Powered by Deep Web Technologies
Note: This page contains sample records for the topic "vehicles cars light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Vehicle Technologies Office: Fact #50: December 22, 1997 Light...  

NLE Websites -- All DOE Office Websites (Extended Search)

0: December 22, 1997 Light Trucks Enjoy a Substantial Regulatory Advantage Over Cars: A Comparison of Regulations for Cars and Light Trucks to someone by E-mail Share Vehicle...

2

Transient Vehicle Aerodynamics In Four-car Platoons  

E-Print Network (OSTI)

Car . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Four-carCars . . . . . . . . . . . . . . . . . . . . . . . . . .

Chen, A. L.; Savas, Omer; Hedrick, Karl

1997-01-01T23:59:59.000Z

3

Vehicle Technologies Office: Fact #695: October 3, 2011 New Car...  

NLE Websites -- All DOE Office Websites (Extended Search)

5: October 3, 2011 New Car Dealerships to someone by E-mail Share Vehicle Technologies Office: Fact 695: October 3, 2011 New Car Dealerships on Facebook Tweet about Vehicle...

4

Gas Mileage of 1986 Vehicles by Panther Car Company Limited  

NLE Websites -- All DOE Office Websites (Extended Search)

6 Panther Car Company Limited Vehicles EPA MPG MODEL City Comb Hwy 1986 Panther Car Company Limited Kallista 4 cyl, 2.3 L, Automatic 3-spd, Regular Gasoline Compare 1986 Panther...

5

Gas Mileage of 1988 Vehicles by Panther Car Company Limited  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Panther Car Company Limited Vehicles EPA MPG MODEL City Comb Hwy 1988 Panther Car Company Limited Kallista 4 cyl, 2.3 L, Automatic 3-spd, Regular Gasoline Compare 1988 Panther...

6

Updated October 2009 Vehicle Rentals Enterprise Rent-a-Car  

E-Print Network (OSTI)

employees, including subsidiaries for business and personal use. 4. An increased number of fuel efficient and alternate fuel cars are available in the Enterprise car fleet. 5. Vehicles rented for university business, Shaunavon, and Swift Current, an $8.00 per day surcharge will apply for all vehicles. Renting in Canada

Peak, Derek

7

Light Duty Vehicle Pathways  

NLE Websites -- All DOE Office Websites (Extended Search)

in 2030 0 5 10 15 20 25 30 Million BarrelsDay IMPORTS DOMESTIC OIL SUPPLY OIL DEMAND ELECTRICITY RES. & COM. INDUSTRY MISC. TRANSPORT AIR TRUCKS LIGHT DUTY VEHICLES ETHANOL...

8

Advanced Vehicle Testing Activity: Light-Duty Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Light-Duty Light-Duty Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Light-Duty Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Light-Duty Vehicles on Twitter Bookmark Advanced Vehicle Testing Activity: Light-Duty Vehicles on Google Bookmark Advanced Vehicle Testing Activity: Light-Duty Vehicles on Delicious Rank Advanced Vehicle Testing Activity: Light-Duty Vehicles on Digg Find More places to share Advanced Vehicle Testing Activity: Light-Duty Vehicles on AddThis.com... Home Overview Light-Duty Vehicles Alternative Fuel Vehicles Plug-in Hybrid Electric Vehicles Hybrid Electric Vehicles Micro Hybrid Vehicles ARRA Vehicle and Infrastructure Projects EVSE Testing Energy Storage Testing Hydrogen Internal Combustion Engine Vehicles Other ICE

9

Fuel Economy of the Light-Duty Vehicle Fleet (released in AEO2005)  

Reports and Publications (EIA)

The U.S. fleet of light-duty vehicles consists of cars and light trucks, including minivans, sport utility vehicles (SUVs) and trucks with gross vehicle weight less than 8,500 pounds. The fuel economy of light-duty vehicles is regulated by the CAFE standards set by NHTSA. Currently, the CAFE standard is 27.5 miles per gallon (mpg) for cars and 20.7 mpg for light trucks. The most recent increase in the CAFE standard for cars was in 1990, and the most recent increase in the CAFE standard for light trucks was in 1996.

Information Center

2005-02-01T23:59:59.000Z

10

EERE's FreedomCAR and Vehicle Technologies PowerPoint Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electronics and Electric Machines Susan Rogers Office of FreedomCAR & Vehicle Technologies June 13, 2007 "Plug-In Hybrid Electric Vehicle Power Electronics and Electric Machines...

11

EcoCAR Vehicles Get Put to the Test at General Motors' Proving Ground |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EcoCAR Vehicles Get Put to the Test at General Motors' Proving EcoCAR Vehicles Get Put to the Test at General Motors' Proving Ground EcoCAR Vehicles Get Put to the Test at General Motors' Proving Ground June 13, 2011 - 5:57pm Addthis Virginia Tech puts their EcoCar vehicle through the paces at General Motors' Milford Proving Grounds. | Credit Department of Energy Advanced Vehicle Technology Competitions Virginia Tech puts their EcoCar vehicle through the paces at General Motors' Milford Proving Grounds. | Credit Department of Energy Advanced Vehicle Technology Competitions Connie Bezanson Education & Outreach Manager, Vehicle Technologies Program What does this project do? EcoCar challenges students to reduce the environmental impact of vehicles by minimizing the vehicle's fuel consumption and emissions -- while retaining the vehicle's performance, safety and consumer appeal.

12

Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

9: August 6, 9: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts to someone by E-mail Share Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Facebook Tweet about Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Twitter Bookmark Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Google Bookmark Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Delicious

13

Vehicle Technologies Office: Fact #567: April 20, 2009 Cars are Growing  

NLE Websites -- All DOE Office Websites (Extended Search)

7: April 20, 7: April 20, 2009 Cars are Growing Older to someone by E-mail Share Vehicle Technologies Office: Fact #567: April 20, 2009 Cars are Growing Older on Facebook Tweet about Vehicle Technologies Office: Fact #567: April 20, 2009 Cars are Growing Older on Twitter Bookmark Vehicle Technologies Office: Fact #567: April 20, 2009 Cars are Growing Older on Google Bookmark Vehicle Technologies Office: Fact #567: April 20, 2009 Cars are Growing Older on Delicious Rank Vehicle Technologies Office: Fact #567: April 20, 2009 Cars are Growing Older on Digg Find More places to share Vehicle Technologies Office: Fact #567: April 20, 2009 Cars are Growing Older on AddThis.com... Fact #567: April 20, 2009 Cars are Growing Older The median age of cars continues to grow in 2008 while the median age of

14

CityCarControl : an electric vehicle drive-by-wire solution for distributed steering, braking and throttle control  

E-Print Network (OSTI)

In this paper, we propose CityCarControl, a system to manage the steering, braking, and throttle of a new class of intra-city electric vehicles. These vehicles have a focus on extreme light-weight and a small parking ...

Brown, Thomas B., M. Eng. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

15

Top 10 tech cars [hybrid electric vehicles  

Science Conference Proceedings (OSTI)

A number of new hybrid electric vehicle owners have expressed their disappointment with their purchase because of poor mileage. Official ratings for fuel use, based on the outdated driving patterns of US government test, turned out to be a poor predictor ...

J. Voelcker

2005-03-01T23:59:59.000Z

16

Electric car: is it still the vehicle of the future  

DOE Green Energy (OSTI)

An analysis of electric and internal combustion engine (ICE) cars of equivalent performance shows that, even with advanced batteries, the electic vehicle would be much more costly to run (23 cents/mile vs 16 cents/mile) than the ICE car. The electric vehicle, of course, would not use gasoline, thus reducing the nation's dependence on imported oil; however, the cost of oil saved in this way would be about $190/bbl, and the same result could be achieved at about one-quarter the cost by manufacturing synfuels from domestic coal or oil shale. A similar analysis of some proposed hybrid electric vehicles indicates that they are also more costly to operate than an equivalent conventional vehicle, although by a smaller margin (25 cents/mile vs 21 cents/mile). The cost of oil saved by the use of hybrid vehicles is also lower ($95/bbl), although it is still much more than the projected cost of synthetic fuels. The key to improving the economics of the electric vehicle is to increase battery life or lower battery costs.

Graves, R.L.; West, C.D.; Fox, E.C.

1981-08-01T23:59:59.000Z

17

Electric car: is it still the vehicle of the future  

DOE Green Energy (OSTI)

An analysis of electric and internal combustion engine (ICE) cars of equivalent performance shows that, even with advanced batteries, the electric vehicle would be much more costly to run (23 cents/mile vs 16 cents/mile) than the ICE car. The electric vehicle, of course, would not use gasoline, thus reducing the nation's dependence on imported oil; however, the cost of oil saved in this way would be about $190/bbl, and the same result could be achieved at about one-quarter the cost by manufacturing synfuels from domestic coal or oil shale. A similar analysis of some proposed hybrid electric vehicles indicates that they are also more costly to operate than an equivalent conventional vehicle, although by a smaller margin (25 cents/mile vs 21 cents/mile). The cost of oil saved by the use of hybrid vehicles is also lower ($95/bbl), although it is still much more than the projected cost of synthetic fuels. The key to improving the economics of the electric vehicle is to increase battery life or lower battery costs.

Graves, R.L.; West, C.D.; Fox, E.C.

1981-08-01T23:59:59.000Z

18

Vehicle Technologies Office: Fact #726: May 7, 2012 SUVs: Are They Cars or  

NLE Websites -- All DOE Office Websites (Extended Search)

6: May 7, 2012 6: May 7, 2012 SUVs: Are They Cars or Trucks? to someone by E-mail Share Vehicle Technologies Office: Fact #726: May 7, 2012 SUVs: Are They Cars or Trucks? on Facebook Tweet about Vehicle Technologies Office: Fact #726: May 7, 2012 SUVs: Are They Cars or Trucks? on Twitter Bookmark Vehicle Technologies Office: Fact #726: May 7, 2012 SUVs: Are They Cars or Trucks? on Google Bookmark Vehicle Technologies Office: Fact #726: May 7, 2012 SUVs: Are They Cars or Trucks? on Delicious Rank Vehicle Technologies Office: Fact #726: May 7, 2012 SUVs: Are They Cars or Trucks? on Digg Find More places to share Vehicle Technologies Office: Fact #726: May 7, 2012 SUVs: Are They Cars or Trucks? on AddThis.com... Fact #726: May 7, 2012 SUVs: Are They Cars or Trucks? The Corporate Average Fuel Economy (CAFE) Standards set for model years

19

EcoCAR 2: Racing Towards Vehicle Efficiency | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EcoCAR 2: Racing Towards Vehicle Efficiency EcoCAR 2: Racing Towards Vehicle Efficiency EcoCAR 2: Racing Towards Vehicle Efficiency May 23, 2012 - 1:55pm Addthis Teams of university students are exploring the hardware of plug-in hybrid electric vehicles this week at the EcoCAR 2 finals in Los Angeles, CA. | Energy Department photo, credit Myles Regan. Teams of university students are exploring the hardware of plug-in hybrid electric vehicles this week at the EcoCAR 2 finals in Los Angeles, CA. | Energy Department photo, credit Myles Regan. Connie Bezanson Education & Outreach Manager, Vehicle Technologies Program What are the key facts? First year finals of the EcoCAR2 competition conclude today in Los Angeles, CA. For the second and third years of the competition, teams integrate their systems into a "mule" vehicle and refine their vehicles to meet

20

The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis -- A Reflexively Designed Survey of New-Car-Buying Multi-Vehicle California Households  

E-Print Network (OSTI)

Gromer, C Newage of the electric car. Popular Mechanics.VEHICLES strongly favor electric cars, but on the other,electric vehicles, if an electric car wasavailable to buy

Turrentine, Thomas; Kurani, Kenneth S.

