand the alternative fuel infrastructure and alternative fuel availability. By identifying the needs and requirements of state fleets, DOE can begin to describe the specific nature of the future state fleets, and establish a defined market for OEMs and fuel suppliers. DOE initiated the development and collection of the state five-year plans before the signing of the Energy Policy Act, to raise the awareness of states that they will be required by law to acquire AFVs. As a result, several states that had no AFV acquisition plan when queried have developed or are in the process of developing plans. The DOE and its RSOs are still working with the states to develop and refine acquisition plans, and this report should be treated as documentation of work in progress.

Not Available

1993-05-01T23:59:59.000Z

125

Vehicle Transient Air Conditioning Analysis: Model Development& System Optimization Investigations  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory (NREL) has developed a transient air conditioning (A/C) system model using SINDA/FLUINT analysis software. It captures all the relevant physics of transient A/C system performance, including two-phase flow effects in the evaporator and condenser, system mass effects, air side heat transfer on the condenser/evaporator, vehicle speed effects, temperature-dependent properties, and integration with a simplified cabin thermal model. It has demonstrated robust and powerful system design optimization capabilities. Single-variable and multiple variable design optimizations have been performed and are presented. Various system performance parameters can be optimized, including system COP, cabin cool-down time, and system heat load capacity. This work presents this new transient A/C system analysis and optimization tool and shows some high-level system design conclusions reached to date. The work focuses on R-134a A/C systems, but future efforts will modify the model to investigate the transient performance of alternative refrigerant systems such as carbon dioxide systems. NREL is integrating its transient air conditioning model into NRELs ADVISOR vehicle system analysis software, with the objective of simultaneously optimizing A/C system designs within the overall vehicle design optimization.

Hendricks, T. J.

2001-06-01T23:59:59.000Z

126

Equivalent circuit modeling of hybrid electric vehicle drive train  

E-Print Network (OSTI)

The main goals of the advanced vehicles designer are to improve efficiency, to decrease emissions and to meet customer's requirements. The design of such vehicles is challenging and cannot efficiently be achieved without an appropriate tool. The objective of this work is to develop and validate a modeling and design method adapted to advanced vehicles conception. The designer, as a system engineer, needs performances predictions and physical understanding of the system dynamics. In order to achieve this objective, a methodology based on electrical analogies and transducers theory is presented in this work. Using the powerful circuit theory to solve multi-disciplinary problems is not revolutionary, but applied to the design of advanced vehicles, it brings a strong insight and a visual, intuitive interpretation of the set of differential equations. The equivalent circuit obtained from this method offers an elegant alternative to traditional methods and is especially adapted to the study of the interactions between the mechanical and the electrical side of any electromechanical system.

Routex, Jean-Yves

2001-01-01T23:59:59.000Z

127

TAFV Alternative Fuels and Vehicles Choice Model Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

34 34 ORNL/TM-2001/134 TAFV Alternative Fuels and TAFV Alternative Fuels and Vehicles Choice Model Vehicles Choice Model Documentation Documentation July 2001 David L. Greene David L. Greene Corporate Fellow Corporate Fellow DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge: Web site: http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source: National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone: 703-605-6000 (1-800-553-6847) TDD: 703-487-4639 Fax: 703-605-6900 E-mail: info@ntis.fedworld.gov Web site: http://www.ntis.gov/support/ordernowabout.htm Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange

128

Vehicle Technologies Office: Favorites  

NLE Websites -- All DOE Office Websites (Extended Search)

Favorites Favorites #248 Top Ten Net Petroleum Importing Countries, 2000 December 23, 2002 #246 U.S. Oil Imports - Top 10 Countries of Origin December 9, 2002 #244 Sport Utility Vehicle Spotlight November 25, 2002 #243 Fuel Economy Leaders for 2003 Model Year Light Trucks November 18, 2002 #242 Fuel Economy Leaders for 2003 Model Year Cars November 11, 2002 #238 Automobile and Truck Population by Vehicle Age, 2001 October 14, 2002 #234 2003 Model Year Alternative Fuel Vehicles September 16, 2002 #233 Vehicles per Thousand People: U.S. Compared to Other Countries September 9, 2002 #230 Hybrid Electric Vehicles in the United States August 19, 2002 #229 Medium and Heavy Truck Sales August 12, 2002 #228 New Light Vehicle Sales Shares, 1976-2001 August 5, 2002

129

PRISM 2.0: Mixed Logit Consumer Vehicle Choice Modeling Using Revealed Preference Data  

Science Conference Proceedings (OSTI)

Predicting the penetration of electric vehicles into the automotive market is challenging because these vehicles do not exist in the market today and therefore consumer reaction is largely unknown. One way to estimate consumer demand for electric vehicles is to model the attribute bundles of vehicles that are present in the market today and predict market share using state-of-the-art discrete choice demand models.This research develops a choice-based demand model to extract consumer ...

2013-09-30T23:59:59.000Z

130

Why Some Vehicles Are Not Listed / 1  

NLE Websites -- All DOE Office Websites (Extended Search)

Understanding the Guide Listings / 1 Understanding the Guide Listings / 1 * Why Some Vehicles Are Not Listed / 1 * Vehicle Classes Used in This Guide / 2 * Tax Incentives and Disincentives / 2 * Why Consider Fuel Economy / 2 * Fueling Options / 3 * Fuel Economy and Annual Fuel Cost Ranges for Vehicle Classes / 3 * Model Year 2011 Fuel Economy Leaders / 4 * 2011 Model Year Vehicles / 6 * Battery Electric Vehicles / 18 * Plug-in Hybrid Electric Vehicles / 19 * Hybrid Electric Vehicles / 20 * Compressed Natural Gas Vehicles / 22 * Diesel Vehicles / 22 * Ethanol Flexible Fuel Vehicles / 24 * Fuel Cell Vehicles / 28 * Index / 29 * USING THE FUEL ECONOMY GUIDE The U.S. Environmental Protection Agency (EPA) and U.S. Department of Energy (DOE) produce the Fuel Economy Guide to help car buyers choose the most fuel-efficient vehicle that meets their

131

A Structural Model of Vehicle Use in Two-Vehicle Households  

E-Print Network (OSTI)

vehicle sports car implies that usage is shifted towardthecars as secondcars have a weakerpositive relationship to usage,

Golob, Thomas F.; Kim, Seyoung; Ren, Weiping

1994-01-01T23:59:59.000Z

132

Analysis of Acoustic Signatures from Moving Vehicles UsingTime-Varying Autoregressive Models  

Science Conference Proceedings (OSTI)

Time-varying autoregressive (TVAR) modeling approach for the analysis of acoustic signatures from moving vehicles is presented in this paper. Acoustic signatures from moving vehicles are nonstationary, and features extracted under the stationary ... Keywords: acoustic, classification, time-varying autoregressive model, time-varying, vehicle identification

Kie B. Eom

1999-10-01T23:59:59.000Z

133

Search on Modeling and Collaborative Simulation for Electric Drive Wheeled Armored Vehicle  

Science Conference Proceedings (OSTI)

In order to evaluate the performance of electric transmission wheeled armored vehicle, models of motor driving system and dynamics of the 8 wheels drive vehicles based on ADAMS/Car were constructed, which compose the model of collaborative simulation ... Keywords: ADAMS/Car, Matlab, electric transmission, wheeled armored vehicle, collaborative simulation, dynamic performance

Zili Liao, Guibing Yang, Chunguang Liu, Yu Xiang

2012-07-01T23:59:59.000Z

134

Probabilistic Modelling of Plug-in Hybrid Electric Vehicle Impacts on Distribution Networks in  

E-Print Network (OSTI)

Probabilistic Modelling of Plug-in Hybrid Electric Vehicle Impacts on Distribution Networks Committee Probabilistic Modelling of Plug-in Hybrid Electric Vehicle Impacts on Distribution Networks) Departmental Member Plug-in hybrid electric vehicles (PHEVs) represent a promising future direction

Victoria, University of

135

DOD/NREL Model Integrates Vehicles, Renewables & Microgrid (Fact...  

NLE Websites -- All DOE Office Websites (Extended Search)

locations for systems connecting electric vehicles with solar energy sources and microgrids. A microgrid that integrates renewable generation and vehicle energy storage offers...

136

Plug-In Hybrid Electric Vehicles - PHEV Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

configurations for advanced vehicles. Thus, developing fuel cells and hybrid electric vehicles (HEVs) requires accurate, flexible simulation tools. Argonne undertook a...

137

Plug-In Hybrid Electric Vehicles - PHEV Modeling - Component Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Impact on Fuel Efficiency Technologies Impact on Fuel Efficiency One of the main objectives of the U.S. Department of Energy's (DOE's) Plug-in Hybrid Electric Vehicle (PHEV) R&D Plan (2.2Mb pdf) is to "determine component development requirements" through simulation analysis. Overall fuel efficiency is affected by component technologies from a component sizing and efficiency aspect. To properly define component requirements, several technologies for each of the main components (energy storage, engine and electric machines) are being compared at Argonne using PSAT. Per the R&D plan, several Li-ion battery materials are being modeled to evaluate their impacts on fuel efficiency and vehicle mass. Different Power to Energy ratios are being considered to understand the relative impact of power and energy.

138

Electric and Gasoline Vehicle Lifecycle Cost and Energy-Use Model  

E-Print Network (OSTI)

Auto Industry Models to Review Electric Vehicle Costing andElectric Vehicles in the Nation's Energy Future , DE86-003295, Argonne National Laboratory, Illinois, November (1984). Auto industry

Delucchi, Mark; Burke, Andy; Lipman, Timothy; Miller, Marshall

2000-01-01T23:59:59.000Z

139

Kansas State University Electric Vehicle Site Operator Program. Year 1: First quarter report, July 2, 1991--September 30, 1991  

SciTech Connect

During the past fifteen years Kansas State`s faculty has been involved in research of alternative fuel vehicles. From formulation of fuels and automotive fuel storage to development of electronic controls, K-State`s faculty research has been ongoing. With the increased awareness of what is occurring to the world`s environment, the catalyst -- to ensure applied results from faculty research will occur -- has been activated. The Department of Energy`s Electric Vehicle Site Operator Program is the platform being used to demonstrate international efforts to bring a more acceptable daily mode of transportation to our highways. The first new electrical vehicle procured at K-State in the last ten years, a G-Van, is a technological dinosaur. It does not incorporate leading edge control or drive systems nor does it provide the type of vehicle frame and body to meet a majority of the daily commuter needs required by the American market. Yet, this vehicle represents initial efforts to bring a federally crash certified vehicle to the commercial automotive market. As such, it is an evolutionary step in the mass production of electric vehicle products.

Hague, J.R.; Steinert, R.A.; Nissen-Pfrang, T.

1991-12-31T23:59:59.000Z

140

Trajectory Design and Implementation for Multiple Autonomous Underwater Vehicles Based on Ocean Model Predictions  

E-Print Network (OSTI)

Underwater Vehicles Based on Ocean Model Predictions Ryan N.Trajectory Design based on Ocean Model Predictions PredictEffective tracking of ocean features Gather specific in situ

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicles model years" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Model year 2010 Honda insight level-1 testing report.  

SciTech Connect

As a part of the US Department of Energy's Advanced Vehicle Testing Activity (AVTA), a model year 2010 Honda Insight was procured by eTec (Phoenix, AZ) and sent to ANL's Advanced Powertrain Research Facility for the purposes of vehicle-level testing in support of the Advanced Vehicle Testing Activity (AVTA). Data was acquired during testing using non-intrusive sensors, vehicle network information, and facilities equipment (emissions and dynamometer data). Standard drive cycles, performance cycles, steady-state cycles and A/C usage cycles were tested. Much of this data is openly available for download in ANL's Downloadable Dynamometer Database (D3). The major results are shown here in this report. Given the preliminary nature of this assessment, the majority of the testing was done over standard regulatory cycles and seeks to obtain a general overview of how the vehicle performs. These cycles include the US FTP cycle (Urban) and Highway Fuel Economy Test cycle as well as the US06, a more aggressive supplemental regulatory cycle. Data collection for this testing was kept at a fairly high level and includes emissions and fuel measurements from an exhaust emissions bench, high-voltage and accessory current and voltage from a DC power analyzer, and CAN bus data such as engine speed, engine load, and electric machine operation when available. The following sections will seek to explain some of the basic operating characteristics of the MY2010 Insight and provide insight into unique features of its operation and design.

Rask, E.; Bocci, D.; Duoba, M.; Lohse-Busch, H. (Energy Systems)

2011-03-22T23:59:59.000Z

142

Symbolic Modelling and Simulation of Wheeled Vehicle Systems on Three-Dimensional Roads.  

E-Print Network (OSTI)

??In recent years, there has been a push by automotive manufacturers to improve the efficiency of the vehicle development process. This can be accomplished by… (more)

Bombardier, William

2009-01-01T23:59:59.000Z

143

DOE Hydrogen Analysis Repository: Advanced Vehicle Introduction...  

NLE Websites -- All DOE Office Websites (Extended Search)

Keywords: Vehicle characteristics; market penetration; advanced technology vehicles; hybrid electric vehicle (HEV) Purpose Vehicle Choice Model - Estimate market penetration...

144

Comparative Modeling Analysis of Plug-in Electric Vehicle Architectures  

Science Conference Proceedings (OSTI)

This report describes the assumptions and results for advanced vehicle simulation analysis. A midsize sedan was used to investigate the conventional, pre-transmission parallel, input power-split, series, and full electric architectures. Variations of these architectures were also investigated such as charge-sustaining hybrid electric vehicles, charge-depleting plug-in hybrid electric vehicles, and extended-range electric-vehicles (EREVs). The differences in these vehicle architectures and variations are ...

2010-12-21T23:59:59.000Z

145

Large-scale battery system modeling and analysis for emerging electric-drive vehicles  

Science Conference Proceedings (OSTI)

Emerging electric-drive vehicles demonstrate the potential for significant reduction of petroleum consumption and greenhouse gas emissions. Existing electric-drive vehicles typi- cally include a battery system consisting of thousands of Lithium-ion battery ... Keywords: analysis, battery system model, electric-drive vehicles

Kun Li; Jie Wu; Yifei Jiang; Zyad Hassan; Qin Lv; Li Shang; Dragan Maksimovic

2010-08-01T23:59:59.000Z

146

Model Year 2012: Alternative Fuel Vehicles and Advanced Technology...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Focus Electric sedan ZEV, Tier 2 Bin 1 Auto 105 kW e-motor est. 100 micharge 23 kWh Battery Electric (Li-ion) Ford Transit Connect (Azure Dynamics) Van ZEV, Tier 2 Bin 1 Auto...

147

Search for Model Year 1995 Vehicles by EPA Size Class  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Select Class... Compact Cars Large Cars Midsize Cars Midsize Station Wagons Midsize-Large Station Wagons Minicompact Cars Minivan Small Pickup Trucks Small Station Wagons Special...

148

Search for Model Year 1993 Vehicles by EPA Size Class  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Select Class... Compact Cars Large Cars Midsize Cars Midsize Station Wagons Midsize-Large Station Wagons Minicompact Cars Small Pickup Trucks Small Station Wagons Special Purpose...

149

Search for Model Year 2014 Vehicles by EPA Size Class  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Select Class... Compact Cars Large Cars Midsize Cars Midsize Station Wagons Minicompact Cars Minivan 2WD Minivan 4WD Small Pickup Trucks 2WD Small Pickup Trucks 4WD Small SUV 2WD...

150

Search for Model Year 2013 Vehicles by EPA Size Class  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Select Class... Compact Cars Large Cars Midsize Cars Midsize Station Wagons Minicompact Cars Minivan 2WD Minivan 4WD Small Pickup Trucks 2WD Small Pickup Trucks 4WD Small SUV 2WD...

151

Search for Model Year 1984 Vehicles by EPA Size Class  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Select Class... Compact Cars Large Cars Midsize Cars Midsize Station Wagons Midsize-Large Station Wagons Minicompact Cars Small Pickup Trucks Small Station Wagons Special Purpose...

152

System Dynamics: HyDIVE(TM) (Hydrogen Dynamic Infrastructure and Vehicle Evolution) Model (Presentation)  

DOE Green Energy (OSTI)

This presentation by Cory Welch at the 2007 DOE Hydrogen Program Annual Merit Review Meeting focuses on Hydrogen Dynamic Infrastructure and Vehicle Evolution Model.

Welch, C.

2007-05-16T23:59:59.000Z

153

Modeling, Simulation & Implementation of Li-ion Battery Powered Electric and Plug-in Hybrid Vehicles.  

E-Print Network (OSTI)

??The modeling, simulation and hardware implementation of a Li-ion battery powered electric vehicle are presented in this thesis. The results obtained from simulation and experiments… (more)

Mantravadi, Siva Rama Prasanna

2011-01-01T23:59:59.000Z

154

Development of Fuzzy Logic and Neural Network Control and Advanced Emissions Modeling for Parallel Hybrid Vehicles  

DOE Green Energy (OSTI)

This report describes the development of new control strategies and models for Hybrid Electric Vehicles (HEV) by the Ohio State University. The report indicates results from models created in NREL's ADvanced VehIcle SimulatOR (ADVISOR 3.2), and results of a scalable IC Engine model, called in Willan's Line technique, implemented in ADVISOR 3.2.

Rajagopalan, A.; Washington, G.; Rizzoni, G.; Guezennec, Y.

2003-12-01T23:59:59.000Z

155

Vehicle Technologies Office: Fact #765: February 4, 2013 EPA's Top 10  

NLE Websites -- All DOE Office Websites (Extended Search)

5: February 4, 5: February 4, 2013 EPA's Top 10 Conventionally-Fueled Vehicles for Model Year 2013 to someone by E-mail Share Vehicle Technologies Office: Fact #765: February 4, 2013 EPA's Top 10 Conventionally-Fueled Vehicles for Model Year 2013 on Facebook Tweet about Vehicle Technologies Office: Fact #765: February 4, 2013 EPA's Top 10 Conventionally-Fueled Vehicles for Model Year 2013 on Twitter Bookmark Vehicle Technologies Office: Fact #765: February 4, 2013 EPA's Top 10 Conventionally-Fueled Vehicles for Model Year 2013 on Google Bookmark Vehicle Technologies Office: Fact #765: February 4, 2013 EPA's Top 10 Conventionally-Fueled Vehicles for Model Year 2013 on Delicious Rank Vehicle Technologies Office: Fact #765: February 4, 2013 EPA's Top 10 Conventionally-Fueled Vehicles for Model Year 2013 on Digg

156

Vehicle Technologies Office: Fact #779: May 13, 2013 EPA's Top Ten Rated  

NLE Websites -- All DOE Office Websites (Extended Search)

9: May 13, 2013 9: May 13, 2013 EPA's Top Ten Rated Vehicles List for Model Year 2013 is All Electric to someone by E-mail Share Vehicle Technologies Office: Fact #779: May 13, 2013 EPA's Top Ten Rated Vehicles List for Model Year 2013 is All Electric on Facebook Tweet about Vehicle Technologies Office: Fact #779: May 13, 2013 EPA's Top Ten Rated Vehicles List for Model Year 2013 is All Electric on Twitter Bookmark Vehicle Technologies Office: Fact #779: May 13, 2013 EPA's Top Ten Rated Vehicles List for Model Year 2013 is All Electric on Google Bookmark Vehicle Technologies Office: Fact #779: May 13, 2013 EPA's Top Ten Rated Vehicles List for Model Year 2013 is All Electric on Delicious Rank Vehicle Technologies Office: Fact #779: May 13, 2013 EPA's Top Ten Rated Vehicles List for Model Year 2013 is All Electric on Digg

157

Why Some Vehicles Are Not Listed / 1  

NLE Websites -- All DOE Office Websites (Extended Search)

Tax Incentives and Disincentives / 2 * Why Consider Fuel Economy / 2 * Fueling Options / 2 * Fuel Economy and Annual Fuel Cost Ranges for Vehicle Classes / 3 * Model Year 2012 Fuel Economy Leaders / 4 * 2012 Model Year Vehicles / 5 * Diesel Vehicles / 25 * Compressed Natural Gas Vehicles / 25 * Electric Vehicles / 26 * Hybrid Electric Vehicles / 27 * Plug-in Hybrid Electric Vehicles / 29 * Ethanol Flexible Fuel Vehicles / 30 * Fuel Cell Vehicles / 35 * Index / 36 * USING THE FUEL ECONOMY GUIDE The U.S. Environmental Protection Agency (EPA) and U.S. Department of Energy (DOE) produce the Fuel Economy Guide to help car buyers choose the most fuel-efficient vehicle that meets their needs. The Guide is published in print and on the Web at www.fueleconomy.gov. For additional print copies,please call

158

Vehicle Technologies Office: 2013 Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Archive to someone 3 Archive to someone by E-mail Share Vehicle Technologies Office: 2013 Archive on Facebook Tweet about Vehicle Technologies Office: 2013 Archive on Twitter Bookmark Vehicle Technologies Office: 2013 Archive on Google Bookmark Vehicle Technologies Office: 2013 Archive on Delicious Rank Vehicle Technologies Office: 2013 Archive on Digg Find More places to share Vehicle Technologies Office: 2013 Archive on AddThis.com... 2013 Archive #810 Leasing on the Rise December 30, 2013 #809 What Do We Pay for in a Gallon of Gasoline? December 23, 2013 #808 Declining Use of Six- and Eight-Cylinder Engines December 16, 2013 #807 Light Vehicle Weights Leveling Off December 9, 2013 #806 Light Vehicle Market Shares, Model Years 1975-2012 December 2, 2013 #805 Vehicle Technology Penetration November 25, 2013

159

Global Grid-Connected Hybrid-Electric Vehicle Project: Year-End Summary Report, November 2000  

Science Conference Proceedings (OSTI)

This interim report summarizes research conducted under the auspices of the Global Grid-Connected Hybrid Electric Vehicle Project, an EPRI initiative to promote the use of grid-connected electric technologies in heavy-duty applications. One study in the program evaluated the potential of converting a Ford E-350 or E-450 Super Duty chassis into a grid-connected hybrid electric vehicle airport shuttle bus and a Ford Explorer chassis into a dedicated electric vehicle delivery van. A second study analyzed ad...

2000-12-13T23:59:59.000Z

160

AVCEM: Advanced-Vehicle Cost and Energy Use Model  

E-Print Network (OSTI)

of the battery, according to the battery cost equations (seediscussion of battery cost above). There actually are twoin the amount and cost of fuel-storage, battery, vehicle

Delucchi, Mark

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicles model years" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Modelling and control of underwater inspection vehicle for aquaculture sites.  

E-Print Network (OSTI)

?? Underwater vehicles such as AUVs and ROVs with hovering capabilities is a promising method for inspection of net integrity in large scale, sea based,… (more)

Hval, Mats Nåvik

2012-01-01T23:59:59.000Z

162

An error model for inter-vehicle communications in highway scenarios at 5.9GHz  

Science Conference Proceedings (OSTI)

The design and evaluation of Inter-Vehicle Communication (IVC) protocols rely much on the accurate and efficient computational simulations. For simulations of Medium Access Control (MAC) and higher layers, the modeling work of underlying Physical layer ... Keywords: DSRC, IEEE 802.11p, ITS, inter-vehicle communications, packet error ratio, wireless channel model

Yunpeng Zang; Lothar Stibor; Georgios Orfanos; Shumin Guo; Hans-Juergen Reumerman

2005-10-01T23:59:59.000Z

163

Orienteering problem modeling for electric vehicle-based tour  

Science Conference Proceedings (OSTI)

This paper presents the design and analyzes the performance of a tour planner for electric vehicles, aiming at overcoming their long charging time by computational intelligence. This service basically finds the maximal subset out of the whole user-selected ... Keywords: electric vehicle, genetic algorithm, orienteering problem, tour planning, visitable places

Junghoon Lee; Gyung-Leen Park

2013-03-01T23:59:59.000Z

164

Hybrid Electric Vehicle with Permanent Magnet Traction Motor: A Simulation Model  

E-Print Network (OSTI)

A simulation model for a hybrid electric vehicle is developed. Permanent magnet synchronous motor is considered for the drive part of the hybrid electric vehicle which comprises three energy sources: (i) a fuel cell, (ii) a battery bank, and (iii) a super capacitor. Rotor-oriented speed controller is designed, and also verified by simulation results, to achieve trajectory tracking requirements of the hybrid electric vehicle within the inverter voltage and current limits.

Levent U. Gökdere; Khalid Benlyazid; Enrico; Enrico Santi; Charles W. Brice; Roger A. Dougal

1999-01-01T23:59:59.000Z

165

VISION Model : description of model used to estimate the impact of highway vehicle technologies and fuels on energy use and carbon emissions to 2050.  

DOE Green Energy (OSTI)

The VISION model has been developed by the U.S. Department of Energy (DOE) to provide estimates of the potential energy use, oil use, and carbon emission impacts to 2050 of advanced light- and heavy-duty highway vehicle technologies and alternative fuels. DOE supports research of advanced transportation technologies (including fuels) and is frequently asked to provide estimates of the potential impacts of successful market penetration of these technologies, sometimes on a relatively quick-turnaround basis. VISION is a spreadsheet model in Microsoft Excel that can be used to respond rapidly to quick-turnaround requests, as well as for longer-term analyses. It uses vehicle survival and age-dependent usage characteristics to project total light and heavy vehicle stock, total vehicle miles of travel (VMT), and total energy use by technology and fuel type by year, given market penetration and vehicle energy efficiency assumptions developed exogenously. Total carbon emissions for on-highway vehicles by year are also estimated because life-cycle carbon coefficients for various fuels are included in VISION. VISION is not a substitute for the transportation component of the Energy Information Administration's (EIA's) National Energy Modeling System (NEMS). NEMS incorporates a consumer choice model to project market penetration of advanced vehicles and alternative fuels. The projections are made within the context of the entire U.S. economy. However, the NEMS model is difficult to use on a quick-turnaround basis and only makes projections to 2025. VISION complements NEMS with its relative ''user-friendliness'' and by extending the time frame of potential analysis. VISION has been used for a wide variety of purposes. For illustration, we have listed some of its most recent and current uses in Table 1.1. Figures 1.1-1.3 illustrate the results of some of those runs. These graphs are not actual model output, but they are based on model results. The main body of this report describes VISION's methodology and data sources. The methodology and data sources used in the light- and heavy-vehicle portions of the model are discussed separately. Some suggestions for future improvements to the model are made. Appendix A provides instructions on how to run the VISION model. Appendix B describes the procedure for updating the model with the latest EIA Annual Energy Outlook (AEO).

Singh, M.; Vyas, A.; Steiner, E.

