National Library of Energy BETA

Sample records for vehicles model years

  1. Model Year 2006: Alternative Fuel and Advanced Technology Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat Letter to Science of 2Model

  2. Fact #854 January 5, 2015 Driving Ranges for All-Electric Vehicles in Model Year 2014 Vary from 62 to 265 Miles – Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Driving Ranges for All-Electric Vehicles in Model Year 2014 Vary from 62 to 265 Miles

  3. Application for certification, 1991 model-year light-duty vehicles - Sterling

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems or exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the application contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.

  4. 44421Federal Register / Vol. 62, No. 162 / Thursday, August 21, 1997 / Rules and Regulations THEFT RATES OF MODEL YEAR 1995 PASSENGER MOTOR VEHICLES STOLEN IN CALENDAR YEAR 1995--Continued

    E-Print Network [OSTI]

    RATES OF MODEL YEAR 1995 PASSENGER MOTOR VEHICLES STOLEN IN CALENDAR YEAR 1995--Continued Manufacturer Make/model (line) Thefts 1995 Production (mfgr's) 1995 1995 (per 1,000 vehi- cles pro- duced) theft

  5. Analysis of Casualty Risk per Police-Reported Crash for Model Year 2000 to 2004 Vehicles, using Crash Data from Five States

    SciTech Connect (OSTI)

    Wenzel, Tom

    2011-03-20

    In this report we compare two measures of driver risks: fatality risk per vehicle registration-year, and casualty (fatality plus serious injury) risk per police-reported crash. Our analysis is based on three sets of data from five states (Florida, Illinois, Maryland, Missouri, and Pennsylvania): data on all police-reported crashes involving model year 2000 to 2004 vehicles; 2005 county-level vehicle registration data by vehicle model year and make/model; and odometer readings from vehicle emission inspection and maintenance (I/M) programs conducted in urban areas of four of the five states (Florida does not have an I/M program). The two measures of risk could differ for three reasons: casualty risks are different from fatality risk; risks per vehicle registration-year are different from risks per crash; and risks estimated from national data are different from risks from the five states analyzed here. We also examined the effect of driver behavior, crash location, and general vehicle design on risk, as well as sources of potential bias in using the crash data from five states.

  6. Webtrends Archives by Fiscal YearVehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    From the EERE Web Statistics Archive: Vehicle Technologies Office, Webtrends archives for the site, including the Alternative Fuels Data Center, EPAct Transportation Regulatory Activities, and Clean Cities by fiscal year.

  7. Fact #806: December 2, 2013 Light Vehicle Market Shares, Model...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact 806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 In 1975, cars were by far the dominant vehicle style among new light vehicle sales, with a few vans...

  8. Vehicle Modeling and Simulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling and Simulation Vehicle Modeling and Simulation Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda,...

  9. Data Needs for Evolving Motor Vehicle Emission Modeling Approaches

    E-Print Network [OSTI]

    Guensler, Randall

    1993-01-01

    Agency; Highway Vehicle Emission Estimates; Office offor Evolving Motor Vehicle Emission Modeling Approachesfor Evolving Motor Vehicle Emission Modeling Approaches

  10. An Analysis of the Relationship between Casualty Risk Per Crash and Vehicle Mass and Footprint for Model Year 2000-2007 Light-Duty Vehicles-Preliminary report

    E-Print Network [OSTI]

    Wenzel, Tom

    2013-01-01

    from odometer data provided by RL Polk. For more details onodometer data provided by R.L. Polk. The data can be used toregistration years (from Polk). NHTSA selected non-culpable

  11. Consumer Vehicle Choice Model Documentation

    SciTech Connect (OSTI)

    Liu, Changzheng; Greene, David L

    2012-08-01

    In response to the Fuel Economy and Greenhouse Gas (GHG) emissions standards, automobile manufacturers will need to adopt new technologies to improve the fuel economy of their vehicles and to reduce the overall GHG emissions of their fleets. The U.S. Environmental Protection Agency (EPA) has developed the Optimization Model for reducing GHGs from Automobiles (OMEGA) to estimate the costs and benefits of meeting GHG emission standards through different technology packages. However, the model does not simulate the impact that increased technology costs will have on vehicle sales or on consumer surplus. As the model documentation states, “While OMEGA incorporates functions which generally minimize the cost of meeting a specified carbon dioxide (CO2) target, it is not an economic simulation model which adjusts vehicle sales in response to the cost of the technology added to each vehicle.” Changes in the mix of vehicles sold, caused by the costs and benefits of added fuel economy technologies, could make it easier or more difficult for manufacturers to meet fuel economy and emissions standards, and impacts on consumer surplus could raise the costs or augment the benefits of the standards. Because the OMEGA model does not presently estimate such impacts, the EPA is investigating the feasibility of developing an adjunct to the OMEGA model to make such estimates. This project is an effort to develop and test a candidate model. The project statement of work spells out the key functional requirements for the new model.

  12. Google Archives by Fiscal YearVehicles

    Broader source: Energy.gov [DOE]

    From the EERE Web Statistics Archive: Vehicle Technologies Office, retired Google Analytics profiles for the AFDC Ethanol FY12 and the Directions in Engine-Efficiency and Emissions Research Conference FY12-FY14 sites.

  13. Designing On-Road Vehicle Test Programs for the Development of Effective Vehicle Emission Models

    E-Print Network [OSTI]

    Younglove, T; Scora, G; Barth, M

    2005-01-01

    Uncertainty in Highway Vehicle Emission Factors,” EmissionPrograms for Effective Vehicle Emission Model DevelopmentU.S. EPA’s Mobile Vehicle Emission Simulator) are becoming

  14. TEG On-Vehicle Performance & Model Validation

    Broader source: Energy.gov [DOE]

    Details efforts and results of steady-state and transient models validated with bench, engine dynamometer, and on-vehicle tests to measure actual performance

  15. Integrated Mathematical Modeling Software Series of Vehicle Propulsion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mathematical Modeling Software Series of Vehicle Propulsion System: (1) Tractive Effort (T sub ew) of Vehicle Road WheelTrack Sprocket Integrated Mathematical Modeling Software...

  16. Improving efficiency of a vehicle HVAC system with comfort modeling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    efficiency of a vehicle HVAC system with comfort modeling, zonal design, and thermoelectric devices Improving efficiency of a vehicle HVAC system with comfort modeling, zonal...

  17. Autonomie Modeling Tool Improves Vehicle Design and Testing,...

    Office of Environmental Management (EM)

    Autonomie Modeling Tool Improves Vehicle Design and Testing, Informs New Fuel Economy Standards Autonomie Modeling Tool Improves Vehicle Design and Testing, Informs New Fuel...

  18. Fact #854 January 5, 2015 Driving Ranges for All-Electric Vehicles in Model Year 2014 Vary from 62 to 265 Miles

    Broader source: Energy.gov [DOE]

    Driving ranges for all-electric vehicles vary considerably. Based on the official Environmental Protection Agency (EPA) range values reported on window stickers, the Mitsubishi i-MiEV has the...

  19. Modelling and control strategy development for fuel cell electric vehicles

    E-Print Network [OSTI]

    Peng, Huei

    Modelling and control strategy development for fuel cell electric vehicles Andreas Schell b , Huei applicable to the development of fuel cell electric vehicles (FCEVs) and hybrid electric vehicles (HEVs reserved. Keywords: Fuel cell electric vehicle; Hybrid vehicles; Modelling 1. Introduction Advanced

  20. Vehicle Technologies Office: Multi-Year Program Plan 2011-2015...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: Multi-Year Program Plan 2011-2015 Vehicle Technologies Office: Multi-Year Program Plan 2011-2015 The VT MYPP, FY 2011 2015, outlines the scientific...

  1. Fiscal Year 2015 Vehicle Technologies Office Incubator Funding...

    Broader source: Energy.gov (indexed) [DOE]

    Documents & Publications Vehicle Technologies Office Merit Review 2015: High Energy Lithium-Sulfur Cathodes Vehicle Technologies Office Merit Review 2015: Fundamental Studies of...

  2. A Statistical Model of Vehicle Emissions and Fuel Consumption

    E-Print Network [OSTI]

    Cappiello, Alessandra

    2002-09-17

    A number of vehicle emission models are overly simple, such as static speed-dependent models widely used in

  3. Model Year 2012 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2011-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

  4. Model Year 2011 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2010-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

  5. Model Year 2013 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2012-12-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

  6. Modeling the vehicle cycle impacts of hybrid electric vehicles

    SciTech Connect (OSTI)

    Wang, M.Q.; Gaines, L.; Cuenca, R. [Argonne National Lab., IL (United States). Center for Transportation Research

    1997-03-13

    Pure and hybrid electric vehicles, considered environmentally benign, are being developed to reduce urban air pollutant emissions. The obvious emissions benefit of pure electric vehicles is that they produce no tailpipe emissions. Hybrid electric vehicles have the potential of improving fuel economy and reducing emissions. However, both electric vehicles and hybrid electric vehicles (HEVs) do have their own environmental impacts. In order to quantify the potential benefits from introducing such vehicles, it is necessary to compare their impacts with those from the conventional vehicles they would replace. These impacts include energy use and emissions from the entire energy cycle, including fuel production, vehicle and battery production and recycling, and vehicle operation. Argonne`s previous work in collaboration with other national laboratories analyzed the total energy cycle of electric vehicles; this paper compares energy use and emissions for the total energy cycles of several HEV designs with those from modern conventional vehicles. The estimates presented indicate that use of HEVs can reduce energy use and emissions of greenhouse gases, volatile organic gases, carbon monoxide, and particulate matter smaller than 10 micrometers. HEVs may, in some cases, increase emissions of nitrogen oxides and sulfur oxides. Although some of the HEV designs illustrated in this paper could run a significant proportion of annual miles in all electric operation, no calculation of the emission reductions that result from using electricity from the utility grid is presented in this paper.

  7. 2015 Approved Vehicles CLASS MAKE/MODEL

    E-Print Network [OSTI]

    Hill, Jeffrey E.

    2015 Approved Vehicles CLASS MAKE/MODEL ELECTRIC HYBRID FLEXFUEL GAS DIESEL FUEL ECONOMY (Electric) FUEL ECONOMY (GAS) FUEL ECONOMY (E85) FUEL ECONOMY (DIESEL) ENERGY IMPACT SCORE (ELECTRIC) ENERGY IMPACT SCORE (GAS) ENERGY IMPACT SCORE (E85) ENERGY IMPACT SCORE (DIESEL) SMALL CAR Ford Focus Electric

  8. Model Year 2006 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2005-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  9. Model Year 2005 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2004-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  10. Model Year 2010 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2009-10-14

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  11. Model Year 2007 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2007-10-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  12. Model Year 2015 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2014-12-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  13. Model Year 2009 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2008-10-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  14. Model Year 2008 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2007-10-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  15. Model Year 2016 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2015-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  16. Model Year 2014 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2013-12-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  17. Modeling and Simulation of Electric and Hybrid Vehicles

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    INVITED P A P E R Modeling and Simulation of Electric and Hybrid Vehicles Tools that can model embedded software as well as components, and can automate the details of electric and hybrid vehicle design of electric and hybrid vehicles. Different modeling methods such as physics-based Resistive Companion Form

  18. Vehicle technologies program Government Performance and Results Act (GPA) report for fiscal year 2012

    SciTech Connect (OSTI)

    Ward, J.; Stephens, T. S.; Birky, A. K.

    2012-08-10

    The U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy has defined milestones for its Vehicle Technologies Program (VTP). This report provides estimates of the benefits that would accrue from achieving these milestones relative to a base case that represents a future in which there is no VTP-supported vehicle technology development. Improvements in the fuel economy and reductions in the cost of light- and heavy-duty vehicles were estimated by using Argonne National Laboratory's Autonomie powertrain simulation software and doing some additional analysis. Argonne also estimated the fraction of the fuel economy improvements that were attributable to VTP-supported development in four 'subsystem' technology areas: batteries and electric drives, advanced combustion engines, fuels and lubricants, and materials (i.e., reducing vehicle mass, called 'lightweighting'). Oak Ridge National Laboratory's MA{sup 3}T (Market Acceptance of Advanced Automotive Technologies) tool was used to project the market penetration of light-duty vehicles, and TA Engineering's TRUCK tool was used to project the penetrations of medium- and heavy-duty trucks. Argonne's VISION transportation energy accounting model was used to estimate total fuel savings, reductions in primary energy consumption, and reductions in greenhouse gas emissions that would result from achieving VTP milestones. These projections indicate that by 2030, the on-road fuel economy of both light- and heavy-duty vehicles would improve by more than 20%, and that this positive impact would be accompanied by a reduction in oil consumption of nearly 2 million barrels per day and a reduction in greenhouse gas emissions of more than 300 million metric tons of CO{sub 2} equivalent per year. These benefits would have a significant economic value in the U.S. transportation sector and reduce its dependency on oil and its vulnerability to oil price shocks.

  19. Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model

    Office of Energy Efficiency and Renewable Energy (EERE)

    The number of all light vehicles sold declined about 18% from 2007 to 2008, while the number of hybrid vehicles sold declined about 11%. Five new hybrid models were sold in 2008; other than those,...

  20. Vehicle Technologies Office Merit Review 2014: Emissions Modeling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions Modeling: GREET Life Cycle Analysis Vehicle Technologies Office Merit Review 2014: Emissions Modeling: GREET Life Cycle Analysis Presentation given by Argonne National...

  1. Vehicle Technologies Office Merit Review 2015: Emissions Modeling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions Modeling: GREET Life Cycle Analysis Vehicle Technologies Office Merit Review 2015: Emissions Modeling: GREET Life Cycle Analysis Presentation given by Argonne National...

  2. In-vehicle mm-Wave Channel Model and Measurement

    E-Print Network [OSTI]

    Zemen, Thomas

    . I. INTRODUCTION The ever increasing vehicle efficiency goes hand in hand with weight savings. OneIn-vehicle mm-Wave Channel Model and Measurement Jiri Blumenstein, Tomas Mikulasek, Roman Marsalek measurements carried out in the intra­ vehicle environment. Channels in the millimeter-wave (MMW) frequency

  3. In-Vehicle Testing and Computer Modeling of Electric Vehicle Batteries

    E-Print Network [OSTI]

    Wang, Chao-Yang

    In-Vehicle Testing and Computer Modeling of Electric Vehicle Batteries B. Thomas, W.B. Gu, J.edu Abstract A combined simulation and testing approach has been developed to evaluate battery packs in real accelerates battery development cycle, and enables innovative battery design and optimization. Several

  4. Parallel Implementation of a Vehicle-Tire-Terrain Interaction Model

    E-Print Network [OSTI]

    Negrut, Dan

    (VTTIM) · Three components o Vehicle o Tire o Terrain/Soil mechanics · Two interfaces o Vehicle support for ANCF `tire' 9 #12;Types of Soil Mechanics Models · Empirical Methods o WES numerics, Bekker of Tire Models · Rigid o Simple to implement in parallel o Only accurate if deformation of soil is much

  5. Modeling and Adaptive Control of Indoor Unmanned Aerial Vehicles

    E-Print Network [OSTI]

    Modeling and Adaptive Control of Indoor Unmanned Aerial Vehicles by Bernard Michini B;Modeling and Adaptive Control of Indoor Unmanned Aerial Vehicles by Bernard Michini Submitted for the degree of Master of Science in Aeronautics and Astronautics Abstract The operation of unmanned aerial

  6. Vehicle Technologies Office Merit Review 2015: Technical Cost Modeling for Vehicle Lightweighting

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by IBIS Associates at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about technical cost modeling for...

  7. Vehicle Technologies Office Merit Review 2015: Modeling for Light and Heavy Vehicle Market Analysis

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Energetics at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about modeling for light and heavy...

  8. LD Vehicles AFDC 11 25 13 TC.xlsx

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Model Year 2014: Alternative Fuel and Advanced Technology Vehicles 1 (Updated 11252013) MY FuelPowertrain Type Make Model Vehicle Type Engine SizeCylinders Transmission...

  9. Projections of motor vehicle growth, fuel consumption and CO{sub 2} emissions for the next thirty years in China.

    SciTech Connect (OSTI)

    He, D.; Wang, M.

    2000-12-12

    Since the early 1990s, China's motor vehicles have entered a period of fast growth resultant from the rapid economic expansion. As the largest developing country, the fast growth of China's motor vehicles will have tremendous effects on the world's automotive and fuel market and on global CO{sub 2} emissions. In this study, we projected Chinese vehicle stocks for different vehicle types on the provincial level. First, we reviewed the historical data of China's vehicle growth in the past 10 years and the correlations between vehicle growth and economic growth in China. Second, we investigated historical vehicle growth trends in selected developed countries over the past 50 or so years. Third, we established a vehicle growth scenario based on the historical trends in several developed nations. Fourth, we estimated fuel economy, annual mileage and other vehicle usage parameters for Chinese vehicles. Finally, we projected vehicle stocks and estimated motor fuel use and CO{sub 2} emissions in each Chinese province from 2000 to 2030. Our results show that China will continue the rapid vehicle growth, increase gasoline and diesel consumption and increased CO{sub 2} emissions in the next 30 years. We estimated that by year 2030, Chinese motor vehicle fuel consumption and CO{sub 2} emissions could reach the current US levels.

  10. Operation of an aluminum-intensive vehicle : report on a six-year project.

    SciTech Connect (OSTI)

    Gaines, L. L.; Cuenca, R. M.

    2002-05-02

    In 1994, Ford produced a small demonstration fleet of Mercury Sables with aluminum bodies. Argonne National Laboratory obtained one of these vehicles on a lease so that Laboratory staff could observe the wear characteristics of the body under normal operating conditions. The vehicle was placed in the transportation pool, parked outdoors, and used by staff members for both local and longer trips. The vehicle performed normally, except for having particularly good acceleration because of its light weight and highpower SHO engine. No significant problems were encountered that related to the Al body or engine. No special driving protocols were observed, but a log was kept of trip lengths and fuel purchases. Fuel economy was observed to be improved, compared with that of a similar conventional steel-bodied vehicle that was available for one year of the lease period. The vehicle was tested on a chassis dynamometer to obtain emissions and fuel economy over the federal test cycle. The impacts of further mass reduction were also simulated. At the end of the lease, the body was in excellent condition, which we documented with a set of detailed photographs before the vehicle was returned to Ford. There were minor imperfections in the painted surface, probably resulting from the omission of an E-coat during the painting process. We also examined three similar conventional vehicles for comparison; these exhibited varying degrees of rust.

  11. Electric and hybrid vehicles program. 5th annual report to Congress for Fiscal Year 1981

    SciTech Connect (OSTI)

    1982-03-01

    This fifth annual report on the implementation of the Electric and Hybrid Vehicle Research, Development and Demonstration Act of 1976 (Public Law 94-413, as amended by Public Law 95-238, referred to as the Act) complies with the reporting requirements established in Section 14 of the Act. In addition to informing the Congress of the progress and plans of the Department of Energy Electric and Hybrid Vehicles Program, this report is intended to serve as a communication link between the Department and all of the public and private interests involved in making the program a success. The Annual Report represents the major summary of the Electric and Hybrid Vehicles Program activities; since July 1981, DOE has ceased publication of the EHV Quarterly Reports with Congressional approval. The fourth quarter activities for FY 1981 are included in this report. During FY 1981, significant progress was made toward implementing the policies established by Congress in the Act. There has been a noticeable increase in interest shown by both the automobile manufacturing and the supply sectors of our economy in electric and hybrid vehicles. This year, the emphasis in the Electric and Hybrid Vehicles Program shifted from vehicle demonstration and preparation for production readiness to research, development, test, and evaluation of advanced technologies to achieve the attributes necessary to make electric and hybrid vehicles a practical transportation alternative. Research and development efforts in batteries and propulsion components, as well as total vehicle systems, continue to reveal significant progress toward providing industry with technology options that will result in vehicles with greater public acceptance.

  12. Figure 2. Energy Consumption of Vehicles, Selected Survey Years

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun20032,485,331Gas ProvedDec.12 13Cubic2 Figure

  13. Application of Finite Mixture Models for Vehicle Crash Data Analysis 

    E-Print Network [OSTI]

    Park, Byung Jung

    2010-07-14

    Developing sound or reliable statistical models for analyzing vehicle crashes is very important in highway safety studies. A difficulty arises when crash data exhibit overdispersion. Over-dispersion caused by unobserved ...

  14. AVCEM: Advanced-Vehicle Cost and Energy Use Model

    E-Print Network [OSTI]

    Delucchi, Mark

    2005-01-01

    California 95616 PHONE: WEB: FAX: http://its.ucdavis.edu/ AVCEM: ADVANCED-VEHICLE COST AND ENERGY-Cost and Energy Use Model Overview of AVCEM Mark A. Delucchi Institute of Transportation Studies ? University of California,

  15. Development and applications of GREET 2.7 -- The Transportation Vehicle-CycleModel.

    SciTech Connect (OSTI)

    Burnham, A.; Wang, M. Q.; Wu, Y.

    2006-12-20

    Argonne National Laboratory has developed a vehicle-cycle module for the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model. The fuel-cycle GREET model has been cited extensively and contains data on fuel cycles and vehicle operations. The vehicle-cycle model evaluates the energy and emission effects associated with vehicle material recovery and production, vehicle component fabrication, vehicle assembly, and vehicle disposal/recycling. With the addition of the vehicle-cycle module, the GREET model now provides a comprehensive, lifecycle-based approach to compare the energy use and emissions of conventional and advanced vehicle technologies (e.g., hybrid electric vehicles and fuel cell vehicles). This report details the development and application of the GREET 2.7 model. The current model includes six vehicles--a conventional material and a lightweight material version of a mid-size passenger car with the following powertrain systems: internal combustion engine, internal combustion engine with hybrid configuration, and fuel cell with hybrid configuration. The model calculates the energy use and emissions that are required for vehicle component production; battery production; fluid production and use; and vehicle assembly, disposal, and recycling. This report also presents vehicle-cycle modeling results. In order to put these results in a broad perspective, the fuel-cycle model (GREET 1.7) was used in conjunction with the vehicle-cycle model (GREET 2.7) to estimate total energy-cycle results.

  16. Electric and Hybrid Vehicles Program 18th annual report to Congress for Fiscal Year 1994

    SciTech Connect (OSTI)

    NONE

    1995-04-01

    The Department remains focused on the technologies that are critical to making electric and hybrid vehicles commercially viable and competitive with current production gasoline-fueled vehicles in performance, reliability, and affordability. During Fiscal Year 1994, significant progress was made toward fulfilling the intent of Congress. The Department and the United States Advanced Battery Consortium (a partnership of the three major domestic automobile manufacturers) continued to work together and to focus the efforts of battery developers on the battery technologies that are most likely to be commercialized in the near term. Progress was made in industry cost-shared contracts toward demonstrating the technical feasibility of fuel cells for passenger bus and light duty vehicle applications. Two industry teams which will develop hybrid vehicle propulsion technologies have been selected through competitive procurement and have initiated work, in Fiscal Year 1994. In addition, technical studies and program planning continue, as required by the Energy Policy Act of 1992, to achieve the goals of reducing the transportation sector dependence on imported oil, reducing the level of environmentally harmful emissions, and enhancing industrial productivity and competitiveness.

  17. Modeling radio communication blackout and blackout mitigation in hypersonic vehicles

    E-Print Network [OSTI]

    Kundrapu, Madhusudhan; Beckwith, Kristian; Stoltz, Peter; Shashurin, Alexey; Keidar, Michael

    2014-01-01

    A procedure for the modeling and analysis of radio communication blackout of hypersonic vehicles is presented. A weakly ionized plasma generated around the surface of a hypersonic reentry vehicle traveling at Mach 23 was simulated using full Navier-Stokes equations in multi-species single fluid form. A seven species air chemistry model is used to compute the individual species densities in air including ionization - plasma densities are compared with experiment. The electromagnetic wave's interaction with the plasma layer is modeled using multi-fluid equations for fluid transport and full Maxwell's equations for the electromagnetic fields. The multi-fluid solver is verified for a whistler wave propagating through a slab. First principles radio communication blackout over a hypersonic vehicle is demonstrated along with a simple blackout mitigation scheme using a magnetic window.

  18. Model year 2010 Honda insight level-1 testing report.

    SciTech Connect (OSTI)

    Rask, E.; Bocci, D.; Duoba, M.; Lohse-Busch, H.

    2011-03-22

    As a part of the US Department of Energy's Advanced Vehicle Testing Activity (AVTA), a model year 2010 Honda Insight was procured by eTec (Phoenix, AZ) and sent to ANL's Advanced Powertrain Research Facility for the purposes of vehicle-level testing in support of the Advanced Vehicle Testing Activity (AVTA). Data was acquired during testing using non-intrusive sensors, vehicle network information, and facilities equipment (emissions and dynamometer data). Standard drive cycles, performance cycles, steady-state cycles and A/C usage cycles were tested. Much of this data is openly available for download in ANL's Downloadable Dynamometer Database (D3). The major results are shown here in this report. Given the preliminary nature of this assessment, the majority of the testing was done over standard regulatory cycles and seeks to obtain a general overview of how the vehicle performs. These cycles include the US FTP cycle (Urban) and Highway Fuel Economy Test cycle as well as the US06, a more aggressive supplemental regulatory cycle. Data collection for this testing was kept at a fairly high level and includes emissions and fuel measurements from an exhaust emissions bench, high-voltage and accessory current and voltage from a DC power analyzer, and CAN bus data such as engine speed, engine load, and electric machine operation when available. The following sections will seek to explain some of the basic operating characteristics of the MY2010 Insight and provide insight into unique features of its operation and design.

  19. Model year 2010 Ford Fusion Level-1 testing report.

    SciTech Connect (OSTI)

    Rask, E.; Bocci, D.; Duoba, M.; Lohse-Busch, H.; Energy Systems

    2010-11-23

    As a part of the US Department of Energy's Advanced Vehicle Testing Activity (AVTA), a model year 2010 Ford Fusion was procured by eTec (Phoenix, AZ) and sent to ANL's Advanced Powertrain Research Facility for the purposes of vehicle-level testing in support of the Advanced Vehicle Testing Activity. Data was acquired during testing using non-intrusive sensors, vehicle network information, and facilities equipment (emissions and dynamometer). Standard drive cycles, performance cycles, steady-state cycles, and A/C usage cycles were conducted. Much of this data is openly available for download in ANL's Downloadable Dynamometer Database. The major results are shown in this report. Given the benchmark nature of this assessment, the majority of the testing was done over standard regulatory cycles and sought to obtain a general overview of how the vehicle performs. These cycles include the US FTP cycle (Urban) and Highway Fuel Economy Test cycle as well as the US06, a more aggressive supplemental regulatory cycle. Data collection for this testing was kept at a fairly high level and includes emissions and fuel measurements from an exhaust emissions bench, high-voltage and accessory current/voltage from a DC power analyzer, and CAN bus data such as engine speed, engine load, and electric machine operation. The following sections will seek to explain some of the basic operating characteristics of the MY2010 Fusion and provide insight into unique features of its operation and design.