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicles cars light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis--A Reflively Designed Survey of New-car-buying, Multi-vehicle California Households  

E-Print Network (OSTI)

Gromer, C. New age of the electric car. Popular Mechanics.VEHICLES strongly favor electric cars, but on the other,electric vehicles, if an electric car was available to buy

Turrentine, Thomas; Kurani, Kenneth

1995-01-01T23:59:59.000Z

22

Procedures for Passenger Cars, Light-Duty Trucks and Medium-Duty  

E-Print Network (OSTI)

2001 and subsequent model-year passenger cars, light-duty trucks, and medium-duty trucks for which non-methane organic gas (NMOG) exhaust emission reduction credit is requested as a result of the use of a DOR technology on a motor vehicle radiator, air conditioning assembly, or other appropriate substrate. REFERENCES:

unknown authors

1999-01-01T23:59:59.000Z

23

Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

5: January 11, 5: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 to someone by E-mail Share Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Facebook Tweet about Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Twitter Bookmark Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Google Bookmark Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Delicious Rank Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Digg Find More places to share Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on AddThis.com...

24

Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

39: October 6, 39: October 6, 2008 Light Vehicle Production by State to someone by E-mail Share Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Facebook Tweet about Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Twitter Bookmark Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Google Bookmark Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Delicious Rank Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Digg Find More places to share Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on AddThis.com... Fact #539: October 6, 2008

25

Vehicle Technologies Office: Fact #475: June 25, 2007 Light Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

5: June 25, 2007 Light Vehicle Weight on the Rise to someone by E-mail Share Vehicle Technologies Office: Fact 475: June 25, 2007 Light Vehicle Weight on the Rise on Facebook...

26

Vehicle Technologies Office: Fact #653: December 13, 2010 Import Cars and  

NLE Websites -- All DOE Office Websites (Extended Search)

3: December 13, 3: December 13, 2010 Import Cars and Trucks Gaining Ground to someone by E-mail Share Vehicle Technologies Office: Fact #653: December 13, 2010 Import Cars and Trucks Gaining Ground on Facebook Tweet about Vehicle Technologies Office: Fact #653: December 13, 2010 Import Cars and Trucks Gaining Ground on Twitter Bookmark Vehicle Technologies Office: Fact #653: December 13, 2010 Import Cars and Trucks Gaining Ground on Google Bookmark Vehicle Technologies Office: Fact #653: December 13, 2010 Import Cars and Trucks Gaining Ground on Delicious Rank Vehicle Technologies Office: Fact #653: December 13, 2010 Import Cars and Trucks Gaining Ground on Digg Find More places to share Vehicle Technologies Office: Fact #653: December 13, 2010 Import Cars and Trucks Gaining Ground on AddThis.com...

27

Gas Mileage of 1984 Vehicles by Bill Dovell Motor Car Company  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Bill Dovell Motor Car Company Vehicles EPA MPG MODEL City Comb Hwy 1984 Bill Dovell Motor Car Company Dovell 230CE 4 cyl, 2.3 L, Automatic 4-spd, Regular Gasoline Compare 1984...

28

Gas Mileage of 1985 Vehicles by Bill Dovell Motor Car Company  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Bill Dovell Motor Car Company Vehicles EPA MPG MODEL City Comb Hwy 1985 Bill Dovell Motor Car Company Dovell 230CE 4 cyl, 2.3 L, Automatic 4-spd, Regular Gasoline Compare 1985...

29

Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

6: December 2, 6: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 to someone by E-mail Share Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Facebook Tweet about Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Twitter Bookmark Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Google Bookmark Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Delicious Rank Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Digg Find More places to share Vehicle Technologies Office: Fact #806:

30

DOE Hydrogen Analysis Repository: Biofuels in Light-Duty Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Biofuels in Light-Duty Vehicles Biofuels in Light-Duty Vehicles Project Summary Full Title: Mobility Chains Analysis of Technologies for Passenger Cars and Light-Duty Vehicles Fueled with Biofuels: Application of the GREET Model to the Role of Biomass in America's Energy Future (RBAEF) Project Project ID: 82 Principal Investigator: Michael Wang Brief Description: The mobility chains analysis estimated the energy consumption and emissions associated with the use of various biofuels in light-duty vehicles. Keywords: Well-to-wheels (WTW); ethanol; biofuels; Fischer Tropsch diesel; hybrid electric vehicles (HEV) Purpose The project was a multi-organization, multi-sponsor project to examine the potential of biofuels in the U.S. Argonne was responsible for the well-to-wheels analysis of biofuel production and use.

31

California's Zero-Emission Vehicle Mandate: Linking Clean-Fuel Cars, Carsharing and Station Car Strategies  

E-Print Network (OSTI)

of first-generation electric cars. Although shared use isfor instance in the electric station car programs of thewas a series of electric station car programs launched in

Shaheen, Susan; Sperling, Dan; Wright, John

2004-01-01T23:59:59.000Z

32

California's Zero Emission Vehicle Mandate - Linking Clean Fuel Cars, Carsharing, and Station Car Strategies  

E-Print Network (OSTI)

of first- generation electric cars. While shared use is thefor instance in the electric station car programs of thewas a series of electric station car programs launched in

Shaheen, Susan; Wright, John; Sperling, Daniel

2001-01-01T23:59:59.000Z

33

Electric car Gasoline car  

E-Print Network (OSTI)

ENAC/ Electric car (Renault) Gasoline car (competitors) Gasoline car (Renault) Market shares of an electric vehicle? Electric car (Renault) Gasoline car (competitors) Gasoline car (Renault) Market shares preferences. · Identification of population segments with a strong interest for electric cars. · Forecasting

34

CarDialer: multi-modal in-vehicle cellphone control application  

Science Conference Proceedings (OSTI)

This demo presents CarDialer - an in-car cellphone control application. Its multi-modal user interface blends state-of-the-art speech recognition technology (including text-to-speech synthesis) with the existing well proven elements of a vehicle information ... Keywords: automated speech recognition, multi-modal, name dialer, vehicle information system

Vladimír Bergl; Martin ?mejrek; Martin Fanta; Martin Labský; Ladislav Seredi; Jan Šedivý; Luboš Ureš

2006-11-01T23:59:59.000Z

35

California's Zero Emission Vehicle Mandate - Linking Clean Fuel Cars, Carsharing, and Station Car Strategies  

E-Print Network (OSTI)

of the San Francisco Bay Area Station-Car Demonstration. InCarsharing, Station Cars, and Combined Approaches. Inpp. 84-94. Muheim, P. and Partner. Car Sharing Studies: An

Shaheen, Susan; Wright, John; Sperling, Daniel

2001-01-01T23:59:59.000Z

36

California's Zero-Emission Vehicle Mandate: Linking Clean-Fuel Cars, Carsharing and Station Car Strategies  

E-Print Network (OSTI)

the Saint-Quentin Station Car Experiment. In TransportationFrancisco Bay Area Station-Car Demonstration. In Transporta-Untersuchung der Eignung von Car-Sharing im Hinblick auf die

Shaheen, Susan; Sperling, Dan; Wright, John

2004-01-01T23:59:59.000Z

37

Vehicle Technologies Office: Fact #751: October 29, 2012 Plug-in Car Sales  

NLE Websites -- All DOE Office Websites (Extended Search)

1: October 29, 1: October 29, 2012 Plug-in Car Sales Higher in the U.S. Compared to Western Europe and China to someone by E-mail Share Vehicle Technologies Office: Fact #751: October 29, 2012 Plug-in Car Sales Higher in the U.S. Compared to Western Europe and China on Facebook Tweet about Vehicle Technologies Office: Fact #751: October 29, 2012 Plug-in Car Sales Higher in the U.S. Compared to Western Europe and China on Twitter Bookmark Vehicle Technologies Office: Fact #751: October 29, 2012 Plug-in Car Sales Higher in the U.S. Compared to Western Europe and China on Google Bookmark Vehicle Technologies Office: Fact #751: October 29, 2012 Plug-in Car Sales Higher in the U.S. Compared to Western Europe and China on Delicious Rank Vehicle Technologies Office: Fact #751: October 29, 2012

38

Vehicle Technologies Office: Fact #568: April 27, 2009 For Modern Cars,  

NLE Websites -- All DOE Office Websites (Extended Search)

8: April 27, 8: April 27, 2009 For Modern Cars, Replacing an Air Filter Will Improve Performance but Not Fuel Economy to someone by E-mail Share Vehicle Technologies Office: Fact #568: April 27, 2009 For Modern Cars, Replacing an Air Filter Will Improve Performance but Not Fuel Economy on Facebook Tweet about Vehicle Technologies Office: Fact #568: April 27, 2009 For Modern Cars, Replacing an Air Filter Will Improve Performance but Not Fuel Economy on Twitter Bookmark Vehicle Technologies Office: Fact #568: April 27, 2009 For Modern Cars, Replacing an Air Filter Will Improve Performance but Not Fuel Economy on Google Bookmark Vehicle Technologies Office: Fact #568: April 27, 2009 For Modern Cars, Replacing an Air Filter Will Improve Performance but Not Fuel Economy on Delicious

39

TTRDC - Light Duty E-Drive Vehicles Monthly Sales Updates  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Duty Electric Drive Vehicles Monthly Sales Updates Currently available electric-drive vehicles (EDV) in the U.S market include hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and all electric vehicles (AEV). Plug-in Vehicles (PEV) include both PHEV and AEV. HEVs debuted in the U.S. market in December 1999 with 17 sales of the first-generation Honda Insight, while the first PHEV (Chevrolet Volt) and AEV (Nissan Leaf) most recently debuted in December 2010. Electric drive vehicles are offered in several car and SUV models, and a few pickup and van models. Historical sales of HEV, PHEV, and AEV are compiled by Argonne's Center for Transportation Research and reported to the U.S. Department of Energy's Vehicle Technology Program Office each month. These sales are shown in Figures 1, 2 and 3. Figure 1 shows monthly new PHEV and AEV sales by model. Figure 2 shows yearly new HEV sales by model. Figure 3 shows electric drive vehicles sales share of total light-duty vehicle (LDV) sales since 1999. Figure 4 shows HEV and PEV sales change with gasoline price..