2004-02-19T23:59:59.000Z

166

Alternative fuel vehicles for the Federal fleet: Results of the 5-year planning process. Executive Order 12759, Section 11  

DOE Green Energy (OSTI)

This report describes five-year plans for acquisition of alternative fuel vehicles (AFVs) by the Federal agencies. These plans will be used to encourage Original Equipment Manufacturers (OEMs) to expand the variety of AFVs produced, reduce the incremental cost of AFVs, and to encourage fuel suppliers to expand the alternative fuel infrastructure and alternative fuel availability. This effort supplements and extends the demonstration and testing of AFVs established by the Department of Energy under the alternative Motor Fuels Act of 1988.

Not Available

1992-08-01T23:59:59.000Z

167

Modelling and Design Optimization of Low Speed Fuel Cell Hybrid Electric Vehicles  

E-Print Network (OSTI)

of emissions to global climate change. Although electric cars and buses have been the focus of much of electricModelling and Design Optimization of Low Speed Fuel Cell Hybrid Electric Vehicles by Matthew Blair Supervisors: Dr. Zuomin Dong ABSTRACT Electric vehicles, as an emerging transportation platform, have been

Victoria, University of

168

Modelling, Simulation, Testing, and Optimization of Advanced Hybrid Vehicle Powertrains  

E-Print Network (OSTI)

FCV: fuel cell vehicle FEA: finite element analysis GA: Genetic Algorithms GCM: Global Circulation of a power-split architecture with two modes (or configurations) introduced by General Motors Corporation.2 General Motors Designs

Victoria, University of

169

Modeling and control of a biorobotic autonomous underwater vehicle  

E-Print Network (OSTI)

Current research into Autonomous Underwater Vehicles (AUVs) has included work on biologically inspired propulsion mechanisms, for instance flapping foils. The first aim of this thesis is to develop an accurate non-linear ...

Booth, William Duncan Lewis

2006-01-01T23:59:59.000Z

170

Modeling and vehicle performance analysis of Earth and lunar hoppers  

E-Print Network (OSTI)

Planetary hoppers-vehicles which travel over the surface as opposed to on it-offer significant advantages over existing rovers. Above all, they are able to travel quickly and can overcome terrain obstacles such as boulders ...

Middleton, Akil J

2010-01-01T23:59:59.000Z

171

2001 Joint ADVISOR/PSAT Vehicle Systems Modeling User's Conference Proceedings (CD)  

DOE Green Energy (OSTI)

The 2001 Joint ADVISOR/PSAT Vehicle Systems Modeling User Conference provided an opportunity for engineers in the automotive industry and the research environment to share their experiences in vehicle systems modeling using ADVISOR and PSAT. ADVISOR and PSAT are vehicle systems modeling tools developed and supported by the National Renewable Energy Laboratory and Argonne National Laboratory respectively with the financial support of the US Department of Energy. During this conference peers presented the results of studies using the simulation tools and improvements that they have made or would like to see in the simulation tools. Focus areas of the presentations included Control Strategy, Model Validation, Optimization and Co-Simulation, Model Development, Applications, and Fuel Cell Vehicle Systems Analysis. Attendees were offered the opportunity to give feedback on future model development plans.

Markel, T.

2001-08-01T23:59:59.000Z

172

Clean Cities 2011 Vehicle Buyer's Guide  

DOE Green Energy (OSTI)

The 2011 Clean Cities Light-Duty Vehicle Buyer's Guide is a consumer publication that provides a comprehensive list of commercially available alternative fuel and advanced vehicles in model year 2011. The guide allows for side-by-side comparisons of fuel economy, price, emissions, and vehicle specifications.

Not Available

2011-01-01T23:59:59.000Z

173

Model-Based Analysis of Electric Drive Options for Medium-Duty Parcel Delivery Vehicles: Preprint  

DOE Green Energy (OSTI)

Medium-duty vehicles are used in a broad array of fleet applications, including parcel delivery. These vehicles are excellent candidates for electric drive applications due to their transient-intensive duty cycles, operation in densely populated areas, and relatively high fuel consumption and emissions. The National Renewable Energy Laboratory (NREL) conducted a robust assessment of parcel delivery routes and completed a model-based techno-economic analysis of hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle configurations. First, NREL characterized parcel delivery vehicle usage patterns, most notably daily distance driven and drive cycle intensity. Second, drive-cycle analysis results framed the selection of drive cycles used to test a parcel delivery HEV on a chassis dynamometer. Next, measured fuel consumption results were used to validate simulated fuel consumption values derived from a dynamic model of the parcel delivery vehicle. Finally, NREL swept a matrix of 120 component size, usage, and cost combinations to assess impacts on fuel consumption and vehicle cost. The results illustrated the dependency of component sizing on drive-cycle intensity and daily distance driven and may allow parcel delivery fleets to match the most appropriate electric drive vehicle to their fleet usage profile.

Barnitt, R. A.; Brooker, A. D.; Ramroth, L.

2010-12-01T23:59:59.000Z

174

Modeling and Implementation of a 1 kW, Air Cooled HTPEM Fuel Cell in a Hybrid Electrical Vehicle  

E-Print Network (OSTI)

Modeling and Implementation of a 1 kW, Air Cooled HTPEM Fuel Cell in a Hybrid Electrical Vehicle engine vehicles (1). Hybrid systems of many kinds, combining a primary energy source having a high energy://www.ecsdl.org/terms_use.jsp #12;article, a model of a hybrid vehicle, including a HTPEM with lead acid batteries, is de- veloped

Nielsen, Mads Pagh

175

Why Some Vehicles Are Not Listed / 1  

NLE Websites -- All DOE Office Websites (Extended Search)

Tax Incentives and Disincentives / 2 Tax Incentives and Disincentives / 2 * Why Consider Fuel Economy / 2 * Fueling Options / 2 * Fuel Economy and Annual Fuel Cost Ranges for Vehicle Classes / 3 * Model Year 2010 Fuel Economy Leaders / 4 * 2010 Model Year Vehicles / 5 * Hybrid-Electric Vehicles / 16 * Ethanol Flexible Fuel Vehicles / 17 * Diesel Vehicles / 20 * Compressed Natural Gas Vehicles / 21 * Fuel Cell Vehicles / 21 * Index / 22 * USING THE FUEL ECONOMY GUIDE The U.S. Environmental Protection Agency (EPA) and U.S. Department of Energy (DOE) produce the Fuel Economy Guide to help car buyers choose the most fuel- efficient vehicle that meets their needs. The Guide is published in print and on the Web at www.fueleconomy.gov. For additional print copies, please call the EERE Information Center at 1-877-337- 3463 or mail your request to EERE

176

Electric and Hybrid Vehicles Program. Sixteenth annual report to Congress for fiscal year 1992  

DOE Green Energy (OSTI)

This report describes the progress achieved in developing electric and hybrid vehicle technologies, beginning with highlights of recent accomplishments in FY 1992. Detailed descriptions are provided of program activities during FY 1992 in the areas of battery, fuel cell, and propulsion system development, and testing and evaluation of new technology in fleet site operations and in laboratories. This Annual Report also contains a status report on incentives and use of foreign components, as well as a list of publications resulting from the DOE program.

Not Available

1993-08-01T23:59:59.000Z

177

Electric and Hybrid Vehicles Program. Seventeenth annual report to Congress for Fiscal Year 1993  

DOE Green Energy (OSTI)

This program, in cooperation with industry, is conducting research, development, testing, and evaluation activities to develop the technologies that would lead to production and introduction of low-and zero-emission electric and hybrid vehicles into the Nation`s transportation fleet. This annual report describes program activities in the areas of advanced battery, fuel cell, and propulsion systems development. Testing and evaluation of new technology in fleet site operations and laboratories are also provided. Also presented is status on incentives (CAFE, 1992 Energy Policy Act) and use of foreign components, and a listing of publications by DOE, national laboratories, and contractors.

Not Available

1994-08-01T23:59:59.000Z

178

Model Year 2012-2013 SmartWay Vans Year Model Displ Cyl Trans  

NLE Websites -- All DOE Office Websites (Extended Search)

-2013 SmartWay Vans Year Model Displ Cyl Trans Drive Fuel Sales Area Stnd Stnd Description Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas Score...

179

Vehicle Technologies Office: Fact #798: September 23, 2013Plug...  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Driving Range For the 2013 model year (MY) there are four plug-in hybrid electric vehicles (PHEVs) available to consumers. PHEVs offer a limited amount of all-electric...

180

New and Upcoming Diesel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

2014 Model Year Diesels Vehicle EPA MPG Estimates Price (MSRP) Audi A6 quattro Midsize Car Audi A6 quattro Chart: City, 24; Highway, 38; Combined, 29 45,200-57,500 Audi A7...

Note: This page contains sample records for the topic "vehicles model years" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Brownstone and Fang 1 A VEHICLE OWNERSHIP AND UTILIZATION CHOICE MODEL WITH ENDOGENOUS RESIDENTIAL DENSITY  

E-Print Network (OSTI)

This paper explores the impact of residential density on households ’ vehicle type and usage choices using the 2001 National Household Travel Survey (NHTS). Attempts to quantify the effect of urban form on households ’ vehicle choice and utilization often encounter the problem of sample selectivity. Household characteristics that are unobservable to the researchers might determine simultaneously where to live, what vehicles to choose, and how much to drive them. Unless this simultaneity is modeled, any relationship between residential density and vehicle choice may be biased. This paper extends the Bayesian multivariate ordered probit and tobit model developed in Fang (2008) to treat local residential density as endogenous. The model includes equations for vehicle ownership and usage in terms of number of cars, number of trucks (vans, sports utility vehicles, and pickup trucks), miles traveled by cars, and miles traveled by trucks. We carry out policy simulations which show that an increase in residential density has a negligible effect on car choice and utilization, but slightly reduces truck choice and utilization. We also perform an out-of-sample forecast using a holdout sample to test the robustness of the model. * Corresponding author.

David Brownstone; Hao (audrey Fang

2009-01-01T23:59:59.000Z

182

Plug-In Hybrid Electric Vehicles - PHEV Modeling - Component Requirement  

NLE Websites -- All DOE Office Websites (Extended Search)

Requirement Definition for PHEVs Requirement Definition for PHEVs One of the main objectives of the U.S. Department of Energy's (DOE's) Plug-in Hybrid Electric Vehicle R&D Plan (2.2Mb pdf) is to "determine component development requirements" through simulation analysis. PSAT has been used to design and evaluate a series of PHEVs to define the requirements of different components, focusing on the energy storage system's power and energy. Several vehicle classes (including midsize car, crossover SUV and midsize SUV) and All Electric Range (AER from 10 to 40 miles) were considered. The preliminary simulations were performed at Argonne using a pre-transmission parallel hybrid configuration with an energy storage system sized to run the Urban Dynanometer Driving Schedule (UDDS) in electric mode. Additional powertrain configurations and sizing algorithm are currently being considered. Trade-off studies are being performed as ways to achieve some level of performance while easing requirements on one area or another. As shown in the figure below, the FreedomCAR Energy Storage Technical Team selected a short term and a long term All Electric Range (AER) goals based on several vehicle simulations.

183

Analysis of a PM DC motor model for application in feedback design for electric-powered mobility vehicles  

Science Conference Proceedings (OSTI)

Accurate modelling of Permanent Magnet (PM) DC motors is a prerequisite for expedient feedback design of electric-powered mobility vehicles. This paper identifies the parameters in the ideal equations for PM DC motors and considers the methods ... Keywords: electric-powered mobility vehicles, feedback design, frictional torque, model accuracy, modelling, permanent magnet DC motors models

Patrick Wolm; XiaoQi Chen; J. Geoffrey Chase; Warren Pettigrew; Christopher E. Hann

2010-08-01T23:59:59.000Z

184

Trajectory Design and Implementation for Multiple Autonomous Underwater Vehicles Based on Ocean Model Predictions  

E-Print Network (OSTI)

for Multiple Autonomous Underwater Vehicles Based on OceanAUVs) • Autonomous Underwater Vehicles Evolving ocean

2009-01-01T23:59:59.000Z

185

An Optimization Model for Plug-In Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

The necessity for environmentally conscious vehicle designs in conjunction with increasing concerns regarding U.S. dependency on foreign oil and climate change have induced significant investment towards enhancing the propulsion portfolio with new technologies. More recently, plug-in hybrid electric vehicles (PHEVs) have held great intuitive appeal and have attracted considerable attention. PHEVs have the potential to reduce petroleum consumption and greenhouse gas (GHG) emissions in the commercial transportation sector. They are especially appealing in situations where daily commuting is within a small amount of miles with excessive stop-and-go driving. The research effort outlined in this paper aims to investigate the implications of motor/generator and battery size on fuel economy and GHG emissions in a medium-duty PHEV. An optimization framework is developed and applied to two different parallel powertrain configurations, e.g., pre-transmission and post-transmission, to derive the optimal design with respect to motor/generator and battery size. A comparison between the conventional and PHEV configurations with equivalent size and performance under the same driving conditions is conducted, thus allowing an assessment of the fuel economy and GHG emissions potential improvement. The post-transmission parallel configuration yields higher fuel economy and less GHG emissions compared to pre-transmission configuration partly attributable to the enhanced regenerative braking efficiency.

Malikopoulos, Andreas [ORNL; Smith, David E [ORNL

2011-01-01T23:59:59.000Z

186

A Dynamic household Alternative-fuel Vehicle Demand Model Using Stated and Revealed Transaction Information  

E-Print Network (OSTI)

non-electric vehicles, non-CNG vehicles, vehicle size, andrelated to ability to refuel EV or CNG vehicles at home.type vehicles: gasoline, CNG, methanol and EV. In the Wave-1

Sheng, Hongyan

1999-01-01T23:59:59.000Z

187

HIERARCHICAL HYBRID-MODEL BASED DESIGN, VERIFICATION, SIMULATION, AND SYNTHESIS OF MISSION CONTROL FOR AUTONOMOUS UNDERWATER VEHICLES.  

E-Print Network (OSTI)

??The objective of modeling, verification, and synthesis of hierarchical hybrid mission control for underwater vehicle is to (i) propose a hierarchical architecture for mission control… (more)

Bhattacharyya, Siddhartha

2005-01-01T23:59:59.000Z

188

Vehicle Technologies Office: Fact #525: June 30, 2008 Six and Eight  

NLE Websites -- All DOE Office Websites (Extended Search)

5: June 30, 2008 5: June 30, 2008 Six and Eight Cylinder Engines are the Most Prevalent among Light Vehicle Model Offerings for the 2008 Model Year to someone by E-mail Share Vehicle Technologies Office: Fact #525: June 30, 2008 Six and Eight Cylinder Engines are the Most Prevalent among Light Vehicle Model Offerings for the 2008 Model Year on Facebook Tweet about Vehicle Technologies Office: Fact #525: June 30, 2008 Six and Eight Cylinder Engines are the Most Prevalent among Light Vehicle Model Offerings for the 2008 Model Year on Twitter Bookmark Vehicle Technologies Office: Fact #525: June 30, 2008 Six and Eight Cylinder Engines are the Most Prevalent among Light Vehicle Model Offerings for the 2008 Model Year on Google Bookmark Vehicle Technologies Office: Fact #525: June 30, 2008 Six

189

Plug-In Hybrid Electric Vehicles - PHEV Modeling - Powertrain Configuration  

NLE Websites -- All DOE Office Websites (Extended Search)

Impact of Powertrain Configuration on Fuel Efficiency To evaluate the fuel efficiency potential of plug-in hybrid electric vehicles, it is necessary to compare the advantages and drawbacks of several powertrain configurations, ranging from power split to parallel and series. PSAT offers the unique ability to simulate and compare hundreds of powertrain configurations. The goal of the effort is to define the most promising configurations depending on the particular usage. Component sizes, fuel efficiency and cost will be used to make appropriate decisions. The configurations currently being considered include, but are not limited to: Pre-transmission parallel HEV Post-transmission parallel HEV Power split HEV (including THS II and GM 2 Mode) Series The figure below shows an example comparison of three powertrain configurations (parallel, series and power split).

190

Plug-In Hybrid Electric Vehicles - PHEV Modeling - Control Strategy  

NLE Websites -- All DOE Office Websites (Extended Search)

Control Strategy Assessment of PHEVs Control Strategy Assessment of PHEVs A generic global optimization algorithm for plug-in hybrid electric vehicle (PHEV) powertrain flows has been developed based on the Bellman optimality principle. Optimization results are used to isolate control patterns, both dependent and independent of the cycle characteristics, in order to develop real-time control strategies in Simulink/Stateflow. These controllers are then implemented in PSAT to validate their performances. Heuristic optimization algorithms (such as DIRECT or genetic algorithms) are then used to tune the parameters of the real-time controller implemented in PSAT. The control strategy development process is described below. PHEV control strategy development process diagram Control Strategy Development Process

191

Modeling Electric Vehicle Benefits Connected to Smart Grids  

DOE Green Energy (OSTI)

Connecting electric storage technologies to smartgrids will have substantial implications in building energy systems. Local storage will enable demand response. Mobile storage devices in electric vehicles (EVs) are in direct competition with conventional stationary sources at the building. EVs will change the financial as well as environmental attractiveness of on-site generation (e.g. PV, or fuel cells). In order to examine the impact of EVs on building energy costs and CO2 emissions in 2020, a distributed-energy-resources adoption problem is formulated as a mixed-integer linear program with minimization of annual building energy costs or CO2 emissions. The mixed-integer linear program is applied to a set of 139 different commercial buildings in California and example results as well as the aggregated economic and environmental benefits are reported. The research shows that considering second life of EV batteries might be very beneficial for commercial buildings.

Stadler, Michael; Marnay, Chris; Mendes, Goncalo; Kloess, Maximillian; Cardoso, Goncalo; Mégel, Olivier; Siddiqui, Afzal

2011-07-01T23:59:59.000Z

192

Vehicle Modeling and Verification of CNG-Powered Transit Buses  

E-Print Network (OSTI)

Modeling and Verification of CNG-Powered Transit BusesModeling and Verification of CNG-Powered Transit Buses.Modeling and Veri?cation of CNG-Powered Transit Buses J.K.

Hedrick, J. K.; Ni, A.

2004-01-01T23:59:59.000Z

193

Measuring and Modeling Emissions from Extremely Low-Emitting Vehicles  

E-Print Network (OSTI)

1997. “Analysis of modal emissions from diverse in-useof a Comprehensive Modal Emissions Model”. Final reportof a Comprehensive Modal Emissions Model: Operating Under

Barth, M; Collins, J F; Scora, G; Davis, N; Norbeck, J N

2006-01-01T23:59:59.000Z

194

Measuring and Modeling Emissions from Extremely Low Emitting Vehicles  

E-Print Network (OSTI)

1997. “Analysis of modal emissions from diverse in-useof a Comprehensive Modal Emissions Model”. Final reportof a Comprehensive Modal Emissions Model: Operating Under

Barth, M; Collins, J F; Scora, G; Davis, N; Norbeck, J M

2006-01-01T23:59:59.000Z

195

Application of Distribution Transformer Thermal Life Models to Electrified Vehicle Charging Loads Using Monte-Carlo Method: Preprint  

DOE Green Energy (OSTI)

Concentrated purchasing patterns of plug-in vehicles may result in localized distribution transformer overload scenarios. Prolonged periods of transformer overloading causes service life decrements, and in worst-case scenarios, results in tripped thermal relays and residential service outages. This analysis will review distribution transformer load models developed in the IEC 60076 standard, and apply the model to a neighborhood with plug-in hybrids. Residential distribution transformers are sized such that night-time cooling provides thermal recovery from heavy load conditions during the daytime utility peak. It is expected that PHEVs will primarily be charged at night in a residential setting. If not managed properly, some distribution transformers could become overloaded, leading to a reduction in transformer life expectancy, thus increasing costs to utilities and consumers. A Monte-Carlo scheme simulated each day of the year, evaluating 100 load scenarios as it swept through the following variables: number of vehicle per transformer, transformer size, and charging rate. A general method for determining expected transformer aging rate will be developed, based on the energy needs of plug-in vehicles loading a residential transformer.

Kuss, M.; Markel, T.; Kramer, W.

2011-01-01T23:59:59.000Z

196

A versatile computer model for the design and analysis of electric and hybrid vehicles  

E-Print Network (OSTI)

The primary purpose of the work reported in this thesis was to develop a versatile computer model to facilitate the design and analysis of hybrid vehicle drive-trains. A hybrid vehicle is one in which power for propulsion comes from two distinct sources, usually an internal combustion engine and an electric motor. Because of the design flexibility inherent in a propulsion system that has more than one source of energy, computer er modeling is necessary to identify which parameters are mainly responsible for the performance of the power-plant and to determine which designs are most viable. The modeling system described i@ this thesis was developed to accommodate a wide range of vehicle components and modeling techniques. The modeling framework to which the drive-train component models are attached emphasizes the functional role of components and not their implementation. This creates a uniform component interface which limits access to the inner workings of a component model and improves compatibility between various types of models. Conceptual levels of abstraction are identified in this thesis which can be used to organize information in a hybrid vehicle model. By incorporating these levels into the modeling system, the tasks associated with creating a hybrid vehicle are separated allowing the designer to focus on one aspect at a time. The modeling of the various levels occurs at independent locations in the model and the interfaces between the conceptual levels are defined so that changing the implementation of a particular level does not affect its interaction with other levels. A simulation study is then detailed to show how the model can be used to create and analyze hybrid vehicle designs. The study focuses on two control algorithms which implement a sustainable, electrically-peaking, parallel hybrid design. The first algorithm reduces fuel consumption by minimizing the amount of time that the internal combustion engine is operated. The second algorithm reduces the load on the electric motor by operating the internal combustion engine over its entire speed range. The simulation results indicate that both algorithms can successfully maintain the battery state of charge over the given drive-cycle. Finally, conclusions about the model and recommendations for future studies are discussed.

Stevens, Kenneth Michael

1996-01-01T23:59:59.000Z

197

Electric and Gasoline Vehicle Lifecycle Cost and Energy-Use Model  

E-Print Network (OSTI)

Electric and Hybrid Electric Vehicles (Workshop Proceedings,J. Oros, President, Electric Vehicle Infrastructure, Inc. ,Hydride Batteries for Electric Vehicles,” presented at the

Delucchi, Mark; Burke, Andy; Lipman, Timothy; Miller, Marshall

2000-01-01T23:59:59.000Z

198

Incorporating stakeholders' perspectives into models of new technology diffusion: The case of fuel-cell vehicles  

E-Print Network (OSTI)

the interest in hybrid electric vehicles (HEVs) and hydrogenfollowed by hybrid electric vehicles. G.O. Collantes /are replaced only by hybrid electric vehicles and hybrid

Collantes, Gustavo O

2007-01-01T23:59:59.000Z

199

Full vehicle dynamics model of a formula SAE racecar using ADAMS/Car  

E-Print Network (OSTI)

The Texas A&M University Formula SAE program currently has no rigorous method for analyzing or predicting the overall dynamic behavior of the student-designed racecars. The objective of this study is to fulfill this need by creating a full vehicle ADAMS/Car model incorporating an empirical tire-road force model and validating the longitudinal performance of the model by using vehicle responses recorded at the track. Creating the model requires measuring mass and inertia properties for each part, measuring the locations of all the kinematic joints, testing the Risse Racing Jupiter-5 shocks to characterize damping and stiffness, measuring engine torque, and modeling the tire behavior. Measuring the vehicle performance requires installation of the Pi Research DataBuddy data acquisition system and appropriate sensors. The 2002 Texas A&M University Formula SAE racecar, the subject vehicle, was selected because it already included some accommodations for sensors and is almost identical in layout to the available ADAMS/Car model Formula SAE templates. The tire-road interface is described by the Pacejka ??94 handling force model within ADAMS/Car that is based on a set of Goodyear coefficients. The majority of the error in the model originated from the Goodyear tire model and the 2004 engine torque map. The testing used Hoosier tires and the 2002 engine intake and exhaust configuration. The deliverable is a full vehicle model of the 2002 racecar with a 2004 engine torque map and a tire model correlated to longitudinal performance recorded at the track using the installed data acquisition system. The results of the correlation process, confirmed by driver impressions and performance of the 2004 racecar, show that the 2004 engine torque map predicts higher performance than the measured response with the 2002 engine. The Hoosier tire on the Texas A&M University Riverside Campus track surface produces 75??3% of peak longitudinal tire performance predicted by the Goodyear tire model combined with a road surface friction coefficient of 1.0. The ADAMS/Car model can now support the design process as an analysis tool for full vehicle dynamics and with continued refinement, will be able to accurately predict behavior throughout a complete autocross course.

Mueller, Russell Lee

2005-08-01T23:59:59.000Z

200

Model-based development and verification of control software for electric vehicles  

Science Conference Proceedings (OSTI)

Most innovations in the automotive domain are realized by electronics and software. Modern cars have up to 100 Electronic Control Units (ECUs) that implement a variety of control applications in a distributed fashion. The tasks are mapped onto different ... Keywords: control systems, control/architecture co-design, electric vehicles, model-based design

Dip Goswami, Martin Lukasiewycz, Matthias Kauer, Sebastian Steinhorst, Alejandro Masrur, Samarjit Chakraborty, S. Ramesh

2013-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicles model years" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Implementing a mathematical model for locating EMS vehicles in Fayetteville, NC  

Science Conference Proceedings (OSTI)

Emergency medical services (EMS) aims to reduce the elapsed time to respond to an emergency. The number and location of vehicles within the service area, directly affect the attainment of this goal. In this paper, we focus on a mathematical modeling ... Keywords: bicriterion, covered demand, expected coverage, set covering

Asad Tavakoli; Constance Lightner

2004-08-01T23:59:59.000Z

202

Climate and Energy Policy for U.S. Passenger Vehicles: A Technology-Rich Economic Modeling and Policy Analysis  

E-Print Network (OSTI)

Climate and Energy Policy for U.S. Passenger Vehicles: A Technology-Rich Economic Modeling and Energy Policy for U.S. Passenger Vehicles: A Technology-Rich Economic Modeling and Policy Analysis and energy security concerns have prompted policy action in the United States and abroad to reduce petroleum

203

Model year 2010 (Gen 3) Toyota Prius level 1 testing report.  

DOE Green Energy (OSTI)

As a part of the US Department of Energy's Advanced Vehicle Testing Activity (AVTA), a model year 2010 Toyota Prius (Generation 3) was procured by eTec (Phoenix, AZ) and sent to ANL's Advanced Powertrain Research Facility for the purposes of 'Level 1' testing in support of the Advanced Vehicle Testing Activity (AVTA). Data was acquired during testing using non-intrusive sensors, vehicle network connection, and facilities equipment (emissions and dynamometer data). Standard drive cycles, performance cycles, steady-state cycles and A/C usage cycles were conducted. Much of this data is openly available for download in ANL's Downloadable Dynamometer Database (D{sup 3}). The major results are shown here in this report. Given the preliminary nature of this assessment, the majority of the testing was done over standard regulatory cycles and seeks to obtain a general overview of how the vehicle performs. These cycles include the US FTP cycle (Urban) and Highway Fuel Economy Test cycle as well as the US06, a more aggressive supplemental regulatory cycle. Data collection for this testing was kept at a fairly high level and includes emissions and fuel measurements from the exhaust emissions bench, high-voltage and accessory current and voltage from a DC power analyzer, and minimal CAN bus data such as engine speed and pedal position. The following sections will seek to explain some of the basic operating characteristics of the MY2010 Prius over standard regulatory cycles.