  20. Measuring and Modeling Emissions from Extremely Low Emitting Vehicles

    E-Print Network [OSTI]

    Barth, M; Collins, J F; Scora, G; Davis, N; Norbeck, J M

    2006-01-01

    CARB) (2005) “Motor Vehicle Emissions Inventory Modelingdynamometer test. The vehicle emission standards have beenwith the on-road vehicle emission measurement effort. This

  1. Measuring and Modeling Emissions from Extremely Low-Emitting Vehicles

    E-Print Network [OSTI]

    Barth, M; Collins, J F; Scora, G; Davis, N; Norbeck, J N

    2006-01-01

    CARB) (2005) “Motor Vehicle Emissions Inventory Modelingdynamometer test. The vehicle emission standards have beenwith the on-road vehicle emission measurement effort. This

  2. Vehicle Technologies Office Merit Review 2015: Vehicle Thermal Systems Modeling in Simulink

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

  3. Vehicle Technologies Office Merit Review 2014: Vehicle Thermal Systems Modeling in Simulink

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

  4. Dynamic Model and Control of a New Quadrotor Unmanned Aerial Vehicle with Tilt-Wing

    E-Print Network [OSTI]

    Yanikoglu, Berrin

    Dynamic Model and Control of a New Quadrotor Unmanned Aerial Vehicle with Tilt-Wing Mechanism Kaan, LQR, Quadrotor, Tilt-wing, VTOL. I. INTRODUCTION Unmanned aerial vehicles (UAV) designed for various of a new tilt-wing aerial vehicle (SUAVi: Sabanci University Unmanned Aerial Vehicle) that is capable

  5. MODELING REAL-TIME HUMAN-AUTOMATION COLLABORATIVE SCHEDULING OF UNMANNED VEHICLES

    E-Print Network [OSTI]

    Cummings, Mary "Missy"

    MODELING REAL-TIME HUMAN-AUTOMATION COLLABORATIVE SCHEDULING OF UNMANNED VEHICLES by ANDREW S, Humans and Automation Laboratory Certified by;3 MODELING REAL-TIME HUMAN-AUTOMATION COLLABORATIVE SCHEDULING OF UNMANNED VEHICLES by Andrew S. Clare

  6. Fact #862 March 2, 2015 Light Vehicle Production in Mexico More than Doubled in Last Five Years

    Broader source: Energy.gov [DOE]

    Total production of light vehicles in Mexico remained nearly flat between 2004 and 2009 but in the following five-year span from 2009 to 2014, production more than doubled. In 2004, cars and light...

  7. A Multi-Year Program Plan for the Aerodynamic Design of Heavy Vehicles

    SciTech Connect (OSTI)

    None

    2001-09-01

    The project tasks and deliverables are as follows: Computations and Experiments--(1) Simulation and analysis of a range of generic shapes, simplified to more complex, representative of tractor and integrated tractor-trailer flow characteristics using computational tools, (2) The establishment of an experimental data base for tractor-trailer models for code/computational method development and validation. The first shapes to be considered will be directed towards the investigation of tractor-trailer gaps and mismatch of tractor-trailer heights. (3) The evaluation and documentation of effective computational approaches for application to heavy vehicle aerodynamics based on the benchmark results with existing and advanced computational tools compared to experimental data, and (4) Computational tools and experimental methods for use by industry, National Laboratories, and universities for the aerodynamic modeling of heavy truck vehicles. Evaluation of current and new technologies--(1) The evaluation and documentation of current and new technologies for drag reduction based on published literature and continued communication with the heavy vehicle industry (e.g., identification and prioritization of tractor-trailer drag-sources, blowing and/or suction devices, body shaping, new experimental methods or facilities), and the identification and analysis of tractor and integrated tractor-trailer aerodynamic problem areas and possible solution strategies. (2) Continued industrial site visits. It should be noted that ''CFD tools'' are not only the actual computer codes, but descriptions of appropriate numerical solution methods. Part of the project effort will be to determine the restrictions or avenues for technology transfer.

  8. Lean NOx Trap Modeling in Vehicle Systems Simulations

    SciTech Connect (OSTI)

    Gao, Zhiming [ORNL] [ORNL; Chakravarthy, Veerathu K [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Conklin, Jim [ORNL] [ORNL

    2010-09-01

    A one-dimensional model for simulating lean NOx trap (LNT) performance is developed and validated using both steady state cycling data and transient data from FTP testing cycles. The model consists of the conservation equations for chemical species and energy in the bulk flow, energy of the solid walls, O2 storage and NOx storage (in the form of nitrites and nitrates). Nitrites and nitrates are formed by diffusion of NO and NO2, respectively, into sorbent particles (assumed to be hemi-spherical in shape) along with O2 and their formation rates are controlled by chemical kinetics as well as solid-phase diffusion rates of NOx species. The model also accounts for thermal aging and sulfation of LNTs. Empirical correlations are developed on the basis of published experimental data to capture these effects. These empirical correlations depend on total mileage for which the LNT has been in use, the mileage accumulated since the last desulfation event in addition to the freshly degreened catalyst characteristics. The model has been used in studies of vehicle systems (integration, performance etc.) including hybrid powertrain configurations. Since the engines in hybrid vehicles turn on and off multiple number of times during single drive cycles, the exhaust systems may encounter multiple cold start transients. Accurate modeling of catalyst warm-up and cooling is, therefore, very important to simulate LNT performance in such vehicles. For this purpose, the convective heat loss from the LNT to the ambient is modeled using a Nusselt number correlation that includes effects of both forced convection and natural convection (with later being important when vehicle is stationary). Using the model, the fuel penalty associated with operating LNTs on small diesel engine powered car during FTP drive cycles is estimated.

  9. Characteristics RSE Column Factor: All Model Years Model Year

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948CaliforniaFeet) (Million CubicYear Jan. U.S.

  10. Alternative fuel vehicles for the state fleets: Results of the 5-year planning process

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    This report documents the first attempt by the Department of Energy (DOE) to work with states to prepare five-year Alternative Fuel Vehicle (AFV) acquisition plans to identify alternative fuels and vehicles that they are planning on or would like to acquire. The DOE Regional Support Offices (RSOs) met with representatives from the states in their regions and assisted in the preparation of the plans. These plans will be used in conjunction with previously gathered Federal five-year plans to encourage Original Equipment Manufacturers (OEMs) to expand the variety of AFVs produced, reduce the incremental cost of AFVs, and to encourage fuel suppliers to expand the alternative fuel infrastructure and alternative fuel availability. By identifying the needs and requirements of state fleets, DOE can begin to describe the specific nature of the future state fleets, and establish a defined market for OEMs and fuel suppliers. DOE initiated the development and collection of the state five-year plans before the signing of the Energy Policy Act, to raise the awareness of states that they will be required by law to acquire AFVs. As a result, several states that had no AFV acquisition plan when queried have developed or are in the process of developing plans. The DOE and its RSOs are still working with the states to develop and refine acquisition plans, and this report should be treated as documentation of work in progress.

  11. Construction of a driver-vehicle model and identification of the driver model parameters 

    E-Print Network [OSTI]

    Su, Jemeng

    1981-01-01

    CONSTRUCTION OF A DRIVER-VEHICLE MODEL AND IDENTIFICATION OF THE DRIVER MODEL PARAMETERS A Thesis by , JEMENG SU Submitted to the Graduate College of Texas A8M University in partial fulfillment of the requiremr nt for the degree of MASTER... OF SCIENCE December 1981 Major Subject: Mechanical Engineering CONSTRUCTION OF A DRIVER-VEHICLE MODEL AND IDENTIFICATION OF THE DRIVER MODEL PARAMETERS A Thesis by JEMENG SU Approved as to style and content by: (Chairman of Committe ) / I...

  12. Vehicle Model Validation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs Search USAJobs SearchWater-SavingofCode& Systems SimulationModel

  13. Vehicle Technologies Office Merit Review 2015: MA3T—Modeling Vehicle Market Dynamics with Consumer Segmentation

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about MA3T—modeling...

  14. An agent-based model to study market penetration of plug-in hybrid electric vehicles

    E-Print Network [OSTI]

    Vermont, University of

    An agent-based model to study market penetration of plug-in hybrid electric vehicles Margaret J 2011 Available online 29 April 2011 Keywords: Plug-in hybrid electric vehicles Market penetration Agent vehicle (PHEV) market penetration. The model accounts for spatial and social effects (including threshold

  15. Modeling and Control of Unmanned Aerial Vehicles Current Status and Future Directions

    E-Print Network [OSTI]

    Antsaklis, Panos

    Modeling and Control of Unmanned Aerial Vehicles ­ Current Status and Future Directions George have highlighted the potential utility for Unmanned Aerial Vehicles (UAVs). Both fixed wing and rotary Reimann, Panos Antsaklis, Kimon Valavanis, "Modeling and Control of Unmanned Aerial Vehicles­ Current

  16. Planning and Control of Electric Vehicles Using Dynamic Energy Capacity Models

    E-Print Network [OSTI]

    Zhang, Wei

    for a large population of Plug-in Electric Vehicles (PEVs) for demand response applications. We consider both costs. I. INTRODUCTION The number of Plug-in Electric Vehicles (PEVs) is ex- pected to be more than onePlanning and Control of Electric Vehicles Using Dynamic Energy Capacity Models Jianzhe Liu*, Sen Li

  17. Hybrid Modeling and Experimental Cooperative Control of Multiple Unmanned Aerial Vehicles

    E-Print Network [OSTI]

    Fainekos, Georgios E.

    Hybrid Modeling and Experimental Cooperative Control of Multiple Unmanned Aerial Vehicles Selcuk growing interest in the development of networks of multiple unmanned aerial vehicles (U.A.V.s), as aerial focused on single aerial vehicles. In particular, we have witnessed autonomous or aggressive control

  18. Vehicle Technologies Office: Modeling and Simulation | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowingFuel Efficiency & Emissions » VehicleModeling, Testing,

  19. Vehicle Technologies Office Merit Review 2014: ParaChoice: Parametric Vehicle Choice Modeling

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about parametric...

  20. Vehicle Technologies Office Merit Review 2014: Coupled Hierarchical Models for Thermal, Mechanical, Electrical and Electrochemical Processes

    Broader source: Energy.gov [DOE]

    Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about coupled hierarchical models...

  1. Vehicle Technologies Office Merit Review 2015: Model Development and Analysis of Clean & Efficient Engine Combustion

    Broader source: Energy.gov [DOE]

    Presentation given by Lawrence Livermore National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about model...

  2. Vehicle Technologies Office Merit Review 2014: Atomistic models of LMRNMC Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about atomistic models...

  3. Vehicle Technologies Office: Multi-Year Program Plan 2011-2015...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to help meet the Administrations goals for reductions in oil consumption and carbon emissions from the ground transport vehicle sector of the economy. vtmypp2011-2015.pdf...

  4. Equivalent circuit modeling of hybrid electric vehicle drive train 

    E-Print Network [OSTI]

    Routex, Jean-Yves

    2001-01-01

    The main goals of the advanced vehicles designer are to improve efficiency, to decrease emissions and to meet customer's requirements. The design of such vehicles is challenging and cannot efficiently be achieved without an appropriate tool...

  5. AVCEM: Advanced-Vehicle Cost and Energy Use Model

    E-Print Network [OSTI]

    Delucchi, Mark

    2005-01-01

    accounted separately), regenerative braking, battery thermalthere is no regenerative braking, and vehicle efficiency,iterative calculations. Regenerative braking is represented

  6. MODEL PREDICTIVE CONTROL OF A MICROGRID WITH PLUG-IN VEHICLES: ERROR MODELING AND THE ROLE OF PREDICTION HORIZON

    E-Print Network [OSTI]

    Papalambros, Panos

    MODEL PREDICTIVE CONTROL OF A MICROGRID WITH PLUG-IN VEHICLES: ERROR MODELING AND THE ROLE) for a microgrid with plug-in vehicles. A predictive model is de- veloped based on a hub model of the microgrid INTRODUCTION Recently, the control of electrical microgrids has been the focus of research efforts. A microgrid

  7. Vehicle Technologies Office Merit Review 2015: ParaChoice: Parametric Vehicle Choice Modeling

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Sandia National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about ParaChoice:...

  8. Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011

    Broader source: Energy.gov [DOE]

    Each year, the Environmental Protection Agency (EPA) produces a list of the top ten most fuel efficient vehicles for the model year. In past years, it was the small, lightweight vehicles that...

  9. Modeling demand for electric vehicles: the effect of car users' attitudes and perceptions

    E-Print Network [OSTI]

    Bierlaire, Michel

    Modeling demand for electric vehicles: the effect of car users' attitudes and perceptions Aur Abstract The near arrival of electric vehicles on the car market generates a need for new models in order electric cars and petrol-driven ones and in particular which include the respondents' own cars

  10. A NEW APPROACH TO MODELING LARGE-SCALE ALTERNATIVE FUEL AND VEHICLE TRANSITIONS

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia

    counter-intuitive dynamic: high energy prices can discourage wide scale adoption of alternative fueled 1 A NEW APPROACH TO MODELING LARGE-SCALE ALTERNATIVE FUEL AND VEHICLE TRANSITIONS by Joel to alternative fuels and vehicles will be challenging. New modeling approaches are necessary to supplement

  11. Model of the Air System Transients in a Fuel Cell Vehicle

    E-Print Network [OSTI]

    Kochersberger, Kevin

    Model of the Air System Transients in a Fuel Cell Vehicle by John P. Bird Thesis submitted W. Ellis January 30, 2002 Blacksburg, Virginia Keywords: Fuel Cell, System Modeling, Simulation, Fuel Cell Vehicle #12;1 Abstract This thesis describes a procedure to measure the transient effects

  12. Vehicle Technologies Program - Multi-Year Program Plan 2011-2015

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    carbon emissions level of 2005 by over 40 percent by 2030 and over 80 percent by 2050 1 Advanced vehicle technologies RD&D is critical, but alone is unlikely to be sufficient...

  13. MOBILE4. 1: Highway-vehicle mobile-source emission-factor model (Apple MacIntosh version) (for microcomputers). Model-Simulation

    SciTech Connect (OSTI)

    Not Available

    1991-08-01

    MOBILE4.1 is the latest revision to EPA's highway vehicle mobile source emission factor model. Relative to MOBILE4, it contains numerous revisions and provides the user with additional options for modeling highway vehicle emission factors. it will calculate emission factors for hydrocarbons (HC), carbon monoxide, (CO), and oxides of nitrogen (NOx) from highway motor vehicles. It calculates emission factors for eight individual vehicle types, in two regions of the country (low and high altitude). The emission factors depend on various conditions such as ambient temperature, fuel volatility, speed, and mileage accrual rates. It will estimate emission factors for any calendar year between 1960 and 2020 inclusive. The 25 most recent model years are considered in operation in each calendar year. EPA is requiring that states and others preparing emission inventories for nonattainment areas for CO and ozone to use MOBILE4.1 in the development of the base year 1990 emission inventories required under the Clean Air Act of 1990.

  14. Argonne's Michael Wang talks about the GREET Model for reducing vehicle emi

    SciTech Connect (OSTI)

    Michael Wang

    2012-07-25

    To fully evaluate energy and emission impacts of advanced vehicle technologies and new transportation fuels, the fuel cycle from wells to wheels and the vehicle cycle through material recovery and vehicle disposal need to be considered. Sponsored by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE), Argonne has developed a full life-cycle model called GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation). It allows researchers and analysts to evaluate various vehicle and fuel combinations on a full fuel-cycle/vehicle-cycle basis. The first version of GREET was released in 1996. Since then, Argonne has continued to update and expand the model. The most recent GREET versions are the GREET 1 2012 version for fuel-cycle analysis and GREET 2.7 version for vehicle-cycle analysis.

  15. Argonne's Michael Wang talks about the GREET Model for reducing vehicle emi

    ScienceCinema (OSTI)

    Michael Wang

    2013-06-05

    To fully evaluate energy and emission impacts of advanced vehicle technologies and new transportation fuels, the fuel cycle from wells to wheels and the vehicle cycle through material recovery and vehicle disposal need to be considered. Sponsored by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE), Argonne has developed a full life-cycle model called GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation). It allows researchers and analysts to evaluate various vehicle and fuel combinations on a full fuel-cycle/vehicle-cycle basis. The first version of GREET was released in 1996. Since then, Argonne has continued to update and expand the model. The most recent GREET versions are the GREET 1 2012 version for fuel-cycle analysis and GREET 2.7 version for vehicle-cycle analysis.

  16. Models Move Vehicle Design Forward | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an entire vehicle. For batteries, it's essential for researchers to be able to predict a specific design's electrochemical and thermal (heat) reactions before they build it. In...

  17. Vehicle Technologies Office Merit Review 2014: Unified Modeling...

    Office of Environmental Management (EM)

    given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  18. Finding Computationally Inexpensive Methods to Model the Flow Past Heavy Vehicles and the Design of

    E-Print Network [OSTI]

    Jameson, Antony

    save 3.2 billion gallons of diesel per year and prevent 28 million tons of CO2 emissions.3 increases the pressure inside the wake and reduces the overall vehicle drag. Wind tunnel experiments using

  19. Vehicle Technologies Office Merit Review 2014: Consumer-Segmented Vehicle Choice Modeling: the MA3T Model

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about consumer...

  20. Clean Cities 2011 Vehicle Buyer's Guide

    SciTech Connect (OSTI)

    Not Available

    2011-01-01

    The 2011 Clean Cities Light-Duty Vehicle Buyer's Guide is a consumer publication that provides a comprehensive list of commercially available alternative fuel and advanced vehicles in model year 2011. The guide allows for side-by-side comparisons of fuel economy, price, emissions, and vehicle specifications.

  1. An Enterprise Decision Model for Optimal Vehicle Design and Technology Valuation

    E-Print Network [OSTI]

    Papalambros, Panos

    engineering simulation to provide a preliminary understanding of the technology's market and design potentialAn Enterprise Decision Model for Optimal Vehicle Design and Technology Valuation by Adam B. Cooper for Optimal Vehicle Design and Technology Valuation by Adam B. Cooper Chair: Panos Y. Papalambros Design

  2. Fact #800: October 21, 2013 Characteristics of New Light Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0: October 21, 2013 Characteristics of New Light Vehicles over Time Fact 800: October 21, 2013 Characteristics of New Light Vehicles over Time From model years 1980 to 2012, there...

  3. Modeling Workload Impact in Multiple Unmanned Vehicle Supervisory Control

    E-Print Network [OSTI]

    Donmez, B.D.

    2010-01-01

    Discrete event simulations for futuristic unmanned vehicle (UV) systems enable a cost and time effective methodology for evaluating various autonomy and human automation design parameters. Operator mental workload is an ...

  4. Measuring and Modeling Emissions from Extremely Low Emitting Vehicles

    E-Print Network [OSTI]

    Barth, M; Collins, J F; Scora, G; Davis, N; Norbeck, J M

    2006-01-01

    CO 2 , CO, HC and NOx emissions for a single vehicle TRBalthough there are a few NOx emission events that the modelemissions. In regards to NOx emissions, it was noted that

  5. Fact #823: June 2, 2014 Hybrid Vehicles use more Battery Packs but Plug-in Vehicles use More Battery Capacity

    Broader source: Energy.gov [DOE]

    Of the battery packs used for electrified vehicle powertrains in model year 2013, the greatest number went into conventional hybrid vehicles which use battery packs that average about 1.3 kilowatt...

  6. Vehicle Technologies Office Merit Review 2014: Vehicle Level Model and Control Development and Validation Under Various Thermal Conditions

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle level...

  7. Model-Based Analysis of Electric Drive Options for Medium-Duty Parcel Delivery Vehicles: Preprint

    SciTech Connect (OSTI)

    Barnitt, R. A.; Brooker, A. D.; Ramroth, L.

    2010-12-01

    Medium-duty vehicles are used in a broad array of fleet applications, including parcel delivery. These vehicles are excellent candidates for electric drive applications due to their transient-intensive duty cycles, operation in densely populated areas, and relatively high fuel consumption and emissions. The National Renewable Energy Laboratory (NREL) conducted a robust assessment of parcel delivery routes and completed a model-based techno-economic analysis of hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle configurations. First, NREL characterized parcel delivery vehicle usage patterns, most notably daily distance driven and drive cycle intensity. Second, drive-cycle analysis results framed the selection of drive cycles used to test a parcel delivery HEV on a chassis dynamometer. Next, measured fuel consumption results were used to validate simulated fuel consumption values derived from a dynamic model of the parcel delivery vehicle. Finally, NREL swept a matrix of 120 component size, usage, and cost combinations to assess impacts on fuel consumption and vehicle cost. The results illustrated the dependency of component sizing on drive-cycle intensity and daily distance driven and may allow parcel delivery fleets to match the most appropriate electric drive vehicle to their fleet usage profile.

  8. A Formal Model for Sustainable Vehicle-to-Grid Mohammad Ashiqur Rahman, Fadi Mohsen, and Ehab Al-Shaer

    E-Print Network [OSTI]

    Wang, Yongge

    Keywords Smart Grid; Plug-in Electric Vehicle; Vehicle-to-Grid; For- mal Model 1. INTRODUCTION Energy increases, the combined storage could pro- vide different electrical (e.g., energy generating capacity

  9. Vehicle Technologies Office Merit Review 2014: Validation of Material Models for Automotive Carbon Fiber Composite Structures

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about validation of material models...

  10. Integrated motion planning and model learning for mobile robots with application to marine vehicles

    E-Print Network [OSTI]

    Greytak, Matthew B. (Matthew Bardeen)

    2009-01-01

    Robust motion planning algorithms for mobile robots consider stochasticity in the dynamic model of the vehicle and the environment. A practical robust planning approach balances the duration of the motion plan with the ...

  11. Vehicle Technologies Office Merit Review 2015: BatPaC Model Development

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about BatPaC model...

  12. AVCEM: Advanced Vehicle Cost and Energy Use Model. Overview of AVCEM

    E-Print Network [OSTI]

    Delucchi, Mark

    2005-01-01

    California 95616 PHONE: WEB: FAX: http://its.ucdavis.edu/ AVCEM: ADVANCED-VEHICLE COST AND ENERGY-Cost and Energy Use Model Overview of AVCEM Mark A. Delucchi Institute of Transportation Studies ? University of California,

  13. Modelling Lost Person Behaviour and Intelligent Unmanned Aerial Vehicles in a Wilderness Search and Rescue Scenario 

    E-Print Network [OSTI]

    DeRiggi, John

    2013-01-11

    ’re lost should be reasonable input variables into a model attempting to predict the lost person’s most likely path. Taken a significant step further, if unmanned aerial vehicles enabled with terrain recognition and navigation capabilities derived from...

  14. Advances in Electric Drive Vehicle Modeling with Subsequent Experimentation and Analysis

    E-Print Network [OSTI]

    Hausmann, Austin Joseph

    2012-08-31

    infrastructure (such as natural gas or fuel cell vehicles), the potential for localized brown-outs due to this large number of PHEVs being connected to the grid has been a primary concern of utility companies for many years. The energy grid in the United... a powerplant and driveline conversion efficiency that is typically twice that of the traditional internal combustion engine drivetrain. While this advantage is clear, there are numerous concerns with wide scale implementation of electric vehicles...

  15. George Vachtsevanos, Panos Antsaklis, Kimon Valavanis, "Modeling and Control of Unmanned Aerial Vehicles Current Status and Future Directions," Chapter 9, Modeling and Control of Complex Systems, CRC

    E-Print Network [OSTI]

    Antsaklis, Panos

    of Unmanned Aerial Vehicles­ Current Status and Future Directions," Chapter 9, Modeling and Control of Complex of Unmanned Aerial Vehicles­ Current Status and Future Directions," Chapter 9, Modeling and Control of Complex of Unmanned Aerial Vehicles­ Current Status and Future Directions," Chapter 9, Modeling and Control of Complex

  16. Electric and Hybrid Vehicles Program. Seventeenth annual report to Congress for Fiscal Year 1993

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    This program, in cooperation with industry, is conducting research, development, testing, and evaluation activities to develop the technologies that would lead to production and introduction of low-and zero-emission electric and hybrid vehicles into the Nation`s transportation fleet. This annual report describes program activities in the areas of advanced battery, fuel cell, and propulsion systems development. Testing and evaluation of new technology in fleet site operations and laboratories are also provided. Also presented is status on incentives (CAFE, 1992 Energy Policy Act) and use of foreign components, and a listing of publications by DOE, national laboratories, and contractors.

  17. Electric and Hybrid Vehicles Program. Sixteenth annual report to Congress for fiscal year 1992

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    This report describes the progress achieved in developing electric and hybrid vehicle technologies, beginning with highlights of recent accomplishments in FY 1992. Detailed descriptions are provided of program activities during FY 1992 in the areas of battery, fuel cell, and propulsion system development, and testing and evaluation of new technology in fleet site operations and in laboratories. This Annual Report also contains a status report on incentives and use of foreign components, as well as a list of publications resulting from the DOE program.

  18. Energy Management for an Electric Vehicle Based on Combinatorial Modeling

    E-Print Network [OSTI]

    Boyer, Edmond

    energy sources (fuel cells, photovoltaic panels, batteries, supercapacitors) with different of the energy system The energy chain of the vehicle concerned is composed of a Fuel Cell System (FCS) using Toulouse, France Abstract This paper describes the process of electrical energy management and optimization

  19. Current Transportation Models Used in the Vehicle Technologies Program

    SciTech Connect (OSTI)

    2009-04-06

    A summary of various transportation models (VISION, TRUCK, GREET, Oil Peaking Model, Feebate Model, Oil Security Metrics Model, ORNL PHEV Choice Model: Version 1, PSAT, PSAT-PRO,

  20. Critical analysis of thermodynamic cycle modeling of adsorption cooling systems for light-duty vehicle air conditioning applications

    E-Print Network [OSTI]

    Bahrami, Majid

    -duty vehicle air conditioning applications Amir Sharafian, Majid Bahrami n Laboratory for Alternative Energy Keywords: Adsorption cooling system Vehicle air conditioning Thermodynamic cycle Fully dynamic modeling a b different operating conditions for light-duty vehicles air conditioning applications. Available ACS

  1. VERIFICATION OF A FINITE ELEMENT MODEL OF AN UNMANNED AERIAL VEHICLE WING TORQUE BOX VIA EXPERIMENTAL MODAL TESTING

    E-Print Network [OSTI]

    Yaman, Yavuz

    VERIFICATION OF A FINITE ELEMENT MODEL OF AN UNMANNED AERIAL VEHICLE WING TORQUE BOX VIA Aeronautical Association, Faculty of Aeronautics and Astronautics, TURKEY KEYWORDS Unmanned Aerial Vehicle Wing (FEM) of an unmanned aerial vehicle wing torque box was verified by the experimental modal testing

  2. The Smart Grid, A Scale Demonstration Model Incorporating Electrified Vehicles

    E-Print Network [OSTI]

    Clemon, Lee; Mattson, Jon; Moore, Andrew; Necefer, Len; Heilman, Shelton

    2011-04-01

    of the energy flow line. This allows for testing and sizing of the battery systems in order to ensure sufficient capacity for storage of renewable sources. Moreover, smart appliances in the future will be able to interact with the grid demonstrating a..., with the advent and commercialization of electrified vehicles, energy demand has the capability to increase dramatically. A sustainable solution via renewable energy technologies can act to offset this increased demand; however, transformers and meters...

  3. Renewable Fuel Vehicle Modeling and Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7,DOERTIRegulatoryResidentialRenewable Fuel Vehicle

  4. Vehicle Technologies Office Merit Review 2014: Emissions Modeling: GREET

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY 2009,BiofuelsLetEnergy Vehicle Technologies OfficeforLife

  5. Modeling Animal-Vehicle Collisions Using Diagonal Inflated Bivariate Poisson Regression

    E-Print Network [OSTI]

    Washington at Seattle, University of

    1 Modeling Animal-Vehicle Collisions Using Diagonal Inflated Bivariate Poisson Regression of highway AVCs, this study adopts a diagonal inflated bivariate Poisson regression method, an inflated version of bivariate Poisson regression model, to fit the reported AVC and carcass removal data sets

  6. An Optimization Model for Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Malikopoulos, Andreas [ORNL] [ORNL; Smith, David E [ORNL] [ORNL

    2011-01-01

    The necessity for environmentally conscious vehicle designs in conjunction with increasing concerns regarding U.S. dependency on foreign oil and climate change have induced significant investment towards enhancing the propulsion portfolio with new technologies. More recently, plug-in hybrid electric vehicles (PHEVs) have held great intuitive appeal and have attracted considerable attention. PHEVs have the potential to reduce petroleum consumption and greenhouse gas (GHG) emissions in the commercial transportation sector. They are especially appealing in situations where daily commuting is within a small amount of miles with excessive stop-and-go driving. The research effort outlined in this paper aims to investigate the implications of motor/generator and battery size on fuel economy and GHG emissions in a medium-duty PHEV. An optimization framework is developed and applied to two different parallel powertrain configurations, e.g., pre-transmission and post-transmission, to derive the optimal design with respect to motor/generator and battery size. A comparison between the conventional and PHEV configurations with equivalent size and performance under the same driving conditions is conducted, thus allowing an assessment of the fuel economy and GHG emissions potential improvement. The post-transmission parallel configuration yields higher fuel economy and less GHG emissions compared to pre-transmission configuration partly attributable to the enhanced regenerative braking efficiency.