40

THURSDAY: Secretary Chu Welcomes Students and Tours Vehicles at EcoCAR's  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

THURSDAY: Secretary Chu Welcomes Students and Tours Vehicles at THURSDAY: Secretary Chu Welcomes Students and Tours Vehicles at EcoCAR's Finish Line THURSDAY: Secretary Chu Welcomes Students and Tours Vehicles at EcoCAR's Finish Line June 15, 2011 - 12:00am Addthis Washington, D.C. - On Thursday, June 16, 2011, Energy Secretary Steven Chu will welcome the sponsors and 16 student teams participating in EcoCAR: the NeXt Challenge, a three-year collegiate student engineering competition that focuses on advanced vehicle technologies that minimize fuel consumption and emissions, to the Finish Line at the U.S. Department of Energy in Washington, D.C. At the Finish Line, Secretary Chu will tour the vehicles on display and speak with the students who engineered and built them. The winner of the overall competition will be announced at the EcoCAR

Note: This page contains sample records for the topic "vehicles cars light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

FY2002 Annual Progress Report for the Light Vehicle Propulsioin & Ancillary Subsystems Program  

NLE Websites -- All DOE Office Websites (Extended Search)

& Vehicle Technologies & Vehicle Technologies 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2002 Annual Progress Report for the Light Vehicle Propulsion & Ancillary Subsystems Program Submitted to: U.S. Department of Energy Energy Efficiency and Renewable Energy Office of FreedomCAR & Vehicle Technologies Vehicle Systems Team Robert Kost, Team Leader January 2003 Light Vehicle Propulsion & Ancillary Subsystems Program FY 2002 Annual Progress Report CONTENTS I. INTRODUCTION ............................................................................................... 1 II. TECHNOLOGY REQUIREMENTS DEFINITION....................................... 3 A. Simulation Model Development ..................................................................... 3 1. Improvement, Validation and Application of Advanced

42

Small Cars In Neighborhoods  

E-Print Network (OSTI)

Electric Vehicle Studies Inferences for the Neighborhood Car Uses of Neighborhood Cars Safety . . . . . . . . . . .

Bosselmann, Peter C.; Cullinane, Daniel; Garrison, William L.; Maxey, Carl M.

1993-01-01T23:59:59.000Z

43

California's Zero-Emission Vehicle Mandate: Linking Clean-Fuel Cars, Carsharing and Station Car Strategies  

E-Print Network (OSTI)

in a Shared Electric Vehicle Program. In Transporta- tiontechnologies and electric vehicles in Japan. E a r l y H i ssur­ vey. Nearly 50 electric vehicles were used, including

Shaheen, Susan; Sperling, Dan; Wright, John

2004-01-01T23:59:59.000Z

44

Vehicle attributes constraining present electric car applicability in the fleet market  

DOE Green Energy (OSTI)

One strategy for reducing petroleum imports is to use electric cars in place of conventional vehicles. This paper examines obstacles which electric cars are likely to encounter in attempting to penetrate a key segment of the passenger car market, namely, the fleet market. A fleet is here defined as a group of cars operated by a corporation or a government agency. The primary data source is a questionnaire that was distributed to fleet operators by the Bobit Publishing Company in the summer of 1977. Six sectors of the fleet market were sampled: police, state and local government, utilities, taxi, rental, and business. The questionnaire was specifically designed to uncover factors limiting market penetration of unconventional vehicles, although no attempt was made to determine price elasticities. Emphasis is on vehicle attributes that are readily quantifiable and relatively projectable, including seating capacity, range, battery recharging characteristics, availability of power options, and ability to use interstate highways.

Wagner, J R

1979-12-01T23:59:59.000Z

45

California's Zero Emission Vehicle Mandate - Linking Clean Fuel Cars, Carsharing, and Station Car Strategies  

E-Print Network (OSTI)

PZEVs) such as compressed natural gas, gas-electric hybrid,e.g. , electric, compressed natural gas, and hybride.g. , compressed vehicles) emission vehicles natural gas

Shaheen, Susan; Wright, John; Sperling, Daniel

2001-01-01T23:59:59.000Z

46

Reduce growth rate of light-duty vehicle travel to meet 2050 global climate goals This article has been downloaded from IOPscience. Please scroll down to see the full text article.  

E-Print Network (OSTI)

.iop.org/ERL/6/024018 Abstract Strong policies to constrain increasing global use of light-duty vehicles (cars reductions may be sought in sectors such as electricity generation and light-duty vehicle (LDV

Kammen, Daniel M.

47

alternative fuel light-duty vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Light-Duty Vehicles Fuel Light-Duty Vehicles T O F E N E R G Y D E P A R T M E N U E N I T E D S T A T S O F A E R I C A M SUMMARY OF RESULTS FROM THE NATIONAL RENEWABLE ENERGY LABORATORY'S VEHICLE EVALUATION DATA COLLECTION EFFORTS Alternative Fuel Light-Duty Vehicles SUMMARY OF RESULTS FROM THE NATIONAL RENEWABLE ENERGY LABORATORY'S VEHICLE EVALUATION DATA COLLECTION EFFORTS PEG WHALEN KENNETH KELLY ROB MOTTA JOHN BRODERICK MAY 1996 N T Y A U E O F E N E R G D E P A R T M E N I T E D S T A T S O F A E R I C M Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 Light-Duty Vehicles in the Program . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

48

California's Zero-Emission Vehicle Mandate: Linking Clean-Fuel Cars, Carsharing and Station Car Strategies  

E-Print Network (OSTI)

battery electric vehicles, ostensibly used to reduce travel, encourage transit, and reduce pollution that inspired California Carsharing History

Shaheen, Susan; Sperling, Dan; Wright, John

2004-01-01T23:59:59.000Z

49

Abstract--It is expected that a lot of the new light vehicles in the future will be electrical vehicles (EV). The storage capacity of  

E-Print Network (OSTI)

,000) could be replaced by electrical car by the year 2025 [8]. It is predicted that EVs will make 641 Abstract-- It is expected that a lot of the new light vehicles in the future will be electrical into account. Index Terms-- Electrical vehicle, smart charging, spot electricity price. I. INTRODUCTION HE

Mahat, Pukar

50

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Light-Duty Vehicle Light-Duty Vehicle Search to someone by E-mail Share Alternative Fuels Data Center: Light-Duty Vehicle Search on Facebook Tweet about Alternative Fuels Data Center: Light-Duty Vehicle Search on Twitter Bookmark Alternative Fuels Data Center: Light-Duty Vehicle Search on Google Bookmark Alternative Fuels Data Center: Light-Duty Vehicle Search on Delicious Rank Alternative Fuels Data Center: Light-Duty Vehicle Search on Digg Find More places to share Alternative Fuels Data Center: Light-Duty Vehicle Search on AddThis.com... Light-Duty Vehicle Search Search our light-duty alternative fuel vehicle database to find and compare alternative fuel vehicles and generate printable reports to aid in decision-making. These vehicles might not qualify for vehicle-acquisition

51

Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Duty Vehicle Light Duty Vehicle Workshop to someone by E-mail Share Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on Facebook Tweet about Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on Twitter Bookmark Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on Google Bookmark Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on Delicious Rank Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on Digg Find More places to share Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Annual Merit Review Proceedings Workshop & Meeting Proceedings

52

Table 37. Light-Duty Vehicle Energy Consumption by Technology ...  

U.S. Energy Information Administration (EIA)

Table 37. Light-Duty Vehicle Energy Consumption by Technology Type and Fuel Type (trillion Btu) Light-Duty Consumption by Technology Type Conventional Vehicles 1/

53

Mobility chains analysis of technologies for passenger cars and light duty vehicles fueled with biofuels : application of the Greet model to project the role of biomass in America's energy future (RBAEF) project.  

DOE Green Energy (OSTI)

The Role of Biomass in America's Energy Future (RBAEF) is a multi-institution, multiple-sponsor research project. The primary focus of the project is to analyze and assess the potential of transportation fuels derived from cellulosic biomass in the years 2015 to 2030. For this project, researchers at Dartmouth College and Princeton University designed and simulated an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity using the ASPEN Plus{trademark} model. With support from the U.S. Department of Energy (DOE), Argonne National Laboratory (ANL) conducted, for the RBAEF project, a mobility chains or well-to-wheels (WTW) analysis using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed at ANL. The mobility chains analysis was intended to estimate the energy consumption and emissions associated with the use of different production biofuels in light-duty vehicle technologies.

Wu, M.; Wu, Y.; Wang, M; Energy Systems

2008-01-31T23:59:59.000Z

54

Mobility chains analysis of technologies for passenger cars and light duty vehicles fueled with biofuels : application of the Greet model to project the role of biomass in America's energy future (RBAEF) project.  

SciTech Connect

The Role of Biomass in America's Energy Future (RBAEF) is a multi-institution, multiple-sponsor research project. The primary focus of the project is to analyze and assess the potential of transportation fuels derived from cellulosic biomass in the years 2015 to 2030. For this project, researchers at Dartmouth College and Princeton University designed and simulated an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity using the ASPEN Plus{trademark} model. With support from the U.S. Department of Energy (DOE), Argonne National Laboratory (ANL) conducted, for the RBAEF project, a mobility chains or well-to-wheels (WTW) analysis using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed at ANL. The mobility chains analysis was intended to estimate the energy consumption and emissions associated with the use of different production biofuels in light-duty vehicle technologies.

Wu, M.; Wu, Y.; Wang, M; Energy Systems

2008-01-31T23:59:59.000Z

55

California's Zero-Emission Vehicle Mandate: Linking Clean-Fuel Cars, Carsharing and Station Car Strategies  

E-Print Network (OSTI)

PZEVs) such as compressed natural gas, gas-electric hybrid,e.g. , electric, compressed natural gas, and hybridTechnology- PZEV (e.g. , compressed natural gas vehicles and

Shaheen, Susan; Sperling, Dan; Wright, John

2004-01-01T23:59:59.000Z

56

Vehicle Technologies Office: Fact #811: January 6, 2014 Light Vehicle Sales  

NLE Websites -- All DOE Office Websites (Extended Search)

1: January 6, 1: January 6, 2014 Light Vehicle Sales Recoveries to someone by E-mail Share Vehicle Technologies Office: Fact #811: January 6, 2014 Light Vehicle Sales Recoveries on Facebook Tweet about Vehicle Technologies Office: Fact #811: January 6, 2014 Light Vehicle Sales Recoveries on Twitter Bookmark Vehicle Technologies Office: Fact #811: January 6, 2014 Light Vehicle Sales Recoveries on Google Bookmark Vehicle Technologies Office: Fact #811: January 6, 2014 Light Vehicle Sales Recoveries on Delicious Rank Vehicle Technologies Office: Fact #811: January 6, 2014 Light Vehicle Sales Recoveries on Digg Find More places to share Vehicle Technologies Office: Fact #811: January 6, 2014 Light Vehicle Sales Recoveries on AddThis.com... Fact #811: January 6, 2014 Light Vehicle Sales Recoveries

57

Apps for Vehicles: What is the OBD port in my car and what information is  

Open Energy Info (EERE)

the OBD port in my car and what information is the OBD port in my car and what information is available on it? Home > Groups > Developer This question relates to energy hackathons and the OpenXC platform. More information at http://en.openei.org/wiki/Help:Energy_Hackathon_Resources Submitted by Rmckeel on 24 September, 2012 - 10:36 2 answers Points: 1 Modern automobiles are laced with a number of microcontrollers and sensors that monitor and control everything from the throttle position to the ambient air temperature. These devices communicate with each other over a wired in-vehicle network, a CAN bus. The CAN bus is one of the primary components of OBD-II, a vehicle diagnostic standard mandatory for all cars sold in the United States since 1996. The OBD-II standard sends and receives messages on the CAN bus. If you've ever watched your mechanic plug

58

Hybrid options for light-duty vehicles.  