Rask, E.; Duoba, M.; Lohse-Busch, H.; Bocci, D.; Energy Systems

2010-06-24T23:59:59.000Z

204

NREL: Vehicles and Fuels Research - Models and Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

momentum, and continuity equations. Models of all the major components-compressor, condenser, expansion device, and evaporator-are included. Available soon for public download....

205

Modeling Electric Vehicle Benefits Connected to Smart Grids  

NLE Websites -- All DOE Office Websites (Extended Search)

can be found at 1. In previous work, the Berkeley Lab has developed the Distributed Energy Resources Customer Adoption Model (DER-CAM) 2, 3. Its optimization techniques...

206

Energyenvironment policy modeling of endogenous technological change with personal vehicles  

E-Print Network (OSTI)

reserved. Keywords: Greenhouse gas; Hybrid cost models; Transportation emissions policy; Bottom-up; Top-down; Technological change; Greenhouse gas abatement policy 1. Introduction A major challenge for greenhouse gas (GHGMETHODS Energy­environment policy modeling of endogenous technological change with personal

207

Alternative Fuels Data Center: Low Emission Vehicle Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low Emission Vehicle Low Emission Vehicle Requirement to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle Requirement on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle Requirement on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle Requirement on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle Requirement on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle Requirement on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle Requirement All Model Year (MY) 2007 and later heavy-duty vehicles sold, leased, or

208

Battery Ownership Model: A Tool for Evaluating the Economics of Electrified Vehicles and Related Infrastructure; Preprint  

DOE Green Energy (OSTI)

Electric vehicles could significantly reduce greenhouse gas (GHG) emissions and dependence on imported petroleum. However, for mass adoption, EV costs have historically been too high to be competitive with conventional vehicle options due to the high price of batteries, long refuel time, and a lack of charging infrastructure. A number of different technologies and business strategies have been proposed to address some of these cost and utility issues: battery leasing, battery fast-charging stations, battery swap stations, deployment of charge points for opportunity charging, etc. In order to investigate these approaches and compare their merits on a consistent basis, the National Renewable Energy Laboratory (NREL) has developed a new techno-economic model. The model includes nine modules to examine the levelized cost per mile for various types of powertrain and business strategies. The various input parameters such as vehicle type, battery, gasoline, and electricity prices; battery cycle life; driving profile; and infrastructure costs can be varied. In this paper, we discuss the capabilities of the model; describe key modules; give examples of how various assumptions, powertrain configurations, and business strategies impact the cost to the end user; and show the vehicle's levelized cost per mile sensitivity to seven major operational parameters.

O'Keefe, M.; Brooker, A.; Johnson, C.; Mendelsohn, M.; Neubauer, J.; Pesaran, A.

2011-01-01T23:59:59.000Z

209

Battery Ownership Model: A Tool for Evaluating the Economics of Electrified Vehicles and Related Infrastructure; Preprint  

SciTech Connect

Electric vehicles could significantly reduce greenhouse gas (GHG) emissions and dependence on imported petroleum. However, for mass adoption, EV costs have historically been too high to be competitive with conventional vehicle options due to the high price of batteries, long refuel time, and a lack of charging infrastructure. A number of different technologies and business strategies have been proposed to address some of these cost and utility issues: battery leasing, battery fast-charging stations, battery swap stations, deployment of charge points for opportunity charging, etc. In order to investigate these approaches and compare their merits on a consistent basis, the National Renewable Energy Laboratory (NREL) has developed a new techno-economic model. The model includes nine modules to examine the levelized cost per mile for various types of powertrain and business strategies. The various input parameters such as vehicle type, battery, gasoline, and electricity prices; battery cycle life; driving profile; and infrastructure costs can be varied. In this paper, we discuss the capabilities of the model; describe key modules; give examples of how various assumptions, powertrain configurations, and business strategies impact the cost to the end user; and show the vehicle's levelized cost per mile sensitivity to seven major operational parameters.

O' Keefe, M.; Brooker, A.; Johnson, C.; Mendelsohn, M.; Neubauer, J.; Pesaran, A.

2011-01-01T23:59:59.000Z

210

Electric and Hybrid Vehicle Program, Site Operator Program. Quarterly progress report for July through September 1994 (Fourth quarter of fiscal year 1994)  

DOE Green Energy (OSTI)

The Site Operator Program was initially established by the Department of Energy (DOE) to incorporate the electric vehicle activities dictated by the Electric and Hybrid Vehicle Research, Development and Demonstration Act of 1976. In the ensuing years, the Program has evolved in response to new legislation and interests. The Program currently includes twelve sites located in diverse geographic, metrologic, and metropolitan areas across the US. Information is shared reciprocally with a thirteenth site, not under Program contract. The vehicles are operator-owned, except for two Griffon vans. The Mission Statement of the Site Operator Program includes three major activities: advancement of electric vehicle technologies; development of infrastructure elements necessary to support significant electric vehicle use; and increasing the awareness and acceptance of electric vehicles (EVs) by the public. The current participants in the Site Operator Program are shown. The ultimate thrust of program activities varies among sites, reflecting not only the Operator`s business interests but also geographic and climate-related operating conditions. This fourth quarter report (FY-94) includes a summary of activities from the previous three quarters. The report section sequence has been revised to provide a more easily seen program overview, and specific operator activities are now found in Appendix A.

Kiser, D.M.; Brown, H.L.

1995-03-01T23:59:59.000Z

211

NREL: Vehicle Ancillary Loads Reduction - Thermal Comfort Model  

NLE Websites -- All DOE Office Websites (Extended Search)

Comfort Model Comfort Model Photo of human testing to determine thermal comfort perception data. Photo of human testing to determine thermal comfort perception data. Working with researchers at the University of California, Berkeley, our team at NREL developed an empirical model of people's temperature sensation (hot/cold) as well as perceptions (comfortable/uncomfortable) in a transient non-homogeneous environment. The model predicts sensation and comfort locally (at specific points on the body) as well as globally (overall). The university performed more than 100 tests on human test subjects in a controlled environmental chamber under a range of steady state and transient thermal conditions. Participants subjectively recorded their thermal comfort on a simple form. Core and local skin temperature data was

212

Modeling the performance and cost of lithium-ion batteries for electric-drive vehicles.  

DOE Green Energy (OSTI)

This report details the Battery Performance and Cost model (BatPaC) developed at Argonne National Laboratory for lithium-ion battery packs used in automotive transportation. The model designs the battery for a specified power, energy, and type of vehicle battery. The cost of the designed battery is then calculated by accounting for every step in the lithium-ion battery manufacturing process. The assumed annual production level directly affects each process step. The total cost to the original equipment manufacturer calculated by the model includes the materials, manufacturing, and warranty costs for a battery produced in the year 2020 (in 2010 US$). At the time this report is written, this calculation is the only publically available model that performs a bottom-up lithium-ion battery design and cost calculation. Both the model and the report have been publically peer-reviewed by battery experts assembled by the U.S. Environmental Protection Agency. This report and accompanying model include changes made in response to the comments received during the peer-review. The purpose of the report is to document the equations and assumptions from which the model has been created. A user of the model will be able to recreate the calculations and perhaps more importantly, understand the driving forces for the results. Instructions for use and an illustration of model results are also presented. Almost every variable in the calculation may be changed by the user to represent a system different from the default values pre-entered into the program. The distinct advantage of using a bottom-up cost and design model is that the entire power-to-energy space may be traversed to examine the correlation between performance and cost. The BatPaC model accounts for the physical limitations of the electrochemical processes within the battery. Thus, unrealistic designs are penalized in energy density and cost, unlike cost models based on linear extrapolations. Additionally, the consequences on cost and energy density from changes in cell capacity, parallel cell groups, and manufacturing capabilities are easily assessed with the model. New proposed materials may also be examined to translate bench-scale values to the design of full-scale battery packs providing realistic energy densities and prices to the original equipment manufacturer. The model will be openly distributed to the public in the year 2011. Currently, the calculations are based in a Microsoft{reg_sign} Office Excel spreadsheet. Instructions are provided for use; however, the format is admittedly not user-friendly. A parallel development effort has created an alternate version based on a graphical user-interface that will be more intuitive to some users. The version that is more user-friendly should allow for wider adoption of the model.

Nelson, P. A.

2011-10-20T23:59:59.000Z

213

The Rail Technology Unit Modelling the Behaviour of Freight Vehicles  

E-Print Network (OSTI)

., in- ference 0.8 sec. (4) overhead of loading models, image re- sizing, etc.: 1.4 sec. After human' evaluation is carried out on a test set of video frames from `Buffy: the vampire slayer' (season 5 episode 2 is evaluated on video frames from the `Buffy: the vampire slayer' TV show and images from the PASCAL VOC 2008

214

Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

8: November 23, 8: November 23, 2009 Hybrid Vehicle Sales by Model to someone by E-mail Share Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Facebook Tweet about Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Twitter Bookmark Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Google Bookmark Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Delicious Rank Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Digg Find More places to share Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on AddThis.com... Fact #598: November 23, 2009

215

Hybrid Electric Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Association Conference Transportation Association Conference Vancouver, Canada December 2005 Hybrid Electric Vehicle Testing Jim Francfort U.S. Department of Energy - FreedomCAR & Vehicle Technologies Program, Advanced Vehicle Testing Activity INL/CON-05-00964 Presentation Outline * Background & goals * Testing partners * Hybrid electric vehicle testing - Baseline performance testing (new HEV models) - 1.5 million miles of HEV fleet testing (160k miles per vehicle in 36 months) - End-of-life HEV testing (rerun fuel economy & conduct battery testing @ 160k miles per vehicle) - Benchmark data: vehicle & battery performance, fuel economy, maintenance & repairs, & life-cycle costs * WWW information location Background * Advanced Vehicle Testing Activity (AVTA) - part of the

216

NREL: Vehicles and Fuels Research - 2013 Vehicle Buyer's Guide...  

NLE Websites -- All DOE Office Websites (Extended Search)

options, including hybrids, flex-fuel vehicles, and vehicles that run on natural gas, propane, electricity, or biodiesel. In addition to a comprehensive list of this year's...

217

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Detailed Tables The following tables present detailed characteristics of vehicles in the residential sector. Data are from the 1991 Residential Transportation Energy Consumption Survey. The "Glossary" contains the definitions of terms used in the tables. Table Organization The "Detailed Tables" section consists of three types of tables: (1) Tables of totals such as number of vehicle miles traveled (VMT) or gallons consumed; (2) Tables of per household statistics such as VMT per household; and (3) Tables of per vehicle statistics such as vehicle fuel consumption per vehicle. The tables have been grouped together by specific topics such as model year data, or family income data to facilitate finding related information. The Quick-Reference Guide to the detailed tables indicates major topics of each table. Row and Column Factors These tables present estimates

218

Vehicle Technologies Office: 2013 Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Archive 3 Archive #810 Leasing on the Rise December 30, 2013 #809 What Do We Pay for in a Gallon of Gasoline? December 23, 2013 #808 Declining Use of Six- and Eight-Cylinder Engines December 16, 2013 #807 Light Vehicle Weights Leveling Off December 9, 2013 #806 Light Vehicle Market Shares, Model Years 1975-2012 December 2, 2013 #805 Vehicle Technology Penetration November 25, 2013 #804 Tool Available to Print Used Vehicle Fuel Economy Window Stickers November 18, 2013 #803 Average Number of Transmission Gears is on the Rise November 11, 2013 #802 Market Share by Transmission Type November 4, 2013 #801 Gasoline Direct Injection Continues to Grow October 28, 2013 #800 Characteristics of New Light Vehicles over Time October 21, 2013 #799 Electricity Generation by Source, 2003-2012 September 30, 2013

219

Effects of Biodiesel Blends on Vehicle Emissions: Fiscal Year 2006 Annual Operating Plan Milestone 10.4  

DOE Green Energy (OSTI)

The objective was to determine if testing entire vehicles, vs. just the engines, on a heavy-duty chassis dynamometer provides a better, measurement of the impact of B20 on emissions.

McCormick, R. L.; Williams, A.; Ireland, J.; Hayes, R. R.

2006-10-01T23:59:59.000Z

220

Plug-In Hybrid Electric Vehicle Environmental Analysis--Electric Sector Modeling of CO2 Emissions  

Science Conference Proceedings (OSTI)

This Electric Power Research Institute has initiated a comprehensive collaborative study to quantify the environmental impacts of electric transportation, specifically with respect to plug-in hybrid electric vehicles (PHEVs). This technical update describes the adaptation of the EPRI electric sector model for the analysis of CO2 emissions from the charging on PHEVs on the electrical grid. A "PHEV Base Case" was developed using baseline assumptions from the "EPRI Base Case," a nominal set of key assumptio...

2006-11-29T23:59:59.000Z

Note: This page contains sample records for the topic "vehicles model years" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Battery Ownership Model: A Tool for Evaluating the Economics of Electrified Vehicles and Related Infrastructure (Presentation)  

DOE Green Energy (OSTI)

This presentation uses a vehicle simulator and economics model called the Battery Ownership Model to examine the levelized cost per mile of conventional (CV) and hybrid electric vehicles (HEVs) in comparison with the cost to operate an electric vehicle (EV) under a service provider business model. The service provider is assumed to provide EV infrastructure such as charge points and swap stations to allow an EV with a 100-mile range to operate with driving profiles equivalent to CVs and HEVs. Battery cost, fuel price forecast, battery life, and other variables are examined to determine under what scenarios the levelized cost of an EV with a service provider can approach that of a CV. Scenarios in both the United States as an average and Hawaii are examined. The levelized cost of operating an EV with a service provider under average U.S. conditions is approximately twice the cost of operating a small CV. If battery cost and life can be improved, in this study the cost of an EV drops to under 1.5 times the cost of a CV for U.S. average conditions. In Hawaii, the same EV is only slightly more expensive to operate than a CV.

O'Keefe, M.; Brooker, A.; Johnson, C.; Mendelsohn, M.; Neubauer, J.; Pesaran, A.

2010-11-01T23:59:59.000Z

222

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low Emission Vehicle Low Emission Vehicle (LEV) Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle (LEV) Standards California's LEV II exhaust emissions standards apply to Model Year (MY)

223

Table A1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel ...  

U.S. Energy Information Administration (EIA)

Number of Vehicles Vehicle-Miles Traveled Motor Fuel Consumption Motor Fuel 2001 Household and Vehicle Expenditures ... Age of Primary Driver 16 to 17 Years ...

224

Generic Disposal System Modeling, Fiscal Year 2011 Progress Report |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal System Modeling, Fiscal Year 2011 Progress Report Disposal System Modeling, Fiscal Year 2011 Progress Report Generic Disposal System Modeling, Fiscal Year 2011 Progress Report The UFD Campaign is developing generic disposal system models (GDSM) of different disposal environments and waste form options. Currently, the GDSM team is investigating four main disposal environment options: mined repositories in three geologic media (salt, clay, and granite) and the deep borehole concept in crystalline rock (DOE 2010d). Further developed the individual generic disposal system (GDS) models for salt, granite, clay, and deep borehole disposal environments. GenericDisposalSystModelFY11.pdf More Documents & Publications Integration of EBS Models with Generic Disposal System Models TSPA Model Development and Sensitivity Analysis of Processes Affecting

225

2014 Model Year Green Vehicle Guide Model Displ Cyl Trans Drive  

NLE Websites -- All DOE Office Websites (Extended Search)

ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas Score SmartWay Comb CO2 ACURA ILX 1.5 4 SCV-7 2WD Gasoline FA B2 Federal Tier 2 Bin 2 EHNXV01.58D2...

226

Analysis and calibration of social factors in a consumer acceptance and adoption model for diffusion of diesel vehicle in Europe  

E-Print Network (OSTI)

While large scale diffusion of alternative fuel vehicles (AFVs) is widely anticipated, the mechanisms that determine their success or failure are ill understood. Analysis of an AFV transition model developed at MIT has ...

Zhang, Qi, S.M. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

227

Model Year 2013-2014 SmartWay Large Cars Year Model Displ Cyl  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Cars Large Cars Year Model Displ Cyl Trans Drive Fuel Sales Area Stnd Stnd Description Underhood ID Veh Class Smog Rating City MPG Hwy MPG Cmb MPG Greenhouse Gas Rating SmartWay 2013 BMW X1 sDrive28i 2 4 SemiAuto-8 2WD Gasoline CA U2 California LEV-II ULEV DBMXJ02.0N20 large car 6 24 34 28 7 yes 2013 BMW X1 xDrive28i 2 4 SemiAuto-8 4WD Gasoline CA U2 California LEV-II ULEV DBMXJ02.0N20 large car 6 22 33 26 7 yes 2013 FORD C-MAX Hybrid 2 4 CVT 2WD Gasoline FC B3 Federal Tier 2 Bin 3 DFMXV02.0VZL large car 7 45 40 43 10 yes 2013 FORD Taurus 2 4 SemiAuto-6 2WD Gasoline CA U2 California LEV-II ULEV DFMXV02.0VE6 large car 6 22 32 26 7 yes 2013 HYUNDAI Sonata 2 4 Auto-6 2WD Gasoline CA U2 California LEV-II ULEV DHYXV02.01FE large car 6 22 34 26 7 yes 2013 HYUNDAI Sonata 2.4 4 Auto-6 2WD Gasoline CA U2 California LEV-II ULEV DHYXV02.41GE large car 6 24 35 28 7 yes 2013 HYUNDAI Sonata

228

Model Year 2013-2014 SmartWay MidsizeCars Year Model Displ Cyl  

NLE Websites -- All DOE Office Websites (Extended Search)

MidsizeCars MidsizeCars Year Model Displ Cyl Trans Drive Fuel Sales Area Stnd Stnd Description Underhood ID Veh Class Smog Rating City MPG Hwy MPG Cmb MPG Greenhouse Gas Rating SmartWay 2013 AUDI A6 2 4 SCV-8 2WD Gasoline CA U2 California LEV-II ULEV DADXV02.03UB midsize car 6 25 33 28 7 yes 2013 BMW 528i 2 4 SemiAuto-8 4WD Gasoline CA U2 California LEV-II ULEV DBMXJ02.0N20 midsize car 6 22 33 26 7 yes 2013 BMW 528i 2 4 SemiAuto-8 2WD Gasoline CA U2 California LEV-II ULEV DBMXJ02.0N20 midsize car 6 24 34 28 7 yes 2013 BMW ActiveHybrid 5 3 6 SemiAuto-8 2WD Gasoline CA U2 California LEV-II ULEV DBMXV03.0AH5 midsize car 6 23 30 26 7 yes 2013 BUICK Lacrosse 2.4 4 SemiAuto-6 2WD Gasoline FA B5 Federal Tier 2 Bin 5 DGMXV02.4060 midsize car 5 25 36 29 8 yes 2013 BUICK Lacrosse 2.4 4 SemiAuto-6 2WD Gasoline CA L2 California LEV-II LEV DGMXV02.4060 midsize car 5 25 36 29 8 yes 2013 BUICK Regal

229

Model Year 2013-2014 SmartWay Station Wagons Year Model Displ  

NLE Websites -- All DOE Office Websites (Extended Search)

Station Wagons Station Wagons Year Model Displ Cyl Trans Drive Fuel Sales Area Stnd Stnd Description Underhood ID Veh Class Smog Rating City MPG Hwy MPG Cmb MPG Greenhouse Gas Rating SmartWay 2013 AUDI A3 2 4 AMS-6 2WD Diesel FA B5 Federal Tier 2 Bin 5 DVWXV02.0U5N station wagon 5 30 42 34 8 yes 2013 AUDI A3 2 4 AMS-6 2WD Diesel CA U2 California LEV-II ULEV DVWXV02.0U5N station wagon 6 30 42 34 8 yes 2013 HONDA Fit N/A N/A Auto-1 2WD Electricity FA B1 Federal Tier 2 Bin 1 DHNXV00.05ET station wagon 10 132 105 118 10 yes 2013 HONDA Fit N/A N/A Auto-1 2WD Electricity CA ZEV California ZEV DHNXV00.05ET station wagon 10 132 105 118 10 yes 2013 HONDA Fit 1.5 4 Auto-5 2WD Gasoline FA B5 Federal Tier 2 Bin 5 DHNXV01.5JB2 station wagon 5 28 35 31 8 yes 2013 HONDA Fit 1.5 4 Auto-5 2WD Gasoline CA U2 California LEV-II ULEV DHNXV01.5JB2 station wagon 6 28 35 31 8 yes 2013 HONDA Fit 1.5 4 Man-5 2WD

230

Modeling the fast fill process in natural gas vehicle storage cylinders  

DOE Green Energy (OSTI)

The on-board storage capacity of natural gas vehicles (NGVs) is a critical issue to the wide spread marketing of these alternate fueled vehicles. Underfilling of NGV cylinders, during fast fill (< 5 min.) charging operations, can occur at fueling stations, at ambient temperatures greater than 50{degrees}F or 60{degrees}F. The resulting reduced driving range of the vehicle is a serious obstacle which the gas industry is striving to overcome, without resorting to unnecessarily high fueling station pressures, or by applying extensive overpressurization of the cylinder during the fueling operation. Undercharged storage cylinders are a result of the elevated temperature which occurs in the NGV storage cylinder, due to compression and other processes which have not, to the author`s knowledge, been analyzed and documented to date. This paper presents a model and solution methodology which quantifies the cylinder undercharging phenomena which occurs during rapid (< 5 min.) fueling. The effects of heat transfer from the cylinder gas to its constraining walls and ambient are considered in the model analysis. The ramifications of the results on fueling station and cylinder designs are discussed. Suggestions are made for controlled experimental programs to verify the theoretical results, and for fueling station design studies which could minimize or eliminate cylinder underfilling.

Kountz, K.J.

1994-09-01T23:59:59.000Z

231

Engine Selection, Modeling, and Control Development for an Extended Range Electric Vehicle.  

E-Print Network (OSTI)

??Increased pressure for fuel economy improvement in combination with rapid development of battery technology has brought focus to new vehicle architectures like: hybrid electric vehicles… (more)

Cooley, Robert Bradley

2010-01-01T23:59:59.000Z

232

Modeling and Design Optimization of Plug-In Hybrid Electric Vehicle Powertrains.  

E-Print Network (OSTI)

??Hybrid electric vehicles (HEVs) were introduced in response to rising environmental challenges facing the automotive sector. HEVs combine the benefits of electric vehicles and conventional… (more)

Chehresaz, Maryyeh

2013-01-01T23:59:59.000Z

233

System Modeling and Energy Management Strategy Development for Series Hybrid Vehicles .  

E-Print Network (OSTI)

??A series hybrid electric vehicle is a vehicle that is powered by both an engine and a battery pack. An electric motor provides all of… (more)

Cross, Patrick Wilson

2008-01-01T23:59:59.000Z

234

Increased understanding of hybrid vehicle design through modeling, simulation, and optimization.  

E-Print Network (OSTI)

??Vehicle design is constantly changing and improving due to the technologically driven nature of the automotive industry, particularly in the hybridization and electrification of vehicle… (more)

Geller, Benjamin M. (Benjamin Michael)

2010-01-01T23:59:59.000Z

235

Introduction to the OR Forum Article: “Modeling the Impacts of Electricity Tariffs on Plug-in Hybrid Electric Vehicle Charging, Costs, and Emissions” by Ramteen Sioshansi  

Science Conference Proceedings (OSTI)

Comment on “Modeling the Impacts of Electricity Tariffs on Plug-In Hybrid Electric Vehicle Charging, Costs, and Emissions” by Ramteen Sieshansi. Keywords: energy, environment, plug-in hybrid electric vehicles, pricing

Edieal J. Pinker

2012-05-01T23:59:59.000Z

236

Modeling the effect of engine assembly mass on engine friction and vehicle fuel economy  

DOE Green Energy (OSTI)

In this paper, an analytical model is developed to estimate the impact of reducing engine assembly mass (the term engine assembly refers to the moving components of the engine system, including crankshafts, valve train, pistons, and connecting rods) on engine friction and vehicle fuel economy. The relative changes in frictional mean effective pressure and fuel economy are proportional to the relative change in assembly mass. These changes increase rapidly as engine speed increases. Based on the model, a 25% reduction in engine assembly mass results in a 2% fuel economy improvement for a typical mid-size passenger car over the EPA Urban and Highway Driving Cycles.

An, Feng [University of California, Riverside, CA (United States); Stodolsky, F. [Argonne National Lab., IL (United States)

1995-06-01T23:59:59.000Z

237

Model Year 2013-2014 SmartWay Small Cars Year Model Displ Cyl  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Cars Small Cars Year Model Displ Cyl Trans Drive Fuel Sales Area Stnd Stnd Description Underhood ID Veh Class Smog Rating City MPG Hwy MPG Cmb MPG Greenhouse Gas Rating SmartWay 2013 ACURA ILX 1.5 4 SCV-7 2WD Gasoline FC B3 Federal Tier 2 Bin 3 DHNXV01.5WF2 small car 7 39 38 38 9 yes 2013 ACURA ILX 1.5 4 SCV-7 2WD Gasoline FA B2 Federal Tier 2 Bin 2 DHNXV01.5YD2 small car 8 39 38 38 9 yes 2013 ACURA ILX 1.5 4 SCV-7 2WD Gasoline CA PZEV California PZEV DHNXV01.5YD2 small car 9 39 38 38 9 yes 2013 ACURA ILX 2 4 SemiAuto-5 2WD Gasoline CA U2 California LEV-II ULEV DHNXV02.0CB2 small car 6 24 35 28 7 yes 2013 ACURA TSX 2.4 4 SemiAuto-5 2WD Gasoline CA U2 California LEV-II ULEV DHNXV02.4DB3 small car 6 22 31 26 7 yes 2013 AUDI A4 2 4 Man-6 4WD Gasoline CA U2 California LEV-II ULEV DADXV02.03UB small car 6 22 32 26 7 yes 2013 AUDI A4 2 4 SCV-8 2WD Gasoline CA U2 California LEV-II ULEV DADXV02.03UB

238

Uncertainty quantification in ground vehicle dynamics through  

E-Print Network (OSTI)

vehicles (Honda Insight, Ford P2000) and up to 5% for full hybrid vehicles (Toyota Prius) Modeled using

Negrut, Dan

239

Heavy Vehicle Systems, Int. J. of Vehicle Design, Vol. 11, Nos. 3/4, 2004 349 Modelling and control of a medium-duty hybrid  

E-Print Network (OSTI)

engine. Keywords: electric vehicles, electric-vehicle simulation, hybrid electric vehicles, hybrid-duty hybrid electric truck', Int. J. of Heavy Vehicle Systems, Vol. 11, Nos. 3/4, pp. 349­370. 1 Introduction. Hybrid-electric vehicles (HEV) appear to be one of the most viable technologies with significant

Peng, Huei

240

Vehicle Technologies Office: Fact #797: September 16, 2013 Driving...  