  7. Application of Distribution Transformer Thermal Life Models to Electrified Vehicle Charging Loads Using Monte-Carlo Method: Preprint

    SciTech Connect (OSTI)

    Kuss, M.; Markel, T.; Kramer, W.

    2011-01-01

    Concentrated purchasing patterns of plug-in vehicles may result in localized distribution transformer overload scenarios. Prolonged periods of transformer overloading causes service life decrements, and in worst-case scenarios, results in tripped thermal relays and residential service outages. This analysis will review distribution transformer load models developed in the IEC 60076 standard, and apply the model to a neighborhood with plug-in hybrids. Residential distribution transformers are sized such that night-time cooling provides thermal recovery from heavy load conditions during the daytime utility peak. It is expected that PHEVs will primarily be charged at night in a residential setting. If not managed properly, some distribution transformers could become overloaded, leading to a reduction in transformer life expectancy, thus increasing costs to utilities and consumers. A Monte-Carlo scheme simulated each day of the year, evaluating 100 load scenarios as it swept through the following variables: number of vehicle per transformer, transformer size, and charging rate. A general method for determining expected transformer aging rate will be developed, based on the energy needs of plug-in vehicles loading a residential transformer.

  8. Response Surface Energy Modeling of an Electric Vehicle over a Reduced Composite Drive Cycle

    SciTech Connect (OSTI)

    Jehlik, Forrest; LaClair, Tim J

    2014-01-01

    Response surface methodology (RSM) techniques were applied to develop a predictive model of electric vehicle (EV) energy consumption over the Environmental Protection Agency's (EPA) standardized drive cycles. The model is based on measurements from a synthetic composite drive cycle. The synthetic drive cycle is a minimized statistical composite of the standardized urban (UDDS), highway (HWFET), and US06 cycles. The composite synthetic drive cycle is 20 minutes in length thereby reducing testing time of the three standard EPA cycles by over 55%. Vehicle speed and acceleration were used as model inputs for a third order least squared regression model predicting vehicle battery power output as a function of the drive cycle. The approach reduced three cycles and 46 minutes of drive time to a single test of 20 minutes. Application of response surface modeling to the synthetic drive cycle is shown to predict energy consumption of the three EPA cycles within 2.6% of the actual measured values. Additionally, the response model may be used to predict energy consumption of any cycle within the speed/acceleration envelope of the synthetic cycle. This technique results in reducing test time, which additionally provides a model that may be used to expand the analysis and understanding of the vehicle under consideration.

  9. Model year 2010 (Gen 3) Toyota Prius level 1 testing report.

    SciTech Connect (OSTI)

    Rask, E.; Duoba, M.; Lohse-Busch, H.; Bocci, D.; Energy Systems

    2010-06-24

    As a part of the US Department of Energy's Advanced Vehicle Testing Activity (AVTA), a model year 2010 Toyota Prius (Generation 3) was procured by eTec (Phoenix, AZ) and sent to ANL's Advanced Powertrain Research Facility for the purposes of 'Level 1' testing in support of the Advanced Vehicle Testing Activity (AVTA). Data was acquired during testing using non-intrusive sensors, vehicle network connection, and facilities equipment (emissions and dynamometer data). Standard drive cycles, performance cycles, steady-state cycles and A/C usage cycles were conducted. Much of this data is openly available for download in ANL's Downloadable Dynamometer Database (D{sup 3}). The major results are shown here in this report. Given the preliminary nature of this assessment, the majority of the testing was done over standard regulatory cycles and seeks to obtain a general overview of how the vehicle performs. These cycles include the US FTP cycle (Urban) and Highway Fuel Economy Test cycle as well as the US06, a more aggressive supplemental regulatory cycle. Data collection for this testing was kept at a fairly high level and includes emissions and fuel measurements from the exhaust emissions bench, high-voltage and accessory current and voltage from a DC power analyzer, and minimal CAN bus data such as engine speed and pedal position. The following sections will seek to explain some of the basic operating characteristics of the MY2010 Prius over standard regulatory cycles.

  10. Modeling Electric Vehicle Benefits Connected to Smart Grids

    SciTech Connect (OSTI)

    Stadler, Michael; Marnay, Chris; Mendes, Goncalo; Kloess, Maximillian; Cardoso, Goncalo; Mégel, Olivier; Siddiqui, Afzal

    2011-07-01

    Connecting electric storage technologies to smartgrids will have substantial implications in building energy systems. Local storage will enable demand response. Mobile storage devices in electric vehicles (EVs) are in direct competition with conventional stationary sources at the building. EVs will change the financial as well as environmental attractiveness of on-site generation (e.g. PV, or fuel cells). In order to examine the impact of EVs on building energy costs and CO2 emissions in 2020, a distributed-energy-resources adoption problem is formulated as a mixed-integer linear program with minimization of annual building energy costs or CO2 emissions. The mixed-integer linear program is applied to a set of 139 different commercial buildings in California and example results as well as the aggregated economic and environmental benefits are reported. The research shows that considering second life of EV batteries might be very beneficial for commercial buildings.

  11. Vehicle Modeling and Verification of CNG-Powered Transit Buses

    E-Print Network [OSTI]

    Hedrick, J. K.; Ni, A.

    2004-01-01

    Modeling and Verification of CNG-Powered Transit BusesModeling and Verification of CNG-Powered Transit Buses.Modeling and Veri?cation of CNG-Powered Transit Buses J.K.

  12. Electric and Gasoline Vehicle Lifecycle Cost and Energy-Use Model

    E-Print Network [OSTI]

    Delucchi, Mark; Burke, Andy; Lipman, Timothy; Miller, Marshall

    2000-01-01

    and Conventional Vans , Electric Vehicle DevelopmentElectric and Hybrid Electric Vehicles (Workshop Proceedings,J. Oros, President, Electric Vehicle Infrastructure, Inc. ,

  13. The development of a prescreening model to identify failed and gross polluting vehicles

    E-Print Network [OSTI]

    Choo, Sangho; Shafizadeh, Kevan; Niemeier, Deb

    2007-01-01

    Seventh CRC On-Road Vehicle Emissions Workshop, San Diego. vehicle emissions. The Rand Journal ofB. 1997. Pro?ling Vehicle Emissions with the High Emitter

  14. Vehicle Technologies Office: Multi-Year Program Plan 2011-2015 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs Search USAJobsAdvanced EngineFebruary 12,Modeling,Departmentof

  15. Fact #813: January 20, 2014 New Light Vehicle Fuel Economy Continues to Rise

    Broader source: Energy.gov [DOE]

    The sales-weighted fuel economy average of all light vehicles sold in model year (MY) 2013 was 1.6 miles per gallon (mpg) higher than MY 2011. This increase brings the new light vehicle fuel...

  16. THE TRAVEL AND ENVIRONMENTAL IMPLICATIONS OF SHARED AUTONOMOUS VEHICLES, USING AGENT-BASED MODEL SCENARIOS

    E-Print Network [OSTI]

    Kockelman, Kara M.

    the rental) like Car2Go and ZipCar have quickly expanded, with the number of U.S. users doubling every one traveler wait times. Next, the model is run over one-hundred days, with driverless vehicles ferrying. As of September 2013, Google had logged over 500,000 miles driven on public roadways using cars equipped with self

  17. Modelling and Design Optimization of Low Speed Fuel Cell Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Victoria, University of

    Modelling and Design Optimization of Low Speed Fuel Cell Hybrid Electric Vehicles by Matthew Blair of emissions to global climate change. Although electric cars and buses have been the focus of much of electric and utility purposes in many countries. In order to explore the viability of fuel cell - battery hybrid

  18. Neural NetworkBased Modeling and Optimization for Effective Vehicle Emission Testing and

    E-Print Network [OSTI]

    Huang, Yinlun

    Introduction Automotive emission of hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx) has beenNeural Network­Based Modeling and Optimization for Effective Vehicle Emission Testing and Engine emission testing and engine calibration are the key to achieving emission standards with satisfactory fuel

  19. Battery Ownership Model: A Tool for Evaluating the Economics of Electrified Vehicles and Related Infrastructure; Preprint

    SciTech Connect (OSTI)

    O'Keefe, M.; Brooker, A.; Johnson, C.; Mendelsohn, M.; Neubauer, J.; Pesaran, A.

    2011-01-01

    Electric vehicles could significantly reduce greenhouse gas (GHG) emissions and dependence on imported petroleum. However, for mass adoption, EV costs have historically been too high to be competitive with conventional vehicle options due to the high price of batteries, long refuel time, and a lack of charging infrastructure. A number of different technologies and business strategies have been proposed to address some of these cost and utility issues: battery leasing, battery fast-charging stations, battery swap stations, deployment of charge points for opportunity charging, etc. In order to investigate these approaches and compare their merits on a consistent basis, the National Renewable Energy Laboratory (NREL) has developed a new techno-economic model. The model includes nine modules to examine the levelized cost per mile for various types of powertrain and business strategies. The various input parameters such as vehicle type, battery, gasoline, and electricity prices; battery cycle life; driving profile; and infrastructure costs can be varied. In this paper, we discuss the capabilities of the model; describe key modules; give examples of how various assumptions, powertrain configurations, and business strategies impact the cost to the end user; and show the vehicle's levelized cost per mile sensitivity to seven major operational parameters.

  20. Modeling the performance and cost of lithium-ion batteries for electric-drive vehicles.

    SciTech Connect (OSTI)

    Nelson, P. A. Gallagher, K. G. Bloom, I. Dees, D. W.

    2011-10-20

    This report details the Battery Performance and Cost model (BatPaC) developed at Argonne National Laboratory for lithium-ion battery packs used in automotive transportation. The model designs the battery for a specified power, energy, and type of vehicle battery. The cost of the designed battery is then calculated by accounting for every step in the lithium-ion battery manufacturing process. The assumed annual production level directly affects each process step. The total cost to the original equipment manufacturer calculated by the model includes the materials, manufacturing, and warranty costs for a battery produced in the year 2020 (in 2010 US$). At the time this report is written, this calculation is the only publically available model that performs a bottom-up lithium-ion battery design and cost calculation. Both the model and the report have been publically peer-reviewed by battery experts assembled by the U.S. Environmental Protection Agency. This report and accompanying model include changes made in response to the comments received during the peer-review. The purpose of the report is to document the equations and assumptions from which the model has been created. A user of the model will be able to recreate the calculations and perhaps more importantly, understand the driving forces for the results. Instructions for use and an illustration of model results are also presented. Almost every variable in the calculation may be changed by the user to represent a system different from the default values pre-entered into the program. The distinct advantage of using a bottom-up cost and design model is that the entire power-to-energy space may be traversed to examine the correlation between performance and cost. The BatPaC model accounts for the physical limitations of the electrochemical processes within the battery. Thus, unrealistic designs are penalized in energy density and cost, unlike cost models based on linear extrapolations. Additionally, the consequences on cost and energy density from changes in cell capacity, parallel cell groups, and manufacturing capabilities are easily assessed with the model. New proposed materials may also be examined to translate bench-scale values to the design of full-scale battery packs providing realistic energy densities and prices to the original equipment manufacturer. The model will be openly distributed to the public in the year 2011. Currently, the calculations are based in a Microsoft{reg_sign} Office Excel spreadsheet. Instructions are provided for use; however, the format is admittedly not user-friendly. A parallel development effort has created an alternate version based on a graphical user-interface that will be more intuitive to some users. The version that is more user-friendly should allow for wider adoption of the model.

  1. Energyenvironment policy modeling of endogenous technological change with personal vehicles

    E-Print Network [OSTI]

    - producing activity (notably fossil fuel consumption) and the level of emissions. They define abatement cost-down modelers focus on estimating aggregate price­quan- tity relationships between the cost of emission to acquiring low-GHG technologies and top- down modelers suggesting price-based policies like taxes

  2. Analytical modeling of a new disc permanent magnet linear synchronous machine for electric vehicles

    SciTech Connect (OSTI)

    Liu, C.T.; Chen, J.W.; Su, K.S.

    1999-09-01

    This paper develops an analytical approach based on a qd0 reference frame model to analyze dynamic and steady state characteristics of disc permanent magnet linear synchronous machines (DPMLSMs). The established compact mathematical model can be more easily employed to analyze the system behavior and to design the controller. Superiority in operational electromagnetic characteristics of the proposed DPMLSM for electric vehicle (EV) applications is verified by both numerical simulations and experimental investigations.

  3. ESTIMATION OF ETHANOL CONTENT IN FLEX-FUEL VEHICLES USING AN EXHAUST GAS OXYGEN SENSOR: MODEL, TUNING AND SENSITIVITY

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    ESTIMATION OF ETHANOL CONTENT IN FLEX-FUEL VEHICLES USING AN EXHAUST GAS OXYGEN SENSOR: MODEL periods of intense interest in using ethanol as an alternative fuel to petroleum-based gasoline and diesel derivatives. Currently available flexible fuel vehicles (FFVs) can operate on a blend of gasoline and ethanol

  4. NREL: Transportation Research - Vehicle Thermal Management Models and Tools

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTSWorkingManagement Models and Tools image of

  5. Effects of Biodiesel Blends on Vehicle Emissions: Fiscal Year 2006 Annual Operating Plan Milestone 10.4

    SciTech Connect (OSTI)

    McCormick, R. L.; Williams, A.; Ireland, J.; Hayes, R. R.

    2006-10-01

    The objective was to determine if testing entire vehicles, vs. just the engines, on a heavy-duty chassis dynamometer provides a better, measurement of the impact of B20 on emissions.

  6. Battery Ownership Model: A Tool for Evaluating the Economics of Electrified Vehicles and Related Infrastructure (Presentation)

    SciTech Connect (OSTI)

    O'Keefe, M.; Brooker, A.; Johnson, C.; Mendelsohn, M.; Neubauer, J.; Pesaran, A.

    2010-11-01

    This presentation uses a vehicle simulator and economics model called the Battery Ownership Model to examine the levelized cost per mile of conventional (CV) and hybrid electric vehicles (HEVs) in comparison with the cost to operate an electric vehicle (EV) under a service provider business model. The service provider is assumed to provide EV infrastructure such as charge points and swap stations to allow an EV with a 100-mile range to operate with driving profiles equivalent to CVs and HEVs. Battery cost, fuel price forecast, battery life, and other variables are examined to determine under what scenarios the levelized cost of an EV with a service provider can approach that of a CV. Scenarios in both the United States as an average and Hawaii are examined. The levelized cost of operating an EV with a service provider under average U.S. conditions is approximately twice the cost of operating a small CV. If battery cost and life can be improved, in this study the cost of an EV drops to under 1.5 times the cost of a CV for U.S. average conditions. In Hawaii, the same EV is only slightly more expensive to operate than a CV.

  7. Fact #830: July 21, 2014 Diesel Light Vehicle Offerings Expand

    Broader source: Energy.gov [DOE]

    The number of diesel light vehicles offered for sale by manufacturers has grown since 2000. In model year (MY) 2000 there were only 3 diesel models offered by one manufacturer (VW), but by MY 2014...

  8. Although still a small share of the automobile marketplace, hybrid vehicle models and sales have been growing steadily. It is now

    E-Print Network [OSTI]

    Bertini, Robert L.

    of gasoline or diesel fuels, private companies have natural economic incentives to use vehicles that are more to credit. At the fleet level, private companies and state agencies have been forced to adopt comprehensive analyzes the impacts of utilization (mileage per year per vehicle) and gasoline prices on vehicle

  9. Analysis and calibration of social factors in a consumer acceptance and adoption model for diffusion of diesel vehicle in Europe

    E-Print Network [OSTI]

    Zhang, Qi, S.M. Massachusetts Institute of Technology

    2008-01-01

    While large scale diffusion of alternative fuel vehicles (AFVs) is widely anticipated, the mechanisms that determine their success or failure are ill understood. Analysis of an AFV transition model developed at MIT has ...

  10. Modeling the fast fill process in natural gas vehicle storage cylinders

    SciTech Connect (OSTI)

    Kountz, K.J.

    1994-09-01

    The on-board storage capacity of natural gas vehicles (NGVs) is a critical issue to the wide spread marketing of these alternate fueled vehicles. Underfilling of NGV cylinders, during fast fill (< 5 min.) charging operations, can occur at fueling stations, at ambient temperatures greater than 50{degrees}F or 60{degrees}F. The resulting reduced driving range of the vehicle is a serious obstacle which the gas industry is striving to overcome, without resorting to unnecessarily high fueling station pressures, or by applying extensive overpressurization of the cylinder during the fueling operation. Undercharged storage cylinders are a result of the elevated temperature which occurs in the NGV storage cylinder, due to compression and other processes which have not, to the author`s knowledge, been analyzed and documented to date. This paper presents a model and solution methodology which quantifies the cylinder undercharging phenomena which occurs during rapid (< 5 min.) fueling. The effects of heat transfer from the cylinder gas to its constraining walls and ambient are considered in the model analysis. The ramifications of the results on fueling station and cylinder designs are discussed. Suggestions are made for controlled experimental programs to verify the theoretical results, and for fueling station design studies which could minimize or eliminate cylinder underfilling.

  11. Learning, Modeling, and Understanding Vehicle Surround Using Multi-Modal Sensing /

    E-Print Network [OSTI]

    Sivaraman, Sayanan

    2013-01-01

    sion and radar sensor fusion,” Intelligent Transportationa platform for sensor-equipped intelligent vehicles. Basedin multi-sensor acc,” in Intelligent Vehicles Symposium,

  12. Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2008-01-01

    for fuel cell systems for vehicle applications, Journal ofuse in fuel cell vehicles and other applications has beenin automotive applications, the fuel cell systems has to be

  13. Gamma and the chemical reaction model: fteen years after?

    E-Print Network [OSTI]

    Fradet, Pascal

    Gamma and the chemical reaction model: fteen years after? Jean-Pierre Ban^atre1, Pascal Fradet2 the formalism is to describe computation as a form of chemical reaction on a collection of individual pieces on unexpected applications of the chemical reaction model, showing that this paradigm has been a source

  14. Evaluating indoor exposure modeling alternatives for LCA: A case study in the vehicle repair industry

    SciTech Connect (OSTI)

    Demou, Evangelia; Hellweg, Stefanie; Wilson, Michael P.; Hammond, S. Katharine; McKone, Thomas E.

    2009-05-01

    We evaluated three exposure models with data obtained from measurements among workers who use"aerosol" solvent products in the vehicle repair industry and with field experiments using these products to simulate the same exposure conditions. The three exposure models were the: 1) homogeneously-mixed-one-box model, 2) multi-zone model, and 3) eddy-diffusion model. Temporally differentiated real-time breathing zone volatile organic compound (VOC) concentration measurements, integrated far-field area samples, and simulated experiments were used in estimating parameters, such as emission rates, diffusivity, and near-field dimensions. We assessed differences in model input requirements and their efficacy for predictive modeling. The One-box model was not able to resemble the temporal profile of exposure concentrations, but it performed well concerning time-weighted exposure over extended time periods. However, this model required an adjustment for spatial concentration gradients. Multi-zone models and diffusion-models may solve this problem. However, we found that the reliable use of both these models requires extensive field data to appropriately define pivotal parameters such as diffusivity or near-field dimensions. We conclude that it is difficult to apply these models for predicting VOC exposures in the workplace. However, for comparative exposure scenarios in life-cycle assessment they may be useful.

  15. Identifying Contributions of On-road Motor Vehicles to Urban Air Pollution Using Travel Demand Model Data

    E-Print Network [OSTI]

    Wang, Guihua; Bai, Song; Ogden, Joan M.

    2009-01-01

    distribution of vehicle emissions inventories. Environmentalfor 2005, regional vehicle emissions are disaggregated intodistributions of vehicle emissions/activities and the

  16. Energy Storage Fuel Cell Vehicle Analysis: Preprint

    SciTech Connect (OSTI)

    Markel, T.; Pesaran, A.; Zolot, M.; Sprik, S.; Tataria, H.; Duong, T.

    2005-04-01

    In recent years, hydrogen fuel cell (FC) vehicle technology has received considerable attention as a strategy to decrease oil consumption and reduce harmful emissions. However, the cost, transient response, and cold performance of FC systems may present significant challenges to widespread adoption of the technology for transportation in the next 15 years. The objectives of this effort were to perform energy storage modeling with fuel cell vehicle simulations to quantify the benefits of hybridization and to identify a process for setting the requirements of ES for hydrogen-powered FC vehicles for U.S. Department of Energy's Energy Storage Program.

  17. Energy Storage Fuel Cell Vehicle Analysis

    SciTech Connect (OSTI)

    Pesaran, A.; Markel, T.; Zolot, M.; Sprik, S.; Tataria, H.; Duong, T.

    2005-08-01

    In recent years, hydrogen fuel cell (FC) vehicle technology has received considerable attention as a strategy to decrease oil consumption and reduce harmful emissions. However, the cost, transient response, and cold performance of FC systems may present significant challenges to widespread adoption of the technology for transportation in the next 15 years. The objectives of this effort were to perform energy storage modeling with fuel cell vehicle simulations to quantify the benefits of hybridization and to identify a process for setting the requirements of ES for hydrogen-powered FC vehicles for U.S. Department of Energy?s Energy Storage Program.

  18. The GREET Model Expansion for Well-to-Wheels Analysis of Heavy-Duty Vehicles

    SciTech Connect (OSTI)

    Cai, Hao; Burnham, Andrew; Wang, Michael; Hang, Wen; Vyas, Anant

    2015-05-01

    Heavy-duty vehicles (HDVs) account for a significant portion of the U.S. transportation sector’s fuel consumption, greenhouse gas (GHG) emissions, and air pollutant emissions. In our most recent efforts, we expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREETTM) model to include life-cycle analysis of HDVs. In particular, the GREET expansion includes the fuel consumption, GHG emissions, and air pollutant emissions of a variety of conventional (i.e., diesel and/or gasoline) HDV types, including Class 8b combination long-haul freight trucks, Class 8b combination short-haul freight trucks, Class 8b dump trucks, Class 8a refuse trucks, Class 8a transit buses, Class 8a intercity buses, Class 6 school buses, Class 6 single-unit delivery trucks, Class 4 single-unit delivery trucks, and Class 2b heavy-duty pickup trucks and vans. These vehicle types were selected to represent the diversity in the U.S. HDV market, and specific weight classes and body types were chosen on the basis of their fuel consumption using the 2002 Vehicle Inventory and Use Survey (VIUS) database. VIUS was also used to estimate the fuel consumption and payload carried for most of the HDV types. In addition, fuel economy projections from the U.S. Energy Information Administration, transit databases, and the literature were examined. The U.S. Environmental Protection Agency’s latest Motor Vehicle Emission Simulator was employed to generate tailpipe air pollutant emissions of diesel and gasoline HDV types.

  19. Regional forecasting with global atmospheric models; Third year report

    SciTech Connect (OSTI)

    Crowley, T.J.; North, G.R.; Smith, N.R.

    1994-05-01

    This report was prepared by the Applied Research Corporation (ARC), College Station, Texas, under subcontract to Pacific Northwest Laboratory (PNL) as part of a global climate studies task. The task supports site characterization work required for the selection of a potential high-level nuclear waste repository and is part of the Performance Assessment Scientific Support (PASS) Program at PNL. The work is under the overall direction of the Office of Civilian Radioactive Waste Management (OCRWM), US Department of Energy Headquarters, Washington, DC. The scope of the report is to present the results of the third year`s work on the atmospheric modeling part of the global climate studies task. The development testing of computer models and initial results are discussed. The appendices contain several studies that provide supporting information and guidance to the modeling work and further details on computer model development. Complete documentation of the models, including user information, will be prepared under separate reports and manuals.

  20. Identification of powered parafoil-vehicle dynamics from modelling and flight test data 

    E-Print Network [OSTI]

    Hur, Gi-Bong

    2006-08-16

    S consisting of N particles P1,...,PN, suppose that n -m gen- eralized speeds have been introduced, and let vPir denote the rth partial velocity of Pi. Then, if Ri is the resultant of all contact and body forces acting on Pi, then the n -m quantities F1,...,Fn-m...IDENTIFICATION OF POWERED PARAFOIL-VEHICLE DYNAMICS FROM MODELLING AND FLIGHT TEST DATA A Dissertation by GI-BONG HUR Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree...

  1. Fact #624: May 24, 2010 Corporate Average Fuel Economy Standards, Model Years 2012-2016

    Broader source: Energy.gov [DOE]

    The final rule for the Corporate Average Fuel Economy (CAFE) Standards was published in March 2010. Under this rule, each light vehicle model produced for sale in the United States will have a fuel...

  2. Appending High-Resolution Elevation Data to GPS Speed Traces for Vehicle Energy Modeling and Simulation

    SciTech Connect (OSTI)

    Wood, E.; Burton, E.; Duran, A.; Gonder, J.

    2014-06-01

    Accurate and reliable global positioning system (GPS)-based vehicle use data are highly valuable for many transportation, analysis, and automotive considerations. Model-based design, real-world fuel economy analysis, and the growing field of autonomous and connected technologies (including predictive powertrain control and self-driving cars) all have a vested interest in high-fidelity estimation of powertrain loads and vehicle usage profiles. Unfortunately, road grade can be a difficult property to extract from GPS data with consistency. In this report, we present a methodology for appending high-resolution elevation data to GPS speed traces via a static digital elevation model. Anomalous data points in the digital elevation model are addressed during a filtration/smoothing routine, resulting in an elevation profile that can be used to calculate road grade. This process is evaluated against a large, commercially available height/slope dataset from the Navteq/Nokia/HERE Advanced Driver Assistance Systems product. Results will show good agreement with the Advanced Driver Assistance Systems data in the ability to estimate road grade between any two consecutive points in the contiguous United States.

  3. YEAR

    National Nuclear Security Administration (NNSA)

    4 YEAR 2012 Males 65 Females 29 YEAR 2012 SES 3 EJEK 5 EN 04 3 NN (Engineering) 21 NQ (ProfTechAdmin) 61 NU (TechAdmin Support) 1 YEAR 2012 American Indian Male 0 American...

  4. YEAR

    National Nuclear Security Administration (NNSA)

    4 YEAR 2011 Males 21 Females 23 YEAR 2011 SES 3 EJEK 1 EN 03 1 NN (Engineering) 3 NQ (ProfTechAdmin) 31 NU (TechAdmin Support) 5 YEAR 2011 American Indian Male 0 American...

  5. YEAR

    National Nuclear Security Administration (NNSA)

    92 YEAR 2012 Males 52 Females 40 YEAR 2012 SES 1 EJEK 7 EN 04 13 EN 03 1 NN (Engineering) 27 NQ (ProfTechAdmin) 38 NU (TechAdmin Support) 5 YEAR 2012 American Indian Male 0...

  6. YEAR

    National Nuclear Security Administration (NNSA)

    558 YEAR 2013 Males 512 Females 46 YEAR 2013 SES 2 EJEK 2 EN 04 1 NN (Engineering) 11 NQ (ProfTechAdmin) 220 NU (TechAdmin Support) 1 NV (Nuc Mat Courier) 321 YEAR 2013...

  7. YEAR

    National Nuclear Security Administration (NNSA)

    11 YEAR 2012 Males 78 Females 33 YEAR 2012 SES 2 EJEK 9 EN 05 1 EN 04 33 NN (Engineering) 32 NQ (ProfTechAdmin) 31 NU (TechAdmin Support) 3 YEAR 2012 American Indian Male 2...

  8. YEAR

    National Nuclear Security Administration (NNSA)

    300 YEAR 2011 Males 109 Females 191 YEAR 2011 SES 9 EJEK 1 NN (Engineering) 2 NQ (ProfTechAdmin) 203 NU (TechAdmin Support) 38 NF (Future Ldrs) 47 YEAR 2011 American Indian...

  9. YEAR

    National Nuclear Security Administration (NNSA)

    02 YEAR 2011 Males 48 Females 54 YEAR 2011 SES 5 EJEK 1 NN (Engineering) 13 NQ (ProfTechAdmin) 80 NU (TechAdmin Support) 3 YEAR 2011 American Indian Male 0 American Indian...

  10. YEAR

    National Nuclear Security Administration (NNSA)

    8 YEAR 2013 Males 27 Females 11 YEAR 2013 SES 1 EN 05 1 EN 04 11 NN (Engineering) 8 NQ (ProfTechAdmin) 15 NU (TechAdmin Support) 2 YEAR 2013 American Indian Alaska Native Male...