DOE Green Energy (OSTI)

Hybrid electric vehicles (HEVs) offer great promise in improving fuel economy. In this paper, we analyze why, how, and by how much vehicle hybridization can reduce energy consumption and improve fuel economy. Our analysis focuses on efficiency gains associated solely with vehicle hybridization. We do not consider such other measures as vehicle weight reduction or air- and tire-resistance reduction, because such measures would also benefit conventional technology vehicles. The analysis starts with understanding the energy inefficiencies of light-duty vehicles associated with different operation modes in US and Japanese urban and highway driving cycles, with the corresponding energy-saving potentials. The potential for fuel economy gains due to vehicle hybridization can be estimated almost exclusively on the basis of three elements: the reducibility of engine idling operation, the recoverability of braking energy losses, and the capability of improving engine load profiles to gain efficiency associated with specific HEV configurations and control strategies. Specifically, we evaluate the energy efficiencies and fuel economies of a baseline MY97 Corolla-like conventional vehicle (CV), a hypothetical Corolla-based minimal hybrid vehicle (MHV), and a MY98 Prius-like full hybrid vehicle (FHV). We then estimate energy benefits of both MHVs and FHVs over CVs on a performance-equivalent basis. We conclude that the energy benefits of hybridization vary not only with test cycles, but also with performance requirements. The hybrid benefits are greater for ''Corolla (high) performance-equivalent'' vehicles than for ''Prius (low) performance-equivalent'' vehicles. An increasing acceleration requirement would result in larger fuel economy benefits from vehicle hybridization.

An, F., Stodolsky, F.; Santini, D.

1999-07-19T23:59:59.000Z

59

TO: ALL PASSENGER CAR MANUFACTURERS ALL LIGHT-DUTY TRUCK MANUFACTURERS ALL MEDIUM-DUTY VEHICLE MANUFACTURERS ALL DIRECT IMPORTERS ALL OTHER INTERESTED PARTIES SUBJECT: Submission of Certification Data Demonstrating  

E-Print Network (OSTI)

This letter transmits the attached Manufacturers Advisory Correspondence (MAC) which informs vehicle manufacturers of the need to submit demonstrations of compliance with the Inspection and Maintenance (I/M) idle mode and Acceleration Simulation Mode (ASM) loaded mode emission standards, for all 2000 and subsequent model-year emission-data vehicles (EDVs) at the time of certification. If you have any questions or comments, please contact

John D. Dunlap; Pete Wilson; R. B. Summerfield

1998-01-01T23:59:59.000Z

60

All vehicles are cars: subclass preferences in container concepts  

Science Conference Proceedings (OSTI)

This paper investigates the natural bias humans display when labeling images with a container label like vehicle or carnivore. Using three container concepts as subtree root nodes, and all available concepts between these roots and the ... Keywords: classifier combination, hierarchical image recognition, large scale image recognition

Daan T. J. Vreeswijk; Cees G. M. Snoek; Koen E. A. van de Sande; Arnold W. M. Smeulders

2012-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicles cars light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Vehicle Technologies Office: Fact #332: August 9, 2004 New Light Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

2: August 9, 2: August 9, 2004 New Light Vehicle Market Shares, 1976-2003 to someone by E-mail Share Vehicle Technologies Office: Fact #332: August 9, 2004 New Light Vehicle Market Shares, 1976-2003 on Facebook Tweet about Vehicle Technologies Office: Fact #332: August 9, 2004 New Light Vehicle Market Shares, 1976-2003 on Twitter Bookmark Vehicle Technologies Office: Fact #332: August 9, 2004 New Light Vehicle Market Shares, 1976-2003 on Google Bookmark Vehicle Technologies Office: Fact #332: August 9, 2004 New Light Vehicle Market Shares, 1976-2003 on Delicious Rank Vehicle Technologies Office: Fact #332: August 9, 2004 New Light Vehicle Market Shares, 1976-2003 on Digg Find More places to share Vehicle Technologies Office: Fact #332: August 9, 2004 New Light Vehicle Market Shares, 1976-2003 on

62

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

The All American Cruise Car is built on a rust-proof, all-aluminum chassis. Sunray Solar Tops supplied by Eco Trans Alliance, LLC, allows the vehicle to convert solar energy...

63

ORNL light-duty vehicles PC system  

Science Conference Proceedings (OSTI)

This data system, designed by the Oak Ridge National Laboratory (ORNL) and funded by the US Department of Energy (DOE), monitors information on every light-duty vehicle (automobiles and light-duty trucks) sold in the United States since model year 1976. The data are specified in two days. One way is on a model basis (i.e, engine and transmission combinations) and includes data on city, highway, and combined fuel economies; engine size; drive-train; fuel type (gasoline or diesel); interior volume; body type; and other vehicle attributes. The other way is on a make basis (e.g., Ford Escort, Oldsmobile 98) and includes data on sales; Environmental Protection Agency (EPA) size class; the sales-weighted fuel economy; sales-weighted interior volume; sales-weighted engine displacement (cid); curb weight; and other attributes. A unique identification number is assigned to a specific vehicle category. This identification number contains information on the manufacturer, the location of the manufacturer (domestic or import), and the sponsorship of the vehicle (domestic or import). Fuel economies, model year sales and various vehicle characteristics for every make of the 164 million light-duty vehicles sold in the US since model year 1976 can be obtained from this data system. 2 figs., 4 tabs.

Hu, P.S.; Patterson, P.D. (Oak Ridge National Lab., TN (USA))

1989-01-01T23:59:59.000Z

64

Overview of Light-Duty Vehicle Studies  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview of Light-Duty Vehicle Studies Overview of Light-Duty Vehicle Studies Washington, DC Workshop Sponsored by EERE Transportation Cluster July 26, 2010 Energy Efficiency & Renewable Energy eere.energy.gov 2 * This workshop is intended to be a working meeting for analysts to discuss findings and assumptions because a number of key studies on light-duty vehicles (LDVs) and biofuels have been completed in the past 5 years and the insight gained from their findings would be valuable. * Outcomes: - common understanding of the effects of differing assumptions (today); - agreement on standard assumptions for future studies, where applicable (agreement on some assumptions today, follow-up discussions/meeting may be needed for others); - list of data/information gaps and needed research and studies (a

65

Vehicle Technologies Office: Fact #387: August 29, 2005 Light...  

NLE Websites -- All DOE Office Websites (Extended Search)

details. Note: Market share is based on model year sales projections submitted to EPA by vehicle manufacturers. Supporting Information New Light Vehicle Market Shares by EPA Size...

66

Vehicle Technologies Office: Fact #383: August 1, 2005 U.S. Light Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

3: August 1, 3: August 1, 2005 U.S. Light Vehicle Manufacturing Locations, 2004 to someone by E-mail Share Vehicle Technologies Office: Fact #383: August 1, 2005 U.S. Light Vehicle Manufacturing Locations, 2004 on Facebook Tweet about Vehicle Technologies Office: Fact #383: August 1, 2005 U.S. Light Vehicle Manufacturing Locations, 2004 on Twitter Bookmark Vehicle Technologies Office: Fact #383: August 1, 2005 U.S. Light Vehicle Manufacturing Locations, 2004 on Google Bookmark Vehicle Technologies Office: Fact #383: August 1, 2005 U.S. Light Vehicle Manufacturing Locations, 2004 on Delicious Rank Vehicle Technologies Office: Fact #383: August 1, 2005 U.S. Light Vehicle Manufacturing Locations, 2004 on Digg Find More places to share Vehicle Technologies Office: Fact #383:

67

Full vehicle dynamics model of a formula SAE racecar using ADAMS/Car  

E-Print Network (OSTI)

The Texas A&M University Formula SAE program currently has no rigorous method for analyzing or predicting the overall dynamic behavior of the student-designed racecars. The objective of this study is to fulfill this need by creating a full vehicle ADAMS/Car model incorporating an empirical tire-road force model and validating the longitudinal performance of the model by using vehicle responses recorded at the track. Creating the model requires measuring mass and inertia properties for each part, measuring the locations of all the kinematic joints, testing the Risse Racing Jupiter-5 shocks to characterize damping and stiffness, measuring engine torque, and modeling the tire behavior. Measuring the vehicle performance requires installation of the Pi Research DataBuddy data acquisition system and appropriate sensors. The 2002 Texas A&M University Formula SAE racecar, the subject vehicle, was selected because it already included some accommodations for sensors and is almost identical in layout to the available ADAMS/Car model Formula SAE templates. The tire-road interface is described by the Pacejka ??94 handling force model within ADAMS/Car that is based on a set of Goodyear coefficients. The majority of the error in the model originated from the Goodyear tire model and the 2004 engine torque map. The testing used Hoosier tires and the 2002 engine intake and exhaust configuration. The deliverable is a full vehicle model of the 2002 racecar with a 2004 engine torque map and a tire model correlated to longitudinal performance recorded at the track using the installed data acquisition system. The results of the correlation process, confirmed by driver impressions and performance of the 2004 racecar, show that the 2004 engine torque map predicts higher performance than the measured response with the 2002 engine. The Hoosier tire on the Texas A&M University Riverside Campus track surface produces 75??3% of peak longitudinal tire performance predicted by the Goodyear tire model combined with a road surface friction coefficient of 1.0. The ADAMS/Car model can now support the design process as an analysis tool for full vehicle dynamics and with continued refinement, will be able to accurately predict behavior throughout a complete autocross course.

Mueller, Russell Lee

2005-08-01T23:59:59.000Z

68

U.S. Shared-Use Vehicle Survey Findings on Carsharing and Station Car Growth  

E-Print Network (OSTI)

3. Shaheen, S. A . Pooled Cars. Access Magazine. UniversityCarsharing, Station Cars, and Combined Approaches. InMandate: Linking Clean-Fuel Cars, Carsharing, and Station

Shaheen, Susan

2004-01-01T23:59:59.000Z

69

Fuel savings and emissions reductions from light duty fuel cell vehicles  

DOE Green Energy (OSTI)

Fuel cell vehicles (FCVs) operate efficiently, emit few pollutants, and run on nonpetroleum fuels. Because of these characteristics, the large-scale deployment of FCVs has the potential to lessen US dependence on foreign oil and improve air quality. This study characterizes the benefits of large-scale FCV deployment in the light duty vehicle market. Specifically, the study assesses the potential fuel savings and emissions reductions resulting from large-scale use of these FCVs and identifies the key parameters that affect the scope of the benefits from FCV use. The analysis scenario assumes that FCVs will compete with gasoline-powered light trucks and cars in the new vehicle market for replacement of retired vehicles and will compete for growth in the total market. Analysts concluded that the potential benefits from FCVs, measured in terms of consumer outlays for motor fuel and the value of reduced air emissions, are substantial.

Mark, J.; Ohi, J.M.; Hudson, D.V. Jr.

1994-04-01T23:59:59.000Z

70

Rebound 2007: Analysis of U.S. Light-Duty Vehicle Travel Statistics  

SciTech Connect

U.S. national time series data on vehicle travel by passenger cars and light trucks covering the period 1966 2007 are used to test for the existence, size and stability of the rebound effect for motor vehicle fuel efficiency on vehicle travel. The data show a statistically significant effect of gasoline price on vehicle travel but do not support the existence of a direct impact of fuel efficiency on vehicle travel. Additional tests indicate that fuel price effects have not been constant over time, although the hypothesis of symmetry with respect to price increases and decreases is not rejected. Small and Van Dender (2007) model of a declining rebound effect with income is tested and similar results are obtained.