NLE Websites -- All DOE Office Websites (Extended Search)

driving ranges for electric vehicles (EVs) offered for the 2013 model year (MY). The Tesla Model S has the longest range of any EV offered, ranging from 139 miles for the 40...

Note: This page contains sample records for the topic "vehicles model years" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

UPDATING THE FREIGHT TRUCK STOCK ADJUSTMENT MODEL: 1997 VEHICLE INVENTORY AND USE SURVEY DATA  

NLE Websites -- All DOE Office Websites (Extended Search)

36 36 UPDATING THE FREIGHT TRUCK STOCK ADJUSTMENT MODEL: 1997 VEHICLE INVENTORY AND USE SURVEY DATA Stacy C. Davis November 2000 Prepared for the Energy Information Administration U.S. Department of Energy Prepared by the OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831-6073 managed by UT-BATTELLE, LLC for the U.S. DEPARTMENT OF ENERGY under Contract No. DE-AC05-00OR22725 Updating the FTSAM: 1997 VIUS Data iii TABLE OF CONTENTS ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 OBJECTIVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 VIUS DATA PREPARATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Table 1. Share of Trucks by Fuel Type and Truck Size -

242

Combination, a model vehicle engine and a direct-current generator  

SciTech Connect

This patent describes an engine for a model vehicle and a direct-current generator, comprising: an internal-combustion engine; and a direct-current generator operatively coupled to the engine; wherein the generator comprises an armature, and a drive coupling member drivingly engaged with the armature; the armature has three poles; each of the poles has not less than six hundred turns of magnetic wire; the engine having first means comprising a crankshaft, and second means comprising a connecting rod; and one of the first a second means has means for drivingly engaging the drive coupling for imparting rotation to the generator from the engine.

Williams, G.A.

1987-01-20T23:59:59.000Z

243

New Methodology for Estimating Fuel Economy by Vehicle Class  

SciTech Connect

Office of Highway Policy Information to develop a new methodology to generate annual estimates of average fuel efficiency and number of motor vehicles registered by vehicle class for Table VM-1 of the Highway Statistics annual publication. This paper describes the new methodology developed under this effort and compares the results of the existing manual method and the new systematic approach. The methodology developed under this study takes a two-step approach. First, the preliminary fuel efficiency rates are estimated based on vehicle stock models for different classes of vehicles. Then, a reconciliation model is used to adjust the initial fuel consumption rates from the vehicle stock models and match the VMT information for each vehicle class and the reported total fuel consumption. This reconciliation model utilizes a systematic approach that produces documentable and reproducible results. The basic framework utilizes a mathematical programming formulation to minimize the deviations between the fuel economy estimates published in the previous year s Highway Statistics and the results from the vehicle stock models, subject to the constraint that fuel consumptions for different vehicle classes must sum to the total fuel consumption estimate published in Table MF-21 of the current year Highway Statistics. The results generated from this new approach provide a smoother time series for the fuel economies by vehicle class. It also utilizes the most up-to-date and best available data with sound econometric models to generate MPG estimates by vehicle class.

Chin, Shih-Miao [ORNL; Dabbs, Kathryn [University of Tennessee, Knoxville (UTK); Hwang, Ho-Ling [ORNL

2011-01-01T23:59:59.000Z

244

Vehicle Technologies Office: Lubricants  

NLE Websites -- All DOE Office Websites (Extended Search)

Lubricants to someone by Lubricants to someone by E-mail Share Vehicle Technologies Office: Lubricants on Facebook Tweet about Vehicle Technologies Office: Lubricants on Twitter Bookmark Vehicle Technologies Office: Lubricants on Google Bookmark Vehicle Technologies Office: Lubricants on Delicious Rank Vehicle Technologies Office: Lubricants on Digg Find More places to share Vehicle Technologies Office: Lubricants on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Fuel Effects on Combustion Lubricants Natural Gas Research Biofuels End-Use Research Materials Technologies Lubricants As most vehicles are on the road for more than 15 years before they are retired, investigating technologies that will improve today's vehicles is

245

Chapter 2. Vehicle Characteristics  

U.S. Energy Information Administration (EIA) Indexed Site

2. Vehicle Characteristics 2. Vehicle Characteristics Chapter 2. Vehicle Characteristics U.S. households used a fleet of nearly 157 million vehicles in 1994. Despite remarkable growth in the number of minivans and sport-utility vehicles, passenger cars continued to predominate in the residential vehicle fleet. This chapter looks at changes in the composition of the residential fleet in 1994 compared with earlier years and reviews the effect of technological changes on fuel efficiency (how efficiently a vehicle engine processes motor fuel) and fuel economy (how far a vehicle travels on a given amount of fuel). Using data unique to the Residential Transportation Energy Consumption Survey, it also explores the relationship between residential vehicle use and family income.

246

Energy Storage Fuel Cell Vehicle Analysis: Preprint  

DOE Green Energy (OSTI)

In recent years, hydrogen fuel cell (FC) vehicle technology has received considerable attention as a strategy to decrease oil consumption and reduce harmful emissions. However, the cost, transient response, and cold performance of FC systems may present significant challenges to widespread adoption of the technology for transportation in the next 15 years. The objectives of this effort were to perform energy storage modeling with fuel cell vehicle simulations to quantify the benefits of hybridization and to identify a process for setting the requirements of ES for hydrogen-powered FC vehicles for U.S. Department of Energy's Energy Storage Program.

Markel, T.; Pesaran, A.; Zolot, M.; Sprik, S.; Tataria, H.; Duong, T.

2005-04-01T23:59:59.000Z

247

Energy Storage Fuel Cell Vehicle Analysis  

DOE Green Energy (OSTI)

In recent years, hydrogen fuel cell (FC) vehicle technology has received considerable attention as a strategy to decrease oil consumption and reduce harmful emissions. However, the cost, transient response, and cold performance of FC systems may present significant challenges to widespread adoption of the technology for transportation in the next 15 years. The objectives of this effort were to perform energy storage modeling with fuel cell vehicle simulations to quantify the benefits of hybridization and to identify a process for setting the requirements of ES for hydrogen-powered FC vehicles for U.S. Department of Energy?s Energy Storage Program.

Pesaran, A.; Markel, T.; Zolot, M.; Sprik, S.; Tataria, H.; Duong, T.

2005-08-01T23:59:59.000Z

248

New Mexico Natural Gas % of Total Vehicle Fuel Deliveries (Percent...  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Deliveries (Percent) New Mexico Natural Gas % of Total Vehicle Fuel Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

249

Alternative Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

There are a number of alternative and advanced vehicles—or vehicles that run on alternative fuels. Learn more about the following types of vehicles:

250

Probabilistic evaluation of mobile source air pollution: Volume 1 -- Probabilistic modeling of exhaust emissions from light duty gasoline vehicles. Final report, 1 August 1994--31 May 1997  

Science Conference Proceedings (OSTI)

Emission factors for light duty gasoline vehicles (LDGV) are typically developed based upon laboratory testing of vehicles for prescribed driving cycles. In this project, selected LDGV data sets and modeling assumptions used to develop Mobile5a were revisited. Probabilistic estimates of the inter-vehicle variability in emissions and the uncertainty in fleet average emissions for selected vehicle types and driving cycles were made. Case studies focused upon probabilistic analysis of base emission rate and speed correction estimates used in Mobile5a for throttle body and port fuel injected vehicles. Based upon inter-vehicle variability in the data sets and a probabilistic model in which the standard error terms of regression models employed in Mobile5a are also considered, the uncertainty was estimated for average emission factors for the selected fleets of light duty gasoline vehicles. The 90 percent confidence interval for the average emission factor varied in range with pollutant and driving cycle.

Frey, H.C.; Kini, M.D.

1997-12-01T23:59:59.000Z

251

Advanced Technology Vehicle Testing  

DOE Green Energy (OSTI)

The light-duty vehicle transportation sector in the United States depends heavily on imported petroleum as a transportation fuel. The Department of Energy’s Advanced Vehicle Testing Activity (AVTA) is testing advanced technology vehicles to help reduce this dependency, which would contribute to the economic stability and homeland security of the United States. These advanced technology test vehicles include internal combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban electric vehicles, and electric ground support vehicles. The AVTA tests and evaluates these vehicles with closed track and dynamometer testing methods (baseline performance testing) and accelerated reliability testing methods (accumulating lifecycle vehicle miles and operational knowledge within 1 to 1.5 years), and in normal fleet environments. The Arizona Public Service Alternative Fuel Pilot Plant and H2-fueled vehicles are demonstrating the feasibility of using H2 as a transportation fuel. Hybrid, neighborhood, and urban electric test vehicles are demonstrating successful applications of electric drive vehicles in various fleet missions. The AVTA is also developing electric ground support equipment (GSE) test procedures, and GSE testing will start during the fall of 2003. All of these activities are intended to support U.S. energy independence. The Idaho National Engineering and Environmental Laboratory manages these activities for the AVTA.

James Francfort

2003-11-01T23:59:59.000Z

252

Regional forecasting with global atmospheric models; Third year report  

SciTech Connect

This report was prepared by the Applied Research Corporation (ARC), College Station, Texas, under subcontract to Pacific Northwest Laboratory (PNL) as part of a global climate studies task. The task supports site characterization work required for the selection of a potential high-level nuclear waste repository and is part of the Performance Assessment Scientific Support (PASS) Program at PNL. The work is under the overall direction of the Office of Civilian Radioactive Waste Management (OCRWM), US Department of Energy Headquarters, Washington, DC. The scope of the report is to present the results of the third year`s work on the atmospheric modeling part of the global climate studies task. The development testing of computer models and initial results are discussed. The appendices contain several studies that provide supporting information and guidance to the modeling work and further details on computer model development. Complete documentation of the models, including user information, will be prepared under separate reports and manuals.

Crowley, T.J.; North, G.R.; Smith, N.R. [Applied Research Corp., College Station, TX (United States)

1994-05-01T23:59:59.000Z

253

Modeling of Plug-in Electric Vehicles Interactions with a Sustainable Community Grid in the Azores  

E-Print Network (OSTI)

Benefits Connected to Smart Grids”. In Proceedings of the 7Planning and Operation of Smart Grids with Electric Vehicle

Mendes, Goncalo

2013-01-01T23:59:59.000Z

254

Modeling and Simulation of a Parallel-Series Hybrid Vehicle Based on ADAMS and MATLAB  

Science Conference Proceedings (OSTI)

As the main developing direction of new energy vehicles, hybrid vehicles are highly valued by almost all automobile enterprises. For the automobile enterprises, the most important issue is accelerating the development of hybrid vehicles. The thesis creates ... Keywords: parallel-series, co-simulation, ADAMS, forward simulation

Hao Zhu; Lei Li; Cheng Qian; Yubing Xie

2012-04-01T23:59:59.000Z

255

Property:Buildings/ModelYear | Open Energy Information  

Open Energy Info (EERE)

Buildings/ModelYear Buildings/ModelYear Jump to: navigation, search This is a property of type Date. Pages using the property "Buildings/ModelYear" Showing 12 pages using this property. G General Merchandise 2009 TSD Chicago High Plug Load 50% Energy Savings + 2009 + General Merchandise 2009 TSD Chicago High Plug Load Baseline + 2009 + General Merchandise 2009 TSD Chicago Low Plug Load 50% Energy Savings + 2009 + General Merchandise 2009 TSD Chicago Low Plug Load Baseline + 2009 + General Merchandise 2009 TSD Miami High Plug Load 50% Energy Savings + 2009 + General Merchandise 2009 TSD Miami High Plug Load Baseline + 2009 + General Merchandise 2009 TSD Miami Low Plug Load 50% Energy Savings + 2009 + General Merchandise 2009 TSD Miami Low Plug Load Baseline + 2009 +

256

Clean Cities 2012 Vehicle Buyer's Guide (Brochure)  

Science Conference Proceedings (OSTI)

The expanding availability of alternative fuels and advanced vehicles makes it easier than ever to reduce petroleum use, cut emissions, and save on fuel costs. The Clean Cities 2012 Vehicle Buyer's Guide features a comprehensive list of model year 2012 vehicles that can run on ethanol, biodiesel, electricity, propane or natural gas. Drivers and fleet managers across the country are looking for ways to reduce petroleum use, fuel costs, and vehicle emissions. As you'll find in this guide, these goals are easier to achieve than ever before, with an expanding selection of vehicles that use gasoline or diesel more efficiently, or forego them altogether. Plug-in electric vehicles made a grand entrance onto U.S. roadways in model year (MY) 2011, and their momentum in the market is poised for continued growth in 2012. Sales of the all-electric Nissan Leaf surpassed 8,000 in the fall of 2011, and the plug-in hybrid Chevy Volt is now available nationwide. Several new models from major automakers will become available throughout MY 2012, and drivers are benefiting from a rapidly growing network of charging stations, thanks to infrastructure development initiatives in many states. Hybrid electric vehicles, which first entered the market just a decade ago, are ubiquitous today. Hybrid technology now allows drivers of all vehicle classes, from SUVs to luxury sedans to subcompacts, to slash fuel use and emissions. Alternative fueling infrastructure is expanding in many regions, making natural gas, propane, ethanol, and biodiesel attractive and convenient choices for many consumers and fleets. And because fuel availability is the most important factor in choosing an alternative fuel vehicle, this growth opens up new possibilities for vehicle ownership. This guide features model-specific information about vehicle specs, manufacturer suggested retail price (MSRP), fuel economy, and emissions. You can use this information to compare vehicles and help inform your buying decisions. This guide includes city and highway fuel economy estimates from the U.S. Environmental Protection Agency (EPA). The estimates are based on laboratory tests conducted by manufacturers in accordance with federal regulations. EPA retests about 10% of vehicle models to confirm manufacturer results. Fuel economy estimates are also available on FuelEconomy.gov. For some newer vehicle models, EPA data was not available at the time of this guide's publication; in these cases, manufacturer estimates are provided, if available.

Not Available

2012-03-01T23:59:59.000Z

257

Evaluation Of Potential Hybrid Electric Vehicle Applications: Vol I  

E-Print Network (OSTI)

Air Batteries for Electric Vehicles” E.J.Rudd. SAE 891660.the Soleq Evcort Electric Vehicle”. DOE/ID--10232. Preparedfor Fiscal Year 88, Electric Vehicle Program, February

Gris, Arturo E.

1991-01-01T23:59:59.000Z

258

HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution) Model Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

HyDIVE(tm) HyDIVE(tm) (Hydrogen Dynamic Infrastructure and Vehicle Evolution) model analysis Cory Welch Hydrogen Analysis Workshop, August 9-10 Washington, D.C. Disclaimer and Government License This work has been authored by Midwest Research Institute (MRI) under Contract No. DE- AC36-99GO10337 with the U.S. Department of Energy (the "DOE"). The United States Government (the "Government") retains and the publisher, by accepting the work for publication, acknowledges that the Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for Government purposes. Neither MRI, the DOE, the Government, nor any other agency thereof, nor any of their

259

ORNL light-duty vehicles PC system  

Science Conference Proceedings (OSTI)

This data system, designed by the Oak Ridge National Laboratory (ORNL) and funded by the US Department of Energy (DOE), monitors information on every light-duty vehicle (automobiles and light-duty trucks) sold in the United States since model year 1976. The data are specified in two days. One way is on a model basis (i.e, engine and transmission combinations) and includes data on city, highway, and combined fuel economies; engine size; drive-train; fuel type (gasoline or diesel); interior volume; body type; and other vehicle attributes. The other way is on a make basis (e.g., Ford Escort, Oldsmobile 98) and includes data on sales; Environmental Protection Agency (EPA) size class; the sales-weighted fuel economy; sales-weighted interior volume; sales-weighted engine displacement (cid); curb weight; and other attributes. A unique identification number is assigned to a specific vehicle category. This identification number contains information on the manufacturer, the location of the manufacturer (domestic or import), and the sponsorship of the vehicle (domestic or import). Fuel economies, model year sales and various vehicle characteristics for every make of the 164 million light-duty vehicles sold in the US since model year 1976 can be obtained from this data system. 2 figs., 4 tabs.

Hu, P.S.; Patterson, P.D. (Oak Ridge National Lab., TN (USA))

1989-01-01T23:59:59.000Z

260

Tax and Fee Payments by Motor-Vehicle Users for the Use of Highways, Fuels, and Vehicles: Report #17 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

Enhancement Through Increased Motor-Fuel Tax Enforcement,”1976). L. R. Moran, “Motor Vehicles, Model Year 1991,”Commercial and Industrialb Motor vehiclesc (AVMV USA,Yr )

Delucchi, Mark

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicles model years" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Model documentation: electricity market module. [15 year forecasts  

SciTech Connect

This report documents the electricity market model. This model is a component of the Intermediate Future Forecasting System (IFFS), the energy market model used to provide projections of energy markets up to 15 years into the future. The electricity market model was developed by the Supply Analysis and Integration Branch as part of building the larger system. This report is written for an audience consisting of mathematical economists, statisticians, operations research analysts, and utility planners. This report contains an overview and a mathematical specification of the electricity market module. It includes a description of the model logic and the individual subroutines in the computer code. A companion document Intermediate Future Forecasting System: Executive Summary (DOE/EIA-430) provides an overview of the components in IFFS and their linkages. 22 figures, 2 tables.

Sanders, R.C.; Murphy, F.H.

1984-12-01T23:59:59.000Z

262

NREL: Vehicle Systems Analysis - Related Links  

NLE Websites -- All DOE Office Websites (Extended Search)

information related to NREL's vehicle systems analysis capabilities and R&D activities, including: Models and tools National laboratories Models and Tools NREL's vehicle system...

263

Plug-In Electric Vehicle Infrastructure Installation Guidelines  

Science Conference Proceedings (OSTI)

In the next five years, major automobile manufacturers are poised to deliver over a dozen electric vehicle (EV) and plug-in hybrid electric (PHEV) models. The cost savings to consumers and the positive impact on the environment will be significant. One of the chief remaining obstacles to widespread adoption of electric vehicles, however, is the scarcity of recharging facilities for PEVs.

2009-09-25T23:59:59.000Z

264

Vehicle Technologies Office: Fact #624: May 24, 2010 Corporate...  

NLE Websites -- All DOE Office Websites (Extended Search)

24, 2010 Corporate Average Fuel Economy Standards, Model Years 2012-2016 to someone by E-mail Share Vehicle Technologies Office: Fact 624: May 24, 2010 Corporate Average Fuel...

265

Vehicle Technologies Office: Fact #243: November 18, 2002 Fuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

8, 2002 Fuel Economy Leaders for 2003 Model Year Light Trucks to someone by E-mail Share Vehicle Technologies Office: Fact 243: November 18, 2002 Fuel Economy Leaders for 2003...

266

Vehicle Technologies Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

December 18, 2013 December 18, 2013 USDA Offers $118 Million for Renewable Energy, Smart Grid Projects The U.S. Department of Agriculture (USDA) announced $73 million in funding for renewable energy projects and $45 million for smart grid technology as part of more than $1.8 billion in funding for electric utility infrastructure projects in 25 states and one territory. More December 18, 2013 2012 Fuel Economy of New Vehicles Sets Record High: EPA The U.S. Environmental Protection Agency (EPA) reported that model year 2012 vehicles achieved an all-time high fuel economy average of 23.6 miles per gallon. More December 18, 2013 Energy Department Releases Grid Energy Storage Report The Energy Department released its Grid Energy Storage report to the members of the U.S. Senate Energy and Natural Resources Committee, identifying the benefits and challenges of grid energy storage that must be addressed to enable broader use. More

267

Vermont Natural Gas Vehicle Fuel Consumption (Million Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel Consumption (Million Cubic Feet) Vermont Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

268

Modeling of Plug-in Electric Vehicles Interactions with a Sustainable Community Grid in the Azores  

E-Print Network (OSTI)

in the energy management of microgrid systems. PEVs can beeventually available in a microgrid system. Recentthe link between a microgrid and an electric vehicle can

Mendes, Goncalo

2013-01-01T23:59:59.000Z

269

Modeling, Control and Prototyping of Alternative Energy Storage Systems for Hybrid Vehicles.  

E-Print Network (OSTI)

??Electrochemical batteries are typically considered for secondary energy storage device on hybrid vehicles. Still other forms of energy storage are receiving considerable interest today. In… (more)

Samuel Durair Raj, Kingsly Jebakumar

2012-01-01T23:59:59.000Z

270

Modeling, simulation, and analysis of series hybrid electric vehicles for fuel economy improvement.  

E-Print Network (OSTI)

??A hybrid electric vehicle (HEV) combines a conventional internal combustion engine (ICE) propulsion system with an electric propulsion system. In a series HEV, an electric… (more)

Khandaker, Masuma

2011-01-01T23:59:59.000Z

271

Model-Based Validation of Fuel Cell Hybrid Vehicle Control Systems.  

E-Print Network (OSTI)

??Hydrogen fuel cell technology has emerged as an efficient and clean alternative to internal combustion engines for powering vehicles, and hydrogen powertrains will aid in… (more)

Wilhelm, Erik

2007-01-01T23:59:59.000Z

272

Hybrid electric vehicle powertrain and control system modeling, analysis and design optimization.  

E-Print Network (OSTI)

??Today uncertainties of petroleum supply and concerns over global warming call for further advancement of green vehicles with higher energy efficiency and lower green house… (more)

Zhou, Yuliang Leon

2011-01-01T23:59:59.000Z

273

AVCEM: Advanced Vehicle Cost and Energy Use Model. Overview of AVCEM  

E-Print Network (OSTI)

of the battery, according to the battery cost equations (seediscussion of battery cost above). There actually are twoin the amount and cost of fuel-storage, battery, vehicle

Delucchi, Mark

2005-01-01T23:59:59.000Z

274

Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles  

E-Print Network (OSTI)

electric, methanol, and compressed natural gas vehicles withinclude electric, compressed natural gas (CNG), and methanoltypes: gasoline, compressed natural gas (CNG), methanol, and

Brownstone, David; Bunch, David S; Train, Kenneth

1999-01-01T23:59:59.000Z

275

TTRDC - Light Duty E-Drive Vehicles Monthly Sales Updates  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Duty Electric Drive Vehicles Monthly Sales Updates Currently available electric-drive vehicles (EDV) in the U.S market include hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and all electric vehicles (AEV). Plug-in Vehicles (PEV) include both PHEV and AEV. HEVs debuted in the U.S. market in December 1999 with 17 sales of the first-generation Honda Insight, while the first PHEV (Chevrolet Volt) and AEV (Nissan Leaf) most recently debuted in December 2010. Electric drive vehicles are offered in several car and SUV models, and a few pickup and van models. Historical sales of HEV, PHEV, and AEV are compiled by Argonne's Center for Transportation Research and reported to the U.S. Department of Energy's Vehicle Technology Program Office each month. These sales are shown in Figures 1, 2 and 3. Figure 1 shows monthly new PHEV and AEV sales by model. Figure 2 shows yearly new HEV sales by model. Figure 3 shows electric drive vehicles sales share of total light-duty vehicle (LDV) sales since 1999. Figure 4 shows HEV and PEV sales change with gasoline price..

276

Modeling, Simulation Design and Control of Hybrid-Electric Vehicle Drives  

DOE Green Energy (OSTI)

Ohio State University (OSU) is uniquely poised to establish such a center, with interdisciplinary emphasis on modeling, simulation, design and control of hybrid-electric drives for a number of reasons, some of which are: (1) The OSU Center for Automotive Research (CAR) already provides an infrastructure for interdisciplinary automotive research and graduate education; the facilities available at OSU-CAR in the area of vehicle and powertrain research are among the best in the country. CAR facilities include 31,000 sq. feet of space, multiple chassis and engine dynamometers, an anechoic chamber, and a high bay area. (2) OSU has in excess of 10 graduate level courses related to automotive systems. A graduate level sequence has already been initiated with GM. In addition, an Automotive Systems Engineering (ASE) program cosponsored by the mechanical and electrical engineering programs, had been formulated earlier at OSU, independent of the GATE program proposal. The main objective of the ASE is to provide multidisciplinary graduate education and training in the field of automotive systems to Masters level students. This graduate program can be easily adapted to fulfill the spirit of the GATE Center of Excellence. (3) A program in Mechatronic Systems Engineering has been in place at OSU since 1994; this program has a strong emphasis on automotive system integration issues, and has emphasized hybrid-electric vehicles as one of its application areas. (4) OSU researchers affiliated with CAR have been directly involved in the development and study of: HEV modeling and simulation; electric drives; transmission design and control; combustion engines; and energy storage systems. These activities have been conducted in collaboration with government and automotive industry sponsors; further, the same researchers have been actively involved in continuing education programs in these areas with the automotive industry. The proposed effort will include: (1) The development of a laboratory facility that will include: electric drive and IC engine test benches; a test vehicle designed for rapid installation of prototype drives; benches for the measurement and study of HEV energy storage components (batteries, ultra-capacitors, flywheels); hardware-in-the-loop control system development tools. (2) The creation of new courses and upgrades of existing courses on subjects related to: HEV modeling and simulation; supervisory control of HEV drivetrains; engine, transmission, and electric drive modeling and control. Specifically, two new courses (one entitled HEV Component Analysis: and the other entitled HEV System Integration and Control) will be developed. Two new labs, that will be taught with the courses (one entitled HEV Components Lab and one entitled HEV Systems and Control lab) will also be developed. (3) The consolidation of already existing ties among faculty in electrical and mechanical engineering departments. (4) The participation of industrial partners through: joint laboratory development; internship programs; continuing education programs; research project funding. The proposed effort will succeed because of the already exceptional level of involvement in HEV research and in graduate education in automotive engineering at OSU, and because the PIs have a proven record of interdisciplinary collaboration as evidenced by joint proposals, joint papers, and co-advising of graduate students. OSU has been expanding its emphasis in Automotive Systems for quite some time. This has led to numerous successes such as the establishment of the Center of Automotive Research, a graduate level course sequence with GM, and numerous grants and contracts on automotive research. The GATE Center of Excellence is a natural extension of what educators at OSU already do well.