  11. YEAR

    National Nuclear Security Administration (NNSA)

    31 YEAR 2013 Males 20 Females 11 YEAR 2013 SES 2 EN 04 4 NN (Engineering) 12 NQ (ProfTechAdmin) 12 NU (TechAdmin Support) 1 YEAR 2013 American Indian Alaska Native Male (AIAN,...

  12. YEAR

    National Nuclear Security Administration (NNSA)

    16 YEAR 2012 Males 84 Females 32 YEAR 2012 SES 26 EJEK 2 EN 05 9 NN (Engineering) 39 NQ (ProfTechAdmin) 30 NU (TechAdmin Support) 10 YEAR 2012 American Indian Male 0 American...

  13. YEAR

    National Nuclear Security Administration (NNSA)

    34 YEAR 2012 Males 66 Females 68 YEAR 2012 SES 6 NN (Engineering) 15 NQ (ProfTechAdmin) 110 NU (TechAdmin Support) 3 YEAR 2012 American Indian Male 1 American Indian Female 2...

  14. YEAR

    National Nuclear Security Administration (NNSA)

    86 YEAR 2012 Males 103 Females 183 YEAR 2012 SES 7 EJEK 1 NN (Engineering) 1 NQ (ProfTechAdmin) 202 NU (TechAdmin Support) 30 NF (Future Ldrs) 45 YEAR 2012 American Indian Male...

  15. YEAR

    National Nuclear Security Administration (NNSA)

    80 YEAR 2012 Males 51 Females 29 YEAR 2012 SES 1 EJEK 22 EN 04 21 NN (Engineering) 14 NQ (ProfTechAdmin) 21 NU (TechAdmin Support) 1 YEAR 2012 American Indian Male 0 American...

  16. YEAR

    National Nuclear Security Administration (NNSA)

    1 YEAR 2012 Males 30 Females 11 YEAR 2012 SES 1 EN 05 1 EN 04 11 NN (Engineering) 9 NQ (ProfTechAdmin) 17 NU (TechAdmin Support) 2 YEAR 2012 American Indian Male 0 American...

  17. YEAR

    National Nuclear Security Administration (NNSA)

    96 YEAR 2013 Males 69 Females 27 YEAR 2013 SES 1 EJEK 9 EN 04 27 NN (Engineering) 26 NQ (ProfTechAdmin) 30 NU (TechAdmin Support) 3 YEAR 2013 American Indian Alaska Native Male...

  18. YEAR

    National Nuclear Security Administration (NNSA)

    31 YEAR 2012 Males 19 Females 12 YEAR 2012 SES 2 EN 04 4 NN (Engineering) 12 NQ (ProfTechAdmin) 12 NU (TechAdmin Support) 1 YEAR 2012 American Indian Male 0 American Indian...

  19. YEAR

    National Nuclear Security Administration (NNSA)

    0 YEAR 2013 Males 48 Females 32 YEAR 2013 SES 2 EJEK 7 EN 04 11 EN 03 1 NN (Engineering) 23 NQ (ProfTechAdmin) 33 NU (TechAdmin Support) 3 YEAR 2013 American Indian Alaska...

  20. YEAR

    National Nuclear Security Administration (NNSA)

    40 YEAR 2011 Males 68 Females 72 YEAR 2011 SES 5 EJEK 1 NN (Engineering) 16 NQ (ProfTechAdmin) 115 NU (TechAdmin Support) 3 YEAR 2011 American Indian Male 1 American Indian...

  1. YEAR

    National Nuclear Security Administration (NNSA)

    00 YEAR 2012 Males 48 Females 52 YEAR 2012 SES 5 EJEK 1 NN (Engineering) 11 NQ (ProfTechAdmin) 80 NU (TechAdmin Support) 3 YEAR 2012 American Indian Male 0 American Indian...

  2. YEAR

    National Nuclear Security Administration (NNSA)

    137 YEAR 2013 Males 90 Females 47 YEAR 2013 SES 2 SL 1 EJEK 30 EN 04 30 EN 03 2 NN (Engineering) 23 NQ (ProfTechAdmin) 45 NU (TechAdmin Support) 4 YEAR 2013 American Indian...

  3. YEAR

    National Nuclear Security Administration (NNSA)

    of Employees 14 GENDER YEAR 2012 Males 9 Females 5 YEAR 2012 SES 2 EJEK 2 NN (Engineering) 4 NQ (ProfTechAdmin) 6 YEAR 2012 American Indian Male 0 American Indian Female 0...

  4. YEAR

    National Nuclear Security Administration (NNSA)

    3 YEAR 2012 Males 21 Females 22 YEAR 2012 SES 3 EJEK 1 EN 03 1 NN (Engineering) 3 NQ (ProfTechAdmin) 30 NU (TechAdmin Support) 5 YEAR 2012 American Indian Male 0 American...

  5. YEAR

    National Nuclear Security Administration (NNSA)

    YEAR 2014 Males 48 Females 33 PAY PLAN YEAR 2014 SES 1 EJEK 8 EN 04 10 EN 03 1 NN (Engineering) 27 NQ (ProfTechAdmin) 29 NU (TechAdmin Support) 5 YEAR 2014 American Indian...

  6. YEAR

    National Nuclear Security Administration (NNSA)

    8 YEAR 2014 Males 18 Females 10 PAY PLAN YEAR 2014 SES 1 EN 05 1 EN 04 4 NN (Engineering) 12 NQ (ProfTechAdmin) 9 NU (TechAdmin Support) 1 YEAR 2014 American Indian Alaska...

  7. YEAR

    National Nuclear Security Administration (NNSA)

    5 YEAR 2014 Males 61 Females 24 PAY PLAN YEAR 2014 SES 1 EJEK 8 EN 04 22 NN (Engineering) 23 NQ (ProfTechAdmin) 28 NU (TechAdmin Support) 3 YEAR 2014 American Indian Alaska...

  8. YEAR

    National Nuclear Security Administration (NNSA)

    69 YEAR 2014 Males 34 Females 35 YEAR 2014 SES 5 EJEK 1 EN 05 8 EN 04 5 NN (Engineering) 27 NQ (ProfTechAdmin) 22 NU (TechAdmin Support) 1 YEAR 2014 American Indian Alaska...

  9. YEAR

    National Nuclear Security Administration (NNSA)

    42 YEAR 2014 Males 36 Females 6 PAY PLAN YEAR 2014 SES 2 EJEK 5 EN 05 7 EN 04 6 EN 03 1 NN (Engineering) 15 NQ (ProfTechAdmin) 6 YEAR 2014 American Indian Alaska Native Male...

  10. Although still a small share of the automobile marketplace, hybrid vehicle models and sales have been growing steadily. It is now

    E-Print Network [OSTI]

    Bertini, Robert L.

    analyzes the impacts of utilization (mileage per year per vehicle) and gasoline prices on vehicle gasoline prices or high utilization, (b) current European carbon dioxide cap-and-trade emissions price (miles per year), and market conditions (fuel prices) on the competitiveness of EVs. This paper

  11. Evaluation Of Potential Hybrid Electric Vehicle Applications: Vol I

    E-Print Network [OSTI]

    Gris, Arturo E.

    1991-01-01

    Air Batteries for Electric Vehicles” E.J.Rudd. SAE 891660.the Soleq Evcort Electric Vehicle”. DOE/ID--10232. Preparedfor Fiscal Year 88, Electric Vehicle Program, February

  12. Clean Cities 2012 Vehicle Buyer's Guide (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    The expanding availability of alternative fuels and advanced vehicles makes it easier than ever to reduce petroleum use, cut emissions, and save on fuel costs. The Clean Cities 2012 Vehicle Buyer's Guide features a comprehensive list of model year 2012 vehicles that can run on ethanol, biodiesel, electricity, propane or natural gas. Drivers and fleet managers across the country are looking for ways to reduce petroleum use, fuel costs, and vehicle emissions. As you'll find in this guide, these goals are easier to achieve than ever before, with an expanding selection of vehicles that use gasoline or diesel more efficiently, or forego them altogether. Plug-in electric vehicles made a grand entrance onto U.S. roadways in model year (MY) 2011, and their momentum in the market is poised for continued growth in 2012. Sales of the all-electric Nissan Leaf surpassed 8,000 in the fall of 2011, and the plug-in hybrid Chevy Volt is now available nationwide. Several new models from major automakers will become available throughout MY 2012, and drivers are benefiting from a rapidly growing network of charging stations, thanks to infrastructure development initiatives in many states. Hybrid electric vehicles, which first entered the market just a decade ago, are ubiquitous today. Hybrid technology now allows drivers of all vehicle classes, from SUVs to luxury sedans to subcompacts, to slash fuel use and emissions. Alternative fueling infrastructure is expanding in many regions, making natural gas, propane, ethanol, and biodiesel attractive and convenient choices for many consumers and fleets. And because fuel availability is the most important factor in choosing an alternative fuel vehicle, this growth opens up new possibilities for vehicle ownership. This guide features model-specific information about vehicle specs, manufacturer suggested retail price (MSRP), fuel economy, and emissions. You can use this information to compare vehicles and help inform your buying decisions. This guide includes city and highway fuel economy estimates from the U.S. Environmental Protection Agency (EPA). The estimates are based on laboratory tests conducted by manufacturers in accordance with federal regulations. EPA retests about 10% of vehicle models to confirm manufacturer results. Fuel economy estimates are also available on FuelEconomy.gov. For some newer vehicle models, EPA data was not available at the time of this guide's publication; in these cases, manufacturer estimates are provided, if available.

  13. Mathematical model of unmanned aerial vehicle used for endurance autonomous monitoring

    SciTech Connect (OSTI)

    Chelaru, Teodor-Viorel; Chelaru, Adrian

    2014-12-10

    The paper purpose is to present some aspects regarding the control system of unmanned aerial vehicle - UAV, used to local observations, surveillance and monitoring interest area. The calculus methodology allows a numerical simulation of UAV evolution in bad atmospheric conditions by using nonlinear model, as well as a linear one for obtaining guidance command. The UAV model which will be presented has six DOF (degrees of freedom), and autonomous control system. This theoretical development allows us to build stability matrix, command matrix and control matrix and finally to analyse the stability of autonomous UAV flight. A robust guidance system, based on uncoupled state will be evaluated for different fly conditions and the results will be presented. The flight parameters and guidance will be analysed.

  14. AVCEM: Advanced Vehicle Cost and Energy Use Model. Overview of AVCEM

    E-Print Network [OSTI]

    Delucchi, Mark

    2005-01-01

    accounted separately), regenerative braking, battery thermalthere is no regenerative braking, and vehicle efficiency,iterative calculations. Regenerative braking is represented

  15. Fact #693: September 19, 2011 Average Vehicle Footprint for Cars...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    information below. Supporting Information Average Vehicle Footprint, 2008-2010 Model Year Car Light Truck All Light Vehicles 2008 45.4 53.0 49.0 2009 45.2 52.7 48.2 2010 45.2 54.0...

  16. YEAR

    National Nuclear Security Administration (NNSA)

    Males 139 Females 88 YEAR 2012 SES 13 EX 1 EJEK 8 EN 05 23 EN 04 20 EN 03 2 NN (Engineering) 91 NQ (ProfTechAdmin) 62 NU (TechAdmin Support) 7 YEAR 2012 American Indian...

  17. YEAR

    National Nuclear Security Administration (NNSA)

    25 Females 10 YEAR 2014 SES 1 EN 04 11 NN (Engineering) 8 NQ (ProfTechAdmin) 13 NU (TechAdmin Support) 2 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian...

  18. YEAR

    National Nuclear Security Administration (NNSA)

    2014 Males 81 Females 45 PAY PLAN YEAR 2014 SES 1 SL 1 EJEK 25 EN 04 26 EN 03 2 NN (Engineering) 23 NQ (ProfTechAdmin) 44 NU (TechAdmin Support) 4 YEAR 2014 American Indian...

  19. Electric-Drive Vehicle engineering

    E-Print Network [OSTI]

    Berdichevsky, Victor

    Electric-Drive Vehicle engineering COLLEGE of ENGINEERING Electric-driveVehicle engineers for 80 years t Home to nation's first electric-drive vehicle engineering program and alternative-credit EDGE Engineering Entrepreneur Certificate Program is a great addition to an electric-drive vehicle

  20. YEAR

    National Nuclear Security Administration (NNSA)

    563 YEAR 2012 Males 518 Females 45 YEAR 2012 SES 1 EJEK 2 EN 04 1 EN 03 1 NN (Engineering) 12 NQ (ProfTechAdmin) 209 NU (TechAdmin Support) 2 NV (Nuc Mat Courier) 335 YEAR 2012...

  1. YEAR

    National Nuclear Security Administration (NNSA)

    7 YEAR 2012 Males 64 Females 33 YEAR 2012 SES 2 EJEK 3 EN 05 1 EN 04 30 EN 03 1 NN (Engineering) 26 NQ (ProfTechAdmin) 32 NU (TechAdmin Support) 2 YEAR 2012 American Indian...

  2. YEAR

    National Nuclear Security Administration (NNSA)

    4 YEAR 2012 Males 37 Females 7 YEAR 2012 SES 1 EJEK 6 EN 05 5 EN 04 7 EN 03 1 NN (Engineering) 17 NQ (ProfTechAdmin) 6 NU (TechAdmin Support) 1 YEAR 2012 American Indian Male 2...

  3. YEAR

    National Nuclear Security Administration (NNSA)

    7 YEAR 2011 Males 38 Females 9 YEAR 2011 SES 1 EJEK 6 EN 05 5 EN 04 7 EN 03 1 NN (Engineering) 19 NQ (ProfTechAdmin) 7 NU (TechAdmin Support) 1 YEAR 2011 American Indian Male 2...

  4. YEAR

    National Nuclear Security Administration (NNSA)

    8 YEAR 2013 Males 62 Females 26 YEAR 2013 SES 1 EJEK 3 EN 05 1 EN 04 28 EN 03 1 NN (Engineering) 25 NQ (ProfTechAdmin) 27 NU (TechAdmin Support) 2 YEAR 2013 American Indian...

  5. YEAR

    National Nuclear Security Administration (NNSA)

    6 YEAR 2012 Males 64 Females 32 YEAR 2012 SES 1 EJEK 5 EN 05 3 EN 04 23 EN 03 9 NN (Engineering) 18 NQ (ProfTechAdmin) 33 NU (TechAdmin Support) 4 YEAR 2012 American Indian...

  6. YEAR

    National Nuclear Security Administration (NNSA)

    5 YEAR 2013 Males 58 Females 27 YEAR 2013 SES 1 EJEK 4 EN 05 3 EN 04 21 EN 03 8 NN (Engineering) 16 NQ (ProfTechAdmin) 28 NU (TechAdmin Support) 4 YEAR 2013 American Indian...

  7. YEAR

    National Nuclear Security Administration (NNSA)

    78 YEAR 2012 Males 57 Females 21 YEAR 2012 SES 2 SL 1 EJEK 12 EN 04 21 EN 03 2 NN (Engineering) 12 NQ (ProfTechAdmin) 24 NU (TechAdmin Support) 4 YEAR 2012 American Indian Male...

  8. An extended supersonic combustion model for the dynamic analysis of hypersonic vehicles. Interim Task Report

    SciTech Connect (OSTI)

    Bossard, J.A.; Peck, R.E.; Schmidt, D.K.

    1993-03-01

    The development of an advanced dynamic model for aeroelastic hypersonic vehicles powered by air breathing engines requires an adequate engine model. This report provides a discussion of some of the more important features of supersonic combustion and their relevance to the analysis and design of supersonic ramjet engines. Of particular interest are those aspects of combustion that impact the control of the process. Furthermore, the report summarizes efforts to enhance the aeropropulsive/aeroelastic dynamic model developed at the Aerospace Research Center of Arizona State University by focusing on combustion and improved modeling of this flow. The expanded supersonic combustor model described here has the capability to model the effects of friction, area change, and mass addition, in addition to the heat addition process. A comparison is made of the results from four cases: (1) heat addition only; (2) heat addition plus friction; (3) heat addition, friction, and area reduction, and (4) heat addition, friction, area reduction, and mass addition. The relative impact of these effects on the Mach number, static temperature, and static pressure distributions within the combustor are then shown. Finally, the effects of frozen versus equilibrium flow conditions within the exhaust plume is discussed.

  9. Integrated Vehicle Thermal Management Systems (VTMS) Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems (VTMS) AnalysisModeling Integrated Vehicle Thermal Management Systems (VTMS) AnalysisModeling 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit...

  10. YEAR

    National Nuclear Security Administration (NNSA)

    2012 Males 149 Females 115 YEAR 2012 SES 17 EX 1 EJEK 7 EN 05 2 EN 04 9 EN 03 2 NN (Engineering) 56 NQ (ProfTechAdmin) 165 NU (TechAdmin Support) 4 GS 13 1 YEAR 2012 American...

  11. YEAR

    National Nuclear Security Administration (NNSA)

    9 Females 24 PAY PLAN YEAR 2014 SES 1 EJEK 4 EN 05 3 EN 04 22 EN 03 8 NN (Engineering) 15 NQ (ProfTechAdmin) 27 NU (TechAdmin Support) 3 YEAR 2014 American Indian Alaska Native...

  12. YEAR

    National Nuclear Security Administration (NNSA)

    8 Females 25 PAY PLAN YEAR 2014 SES 1 EJEK 3 EN 05 1 EN 04 25 EN 03 1 NN (Engineering) 25 NQ (ProfTechAdmin) 25 NU (TechAdmin Support) 2 YEAR 2014 American Indian Alaska Native...

  13. Abstract--This paper introduces a kinematic model of a deep-sea mining vehicle in presence of sliding parameters. The

    E-Print Network [OSTI]

    Hu, Huosheng

    Abstract--This paper introduces a kinematic model of a deep-sea mining vehicle in presence of sliding parameters. The model describes both the noises features of sliding parameters and the deep better localization estimation than a normal UKF for a deep-sea tracked vehicle (DTV). I. INTRODUCTION

  14. Analyzing the Sensitivity of Hydrogen Vehicle Sales to Consumers' Preferences

    SciTech Connect (OSTI)

    Greene, David L; Lin, Zhenhong; Dong, Jing

    2013-01-01

    The success of hydrogen vehicles will depend on consumer behavior as well as technology, energy prices and public policy. This study examines the sensitivity of the future market shares of hydrogen-powered vehicles to alternative assumptions about consumers preferences. The Market Acceptance of Advanced Automotive Technologies model was used to project future market shares. The model has 1,458 market segments, differentiated by travel behavior, geography, and tolerance to risk, among other factors, and it estimates market shares for twenty advanced power-train technologies. The market potential of hydrogen vehicles is most sensitive to the improvement of drive train technology, especially cost reduction. The long-run market success of hydrogen vehicles is less sensitive to the price elasticity of vehicle choice, how consumers evaluate future fuel costs, the importance of fuel availability and limited driving range. The importance of these factors will likely be greater in the early years following initial commercialization of hydrogen vehicles.

  15. Model-Free Learning-Based Online Management of Hybrid Electrical Energy Storage Systems in Electric Vehicles

    E-Print Network [OSTI]

    Pedram, Massoud

    Model-Free Learning-Based Online Management of Hybrid Electrical Energy Storage Systems in Electric@elpl.snu.ac.kr Abstract--To improve the cycle efficiency and peak output power density of energy storage systems in electric vehicles (EVs), supercapacitors have been proposed as auxiliary energy storage elements

  16. Vehicle Technologies Office Merit Review 2015: Unified Modeling, Simulation, and Market Implications: FASTSim and ADOPT

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about unified...

  17. Vehicle Technologies Office Merit Review 2015: Coupling Mechanical with Electrochemical-Thermal Models Batteries Under Abuse

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about coupling...

  18. Vehicle Technologies Office Merit Review 2015: CLEERS: Aftertreatment Modeling and Analysis

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Pacific Northwest National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about CLEERS,...

  19. Vehicle Technologies Office Merit Review 2014: Cell Analysis, Modeling, and Prototyping (CAMP) Facility Research Activities

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about cell analysis,...

  20. Vehicle Technologies Office Merit Review 2014: Chemical Kinetic Models for Advanced Engine Combustion

    Broader source: Energy.gov [DOE]

    Presentation given by Lawrence Livermore National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  1. Vehicle Technologies Office Merit Review 2015: Chemical Kinetic Models for Advanced Engine Combustion

    Broader source: Energy.gov [DOE]

    Presentation given by Lawrence Livermore National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  2. Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2008-01-01

    operating conditions. Direct Hydrogen Fuel Cell System Modelconditions for a direct hydrogen fuel cell system Table 1simulation tool for hydrogen fuel cell vehicles, Journal of

  3. Incorporating stakeholders' perspectives into models of new technology diffusion: The case of fuel-cell vehicles

    E-Print Network [OSTI]

    Collantes, Gustavo O

    2007-01-01

    dual superiority of hydrogen fuel-cell vehicles (FCVs) hasneeded to position the hydrogen–fuel cell combination as avolume, accessibility to hydrogen fuel dispensing stations,

  4. Vehicle Technologies Office Merit Review 2014: Unified Modeling, Simulation, and Market Implications: FASTSim and ADOPT

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the...

  5. Vehicle Technologies Office Merit Review 2015: Joint Development and Coordination of Emissions Control Data and Models

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about joint...

  6. Vehicle Technologies Office Merit Review 2015: Continuum Modeling as a Guide to Developing New Battery Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Lawrence Berkley National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  7. Vehicle Technologies Office Merit Review 2014: Development of Thermoplastic Pultrusion with Modeling and Experiments

    Broader source: Energy.gov [DOE]

    Presentation given by University of Alabama at Birmingham at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  8. Vehicle Technologies Office Merit Review 2015: Cell Analysis, Modeling, and Prototyping (CAMP) Facility Research Activities

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Cell Analysis,...

  9. YEAR

    National Nuclear Security Administration (NNSA)

    -9.09% YEAR 2012 2013 SES 1 1 0.00% EN 05 1 1 0.00% EN 04 11 11 0.00% NN (Engineering) 8 8 0.00% NQ (ProfTechAdmin) 17 14 -17.65% NU (TechAdmin Support) 2 2...

  10. YEAR

    National Nuclear Security Administration (NNSA)

    Females 863 YEAR 2013 SES 102 EX 3 SL 1 EJEK 89 EN 05 41 EN 04 170 EN 03 18 NN (Engineering) 448 NQ (ProfTechAdmin) 1249 NU (TechAdmin Support) 76 NV (Nuc Mat Courier) 321...

  11. YEAR

    National Nuclear Security Administration (NNSA)

    Females 942 YEAR 2012 SES 108 EX 4 SL 1 EJEK 96 EN 05 45 EN 04 196 EN 03 20 NN (Engineering) 452 NQ (ProfTechAdmin) 1291 NU (TechAdmin Support) 106 NV (Nuc Mat Courier) 335...

  12. YEAR

    National Nuclear Security Administration (NNSA)

    YEAR 2012 2013 SES 2 1 -50.00% EN 05 0 1 100.00% EN 04 4 4 0.00% NN (Engineering) 13 12 -7.69% NQ (ProfTechAdmin) 13 9 -30.77% NU (TechAdmin Support) 1 1...

  13. Fact #779: May 13, 2013 EPA's Top Ten Rated Vehicles List for Model Year

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015Executive Order14, 20111,FY 2007Traffic Congestion, 2011 |China and

  14. Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015Executive Order14, 20111,FY 2007TrafficDepartment of1975-2012 |

  15. Table 5.5. U.S. Vehicle Fuel Efficiency by Model Year, 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome6,672 7,2060 0 1 02. U.S.8. U.S..

  16. Table 5.6. U.S. Average Vehicle Fuel Consumption by Model Year, 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome6,672 7,2060 0 1 02. U.S.8. U.S... U.S.

  17. QUANTIFYING THE EXTERNAL COSTS OF VEHICLE USE: EVIDENCE FROM AMERICA'S TOP SELLING LIGHT-DUTY MODELS

    E-Print Network [OSTI]

    Kockelman, Kara M.

    -selling passenger cars and light-duty trucks in the U.S. Among these external costs, those associated with crashes estimated for several other vehicles of particular interest, including GM's Hummer and several hybrid drive: small cars, mid-sized cars, large cars, luxury cars, crossover utility vehicles (CUVs), sport

  18. Challenges for the CMS computing model in the first year

    SciTech Connect (OSTI)

    Fisk, I.; /Fermilab

    2009-05-01

    CMS is in the process of commissioning a complex detector and a globally distributed computing infrastructure simultaneously. This represents a unique challenge. Even at the beginning there is not sufficient analysis or organized processing resources at CERN alone. In this presentation we discuss the unique computing challenges CMS expects to face during the first year of running and how they influence the baseline computing model decisions. During the early accelerator commissioning periods, CMS will attempt to collect as many events as possible when the beam is on in order to provide adequate early commissioning data. Some of these plans involve overdriving the Tier-0 infrastructure during data collection with recovery when the beam is off. In addition to the larger number of triggered events, there will be pressure in the first year to collect and analyze more complete data formats as the summarized formats mature. The large event formats impact the required storage, bandwidth, and processing capacity across all the computing centers. While the understanding of the detector and the event selections is being improved, there will likely be a larger number of reconstruction passes and skims performed by both central operations and individual users. We discuss how these additional stresses impact the allocation of resources and the changes from the baseline computing model.

  19. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 Federal RegisterStorm1 3 6370-Rev.National26 YEAR

  20. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 Federal RegisterStorm1 3 6370-Rev.National26 YEAR93

  1. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 Federal RegisterStorm1 3 6370-Rev.National26 YEAR93

  2. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 Federal RegisterStorm1 3 6370-Rev.National26 YEAR9374

  3. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 Federal RegisterStorm1 3 6370-Rev.National268 YEAR

  4. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 Federal RegisterStorm1 3 6370-Rev.National268 YEAR17

  5. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 Federal RegisterStorm1 3 6370-Rev.National268255 YEAR

  6. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 Federal RegisterStorm1 3446 YEAR 2014 Males 1626

  7. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 Federal RegisterStorm1 3446 YEAR 2014 Males 16268

  8. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 Federal RegisterStorm1 3446 YEAR 2014 Males 16268563

  9. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 Federal RegisterStorm1 3446 YEAR 2014 Males 162685638

  10. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 Federal RegisterStorm1 3446 YEAR 2014 Males

  11. Vehicle Technologies Office Merit Review 2015: Transportation Energy Transition Modeling and Analysis: the LAVE-Trans Model

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about transportation...

  12. Evaluation of fuel consumption potential of medium and heavy duty vehicles through modeling and simulation.

    SciTech Connect (OSTI)

    Delorme, A.; Karbowski, D.; Sharer, P.; Energy Systems

    2010-03-31

    The main objective of this report is to provide quantitative data to support the Committee in its task of establishing a report to support rulemaking on medium- and heavy-duty fuel efficiency improvement. In particular, it is of paramount importance for the Committee to base or illustrate their conclusions on established models and actual state-of-the art data. The simulations studies presented in the report have been defined and requested by the members of the National Academy committee to provide quantitative inputs to support their recommendations. As such, various technologies and usage scenarios were considered for several applications. One of the objective is to provide the results along with their associated assumptions (both vehicle and drive cycles), information generally missing from public discussions on literature search. Finally, the advantages and limitations of using simulation will be summarized. The study addresses several of the committee tasks, including: (1) Discussion of the implication of metric selection; (2) Assessing the impact of existing technologies on fuel consumption through energy balance analysis (both steady-state and standard cycles) as well as real world drive cycles; and (3) Impact of future technologies, both individually and collectively.