Greene, David L [ORNL

2010-01-01T23:59:59.000Z

71

FreedomCAR and vehicle technologies heavy vehicle program FY 2006. Benefits analysis : methodology and results - final report.  

SciTech Connect

This report describes the approach to estimating benefits and the analysis results for the Heavy Vehicle Technologies activities of the Freedom Car and Vehicle Technologies (FCVT) Program of EERE. The scope of the effort includes: (1) Characterizing baseline and advanced technology vehicles for Class 3-6 and Class 7 and 8 trucks, (2) Identification of technology goals associated with the DOE EERE programs, (3) Estimating the market potential of technologies that improve fuel efficiency and/or use alternative fuels, (4) Determining the petroleum and greenhouse gas emissions reductions associated with the advanced technologies. In FY 05 the Heavy Vehicles program activity expanded its technical involvement to more broadly address various sources of energy loss as compared to focusing more narrowly on engine efficiency and alternative fuels. This broadening of focus has continued in the activities planned for FY 06. These changes are the result of a planning effort that occurred during FY 04 and 05. (Ref. 1) This narrative describes characteristics of the heavy truck market as they relate to the analysis, a description of the analysis methodology (including a discussion of the models used to estimate market potential and benefits), and a presentation of the benefits estimated as a result of the adoption of the advanced technologies. These benefits estimates, along with market penetrations and other results, are then modeled as part of the EERE-wide integrated analysis to provide final benefit estimates reported in the FY06 Budget Request.

Singh, M.; Energy Systems; TA Engineering, Inc.

2006-01-31T23:59:59.000Z

72

Freedom car and vehicle technologies heavy vehicle program : FY 2007 benefits analysis, methodology and results -- final report.  

SciTech Connect

This report describes the approach to estimating the benefits and analysis results for the Heavy Vehicle Technologies activities of the FreedomCar and Vehicle Technologies (FCVT) Program of EERE. The scope of the effort includes: (1) Characterizing baseline and advanced technology vehicles for Class 3-6 and Class 7 and 8 trucks, (2) Identifying technology goals associated with the DOE EERE programs, (3) Estimating the market potential of technologies that improve fuel efficiency and/or use alternative fuels, (4) Determining the petroleum and greenhouse gas emissions reductions associated with the advanced technologies. In FY 05 the Heavy Vehicles program activity expanded its technical involvement to more broadly address various sources of energy loss as compared to focusing more narrowly on engine efficiency and alternative fuels. This broadening of focus has continued in subsequent activities. These changes are the result of a planning effort that occurred during FY 04 and 05. (Ref. 1) This narrative describes characteristics of the heavy truck market as they relate to the analysis, a description of the analysis methodology (including a discussion of the models used to estimate market potential and benefits), and a presentation of the benefits estimated as a result of the adoption of the advanced technologies. The market penetrations are used as part of the EERE-wide integrated analysis to provide final benefit estimates reported in the FY07 Budget Request. The energy savings models are utilized by the FCVT program for internal project management purposes.

SIngh, M.; Energy Systems; TA Engineering

2008-02-29T23:59:59.000Z

73

Advanced Technologies for Light-Duty Vehicles (released in AEO2006)  

Reports and Publications (EIA)

A fundamental concern in projecting the future attributes of light-duty vehiclespassenger cars, sport utility vehicles, pickup trucks, and minivans is how to represent technological change and the market forces that drive it. There is always considerable uncertainty about the evolution of existing technologies, what new technologies might emerge, and how consumer preferences might influence the direction of change. Most of the new and emerging technologies expected to affect the performance and fuel use of light-duty vehicles over the next 25 years are represented in NEMS; however, the potential emergence of new, unforeseen technologies makes it impossible to address all the technology options that could come into play. The previous section of Issues in Focus discussed several potential technologies that currently are not represented in NEMS. This section discusses some of the key technologies represented in NEMS that are expected to be implemented in light-duty vehicles over the next 25 years.

Information Center

2006-02-01T23:59:59.000Z

74

Program Record 13006 (Offices of Vehicle Technologies and Fuel Cell Technologies: Life-Cycle Costs of Mid-Size Light-Duty Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Record (Offices of Vehicle Technologies & Fuel Cell Program Record (Offices of Vehicle Technologies & Fuel Cell Technologies) Record #: 13006 Date: April 24, 2013 Title: Life-cycle Costs of Mid-Size Light-Duty Vehicles Originator: Tien Nguyen & Jake Ward Approved by: Sunita Satyapal Pat Davis Date: April 25, 2013 Items: DOE is pursuing a portfolio of technologies with the potential to significantly reduce greenhouse gases (GHG) emissions and petroleum consumption while being cost-effective. This record documents the assumptions and results of analyses conducted to estimate the life-cycle costs resulting from several fuel/vehicle pathways, for a future mid-size car. The results are summarized graphically in the following figure. Costs of Operation for Future Mid-Size Car

75

Mitsubishi iMiEV: An Electric Mini-Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet highlights the Mitsubishi iMiEV, an electric mini-car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In support of the U.S. Department of Energy's fast-charging research efforts, NREL engineers are conducting charge and discharge performance testing on the vehicle. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.

Not Available

2011-10-01T23:59:59.000Z

76

Vehicle Technologies Office: Fact #647: November 1, 2010 Sales Shifting  

NLE Websites -- All DOE Office Websites (Extended Search)

7: November 1, 7: November 1, 2010 Sales Shifting from Light Trucks to Cars to someone by E-mail Share Vehicle Technologies Office: Fact #647: November 1, 2010 Sales Shifting from Light Trucks to Cars on Facebook Tweet about Vehicle Technologies Office: Fact #647: November 1, 2010 Sales Shifting from Light Trucks to Cars on Twitter Bookmark Vehicle Technologies Office: Fact #647: November 1, 2010 Sales Shifting from Light Trucks to Cars on Google Bookmark Vehicle Technologies Office: Fact #647: November 1, 2010 Sales Shifting from Light Trucks to Cars on Delicious Rank Vehicle Technologies Office: Fact #647: November 1, 2010 Sales Shifting from Light Trucks to Cars on Digg Find More places to share Vehicle Technologies Office: Fact #647: November 1, 2010 Sales Shifting from Light Trucks to Cars on AddThis.com...

77

Vehicle Technologies Office: Fact #493: October 29, 2007 Market...  

NLE Websites -- All DOE Office Websites (Extended Search)

3: October 29, 2007 Market Share - Cars vs. Light Trucks to someone by E-mail Share Vehicle Technologies Office: Fact 493: October 29, 2007 Market Share - Cars vs. Light Trucks on...

78

Vehicle Technologies Office: Fact #553: January 12, 2009 Market...  

NLE Websites -- All DOE Office Websites (Extended Search)

3: January 12, 2009 Market Share of New Cars vs. Light Trucks to someone by E-mail Share Vehicle Technologies Office: Fact 553: January 12, 2009 Market Share of New Cars vs. Light...

79

Vehicle Technologies Office: Fact #388: September 5, 2005 Proposed Light  

NLE Websites -- All DOE Office Websites (Extended Search)

8: September 5, 8: September 5, 2005 Proposed Light Truck CAFE Standards to someone by E-mail Share Vehicle Technologies Office: Fact #388: September 5, 2005 Proposed Light Truck CAFE Standards on Facebook Tweet about Vehicle Technologies Office: Fact #388: September 5, 2005 Proposed Light Truck CAFE Standards on Twitter Bookmark Vehicle Technologies Office: Fact #388: September 5, 2005 Proposed Light Truck CAFE Standards on Google Bookmark Vehicle Technologies Office: Fact #388: September 5, 2005 Proposed Light Truck CAFE Standards on Delicious Rank Vehicle Technologies Office: Fact #388: September 5, 2005 Proposed Light Truck CAFE Standards on Digg Find More places to share Vehicle Technologies Office: Fact #388: September 5, 2005 Proposed Light Truck CAFE Standards on AddThis.com...

80

Motor Vehicle Plant Lighting Level Best Practices | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Motor Vehicle Plant Lighting Level Best Practices Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial...

Note: This page contains sample records for the topic "vehicles cars light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

The Road Ahead for Light Duty Vehicle Fuel Demand  

U.S. Energy Information Administration (EIA)

The Road Ahead for Light Duty Vehicle Fuel Demand Joanne Shore Energy Information Administration July 7, 2005 Refining Capacity Surplus Shrank As Demand Grew ...

82

Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Duty Vehicle Workshop Light Duty Vehicle Workshop On July 26, 2010, the U.S. Department of Energy (DOE) sponsored a Light Duty Vehicle Workshop in Washington, D.C. Presentations from this workshop appear below as Adobe Acrobat PDFs. Download Adobe Reader. Presentations Overview of Light-Duty Vehicle Studies (PDF 562 KB), Sam Baldwin, Chief Technology Officer, Office of Energy Efficiency and Renewable Energy (EERE), DOE Light Duty Vehicle Pathways (PDF 404 KB), Tien Nguyen, Fuel Cell Technologies Office, EERE, DOE Hydrogen Transition Study (PDF 2.6 MB), Paul N. Leiby, David Greene, Zhenhong Lin, David Bowman, and Sujit Das, Oak Ridge National Laboratory Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles (PDF 123 KB), Joan Ogden and Mike Ramage, National Research Council

83

Find and Compare Cars  

NLE Websites -- All DOE Office Websites (Extended Search)

You are here: Find a Car - Home You are here: Find a Car - Home Find and Compare Cars Browse by Model Go Need help choosing a car? woman shopping for car Search by MPG, price, make, body style, and much more with our Power Search Search by Class 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 Small Cars Family Sedans Upscale Sedans Luxury Sedans Large Sedans Hatchbacks Coupes Convertibles Sports/Sporty Cars Station Wagons Pickup Trucks Sport Utility Vehicles Minivans Vans Combined MPG >= 45 40 35 30 25 20 15 10 Go Browse New Cars sedan Small Cars sedan Sedans coupe Coupes hatchback Hatchbacks sporty car Sporty Cars luxury car Luxury Cars station wagon Wagons minivan Minivans truck Trucks SUV SUVs hybrid Hybrid Vehicles diesel Diesel Vehicles flex-fuel vehicle

84

Vehicle Technologies Office: Fact #714: February 13, 2012 Light...  

NLE Websites -- All DOE Office Websites (Extended Search)

4: February 13, 2012 Light Truck Sales on the Rise to someone by E-mail Share Vehicle Technologies Office: Fact 714: February 13, 2012 Light Truck Sales on the Rise on Facebook...