Giorgio Rizzoni

2005-09-30T23:59:59.000Z

277

Evaluation of an OPNET model for unmanned aerial vehicle (UAV) networks  

Science Conference Proceedings (OSTI)

The concept of Unmanned Aerial Vehicles (UAV) was first used as early as the American Civil War, when the North and the South launched balloons with explosive devices. Since the American Civil War, the UAV concept has been used in some form in subsequent ... Keywords: mobile ad hoc networks, simulation validation, unmanned aerial vehicle

Clifton M. Durham; Todd R. Andel; Kenneth M. Hopkinson; Stuart H. Kurkowski

2009-03-01T23:59:59.000Z

278

An agent-based model to study market penetration of plug-in hybrid electric vehicles  

E-Print Network (OSTI)

of fuel costs, to agent willingness to adopt the PHEV technology, to PHEV purchase price and rebates, to PHEV battery range, and to heuristic values related to gasoline usage. Our simulations indicate of expected lifetime fuel costs associated with different vehicles (e.g., on vehicle stickers

Vermont, University of

279

Incident detection using the Standard Normal Deviate model and travel time information from probe vehicles  

E-Print Network (OSTI)

One application of travel time information explored in this thesis is freeway incident detection. It is vital to develop reliable methods for automatically detecting incidents to facilitate the quick response and removal of incidents before they cause breakdowns in traffic flow. The use of real-time travel time data to monitor freeway conditions has the advantages over conventional loop detectors of taking into account the dynamic, longitudinal nature of traffic flow and requiring data from only a portion of the traffic stream. This study employed the Standard Normal Deviate (SND) Model to test the feasibility of using travel time data to detect lane blocking incidents. The fundamental concept of the SND Model was based on the comparison of real-time travel time data to historical travel time data for given freeway segments during specified times. The travel time and incident reports used were collected through the Real-Time Traffic Information System (RTTIS) in the north freeway corridor of Houston, Texas using probe vehicles equipped with cellular telephones. The data were compiled on 39 freeway links from October 1991 through August 1992 on weekdays during morning and afternoon data collection periods. The results of incident detection tests, applying the SND Model to incident and travel time me data from the North Freeway, indicated high successful incident detection rates. However, high false alarm rates also resulted from the SND Model test applications. An optimum SND value of 2.0 was observed for the North Freeway test data. At this value the SND tests produced successful incident detection rates of 70 percent and higher during both the morning and afternoon periods. False alarm rates were also 70 percent. The best results were achieved on those freeway sections where the most incident and travel time data had been collected. The overall results of the incident detection tests on the North Freeway demonstrated that the SND Model was a feasible incident detection algorithm, but required an extensive historical travel time data base.

Mountain, Christopher Eugene

1993-01-01T23:59:59.000Z

280

Vehicle Technologies Office: Lubricants  

NLE Websites -- All DOE Office Websites (Extended Search)

Lubricants Lubricants As most vehicles are on the road for more than 15 years before they are retired, investigating technologies that will improve today's vehicles is essential. Because 11.5 percent of fuel energy is consumed by engine friction, decreasing this friction through lubricants can lead to substantial improvements in the fuel economy of current vehicles, without needing to wait for the fleet to turn over. In fact, a 1 percent fuel savings in the existing vehicle fleet possible through lubricants could save 97 thousand barrels of oil a day or $3.5 billion a year. Because of these benefits, the Vehicle Technologies Office supports research on lubricants that can improve the efficiency of internal combustion engine vehicles, complementing our work on advanced combustion engine technology.

Note: This page contains sample records for the topic "vehicles model years" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Energy Basics: Electric Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

282

Energy Basics: Propane Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

283

Energy Basics: Alternative Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

284

Energy Basics: Alternative Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

fuels. Learn more about the following types of vehicles: Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

285

Utah Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic...  

Annual Energy Outlook 2012 (EIA)

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Utah Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

286

Ohio Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic...  

Annual Energy Outlook 2012 (EIA)

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Ohio Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

287

Idaho Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Idaho Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

288

Iowa Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Iowa Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

289

Nevada Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Nevada Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

290

Kansas Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Kansas Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

291

Oregon Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Oregon Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

292

Texas Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Texas Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

293

EERE: Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies Office and initiatives, using efficient vehicles, and access vehicle and fuel information. Photo of a ethanol and biodiesel fueling station Photo of three big-rig...

294

A comparison of modeled and measured energy use in hybrid electric vehicles  

DOE Green Energy (OSTI)

CarSim 2.5.4, written by AeroVironment, Inc. of Monrovia, California and SIMPLEV 3.0, written by Idaho National Engineering Laboratory were used to simulate two series-configured hybrid electric vehicles that competed in the 1994 Hybrid Electric Vehicle Challenge. Vehicle speed and battery energy use were measured over a 0.2-km maximum effort acceleration and a 58-km range event. The simulations` predictions are compared to each other and to measured data. A rough uncertainty analysis of the validation is presented. The programs agree with each other to within 5% and with the measured energy data within the uncertainty of the experiment.

Cuddy, M.

1995-01-01T23:59:59.000Z

295

Evaluation of fuel consumption potential of medium and heavy duty vehicles through modeling and simulation.  

SciTech Connect

The main objective of this report is to provide quantitative data to support the Committee in its task of establishing a report to support rulemaking on medium- and heavy-duty fuel efficiency improvement. In particular, it is of paramount importance for the Committee to base or illustrate their conclusions on established models and actual state-of-the art data. The simulations studies presented in the report have been defined and requested by the members of the National Academy committee to provide quantitative inputs to support their recommendations. As such, various technologies and usage scenarios were considered for several applications. One of the objective is to provide the results along with their associated assumptions (both vehicle and drive cycles), information generally missing from public discussions on literature search. Finally, the advantages and limitations of using simulation will be summarized. The study addresses several of the committee tasks, including: (1) Discussion of the implication of metric selection; (2) Assessing the impact of existing technologies on fuel consumption through energy balance analysis (both steady-state and standard cycles) as well as real world drive cycles; and (3) Impact of future technologies, both individually and collectively.

Delorme, A.; Karbowski, D.; Sharer, P.; Energy Systems

2010-03-31T23:59:59.000Z

296

YEAR  

National Nuclear Security Administration (NNSA)

1 1 YEAR 2011 Males 18 Females 23 YEAR 2011 SES 2 EJ/EK 2 NQ (Prof/Tech/Admin) 35 NU (Tech/Admin Support) 2 YEAR 2011 American Indian Male 1 American Indian Female 2 African American Male 3 African American Female 9 Asian Male 0 Asian Female 0 Hispanic Male 2 Hispanic Female 6 White Male 12 White Female 6 DIVERSITY Workforce Diversity Associate Administrator for Information Management & Chief Information Officer, NA-IM As of Sep 24, 2011 PAY PLAN TOTAL WORKFORCE GENDER 18 43.9% 23 56.1% Gender Males Females 4.9% 4.9% 85.4% 4.9% Pay Plan SES EJ/EK NQ (Prof/Tech/Admin) NU (Tech/Admin Support) 2.4% 4.9% 7.3% 22.0% 0.0% 0.0% 4.9% 14.6% 29.3% 14.6% Race and Gender American Indian Male American Indian Female African American Male African American Female Asian Male Asian Female Hispanic Male

297

YEAR  

National Nuclear Security Administration (NNSA)

4 4 YEAR 2011 Males 21 Females 23 YEAR 2011 SES 3 EJ/EK 1 EN 03 1 NN (Engineering) 3 NQ (Prof/Tech/Admin) 31 NU (Tech/Admin Support) 5 YEAR 2011 American Indian Male 0 American Indian Female 0 African American Male 1 African American Female 2 Asian Male 1 Asian Female 1 Hispanic Male 6 Hispanic Female 10 White Male 13 White Female 10 DIVERSITY Workforce Diversity Office of General Counsel, NA-GC As of Sep 24, 2011 PAY PLAN TOTAL WORKFORCE GENDER 21 47.7% 23 52.3% Gender Males Females 6.8% 2.3% 2.3% 6.8% 70.5% 11.4% Pay Plan SES EJ/EK EN 03 NN (Engineering) NQ (Prof/Tech/Admin) NU (Tech/Admin Support) 0.0% 0.0% 2.3% 4.5% 2.3% 2.3% 13.6% 22.7% 29.5% 22.7% Race and Gender American Indian Male American Indian Female African American Male African American Female Asian Male Asian Female Hispanic Male

298

YEAR  

National Nuclear Security Administration (NNSA)

6 6 YEAR 2011 Males 7 Females 9 YEAR 2011 SES 1 NQ (Prof/Tech/Admin) 9 GS 15 2 GS 13 2 GS 12 1 GS 11 1 YEAR 2011 American Indian Male 0 American Indian Female 0 African American Male 1 African American Female 3 Asian Male 1 Asian Female 0 Hispanic Male 1 Hispanic Female 0 White Male 4 White Female 6 DIVERSITY Workforce Diversity Associate Administrator of External Affairs, NA-EA As of Sep 24, 2011 PAY PLAN TOTAL WORKFORCE GENDER 7 43.8% 9 56.3% Gender Males Females 6.3% 56.3% 12.5% 12.5% 6.3% 6.3% Pay Plan SES NQ (Prof/Tech/Admin) GS 15 GS 13 GS 12 GS 11 0.0% 0.0% 6.3% 18.8% 6.3% 0.0% 6.3% 0.0% 25.0% 37.5% Race and Gender American Indian Male American Indian Female African American Male African American Female Asian Male Asian Female Hispanic Male Hispanic Female White Male White Female FY11 Workforce Diversity

299

YEAR  

National Nuclear Security Administration (NNSA)

40 40 YEAR 2011 Males 68 Females 72 YEAR 2011 SES 5 EJ/EK 1 NN (Engineering) 16 NQ (Prof/Tech/Admin) 115 NU (Tech/Admin Support) 3 YEAR 2011 American Indian Male 1 American Indian Female 2 African American Male 3 African American Female 7 Asian Male 4 Asian Female 0 Hispanic Male 25 Hispanic Female 26 White Male 35 White Female 37 DIVERSITY Workforce Diversity Associate Administrator for Acquistion & Project Management, NA-APM As of Sep 24, 2011 PAY PLAN TOTAL WORKFORCE GENDER 68 48.6% 72 51.4% Gender Males Females 3.6% 0.7% 11.4% 82.1% 2.1% Pay Plan SES EJ/EK NN (Engineering) NQ (Prof/Tech/Admin) NU (Tech/Admin Support) 0.7% 1.4% 2.1% 5.0% 2.9% 0.0% 17.9% 18.6% 25.0% 26.4% Race and Gender American Indian Male American Indian Female African American Male African American Female Asian Male

300

Verification of a six-degree of freedom simulation model for the REMUS autonomous underwater vehicle  

E-Print Network (OSTI)

mproving the performance of modular, low-cost autonomous underwater vehicles (AUVs) in such applications as long-range oceanographic survey, autonomous docking, and shallow-water mine countermeasures requires improving the ...

Prestero, Timothy (Timothy Jason), 1970-

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicles model years" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

A Transactions Choice Model for Forecasting Demand for Alternative-Fuel Vehicles  

E-Print Network (OSTI)

compressednatural gas (CNG), methanol, and electric (EV).avallabday for ded;cated CNG vehicle Service s~atlon avada~CNO’Statmn Wagon (dummy) CNG’*Van(dummy) CNG-~Utlhty(dummy)

Brownstone, David; Bunch, David S; Golob, Thomas F; Ren, Weiping

1996-01-01T23:59:59.000Z

302

A Transaction Choice Model for Forecasting Demand for Alternative-Fuel Vehicles  

E-Print Network (OSTI)

compressednatural gas (CNG), methanol, and electric (EV).avallabday for ded;cated CNG vehicle Service s~atlon avada~CNO’Statmn Wagon (dummy) CNG’*Van(dummy) CNG-~Utlhty(dummy)

Brownstone, David; Bunch, David S.; Golob, Thomas F.; Ren, Weiping

1996-01-01T23:59:59.000Z

303

The electric vehicle experiment : developing the theoretical model for 2.672  

E-Print Network (OSTI)

The purpose of this project was to develop a computer simulation of the proposed 2.672 electric vehicle experiment (EVE) to estimate the magnitudes of the powers required in different components of the drive train, piecewise ...

Zedler, Matthew R. (Matthew Robert)

2007-01-01T23:59:59.000Z

304

Electric vehicle charging infrastructure deployment : policy analysis using a dynamic behavioral spatial model  

E-Print Network (OSTI)

The United States government is committed to promoting a market for electric vehicles. To ensure that this electrification program does not result in the same failure that has come be associated with its predecessor programs, ...

Kearney, Michael J. (Michael Joseph)

2011-01-01T23:59:59.000Z

305

Modeling of Plug-in Electric Vehicles Interactions with a Sustainable Community Grid in the Azores  

E-Print Network (OSTI)

stored electricity) Battery capacity (each vehicle) 16 kWhcan use this additional battery capacity to lower its energyto 21h. This stationary battery capacity is fully charged by

Mendes, Goncalo

2013-01-01T23:59:59.000Z

306

Hybrid Vehicle Technology - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

* Batteries * Batteries * Modeling * Testing Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Hybrid Vehicle Technology revolutionize transportation Argonne's Research Argonne researchers are developing and testing various hybrid electric vehicles (HEVs) and their components to identify the technologies, configurations, and engine control strategies that provide the best combination of high fuel economy and low emissions. Vehicle Validation Argonne also serves as the lead laboratory for hardware-in-the-loop (HIL) and technology validation for the U.S. Department of Energy (DOE). HIL is a

307

SP-100 operational life model. Fiscal Year 1990 annual report  

DOE Green Energy (OSTI)

This report covers the initial year`s effort in the development of an Operational Life Model (OLM) for the SP-100 Space Reactor Power System. The initial step undertaken in developing the OLM was to review all available documentation from GE on their plans for the OLM and on the degradation and failure mechanisms envisioned for the SP-100. In addition, the DEGRA code developed at JPL, which modelled the degradation of the General Purpose Heat Source based Radioisotope Thermoelectric Generator (GPHS-RTG), was reviewed. Based on the review of the degradation and failure mechanisms, a list of the most pertinent degradation effects along with their key degradation mechanisms was compiled. This was done as a way of separating the mechanisms from the effects and allowing all of the effects to be incorporated into the OLM. The emphasis was on parameters which will tend to change performance as a function of time and not on those that are simply failures without any prior degradation.

Ewell, R.; Awaya, H.

1990-12-14T23:59:59.000Z

308

Efficiency and Loss Models for Key Electronic Components of Hybrid and Plug-in Hybrid Electric Vehicles' Electrical Propulsion Systems  

DOE Green Energy (OSTI)

Isolated gate bipolar transistors (IGBTs) are widely used in power electronic applications including electric, hybrid electric, and plug-in hybrid electric vehicles (EVs, HEVs, and PHEVs). The trend towards more electric vehicles (MEVs) has demanded the need for power electronic devices capable of handling power in the range of 10-100 kW. However, the converter losses in this power range are of critical importance. Therefore, thermal management of the power electronic devices/converters is crucial for the reliability and longevity of the advanced vehicles. To aid the design of heat exchangers for the IGBT modules used in propulsion motor drives, a loss model for the IGBTs is necessary. The loss model of the IGBTs will help in the process of developing new heat exchangers and advanced thermal interface materials by reducing cost and time. This paper deals with the detailed loss modeling of IGBTs for advanced electrical propulsion systems. An experimental based loss model is proposed. The proposed loss calculation method utilizes the experimental data to reconstruct the loss surface of the power electronic devices by means of curve fitting and linear extrapolating. This enables the calculation of thermal losses in different voltage, current, and temperature conditions of operation. To verify the calculation method, an experimental test set-up was designed and built. The experimental set-up is an IGBT based bi-directional DC/DC converter. In addition, simulation results are presented to verify the proposed calculation method.

Cao, J.; Bharathan, D.; Emadi, A.

2007-01-01T23:59:59.000Z

309

News and Information about Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

New & Upcoming Electric Vehicles New Models for 2014 Vehicle EPA MPGE Estimates* Price (MSRP) Chevrolet Spark EV Subcompact Car Chevrolet Spark EV Chart: City, 128 mpge; Highway,...

310

Electric and Hybrid Vehicle Program, Site Operator Program. Quarterly progress report, October--December 1995 (first quarter of fiscal year 1996)  

DOE Green Energy (OSTI)

This is the Site Operator Program quarterly report for USDOE electric and hybrid vehicle research. Its mission now includes the three major activity categories of advancement of electric vehicle (EV) technologies, development of infrastructure elements needed to support significant EV use and increasing public awareness and acceptance of EVs. The 11 Site Operator Program participants, their geographic locations, and the principal thrusts of their efforts are identified. The EV inventories of the site operators totals about 250 vehicles. The individual fleets are summarized.

Francfort, J.E. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Bassett, R.R. [Sandia National Labs., Albuquerque, NM (United States); Briasco, S. [Los Angeles Dept. of Water and Power, CA (United States)] [and others

1996-03-01T23:59:59.000Z

311

Real-World Emissions from Model Year 1993, 2000, and 2010 Passenger Cars  

E-Print Network (OSTI)

types produced by vehicle manufacturers after 1993 isin many cases the manufacturers' vehicle design conforms toand several Japanese- manufacturer vehicles. (Note that the

Ross, M.

2010-01-01T23:59:59.000Z

312

Years  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology in and Technology in the National Interest 60 Years of Excellence Lawrence Livermore National Laboratory FY 2012 Annual Report About the Cover: Lawrence Livermore National Laboratory (LLNL) engineers Chris Spadaccini (left) and Eric Duoss are shown experimenting with direct ink-writing to create micro- to macroscale structures with extreme precision. The Laboratory is advancing this process and other additive manufacturing technologies to develop new materials with extraordinary properties for use in a wide range of national-security and other applications. About the Laboratory: Lawrence Livermore National Laboratory was founded in 1952 to enhance the security of the United States by advancing nuclear weapons science and technology. With a talented and dedicated workforce and

313

Electric and hybrid vehicle program, site operator program quarterly progress report for April through June 1996 (third quarter of fiscal year 1996)  

DOE Green Energy (OSTI)

The US Department of Energy (DOE) Site Operator Program was initially established to meet the requirements of the Electric and Hybrid Vehicle Research, Development, and Demonstration Act of 1976. The Program has since evolved in response to new legislation and interests. The goals of the Site Operator Program include the field evaluation of electric vehicles (EVs) in real-world applications and environments; the advancement of electric vehicle technologies; the development of infrastructure elements necessary to support significant electric vehicle use; and increasing the awareness and acceptance of EVs by the public. The Site Operator Program currently consists of eleven participants under contract and two other organizations that have data-sharing agreements with the Program (Table ES-1). Several national organizations have joined DOE to further the introduction and awareness of electric vehicles, including: (1) EVAmerica (a utility program) and DOE conduct performance and evaluation tests to support market development for electric vehicles; and (2) DOE, the Department of Transportation, the Electric Transportation Coalition, and the Electric Vehicle Association of the Americas are conducting a series of workshops to encourage urban groups in Clean Cities (a DOE program) to initiate the policies and infrastructure development necessary to support large-scale demonstrations, and ultimately the mass market use, of electric vehicles. The current focus of the Program is the collection and dissemination of EV operations and performance data to aid in the evaluation of real-world EV use. This report contains several sections with vehicle evaluation as a focus.

Francfort, J. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Bassett, R.R. [Sandia National Labs., Albuquerque, NM (United States); Briasco, S. [Los Angeles Dept. of Water and Power, CA (United States)] [and others

1997-01-01T23:59:59.000Z

314

California Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) California Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

315

Michigan Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Michigan Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

316

Colorado Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Colorado Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

317

Minnesota Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Minnesota Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

318

Arkansas Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Arkansas Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

319

Tennessee Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Tennessee Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

320

Virginia Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Virginia Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

Note: This page contains sample records for the topic "vehicles model years" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Illinois Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Illinois Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

322

Massachusetts Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Massachusetts Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

323

Florida Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Florida Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

324

Mississippi Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Mississippi Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

325

Arizona Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Arizona Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

326

Montana Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Montana Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

327

Oklahoma Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Oklahoma Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

328

Wisconsin Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Wisconsin Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

329

Connecticut Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Connecticut Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

330

Wyoming Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Wyoming Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

331

Indiana Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Indiana Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

332

Maryland Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Maryland Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

333

Nebraska Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Nebraska Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

334

Georgia Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Georgia Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

335

Washington Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Washington Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

336

Missouri Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Missouri Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

337

Louisiana Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Louisiana Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

338

Delaware Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Delaware Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

339

Alabama Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Alabama Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

340

Kentucky Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Kentucky Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

Note: This page contains sample records for the topic "vehicles model years" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

New Mexico Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

Annual Energy Outlook 2012 (EIA)

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) New Mexico Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

342

Generic Disposal System Modeling--Fiscal Year 2011 Progress Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

12/2011 12/2011 Rev. 2 FCRD- T10-201 0-00005 FCRD Technical Integration Office (TIO) DOCUMENT NUMBER REQUEST TRANSMITTAL SHEET 1. Document Information Document Title/Description: Generic Disposal System Modeling--Fiscal Year 2011 Revision: 0 Progress Re~ort Assigned Document Number: FCRD-USED-2011-000184 Effective Start Date: 08/1112011 Document Author/Creator: D. Clayton, G. Freeze, T. Hadgu, E. Hardin, J. Lee, OR .~: J. Prouty, R. Rogers, W.M. Nutt, J. Berkholzer, H.H. Liu, L. Zheng, S. Chu Document Owner: Palmer Vaughn Date Range: Originating Organization: Sandia National Laboratories From: To: Milestone OM1 ~M2 OM3 ~M4 o Not a Milestone Milestone Number:: M21UF034101 and M41UF035102 Work Package WBS Number: FTSN11 UF0341 and FTSN11 UF0351; 1.02.08.03 Controlled Unclassified Infonnation (CUI) Type ~ None OOUO OAT o Other FCRD SYSTEM: Year: o FUEL Fuels 2011 OINTL International

343

Semiotics and Advanced Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Why it Matters to Consumers  

E-Print Network (OSTI)

Would You Buy a Hybrid Vehicle? Study #715238, conducted forGolf 12,000 miles/year Hybrid Vehicle 5a. Did you have toYellow Flag on 'Green' Hybrid Vehicles. Los Angeles Times. 7

Heffner, Reid R.

2007-01-01T23:59:59.000Z

344

Which Vehicles Are Tested  

NLE Websites -- All DOE Office Websites (Extended Search)

Which Vehicles Are Tested Which Vehicles Are Tested Popular Vehicles Exempt from Federal Fuel Economy Standards Prior to 2011 Pickups SUVs Vans Manufacturer Model Chevrolet Avalanche 2500 Series ¾ Ton Silverado 2500/3500 Series Dodge RAM 2500/3500 Series Ford F-250/350 Series GMC Sierra 2500/3500 Series Manufacturer Model Chevrolet Suburban ¾ Ton* Ford Excursion§ GMC Yukon XL ¾ Ton* Hummer H1§ and H2§ Manufacturer Model Chevrolet Express 2500 Passenger* Express 3500 Cargo Ford E Series Passenger (w/ 6.8L Triton or 6.0L Diesel Engine)* E Series Cargo (w/ 6.8L Triton or 6.0L Diesel Engine) GMC Savanna 2500/3500 Passenger* Savanna 3500 Cargo Note: These vehicles are given as examples. This is not a comprehensive list. * No longer exempt as of 2011 § No longer made Manufacturers do not test every new vehicle offered for sale. They are only

345

Application of Distribution Transformer Thermal Life Models to Electrified Vehicle Charging Loads Using Monte-Carlo Method: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

Application of Distribution Application of Distribution Transformer Thermal Life Models to Electrified Vehicle Charging Loads Using Monte-Carlo Method Preprint Michael Kuss, Tony Markel, and William Kramer Presented at the 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition Shenzhen, China November 5 - 9, 2010 Conference Paper NREL/CP-5400-48827 January 2011 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.

346

NREL: Vehicles and Fuels Research - Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Publications NREL researchers document their findings in technical reports, conference papers, journal articles, and fact sheets. Visit the following online resources to find publications about alternative and advanced transportation technologies and systems. NREL Publications Database This database features a wide variety of publications produced by NREL from 1977 to the present. Search the database or find publications according to these popular key words: Advanced vehicles and systems | Alternative fuels | Batteries | Electric vehicles | Energy storage | Fuel cell vehicles | Hybrid electric vehicles | Plug-in electric vehicles | Vehicle analysis | Vehicle modeling | Vehicle emissions Selected Publications Read selected publications related to our vehicles and fuels projects:

347

Advanced Vehicle Testing Activity: Urban Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Urban Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Urban Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Urban...

348

Advanced Vehicle Testing Activity: Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Hybrid Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Hybrid...

349

Advanced Vehicle Testing Activity: Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Neighborhood Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing...

350

Advanced Vehicle Testing Activity: Urban Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Urban Electric Vehicles Toyota Urban Electric Vehicle Urban electric vehicles (UEVs) are regular passenger vehicles with top speeds of about 60 miles per hour (mph) and a...

351

Power management of plug-in hybrid electric vehicles using neural network based trip modeling  

Science Conference Proceedings (OSTI)

The plug-in hybrid electric vehicles (PHEV), utilizing more battery power, has become a next-generation HEV with great promise of higher fuel economy. Global optimization charge-depletion power management would be desirable. This has so far been hampered ...

Qiuming Gong; Yaoyu Li; Zhongren Peng

2009-06-01T23:59:59.000Z

352

Technology Optimization Process for Heavy Hybrid Electric Vehicle Systems Using Computational Models  

DOE Green Energy (OSTI)

We have developed a computer-based technology optimization process to define vehicle systems that meet specified goals and constraints using a minimum amount of resources. In this paper, we describe the technology optimization process, with a focus on technical target setting, and illustrate its use with a simple example.

OKeefe, M.; Walkowicz, K.; Hendricks, T.

2005-01-01T23:59:59.000Z

353

Effect of Intake Air Filter Condition on Light-Duty Gasoline Vehicles  

SciTech Connect

Proper maintenance can help vehicles perform as designed, positively affecting fuel economy, emissions, and the overall drivability. This effort investigates the effect of one maintenance factor, intake air filter replacement, with primary focus on vehicle fuel economy, but also examining emissions and performance. Older studies, dealing with carbureted gasoline vehicles, have indicated that replacing a clogged or dirty air filter can improve vehicle fuel economy and conversely that a dirty air filter can be significantly detrimental to fuel economy. The effect of clogged air filters on the fuel economy, acceleration and emissions of five gasoline fueled vehicles is examined. Four of these were modern vehicles, featuring closed-loop control and ranging in model year from 2003 to 2007. Three vehicles were powered by naturally aspirated, port fuel injection (PFI) engines of differing size and cylinder configuration: an inline 4, a V6 and a V8. A turbocharged inline 4-cylinder gasoline direct injection (GDI) engine powered vehicle was the fourth modern gasoline vehicle tested. A vintage 1972 vehicle equipped with a carburetor (open-loop control) was also examined. Results reveal insignificant fuel economy and emissions sensitivity of modern vehicles to air filter condition, but measureable effects on the 1972 vehicle. All vehicles experienced a measured acceleration performance penalty with clogged intake air filters.

Thomas, John F [ORNL; Huff, Shean P [ORNL; West, Brian H [ORNL; Norman, Kevin M [ORNL

2012-01-01T23:59:59.000Z

354

Search by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Type Select Year... 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000...