  13. Quantifying EV battery end-of-life through analysis of travel needs with vehicle powertrain models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Saxena, Samveg; Le Floch, Caroline; MacDonald, Jason; Moura, Scott

    2015-05-15

    Electric vehicles enable clean and efficient transportation; however, concerns about range anxiety and battery degradation hinder EV adoption. The common definition for battery end-of-life is when 70-80% of original energy capacity remain;, however, little analysis is available to support this retirement threshold. By applying detailed physics-based models of EVs with data on how drivers use their cars, we show that EV batteries continue to meet daily travel needs of drivers well beyond capacity fade of 80% remaining energy storage capacity. Further, we show that EV batteries with substantial energy capacity fade continue to provide sufficient buffer charge for unexpected tripsmore »with long distances. We show that enabling charging in more locations, even if only with 120 V wall outlets, prolongs useful life of EV batteries. Battery power fade is also examined and we show EVs meet performance requirements even down to 30% remaining power capacity. Our findings show that defining battery retirement at 70-80% remaining capacity is inaccurate. Battery retirement should instead be governed by when batteries no longer satisfy daily travel needs of a driver. Using this alternative retirement metric, we present results on the fraction of EV batteries that may be retired with different levels of energy capacity fade.« less

  14. Vehicle Technologies Office Merit Review 2015: Improve Fuel Economy through Formulation Design and Modeling

    Broader source: Energy.gov [DOE]

    Presentation given by Ashland Inc. at 2015 DOE Hydrogen and Fuel Cells Program and vehicle technologies office annual merit review and peer evaluation meeting about improve fuel economy through...

  15. Electric vehicle charging infrastructure deployment : policy analysis using a dynamic behavioral spatial model

    E-Print Network [OSTI]

    Kearney, Michael J. (Michael Joseph)

    2011-01-01

    The United States government is committed to promoting a market for electric vehicles. To ensure that this electrification program does not result in the same failure that has come be associated with its predecessor programs, ...

  16. Modeling design changes in vehicle assembly systems : platform transition strategies and manufacturing flexibility

    E-Print Network [OSTI]

    Wüstemeyer, Christoph

    2014-01-01

    Driven by rising environmental and geopolitical concerns, regulations have been put in place over the last decade to compel car makers to lower the CO2 emissions of their cars. Due to these increasingly stringent vehicle ...

  17. Electric and Gasoline Vehicle Lifecycle Cost and Energy-Use Model

    E-Print Network [OSTI]

    Delucchi, Mark; Burke, Andy; Lipman, Timothy; Miller, Marshall

    2000-01-01

    system, radiator, carburetor, and engine-oil lubrication.30B: Other engine components Carburetor and throttle bodies,engine brackets, oil filter, fuel tubes, vehicle data plates and other labels, exhaust gas recirculation system, vacuum pump system, carburetor

  18. Vehicle Technologies Office Merit Review 2014: CLEERS: Aftertreatment Modeling and Analysis

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Lab at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about CLEERS, a R...

  19. Developing a methodology to account for commercial motor vehicles using microscopic traffic simulation models 

    E-Print Network [OSTI]

    Schultz, Grant George

    2004-09-30

    vehicle (CMV) weight and classification data used as input to critical tasks in transportation design, operations, and planning. The evolution of Intelligent Transportation System (ITS) technologies has been providing transportation engineers and planners...

  20. Vehicle Technologies Office Merit Review 2014: Modeling for Market Analysis: HTEB, TRUCK, and LVChoice

    Broader source: Energy.gov [DOE]

    Presentation given by TA Engineering, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about HTEB, TRUCK, and...

  1. The electric vehicle experiment : developing the theoretical model for 2.672

    E-Print Network [OSTI]

    Zedler, Matthew R. (Matthew Robert)

    2007-01-01

    The purpose of this project was to develop a computer simulation of the proposed 2.672 electric vehicle experiment (EVE) to estimate the magnitudes of the powers required in different components of the drive train, piecewise ...

  2. Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2008-01-01

    pedal forseen cycle km/h drive Cycle 1 driver 1 vehicleof three main blocks: drive cycle, driver, and vehicle. Thefound in [21,22]. The drive cycle block defines the driving

  3. Modeling real-time human-automation collaborative scheduling of unmanned vehicles

    E-Print Network [OSTI]

    Clare, Andrew S

    2013-01-01

    Recent advances in autonomy have enabled a future vision of single operator control of multiple heterogeneous Unmanned Vehicles (UVs). Real-time scheduling for multiple UVs in uncertain environments will require the ...

  4. Electric and Hybrid Vehicle Program, Site Operator Program. Quarterly progress report, October--December 1995 (first quarter of fiscal year 1996)

    SciTech Connect (OSTI)

    Francfort, J.E.; Bassett, R.R.; Briasco, S.

    1996-03-01

    This is the Site Operator Program quarterly report for USDOE electric and hybrid vehicle research. Its mission now includes the three major activity categories of advancement of electric vehicle (EV) technologies, development of infrastructure elements needed to support significant EV use and increasing public awareness and acceptance of EVs. The 11 Site Operator Program participants, their geographic locations, and the principal thrusts of their efforts are identified. The EV inventories of the site operators totals about 250 vehicles. The individual fleets are summarized.

  5. Journal of Asian Electric Vehicles, Volume 8, Number 1, June 2010 Simplified Thermal Model of PM Motors in Hybrid Vehicle Applications Taking

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    needs to be thor- oughly understood. The optimal design of electrical motors with solid thermal characteristics will provide improved efficiency and power densities in traction vehicle. Such vehicles rely complexities involved in designing PM motors for HEV applications require a breakdown of the individual thermal

  6. Effect of Intake Air Filter Condition on Light-Duty Gasoline Vehicles

    SciTech Connect (OSTI)

    Thomas, John F; Huff, Shean P; West, Brian H; Norman, Kevin M

    2012-01-01

    Proper maintenance can help vehicles perform as designed, positively affecting fuel economy, emissions, and the overall drivability. This effort investigates the effect of one maintenance factor, intake air filter replacement, with primary focus on vehicle fuel economy, but also examining emissions and performance. Older studies, dealing with carbureted gasoline vehicles, have indicated that replacing a clogged or dirty air filter can improve vehicle fuel economy and conversely that a dirty air filter can be significantly detrimental to fuel economy. The effect of clogged air filters on the fuel economy, acceleration and emissions of five gasoline fueled vehicles is examined. Four of these were modern vehicles, featuring closed-loop control and ranging in model year from 2003 to 2007. Three vehicles were powered by naturally aspirated, port fuel injection (PFI) engines of differing size and cylinder configuration: an inline 4, a V6 and a V8. A turbocharged inline 4-cylinder gasoline direct injection (GDI) engine powered vehicle was the fourth modern gasoline vehicle tested. A vintage 1972 vehicle equipped with a carburetor (open-loop control) was also examined. Results reveal insignificant fuel economy and emissions sensitivity of modern vehicles to air filter condition, but measureable effects on the 1972 vehicle. All vehicles experienced a measured acceleration performance penalty with clogged intake air filters.

  7. Vehicle Technologies Office Merit Review 2014: Development of Cell/Pack Level Models for Automotive Li-Ion Batteries with Experimental Validation

    Broader source: Energy.gov [DOE]

    Presentation given by EC Power at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about evelopment of cell/pack level models...

  8. Vehicle Technologies Office Merit Review 2015: First Principles Modeling of SEI Formation on Bare and Surface/Additive Modified Silicon Anodes

    Broader source: Energy.gov [DOE]

    Presentation given by Texas A&M at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about first principles modeling of...

  9. Identifying Contributions of On-road Motor Vehicles to Urban Air Pollution Using Travel Demand Model Data

    E-Print Network [OSTI]

    Wang, Guihua; Bai, Song; Ogden, Joan M.

    2009-01-01

    Health Effects of Motor-Vehicle Air Pollution. University ofon-road motor vehicles to urban air pollution, using travelon-road motor vehicles to urban air pollution using travel

  10. AVTA: 2010 Electric Vehicles International Neighborhood Electric Vehicle Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe testing results of the 2010 Electric Vehicles International neighborhood electric vehicle. Neighborhood electric vehicles reach speeds of no more than 35 miles per hour and are only allowed on roads with speed limits of up to 35 miles per hour. This research was conducted by Idaho National Laboratory.

  11. Fact #814: January 27, 2014 More Choices when Buying Vehicles that Use Advanced Technology and Alternative Fuels

    Broader source: Energy.gov [DOE]

    The number of models and types of alternative fuel vehicles produced by manufacturers has varied considerably over the last 22 years. In 1991, there were a total of 19 models available that did not...

  12. The Economic, Energy, and GHG Emissions Impacts of Proposed 2017–2025 Vehicle Fuel Economy Standards in the United States

    E-Print Network [OSTI]

    Karplus, Valerie

    2012-07-31

    Increases in the U.S. Corporate Average Fuel Economy (CAFE) Standards for 2017 to 2025 model year light-duty vehicles are currently under consideration. This analysis uses an economy-wide model with detail in the passenger ...

  13. Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maximizing Alternative Fuel Vehicle Efficiency Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency Besides their energy security and environmental benefits,...

  14. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Broader source: Energy.gov (indexed) [DOE]

    Confidential, 4222013 2013 DOE VEHICLE TECHNOLOGIES PROGRAM REVIEW PRESENTATION Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification...

  15. Vehicle Technologies Office Merit Review 2014: Transportation Energy Transition Modeling and Analysis: the LAVE-Trans Model

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the LAVE-Trans...

  16. Richmond Electric Vehicle Initiative Electric Vehicle Readiness...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Richmond Electric Vehicle Initiative Electric Vehicle Readiness Plan Richmond Electric Vehicle Initiative Electric Vehicle Readiness Plan The REVi plan addresses the electric...

  17. Fact #690: August 29, 2011 Characteristics of New Light Vehicles over Time

    Broader source: Energy.gov [DOE]

    From model year (MY) 1980 to 2010, there have been significant gains made in automotive technology. For new light vehicles, horsepower has more than doubled and "0-to-60" times have dropped from 14...

  18. Fact #657: January 10, 2011 Record Increase for New Light Vehicle Fuel Economy

    Broader source: Energy.gov [DOE]

    The sales-weighted fuel economy average of all light vehicles sold in model year (MY) 2009 was 1.4 miles per gallon (mpg) higher than MY2008. This is the largest annual increase in fuel economy...

  19. Modelling and control of a symmetric flapping wing vehicle: an optimal control approach 

    E-Print Network [OSTI]

    Jackson, Justin Patrick

    2009-05-15

    . The intent of this research is to design a wing stroke that the wings can follow which will maintain the vehicle at a desired longitudinal flight path angle and velocity. The cost function is primarily a function of the flight path angle error, velocity error...

  20. Predicting the Speed of a Wave Glider Autonomous Surface Vehicle from Wave Model Data

    E-Print Network [OSTI]

    Smith, Ryan N.

    . In addition, when the features of interest are dynamic and move with oceanic currents, vehicle speed plays/or the speed and direction of the ocean currents [4], [5]. For such a system, the question is presented as: Can system design allows for more persis- tent oceanic tracking in smaller less intrusive formats, they forgo

  1. On the Higher-Order MoM-PO Electromagnetic Modeling of Vehicles

    E-Print Network [OSTI]

    Notaros, Branislav M.

    vehicles (cars, airplanes, helicopters, spacecraft, etc.). From the electromagnetic point of view and accurate higher-order, large-domain hybrid computational technique based on the method of moments (Mo the efficiency and accuracy of the hybrid higher-order computational technique and its advantages over

  2. Incorporating Drivability Metrics into Optimal Energy Management Strategies for Hybrid Vehicles Part 1: Model, Methods, and

    E-Print Network [OSTI]

    Grizzle, Jessy W.

    and sinks. Optimal solutions are easy to specify if the drive cycle is known a priori. It is very challenging to compute controllers that yield good fuel economy for a class of drive cycles representative simulation on large numbers of real-world drive cycles. I. INTRODUCTION Hybrid vehicles have become

  3. Energy Star Concepts for Highway Vehicles

    SciTech Connect (OSTI)

    Greene, D.L.

    2003-06-24

    The authors of this report, under the sponsorship of the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Weatherization and Intergovernmental Program, have investigated the possible application of Energy Star ratings to passenger cars and light trucks. This study establishes a framework for formulating and evaluating Energy Star rating methods that is comprised of energy- and environmental-based metrics, potential vehicle classification systems, vehicle technology factors, and vehicle selection criteria. The study tests several concepts and Energy Star rating methods using model-year 2000 vehicle data--a spreadsheet model has been developed to facilitate these analyses. This study tests two primary types of rating systems: (1) an outcome-based system that rates vehicles based on fuel economy, GHG emissions, and oil use and (2) a technology-based system that rates vehicles based on the energy-saving technologies they use. Rating methods were evaluated based on their ability to select vehicles with high fuel economy, low GHG emissions, and low oil use while preserving a full range of service (size and acceleration) and body style choice. This study concludes that an Energy Star rating for passenger cars and light trucks is feasible and that several methods could be used to achieve reasonable tradeoffs between low energy use and emissions and diversity in size, performance, and body type. It also shows that methods that consider only fuel economy, GHG emissions, or oil use will not select a diverse mix of vehicles. Finally, analyses suggest that methods that encourage the use of technology only, may result in increases in acceleration power and weight rather than reductions in oil use and GHG emissions and improvements in fuel economy.

  4. HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution) Model Analysis HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution) Model Analysis Presentation by NREL's...

  5. Drive Cycle Powertrain Efficiencies and Trends Derived From EPA Vehicle Dynamometer Results

    SciTech Connect (OSTI)

    Thomas, John F

    2014-01-01

    Vehicle manufacturers among others are putting great emphasis on improving fuel economy (FE) of light-duty vehicles in the U.S. market, with significant FE gains being realized in recent years. The U.S. Environmental Protection Agency (EPA) data indicates that the aggregate FE of vehicles produced for the U.S. market has improved by over 20% from model year (MY) 2005 to 2013. This steep climb in FE includes changes in vehicle choice, improvements in engine and transmission technology, and reducing aerodynamic drag, rolling resistance, and parasitic losses. The powertrain related improvements focus on optimizing in-use efficiency of the transmission and engine as a system, and may make use of what is termed downsizing and/or downspeeding. This study explores quantifying recent improvements in powertrain efficiency, viewed separately from other vehicle alterations and attributes (noting that most vehicle changes are not completely independent). A methodology is outlined to estimate powertrain efficiency for the U.S city and highway cycle tests using data from the EPA vehicle database. Comparisons of common conventional gasoline powertrains for similar MY 2005 and 2013 vehicles are presented, along with results for late-model hybrid electric vehicles, the Nissan Leaf, Chevy Volt and other selected vehicles.

  6. Roadmapping Engine Technology for Post-2020 Heavy Duty Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles Roadmapping Engine Technology for Post-2020 Heavy Duty Vehicles Discusses Detroit Diesel collaborative multi-year technology program which includes systematic...

  7. Scenario analysis of hybrid class 3-7 heavy vehicles.

    SciTech Connect (OSTI)

    An, F.; Stodolsky, F.; Vyas, A.; Cuenca, R.; Eberhardt, J. J.

    1999-12-23

    The effects of hybridization on heavy-duty vehicles are not well understood. Heavy vehicles represent a broader range of applications than light-duty vehicles, resulting in a wide variety of chassis and engine combinations, as well as diverse driving conditions. Thus, the strategies, incremental costs, and energy/emission benefits associated with hybridizing heavy vehicles could differ significantly from those for passenger cars. Using a modal energy and emissions model, they quantify the potential energy savings of hybridizing commercial Class 3-7 heavy vehicles, analyze hybrid configuration scenarios, and estimate the associated investment cost and payback time. From the analysis, they conclude that (1) hybridization can significantly reduce energy consumption of Class 3-7 heavy vehicles under urban driving conditions; (2) the grid-independent, conventional vehicle (CV)-like hybrid is more cost-effective than the grid-dependent, electric vehicle (EV)-like hybrid, and the parallel configuration is more cost-effective than the series configuration; (3) for CV-like hybridization, the on-board engine can be significantly downsized, with a gasoline or diesel engine used for SUVs perhaps being a good candidate for an on-board engine; (4) over the long term, the incremental cost of a CV-like, parallel-configured Class 3-4 hybrid heavy vehicle is about %5,800 in the year 2005 and $3,000 in 2020, while for a Class 6-7 truck, it is about $7,100 in 2005 and $3,300 in 2020; and (5) investment payback time, which depends on the specific type and application of the vehicle, averages about 6 years under urban driving conditions in 2005 and 2--3 years in 2020.

  8. Real-World Emissions from Model Year 1993, 2000, and 2010 Passenger Cars

    E-Print Network [OSTI]

    Ross, M.

    2010-01-01

    the 5th CRC On-Road Vehicle Emissions Workshop, CoordinatingApproach to Estimating Vehicle Emissions,” Presented at the4th CRC On-Road Vehicle Emission Workshop, March 16-18,

  9. FIFTY YEARS OF GROUND-MOTION MODELS John Douglas1

    E-Print Network [OSTI]

    model for the prediction of earthquake ground motions accounting for both magnitude and distance called: ground-motion models or ground- motion prediction equations (GMPEs), but originally were referred a month and at the last count the total number of equations for the prediction of peak ground acceleration

  10. Alternative fuel information: Alternative fuel vehicle outlook

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    Major automobile manufacturers continue to examine a variety of alternative fuel vehicle (AFV) options in an effort to provide vehicles that meet the fleet requirements of the Clean Air Act Amendments of 1990 (CAAA) and the Energy Policy Act of 1992 (EPACT). The current generation of AFVs available to consumers is somewhat limited as the auto industry attempts to respond to the presently uncertain market. At the same time, however, the automobile industry must anticipate future demand and is therefore engaged in research, development, and production programs on a wide range of alternative fuels. The ultimate composition of the AFV fleet may be determined by state and local regulations which will have the effect of determining demand. Many state and regional groups may require vehicles to meet emission standards more stringent than those required by the federal government. Therefore, a significant impact on the market could occur if emission classifications begin serving as the benchmark for vehicles, rather than simply certifying a vehicle as capable of operating on an ``alternative`` to gasoline. Vehicles classified as Zero-Emissions, or even Inherently Low-Emissions, could most likely be met only by electricity or natural gas, thereby dictating that multi-fuel vehicles would be unable to participate in some clean air markets. In the near-term, the Clinton Administration desires to accelerate the use of alternative fuels as evidenced by an executive order directing the federal government to increase the rate of conversion of the federal fleet beyond that called for in EPACT. The Administration has expressed particular interest in using more compressed natural gas (CNG) as a motor fuel, which has resulted in the auto industry`s strong response of concentrating short-term efforts on CNG vehicles. For the 1994 model year, a number of CNG cars and trucks will be available from major automobile manufacturers.

  11. Solid waste integrated cost analysis model: 1991 project year report

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    The purpose of the City of Houston's 1991 Solid Waste Integrated Cost Analysis Model (SWICAM) project was to continue the development of a computerized cost analysis model. This model is to provide solid waste managers with tool to evaluate the dollar cost of real or hypothetical solid waste management choices. Those choices have become complicated by the implementation of Subtitle D of the Resources Conservation and Recovery Act (RCRA) and the EPA's Integrated Approach to managing municipal solid waste;. that is, minimize generation, maximize recycling, reduce volume (incinerate), and then bury (landfill) only the remainder. Implementation of an integrated solid waste management system involving all or some of the options of recycling, waste to energy, composting, and landfilling is extremely complicated. Factors such as hauling distances, markets, and prices for recyclable, costs and benefits of transfer stations, and material recovery facilities must all be considered. A jurisdiction must determine the cost impacts of implementing a number of various possibilities for managing, handling, processing, and disposing of waste. SWICAM employs a single Lotus 123 spreadsheet to enable a jurisdiction to predict or assess the costs of its waste management system. It allows the user to select his own process flow for waste material and to manipulate the model to include as few or as many options as he or she chooses. The model will calculate the estimated cost for those choices selected. The user can then change the model to include or exclude waste stream components, until the mix of choices suits the user. Graphs can be produced as a visual communication aid in presenting the results of the cost analysis. SWICAM also allows future cost projections to be made.

  12. Proceedings of the International Electronics Packaging Education Conference (at the ECTC), May 30, 2006 Using Teardown Analysis as a Vehicle to Teach Electronic Systems Manufacturing Cost Modeling

    E-Print Network [OSTI]

    Sandborn, Peter

    Proceedings of the International Electronics Packaging Education Conference (at the ECTC), May 30, 2006 Using Teardown Analysis as a Vehicle to Teach Electronic Systems Manufacturing Cost Modeling Peter@umd.edu Abstract This paper describes the use of product teardowns in an electronic systems cost modeling course

  13. FORESEEING THE MARKET FOR HYDROGEN FUEL-CELL VEHICLES: STAKEHOLDERS’ PERSPECTIVES AND MODELS OF NEW TECHNOLOGY DIFFUSION

    E-Print Network [OSTI]

    Collantes, Gustavo

    2005-01-01

    the Market for Hydrogen Fuel-Cell Vehicles: Stakeholders’dual superiority of hydrogen fuel-cell vehicles (FCVs) hasneeded to position the hydrogen-fuel cell combination as a

  14. Foreseeing the Market for Hydrogen Fuel-Cell Vehicles: Stakeholders' Perspectives and Models of New Technology Diffusion

    E-Print Network [OSTI]

    Collantes, Gustavo O

    2005-01-01

    the Market for Hydrogen Fuel-Cell Vehicles: Stakeholders’dual superiority of hydrogen fuel-cell vehicles (FCVs) hasneeded to position the hydrogen-fuel cell combination as a

  15. StreetSmart : modeling vehicle fuel consumption with mobile phone sensor data through a participatory sensing framework

    E-Print Network [OSTI]

    Oehlerking, Austin Louis

    2011-01-01

    Vehicle energy efficiency has become a priority of governments, researchers, and consumers in the wake of rising fuels costs over the last decade. Traditional Internal Combustion Engine (ICE) vehicles are particularly ...

  16. Modelling the global prospects and impacts of heavy duty liquefied natural gas vehicles in computable general equilibrium

    E-Print Network [OSTI]

    Yip, Arthur Hong Chun

    2014-01-01

    Natural gas vehicles have the prospects of making substantial contributions to transportation needs. The adoption of natural gas vehicles could lead to impacts on energy and environmental systems. An analysis of the main ...

  17. Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities

    E-Print Network [OSTI]

    Williams, Brett D; Kurani, Kenneth S

    2007-01-01

    of electric and natural gas vehicles: draft report for yeardevice to compressed-natural-gas-vehicle consumers. ) Theof electric and natural gas vehicles” report for year one.

  18. 2012 U.S. Vehicle Analysis

    E-Print Network [OSTI]

    Lam, Ho Yeung Michael

    2012-01-01

    per year if I choose an eco friendly car? In this thesis, welarge car may not be an eco-friendly vehicle class. Pickupthat SUV may not be an eco-friendly vehicle class. Country

  19. Technology and Cost of the Model Year (MY) 2007 Toyota Camry HEV Final Report

    SciTech Connect (OSTI)

    None

    2007-09-30

    The Oak Ridge National Laboratory (ORNL) provides research and development (R&D) support to the Department of Energy on issues related to the cost and performance of hybrid vehicles. ORNL frequently benchmarks its own research against commercially available hybrid components currently used in the market. In 2005 we completed a detailed review of the cost of the second generation Prius hybrid. This study examines the new 2007 Camry hybrid model for changes in technology and cost relative to the Prius. The work effort involved a detailed review of the Camry hybrid and the system control strategy to identify the hybrid components used in the drive train. Section 2 provides this review while Section 3 presents our detailed evaluation of the specific drive train components and their cost estimates. Section 3 also provides a summary of the total electrical drive train cost for the Camry hybrid vehicle and contrasts these estimates to the costs for the second generation Prius that we estimated in 2005. Most of the information on cost and performance were derived from meetings with the technical staff of Toyota, Nissan, and some key Tier I suppliers like Hitachi and Panasonic Electric Vehicle Energy (PEVE) and we thank these companies for their kind cooperation.

  20. Fact #599: November 30, 2009 Historical Trend for Light Vehicle Sales

    Broader source: Energy.gov [DOE]

    The sales of light vehicles dropped from 16.1 million vehicles in 2007 to 13.2 million vehicles in 2008. Light vehicle sales haven't dropped off that sharply in one year since 1974, when sales fell...

  1. Fact #614: March 15, 2010 Average Age of Household Vehicles

    Broader source: Energy.gov [DOE]

    The average age of household vehicles has increased from 6.6 years in 1977 to 9.2 years in 2009. Pickup trucks have the oldest average age in every year listed. Sport utility vehicles (SUVs), first...

  2. Abstract--In this paper, we present an collision avoidance algorithm for unmanned aerial vehicles (UAVs) based on model

    E-Print Network [OSTI]

    Sastry, S. Shankar

    Abstract-- In this paper, we present an collision avoidance algorithm for unmanned aerial vehicles in a head-on collision scenario using unmanned aerial vehicles. I. INTRODUCTION HE concept of a highly to avoid the impending collision at all cost. During this procedure, the unmanned vehicle must compute

  3. Electric Vehicles

    ScienceCinema (OSTI)

    Ozpineci, Burak

    2014-07-23

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  4. Electric Vehicles

    SciTech Connect (OSTI)

    Ozpineci, Burak

    2014-05-02

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  5. A seven-year effort of the PICES CCCC MODEL Task Team culminates in a dedicated issue of Ecological Modelling

    E-Print Network [OSTI]

    27 A seven-year effort of the PICES CCCC MODEL Task Team culminates in a dedicated issue For Including Saury and Herring) in a dedicated issue of Ecological Modelling. These contributions represent

  6. Summary of results from the National Renewable Energy Laboratory`s vehicle evaluation data collection efforts

    SciTech Connect (OSTI)

    Whalen, P.; Kelly, K.; Motta, R.; Broderick, J.

    1996-05-01

    The U.S. DOE National Renewable Energy Laboratory conducted a data collection project for light-duty, alternative fuel vehicles (AFVs) for about 4 years. The project has collected data on 10 vehicle models (from the original equipment manufacturers) spanning model years 1991 through 1995. Emissions data have also been collected from a number of vehicles converted to natural gas (CNG) and liquefied petroleum gas (LPG). Most of the vehicles involved in the data collection and evaluation are part of the General Services Administration`s fleet of AFVs. This evaluation effort addressed the performance and reliability, fuel economy, and emissions of light- duty AFVs, with comparisons to similar gasoline vehicles when possible. Driver-reported complaints and unscheduled vehicle repairs were used to assess the performance and reliability of the AFVs compared to the comparable gasoline vehicles. Two sources of fuel economy were available, one from testing of vehicles on a chassis dynamometer, and the other from records of in-service fuel use. This report includes results from emissions testing completed on 169 AFVs and 161 gasoline control vehicles.

  7. Property:Buildings/ModelYear | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceIIInformationEnergy InformationInformationModelXmlFile Jump

  8. Economic and Environmental Optimization of Vehicle Fleets: A Case Study of the Impacts of Policy, Market, Utilization, and

    E-Print Network [OSTI]

    Bertini, Robert L.

    of utilization (mileage per year per vehicle) and gasoline prices on fleet management decisions estimating energy in scenarios with high gasoline prices and/or utilization, (b) current European CO2 cap and trade emissions with high gasoline prices and vehicle utilization. This research indicates that the proposed model can

  9. Modeling the transient operation of an endothermic fuel cooling system for high Mach number vehicle missions 

    E-Print Network [OSTI]

    Williams, Mark Robert

    1993-01-01

    A computer model was developed to simulate the transient operation of a hypothetical endothermic fuel cooling system. The model simulated the performance of a cross-flow, shell and tube heat exchanger. This model was applied to a representative...

  10. What are the Starting Points? Evaluating Base-Year Assumptions in the Asian Modeling Exercise

    SciTech Connect (OSTI)

    Chaturvedi, Vaibhav; Waldhoff, Stephanie; Clarke, Leon E.; Fujimori, Shinichiro

    2012-12-01

    A common feature of model inter-comparison efforts is that the base year numbers for important parameters such as population and GDP can differ substantially across models. This paper explores the sources and implications of this variation in Asian countries across the models participating in the Asian Modeling Exercise (AME). Because the models do not all have a common base year, each team was required to provide data for 2005 for comparison purposes. This paper compares the year 2005 information for different models, noting the degree of variation in important parameters, including population, GDP, primary energy, electricity, and CO2 emissions. It then explores the difference in these key parameters across different sources of base-year information. The analysis confirms that the sources provide different values for many key parameters. This variation across data sources and additional reasons why models might provide different base-year numbers, including differences in regional definitions, differences in model base year, and differences in GDP transformation methodologies, are then discussed in the context of the AME scenarios. Finally, the paper explores the implications of base-year variation on long-term model results.