85

Plasma Catalysis for NOx Reduction from Light-Duty Diesel Vehicles  

DOE Green Energy (OSTI)

On behalf of the Department of Energy's Office of FreedomCAR and Vehicle Technologies, we are pleased to introduce the Fiscal Year (FY) 2004 Annual Progress Report for the Advanced Combustion Engine R&D Sub-Program. The mission of the FreedomCAR and Vehicle Technologies Program is to develop more energy efficient and environmentally friendly highway transportation technologies that enable Americans to use less petroleum for their vehicles. The Advanced Combustion Engine R&D Sub-Program supports this mission by removing the critical technical barriers to commercialization of advanced internal combustion engines for light-, medium-, and heavy-duty highway vehicles that meet future Federal and state emissions regulations. The primary objective of the Advanced Combustion Engine R&D Sub-Program is to improve the brake thermal efficiency of internal combustion engines from 30 to 45 percent for light-duty applications by 2010; and 40 to 55 percent for heavy-duty applications by 2012; while meeting cost, durability, and emissions constraints. R&D activities include work on combustion technologies that increase efficiency and minimize in-cylinder formation of emissions, as well as aftertreatment technologies that further reduce exhaust emissions. Work is also being conducted on ways to reduce parasitic and heat transfer losses through the development and application of thermoelectrics and turbochargers that include electricity generating capability, and conversion of mechanically driven engine components to be driven via electric motors. This introduction serves to outline the nature, current progress, and future directions of the Advanced Combustion Engine R&D Sub-Program. The research activities of this Sub-Program are planned in conjunction with the FreedomCAR Partnership and the 21st Century Truck Partnership and are carried out in collaboration with industry, national laboratories, and universities. Because of the importance of clean fuels in achieving low emissions, R&D activities are closely coordinated with the relevant activities of the Fuel Technologies Sub-Program, also within the Office of FreedomCAR and Vehicle Technologies. Research is also being undertaken on hydrogen-fueled internal combustion engines to provide an interim hydrogen-based powertrain technology that promotes the longer-range FreedomCAR Partnership goal of transitioning to a hydrogen-fueled transportation system. Hydrogen engine technologies being developed have the potential to provide diesel-like engine efficiencies with near-zero emissions.

None

2005-12-15T23:59:59.000Z

86

Electric Technologies for Light-duty Vehicles in the United States Abstract  

E-Print Network (OSTI)

This paper is concerned with the present status and future projections for emerging technologies that can be utilized in light-duty vehicles in the next five to ten years to significantly reduce their CO2 emissions. The emerging technologies considered are modern clean diesel engines and hybrid-electric powertrains using batteries and/or ultracapacitors for energy storage. Throughout the study, six classes of vehicles –compact passenger cars to large SUVs-were considered. For each vehicle class, computer simulations (Advisor 2002) and cost analyses were performed for conventional ICE and mild and full parallel hybrids using port-fuel injected and lean burn gasoline engines and direct-injection turbo-charged diesel engines to determine the fuel economy and differential costs for the various vehicle designs using the conventional gasoline PFI engine vehicle as the baseline. CO2 emissions (gmCO2/mi) for each driveline and vehicle case were calculated from the fuel economy values. On a percentage or ratio basis, the analyses indicated that the fuel economy gains, CO2 emissions reductions, and cost/price increases due to the use of the advanced engines and hybrid-electric drivelines were essentially independent of vehicle class. This means that a regulation specifying the same fractional

United States; Andrew Burke; Ethan Abeles; Andrew Burke; Ethan Abeles

2004-01-01T23:59:59.000Z

87

Personal vehicles preferred by urban Americans: household automobile holdings and new car purchases projected to the year 2000  

DOE Green Energy (OSTI)

A procedure is described for modeling the choices made in urban American households among personal vehicles on the bases of cost, passenger capacity, and engine technology, and it projects those preferences to the year 1990 and 2000. The results of this disaggregate technique are used by the other predictive research tasks undertaken by Argonne National Laboratory in a project entitled Technology Assessment of Productive Conservation in Urban Transportation (TAPCUT). The vehicle preferences reported here furnish data for the overall TAPCUT objective of forecasting the probable effects of energy conservation policies in transportation. In our projections, vehicles with standard spark-ignition (Otto-cycle) engines continue to dominate automobile holdings and new car purchases in either of two socioeconomic scenarios under any of three settings (an existing policy set and two alternative conservation strategies). From 1990, small cars (seating four or fewer passengers) dominate urban holdings and sales in two of the three TAPCUT energy strategies - the exception being the strategy that emphasizes individual travel - and this holds true with only a minor variation for both socioeconomic scenarios (an optimistic one and a slightly pessimistic one). Advanced-technology vehicles are most successful under the Individual Travel Strategy. It appears that vehicle charateristics are far more significant than demographic descriptors in estimating household vehicle choice using this modeling approach.

Saricks, C.L.; Vyas, A.D.; Bunch, J.A.

1982-01-01T23:59:59.000Z

88

U.S. Shared-use Vehicle Survey Findings: Opportunities and Obstacles for Carsharing and Station Car Growth  

E-Print Network (OSTI)

3) Shaheen, S.A. Pooled Cars. Access Magazine. University ofCarsharing, Station Cars, and Combined Approaches.Mandate—Linking Clean Fuel Cars, Carsharing, and Station Car

Shaheen, Susan A.; Meyn, Mollyanne; Wipyewski, Kamill

2003-01-01T23:59:59.000Z

89

U.S. Department of Energy FreedomCAR and Vehicle Technologies Program Advanced Vehicle Testing Activity Federal Fleet Use of Electric Vehicles  

Science Conference Proceedings (OSTI)

Per Executive Order 13031, “Federal Alternative Fueled Vehicle Leadership,” the U.S. Department of Energy’s (DOE’s) Advanced Vehicle Testing Activity provided $998,300 in incremental funding to support the deployment of 220 electric vehicles in 36 Federal fleets. The 145 electric Ford Ranger pickups and 75 electric Chrysler EPIC (Electric Powered Interurban Commuter) minivans were operated in 14 states and the District of Columbia. The 220 vehicles were driven an estimated average of 700,000 miles annually. The annual estimated use of the 220 electric vehicles contributed to 39,000 fewer gallons of petroleum being used by Federal fleets and the reduction in emissions of 1,450 pounds of smog-forming pollution. Numerous attempts were made to obtain information from all 36 fleets. Information responses were received from 25 fleets (69% response rate), as some Federal fleet personnel that were originally involved with the Incremental Funding Project were transferred, retired, or simply could not be found. In addition, many of the Department of Defense fleets indicated that they were supporting operations in Iraq and unable to provide information for the foreseeable future. It should be noted that the opinions of the 25 fleets is based on operating 179 of the 220 electric vehicles (81% response rate). The data from the 25 fleets is summarized in this report. Twenty-two of the 25 fleets reported numerous problems with the vehicles, including mechanical, traction battery, and charging problems. Some of these problems, however, may have resulted from attempting to operate the vehicles beyond their capabilities. The majority of fleets reported that most of the vehicles were driven by numerous drivers each week, with most vehicles used for numerous trips per day. The vehicles were driven on average from 4 to 50 miles per day on a single charge. However, the majority of the fleets reported needing gasoline vehicles for missions beyond the capabilities of the electric vehicles, usually because of range limitations. Twelve fleets reported experiencing at least one charge depletion while driving, whereas nine fleets reported not having this problem. Twenty-four of the 25 fleets responded that the electric vehicles were easy to use and 22 fleets indicated that the payload was adequate. Thirteen fleets reported charging problems; eleven fleets reported no charging problems. Nine fleets reported the vehicles broke down while driving; 14 fleets reported no onroad breakdowns. Some of the breakdowns while driving, however, appear to include normal flat tires and idiot lights coming on. In spite of operation and charging problems, 59% of the fleets responded that they were satisfied, very satisfied, or extremely satisfied with the performance of the electric vehicles. As of September 2003, 74 of the electric vehicles were still being used and 107 had been returned to the manufacturers because the leases had concluded.

Mindy Kirpatrick; J. E. Francfort

2003-11-01T23:59:59.000Z

90

Vehicle Technologies Office: Fact #692: September 12, 2011 Fuel Economy  

NLE Websites -- All DOE Office Websites (Extended Search)

2: September 12, 2: September 12, 2011 Fuel Economy Distribution for New Cars and Light Trucks to someone by E-mail Share Vehicle Technologies Office: Fact #692: September 12, 2011 Fuel Economy Distribution for New Cars and Light Trucks on Facebook Tweet about Vehicle Technologies Office: Fact #692: September 12, 2011 Fuel Economy Distribution for New Cars and Light Trucks on Twitter Bookmark Vehicle Technologies Office: Fact #692: September 12, 2011 Fuel Economy Distribution for New Cars and Light Trucks on Google Bookmark Vehicle Technologies Office: Fact #692: September 12, 2011 Fuel Economy Distribution for New Cars and Light Trucks on Delicious Rank Vehicle Technologies Office: Fact #692: September 12, 2011 Fuel Economy Distribution for New Cars and Light Trucks on Digg

91

Road Ahead for Light Duty Vehicle Fuel Demand, The  

Reports and Publications (EIA)

Explores some potential variations in light-duty vehicle demand to illustrate both the magnitude of demand changes and the length of time that it can take to affect demand when different levels of new-vehicle efficiencies and penetrations are assumed

Information Center

2005-07-11T23:59:59.000Z

92

Prospects for electric cars: electric vehicle impact assessment study. Final report, 15 December 1975--30 April 1978  

DOE Green Energy (OSTI)

The characteristics of future electric cars were projected by means of parametric models of weight, cost, and performance. They included urban ranges as much as two to four times those of recent electric cars: up to 150 km for improved lead-acid batteries, 250 km for nickel-zinc batteries, and 450 km for lithium-sulfur batteries. From data tapes of major travel surveys in Los Angeles and Washington, these ranges were found to be sufficient for most needs of all three major groups of drivers: secondary and primary drivers at multi-driper households, and drivers at one-driver households. Even with the longest design ranges, however, the electric cars would be incapable of occasional long trips now made by conventional cars, and only at the shortest design ranges would they be competitive in cost. Through modeling of supply and demand for over 200 U.S. utilities it was projected that, by the year 2000, almost 60% of US cars could be electrified, only 17% of the recharging power would come from petroleum. Modeling of air pollutant emissions for 24 large urban regions showed that electrification of all cars would reduce regional hydrocarbons and carbon monoxide emissions by roughly half, but increase sulfur oxide emissions some 20%. Traffic noise would be significantly reduced, even after major quieting of conventional vehicles. Identified resources of battery materials suffice for tens of millions of electric cars, but not necessarily for complete electrification of all US autos. Economic impacts aside from added costs for motorists would be relatively minor.

Hamilton, W.

1978-11-01T23:59:59.000Z

93

The Road Ahead for Light Duty Vehicle Fuel Demand  

Gasoline and Diesel Fuel Update (EIA)

Energy Information Administration Logo. If you need assistance viewing this page, please call (202) 586-8800 The Road Ahead for Light Duty Vehicle Fuel Demand Click here to start...

94

Light-Duty Vehicle Energy Consumption by Technology Type from...  

Open Energy Info (EERE)

Light-Duty Vehicle Energy Consumption by Technology Type from EIA AEO 2011 Early Release Supplemental Table 47 of EIA AEO 2011 Early Release
2011-02-23T15:57:46Z...

95

Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Webinar Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol U.S. DOE WEBINAR ON H2 FUELING PROTOCOLS: PARTICIPANTS Rob Burgess Moderator Jesse Schneider TIR J2601,...