355

TIMEOPTIMAL CONTROL FOR UNDERWATER VEHICLES  

E-Print Network (OSTI)

TIME­OPTIMAL CONTROL FOR UNDERWATER VEHICLES M. Chyba #,1 N.E. Leonard #,1 E.D. Sontag ##,2 problems for a special class of controlled mechanical systems, underwater vehicles. Lie algebras associated­optimal trajectories. We apply the general theory to a model of an underwater vehicle and illustrate our results

Sontag, Eduardo

356

Vehicle Technologies Office: 2010 Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

0 Archive to someone 0 Archive to someone by E-mail Share Vehicle Technologies Office: 2010 Archive on Facebook Tweet about Vehicle Technologies Office: 2010 Archive on Twitter Bookmark Vehicle Technologies Office: 2010 Archive on Google Bookmark Vehicle Technologies Office: 2010 Archive on Delicious Rank Vehicle Technologies Office: 2010 Archive on Digg Find More places to share Vehicle Technologies Office: 2010 Archive on AddThis.com... 2010 Archive #655 New Freight Analysis Tool December 27, 2010 #654 New Light Vehicle Leasing is Big in 2010 December 20, 2010 #653 Import Cars and Trucks Gaining Ground December 13, 2010 #652 U.S. Crude Oil Production Rises December 6, 2010 #651 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 November 29, 2010 #650 Diesel Fuel Prices hit a Two-Year High November 22, 2010

357

Vehicle Technologies Office: Vehicle Technologies Office Recognizes  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Technologies Vehicle Technologies Office Recognizes Outstanding Researchers to someone by E-mail Share Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Facebook Tweet about Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Twitter Bookmark Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Google Bookmark Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Delicious Rank Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Digg Find More places to share Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on AddThis.com...

358

Energy Star Concepts for Highway Vehicles  

Science Conference Proceedings (OSTI)

The authors of this report, under the sponsorship of the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Weatherization and Intergovernmental Program, have investigated the possible application of Energy Star ratings to passenger cars and light trucks. This study establishes a framework for formulating and evaluating Energy Star rating methods that is comprised of energy- and environmental-based metrics, potential vehicle classification systems, vehicle technology factors, and vehicle selection criteria. The study tests several concepts and Energy Star rating methods using model-year 2000 vehicle data--a spreadsheet model has been developed to facilitate these analyses. This study tests two primary types of rating systems: (1) an outcome-based system that rates vehicles based on fuel economy, GHG emissions, and oil use and (2) a technology-based system that rates vehicles based on the energy-saving technologies they use. Rating methods were evaluated based on their ability to select vehicles with high fuel economy, low GHG emissions, and low oil use while preserving a full range of service (size and acceleration) and body style choice. This study concludes that an Energy Star rating for passenger cars and light trucks is feasible and that several methods could be used to achieve reasonable tradeoffs between low energy use and emissions and diversity in size, performance, and body type. It also shows that methods that consider only fuel economy, GHG emissions, or oil use will not select a diverse mix of vehicles. Finally, analyses suggest that methods that encourage the use of technology only, may result in increases in acceleration power and weight rather than reductions in oil use and GHG emissions and improvements in fuel economy.

Greene, D.L.

2003-06-24T23:59:59.000Z

359

The Economic, Energy, and GHG Emissions Impacts of Proposed 2017–2025 Vehicle Fuel Economy Standards in the United States  

E-Print Network (OSTI)

Increases in the U.S. Corporate Average Fuel Economy (CAFE) Standards for 2017 to 2025 model year light-duty vehicles are currently under consideration. This analysis uses an economy-wide model with detail in the passenger ...

Karplus, Valerie

2012-07-31T23:59:59.000Z

360

Alternative Fuels Data Center: Vehicle Cost Calculator  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Cost Vehicle Cost Calculator to someone by E-mail Share Alternative Fuels Data Center: Vehicle Cost Calculator on Facebook Tweet about Alternative Fuels Data Center: Vehicle Cost Calculator on Twitter Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator on Google Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator on Delicious Rank Alternative Fuels Data Center: Vehicle Cost Calculator on Digg Find More places to share Alternative Fuels Data Center: Vehicle Cost Calculator on AddThis.com... Vehicle Cost Calculator Vehicle Cost Calculator This tool uses basic information about your driving habits to calculate total cost of ownership and emissions for makes and models of most vehicles, including alternative fuel and advanced technology vehicles. Also

Note: This page contains sample records for the topic "vehicles model years" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Trends in On-Road Vehicle Emissions of Ammonia  

NLE Websites -- All DOE Office Websites (Extended Search)

Trends in On-Road Vehicle Emissions of Ammonia Trends in On-Road Vehicle Emissions of Ammonia Title Trends in On-Road Vehicle Emissions of Ammonia Publication Type Journal Article Year of Publication 2008 Authors Kean, Andrew J., David Littlejohn, George Ban-Weiss, Robert A. Harley, Thomas W. Kirchstetter, and Melissa M. Lunden Journal Atmospheric Environment Abstract Motor vehicle emissions of ammonia have been measured at a California highway tunnel in the San Francisco Bay area. Between 1999 and 2006, light-duty vehicle ammonia emissions decreased by 38 ± 6%, from 640 ± 40 to 400 ± 20 mg kg-1. High time resolution measurements of ammonia made in summer 2001 at the same location indicate a minimum in ammonia emissions correlated with slower-speed driving conditions. Variations in ammonia emission rates track changes in carbon monoxide more closely than changes in nitrogen oxides, especially during later evening hours when traffic speeds are highest. Analysis of remote sensing data of Burgard et al. (Environ Sci. Technol. 2006, 40, 7018-7022) indicates relationships between ammonia and vehicle model year, nitrogen oxides, and carbon monoxide. Ammonia emission rates from diesel trucks were difficult to measure in the tunnel setting due to the large contribution to ammonia concentrations in a mixed-traffic bore that were assigned to light-duty vehicle emissions. Nevertheless, it is clear that heavy-duty diesel trucks are a minor source of ammonia emissions compared to light-duty gasoline vehicles.

362

Electric vehicles  

SciTech Connect

Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

Not Available

1990-03-01T23:59:59.000Z

363

Vehicle Technologies Office: Benchmarking  

NLE Websites -- All DOE Office Websites (Extended Search)

Benchmarking Benchmarking Research funded by the Vehicle Technologies Office produces a great deal of valuable data, but it is important to compare those research results with similar work done elsewhere in the world. Through laboratory testing, researchers can compare vehicles and components to validate models, support technical target-setting, and provide data to help guide technology development tasks. Benchmarking activities fall into two primary areas: Vehicle and component testing, in which researchers test and analyze emerging technologies obtained from sources throughout the world. The results are used to continually assess program efforts. Model validation, in which researchers use test data to validate the accuracy of vehicle and component computer models including: overall measures such as fuel economy, state-of-charge energy storage across the driving cycle, and transient component behavior, such as fuel rate and torque.

364

User's guide to DIANE Version 2. 1: A microcomputer software package for modeling battery performance in electric vehicle applications  

DOE Green Energy (OSTI)

DIANE is an interactive microcomputer software package for the analysis of battery performance in electric vehicle (EV) applications. The principal objective of this software package is to enable the prediction of EV performance on the basis of laboratory test data for batteries. The model provides a second-by-second simulation of battery voltage and current for any specified velocity/time or power/time profile. The capability of the battery is modeled by an algorithm that relates the battery voltage to the withdrawn current, taking into account the effect of battery depth-of-discharge (DOD). Because of the lack of test data and other constraints, the current version of DIANE deals only with vehicles using fresh'' batteries with or without regenerative braking. Deterioration of battery capability due to aging can presently be simulated with user-input parameters accounting for an increase of effective internal resistance and/or a decrease of cell no-load voltage. DIANE 2.1 is written in FORTRAN language for use on IBM-compatible microcomputers. 7 refs.

Marr, W.W.; Walsh, W.J. (Argonne National Lab., IL (USA). Energy Systems Div.); Symons, P.C. (Electrochemical Engineering Consultants, Inc., Morgan Hill, CA (USA))

1990-06-01T23:59:59.000Z

365

Alternative Fuels Data Center: Diesel Vehicle Availability  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Diesel Vehicle Diesel Vehicle Availability to someone by E-mail Share Alternative Fuels Data Center: Diesel Vehicle Availability on Facebook Tweet about Alternative Fuels Data Center: Diesel Vehicle Availability on Twitter Bookmark Alternative Fuels Data Center: Diesel Vehicle Availability on Google Bookmark Alternative Fuels Data Center: Diesel Vehicle Availability on Delicious Rank Alternative Fuels Data Center: Diesel Vehicle Availability on Digg Find More places to share Alternative Fuels Data Center: Diesel Vehicle Availability on AddThis.com... More in this section... Biodiesel Basics Benefits & Considerations Stations Vehicles Availability Emissions Laws & Incentives Diesel Vehicle Availability According to J.D. Power Automotive Forecasting, demand for light-duty diesel vehicles might double in the next 10 years. More auto manufacturers

366

Household vehicles energy consumption 1994  

SciTech Connect

Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use some 6,000 vehicles provided information to describe vehicle stock, vehicle-miles traveled, energy end-use consumption, and energy expenditures for personal vehicles. The survey results represent the characteristics of the 84.9 million households that used or had access to vehicles in 1994 nationwide. (An additional 12 million households neither owned or had access to vehicles during the survey year.) To be included in then RTECS survey, vehicles must be either owned or used by household members on a regular basis for personal transportation, or owned by a company rather than a household, but kept at home, regularly available for the use of household members. Most vehicles included in the RTECS are classified as {open_quotes}light-duty vehicles{close_quotes} (weighing less than 8,500 pounds). However, the RTECS also includes a very small number of {open_quotes}other{close_quotes} vehicles, such as motor homes and larger trucks that are available for personal use.

NONE

1997-08-01T23:59:59.000Z

367

Modelling of Components for Conventional Car and Hybrid Electric Vehicle in Modelica; Modellering av komponenter för vanlig bil och hybridbil i Modelica.  

E-Print Network (OSTI)

?? Hybrid electric vehicles have two power sources - an internal combustion engine and an electric motor. These vehicles are of great interest because they… (more)

Wallén, Johanna

2004-01-01T23:59:59.000Z

368

Scenario analysis of hybrid class 3-7 heavy vehicles.  

DOE Green Energy (OSTI)

The effects of hybridization on heavy-duty vehicles are not well understood. Heavy vehicles represent a broader range of applications than light-duty vehicles, resulting in a wide variety of chassis and engine combinations, as well as diverse driving conditions. Thus, the strategies, incremental costs, and energy/emission benefits associated with hybridizing heavy vehicles could differ significantly from those for passenger cars. Using a modal energy and emissions model, they quantify the potential energy savings of hybridizing commercial Class 3-7 heavy vehicles, analyze hybrid configuration scenarios, and estimate the associated investment cost and payback time. From the analysis, they conclude that (1) hybridization can significantly reduce energy consumption of Class 3-7 heavy vehicles under urban driving conditions; (2) the grid-independent, conventional vehicle (CV)-like hybrid is more cost-effective than the grid-dependent, electric vehicle (EV)-like hybrid, and the parallel configuration is more cost-effective than the series configuration; (3) for CV-like hybridization, the on-board engine can be significantly downsized, with a gasoline or diesel engine used for SUVs perhaps being a good candidate for an on-board engine; (4) over the long term, the incremental cost of a CV-like, parallel-configured Class 3-4 hybrid heavy vehicle is about %5,800 in the year 2005 and $3,000 in 2020, while for a Class 6-7 truck, it is about $7,100 in 2005 and $3,300 in 2020; and (5) investment payback time, which depends on the specific type and application of the vehicle, averages about 6 years under urban driving conditions in 2005 and 2--3 years in 2020.

An, F.; Stodolsky, F.; Vyas, A.; Cuenca, R.; Eberhardt, J. J.

1999-12-23T23:59:59.000Z

369

NREL: Technology Deployment - 2013 Vehicle Buyer's Guide Now...  

NLE Websites -- All DOE Office Websites (Extended Search)

options, including hybrids, flex-fuel vehicles, and vehicles that run on natural gas, propane, electricity, or biodiesel. In addition to a comprehensive list of this year's...

370

A New Approach to Modeling Vehicle-Induced Heat and Its Thermal Effects on Road Surface Temperature  

Science Conference Proceedings (OSTI)

The distribution of vehicle-induced wind velocity in the transversal direction of roads is measured. A statistical analysis is also performed to find the vehicle stopping time and stopping position at traffic signals. These results are used to ...

Akihiro Fujimoto; Akira Saida; Teruyuki Fukuhara

2012-11-01T23:59:59.000Z

371

StreetSmart : modeling vehicle fuel consumption with mobile phone sensor data through a participatory sensing framework  

E-Print Network (OSTI)

Vehicle energy efficiency has become a priority of governments, researchers, and consumers in the wake of rising fuels costs over the last decade. Traditional Internal Combustion Engine (ICE) vehicles are particularly ...

Oehlerking, Austin Louis

2011-01-01T23:59:59.000Z

372

Electric Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Electricity can be used as a transportation fuel to power battery electric vehicles (EVs). EVs store electricity in an energy storage device, such as a battery.

373

Alternative fuel information: Alternative fuel vehicle outlook  

DOE Green Energy (OSTI)

Major automobile manufacturers continue to examine a variety of alternative fuel vehicle (AFV) options in an effort to provide vehicles that meet the fleet requirements of the Clean Air Act Amendments of 1990 (CAAA) and the Energy Policy Act of 1992 (EPACT). The current generation of AFVs available to consumers is somewhat limited as the auto industry attempts to respond to the presently uncertain market. At the same time, however, the automobile industry must anticipate future demand and is therefore engaged in research, development, and production programs on a wide range of alternative fuels. The ultimate composition of the AFV fleet may be determined by state and local regulations which will have the effect of determining demand. Many state and regional groups may require vehicles to meet emission standards more stringent than those required by the federal government. Therefore, a significant impact on the market could occur if emission classifications begin serving as the benchmark for vehicles, rather than simply certifying a vehicle as capable of operating on an ``alternative`` to gasoline. Vehicles classified as Zero-Emissions, or even Inherently Low-Emissions, could most likely be met only by electricity or natural gas, thereby dictating that multi-fuel vehicles would be unable to participate in some clean air markets. In the near-term, the Clinton Administration desires to accelerate the use of alternative fuels as evidenced by an executive order directing the federal government to increase the rate of conversion of the federal fleet beyond that called for in EPACT. The Administration has expressed particular interest in using more compressed natural gas (CNG) as a motor fuel, which has resulted in the auto industry`s strong response of concentrating short-term efforts on CNG vehicles. For the 1994 model year, a number of CNG cars and trucks will be available from major automobile manufacturers.

Not Available

1994-06-01T23:59:59.000Z

374

OR Forum---Modeling the Impacts of Electricity Tariffs on Plug-In Hybrid Electric Vehicle Charging, Costs, and Emissions  

Science Conference Proceedings (OSTI)

Plug-in hybrid electric vehicles (PHEVs) have been touted as a transportation technology with lower fuel costs and emissions impacts than other vehicle types. Most analyses of PHEVs assume that the power system operator can either directly or indirectly ... Keywords: environment, plug-in hybrid electric vehicles, pricing

Ramteen Sioshansi

2012-05-01T23:59:59.000Z

375

Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Electric Vehicles A neighborhood electric vehicle (NEV) is 4-wheeled vehicle, larger than a golf cart but smaller than most light-duty passenger vehicles. NEVs are...

376

Energy Basics: Propane Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

gasoline vehicles. Dedicated propane vehicles are designed to run only on propane; bi-fuel propane vehicles have two separate fueling systems that enable the vehicle to use...

377

Flex-fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles Stations that Sell E85 (Alternative Fuels and Advanced Vehicles Data Center AFDC) Flexible Fuel Vehicle (FFV) Cost Calculator (compare costs for operating your vehicle...

378

Fuzzy Clustering Based Multi-model Support Vector Regression State of Charge Estimator for Lithium-ion Battery of Electric Vehicle  

Science Conference Proceedings (OSTI)

Based on fuzzy clustering and multi-model support vector regression, a novel lithium-ion battery state of charge (SOC) estimating model for electric vehicle is proposed. Fuzzy C-means and Subtractive clustering combined algorithm is employed to implement ...

Xiaosong Hu; Fengchun Sun

2009-08-01T23:59:59.000Z

379

Advanced Vehicle Testing Activity: Neighborhood Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Procedures to someone by E-mail Share Advanced Vehicle Testing Activity: Neighborhood Electric Vehicle Specifications and Test Procedures on Facebook Tweet about Advanced Vehicle...

380

Advanced Vehicle Testing Activity - Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Electric Vehicles What's New 2013 BRP Commander Electric (PDF 195KB) A Neighborhood Electric Vehicle (NEV) is technically defined as a Low Speed Vehicle (LSV)...

Note: This page contains sample records for the topic "vehicles model years" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Advanced Vehicle Testing Activity: Alternative Fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative Fuel Vehicles SuperShuttle CNG Van Alternative fuel vehicles (AFVs) are vehicles designed to operate on alternative fuels such as compressed and liquefied natural gas,...

382

Advanced Vehicle Testing Activity: Neighborhood Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects to someone by E-mail Share Advanced Vehicle Testing Activity: Neighborhood Electric Vehicle Special Projects on Facebook Tweet about Advanced Vehicle Testing...

383

Advanced Vehicle Testing Activity - Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

NEVAmerica Baseline Performance Testing 2010 Electric Vehicles International Neighborhood Electric Vehicle 2010 Electric Vehicles International E-Mega 2009 NEVAmerica Baseline...

384

Vehicle Technologies Office: Hybrid and Vehicle Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid and Vehicle Systems Hybrid and vehicle systems research provides an overarching vehicle systems perspective to the technology research and development (R&D) activities of...

385

Solid waste integrated cost analysis model: 1991 project year report  

SciTech Connect

The purpose of the City of Houston's 1991 Solid Waste Integrated Cost Analysis Model (SWICAM) project was to continue the development of a computerized cost analysis model. This model is to provide solid waste managers with tool to evaluate the dollar cost of real or hypothetical solid waste management choices. Those choices have become complicated by the implementation of Subtitle D of the Resources Conservation and Recovery Act (RCRA) and the EPA's Integrated Approach to managing municipal solid waste;. that is, minimize generation, maximize recycling, reduce volume (incinerate), and then bury (landfill) only the remainder. Implementation of an integrated solid waste management system involving all or some of the options of recycling, waste to energy, composting, and landfilling is extremely complicated. Factors such as hauling distances, markets, and prices for recyclable, costs and benefits of transfer stations, and material recovery facilities must all be considered. A jurisdiction must determine the cost impacts of implementing a number of various possibilities for managing, handling, processing, and disposing of waste. SWICAM employs a single Lotus 123 spreadsheet to enable a jurisdiction to predict or assess the costs of its waste management system. It allows the user to select his own process flow for waste material and to manipulate the model to include as few or as many options as he or she chooses. The model will calculate the estimated cost for those choices selected. The user can then change the model to include or exclude waste stream components, until the mix of choices suits the user. Graphs can be produced as a visual communication aid in presenting the results of the cost analysis. SWICAM also allows future cost projections to be made.

Not Available

1991-01-01T23:59:59.000Z

386

vehicle | OpenEI  

Open Energy Info (EERE)

vehicle vehicle Dataset Summary Description Supplemental Tables 48-56 of EIA AEO 2011 Early Release Source EIA Date Released December 08th, 2010 (4 years ago) Date Updated Unknown Keywords AEO Annual Energy Outlook EIA Energy Information Administration light-duty sales TEF Transportation Energy Futures vehicle Data text/csv icon Light-Duty_Vehicle_Sales_by_Technology_Type.csv (csv, 1.1 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote

387

Table 10.5 Estimated Number of Alternative-Fueled Vehicles in Use ...  

U.S. Energy Information Administration (EIA)

11 "Vehicles in Use" data represent accumulated acquisitions, ... some vehicle manufacturers began including E85-fueling capability in certain model lines of vehicles.

388

Optimal Planning and Operation of Smart Grids with Electric Vehicle Interconnection  

E-Print Network (OSTI)

Modeling of Plug-in Electric Vehicle Interactions with aV. (2010). “Plug-in Electric Vehicle Interactions with aof Smart Grids with Electric Vehicle Interconnection M.

Stadler, Michael

2012-01-01T23:59:59.000Z

389

Diesel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles Vehicles Audi A3 Diesel vehicles may be making a comeback. Diesel engines are more powerful and fuel-efficient than similar-sized gasoline engines (about 30-35% more fuel efficient). Plus, today's diesel vehicles are much improved over diesels of the past. Better Performance Improved fuel injection and electronic engine control technologies have Increased power Improved acceleration Increased efficiency New engine designs, along with noise- and vibration-damping technologies, have made them quieter and smoother. Cold-weather starting has been improved also. Cleaner Mercedes ML320 BlueTEC Today's diesels must meet the same emissions standards as gasoline vehicles. Advances in engine technologies, ultra-low sulfur diesel fuel, and improved exhaust treatment have made this possible.

390

Incorporating uncertainty in vehicle miles traveled projections of the National Energy Modeling System.  

E-Print Network (OSTI)

??The National Energy Modeling System (NEMS) is a computational model that forecasts the production, consumption, and prices of energy in the United States. Although NEMS… (more)

Poetting, David Michael

2011-01-01T23:59:59.000Z

391

Technology and Cost of the Model Year (MY) 2007 Toyota Camry HEV Final Report  

SciTech Connect

The Oak Ridge National Laboratory (ORNL) provides research and development (R&D) support to the Department of Energy on issues related to the cost and performance of hybrid vehicles. ORNL frequently benchmarks its own research against commercially available hybrid components currently used in the market. In 2005 we completed a detailed review of the cost of the second generation Prius hybrid. This study examines the new 2007 Camry hybrid model for changes in technology and cost relative to the Prius. The work effort involved a detailed review of the Camry hybrid and the system control strategy to identify the hybrid components used in the drive train. Section 2 provides this review while Section 3 presents our detailed evaluation of the specific drive train components and their cost estimates. Section 3 also provides a summary of the total electrical drive train cost for the Camry hybrid vehicle and contrasts these estimates to the costs for the second generation Prius that we estimated in 2005. Most of the information on cost and performance were derived from meetings with the technical staff of Toyota, Nissan, and some key Tier I suppliers like Hitachi and Panasonic Electric Vehicle Energy (PEVE) and we thank these companies for their kind cooperation.

2007-09-30T23:59:59.000Z

392

Energy Basics: Fuel Cell Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

393

Energy Basics: Flexible Fuel Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

394

Energy Basics: Hybrid Electric Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

395

Energy Basics: Natural Gas Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

396

Gas Mileage of 2012 Vehicles by Tesla  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Tesla Vehicles EPA MPG MODEL City Comb Hwy 2012 Tesla Model S Automatic (A1), Electricity Compare 2012 Tesla Model S...

397

Standardizing model-based in-vehicle infotainment development in the German automotive industry  

Science Conference Proceedings (OSTI)

Based on the analysis of existing HMI development processes in the automotive domain, a reference process for software engineering has been developed. This process was used to develop a domain data model and a model-based specification language in order ... Keywords: HMI, automotive, domain data model, interaction design, model-based language, specification, user interface design

Steffen Hess; Anne Gross; Andreas Maier; Marius Orfgen; Gerrit Meixner

2012-10-01T23:59:59.000Z

398

Vehicle Technologies Office: 2007 Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Archive to someone 7 Archive to someone by E-mail Share Vehicle Technologies Office: 2007 Archive on Facebook Tweet about Vehicle Technologies Office: 2007 Archive on Twitter Bookmark Vehicle Technologies Office: 2007 Archive on Google Bookmark Vehicle Technologies Office: 2007 Archive on Delicious Rank Vehicle Technologies Office: 2007 Archive on Digg Find More places to share Vehicle Technologies Office: 2007 Archive on AddThis.com... 2007 Archive #499 Alternative Fuel Models: Gains and Losses December 10, 2007 #498 New Light Vehicle Fuel Economy December 3, 2007 #497 Fuel Drops to Third Place in the Trucking Industry Top Ten Concerns November 26, 2007 #496 Diesel Prices in the U.S. and Selected Countries: Cost and Taxes November 19, 2007 #495 Oil Price and Economic Growth, 1971-2006 November 12, 2007

399

Vehicle Technologies Office: Fact #745: September 17, 2012 Vehicles...  

NLE Websites -- All DOE Office Websites (Extended Search)

East 200.7 321.8 Europe, West 540.7 587.2 India 7.5 17.7 Indonesia 14.1 77.8 Pacific 456.0 565.3 Vehicles per Thousand People in the United States, 1900-2010 Year U.S. vehicles...

400

Hybrid vehicle potential assessment. Volume 7. Hybrid vehicle review  

DOE Green Energy (OSTI)

Review of hybrid vehicles (HVs) built during the past ten years or planned to be built in the near future is presented. An attempt is made to classify and analyze these vehicles to get an overall picture of their key characteristics. The review includes on-road hybrid passenger cars, trucks, vans, and buses.

Leschly, K.O.

1979-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "vehicles model years" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Household Vehicles Energy Use: Latest Data and Trends - Table A04  

U.S. Energy Information Administration (EIA)

... Buildings & Industry > Transportation Surveys > Household Vehicles Energy ... U.S. Vehicles by Model ... Office of Coal, Nuclear, Electric, and Alternate ...

402

Commercial Vehicle Safety Alliance Commercial Vehicle Safety Alliance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alliance Alliance Commercial Vehicle Safety Alliance North American Standard Level VI Inspection Program Update: Ensuring Safe Transportation of Radioactive Material Carlisle Smith Director, Hazardous Materials Programs Commercial Vehicle Safety Alliance Email: carlisles@cvsa.org Phone: 301-830-6147 CVSA Levels of Inspections Level I Full inspection Level II Walk Around - Driver - Vehicle Level III Driver - Paperwork Level IV Special Project - Generally focus on one item CVSA Levels of Inspections Level V Vehicle Only Level VI Enhanced RAM Level VII Jurisdictional Mandated * 8 basic classes/year held in various states * Prerequisites: CVSA Level I and HAZMAT certified * Industry attends course * To date 135 classes/2268 attendees * Currently 702 certified Level VI

403

Vehicle Technologies Office: Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

Deployment Deployment Our nation's energy security depends on the efficiency of our transportation system and on which fuels we use. Transportation in the United States already consumes much more oil than we produce here at home and the situation is getting worse. Domestic oil production has been dropping steadily for over 20 years, and experts predict that by 2025, about 70% of our oil will be imported. The U.S. Department of Energy's (DOE's) Vehicle Technologies Office supports research and development (R&D) that will lead to new technologies that reduce our nation's dependence on imported oil, further decrease vehicle emissions, and serve as a bridge from today's conventional powertrains and fuels to tomorrow's hydrogen-powered hybrid fuel cell vehicles. The Vehicle Technologies Office also supports implementation programs that help to transition alternative fuels and vehicles into the marketplace, as well as collegiate educational activities to help encourage engineering and science students to pursue careers in the transportation sector. Following are some of the activities that complement the Vehicle Technologies Office's mission.