  11. Vehicle Technologies Office- AVTA: Hybrid-Electric Delivery Vehicles

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following set of reports describes data collected from testing on FedEx Express and UPS hybrid-electric delivery trucks. This research was conducted by the National Renewable Energy Laboratory (NREL).

  12. Congestion Pricing and Motor Vehicle Emissions: An Initial Review

    E-Print Network [OSTI]

    Guensler, Randall; Sperling, Daniel

    1994-01-01

    CRC-APRAC On Road Vehicle Emissions Workshop. CoordinatingCoast On-Road Motor Vehicle Emission Inventory Process.W.R. Pierson. 1991. Motor Vehicle Emissions Modeling Issues.

  13. Vehicle Technologies Office Merit Review 2014: Vehicle & Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Merit Review 2014: Vehicle & Systems Simulation & Testing Vehicle Technologies Office Merit Review 2014: Vehicle & Systems Simulation & Testing...

  14. Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2008-01-01

    In the original fuel cell optimization model [11], only theIn the original fuel cell optimization model, only the dryof the fuel cell system and optimization of the operating

  15. Improving efficiency of a vehicle HVAC system with comfort modeling, zonal design, and thermoelectric devices

    Office of Energy Efficiency and Renewable Energy (EERE)

    Discusses progress on thermal comfort modeling and detailed design, fabrication, and component/system-level testing of TE architecture

  16. Parallel implementation and one year experiments with the Danish Euleian Model

    E-Print Network [OSTI]

    Dimov, Ivan

    -page: http://www.dmu.dk/AtmosphericEnvironment Abstract. Large scale air pollution models are powerful tools for air pollution modelling has been studied for years [8, 15]. An air pollution model is generally of chemical species (pollutants and other components of the air that interact with the pollutants) in a large

  17. Improving the Efficiency of Light-Duty Vehicle HVAC Systems using Zonal Thermoelectric Devices and Comfort Modeling

    Broader source: Energy.gov [DOE]

    Summarizes results from a study to identify and demonstrate technical and commercial approaches necessary to accelerate the deployment of zonal TE HVAC systems in light-duty vehicles

  18. Vehicle Technologies Office Merit Review 2015: Significant Enhancement of Computational Efficiency in Nonlinear Multiscale Battery Model for Computer Aided Engineering

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  19. Vehicle Technologies Office Merit Review 2014: Reassessing the Outlook of US Oil Dependence Using Oil Security Metrics Model (OSMM)

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about reassessing ...

  20. Vehicle Technologies Office Merit Review 2015: Accelerate the Development and Introduction of Advanced Technologies Through Model Based System Engineering

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about accelerate the...

  1. Vehicle Technologies Office Merit Review 2014: Accelerating the Evaluation and Market Introduction of Advanced Technologies Through Model Based System Engineering

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about accelerating the...

  2. Vehicle Technologies Office Merit Review 2015: Advancements in Fuel Spray and Combustion Modeling with High Performance Computing Resources

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advancements in...

  3. Vehicle Technologies Office Merit Review 2015: Developing Kinetic Mechanisms for New Fuels and Biofuels, Including CFD Modeling

    Broader source: Energy.gov [DOE]

    Presentation given by Lawrence Livermore National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and vehicle technologies office annual merit review and peer evaluation meeting about...

  4. Vehicle Technologies Office Merit Review 2014: Significant Enhancement of Computational Efficiency in Nonlinear Multiscale Battery Model for Computer Aided Engineering

    Broader source: Energy.gov [DOE]

    Presentation given by NREL at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about significant enhancement of computational...

  5. Vehicle Technologies Office Merit Review 2014: Advancement in Fuel Spray and Combustion Modeling for Compression Ignition Engine Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advancement in...

  6. Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2008-01-01

    Polymer Electrolyte Fuel Cell Model, J. Electrochem. Soc. ,in Polymer Electrolyte Fuel Cells, J. Electrochem. Soc. ,Solid-Polymer- Electrolyte Fuel Cell, J. Electrochem. Soc. ,

  7. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1997-02-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  8. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (Oak Ridge, TN)

    1997-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  9. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1998-08-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendible appendages, each of which is radially extendible relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendible members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  10. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (Oak Ridge, TN)

    1998-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  11. Societal lifetime cost of hydrogen fuel cell vehicles

    E-Print Network [OSTI]

    Sun, Yongling; Ogden, J; Delucchi, Mark

    2010-01-01

    cost scenarios for crude oil prices of 25 and 50 € /bbl. ForCrude oil, renewable, NG Vehicle energy-use model ADVISOR simulation No formal model No formal model No formal model Vehicle cost Retail price

  12. New Hampshire "4-H Horse of the Year" Peter Stone Model Horse Contest

    E-Print Network [OSTI]

    New Hampshire, University of

    New Hampshire "4-H Horse of the Year" Peter Stone Model Horse® Contest Current and former 4-H members are invited to submit nominations for the New Hampshire "4- H Horse of the Year" award. The focus.Davis@unh.edu ****************************************************************************** February 2015 The University of New Hampshire Cooperative Extension is an equal opportunity educator

  13. Climate and Energy Policy for U.S. Passenger Vehicles: A Technology-Rich Economic Modeling and Policy Analysis

    E-Print Network [OSTI]

    response to gasoline prices by investigating whether or not U.S. households alter their reliance on higher fuel economy vehicles in response to gasoline price changes. Using micro-level household vehicle usage data collected during a period of gasoline price fluctuations in 2008 to 2009, the econometric analysis

  14. A Stochastic Framework for Ground Vehicle Simulation Justin Madsen

    E-Print Network [OSTI]

    Negrut, Dan

    of a light truck model was investigated. The creation of the vehicle and road models and simulations

  15. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01

    of electric and natural gas vehicles: draft report for yeardevice to compressed-natural-gas-vehicle consumers. ) Theof electric and natural gas vehicles” report for year one.

  16. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01

    of electric and natural gas vehicles: draft report for yeardevice to compressed-natural-gas-vehicle consumers. ) Theof electric and natural gas vehicles” report for year one.

  17. Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Heffner, Reid R.; Kurani, Ken; Turrentine, Tom

    2005-01-01

    of Vehicle Image in Gasoline-Hybrid Electric Vehicles Reidof Vehicle Image in Gasoline-Hybrid Electric Vehicles Reidhigh demand for gasoline-hybrid electric vehicles (HEVs)?

  18. Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tractor Vehicles Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a...

  19. A versatile computer model for the design and analysis of electric and hybrid vehicles 

    E-Print Network [OSTI]

    Stevens, Kenneth Michael

    1996-01-01

    by operating the internal combustion engine over its entire speed range. The simulation results indicate that both algorithms can successfully maintain the battery state of charge over the given drive-cycle. Finally, conclusions about the model...

  20. Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2008-01-01

    H. Peng, Control of Fuel Cell Power Systems, Springer, 2004an arbitrary size (power) fuel cell. Finally, the model ison the rated fuel cell stack power. The rated stack power is

  1. 2008 Annual Progress Report - Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program

    SciTech Connect (OSTI)

    none,

    2009-02-24

    Annual Progress Report for fiscal year 2008 for the Advanced Vehicle Technology Analysis and Evaluation (AVTAE) team activities

  2. FY2009 Annual Progress Report for Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program

    SciTech Connect (OSTI)

    none,

    2010-02-19

    Annual Progress Report for fiscal year 2009 for the Advanced Vehicle Technology Analysis and Evaluation (AVTAE) team activities

  3. Progress in year 1994 1. An analytical model for evaporative cooling

    E-Print Network [OSTI]

    Progress in year 1994 1. An analytical model for evaporative cooling We have developed an analytical model for evaporative cooling [1]. By simulating evaporation as a sequence of discrete steps, we the cloud rethermalizes and ensures efficient evaporative cooling. 2. Elastic collision cross section

  4. Autonomous vehicles

    SciTech Connect (OSTI)

    Meyrowitz, A.L.; Blidberg, D.R.; Michelson, R.C.

    1996-08-01

    There are various kinds of autonomous vehicles (AV`s) which can operate with varying levels of autonomy. This paper is concerned with underwater, ground, and aerial vehicles operating in a fully autonomous (nonteleoperated) mode. Further, this paper deals with AV`s as a special kind of device, rather than full-scale manned vehicles operating unmanned. The distinction is one in which the AV is likely to be designed for autonomous operation rather than being adapted for it as would be the case for manned vehicles. The authors provide a survey of the technological progress that has been made in AV`s, the current research issues and approaches that are continuing that progress, and the applications which motivate this work. It should be noted that issues of control are pervasive regardless of the kind of AV being considered, but that there are special considerations in the design and operation of AV`s depending on whether the focus is on vehicles underwater, on the ground, or in the air. The authors have separated the discussion into sections treating each of these categories.

  5. Abstract--Modeling and control of underwater vehicles presents the challenge of sufficiently identifying acting

    E-Print Network [OSTI]

    Papadopoulos, Evangelos

    Estimation, Multi-axis Motion Control, Tow-tank System, Model Identification. I. INTRODUCTION Measurement drag forces specifically, are important for the design of the necessary propulsion system for achieving the conservation of momentum to calculate the effective forces acting on the moving body, [2]. Extensive research

  6. Electric and Gasoline Vehicle Lifecycle Cost and Energy-Use Model

    E-Print Network [OSTI]

    Delucchi, Mark; Burke, Andy; Lipman, Timothy; Miller, Marshall

    2000-01-01

    Cost and Energy-Use Model Report for the California AirCalifornia INTRODUCTION As part of the calculation of the lifecycle cost, the energy-Costs , Mail-out #94-11, El Monte, California, March 2 (1994). California Energy

  7. Generic vehicle speed models based on traffic simulation: Development and application

    SciTech Connect (OSTI)

    Margiotta, R.; Cohen, H.; Elkins, G.; Rathi, A.; Venigalla, M.

    1994-12-15

    This paper summarizes the findings of a research project to develop new methods of estimating speeds for inclusion in the Highway Performance Monitoring System (HPMS) Analytical Process. The paper focuses on the effects of traffic conditions excluding incidents (recurring congestion) on daily average ed and excess fuel consumption. A review of the literature revealed that many techniques have been used to predict speeds as a function of congestion but most fail to address the effects of queuing. However, the method of Dowling and Skabardonis avoids this limitation and was adapted to the research. The methodology used the FRESIM and NETSIM microscopic traffic simulation models to develop uncongested speed functions and as a calibration base for the congested flow functions. The chief contributions of the new speed models are the simplicity of application and their explicit accounting for the effects of queuing. Specific enhancements include: (1) the inclusion of a queue discharge rate for freeways; (2) use of newly defined uncongested flow speed functions; (3) use of generic temporal distributions that account for peak spreading; and (4) a final model form that allows incorporation of other factors that influence speed, such as grades and curves. The main limitation of the new speed models is the fact that they are based on simulation results and not on field observations. They also do not account for the effect of incidents on speed. While appropriate for estimating average national conditions, the use of fixed temporal distributions may not be suitable for analyzing specific facilities, depending on observed traffic patterns. Finally, it is recommended that these and all future speed models be validated against field data where incidents can be adequately identified in the data.

  8. Nano-Continuum Modeling of a Nuclear Glass Specimen Altered for 25 Years

    SciTech Connect (OSTI)

    Steefel, Carl

    2014-01-06

    The purpose of this contribution is to report on preliminary nano-continuum scale modeling of nuclear waste glass corrosion. The focus of the modeling is an experiment involving a French glass SON68 specimen leached for 25 years in a granitic environment. In this report, we focus on capturing the nano-scale concentration profiles. We use a high resolution continuum model with a constant grid spacing of 1 nanometer to investigate the glass corrosion mechanisms.

  9. Master Thesis Proposal: Simulation of Vehicle

    E-Print Network [OSTI]

    Zhao, Yuxiao

    of the engine or the battery in a hybrid electric vehicle determines how effective the components are used factors. If a vehicle manufacturer wants to do tests with varying combinations of driver models, vehicle. · Possibly focus more on passenger cars or on heavy-duty-trucks. · Documentation and presentation of results

  10. Clean Cities 2014 Vehicle Buyer's Guide (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-12-01

    This annual guide features a comprehensive list of 2014 light-duty alternative fuel and advanced vehicles, grouped by fuel and technology. The guide provides model-specific information on vehicle specifications, manufacturer suggested retail price, fuel economy, energy impact, and emissions. The information can be used to identify options, compare vehicles, and help inform purchase decisions.

  11. Climate and energy policy for U.S. passenger vehicles : a technology-rich economic modeling and policy analysis

    E-Print Network [OSTI]

    Karplus, Valerie J

    2011-01-01

    Climate and energy security concerns have prompted policy action in the United States and abroad to reduce petroleum use and greenhouse gas (GHG) emissions from passenger vehicles. Policy affects the decisions of firms and ...

  12. AUTOMOTIVE RESEARCH CENTER (ARC) A U.S. Army Center of Excellence for Modeling and Simulation of Ground Vehicles

    E-Print Network [OSTI]

    Awtar, Shorya

    Vehicles AU T OM OT IVE RESEA RC H CEN T ER ARC Seminar Jet Fuel ­ It's Not Just for Planes! Dr. Tim Edwards Senior Chemical Engineer Fuels Branch ­ Air Abstract: Jet fuel is traditionally thought of as the fuel

  13. Vehicle Technologies Office Merit Review 2014: Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about heavy-duty low...

  14. Vehicle Technologies Office Merit Review 2015: Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratories at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about heavy-duty low...

  15. Vehicle Technologies Office Merit Review 2015: Assessing the Outlook of US Oil Dependence Using Oil Security Metrics Model (OSMM)

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about assessing the...

  16. Vehicle Technologies Office Merit Review 2015: Validation of Material Models for Crash Simulation of Automotive Carbon Fiber Composite Structures (VMM)

    Broader source: Energy.gov [DOE]

    Presentation given by Ford Motor Company at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about validation of material...

  17. Vehicle Technologies Office Merit Review 2014: Advanced Heavy-Duty Engine Systems and Emissions Control Modeling and Analysis

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced heavy...

  18. Managing the transition toward self-sustaining alternative fuel vehicle markets : policy analysis using a dynamic behavioral spatial model

    E-Print Network [OSTI]

    Supple, Derek R. (Derek Richard)

    2007-01-01

    Designing public policy or industry strategy to bolster the transition to alternative fuel vehicles (AFVs) is a formidable challenge as demonstrated by historical failed attempts. The transition to new fuels occurs within ...

  19. Vehicle Technologies Office Merit Review 2015: Efficient Safety and Degradation Modeling of Automotive Li-ion Cells and Pack

    Broader source: Energy.gov [DOE]

    Presentation given by EC-Power at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about efficient safety and degradation...

  20. Vehicle Technologies Office Merit Review 2014: Efficient Safety and Degradation Modeling of Automotive Li-ion Cells and Pack

    Broader source: Energy.gov [DOE]

    Presentation given by EC Power at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about efficient safety and degradation...

  1. Vehicle Technologies Office Merit Review 2015: 2015 KIVA-hpFE Development: A Robust and Accurate Engine Modeling Software

    Broader source: Energy.gov [DOE]

    Presentation given by Los Alamos National Laboratory  at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about 2015 KIVA...

  2. Vehicle Technologies Office Merit Review 2014: Joint Development and Coordination of Emissions Control Data and Models (CLEERS Analysis and Coordination)

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the joint...

  3. Fact #871: May 4, 2015 Most Manufacturers Have Positive CAFE Credit Balances at the End of Model Year 2013 – Dataset

    Broader source: Energy.gov [DOE]

    Excel file and dataset for Most Manufacturers Have Positive CAFE Credit Balances at the End of Model Year 2013

  4. Clean Cities 2014 Vehicle Buyer's Guide

    SciTech Connect (OSTI)

    2013-12-01

    The Clean Cities 2014 Vehicle Buyer's Guide is an annual guide which features a comprehensive list of 2014 light-duty alternative fuel and advanced vehicles, grouped by fuel and technology. The guide provides model-specific information on vehicle specifications, manufacturer suggested retail price, fuel economy, energy impact, and emissions. The information can be used to identify options, compare vehicles, and help inform purchase decisions.

  5. Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and Testing R&D Annual Progress Report

    Broader source: Energy.gov [DOE]

    2010 annual report focusing on five main areas: modeling and simulation, component and systems evaluation, laboratory and field vehicle evaluation, codes and standards development, and heavy vehicle systems optimization.

  6. Vehicle Technologies Office: 2012 Vehicle and Systems Simulation and Testing R&D Annual Progress Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    FY 2012 annual report focusing on five main areas: modeling and simulation, component and systems evaluation, laboratory and field vehicle evaluation, codes and standards development, and heavy vehicle systems optimization.

  7. Vehicle Technologies Office: 2011 Vehicle and Systems Simulation and Testing R&D Annual Progress Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    FY 2011 annual report focusing on five main areas: modeling and simulation, component and systems evaluation, laboratory and field vehicle evaluation, codes and standards development, and heavy vehicle systems optimization.

  8. Vehicle Technologies Office: 2013 Vehicle and Systems Simulation and Testing R&D Annual Progress Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    FY 2013 annual report focuses on the following areas: vehicle modeling and simulation, component and systems evaluations, laboratory and field evaluations, codes and standards, industry projects, and vehicle systems optimization.

  9. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1996-03-12

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 14 figs.

  10. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1994-03-15

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 11 figures.

  11. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (115 Newhaven Rd., Oak Ridge, TN 37830)

    1994-01-01

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  12. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (Oak Ridge, TN)

    1996-01-01

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  13. Vehicle Technologies Office: Advanced Vehicle Testing Activity...

    Energy Savers [EERE]

    (AVTA) Data and Results The Vehicle Technologies Office (VTO) supports work to develop test procedures and carry out testing on a wide range of advanced vehicles and technologies...

  14. Vehicle Technologies Office: AVTA - Electric Vehicle Community...

    Energy Savers [EERE]

    AVTA - Electric Vehicle Community and Fleet Readiness Data and Reports Making plug-in electric vehicles (PEVs, also known as electric cars) as affordable and convenient as...

  15. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Broader source: Energy.gov (indexed) [DOE]

    Peer Evaluation Meeting arravt072vssmackie2013o.pdf More Documents & Publications Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector...

  16. Vehicle Technologies Office: 2008 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Well-to-Wheels Analysis of Energy Use and...

  17. Vehicle Technologies Office: 2009 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report 2009avtaehvso.pdf More Documents &...

  18. U32: Vehicle Stability and Dynamics: Longer Combination Vehicles

    SciTech Connect (OSTI)

    Petrolino, Joseph; Spezia, Tony; Arant, Michael; Broshears, Eric; Chitwood, Caleb; Colbert, Jameson; Hathaway, Richard; Keil, Mitch; LaClair, Tim J; Pape, Doug; Patterson, Jim; Pittro, Collin

    2011-01-01

    This study investigated the safety and stability of longer combination vehicles (LCVs), in particular a triple trailer combination behind a commercial tractor, which has more complicated dynamics than the more common tractor in combination with a single semitrailer. The goal was to measure and model the behavior of LCVs in simple maneuvers. Example maneuvers tested and modeled were single and double lane changes, a gradual lane change, and a constant radius curve. In addition to test track data collection and a brief highway test, two computer models of LCVs were developed. One model is based on TruckSim , a lumped parameter model widely used for single semitrailer combinations. The other model was built in Adams software, which more explicitly models the geometry of the components of the vehicle, in terms of compliant structural members. Among other results, the models were able to duplicate the experimentally measured rearward amplification behavior that is characteristic of multi-unit combination vehicles.

  19. Vehicle Technologies Office Merit Review 2015: Mechanistic Modeling Framework for Predicting Extreme Battery Response: Coupled Hierarchical Models for Thermal, Mechanical, Electrical and (Electro)chemical Processes

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about mechanistic...

  20. Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2008 and November 2009 sales were also nearly identical. A light vehicle sales rebound in December raised total sales for the year just above 10 million. Light Vehicle...

  1. Vehicle technologies heavy vehicle program : FY 2008 benefits analysis, methodology and results --- final report.

    SciTech Connect (OSTI)

    Singh, M.; Energy Systems; TA Engineering

    2008-02-29

    This report describes the approach to estimating the benefits and analysis results for the Heavy Vehicle Technologies activities of the Vehicle Technologies (VT) Program of EERE. The scope of the effort includes: (1) Characterizing baseline and advanced technology vehicles for Class 3-6 and Class 7 and 8 trucks, (2) Identifying technology goals associated with the DOE EERE programs, (3) Estimating the market potential of technologies that improve fuel efficiency and/or use alternative fuels, and (4) Determining the petroleum and greenhouse gas emissions reductions associated with the advanced technologies. In FY 08 the Heavy Vehicles program continued its involvement with various sources of energy loss as compared to focusing more narrowly on engine efficiency and alternative fuels. These changes are the result of a planning effort that first occurred during FY 04 and was updated in the past year. (Ref. 1) This narrative describes characteristics of the heavy truck market as they relate to the analysis, a description of the analysis methodology (including a discussion of the models used to estimate market potential and benefits), and a presentation of the benefits estimated as a result of the adoption of the advanced technologies. The market penetrations are used as part of the EERE-wide integrated analysis to provide final benefit estimates reported in the FY08 Budget Request. The energy savings models are utilized by the VT program for internal project management purposes.

  2. Energy Efficiency in Heavy Vehicle Tires, Drivetrains, and Braking Systems

    SciTech Connect (OSTI)

    Peter J. Blau

    2000-04-26

    This document was prepared to support the primary goals of the Department of Energy, Office of Heavy Vehicle Technologies. These were recently stated as follows: ''Develop by 2004 the enabling technologies for a class 7-8 truck with a fuel efficiency of 10 mpg (at 65 mph) which will meet prevailing emission standards. For Class 3-6 trucks operating on an urban driving cycle, develop by 2004 commercially viable vehicles that achieve at least double the fuel economy of comparable current vehicles (1999), and as a research goal, reduce criteria pollutants to 30% below EPA standards. Develop by 2004 the diesel engine enabling technologies to support large-scale industry dieselization of Class 1 and 2 trucks, achieving a 35 % fuel efficiency improvement over comparable gasoline-fueled trucks, while meeting applicable emissions standards.'' The enabling technologies for improving the fuel efficiency of trucks, include not only engine technologies but also technologies involved with lowering the rolling resistance of tires, reducing vehicle aerodynamic drag, improving thermal management, and reducing parasitic frictional losses in drive train components. Opportunities also exist for making better use of the energy that might ordinarily be dissipated during vehicle braking. Braking systems must be included in this evaluation since safety in truck operations is vital, and braking requirements are greater for vehicles having lowered resistance to rolling. The Office of Heavy Vehicle Technologies has initiated a program to improve the aerodynamics of heavy vehicles through wind tunnel testing, computational modeling, and on-road evaluations. That activity is described in a separate multi-year plan; therefore, emphasis in this document will be on tires, drive trains, and braking systems. Recent, dramatic fluctuations in diesel fuel prices have emphasized the importance of effecting savings in truck fuel economy by implementing new component designs and materials.

  3. Paper submission for ASIS Mid-Year 1996 meeting: Digital Library Models and Prospects

    E-Print Network [OSTI]

    Newby, Gregory B.

    Paper submission for ASIS Mid-Year 1996 meeting: Digital Library Models and Prospects by Gregory B Digital libraries are the means by which people of the next millennium will access materials found in current libraries, yet the nature of digital libraries is only now being shaped. Different visions

  4. Optimal planning and control for hazard avoidance of front-wheel steered ground vehicles

    E-Print Network [OSTI]

    Peters, Steven C. (Steven Conrad)

    2012-01-01

    Hazard avoidance is an important capability for safe operation of robotic vehicles at high speed. It is also an important consideration for passenger vehicle safety, as thousands are killed each year in passenger vehicle ...

  5. Fact #756: December 3, 2012 Midwest Produces Two-Thirds of All Light Vehicles

    Broader source: Energy.gov [DOE]

    Although there are many new vehicle assembly plants located in the South, the Midwest region continues to produce about two-thirds of all light vehicles. The year 2009 was the low point for vehicle...

  6. DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Systems DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle Systems Merit review of DOE Vehicle Technologies Program research efforts 2009meritreview1.p...

  7. Vehicle Technologies Office Recognizes Leaders in Advanced Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Recognizes Leaders in Advanced Vehicle Research, Development and Deployment Vehicle Technologies Office Recognizes Leaders in Advanced Vehicle Research,...

  8. 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Vehicle Systems Simulation and Testing 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle Systems Simulation and Testing Vehicle systems research and development...

  9. Vehicle Modeling and Simulation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    recharge. 8 Travel Profile Data Processing Summary of Newly Processed Travel Data Each data set stored in a different format Automated processing more challenging than expected...

  10. Fact #558: February 16, 2009 Transit Vehicle Age and Cost

    Broader source: Energy.gov [DOE]

    Heavy rail cars have the greatest longevity of the transit vehicles listed below with an average vehicle age of more than 22 years. However, in terms of cost for purchasing a new rail car, heavy...

  11. Fuel Prices and New Vehicle Fuel Economy in Europe

    E-Print Network [OSTI]

    Klier, Thomas

    This paper evaluates the effect of fuel prices on new vehicle fuel economy in the eight largest European markets. The analysis spans the years 2002–2007 and uses detailed vehicle registration and specification data to ...

  12. Feasibility of Thermoelectrics for Waste Heat Recovery in Conventional Vehicles

    SciTech Connect (OSTI)

    Smith, K.; Thornton, M.

    2009-04-01

    Thermoelectric (TE) generators convert heat directly into electricity when a temperature gradient is applied across junctions of two dissimilar metals. The devices could increase the fuel economy of conventional vehicles by recapturing part of the waste heat from engine exhaust and generating electricity to power accessory loads. A simple vehicle and engine waste heat model showed that a Class 8 truck presents the least challenging requirements for TE system efficiency, mass, and cost; these trucks have a fairly high amount of exhaust waste heat, have low mass sensitivity, and travel many miles per year. These factors help maximize fuel savings and economic benefits. A driving/duty cycle analysis shows strong sensitivity of waste heat, and thus TE system electrical output, to vehicle speed and driving cycle. With a typical alternator, a TE system could allow electrification of 8%-15% of a Class 8 truck's accessories for 2%-3% fuel savings. More research should reduce system cost and improve economics.

  13. Plug-in Hybrid Electric Vehicle Fuel Use Reporting Methods and Results

    SciTech Connect (OSTI)

    James E. Francfort

    2009-07-01

    The Plug-in Hybrid Electric Vehicle (PHEV) Fuel Use Reporting Methods and Results report provides real world test results from PHEV operations and testing in 20 United States and Canada. Examples are given that demonstrate the significant variations operational parameters can have on PHEV petroleum use. In addition to other influences, PHEV mpg results are significantly impacted by driver aggressiveness, cold temperatures, and whether or not the vehicle operator has charged the PHEV battery pack. The U.S. Department of Energy’s (DOE’s) Advanced Vehicle Testing Activity (AVTA) has been testing plug-in hybrid electric vehicles (PHEVs) for several years. The AVTA http://avt.inl.gov/), which is part of DOE’s Vehicle Technology Program, also tests other advanced technology vehicles, with 12 million miles of total test vehicle and data collection experience. The Idaho National Laboratory is responsible for conducting the light-duty vehicle testing of PHEVs. Electric Transportation Engineering Corporation also supports the AVTA by conducting PHEV and other types of testing. To date, 12 different PHEV models have been tested, with more than 600,000 miles of PHEV operations data collected.

  14. Accepted for publication in Journal of Intelligent Transportation Systems Gaussian Mixture Model-Based Speed Estimation and Vehicle Classification1

    E-Print Network [OSTI]

    Washington at Seattle, University of

    ; Guohui Zhang2 ; Jonathan Corey1 ; Yinhai Wang1* 3 1 Department of Civil and Environmental Engineering Mexico, Albuquerque, NM 87106 USA6 * Corresponding author7 8 Abstract:9 Traffic speed and length to the heavy weight of these vehicles when they are fully5 loaded, they significantly impact pavement life

  15. Vehicle Technologies Office Merit Review 2015: Significant Enhancement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Merit Review 2015: Significant Enhancement of Computational Efficiency in Nonlinear Multiscale Battery Model for Computer Aided Engineering...