96

Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology on Heavy and Light Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Demonstrated Petroleum Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology on Heavy and Light Vehicles James Francfort (PI) Timothy Murphy Larry Zirker Oil Bypass Filter Technology Evaluation * Funded by the U.S. Department of Energy's FreedomCAR & Vehicle Technologies Program * Performed by Idaho National Engineering and Environmental Laboratory (INEEL) Fleet Operations * Goal - Support DOE's efforts to reduce petroleum consumption & ensure the energy security of the United States Oil Bypass Filter Technology Evaluation * Objectives - Test the concept of using oil bypass filters to minimize engine oil changes & the generation of waste oils - Demonstration the economics of oil bypass filter systems - Estimate potential engine oil saving from bypass filter technologies that can be achieved by INEEL,

97

Evaluation of the adequacy of the 2000P test vehicle as a surrogate for light truck subclasses  

E-Print Network (OSTI)

This study evaluated the adequacy of the 2000P test vehicle as a surrogate for light truck subclasses. The National Cooperative Highway Research Program (NCHRP) Report 350 recommended the use of a 3/4-ton (approximately 2000 kg) pickup as the surrogate for all light truck subclasses. This standard test vehicle, the 3/4-ton pick-up truck (designated as the 2000P test vehicle in NCHRP Report 350) replaced the 2040 kg (4500 lb) passenger car which till its replacement in 1993, was the standard test vehicle of that weight class for all formal vehicle crash testing procedures. The study approach consisted of the following main tasks:, 1. Identification and comparison of key vehicle parameters. 2.literature review. 3.Statistical study 4. Simulation study. 5.Synthesize results. 6.Prepare thesis. In the initial part of the study key vehicle parameters were identified and used in a preliminary assessment of the 2000P test vehicle. These parameters were then used as statistical variables in the statistical study undertaken. The HVOSM computer simulation program was then used to evaluate representatives of the larger light truck subclasses and the 2000P test vehicle on impact with selected roadside features. A comparison scheme developed using NCHRP Report 350 was then utilized in the evaluation of simulation results. Results were then synthesized and a thesis prepared on the surrogate sufficiency of the 2000P test vehicle. Drawbacks and limitations experienced during tasks were outlined as well as the contribution and significance of the entire study. A six year ceiling was recommended by the NCHRP Report 350 by Ross et al. (1993) for the purpose of vehicle selection for crash testing purposes. Hence this study focuses on the modern light truck fleet, model years 1990 through present.

Titus-Glover, Cyril James

1996-01-01T23:59:59.000Z

98

Diesel Exhaust Emissions Control for Light-Duty Vehicles  

SciTech Connect

The objective of this paper is to present the results of diesel exhaust aftertreatment testing and analysis done under the FreedomCAR program. Nitrogen Oxides (NOx) adsorber technology was selected based on a previous investigation of various NOx aftertreatment technologies including non-thermal plasma, NOx adsorber and active lean NOx. Particulate Matter (PM) emissions were addressed by developing a catalyzed particulate filter. After various iterations of the catalyst formulation, the aftertreatment components were integrated and optimized for a light duty vehicle application. This compact exhaust aftertreatment system is dual leg and consists of a sulfur trap, NOx adsorbers, and catalyzed particulate filters (CPF). During regeneration, supplementary ARCO ECD low-sulfur diesel fuel is injected upstream of the adsorber and CPF in the exhaust. Steady state and transient emission test results with and without the exhaust aftertreatment system (EAS) are presented. Results of soot filter regeneration by injecting low-sulfur diesel fuel and slip of unregulated emissions, such as NH3, are discussed. Effects of adsorber size and bypass strategy on NOx conversion efficiency and fuel economy penalty are also presented in this paper. The results indicate that if the supplementary fuel injection is optimized, NH3 slip is negligible. During the FTP cycle, injection of low sulfur diesel fuel can create temperature exotherms high enough to regenerate a loaded CPF. With the optimized NOx adsorber regeneration strategies the fuel injection penalty can be reduced by 40 to 50%. Results for various other issues like low temperature light off, reductant optimization, exhaust sulfur management, system integration and design trade-off, are also presented and discussed in this paper. (SAE Paper SAE-2003-01-0041 © 2003 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.)

Mital, R.; Li, J.; Huang, S. C.; Stroia, B. J.; Yu, R. C. (Cummins, Inc.); Anderson, J.A. (Argonne National Laboratory); Howden, Kenneth C. (U.S. Department of Energy)

2003-03-01T23:59:59.000Z

99

Apps for Vehicles: Why should I care what data is in my car and what can be  

Open Energy Info (EERE)

Why should I care what data is in my car and what can be Why should I care what data is in my car and what can be done with this data (examples)? Home > Groups > Developer This question relates to energy hackathons and the OpenXC platform. More information at http://en.openei.org/wiki/Help:Energy_Hackathon_Resources Submitted by Rmckeel on 24 September, 2012 - 10:36 3 answers Points: 0 The goal of the Open Data initiative is to empower customers to use their data to their individual advantage. An eco-conscious individual may focus on data that reveals how driving patterns affect GHG emissions. Someone interested in vehicle performance may use it to compare engine operations given different oil weights or gasoline octane ratings to determine what engine inputs provide optimal performance. With the magnitude of data

100

Present Status and Marketing Prospects of the Emerging Hybrid-Electric and Diesel Technologies to Reduce CO2 Emissions of New Light-Duty Vehicles in California  

E-Print Network (OSTI)

economy and emissions of the Toyota and Honda Hybrid Cars (of the Toyota and Honda Hybrid Cars (2003) Vehicle Trans. /is uncertain. Hybrid-electric passenger cars are currently

Burke, Andy

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicles cars light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Feasible CAFE Standard Increases Using Emerging Diesel and Hybrid-Electric Technologies for Light-Duty Vehicles in the United States  

E-Print Network (OSTI)

the Toyota and Honda Hybrid Cars (2003) V e h i c l e Hondavehicles Full Hybrid Vehicle class Compact car Mid-size carthe hybrid powertrain technologies in the new car fleet

Burke, Andy; Abeles, Ethan C.

2004-01-01T23:59:59.000Z

102

Feasible Café Standard Increases Using Emerging Diesel and Hybrid-Electric Technologies for Light-Duty Vehicles in the United States  

E-Print Network (OSTI)

the Toyota and Honda Hybrid Cars (2003) V e h i c l e Hondavehicles Full Hybrid Vehicle class Compact car Mid-size carthe hybrid powertrain technologies in the new car fleet

Burke, Andy; Abeles, Ethan

2004-01-01T23:59:59.000Z

103

Vehicle Technologies Office: Fact #738: July 30, 2012 Number of New Light  

NLE Websites -- All DOE Office Websites (Extended Search)

8: July 30, 2012 8: July 30, 2012 Number of New Light Vehicle Dealerships Decreasing to someone by E-mail Share Vehicle Technologies Office: Fact #738: July 30, 2012 Number of New Light Vehicle Dealerships Decreasing on Facebook Tweet about Vehicle Technologies Office: Fact #738: July 30, 2012 Number of New Light Vehicle Dealerships Decreasing on Twitter Bookmark Vehicle Technologies Office: Fact #738: July 30, 2012 Number of New Light Vehicle Dealerships Decreasing on Google Bookmark Vehicle Technologies Office: Fact #738: July 30, 2012 Number of New Light Vehicle Dealerships Decreasing on Delicious Rank Vehicle Technologies Office: Fact #738: July 30, 2012 Number of New Light Vehicle Dealerships Decreasing on Digg Find More places to share Vehicle Technologies Office: Fact #738:

104

Interpersonal Influence within Car Buyers’ Social Networks: Five Perspectives on Plug-in Hybrid Electric Vehicle Demonstration Participants  

E-Print Network (OSTI)

speed? From the private car to CashCar Sharing. SPEED - A12(2): 106-119. Steg, L. (2005). "Car use: lust and must.and affective motives for car use." Transportation Research

Axsen, Jonn; Kurani, Kenneth S.

2009-01-01T23:59:59.000Z

105

Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Light-Duty Vehicle Light-Duty Vehicle Idle Reduction Strategies to someone by E-mail Share Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on Facebook Tweet about Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on Twitter Bookmark Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on Google Bookmark Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on Delicious Rank Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on Digg Find More places to share Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on AddThis.com... More in this section... Idle Reduction Benefits & Considerations Heavy-Duty Vehicles Medium-Duty Vehicles

106

Toyota Prius Plug-In HEV: A Plug-In Hybrid Electric Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet highlights the Toyota Prius plug-in HEV, a plug-in hybrid electric car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In partnership with the University of Colorado, NREL uses the vehicle for grid-integration studies and for testing new hardware and charge-management algorithms. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.

Not Available

2011-10-01T23:59:59.000Z

107

S/EV 91: Solar and electric vehicle symposium, car and trade show. Proceedings  

DOE Green Energy (OSTI)

These proceedings cover the fundamentals of electric vehicles. Papers on the design, testing and performance of the power supplies, drive trains, and bodies of solar and non-solar powered electric vehicles are presented. Results from demonstrations and races are described. Public policy on the economics and environmental impacts of using electric powered vehicles is also presented.

Not Available

1991-12-31T23:59:59.000Z

108

Alternative Fuels Data Center: Light-Duty Vehicle Data Collection Methods  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Data Collection Methods to someone by E-mail Data Collection Methods to someone by E-mail Share Alternative Fuels Data Center: Light-Duty Vehicle Data Collection Methods on Facebook Tweet about Alternative Fuels Data Center: Light-Duty Vehicle Data Collection Methods on Twitter Bookmark Alternative Fuels Data Center: Light-Duty Vehicle Data Collection Methods on Google Bookmark Alternative Fuels Data Center: Light-Duty Vehicle Data Collection Methods on Delicious Rank Alternative Fuels Data Center: Light-Duty Vehicle Data Collection Methods on Digg Find More places to share Alternative Fuels Data Center: Light-Duty Vehicle Data Collection Methods on AddThis.com... Light-Duty Vehicle Data Collection Methods To maintain the Light-Duty Vehicle Search tool, the National Renewable Energy Laboratory (NREL) gathers vehicle specifications, photos, and

109

Apps for Vehicles: Why should I care what data is in my car and...  

Open Energy Info (EERE)

interested in vehicle performance may use it to compare engine operations given different oil weights or gasoline octane ratings to determine what engine inputs provide optimal...

110

Apps for Vehicles: What is the OBD port in my car and what information...  

Open Energy Info (EERE)

set of standard messages and data streams that must be available on the OBD-II port many vehicle manufacturers are allowing additional data regarding throttle position, wind...

111

Interpersonal Influence within Car Buyers’ Social Networks: Five Perspectives on Plug-in Hybrid Electric Vehicle Demonstration Participants  

E-Print Network (OSTI)

my money in my beliefs…and buy a hybrid car to help promotethe production of further hybrid cars…that year they wereCar Buyers’ Social Networks: Five Perspectives on Plug-in Hybrid

Axsen, Jonn; Kurani, Kenneth S.