404

Design of a Freeway-Capable Narrow Lane Vehicle  

E-Print Network (OSTI)

electric vehicle model with the specifications described above. Safetv and Convenience Accessories A list of safety

Kornbluth, Kurt K.; Burke, Andrew F.; Wardle, Geoff; Nickell, Nathan

2003-01-01T23:59:59.000Z

405

Summary of results from the National Renewable Energy Laboratory`s vehicle evaluation data collection efforts  

DOE Green Energy (OSTI)

The U.S. DOE National Renewable Energy Laboratory conducted a data collection project for light-duty, alternative fuel vehicles (AFVs) for about 4 years. The project has collected data on 10 vehicle models (from the original equipment manufacturers) spanning model years 1991 through 1995. Emissions data have also been collected from a number of vehicles converted to natural gas (CNG) and liquefied petroleum gas (LPG). Most of the vehicles involved in the data collection and evaluation are part of the General Services Administration`s fleet of AFVs. This evaluation effort addressed the performance and reliability, fuel economy, and emissions of light- duty AFVs, with comparisons to similar gasoline vehicles when possible. Driver-reported complaints and unscheduled vehicle repairs were used to assess the performance and reliability of the AFVs compared to the comparable gasoline vehicles. Two sources of fuel economy were available, one from testing of vehicles on a chassis dynamometer, and the other from records of in-service fuel use. This report includes results from emissions testing completed on 169 AFVs and 161 gasoline control vehicles.

Whalen, P.; Kelly, K.; Motta, R.; Broderick, J.

1996-05-01T23:59:59.000Z

406

Vehicle Technologies Office: Key Activities in Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Key Activities in Key Activities in Vehicles to someone by E-mail Share Vehicle Technologies Office: Key Activities in Vehicles on Facebook Tweet about Vehicle Technologies Office: Key Activities in Vehicles on Twitter Bookmark Vehicle Technologies Office: Key Activities in Vehicles on Google Bookmark Vehicle Technologies Office: Key Activities in Vehicles on Delicious Rank Vehicle Technologies Office: Key Activities in Vehicles on Digg Find More places to share Vehicle Technologies Office: Key Activities in Vehicles on AddThis.com... Key Activities Mission, Vision, & Goals Plans, Implementation, & Results Organization & Contacts National Laboratories Budget Partnerships Key Activities in Vehicles We conduct work in four key areas to develop and deploy vehicle technologies that reduce the use of petroleum while maintaining or

407

VEHICLE SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 of 5 Page 1 of 5 VEHICLE SPECIFICATIONS 1 Vehicle Features Base Vehicle: 2011 Nissan Leaf VIN: JN1AZ0CP5BT000356 Class: Mid-size Seatbelt Positions: 5 Type: EV Motor Type: Three-Phase, Four-Pole Permanent Magnet AC Synchronous Max. Power/Torque: 80 kW/280 Nm Max. Motor Speed: 10,390 rpm Cooling: Active - Liquid cooled Battery Manufacturer: Automotive Energy Supply Corporation Type: Lithium-ion - Laminate type Cathode/Anode Material: LiMn 2 O 4 with LiNiO 2 /Graphite Pack Location: Under center of vehicle Number of Cells: 192 Cell Configuration: 2 parallel, 96 series Nominal Cell Voltage: 3.8 V Nominal System Voltage: 364.8 V Rated Pack Capacity: 66.2 Ah Rated Pack Energy: 24 kWh Max. Cell Charge Voltage 2 : 4.2 V Min. Cell Discharge Voltage 2 : 2.5 V

408

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

E27C177982 Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 105 kW Battery: NiMH Seatbelt Positions: Five Payload: 981 lbs Features: Regenerative braking Traction...

409

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

E87C172351 Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 105 kW Battery: NiMH Seatbelt Positions: Five Payload: 981 lbs Features: Regenerative braking Traction...

410

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

Z07S838122 Vehicle Specifications Engine: 2.4 L 4 cylinder Electric Motor: 14.5 kW Battery: NiMH Seatbelt Positions: Five Payload: 1,244 lbs Features: Regenerative braking wABS 4...

411

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

2AR194699 Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 60 kW Battery: NiMH Seatbelt Positions: Five Payload: 850 lbs Features: Regenerative braking Traction...

412

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

2WD VIN 1FMYU95H75KC45881 Vehicle Specifications Engine: 2.3 L 4-cylinder Electric Motor: 70 kW Battery: NiMH Seatbelt Positions: Five Features: Four wheel drive Regenerative...

413

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

4AR144757 Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 60 kW Battery: NiMH Seatbelt Positions: Five Payload: 850 lbs Features: Regenerative braking Traction...

414

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

Z37S813344 Vehicle Specifications Engine: 2.4 L 4 cylinder Electric Motor: 14.5 kW Battery: NiMH Seatbelt Positions: Five Payload: 1,244 lbs Features: Regenerative braking wABS 4...

415

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

4WD VIN 1FMCU96H15KE18237 Vehicle Specifications Engine: 2.4 L 4-cylinder Electric Motor: 70 kW Battery: NiMH Seatbelt Positions: Five Features: Four wheel drive Regenerative...

416

Robotic vehicle  

DOE Patents (OSTI)

A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

Box, W.D.

1997-02-11T23:59:59.000Z

417

VEHICLE SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

SPECIFICATIONS 1 Vehicle VIN:19XFB5F57CE002590 Class: Compact Seatbelt Positions: 5 Type: Sedan CARB 2 : AT-PZEV EPA CityHwyCombined 3 : 273832 MPGe Tires Manufacturer:...

418

Multiaxis Thrust-Vectoring Characteristics of a Model Representative of the F-18 High-Alpha Research Vehicle at Angles of Attack From 0 to 70  

Science Conference Proceedings (OSTI)

An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine the multiaxis thrust-vectoring characteristics of the F-18 High-Alpha Research Vehicle (HARV). A wingtip supported, partially metric, 0.10-scale jet-effects model of ...

Asbury Scott C.; Capone Francis J.

1995-12-01T23:59:59.000Z

419

A novel combination of Particle Swarm Optimization and Genetic Algorithm for Pareto optimal design of a five-degree of freedom vehicle vibration model  

Science Conference Proceedings (OSTI)

In this paper, at first, a novel combination of Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) is introduced. This hybrid algorithm uses the operators such as mutation, traditional or classical crossover, multiple-crossover, and PSO formula. ... Keywords: Genetic Algorithm, Hybrid algorithms, Multi-objective problems, Particle Swarm Optimization, Single-objective problems, Vehicle vibration model

M. J. Mahmoodabadi; A. Adljooy Safaie; A. Bagheri; N. Nariman-Zadeh

2013-05-01T23:59:59.000Z

420

Although still a small share of the automobile marketplace, hybrid vehicle models and sales have been growing steadily. It is now  

E-Print Network (OSTI)

a battery that can be recharged by an internal combustion engine or at a charging station. Economic planning approaches that seek to reduce operating costs, maintain customers' service levels, and GHG costs into fleet vehicle replacement-type models, analyzing the competitiveness of current engine

Bertini, Robert L.

Note: This page contains sample records for the topic "vehicles model years" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

Polymer Electrolyte Fuel Cell Model, J. Electrochem. Soc. ,in Polymer Electrolyte Fuel Cells, J. Electrochem. Soc. ,Solid-Polymer- Electrolyte Fuel Cell, J. Electrochem. Soc. ,

Zhao, Hengbing; Burke, Andy

2008-01-01T23:59:59.000Z

422

Electric and hybrid vehicle program; Site Operator Program. Quarterly progress report, January--March 1992 (Second quarter of fiscal year 1992)  

DOE Green Energy (OSTI)

Activities during the second quarter included the second meeting of the Site Operators in Phoenix, AZ in late April. The meeting was held in conjunction with the Solar and Electric 500 Race activities. Delivery of vehicles ordered previously has begun, although two of the operators are experiencing some delays in receiving their vehicles. Public demonstration activities continue, with an apparent increasing level of awareness and interest being displayed by the public. Initial problems with the Site Operator Database have been corrected and revised copies of the program have been supplied to the Program participants. Operating and Maintenance data is being supplied and submitted to INEL on a monthly basis. Interest in the Site Operator Program is being reflected in requests for information from several organizations from across the country, representing a wide diversity of interests. These organizations have been referred to existing Site Operators with the explanation that the program will not be adding new participants, but that most of the existing organizations are willing to work with other groups. The exception to this was the addition of Potomac Electric Power Company (PEPCO) to the program. PEPCO has been awarded a subcontract to operate and maintain the DOE owned G-Van and Escort located in Washington, DC. They will provide data on these vehicles, as well as a Solectria Force which PEPCO has purchased. The Task Force intends to be actively involved in the infrastructure development in a wide range of areas. These include, among others, personnel development, safety, charging, and servicing. Work continues in these areas. York Technical College (YORK) has completed the draft outline for the EV Technician course. This is being circulated to organizations around the country for comments. Kansas State University (KSU) is working with a private sector company to develop a energy dispensing meter for opportunity charging in public areas.

Warren, J.F.

1992-05-01T23:59:59.000Z

423

Vehicle Technologies Office: Fact #726: May 7, 2012 SUVs: Are They Cars or  

NLE Websites -- All DOE Office Websites (Extended Search)

6: May 7, 2012 6: May 7, 2012 SUVs: Are They Cars or Trucks? to someone by E-mail Share Vehicle Technologies Office: Fact #726: May 7, 2012 SUVs: Are They Cars or Trucks? on Facebook Tweet about Vehicle Technologies Office: Fact #726: May 7, 2012 SUVs: Are They Cars or Trucks? on Twitter Bookmark Vehicle Technologies Office: Fact #726: May 7, 2012 SUVs: Are They Cars or Trucks? on Google Bookmark Vehicle Technologies Office: Fact #726: May 7, 2012 SUVs: Are They Cars or Trucks? on Delicious Rank Vehicle Technologies Office: Fact #726: May 7, 2012 SUVs: Are They Cars or Trucks? on Digg Find More places to share Vehicle Technologies Office: Fact #726: May 7, 2012 SUVs: Are They Cars or Trucks? on AddThis.com... Fact #726: May 7, 2012 SUVs: Are They Cars or Trucks? The Corporate Average Fuel Economy (CAFE) Standards set for model years

424

What type of vehicle do people drive? The role of attitude and lifestyle in influencing vehicle type choice  

E-Print Network (OSTI)

The Relationship of Vehicle Type Choice to Personality,on revealed and stated vehicle type choice and utilizationA disaggregate model of auto-type choice. Transportation

Choo, S; Mokhtarian, Patricia L

2004-01-01T23:59:59.000Z

425

An agent-based model to study market penetration of plug-in hybrid electric vehicles  

E-Print Network (OSTI)

that a potential synergy from a gasoline tax with proceeds is used to fund research into longer-range lower- cost) indicate PHEV greenhouse gas emissions to be about half of that of current gasoline and diesel motor fuels model the system. We examine sensitivity of the model to gasoline prices, to accuracy in estimation

Eppstein, Margaret J.

426

VEHICLE SPECIFICATIONS Vehicle Features  

NLE Websites -- All DOE Office Websites (Extended Search)

Mazda 3 Mazda 3 VIN: JMZBLA4G601111865 Seatbelt Positions: 5 Standard Features: Air Conditioning Power Locks Power Steering Power Brakes Power Windows Cruise Control Front Disc Brakes Rear Disc Brakes Front Wheel Drive Anti-Lock Brakes Traction Control Air Bags AM/FM Stereo with CD Weights Design Curb Weight: 2,954 lb Delivered Curb Weight: 2,850 lb Distribution F/R (%): 63/37 GVWR: 4,050 lb GAWR F/R: 2,057/1,896 lb Payload 1 : 1,096 lb Performance Goal: 400 lb Dimensions Wheelbase: 103.9 in Track F/R: 60.4/59.8 in Length: 175.6 in Width: 69.1 in Height: 57.9 in Ground Clearance: 6.1 in Performance Goal: 5.0 in Tires Manufacturer: Yokohama Model: YK520 Size: P205/55R17 Pressure F/R: 35/33 psi

427

Advanced Vehicle Technology Analysis and Evaluation Team  

E-Print Network (OSTI)

Set ­ Models · Conventional, hybrid and electric vehicles · Fuel consumption and performanceAdvanced Vehicle Technology Analysis and Evaluation Team Lee Slezak Manager, AVTAET Office · Supports HIL/RCP · Fuel cell models ­ Net power vs. fuel consumption ­ Engineering · ADvanced Vehicle

428

What are the Starting Points? Evaluating Base-Year Assumptions in the Asian Modeling Exercise  

SciTech Connect

A common feature of model inter-comparison efforts is that the base year numbers for important parameters such as population and GDP can differ substantially across models. This paper explores the sources and implications of this variation in Asian countries across the models participating in the Asian Modeling Exercise (AME). Because the models do not all have a common base year, each team was required to provide data for 2005 for comparison purposes. This paper compares the year 2005 information for different models, noting the degree of variation in important parameters, including population, GDP, primary energy, electricity, and CO2 emissions. It then explores the difference in these key parameters across different sources of base-year information. The analysis confirms that the sources provide different values for many key parameters. This variation across data sources and additional reasons why models might provide different base-year numbers, including differences in regional definitions, differences in model base year, and differences in GDP transformation methodologies, are then discussed in the context of the AME scenarios. Finally, the paper explores the implications of base-year variation on long-term model results.

Chaturvedi, Vaibhav; Waldhoff, Stephanie; Clarke, Leon E.; Fujimori, Shinichiro

2012-12-01T23:59:59.000Z

429

An Analysis of the Relationship between Casualty Risk Per Crash and Vehicle Mass and Footprint for Model Year 2000-2007 Light-Duty Vehicles-Preliminary report  

E-Print Network (OSTI)

Draft final report prepared for EERE, US DOE, November.Final report prepared for EERE, US DOE, March. LBNL-4897E.

Wenzel, Tom

2013-01-01T23:59:59.000Z

430

Gas Mileage of 1992 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1992 Mercury Capri 4 cyl, 1.6 L, Automatic 4-spd, Regular Gasoline Compare 1992 Mercury Capri View MPG Estimates Shared By Vehicle...

431

Gas Mileage of 1984 Vehicles by Volkswagen  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles EPA MPG MODEL City Comb Hwy 1984 Volkswagen Jetta 4 cyl, 1.6 L, Manual 5-spd, Diesel Compare 1984 Volkswagen Jetta View MPG Estimates Shared By Vehicle Owners 33 City 35...

432

Gas Mileage of 2013 Vehicles by MINI  

NLE Websites -- All DOE Office Websites (Extended Search)

3 MINI Vehicles EPA MPG MODEL City Comb Hwy 2013 MINI Cooper 4 cyl, 1.6 L, Automatic (S6), Premium Gasoline Compare 2013 MINI Cooper View MPG Estimates Shared By Vehicle Owners 28...

433

Gas Mileage of 2013 Vehicles by Scion  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Scion Vehicles EPA MPG MODEL City Comb Hwy 2013 Scion FR-S 4 cyl, 2.0 L, Automatic (S6), Premium Gasoline Compare 2013 Scion FR-S View MPG Estimates Shared By Vehicle Owners 25...

434

Gas Mileage of 2013 Vehicles by Acura  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Acura Vehicles EPA MPG MODEL City Comb Hwy 2013 Acura ILX 4 cyl, 2.0 L, Automatic (S5), Premium Gasoline Compare 2013 Acura ILX View MPG Estimates Shared By Vehicle Owners 24...

435

Gas Mileage of 2013 Vehicles by Subaru  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Subaru Vehicles EPA MPG MODEL City Comb Hwy 2013 Subaru BRZ 4 cyl, 2.0 L, Automatic (S6), Premium Gasoline Compare 2013 Subaru BRZ View MPG Estimates Shared By Vehicle Owners 25...

436

Gas Mileage of 2013 Vehicles by Hyundai  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Hyundai Vehicles EPA MPG MODEL City Comb Hwy 2013 Hyundai Accent 4 cyl, 1.6 L, Automatic 6-spd, Regular Gasoline Compare 2013 Hyundai Accent View MPG Estimates Shared By Vehicle...

437

Gas Mileage of 2013 Vehicles by Kia  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Kia Vehicles EPA MPG MODEL City Comb Hwy 2013 Kia Forte 4 cyl, 2.0 L, Automatic 6-spd, Regular Gasoline Compare 2013 Kia Forte View MPG Estimates Shared By Vehicle Owners 26 City...

438

Gas Mileage of 2013 Vehicles by Volkswagen  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Volkswagen Vehicles EPA MPG MODEL City Comb Hwy 2013 Volkswagen Beetle 4 cyl, 2.0 L, Manual 6-spd, Diesel Compare 2013 Volkswagen Beetle View MPG Estimates Shared By Vehicle...

439

VISION Model: Description of Model Used to Estimate the Impact of Highway Vehicle Technologies and Fuels on Energy Use and Carbon Emissions to 2050  

NLE Websites -- All DOE Office Websites (Extended Search)

ESD/04-1 ESD/04-1 VISION Model: Description of Model Used to Estimate the Impact of Highway Vehicle Technologies and Fuels on Energy Use and Carbon Emissions to 2050 Center for Transportation Research Argonne National Laboratory Operated by The University of Chicago, under Contract W-31-109-Eng-38, for the United States Department of Energy Argonne National Laboratory, a U.S. Department of Energy Office of Science laboratory, is operated by The University of Chicago under contract W-31-109-Eng-38. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor The University of Chicago, nor any of their employees or officers, makes any warranty, express or implied, or assumes

440

A Vehicle Ownership and Utilization Choice Model with Edogenous Residential Density  

E-Print Network (OSTI)

be 3.4 million gallons by car usage and 2.2 million gallonsof 3.4 million gallons by car usage and 3.7 million gallonsordered probit, and usage of cars and trucks are modeled as

Brownstone, David; Fang, Hao Audrey

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicles model years" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Real-World Emissions from Model Year 1993, 2000, and 2010 Passenger Cars  

E-Print Network (OSTI)

Electric/Solar Vehicles, a report to Congress by the US Department of Transportation, National Highway Traffic Safety

Ross, M.

2010-01-01T23:59:59.000Z

442

New Vehicle Fuel Economy Standards Will Continue to Inspire Innovation |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Fuel Economy Standards Will Continue to Inspire Vehicle Fuel Economy Standards Will Continue to Inspire Innovation New Vehicle Fuel Economy Standards Will Continue to Inspire Innovation July 29, 2011 - 1:48pm Addthis President Barack Obama delivers remarks on fuel efficiency standards for 2017-2025 model year cars and light-duty trucks during an event at the Washington Convention Center in Washington, D.C., July 29, 2011. Seated behind the President are at left are auto industry executives and Transportation Secretary Ray LaHood. (Official White House Photo by Samantha Appleton) President Barack Obama delivers remarks on fuel efficiency standards for 2017-2025 model year cars and light-duty trucks during an event at the Washington Convention Center in Washington, D.C., July 29, 2011. Seated behind the President are at left are auto industry executives and

443

VEHICLE SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

VEHICLE SPECIFICATIONS 1 Vehicle Features Base Vehicle: 2011 Chevrolet Volt VIN: 1G1RD6E48BUI00815 Class: Compact Seatbelt Positions: 4 Type 2 : Multi-Mode PHEV (EV, Series, and Power-split) Motor Type: 12-pole permanent magnet AC synchronous Max. Power/Torque: 111 kW/370 Nm Max. Motor Speed: 9500 rpm Cooling: Active - Liquid cooled Generator Type: 16-pole permanent magnet AC synchronous Max. Power/Torque: 55 kW/200 Nm Max. Generator Speed: 6000 rpm Cooling: Active - Liquid cooled Battery Manufacturer: LG Chem Type: Lithium-ion Cathode/Anode Material: LiMn 2 O 4 /Hard Carbon Number of Cells: 288 Cell Config.: 3 parallel, 96 series Nominal Cell Voltage: 3.7 V Nominal System Voltage: 355.2 V Rated Pack Capacity: 45 Ah Rated Pack Energy: 16 kWh Weight of Pack: 435 lb

444

Alternative Vehicle Basics  

Energy.gov (U.S. Department of Energy (DOE))

There are a number of alternative and advanced vehicles—or vehicles that run on alternative fuels. Learn more about the following types of vehicles:

445

Advanced Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban...

446

Vehicles | Open Energy Information  

Open Energy Info (EERE)

Vehicles Jump to: navigation, search TODO: Add description Related Links List of Companies in Vehicles Sector List of Vehicles Incentives Retrieved from "http:en.openei.orgw...

447

Vehicles News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

news Office of Energy Efficiency & news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies http://energy.gov/eere/articles/energy-department-announces-45-million-advance-next-generation Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies

448

Combining stated and revealed choice research to simulate the neighbor effect: The case of hybrid-electric vehicles  

E-Print Network (OSTI)

s early market for hybrid electric vehicles. TransportationThe case of hybrid-electric vehicles Jonn Axsen a, *, Deanpreferences Hybrid-electric vehicles Discrete choice model

Axsen, Jonn; Mountain, Dean C.; Jaccard, Mark

2009-01-01T23:59:59.000Z

449

NREL: Vehicles and Fuels Research - Fuel Cell Electric Vehicle Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Technologies in the Media Spotlight Vehicle Technologies in the Media Spotlight August 19, 2013 Automakers have made steady progress reducing the cost and increasing the performance of fuel cell propulsion systems, and most major vehicle manufacturers are geared to launch fuel cell electric vehicles in the U.S. market between 2015 and 2020. A recent Denver Post article highlights the National Renewable Energy Laboratory's contribution to the progress that automakers have made in getting their fuel cell electric vehicles ready for production. "When I started working on fuel cells in the '90s, people said it was a good field because a solution would always be five years away," said Brian Pivovar, who leads NREL's fuel cell research. "Not anymore." The article references a variety of NREL's hydrogen and fuel cell

450

IMPACTT5A model : enhancements and modifications since December 1994 - with special reference to the effect of tripled-fuel-economy vehicles on fuel-cycle energy and emissions.  

DOE Green Energy (OSTI)

Version 5A of the Integrated Market Penetration and Anticipated Cost of Transportation Technologies (IMPACTT5A) model is a spreadsheet-based set of algorithms that calculates the effects of advanced-technology vehicles on baseline fuel use and emissions. Outputs of this Argonne National Laboratory-developed model include estimates of (1) energy use and emissions attributable to conventional-technology vehicles under a baseline scenario and (2) energy use and emissions attributable to advanced- and conventional-technology vehicles under an alternative market-penetration scenario. Enhancements to IMPACIT made after its initial documentation in December 1994 have enabled it to deal with a wide range of fuel and propulsion system technologies included in Argonne's GREET model in a somewhat modified three-phased approach. Vehicle stocks are still projected in the largely unchanged STOCK module. Vehicle-miles traveled, fuel use, and oil displacement by advanced-technology vehicles are projected in an updated USAGE module. Now, both modules can incorporate vehicle efficiency and fuel share profiles consistent with those of the Partnership for a New Generation of Vehicles. Finally, fuel-cycle emissions of carbon monoxide, volatile organic compounds, nitrogen oxides, toxics, and greenhouse gases are computed in the EMISSIONS module via an interface with the GREET model that was developed specifically to perform such calculations. Because of this interface, results are now more broadly informative than were results from earlier versions of IMPACTT.

Mintz, M. M.; Saricks, C. L.

1999-08-28T23:59:59.000Z

451

Vehicle Technologies Office: EV Everywhere Grand Challenge: DOE...  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE's 10-Year Vision for Plug-in Electric Vehicles to someone by E-mail Share Vehicle Technologies Office: EV Everywhere Grand Challenge: DOE's 10-Year Vision for Plug-in...

452

Advanced Vehicle Testing Activity: Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Electric Vehicles Ford Think Neighbor A neighborhood electric vehicle (NEV) is a four-wheeled vehicle that has a top speed of 20-25 miles per hour (mph). It is larger...

453

VEHICLE DETAILS, BATTERY DESCRIPTION AND SPECIFICATIONS Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 VEHICLE DETAILS, BATTERY DESCRIPTION AND SPECIFICATIONS Vehicle Details Base Vehicle: 2011 Nissan Leaf VIN: JN1AZ0CP5BT000356 Propulsion System: BEV Electric Machine: 80 kW...

454

Robotic vehicle  

DOE Patents (OSTI)

A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 11 figures.

Box, W.D.

1994-03-15T23:59:59.000Z

455

Robotic vehicle  

DOE Patents (OSTI)

A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 14 figs.

Box, W.D.

1996-03-12T23:59:59.000Z

456

Managing the transition toward self-sustaining alternative fuel vehicle markets : policy analysis using a dynamic behavioral spatial model  

E-Print Network (OSTI)

Designing public policy or industry strategy to bolster the transition to alternative fuel vehicles (AFVs) is a formidable challenge as demonstrated by historical failed attempts. The transition to new fuels occurs within ...

Supple, Derek R. (Derek Richard)

2007-01-01T23:59:59.000Z

457

Paleoclimate data–model comparison and the role of climate forcings over the past 1500 years  

Science Conference Proceedings (OSTI)

The past 1500 years provides a valuable opportunity to study the response of the climate system to external forcings. However, the integration of paleoclimate proxies with climate modeling is critical to improving our understanding of climate ...

Steven J. Phipps; Helen V. McGregor; Joëlle Gergis; Ailie J. E. Gallant; Raphael Neukom; Samantha Stevenson; Duncan Ackerley; Josephine R. Brown; Matt J. Fischer; Tas D. van Ommen

458

Stability and Variability in a Coupled Ocean–Atmosphere Climate Model: Results of 100-year Simulations  

Science Conference Proceedings (OSTI)

Two 100-year seasonal simulators, one performed with a low resolution atmospheric general circulation model (GCM) coupled to a mixed-layer ocean formulation and the other made with the GCM forced by prescribed ocean conditions, are compared to ...

David D. Houghton; Robert G. Gallimore; Linda M. Keller

1991-06-01T23:59:59.000Z

459

Paleoclimate Data–Model Comparison and the Role of Climate Forcings over the Past 1500 Years  

Science Conference Proceedings (OSTI)

The past 1500 years provide a valuable opportunity to study the response of the climate system to external forcings. However, the integration of paleoclimate proxies with climate modeling is critical to improving the understanding of climate ...

Steven J. Phipps; Helen V. McGregor; Joëlle Gergis; Ailie J. E. Gallant; Raphael Neukom; Samantha Stevenson; Duncan Ackerley; Josephine R. Brown; Matt J. Fischer; Tas D. van Ommen

2013-09-01T23:59:59.000Z

460

Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies.  