  16. Vehicle barrier

    DOE Patents [OSTI]

    Hirsh, Robert A. (Bethel Park, PA)

    1991-01-01

    A vehicle security barrier which can be conveniently placed across a gate opening as well as readily removed from the gate opening to allow for easy passage. The security barrier includes a barrier gate in the form of a cable/gate member in combination with laterally attached pipe sections fixed by way of the cable to the gate member and lateral, security fixed vertical pipe posts. The security barrier of the present invention provides for the use of cable restraints across gate openings to provide necessary security while at the same time allowing for quick opening and closing of the gate areas without compromising security.

  17. Heavy Duty Vehicle Futures Analysis.

    SciTech Connect (OSTI)

    Askin, Amanda Christine; Barter, Garrett; West, Todd H.; Manley, Dawn Kataoka

    2014-05-01

    This report describes work performed for an Early Career Research and Development project. This project developed a heavy-duty vehicle (HDV) sector model to assess the factors influencing alternative fuel and efficiency technology adoption. This model builds on a Sandia light duty vehicle sector model and provides a platform for assessing potential impacts of technological advancements developed at the Combustion Research Facility. Alternative fuel and technology adoption modeling is typically developed around a small set of scenarios. This HDV sector model segments the HDV sector and parameterizes input values, such as fuel prices, efficiencies, and vehicle costs. This parameterization enables sensitivity and trade space analyses to identify the inputs that are most associated with outputs of interest, such as diesel consumption and greenhouse gas emissions. Thus this analysis tool enables identification of the most significant HDV sector drivers that can be used to support energy security and climate change goals.

  18. Electric and hybrid electric vehicles: A technology assessment based on a two-stage Delphi study

    SciTech Connect (OSTI)

    Vyas, A.D.; Ng, H.K.; Santini, D.J.; Anderson, J.L.

    1997-12-01

    To address the uncertainty regarding future costs and operating attributes of electric and hybrid electric vehicles, a two stage, worldwide Delphi study was conducted. Expert opinions on vehicle attributes, current state of the technology, possible advancements, costs, and market penetration potential were sought for the years 2000, 2010, and 2020. Opinions related to such critical components as batteries, electric drive systems, and hybrid vehicle engines, as well as their respective technical and economic viabilities, were also obtained. This report contains descriptions of the survey methodology, analytical approach, and results of the analysis of survey data, together with a summary of other factors that will influence the degree of market success of electric and hybrid electric vehicle technologies. Responses by industry participants, the largest fraction among all the participating groups, are compared with the overall responses. An evaluation of changes between the two Delphi stages is also summarized. An analysis of battery replacement costs for various types is summarized, and variable operating costs for electric and hybrid vehicles are compared with those of conventional vehicles. A market penetration analysis is summarized, in which projected market shares from the survey are compared with predictions of shares on the basis of two market share projection models that use the cost and physical attributes provided by the survey. Finally, projections of market shares beyond the year 2020 are developed by use of constrained logit models of market shares, statistically fitted to the survey data.

  19. Inter-Vehicle Communication with Platooning

    E-Print Network [OSTI]

    Maguire Jr., Gerald Q.

    is the fossil fuel- consumption of vehicles. Hybrid-cars and all-electric cars are being developed to reduce of the disadvantages of current road systems and vehicles can be removed in the future by using appropriate information and communication technology. A disadvantage that has been considered to be a major problem for many years

  20. Commercial Motor Vehicle Brake Assessment Tools

    E-Print Network [OSTI]

    Commercial Motor Vehicle Brake Assessment Tools Commercial Motor Vehicle Roadside Technology to deceleration in g's ­ Passing score: BE43.5 · Enforcement tool for only 3 years. · Based solely on brake Brake Research · CMVRTC research built on these enforcement tools ­ Correlation Study ­ Level-1 / PBBT

  1. Improving the Efficiency of Light-Duty Vehicle HVAC Systems using...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light-Duty Vehicle HVAC Systems using Zonal Thermoelectric Devices and Comfort Modeling Improving the Efficiency of Light-Duty Vehicle HVAC Systems using Zonal Thermoelectric...

  2. Commercial Vehicle Safety Alliance Commercial Vehicle Safety...

    Office of Environmental Management (EM)

    Program Update: Ensuring Safe Transportation of Radioactive Material Carlisle Smith Director, Hazardous Materials Programs Commercial Vehicle Safety Alliance Email:...

  3. Modeling the Office of Science Ten Year Facilities Plan: The PERI Architecture Tiger Team

    SciTech Connect (OSTI)

    de Supinski, Bronis R.; Alam, Sadaf; Bailey, David H.; Carrington, Laura; Daley, Chris; Dubey, Anshu; Gamblin, Todd; Gunter, Dan; Hovland, Paul D.; Jagode, Heike; Karavanic, Karen; Marin, Gabriel; Mellor-Crummey, John; Moore, Shirley; Norris, Boyana; Oliker, Leonid; Olschanowsky, Catherine; Roth, Philip C.; Schulz, Martin; Shende, Sameer; Snavely, Allan; Spear, Wyatt; Tikir, Mustafa; Vetter, Jeff; Worley, Pat; Wright, Nicholas

    2009-06-26

    The Performance Engineering Institute (PERI) originally proposed a tiger team activity as a mechanism to target significant effort optimizing key Office of Science applications, a model that was successfully realized with the assistance of two JOULE metric teams. However, the Office of Science requested a new focus beginning in 2008: assistance in forming its ten year facilities plan. To meet this request, PERI formed the Architecture Tiger Team, which is modeling the performance of key science applications on future architectures, with S3D, FLASH and GTC chosen as the first application targets. In this activity, we have measured the performance of these applications on current systems in order to understand their baseline performance and to ensure that our modeling activity focuses on the right versions and inputs of the applications. We have applied a variety of modeling techniques to anticipate the performance of these applications on a range of anticipated systems. While our initial findings predict that Office of Science applications will continue to perform well on future machines from major hardware vendors, we have also encountered several areas in which we must extend our modeling techniques in order to fulfill our mission accurately and completely. In addition, we anticipate that models of a wider range of applications will reveal critical differences between expected future systems, thus providing guidance for future Office of Science procurement decisions, and will enable DOE applications to exploit machines in future facilities fully.

  4. Modeling the Office of Science Ten Year FacilitiesPlan: The PERI Architecture Tiger Team

    SciTech Connect (OSTI)

    de Supinski, B R; Alam, S R; Bailey, D H; Carrington, L; Daley, C

    2009-05-27

    The Performance Engineering Institute (PERI) originally proposed a tiger team activity as a mechanism to target significant effort to the optimization of key Office of Science applications, a model that was successfully realized with the assistance of two JOULE metric teams. However, the Office of Science requested a new focus beginning in 2008: assistance in forming its ten year facilities plan. To meet this request, PERI formed the Architecture Tiger Team, which is modeling the performance of key science applications on future architectures, with S3D, FLASH and GTC chosen as the first application targets. In this activity, we have measured the performance of these applications on current systems in order to understand their baseline performance and to ensure that our modeling activity focuses on the right versions and inputs of the applications. We have applied a variety of modeling techniques to anticipate the performance of these applications on a range of anticipated systems. While our initial findings predict that Office of Science applications will continue to perform well on future machines from major hardware vendors, we have also encountered several areas in which we must extend our modeling techniques in order to fulfill our mission accurately and completely. In addition, we anticipate that models of a wider range of applications will reveal critical differences between expected future systems, thus providing guidance for future Office of Science procurement decisions, and will enable DOE applications to exploit machines in future facilities fully.

  5. Advisor 2.0: A Second-Generation Advanced Vehicle Simulator for Systems Analysis

    SciTech Connect (OSTI)

    Wipke, K.; Cuddy, M.; Bharathan, D.; Burch, S.; Johnson, V.; Markel, A.; Sprik, S.

    1999-03-23

    The National Renewable Energy Laboratory has recently publicly released its second-generation advanced vehicle simulator called ADVISOR 2.0. This software program was initially developed four years ago, and after several years of in-house usage and evolution, the tool is now available to the public through a new vehicle systems analysis World Wide Web page. ADVISOR has been applied to many different systems analysis problems, such as helping to develop the SAE J1711 test procedure for hybrid vehicles and helping to evaluate new technologies as part of the Partnership for a New Generation of Vehicles (PNGV) technology selection process. The model has been and will continue to be benchmarked and validated with other models and with real vehicle test data. After two months of being available on the Web, more than 100 users have downloaded ADVISOR. ADVISOR 2.0 has many new features, including an easy-to-use graphical user interface, a detailed exhaust aftertreatment thermal model, and complete browser-based documentation. Future work will include adding to the library of components available in ADVISOR, including optimization functionality, and linking with a more detailed fuel cell model.

  6. IEEE Access 2015-000125 1 Abstract--Plug-in hybrid electric vehicles (PHEVs) offer the

    E-Print Network [OSTI]

    Eppstein, Margaret J.

    IEEE Access 2015-000125 1 Abstract-- Plug-in hybrid electric vehicles (PHEVs) offer the potential vehicles (PHEVs); agent-based model; market penetration; electric vehicle adoption; vehicle choice-in hybrid electric vehicles (PHEVs) offer the potential to significantly reduce GHG emissions [2

  7. Variability of Battery Wear in Light Duty Plug-In Electric Vehicles Subject to Ambient Temperature, Battery Size, and Consumer Usage: Preprint

    SciTech Connect (OSTI)

    Wood, E.; Neubauer, J.; Brooker, A. D.; Gonder, J.; Smith, K. A.

    2012-08-01

    Battery wear in plug-in electric vehicles (PEVs) is a complex function of ambient temperature, battery size, and disparate usage. Simulations capturing varying ambient temperature profiles, battery sizes, and driving patterns are of great value to battery and vehicle manufacturers. A predictive battery wear model developed by the National Renewable Energy Laboratory captures the effects of multiple cycling and storage conditions in a representative lithium chemistry. The sensitivity of battery wear rates to ambient conditions, maximum allowable depth-of-discharge, and vehicle miles travelled is explored for two midsize vehicles: a battery electric vehicle (BEV) with a nominal range of 75 mi (121 km) and a plug-in hybrid electric vehicle (PHEV) with a nominal charge-depleting range of 40 mi (64 km). Driving distance distributions represent the variability of vehicle use, both vehicle-to-vehicle and day-to-day. Battery wear over an 8-year period was dominated by ambient conditions for the BEV with capacity fade ranging from 19% to 32% while the PHEV was most sensitive to maximum allowable depth-of-discharge with capacity fade ranging from 16% to 24%. The BEV and PHEV were comparable in terms of petroleum displacement potential after 8 years of service, due to the BEV?s limited utility for accomplishing long trips.

  8. A Distributed Architecture for Autonomous Unmanned Aerial Vehicle Experimentation

    E-Print Network [OSTI]

    Doherty, Patrick

    A Distributed Architecture for Autonomous Unmanned Aerial Vehicle Experimentation P. Doherty, P unmanned aerial vehicle (UAV) research has shown rapid development in recent years and offers a great of distributed AI technologies. #12;The WITAS1 Unmanned Aerial Vehicle Project2 [4] is a basic research project

  9. Applying the Energy Service Company Model to Advance Deployment of Fleet Natural Gas Vehicles and Fueling Infrastructure

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat Is on in St.27AmericanApplying

  10. Biofuels, Climate Policy and the European Vehicle Fleet

    E-Print Network [OSTI]

    Rausch, Sebastian

    We examine the effect of biofuels mandates and climate policy on the European vehicle fleet, considering the prospects for diesel and gasoline vehicles. We use the MIT Emissions Prediction and Policy Analysis (EPPA) model, ...

  11. Think City Electric Vehicle Demonstration Program

    SciTech Connect (OSTI)

    Ford Motor Company

    2005-03-01

    The THINK city Electric Vehicle (EV) Demonstration Program Project, initiated late 2001, has been successfully completed as of April 2005. US. Partners include Federal, State and Municipal agencies as well as commercial partners. Phase I, consisting of placement of the vehicles in demonstration programs, was completed in 2002. Phase II, the monitoring of these programs was completed in 2004. Phase III, the decommissioning and/or exporting of vehicles concluded in 2005. Phase I--the Program successfully assigned 192 EV's with customers (including Hertz) in the state of California, 109 in New York (including loaner and demo vehicles), 16 in Georgia, 7 to customers outside of the US and 52 in Ford's internal operations in Dearborn Michigan for a total of 376 vehicles. The Program was the largest operating Urban EV Demonstration Project in the United States. Phase II--the monitoring of the operational fleet was ongoing and completed in 2004, and all vehicles were returned throughout 2004 and 2005. The Department of Energy (DOE) was involved with the monitoring of the New York Power Authority/THINK Clean Commute Program units through partnership with Electric Transportation Engineering Corporation (ETEC), which filed separate reports to DOE. The remainder of the field fleet was monitored through Ford's internal operations. Vehicles were retired from lease operation throughout the program for various operator reasons. Some of the vehicles were involved in re-leasing operations. At the end of the program, 376 vehicles had been involved, 372 of which were available for customer use while 4 were engineering prototype and study vehicles. Phase III--decommissioning and/or export of vehicles. In accordance with the NHTSA requirement, City vehicles could not remain in the United States past their three-year allowed program timeframe. At the end of leases, City vehicles have been decommissioned and/or exported to KamKorp in Norway.

  12. MathCAD model for the estimation of cost and main characteristics of air-cushion vehicles in the preliminary design stage

    E-Print Network [OSTI]

    Gougoulidis, Georgios

    2005-01-01

    In the naval architecture terminology, the term ACV (Air Cushion Vehicle) refers to this category of vehicles, in which a significant portion of the weight (or all the weight) is supported by forces arising from air pressures ...

  13. JourneyLog 64 5 Vehicle tracking

    E-Print Network [OSTI]

    Haddadi, Hamed

    JourneyLog 64 5 Vehicle tracking blinkx 8 Five years on Tomas Pfister 11 Graduate story Raspberry Pi 12 Exciting and engaging children to learn about computing Ring news 2 Note from the Editor

  14. Alternative Fuel Vehicle Data

    Reports and Publications (EIA)

    2013-01-01

    Annual data released on the number of on-road alternative fuel vehicles and hybrid vehicles made available by both the original equipment manufacturers and aftermarket vehicle conversion facilities. Data on the use of alternative fueled vehicles and the amount of fuel they consume is also available.

  15. Vehicle Emissions Review- 2012

    Broader source: Energy.gov [DOE]

    Reviews vehicle emission control highlighting representative studies that illustrate the state-of-the-art

  16. Electrifying Vehicles Early Release

    E-Print Network [OSTI]

    Electrifying Vehicles Early Release Insights from the Canadian Plug-in Electric Vehicle Study #12;1 The Canadian Plug-in Electric Vehicle Study May 25 2015 Electric-mobility may be a key component-in electric vehicles will involve meaningful shifts in social and technical systems. This report considers

  17. A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials

    E-Print Network [OSTI]

    Delucchi, Mark

    2003-01-01

    Motor-vehicle flows Uranium enrichment Agriculture Fuel production Nitrogen deposition Multi-modal emissions Corn-ethanol

  18. Advanced Test Reactor Core Modeling Update Project Annual Report for Fiscal Year 2011

    SciTech Connect (OSTI)

    David W. Nigg; Devin A. Steuhm

    2011-09-01

    Legacy computational reactor physics software tools and protocols currently used for support of Advanced Test Reactor (ATR) core fuel management and safety assurance and, to some extent, experiment management are obsolete, inconsistent with the state of modern nuclear engineering practice, and are becoming increasingly difficult to properly verify and validate (V&V). Furthermore, the legacy staff knowledge required for application of these tools and protocols from the 1960s and 1970s is rapidly being lost due to staff turnover and retirements. In 2009 the Idaho National Laboratory (INL) initiated a focused effort to address this situation through the introduction of modern high-fidelity computational software and protocols, with appropriate V&V, within the next 3-4 years via the ATR Core Modeling and Simulation and V&V Update (or 'Core Modeling Update') Project. This aggressive computational and experimental campaign will have a broad strategic impact on the operation of the ATR, both in terms of improved computational efficiency and accuracy for support of ongoing DOE programs as well as in terms of national and international recognition of the ATR National Scientific User Facility (NSUF). The ATR Core Modeling Update Project, targeted for full implementation in phase with the anticipated ATR Core Internals Changeout (CIC) in the 2014 time frame, began during the last quarter of Fiscal Year 2009, and has just completed its first full year. Key accomplishments so far have encompassed both computational as well as experimental work. A new suite of stochastic and deterministic transport theory based reactor physics codes and their supporting nuclear data libraries (SCALE, KENO-6, HELIOS, NEWT, and ATTILA) have been installed at the INL under various permanent sitewide license agreements and corresponding baseline models of the ATR and ATRC are now operational, demonstrating the basic feasibility of these code packages for their intended purpose. Furthermore, a capability for rigorous sensitivity analysis and uncertainty quantification based on the TSUNAMI system is being implemented and initial computational results have been obtained. This capability will have many applications in 2011 and beyond as a tool for understanding the margins of uncertainty in the new models as well as for validation experiment design and interpretation. Finally we note that although full implementation of the new computational models and protocols will extend over a period 3-4 years as noted above, interim applications in the much nearer term have already been demonstrated. In particular, these demonstrations included an analysis that was useful for understanding the cause of some issues in December 2009 that were triggered by a larger than acceptable discrepancy between the measured excess core reactivity and a calculated value that was based on the legacy computational methods. As the Modeling Update project proceeds we anticipate further such interim, informal, applications in parallel with formal qualification of the system under the applicable INL Quality Assurance procedures and standards.

  19. Fact #654: December 20, 2010 New Light Vehicle Leasing is Big in 2010

    Broader source: Energy.gov [DOE]

    New vehicle leasing has had ups and downs over the last five years, but from January to September 2010 the share of leases as a proportion of total new light vehicles sales is over 20%. Last year,...

  20. U.S. Department of Energy Fleet Alternative Fuel Vehicle Acquisition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fleet Alternative Fuel Vehicle Acquisition Report for Fiscal Year 2008 U.S. Department of Energy Fleet Alternative Fuel Vehicle Acquisition Report for Fiscal Year 2008 U.S....

  1. Vehicle Technologies Office: 2013 Propulsion Materials R&D Annual...

    Broader source: Energy.gov (indexed) [DOE]

    research and development projects funded by the Propulsion Materials subprogram in the Vehicle Technologies Office. Past year's reports are listed on the Annual Progress Reports...

  2. Department of Energy Offers Vehicle Production Group Nearly ...

    Energy Savers [EERE]

    project will produce approximately 22,650 vehicles per year. Between production, part suppliers, sales and marketing, the project is expected to create over 900 jobs. According to...

  3. Fact #718: March 12, 2012 Number of Flex-Fuel Models Offered...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (GM), Ford, and Chrysler have produced many different models of flex-fuel vehicles (cars and light trucks) over the last five years. In 2011, the number of models offered by...

  4. Fact #718: March 12, 2012 Number of Flex-Fuel Models Offered Increased in 2011

    Broader source: Energy.gov [DOE]

    General Motors (GM), Ford, and Chrysler have produced many different models of flex-fuel vehicles (cars and light trucks) over the last five years. In 2011, the number of models offered by those...

  5. Advanced Test Reactor Core Modeling Update Project Annual Report for Fiscal Year 2012

    SciTech Connect (OSTI)

    David W. Nigg, Principal Investigator; Kevin A. Steuhm, Project Manager

    2012-09-01

    Legacy computational reactor physics software tools and protocols currently used for support of Advanced Test Reactor (ATR) core fuel management and safety assurance, and to some extent, experiment management, are inconsistent with the state of modern nuclear engineering practice, and are difficult, if not impossible, to properly verify and validate (V&V) according to modern standards. Furthermore, the legacy staff knowledge required for application of these tools and protocols from the 1960s and 1970s is rapidly being lost due to staff turnover and retirements. In late 2009, the Idaho National Laboratory (INL) initiated a focused effort, the ATR Core Modeling Update Project, to address this situation through the introduction of modern high-fidelity computational software and protocols. This aggressive computational and experimental campaign will have a broad strategic impact on the operation of the ATR, both in terms of improved computational efficiency and accuracy for support of ongoing DOE programs as well as in terms of national and international recognition of the ATR National Scientific User Facility (NSUF). The ATR Core Modeling Update Project, targeted for full implementation in phase with the next anticipated ATR Core Internals Changeout (CIC) in the 2014-2015 time frame, began during the last quarter of Fiscal Year 2009, and has just completed its third full year. Key accomplishments so far have encompassed both computational as well as experimental work. A new suite of stochastic and deterministic transport theory based reactor physics codes and their supporting nuclear data libraries (HELIOS, KENO6/SCALE, NEWT/SCALE, ATTILA, and an extended implementation of MCNP5) has been installed at the INL under various licensing arrangements. Corresponding models of the ATR and ATRC are now operational with all five codes, demonstrating the basic feasibility of the new code packages for their intended purpose. Of particular importance, a set of as-run core depletion HELIOS calculations for all ATR cycles since August 2009, Cycle 145A through Cycle 151B, was successfully completed during 2012. This major effort supported a decision late in the year to proceed with the phased incorporation of the HELIOS methodology into the ATR Core Safety Analysis Package (CSAP) preparation process, in parallel with the established PDQ-based methodology, beginning late in Fiscal Year 2012. Acquisition of the advanced SERPENT (VTT-Finland) and MC21 (DOE-NR) Monte Carlo stochastic neutronics simulation codes was also initiated during the year and some initial applications of SERPENT to ATRC experiment analysis were demonstrated. These two new codes will offer significant additional capability, including the possibility of full-3D Monte Carlo fuel management support capabilities for the ATR at some point in the future. Finally, a capability for rigorous sensitivity analysis and uncertainty quantification based on the TSUNAMI system has been implemented and initial computational results have been obtained. This capability will have many applications as a tool for understanding the margins of uncertainty in the new models as well as for validation experiment design and interpretation.

  6. Vehicle to Grid Demonstration Project

    SciTech Connect (OSTI)

    Willett Kempton; Meryl Gardner; Michael Hidrue; Fouad Kamilev; Sachin Kamboj; Jon Lilley; Rodney McGee; George Parsons; Nat Pearre; Keith Trnka

    2010-12-31

    This report summarizes the activities and accomplishments of a two-year DOE-funded project on Grid-Integrated Vehicles (GIV) with vehicle to grid power (V2G). The project included several research and development components: an analysis of US driving patterns; an analysis of the market for EVs and V2G-capable EVs; development and testing of GIV components (in-car and in-EVSE); interconnect law and policy; and development and filing of patents. In addition, development activities included GIV manufacturing and licensing of technologies developed under this grant. Also, five vehicles were built and deployed, four for the fleet of the State of Delaware, plus one for the University of Delaware fleet.

  7. 2010 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Ward, Jacob; Davis, Stacy Cagle; Diegel, Susan W

    2011-06-01

    In the past five years, vehicle technologies have advanced on a number of fronts: power-train systems have become more energy efficient, materials have become more lightweight, fuels are burned more cleanly, and new hybrid electric systems reduce the need for traditional petroleum-fueled propulsion. This report documents the trends in market drivers, new vehicles, and component suppliers. This report is supported by the U.S. Department of Energy s (DOE s) Vehicle Technologies Program, which develops energy-efficient and environmentally friendly transportation technologies that will reduce use of petroleum in the United States. The long-term aim is to develop "leap frog" technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.

  8. 2008 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Ward, J.; Davis, S.

    2009-07-01

    In the past five years, vehicle technologies have advanced on a number of fronts: power-train systems have become more energy efficient, materials have become more lightweight, fuels are burned more cleanly, and new hybrid electric systems reduce the need for traditional petroleum-fueled propulsion. This report documents the trends in market drivers, new vehicles, and component suppliers. This report is supported by the Department of Energy's (DOE's) Vehicle Technologies Program, which develops energy-efficient and environmentally friendly highway transportation technologies that will reduce use of petroleum in the United States. The long-term aim is to develop 'leap frog' technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.

  9. Mobility chains analysis of technologies for passenger cars and light duty vehicles fueled with biofuels : application of the Greet model to project the role of biomass in America's energy future (RBAEF) project.

    SciTech Connect (OSTI)

    Wu, M.; Wu, Y.; Wang, M; Energy Systems

    2008-01-31

    The Role of Biomass in America's Energy Future (RBAEF) is a multi-institution, multiple-sponsor research project. The primary focus of the project is to analyze and assess the potential of transportation fuels derived from cellulosic biomass in the years 2015 to 2030. For this project, researchers at Dartmouth College and Princeton University designed and simulated an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity using the ASPEN Plus{trademark} model. With support from the U.S. Department of Energy (DOE), Argonne National Laboratory (ANL) conducted, for the RBAEF project, a mobility chains or well-to-wheels (WTW) analysis using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed at ANL. The mobility chains analysis was intended to estimate the energy consumption and emissions associated with the use of different production biofuels in light-duty vehicle technologies.

  10. Vehicle Technologies Office: 2011 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2011vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

  11. Vehicle Technologies Office: 2012 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2012vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

  12. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. vssarravt066karner2010p...

  13. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt066vsskarner2012...

  14. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt066vsskarner2011...

  15. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt072vssmackie2011...

  16. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt072vssmackie2012...

  17. Emission Impacts of Electric Vehicles

    E-Print Network [OSTI]

    Wang, Quanlu; DeLuchi, Mark A.; Sperling, Daniel

    1990-01-01

    greenhouse effect, and electric vehicles," Proceedingso/9thInternational Electric Vehicles Symposium, 1988. 14. R. M.of 9th International Electric Vehicles Sympo- sium, 1988.

  18. Electric Vehicle Smart Charging Infrastructure

    E-Print Network [OSTI]

    Chung, Ching-Yen

    2014-01-01

    for Multiplexed Electric Vehicle Charging”, US20130154561A1,Chynoweth, ”Intelligent Electric Vehicle Charging System”,of RFID Mesh Network for Electric Vehicle Smart Charging

  19. The Case for Electric Vehicles

    E-Print Network [OSTI]

    Sperling, Daniel

    2001-01-01

    land Press, 1995 TESTING ELECTRIC VEHICLE DEMAND IN " HYBRIDThe Case for Electric Vehicles DanieI Sperlmg Reprint UCTCor The Case for Electric Vehicles Darnel Sperling Institute

  20. Fact #871: May 4, 2015 Most Manufacturers Have Positive CAFE Credit Balances at the End of Model Year 2013

    Broader source: Energy.gov [DOE]

    At the end of the 2013 model year (MY), Toyota, which neither bought nor sold credits between 2010 and 2013, had by far the highest balance of Corporate Average Fuel Economy (CAFE) credits at more...

  1. Abstract--We present new approaches for building yearly and seasonal models for 5-minute ahead electricity load

    E-Print Network [OSTI]

    Koprinska, Irena

    to building a single yearly model. I. INTRODUCTION PREDICTING the future electricity demand, also called electricity load forecasting. They are evaluated using two full years of Australian electricity load data. We first analyze the cyclic nature of the electricity load and show that the autocorrelation function

  2. Assessment of Food Chain Pathway Parameters in Biosphere Models: Annual Progress Report for Fiscal Year 2004

    SciTech Connect (OSTI)

    Napier, Bruce A.; Krupka, Kenneth M.; Fellows, Robert J.; Cataldo, Dominic A.; Valenta, Michelle M.; Gilmore, Tyler J.

    2004-12-02

    This Annual Progress Report describes the work performed and summarizes some of the key observations to date on the U.S. Nuclear Regulatory Commission’s project Assessment of Food Chain Pathway Parameters in Biosphere Models, which was established to assess and evaluate a number of key parameters used in the food-chain models used in performance assessments of radioactive waste disposal facilities. Section 2 of this report describes activities undertaken to collect samples of soils from three regions of the United States, the Southeast, Northwest, and Southwest, and perform analyses to characterize their physical and chemical properties. Section 3 summarizes information gathered regarding agricultural practices and common and unusual crops grown in each of these three areas. Section 4 describes progress in studying radionuclide uptake in several representative crops from the three soil types in controlled laboratory conditions. Section 5 describes a range of international coordination activities undertaken by Project staff in order to support the underlying data needs of the Project. Section 6 provides a very brief summary of the status of the GENII Version 2 computer program, which is a “client” of the types of data being generated by the Project, and for which the Project will be providing training to the US NRC staff in the coming Fiscal Year. Several appendices provide additional supporting information.

  3. Advanced Test Reactor Core Modeling Update Project Annual Report for Fiscal Year 2010

    SciTech Connect (OSTI)

    Rahmat Aryaeinejad; Douglas S. Crawford; Mark D. DeHart; George W. Griffith; D. Scott Lucas; Joseph W. Nielsen; David W. Nigg; James R. Parry; Jorge Navarro

    2010-09-01

    Legacy computational reactor physics software tools and protocols currently used for support of Advanced Test Reactor (ATR) core fuel management and safety assurance and, to some extent, experiment management are obsolete, inconsistent with the state of modern nuclear engineering practice, and are becoming increasingly difficult to properly verify and validate (V&V). Furthermore, the legacy staff knowledge required for application of these tools and protocols from the 1960s and 1970s is rapidly being lost due to staff turnover and retirements. In 2009 the Idaho National Laboratory (INL) initiated a focused effort to address this situation through the introduction of modern high-fidelity computational software and protocols, with appropriate V&V, within the next 3-4 years via the ATR Core Modeling and Simulation and V&V Update (or “Core Modeling Update”) Project. This aggressive computational and experimental campaign will have a broad strategic impact on the operation of the ATR, both in terms of improved computational efficiency and accuracy for support of ongoing DOE programs as well as in terms of national and international recognition of the ATR National Scientific User Facility (NSUF).

  4. TAX AND FEE PAYMENTS BY MOTOR VEHICLE USERS FOR THE USE OF HIGHWAYS, FUELS, AND VEHICLES Report #17 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data

    E-Print Network [OSTI]

    Delucchi, Mark

    2005-01-01

    Petroleum and motor-vehicle industries paid substantially less corporate incomecorporate income taxes paid in the petroleum, motor-vehicle-INCOME - YEAR 1990 IRS returnsa ESICd Industry Crude petroleum,

  5. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01

    Experience with the German Hydrogen Fuel Project," HydrogenHydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September bycost than both. Solar-hydrogen fuel- cell vehicles would be

  6. Massachusetts Electric Vehicle Efforts

    E-Print Network [OSTI]

    California at Davis, University of

    ,500 for full battery electric vehicle (BEV) and $5,000 for plug- in hybrid electric vehicle (PHEV) · Financial 39 Tesla 39 BMW 26 Toyota 7 Honda 3 Cadillac 3 Mitsubishi 2 #12;Department of Public Utilities · DPU

  7. DOE Project on Heavy Vehicle Aerodynamic Drag

    SciTech Connect (OSTI)

    McCallen, R; Salari, K; Ortega, J; Castellucci, P; Pointer, D; Browand, F; Ross, J; Storms, B

    2007-01-04

    Class 8 tractor-trailers consume 11-12% of the total US petroleum use. At highway speeds, 65% of the energy expenditure for a Class 8 truck is in overcoming aerodynamic drag. The project objective is to improve fuel economy of Class 8 tractor-trailers by providing guidance on methods of reducing drag by at least 25%. A 25% reduction in drag would present a 12% improvement in fuel economy at highway speeds, equivalent to about 130 midsize tanker ships per year. Specific goals include: (1) Provide guidance to industry in the reduction of aerodynamic drag of heavy truck vehicles; (2) Develop innovative drag reducing concepts that are operationally and economically sound; and (3) Establish a database of experimental, computational, and conceptual design information, and demonstrate the potential of new drag-reduction devices. The studies described herein provide a demonstration of the applicability of the experience developed in the analysis of the standard configuration of the Generic Conventional Model. The modeling practices and procedures developed in prior efforts have been applied directly to the assessment of new configurations including a variety of geometric modifications and add-on devices. Application to the low-drag 'GTS' configuration of the GCM has confirmed that the error in predicted drag coefficients increases as the relative contribution of the base drag resulting from the vehicle wake to the total drag increases and it is recommended that more advanced turbulence modeling strategies be applied under those circumstances. Application to a commercially-developed boat tail device has confirmed that this restriction does not apply to geometries where the relative contribution of the base drag to the total drag is reduced by modifying the geometry in that region. Application to a modified GCM geometry with an open grille and radiator has confirmed that the underbody flow, while important for underhood cooling, has little impact on the drag coefficient of the vehicle. Furthermore, the evaluation of the impact of small changes in radiator or grille dimensions has revealed that the total drag is not particularly sensitive to those changes. This observation leads to two significant conclusions. First, a small increase in radiator size to accommodate heat rejection needs related to new emissions restrictions may be tolerated without significant increases in drag losses. Second, efforts to reduce drag on the tractor requires that the design of the entire tractor be treated in an integrated fashion. Simply reducing the size of the grille will not provide the desired result, but the additional contouring of the vehicle as a whole which may be enabled by the smaller radiator could have a more significant effect.

  8. Market penetration scenarios for fuel cell vehicles

    SciTech Connect (OSTI)

    Thomas, C.E.; James, B.D.; Lomax, F.D. Jr.

    1997-12-31

    Fuel cell vehicles may create the first mass market for hydrogen as an energy carrier. Directed Technologies, Inc., working with the US Department of Energy hydrogen systems analysis team, has developed a time-dependent computer market penetration model. This model estimates the number of fuel cell vehicles that would be purchased over time as a function of their cost and the cost of hydrogen relative to the costs of competing vehicles and fuels. The model then calculates the return on investment for fuel cell vehicle manufacturers and hydrogen fuel suppliers. The model also projects the benefit/cost ratio for government--the ratio of societal benefits such as reduced oil consumption, reduced urban air pollution and reduced greenhouse gas emissions to the government cost for assisting the development of hydrogen energy and fuel cell vehicle technologies. The purpose of this model is to assist industry and government in choosing the best investment strategies to achieve significant return on investment and to maximize benefit/cost ratios. The model can illustrate trends and highlight the sensitivity of market penetration to various parameters such as fuel cell efficiency, cost, weight, and hydrogen cost. It can also illustrate the potential benefits of successful R and D and early demonstration projects. Results will be shown comparing the market penetration and return on investment estimates for direct hydrogen fuel cell vehicles compared to fuel cell vehicles with onboard fuel processors including methanol steam reformers and gasoline partial oxidation systems. Other alternative fueled vehicles including natural gas hybrids, direct injection diesels and hydrogen-powered internal combustion hybrid vehicles will also be analyzed.

  9. Vehicle & Systems Simulation & Testing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV - EVSE Interoperability Advanced Charging Grid Integration Vehicle Systems Optimization Fast and Wireless Charging Grid Integration Load Reduction, HVAC, & Preconditioning...

  10. Consumer Vehicle Technology Data

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. Vehicle Technologies Office Merit Review 2015: A Systematic Multiscale Modeling and Experimental Approach to Understand Corrosion at Grain Boundaries in Magnesium Alloys

    Broader source: Energy.gov [DOE]

    Presentation given by Mississippi State University at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about a systematic...

  12. Comparative analysis of selected fuel cell vehicles

    SciTech Connect (OSTI)

    NONE

    1993-05-07

    Vehicles powered by fuel cells operate more efficiently, more quietly, and more cleanly than internal combustion engines (ICEs). Furthermore, methanol-fueled fuel cell vehicles (FCVs) can utilize major elements of the existing fueling infrastructure of present-day liquid-fueled ICE vehicles (ICEVs). DOE has maintained an active program to stimulate the development and demonstration o fuel cell technologies in conjunction with rechargeable batteries in road vehicles. The purpose of this study is to identify and assess the availability of data on FCVs, and to develop a vehicle subsystem structure that can be used to compare both FCVs and ICEV, from a number of perspectives--environmental impacts, energy utilization, materials usage, and life cycle costs. This report focuses on methanol-fueled FCVs fueled by gasoline, methanol, and diesel fuel that are likely to be demonstratable by the year 2000. The comparative analysis presented covers four vehicles--two passenger vehicles and two urban transit buses. The passenger vehicles include an ICEV using either gasoline or methanol and an FCV using methanol. The FCV uses a Proton Exchange Membrane (PEM) fuel cell, an on-board methanol reformer, mid-term batteries, and an AC motor. The transit bus ICEV was evaluated for both diesel and methanol fuels. The transit bus FCV runs on methanol and uses a Phosphoric Acid Fuel Cell (PAFC) fuel cell, near-term batteries, a DC motor, and an on-board methanol reformer. 75 refs.

  13. Washington State Electric Vehicle

    E-Print Network [OSTI]

    California at Davis, University of

    Washington State Electric Vehicle Implementation Bryan Bazard Maintenance and Alternate Fuel Technology Manager #12;Executive Order 14-04 Requires the procurement of electric vehicles where and equipment with electricity or biofuel to the "extent practicable" by June 2015 1. The vehicle is due

  14. Energy 101: Electric Vehicles

    ScienceCinema (OSTI)

    None

    2013-05-29

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

  15. Adaptive control of a generic hypersonic vehicle

    E-Print Network [OSTI]

    Wiese, Daniel Philip

    2013-01-01

    This thesis presents a an adaptive augmented, gain-scheduled baseline LQR-PI controller applied to the Road Runner six-degree-of-freedom generic hypersonic vehicle model. Uncertainty in control effectiveness, longitudinal ...

  16. Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles

    SciTech Connect (OSTI)

    Lammert, M. P.; Burton, J.; Sindler, P.; Duran, A.

    2014-10-01

    This research project compares laboratory-measured fuel economy of a medium-duty diesel powered hydraulic hybrid vehicle drivetrain to both a conventional diesel drivetrain and a conventional gasoline drivetrain in a typical commercial parcel delivery application. Vehicles in this study included a model year 2012 Freightliner P100H hybrid compared to a 2012 conventional gasoline P100 and a 2012 conventional diesel parcel delivery van of similar specifications. Drive cycle analysis of 484 days of hybrid parcel delivery van commercial operation from multiple vehicles was used to select three standard laboratory drive cycles as well as to create a custom representative cycle. These four cycles encompass and bracket the range of real world in-use data observed in Baltimore United Parcel Service operations. The NY Composite cycle, the City Suburban Heavy Vehicle Cycle cycle, and the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) cycle as well as a custom Baltimore parcel delivery cycle were tested at the National Renewable Energy Laboratory's Renewable Fuels and Lubricants Laboratory. Fuel consumption was measured and analyzed for all three vehicles. Vehicle laboratory results are compared on the basis of fuel economy. The hydraulic hybrid parcel delivery van demonstrated 19%-52% better fuel economy than the conventional diesel parcel delivery van and 30%-56% better fuel economy than the conventional gasoline parcel delivery van on cycles other than the highway-oriented HHDDT cycle.

  17. Development of Production-Intent Plug-In Hybrid Vehicle Using Advanced Lithium-Ion Battery Packs with Deployment to a Demonstration Fleet

    SciTech Connect (OSTI)

    No, author

    2013-09-29

    The primary goal of this project was to speed the development of one of the first commercially available, OEM-produced plug-in hybrid electric vehicles (PHEV). The performance of the PHEV was expected to double the fuel economy of the conventional hybrid version. This vehicle program incorporated a number of advanced technologies, including advanced lithium-ion battery packs and an E85-capable flex-fuel engine. The project developed, fully integrated, and validated plug-in specific systems and controls by using GM’s Global Vehicle Development Process (GVDP) for production vehicles. Engineering Development related activities included the build of mule vehicles and integration vehicles for Phases I & II of the project. Performance data for these vehicles was shared with the U.S. Department of Energy (DOE). The deployment of many of these vehicles was restricted to internal use at GM sites or restricted to assigned GM drivers. Phase III of the project captured the first half or Alpha phase of the Engineering tasks for the development of a new thermal management design for a second generation battery module. The project spanned five years. It included six on-site technical reviews with representatives from the DOE. One unique aspect of the GM/DOE collaborative project was the involvement of the DOE throughout the OEM vehicle development process. The DOE gained an understanding of how an OEM develops vehicle efficiency and FE performance, while balancing many other vehicle performance attributes to provide customers well balanced and fuel efficient vehicles that are exciting to drive. Many vehicle content and performance trade-offs were encountered throughout the vehicle development process to achieve product cost and performance targets for both the OEM and end customer. The project team completed two sets of PHEV development vehicles with fully integrated PHEV systems. Over 50 development vehicles were built and operated for over 180,000 development miles. The team also completed four GM engineering development Buy-Off rides/milestones. The project included numerous engineering vehicle and systems development trips including extreme hot, cold and altitude exposure. The final fuel economy performance demonstrated met the objectives of the PHEV collaborative GM/DOE project. Charge depletion fuel economy of twice that of the non-PHEV model was demonstrated. The project team also designed, developed and tested a high voltage battery module concept that appears to be feasible from a manufacturability, cost and performance standpoint. The project provided important product development and knowledge as well as technological learnings and advancements that include multiple U.S. patent applications.

  18. Fact #600: December 7, 2009 China Produced More Vehicles than...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    produced in China and the U.S. for various years starting in 1980. In the year 2008 Chinese production surpassed the U.S by 0.8 million vehicles. For more detailed information,...

  19. William and Mary Athletics State Vehicle / Rental Vehicle / Personal Vehicle Policies

    E-Print Network [OSTI]

    Swaddle, John

    William and Mary Athletics State Vehicle / Rental Vehicle / Personal Vehicle Policies Last Update: 2/14/14 W&M's vehicle use policy requires that a driver authorization form be completed and approved before driving any vehicle (including a personal vehicle) for university business or a university

  20. Analytical models to evaluate system performance measures for vehicle based material-handling systems under various dispatching policies 

    E-Print Network [OSTI]

    Lee, Moonsu

    2005-08-29

    -route material-handling systems from two different perspectives: the workcenters?? point of view and the transporters?? point of view. The state-dependent nature of the transportation time is considered here for more accurate analytical approximation models...

  1. Hydrogen-Enhanced Natural Gas Vehicle Program

    SciTech Connect (OSTI)

    Hyde, Dan; Collier, Kirk

    2009-01-22

    The project objective is to demonstrate the viability of HCNG fuel (30 to 50% hydrogen by volume and the remainder natural gas) to reduce emissions from light-duty on-road vehicles with no loss in performance or efficiency. The City of Las Vegas has an interest in alternative fuels and already has an existing hydrogen refueling station. Collier Technologies Inc (CT) supplied the latest design retrofit kits capable of converting nine compressed natural gas (CNG) fueled, light-duty vehicles powered by the Ford 5.4L Triton engine. CT installed the kits on the first two vehicles in Las Vegas, trained personnel at the City of Las Vegas (the City) to perform the additional seven retrofits, and developed materials for allowing other entities to perform these retrofits as well. These vehicles were used in normal service by the City while driver impressions, reliability, fuel efficiency and emissions were documented for a minimum of one year after conversion. This project has shown the efficacy of operating vehicles originally designed to operate on compressed natural gas with HCNG fuel incorporating large quantities of exhaust gas recirculation (EGR). There were no safety issues experienced with these vehicles. The only maintenance issue in the project was some rough idling due to problems with the EGR valve and piping parts. Once the rough idling was corrected no further maintenance issues with these vehicles were experienced. Fuel economy data showed no significant changes after conversion even with the added power provided by the superchargers that were part of the conversions. Driver feedback for the conversions was very favorable. The additional power provided by the HCNG vehicles was greatly appreciated, especially in traffic. The drivability of the HCNG vehicles was considered to be superior by the drivers. Most of the converted vehicles showed zero oxides of nitrogen throughout the life of the project using the State of Nevada emissions station.

  2. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01

    etc. , PEM Fuel Cell System Optimization, Proceedings of thesystem, hybrid fuel cell vehicle, optimization, dynamic,a scalable fuel cell system optimization model [14

  3. Vehicle Technologies Office Merit Review 2014: CLEERS: Aftertreatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Analysis Vehicle Technologies Office Merit Review 2014: Enhanced High and Low Temperature Performance of NOx Reduction Materials CLEERS Aftertreatment Modeling and Analysis...

  4. Vehicle Technologies Office Merit Review 2015: Assessing the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessing the Outlook of US Oil Dependence Using Oil Security Metrics Model (OSMM) Vehicle Technologies Office Merit Review 2015: Assessing the Outlook of US Oil Dependence Using...

  5. Vehicle Technologies Office Merit Review 2014: Advanced Heavy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Heavy-Duty Engine Systems and Emissions Control Modeling and Analysis Vehicle Technologies Office Merit Review 2014: Advanced Heavy-Duty Engine Systems and Emissions...

  6. Vehicle Technologies Office: Past Funding Opportunities and Selections...

    Office of Environmental Management (EM)

    Wireless Charging for Electric Vehicles - DE-FOA-0000667 Predictive Modeling for Automotive Lightweighting Applications and Advanced Alloy Development for Automotive and...

  7. Vehicle Technologies Office Merit Review 2014: Reassessing the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Vehicle Technologies Office Merit Review 2015: Assessing the Outlook of US Oil Dependence Using Oil Security Metrics Model (OSMM) Measuring the Costs...

  8. Environmental Assessment of Plug-In Hybrid Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    greenhouse gas emissions from the nationwide vehicle fleet. Model the impact of a high level of PHEV adoption on nationwide air quality. Develop a consistent analysis methodology...

  9. Computer Aided Design Tool for Electric, Hybrid Electric and Plug-in Hybrid Electric Vehicles 

    E-Print Network [OSTI]

    Eskandari Halvaii, Ali

    2012-07-16

    -electric vehicle would start from the vehicle performance criteria and continue by applying them to the physical models of di?erent components of the vehicle. The final result would be strict and precise characteristics of all components in the vehicle...

  10. Capital Requirements Estimating Model (CREMOD) for electric utilities. Volume I. Methodology description, model, description, and guide to model applications. [For each year up to 1990

    SciTech Connect (OSTI)

    Collins, D E; Gammon, J; Shaw, M L

    1980-01-01

    The Capital Requirements Estimating Model for the Electric Utilities (CREMOD) is a system of programs and data files used to estimate the capital requirements of the electric utility industry for each year between the current one and 1990. CREMOD disaggregates new electric plant capacity levels from the Mid-term Energy Forecasting System (MEFS) Integrating Model solution over time using actual projected commissioning dates. It computes the effect on aggregate capital requirements of dispersal of new plant and capital expenditures over relatively long construction lead times on aggregate capital requirements for each year. Finally, it incorporates the effects of real escalation in the electric utility construction industry on these requirements and computes the necessary transmission and distribution expenditures. This model was used in estimating the capital requirements of the electric utility sector. These results were used in compilation of the aggregate capital requirements for the financing of energy development as published in the 1978 Annual Report to Congress. This volume, Vol. I, explains CREMOD's methodology, functions, and applications.

  11. Household Vehicles Energy Consumption 1991

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYear JanThousandThousand Cubic. Vehicle Miles

  12. Household Vehicles Energy Consumption 1991

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYear JanThousandThousand Cubic. Vehicle Miles

  13. Household Vehicles Energy Consumption 1991

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYear JanThousandThousand Cubic. Vehicle Miles

  14. Household Vehicles Energy Consumption 1991

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYear JanThousandThousand Cubic. Vehicle

  15. Household Vehicles Energy Consumption 1991

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYear JanThousandThousand Cubic. VehicleDetailed

  16. Household Vehicles Energy Consumption 1994

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYear JanThousandThousand Cubic. VehicleDetailedW as

  17. Mathematical modelling of the use of macrophages as vehicles for drug-delivery to hypoxic tumour sites

    E-Print Network [OSTI]

    angiogenesis. In this paper we outline a modelling approach to characterise macrophage infiltration into early avascular solid tumours, and extensions to study the interaction of these cells with macrophages already of macrophage infiltration and tumour size. Although increased infiltration should be beneficical from the point

  18. Technology evaluation for automobile transportation : electric vehicle energy requirements under real-world use

    E-Print Network [OSTI]

    Needell, Zachary Adam

    2015-01-01

    In recent years, an increasing number of electric vehicles (EVs) have become available for purchase to nieet personally operated vehicle (POV) travel needs for a certain subset of drivers. Many in the climate change ...

  19. Fact #862 March 2, 2015 Light Vehicle Production in Mexico More...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 March 2, 2015 Light Vehicle Production in Mexico More than Doubled in Last Five Years Fact 862 March 2, 2015 Light Vehicle Production in Mexico More than Doubled in Last Five...

  20. Fact #658: January 17, 2011 Increasing Use of Vehicle Technologies to Meet Fuel Economy Requirements

    Broader source: Energy.gov [DOE]

    Vehicle manufacturers are turning to vehicle technologies to improve efficiency and meet strict fuel economy requirements. Over the last 10 years, the use of engine technologies like multi-valves...

  1. Fact #626: June 7, 2010 Fuel Economy for Light and Heavy Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: June 7, 2010 Fuel Economy for Light and Heavy Vehicles Fact 626: June 7, 2010 Fuel Economy for Light and Heavy Vehicles In the next few years it is expected that fuel economy...

  2. AVTA: Vehicle to EVSE Smart Grid Communications Report

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report describes results from research and testing on vehicle to EVSE smart grid communications interfaces, as informed by the AVTA's testing on plug-in electric vehicle charging equipment. This research was conducted by Idaho National Laboratory.

  3. AVTA: 2009 Vantage Neighborhood Electric Vehicle Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe testing results of two 2009 Vantage neighborhood electric vehicles (a pickup truck style and a van style). Neighborhood electric vehicles reach speeds of no more than 35 miles per hour and are only allowed on roads with speed limits of up to 35 miles per hour. This research was conducted by Idaho National Laboratory.

  4. AVTA: 2013 BRP Neighborhood Electric Vehicle Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe testing results of the 2013 BRP neighborhood electric vehicle. Neighborhood electric vehicles reach speeds of no more than 35 miles per hour and are only allowed on roads with speed limits of up to 35 miles per hour. This research was conducted by Idaho National Laboratory.

  5. 10 Kammen and others/p. 1 Cost-Effectiveness of Greenhouse Gas Emission Reductions from Plug-in Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Kammen, Daniel M.

    -in Hybrid Electric Vehicles Daniel M. Kammen1 , Samuel M. Arons, Derek M. Lemoine and Holmes Hummel Cars per year.2 Plug-in hybrid electric vehicles could alter these trends. On a vehicle technology spectrum that stretches from fossil fuel­powered conventional vehicles (CVs) through hybrid electric vehicles 1

  6. Project Milestone. Analysis of Range Extension Techniques for Battery Electric Vehicles

    SciTech Connect (OSTI)

    Neubauer, Jeremy; Wood, Eric; Pesaran, Ahmad

    2013-07-01

    This report documents completion of the July 2013 milestone as part of NREL’s Vehicle Technologies Annual Operating Plan with the U.S. Department of Energy. The objective was to perform analysis on range extension techniques for battery electric vehicles (BEVs). This work represents a significant advancement over previous thru-life BEV analyses using NREL’s Battery Ownership Model, FastSim,* and DRIVE.* Herein, the ability of different charging infrastructure to increase achievable travel of BEVs in response to real-world, year-long travel histories is assessed. Effects of battery and cabin thermal response to local climate, battery degradation, and vehicle auxiliary loads are captured. The results reveal the conditions under which different public infrastructure options are most effective, and encourage continued study of fast charging and electric roadway scenarios.

  7. Advanced Technology Vehicles Manufacturing (ATVM) Loan Program...

    Office of Environmental Management (EM)

    Advanced Technology Vehicles Manufacturing (ATVM) Loan Program Advanced Technology Vehicles Manufacturing (ATVM) Loan Program Advanced Technology Vehicles Manufacturing (ATVM) Loan...

  8. Vehicle Data for Alternative Fuel Vehicles (AFVs) and Hybrid Fuel Vehicles (HEVs) from the Alternative Fuels and Advanced Vehicles Data Center (AFCD)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The AFDC provides search capabilities for many different models of both light-duty and heavy-duty vehicles. Engine and transmission type, fuel and class, fuel economy and emission certification are some of the facts available. The search will also help users locate dealers in their areas and do cost analyses. Information on alternative fuel vehicles and on advanced technology vehicles, along with calculators, resale and conversion information, links to incentives and programs such as Clean Cities, and dozens of fact sheets and publications make this section of the AFDC a valuable resource for car buyers.

  9. An answer to the NGV conundrum. [Natural Gas Vehicles

    SciTech Connect (OSTI)

    Katz, M.G.

    1994-09-01

    Natural gas utilities and others considering whether to build fueling stations for natural gas vehicles (NGVs) have been troubled for years by the question, ''Even if one builds them, will vehicle operators convert to natural gas '' Setting up an NGV fueling station, after all, can cost $250,000 to $500,000. Some local distribution companies (LDCs) are discovering success by working to create coalitions of public and private organizations interested in NGVs. Through such private/public coalitions, it is possible to get action simultaneously on both fueling stations and vehicle conversions to natural gas. That by itself can end the contradictory situation that has stymied NGV development for years: vehicle owners delaying vehicle conversion until there are more stations, and fueling companies delaying station construction until there are more NGVs. Coalition members include virtually anyone with a fleet of vehicles. The paper discusses the purposes of such coalitions and what they are accomplishing.

  10. Vehicle underbody fairing

    DOE Patents [OSTI]

    Ortega, Jason M. (Pacifica, CA); Salari, Kambiz (Livermore, CA); McCallen, Rose (Livermore, CA)

    2010-11-09

    A vehicle underbody fairing apparatus for reducing aerodynamic drag caused by a vehicle wheel assembly, by reducing the size of a recirculation zone formed under the vehicle body immediately downstream of the vehicle wheel assembly. The fairing body has a tapered aerodynamic surface that extends from a front end to a rear end of the fairing body with a substantially U-shaped cross-section that tapers in both height and width. Fasteners or other mounting devices secure the fairing body to an underside surface of the vehicle body, so that the front end is immediately downstream of the vehicle wheel assembly and a bottom section of the tapered aerodynamic surface rises towards the underside surface as it extends in a downstream direction.

  11. Advanced Technology Vehicle Testing

    SciTech Connect (OSTI)

    James Francfort

    2004-06-01

    The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

  12. Game Theoretic Modelling of a Human Driver’s Steering Interaction with Vehicle Active Steering Collision Avoidance System

    E-Print Network [OSTI]

    Na, Xiaoxiang; Cole, David J.

    2014-11-10

    deeper insights into physiological and cognitive behaviours of human drivers so that optimization of present or future driver-automation interfaces, e.g. continuous sharing control [8] becomes a possibility. However, little attention has yet been paid... Model Predictive Control (MPC) and the Linear Quadratic (LQ) dynamic optimization approaches. A. Distributed MPC The idea of distributed MPC was presented in [26] as a practical approach to industrial process control of large-scale systems...

  13. Vehicle Technologies Office: AVTA - Evaluating Military Bases...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Military Bases and Fleet Readiness for Electric Vehicles Vehicle Technologies Office: AVTA - Evaluating Military Bases and Fleet Readiness for Electric Vehicles The Vehicle...

  14. Alternative Fuel Vehicle Forecasts Final report

    E-Print Network [OSTI]

    ....................................................................................................................................36 Commercial CNG and LNG Vehicles

  15. Electric-Drive Vehicle Basics (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-04-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  16. Vehicle Emissions Review- 2011

    Broader source: Energy.gov [DOE]

    Reviews regulatory requirements and general technology approaches for heavy- and light-duty vehicle emissions control - filter technology, new catalysts, NOx control, diesel oxidation catalysts, gasoline particulate filters

  17. Powertrain & Vehicle Research Centre

    E-Print Network [OSTI]

    Burton, Geoffrey R.

    consumption improvement during European drivecycle Fuel consumption improvement during Motorway cruises for electrical heating to emulate thermal management of powertrain ·Installed in vehicle and drivecycle tested

  18. Flex Fuel Vehicle Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flex Fuel Vehicle Systems * Bosch FFV Project Structure and Partners * Purpose of Work - Project Highlights * Barriers - Existing Flex Fuel Systems and Problems * Approach - Bosch...

  19. Energy 101: Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs.

  20. Vehicle Technologies Office Merit Review 2014: First Principles Modeling of SEI Formation on Bare and Surface/Additive Modified Silicon Anodes

    Broader source: Energy.gov [DOE]

    Presentation given by Texas A&M University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about first principles...