DOE Green Energy (OSTI)

At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions.

Wang, M. Q.

1998-12-16T23:59:59.000Z

Note: This page contains sample records for the topic "vehicles model years" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies.  

SciTech Connect

At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions.

Wang, M. Q.

1998-12-16T23:59:59.000Z

462

Vehicle Smart  

E-Print Network (OSTI)

Abstract: This article explores criteria necessary for reliable communication between electric vehicles (EVs) and electric vehicle service equipment (EVSE). Data will demonstrate that a G3-PLC system has already met the criteria established by the automotive and utility industries. Multiple international tests prove that a G3-PLC implementation is the optimal low-frequency solution. A similar version of this article appeared in the August 2011 issue of Power Systems Design magazine. For the first time, electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) are building a viable market of mobile electrical energy consumers. Not surprisingly, new relationships between electricity providers (the utility companies) and automobile owners are emerging. Many utilities already offer, or are planning to offer, special tariffs, including fixed monthly rates, to EV owners. EVs impose new dynamics and demands on the electrical supply itself. There is, in fact, a symbiotic relationship developing between the EV and energy provider. Because of their large storage capacity, often 10kVH, EVs draw currents of 80A or greater over a period of hours. This strains electrical grid components, especially low-voltage transformers which can overheat and fail while serving consumers ' homes. Meanwhile, the EVs ' electrical storage capacity can also reverse the current flow. It can then supply power back to the grid, thereby helping the utilities to meet demand peaks without starting up high-carbon-output diesel generators. To enable this new dynamic relationship, the EV and the energy provider must communicate. The utility must be able to authenticate the individual vehicle, and bidirectional communications is needed to support negotiation of power flow rates and direction. To

Jim Leclare; Principal Member; Technical Staff

2012-01-01T23:59:59.000Z

463

Modeling and analysis of transient vehicle underhood thermo- hydrodynamic events using computational fluid dynamics and high performance computing.  

DOE Green Energy (OSTI)

This work has explored the preliminary design of a Computational Fluid Dynamics (CFD) tool for the analysis of transient vehicle underhood thermo-hydrodynamic events using high performance computing platforms. The goal of this tool will be to extend the capabilities of an existing established CFD code, STAR-CD, allowing the car manufacturers to analyze the impact of transient operational events on the underhood thermal management by exploiting the computational efficiency of modern high performance computing systems. In particular, the project has focused on the CFD modeling of the radiator behavior during a specified transient. The 3-D radiator calculations were performed using STAR-CD, which can perform both steady-state and transient calculations, on the cluster computer available at ANL in the Nuclear Engineering Division. Specified transient boundary conditions, based on experimental data provided by Adapco and DaimlerChrysler were used. The possibility of using STAR-CD in a transient mode for the entire period of time analyzed has been compared with other strategies which involve the use of STAR-CD in a steady-state mode at specified time intervals, while transient heat transfer calculations would be performed for the rest of the time. The results of these calculations have been compared with the experimental data provided by Adapco/DaimlerChrysler and recommendations for future development of an optimal strategy for the CFD modeling of transient thermo-hydrodynamic events have been made. The results of this work open the way for the development of a CFD tool for the transient analysis of underhood thermo-hydrodynamic events, which will allow the integrated transient thermal analysis of the entire cooling system, including both the engine block and the radiator, on high performance computing systems.

Tentner, A.; Froehle, P.; Wang, C.; Nuclear Engineering Division

2004-01-01T23:59:59.000Z

464

Modeling and analysis of transient vehicle underhood thermo - hydrodynamic events using computational fluid dynamics and high performance computing.  

DOE Green Energy (OSTI)

This work has explored the preliminary design of a Computational Fluid Dynamics (CFD) tool for the analysis of transient vehicle underhood thermo-hydrodynamic events using high performance computing platforms. The goal of this tool will be to extend the capabilities of an existing established CFD code, STAR-CD, allowing the car manufacturers to analyze the impact of transient operational events on the underhood thermal management by exploiting the computational efficiency of modern high performance computing systems. In particular, the project has focused on the CFD modeling of the radiator behavior during a specified transient. The 3-D radiator calculations were performed using STAR-CD, which can perform both steady-state and transient calculations, on the cluster computer available at ANL in the Nuclear Engineering Division. Specified transient boundary conditions, based on experimental data provided by Adapco and DaimlerChrysler were used. The possibility of using STAR-CD in a transient mode for the entire period of time analyzed has been compared with other strategies which involve the use of STAR-CD in a steady-state mode at specified time intervals, while transient heat transfer calculations would be performed for the rest of the time. The results of these calculations have been compared with the experimental data provided by Adapco/DaimlerChrysler and recommendations for future development of an optimal strategy for the CFD modeling of transient thermo-hydrodynamic events have been made. The results of this work open the way for the development of a CFD tool for the transient analysis of underhood thermo-hydrodynamic events, which will allow the integrated transient thermal analysis of the entire cooling system, including both the engine block and the radiator, on high performance computing systems.

Froehle, P.; Tentner, A.; Wang, C.

2003-09-05T23:59:59.000Z

465

Advanced Vehicle Testing Activity - Urban Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

are designed to carry two or four passengers. Click here for more information About Urban Electric Vehicles (PDF 128KB) Vehicle Testing Reports Ford THINK City Ford Thnk...

466

Vehicle Technologies Office: Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

that feature one or more advanced technologies, including: Plug-in hybrid electric vehicle technologies Extended range electric vehicle technologies Hybrid electric, pure...

467

Smart Thermal Skins for Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 Smart Thermal Skins for Vehicles With a modest effort, many of the energy-efficient technologies developed for buildings can be transferred to the transportation sector. The goal of vehicle thermal management research at LBL is to save the energy equivalent of one to two billion gallons of gasoline per year, and improve the marketability of next-generation vehicles using advanced solar control glazings and insulating shell components to reduce accessory loads. Spectrally selective and electrochromic window glass and lightweight insulating materials improve the fuel efficiency of conventional and hybrid vehicles and extend the range of electric vehicles by reducing the need for air conditioning and heating, and by allowing the downsizing of equipment.

468

Vehicles Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicles Blog Vehicles Blog Vehicles Blog RSS November 22, 2013 As part of the 21st Century Truck Partnership, the Army will demonstrate technology that converts waste heat from an exhaust system to electricity used in its Stryker vehicle. | Photo courtesy of courtesy of U.S. Army Top U.S. Automakers Collaborate to Improve Heavy-Duty Freight Efficiency The 21st Century Truck Partnership aims to improve the fuel efficiency of heavy duty-freight vehicles in existing and future fleets throughout the country. The partnership includes 15 heavy-duty engine, truck, and bus manufacturers, four federal agencies and 12 national laboratories. September 19, 2013 A Clean Energy Revolution -- Now Critics often say America's clean energy future will "always be five years away." For four key clean energy technologies, that clean energy

469

Vehicle Technologies Office: 2010 Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

0 Archive 0 Archive #655 New Freight Analysis Tool December 27, 2010 #654 New Light Vehicle Leasing is Big in 2010 December 20, 2010 #653 Import Cars and Trucks Gaining Ground December 13, 2010 #652 U.S. Crude Oil Production Rises December 6, 2010 #651 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 November 29, 2010 #650 Diesel Fuel Prices hit a Two-Year High November 22, 2010 #649 Number of New Light Vehicle Dealerships Continues to Shrink November 15, 2010 #648 Conventional and Alternative Fuel Prices November 8, 2010 #647 Sales Shifting from Light Trucks to Cars November 1, 2010 #646 Prices for Used Vehicles Rise Sharply from 2008 to 2010 October 25, 2010 #645 Price of Diesel versus Gasoline in Europe October 18, 2010 #644 Share of Diesel Vehicle Sales Decline in Western Europe October 11, 2010

470

Clean Cities 2014 Vehicle Buyer's Guide (Brochure)  

DOE Green Energy (OSTI)

This annual guide features a comprehensive list of 2014 light-duty alternative fuel and advanced vehicles, grouped by fuel and technology. The guide provides model-specific information on vehicle specifications, manufacturer suggested retail price, fuel economy, energy impact, and emissions. The information can be used to identify options, compare vehicles, and help inform purchase decisions.

Not Available

2013-12-01T23:59:59.000Z

471

Vehicle Technologies Office: EV Everywhere Grand Challenge  

NLE Websites -- All DOE Office Websites (Extended Search)

Challenge Challenge With their immense potential for increasing the country's energy, economic, and environmental security, plug-in hybrid electric and all-electric vehicles (also known as plug-in electric vehicles, or PEVs) will play a key role in the country's transportation future. In fact, transitioning to electric drive vehicles (including hybrid-electric) could reduce U.S. oil dependence by more than 80% and greenhouse gas emissions by more than 60%. The EV Everywhere Grand Challenge focuses on the U.S. becoming the first nation in the world to produce plug-in electric vehicles that are as affordable for the average American family as today's gasoline-powered vehicles within the next 10 years. To learn more about electric vehicles, see our Plug-in Electric Vehicle Basics page. To help meet the EV Everywhere goals, the Vehicle Technologies Office supports efforts in a variety of areas:

472

Life-Cycle Analysis of Vehicle and Fuel Systems with the GREET Model - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Michael Wang (Primary Contact), Amgad Elgowainy, Jeongwoo Han and Hao Cai Argonne National Laboratory (ANL) ESD362 9700 South Cass Avenue Argonne, IL 60439 Phone: (630) 252-2819 Email: mqwang@anl.gov DOE Manager HQ: Fred Joseck Phone: (202) 586-7932 Email: Fred.Joseck@ee.doe.gov Project Start Date: October 2009 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Evaluate environmental benefits of hydrogen fuel * cell electric vehicles (FCEVs) with various renewable hydrogen production pathways relative to baseline gasoline pathways. Conduct vehicle-cycle analysis of hydrogen FCEVs. *

473

Alternative Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

following types of vehicles: Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane Vehicles Addthis Related Articles...

474

1997 hybrid electric vehicle specifications  

DOE Green Energy (OSTI)

The US DOE sponsors Advanced Vehicle Technology competitions to help educate the public and advance new vehicle technologies. For several years, DOE has provided financial and technical support for the American Tour de Sol. This event showcases electric and hybrid electric vehicles in a road rally across portions of the northeastern United States. The specifications contained in this technical memorandum apply to vehicles that will be entered in the 1997 American Tour de Sol. However, the specifications were prepared to be general enough for use by other teams and individuals interested in developing hybrid electric vehicles. The purpose of the specifications is to ensure that the vehicles developed do not present a safety hazard to the teams that build and drive them or to the judges, sponsors, or public who attend the competitions. The specifications are by no means the definitive sources of information on constructing hybrid electric vehicles - as electric and hybrid vehicles technologies advance, so will the standards and practices for their construction. In some cases, the new standards and practices will make portions of these specifications obsolete.

Sluder, S.; Larsen, R.; Duoba, M.

1996-10-01T23:59:59.000Z

475

Fuel processing for fuel cell powered vehicles.  

DOE Green Energy (OSTI)

A number of auto companies have announced plans to have fuel cell powered vehicles on the road by the year 2004. The low-temperature polymer electrolyte fuel cells to be used in these vehicles require high quality hydrogen. Without a hydrogen-refueling infrastructure, these vehicles need to convert the available hydrocarbon fuels into a hydrogen-rich gas on-board the vehicle. Earlier analysis has shown that fuel processors based on partial oxidation reforming are well suited to meet the size and weight targets and the other performance-related needs of on-board fuel processors for light-duty fuel cell vehicles (1).

Ahmed, S.; Wilkenhoener, R.; Lee, S. H. D.; Carter, J. D.; Kumar, R.; Krumpelt, M.

1999-01-22T23:59:59.000Z

476

Vehicle/guideway interaction and ride comfort in maglev systems  

DOE Green Energy (OSTI)

The importance of vehicle/guideway dynamics in maglev systems is discussed. The particular interest associated with modeling vehicle guide-way interactions and explaining response characteristics of maglev systems for a multicar, multiload vehicle traversing on a single- or double-span flexible guideway are considered, with an emphasis on vehicle/guideway coupling effects, comparison of concentrated and distributed loads, and ride comfort. Coupled effects of vehicle/guideway interactions over a wide range of vehicle speeds with various vehicle and guideway parameters are investigated, and appropriate critical vehicle speeds or crossing frequencies are identified.

Cai, Y.; Chen, S.S.; Rote, D.M.; Coffey, H.T.

1993-10-01T23:59:59.000Z

477

U.S. Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA)

U.S. Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1990's: 8,328: 9,341 ...

478

Vehicle technologies heavy vehicle program : FY 2008 benefits analysis, methodology and results --- final report.  

SciTech Connect

This report describes the approach to estimating the benefits and analysis results for the Heavy Vehicle Technologies activities of the Vehicle Technologies (VT) Program of EERE. The scope of the effort includes: (1) Characterizing baseline and advanced technology vehicles for Class 3-6 and Class 7 and 8 trucks, (2) Identifying technology goals associated with the DOE EERE programs, (3) Estimating the market potential of technologies that improve fuel efficiency and/or use alternative fuels, and (4) Determining the petroleum and greenhouse gas emissions reductions associated with the advanced technologies. In FY 08 the Heavy Vehicles program continued its involvement with various sources of energy loss as compared to focusing more narrowly on engine efficiency and alternative fuels. These changes are the result of a planning effort that first occurred during FY 04 and was updated in the past year. (Ref. 1) This narrative describes characteristics of the heavy truck market as they relate to the analysis, a description of the analysis methodology (including a discussion of the models used to estimate market potential and benefits), and a presentation of the benefits estimated as a result of the adoption of the advanced technologies. The market penetrations are used as part of the EERE-wide integrated analysis to provide final benefit estimates reported in the FY08 Budget Request. The energy savings models are utilized by the VT program for internal project management purposes.

Singh, M.; Energy Systems; TA Engineering

2008-02-29T23:59:59.000Z

479

ELECTRIC VEHICLES MODELLING AND  

E-Print Network (OSTI)

Chapter 12 Multiobjective Optimal Design of an Inverter Fed Axial Flux Permanent Magnet In-Wheel Motor Study of Two Permanent Magnets Motors Structures with Interior and Exterior Rotor 333 Naourez Ben Hadj Lorkovic Technical Editor Teodora Smiljanic Cover Designer Jan Hyrat Image Copyright AlexRoz, 2010. Used

Schaltz, Erik

480

Development of a dedicated ethanol ultra-low-emissions vehicle (ULEV): Phase 3 report  

DOE Green Energy (OSTI)

The objective of the 3.5 year project discussed in this report was to develop a commercially competitive vehicle powered by ethanol (or an ethanol blend) that can meet California`s Ultra Low Emissions Vehicle (ULEV) standards and equivalent Corporate Average Fuel Economy (CAFE) energy efficiency for a light duty passenger car application. This particular report summarizes the third phase of the project, which lasted 12 months. Emissions tests were conducted with advanced after-treatment devices on one of the two, almost identical, test vehicles, a 1993 Ford Taurus flexible fuel vehicle. The report also covers tests on the engine removed from the second Taurus vehicle. This engine was modified for an increased compression ratio, fitted with air assist injectors, and included an advanced engine control system with model-based control.

Dodge, L.; Callahan, T.; Leone, D.; Naegeli, D.; Shouse, K.; Smith, L.; Whitney, K. [Southwest Research Inst., San Antonio, TX (United States)] [Southwest Research Inst., San Antonio, TX (United States)

1998-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicles model years" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Blog Feed: Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 29, 2011 July 29, 2011 President Barack Obama delivers remarks on fuel efficiency standards for 2017-2025 model year cars and light-duty trucks during an event at the Washington Convention Center in Washington, D.C., July 29, 2011. Seated behind the President are at left are auto industry executives and Transportation Secretary Ray LaHood. (Official White House Photo by Samantha Appleton) New Vehicle Fuel Economy Standards Will Continue to Inspire Innovation President Obama announced a landmark agreement with automakers that sets aggressive new fuel-economy standards for cars and light-duty trucks. Find out how the Energy Department is unleashing innovation that will create jobs and make sure that the fuel-efficient vehicles of the future are made in America.

482

New & Upcoming Hybrid Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

New & Upcoming Hybrids New & Upcoming Hybrids 2014 Model Year Vehicle EPA MPG Estimates Price (MSRP) Chevrolet Impala eAssist Large Car Chevrolet Impala eAssist Chart: City, 25; Highway, 35; Combined, 29 NA Infiniti Q50 Hybrid Compact Car Infiniti Q50 Hybrid Chart: City, 29; Highway, 36; Combined, 31 $43,950 Infiniti Q50 Hybrid AWD Compact Car Infiniti Q50 Hybrid AWD Chart: City, 28; Highway, 35; Combined, 30 $45,750 Infiniti Q50S Hybrid Compact Car Infiniti Q50S Hybrid Chart: City, 28; Highway, 34; Combined, 30 $46,350 Infiniti Q50S Hybrid AWD Compact Car Infiniti Q50S Hybrid AWD Chart: City, 27; Highway, 31; Combined, 28 $48,150 Infiniti QX60 Hybrid AWD Standard SUV Infiniti QX60 Hybrid AWD Chart: City, 25; Highway, 28; Combined, 26 NA Infiniti QX60 Hybrid FWD

483

Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation  

NLE Websites -- All DOE Office Websites (Extended Search)

Apps for Vehicles Apps for Vehicles Challenge Spurs Innovation in Vehicle Data to someone by E-mail Share Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Facebook Tweet about Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Twitter Bookmark Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Google Bookmark Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Delicious Rank Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Digg Find More places to share Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on AddThis.com... Apps for Vehicles Challenge Spurs Innovation in Vehicle Data

484

Vehicle barrier  

DOE Patents (OSTI)

A vehicle security barrier which can be conveniently placed across a gate opening as well as readily removed from the gate opening to allow for easy passage. The security barrier includes a barrier gate in the form of a cable/gate member in combination with laterally attached pipe sections fixed by way of the cable to the gate member and lateral, security fixed vertical pipe posts. The security barrier of the present invention provides for the use of cable restraints across gate openings to provide necessary security while at the same time allowing for quick opening and closing of the gate areas without compromising security.

Hirsh, Robert A. (Bethel Park, PA)

1991-01-01T23:59:59.000Z

485

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 54, NO. 3, MAY 2005 837 Modeling of a Hybrid Electric Vehicle Powertrain  

E-Print Network (OSTI)

, Dearborn, on engine misfire detection, and the application of fuzzy logic to the car-following problem. He in Bond Graph theory [10]. A causal stroke located at the end of a power bond indicated that effort Electric Vehicle Powertrain Test Cell Using Bond Graphs Mariano Filippa, Student Member, IEEE, Chunting Mi

Mi, Chunting "Chris"

486

Energy Efficiency in Heavy Vehicle Tires, Drivetrains, and Braking Systems  

DOE Green Energy (OSTI)

This document was prepared to support the primary goals of the Department of Energy, Office of Heavy Vehicle Technologies. These were recently stated as follows: ''Develop by 2004 the enabling technologies for a class 7-8 truck with a fuel efficiency of 10 mpg (at 65 mph) which will meet prevailing emission standards. For Class 3-6 trucks operating on an urban driving cycle, develop by 2004 commercially viable vehicles that achieve at least double the fuel economy of comparable current vehicles (1999), and as a research goal, reduce criteria pollutants to 30% below EPA standards. Develop by 2004 the diesel engine enabling technologies to support large-scale industry dieselization of Class 1 and 2 trucks, achieving a 35 % fuel efficiency improvement over comparable gasoline-fueled trucks, while meeting applicable emissions standards.'' The enabling technologies for improving the fuel efficiency of trucks, include not only engine technologies but also technologies involved with lowering the rolling resistance of tires, reducing vehicle aerodynamic drag, improving thermal management, and reducing parasitic frictional losses in drive train components. Opportunities also exist for making better use of the energy that might ordinarily be dissipated during vehicle braking. Braking systems must be included in this evaluation since safety in truck operations is vital, and braking requirements are greater for vehicles having lowered resistance to rolling. The Office of Heavy Vehicle Technologies has initiated a program to improve the aerodynamics of heavy vehicles through wind tunnel testing, computational modeling, and on-road evaluations. That activity is described in a separate multi-year plan; therefore, emphasis in this document will be on tires, drive trains, and braking systems. Recent, dramatic fluctuations in diesel fuel prices have emphasized the importance of effecting savings in truck fuel economy by implementing new component designs and materials.

Peter J. Blau

2000-04-26T23:59:59.000Z

487

Hydrogen vehicle fueling station  

DOE Green Energy (OSTI)

The authors describe a hydrogen vehicle fueling station that receives and stores hydrogen in liquid form and dispenses it either as a liquid or compressed gas. The economics that accrue from the favorable weight and volume advantages of liquid hydrogen support this concept both now and probably for some time to come. The model for liquid transfer to a 120-liter vehicle tank shows that transfer times under five minutes are feasible with pump-assisted transfer, or for pressure transfer with subcooling greater than 1 K. The model for compressed gas transfer shows that underfilling of nearly 30% can occur during rapid filling. Cooling the fill gas to 214 K completely eliminates underfilling.

Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A.; Prenger, F.C.; Hill, D.D.

1995-09-01T23:59:59.000Z

488

Voltage Vehicles | Open Energy Information  

Open Energy Info (EERE)

Sector Vehicles Product Voltage Vehicles is a nascent, full-service alternative fuel vehicle distributor specializing in the full spectrum of electric vehicles (EV) and...

489

Vehicle Technologies Office: Fact #794: August 26, 2013 How Much Does an  

NLE Websites -- All DOE Office Websites (Extended Search)

4: August 26, 4: August 26, 2013 How Much Does an Average Vehicle Owner Pay in Fuel Taxes Each Year? to someone by E-mail Share Vehicle Technologies Office: Fact #794: August 26, 2013 How Much Does an Average Vehicle Owner Pay in Fuel Taxes Each Year? on Facebook Tweet about Vehicle Technologies Office: Fact #794: August 26, 2013 How Much Does an Average Vehicle Owner Pay in Fuel Taxes Each Year? on Twitter Bookmark Vehicle Technologies Office: Fact #794: August 26, 2013 How Much Does an Average Vehicle Owner Pay in Fuel Taxes Each Year? on Google Bookmark Vehicle Technologies Office: Fact #794: August 26, 2013 How Much Does an Average Vehicle Owner Pay in Fuel Taxes Each Year? on Delicious Rank Vehicle Technologies Office: Fact #794: August 26, 2013 How Much Does an Average Vehicle Owner Pay in Fuel Taxes Each Year? on Digg

490

Recovering Plastics from Retired Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Shredded plastic materials recovered Shredded plastic materials recovered from retired cars and trucks can be used to manufacture new vehicle parts and other plastic products. Left: Items from shredder residue, recovered polyethylene and polypropylene, and a knee bolster manufactured from recovered plastics. Right: Argonne's froth flotation pilot plant. Background For years vehicle manufacturers have been designing and building new cars and trucks with the goal that structural materials in ELVs will be recycled, reducing the flow of material into the solid-waste stream. At the same time, automakers must ensure that the design materials selected for their ability to be recycled do not impair the safety, reliability, and performance of the completed vehicle. In the United States between 12 and 15 million vehicles reach

491

Table 2.8 Motor Vehicle Mileage, Fuel Consumption, and Fuel ...  

U.S. Energy Information Administration (EIA)

Table 2.8 Motor Vehicle Mileage, Fuel Consumption, and Fuel Economy, 1949-2010: Year: Light-Duty Vehicles, Short Wheelbase 1: Light-Duty Vehicles, Long Wheelbase 2:

492

Gas Mileage of 2013 Vehicles by CODA Automotive  

NLE Websites -- All DOE Office Websites (Extended Search)

3 CODA Automotive Vehicles EPA MPG MODEL City Comb Hwy 2013 CODA Automotive CODA Automatic (A1), Electricity Compare 2013...

493

Gas Mileage of 2012 Vehicles by CODA Automotive  

NLE Websites -- All DOE Office Websites (Extended Search)

2 CODA Automotive Vehicles EPA MPG MODEL City Comb Hwy 2012 CODA Automotive CODA Automatic (A1), Electricity Compare 2012...

494

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

Traction Battery for the ETX-II Vehicle, EGG-EP-9688, IdahoElectric Vehicle Powertrain (ETX-II) Performance: VehicleDevelopment Program - ETX-II, Phase II Technical Report, DOE

Delucchi, Mark

1992-01-01T23:59:59.000Z

495

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

1-5): Electric/Hybrid Vehicles: An Emerging Global Industry,1-5): Electric/Hybrid Vehicles: An Emerging Global Industry,1-5): Electric/Hybrid Vehicles: An Emerging Global Industry,

Delucchi, Mark

1992-01-01T23:59:59.000Z

496

Vehicle Technologies Office: Fact #747: October 1, 2012 Behind...  

NLE Websites -- All DOE Office Websites (Extended Search)

more on transportation in a year than on food. Vehicle purchases, along with gasoline and motor oil, make up a large part of vehicle expenditures, but insurance, finance charges,...

497

Fuel Prices and New Vehicle Fuel Economy in Europe  

E-Print Network (OSTI)

This paper evaluates the effect of fuel prices on new vehicle fuel economy in the eight largest European markets. The analysis spans the years 2002–2007 and uses detailed vehicle registration and specification data to ...

Klier, Thomas

498

Fuel Cell Vehicles Enhance NREL Hydrogen Research Capabilities...  

NLE Websites -- All DOE Office Websites (Extended Search)

four Fuel Cell Hybrid Vehicle-Advanced (FCHV-adv) sport utility vehicles on loan from Toyota. Over the next two years the lab will use the FCHVs, also known as fuel cell electric...

499

Illinois Natural Gas Vehicle Fuel Consumption (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel Consumption (Million Cubic Feet) Illinois Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 25 23 25...

500

Feasibility of Thermoelectrics for Waste Heat Recovery in Conventional Vehicles  

DOE Green Energy (OSTI)

Thermoelectric (TE) generators convert heat directly into electricity when a temperature gradient is applied across junctions of two dissimilar metals. The devices could increase the fuel economy of conventional vehicles by recapturing part of the waste heat from engine exhaust and generating electricity to power accessory loads. A simple vehicle and engine waste heat model showed that a Class 8 truck presents the least challenging requirements for TE system efficiency, mass, and cost; these trucks have a fairly high amount of exhaust waste heat, have low mass sensitivity, and travel many miles per year. These factors help maximize fuel savings and economic benefits. A driving/duty cycle analysis shows strong sensitivity of waste heat, and thus TE system electrical output, to vehicle speed and driving cycle. With a typical alternator, a TE system could allow electrification of 8%-15% of a Class 8 truck's accessories for 2%-3% fuel savings. More research should reduce system cost and improve economics.

Smith, K.; Thornton, M.

2009-04-01T23:59:59.000Z