2009-01-01T23:59:59.000Z

112

An Emission Saved is an Emission Earned: An Empirical Study of Emission Banking for Light-Duty Vehicle Manufacturers  

E-Print Network (OSTI)

costs across vehicles and manufacturers are equal. In thefor individual vehicles and manufacturers differ from thefor Light-Duty Vehicle Manufacturers Jonathan D. Rubin

Rubin, Jonathan D.; Kling, Catherine

1993-01-01T23:59:59.000Z

113

The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis--A Reflively Designed Survey of New-car-buying, Multi-vehicle California Households  

E-Print Network (OSTI)

HOW MANY HYBRID HOUSEHOLDS IN THE CALIFORNIA NEW CAR MARKET?average 2.43 cars per household, then the hybrid householdnumber of multi-car households that fit our hybrid household

Turrentine, Thomas; Kurani, Kenneth

1995-01-01T23:59:59.000Z

114

An analysis of hybrid-electric vehicles as the car of the future  

E-Print Network (OSTI)

This thesis will examine the validity of the benefits of the Hybrid-Electric Vehicle (HEV). With the recent focus on energy initiatives, reflected through Bush's state of the union, as well as President Hockfield's MIT ...

Kang, Heejay

2007-01-01T23:59:59.000Z

115

City-Car : optimizing vehicle and urban efficiencies through a shared adaptive platform  

E-Print Network (OSTI)

Research focused on developing an innovative, yet simple automobile platform that maximizes its efficiency through shared convenience. Work was initially put into studying both current vehicles and urban architecture, in ...

Lark, William, 1981-

2005-01-01T23:59:59.000Z

116

Interpersonal Influence within Car Buyers’ Social Networks: Five Perspectives on Plug-in Hybrid Electric Vehicle Demonstration Participants  

E-Print Network (OSTI)

Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Whyearly market for hybrid electric vehicles." TransportationPlug-in Hybrid Electric Vehicle (PHEV) Demonstration and

Axsen, Jonn; Kurani, Kenneth S.

2009-01-01T23:59:59.000Z

117

Interpersonal Influence within Car Buyers’ Social Networks: Five Perspectives on Plug-in Hybrid Electric Vehicle Demonstration Participants  

E-Print Network (OSTI)

in relation to the electric vehicle." Science Technology &Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Whyearly market for hybrid electric vehicles." Transportation

Axsen, Jonn; Kurani, Kenneth S.

2009-01-01T23:59:59.000Z

118

The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis--A Reflively Designed Survey of New-car-buying, Multi-vehicle California Households  

E-Print Network (OSTI)

gas vehicles and hybrid electric vehicles, in addition toof range, and hybrid electric vehicles with 140 and 180possible designs of hybrid electric vehicles pose complex

Turrentine, Thomas; Kurani, Kenneth

1995-01-01T23:59:59.000Z

119

Electric Energy and Power Consumption by Light-Duty Plug-in Electric Vehicles  

E-Print Network (OSTI)

.S. roads alone by 2015. PEVs-- either plug-in hybrid electric vehicles (PHEVs) or pure electric vehicles (EVs)--adopt similar drivetrain configurations as hybrid electric vehicles (HEVs) [21 Electric Energy and Power Consumption by Light-Duty Plug-in Electric Vehicles Di Wu, Student

Tesfatsion, Leigh

120

Are hybrid cars too quiet?  

Science Conference Proceedings (OSTI)

The increase in availability of alternative fuel vehicles has elicited concerns for pedestrians who might not hear the approach of these quieter cars. Three experiments tested the relative audibility of hybrid vehicles (in their electric mode) and internal combustion engine (ICE) cars. Binaural recordings were made of the cars approaching from either the right or left

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicles cars light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Myths Regarding Alternative Fuel Vehicle Demand by Light-Duty Vehicle Fleets  

E-Print Network (OSTI)

respondents believe compressed natural gas vehicles are asrespondents believe compressed natural gas vehicles are lessbelieved that compressed natural gas vehicles (CNGVs) were

Nesbitt, Kevin; Sperling, Daniel

1998-01-01T23:59:59.000Z

122

Vehicle Technologies Office: Fact #571: May 18, 2009 Light Truck CAFE  

NLE Websites -- All DOE Office Websites (Extended Search)

1: May 18, 2009 1: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation to someone by E-mail Share Vehicle Technologies Office: Fact #571: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation on Facebook Tweet about Vehicle Technologies Office: Fact #571: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation on Twitter Bookmark Vehicle Technologies Office: Fact #571: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation on Google Bookmark Vehicle Technologies Office: Fact #571: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation on Delicious Rank Vehicle Technologies Office: Fact #571: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation on Digg Find More places to share Vehicle Technologies Office: Fact #571: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation on

123

Vehicle Technologies Office: Fact #357: January 31, 2005 Growth in Light  

NLE Websites -- All DOE Office Websites (Extended Search)

7: January 31, 7: January 31, 2005 Growth in Light Truck Registrations to someone by E-mail Share Vehicle Technologies Office: Fact #357: January 31, 2005 Growth in Light Truck Registrations on Facebook Tweet about Vehicle Technologies Office: Fact #357: January 31, 2005 Growth in Light Truck Registrations on Twitter Bookmark Vehicle Technologies Office: Fact #357: January 31, 2005 Growth in Light Truck Registrations on Google Bookmark Vehicle Technologies Office: Fact #357: January 31, 2005 Growth in Light Truck Registrations on Delicious Rank Vehicle Technologies Office: Fact #357: January 31, 2005 Growth in Light Truck Registrations on Digg Find More places to share Vehicle Technologies Office: Fact #357: January 31, 2005 Growth in Light Truck Registrations on AddThis.com...

124

The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis -- A Reflexively Designed Survey of New-Car-Buying Multi-Vehicle California Households  

E-Print Network (OSTI)

by electric and hybrid vehicles", SAETechmcal Papers No.may response to hybrid vehicles Finally, we suggest thatsamebetweenvehicle tyoes. Hybrid Vehicles for examplecost a

Turrentine, Thomas; Kurani, Kenneth S.

2001-01-01T23:59:59.000Z

125

The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis--A Reflively Designed Survey of New-car-buying, Multi-vehicle California Households  

E-Print Network (OSTI)

by electric and hybrid vehicles", SAE Technical Papers No.household response to hybrid vehicles. Finally, we suggestas electric or hybrid vehicles. Transitions in choices of

Turrentine, Thomas; Kurani, Kenneth

1995-01-01T23:59:59.000Z

126

The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis -- A Reflexively Designed Survey of New-Car-Buying Multi-Vehicle California Households  

E-Print Network (OSTI)

gas vebacles and hybrid electric vehicles, maddition tocontrast to a hybrid electric vehicle that combines electrichousehold.In contrast to a hybrid electric vehicle that of

Turrentine, Thomas; Kurani, Kenneth S.

2001-01-01T23:59:59.000Z

127

Myths Regarding Alternative Fuel Vehicle Demand by Light-Duty Vehicle Fleets  

E-Print Network (OSTI)

unlikely). For electric vehicles the primary safety concernsand safety issues of nickel metal-hydride batteries for electric vehicles.

Nesbitt, Kevin; Sperling, Daniel

1998-01-01T23:59:59.000Z

128

A Demand Forecasting System for Clean-Fuel Vehicles  

E-Print Network (OSTI)

potential demand for electric cars. Journal of Econometrics,car by multi-vehicle households and the demand for electricelectric) vehicles, beginning with 2 percent of annual car

Brownstone, David; Bunch, David S.; Golob, Thomas F.

1994-01-01T23:59:59.000Z

129

Interpersonal Influence within Car Buyers’ Social Networks: Five Perspectives on Plug-in Hybrid Electric Vehicle Demonstration Participants  

E-Print Network (OSTI)

promoted electric and hybrid vehicles to reduce urban airthe vehicle, and from hybrid vehicles, i.e. , adding batteryHaving researched hybrid vehicle and other pro-environmental

Axsen, Jonn; Kurani, Kenneth S.

2009-01-01T23:59:59.000Z

130

CC 1 CAR 0 CAR 100 CAR 96 CC 2 CAR 1 CC 3 CAR 2 CAR 4 CC ...  

E-Print Network (OSTI)

CC 1 CAR 0 CAR 100 CAR 96 CC 2 CAR 1 CC 3 CAR 2 CAR 4 CC 4 CAR 3 CAR 99 CAR 97 CAR 98 CC 5 CAR 5 CAR 7 CAR 81 CAR 140 CAR 80 CAR 79  ...

131

Search for Model Year 2002 Vehicles by EPA Size Class  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Select Class... Compact Cars Large Cars Midsize Cars Midsize Station Wagons Minicompact Cars Minivan Small Pickup Trucks Small Station Wagons Sport Utility Vehicle Standard...

132

Search for Model Year 2000 Vehicles by EPA Size Class  

NLE Websites -- All DOE Office Websites (Extended Search)

0 Select Class... Compact Cars Large Cars Midsize Cars Midsize Station Wagons Minicompact Cars Minivan Small Pickup Trucks Small Station Wagons Sport Utility Vehicle Standard...

133

Search for Model Year 2009 Vehicles by EPA Size Class  

NLE Websites -- All DOE Office Websites (Extended Search)

09 Select Class... Compact Cars Large Cars Midsize Cars Midsize Station Wagons Minicompact Cars Minivan Small Pickup Trucks Small Station Wagons Sport Utility Vehicle Standard...

134

Search for Model Year 2010 Vehicles by EPA Size Class  

NLE Websites -- All DOE Office Websites (Extended Search)

10 Select Class... Compact Cars Large Cars Midsize Cars Midsize Station Wagons Minicompact Cars Minivan Small Pickup Trucks Small Station Wagons Special Purpose Vehicles Sport...

135

Search for Model Year 2008 Vehicles by EPA Size Class  

NLE Websites -- All DOE Office Websites (Extended Search)

08 Select Class... Compact Cars Large Cars Midsize Cars Midsize Station Wagons Minicompact Cars Minivan Small Pickup Trucks Small Station Wagons Sport Utility Vehicle Standard...

136

Search for Model Year 1998 Vehicles by EPA Size Class  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Select Class... Compact Cars Large Cars Midsize Cars Midsize-Large Station Wagons Minicompact Cars Minivan Small Pickup Trucks Small Station Wagons Special Purpose Vehicles...

137

Search for Model Year 1996 Vehicles by EPA Size Class  

NLE Websites -- All DOE Office Websites (Extended Search)

6 Select Class... Compact Cars Large Cars Midsize Cars Midsize-Large Station Wagons Minicompact Cars Minivan Small Pickup Trucks Small Station Wagons Special Purpose Vehicles...

138

Search for Model Year 1990 Vehicles by EPA Size Class  

NLE Websites -- All DOE Office Websites (Extended Search)

0 Select Class... Compact Cars Large Cars Midsize Cars Midsize-Large Station Wagons Minicompact Cars Small Pickup Trucks Small Station Wagons Special Purpose Vehicles Standard...

139

Search for Model Year 2003 Vehicles by EPA Size Class  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Select Class... Compact Cars Large Cars Midsize Cars Midsize Station Wagons Minicompact Cars Minivan Small Pickup Trucks Small Station Wagons Special Purpose Vehicle Cab C...

140

Search for Model Year 2006 Vehicles by EPA Size Class  

NLE Websites -- All DOE Office Websites (Extended Search)

6 Select Class... Compact Cars Large Cars Midsize Cars Midsize Station Wagons Minicompact Cars Minivan Minivan - 2WD Small Station Wagons Sport Utility Vehicle Standard Pickup...

Note: This page contains sample records for the topic "vehicles cars light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Search for Model Year 1997 Vehicles by EPA Size Class  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Select Class... Compact Cars Large Cars Midsize Cars Midsize-Large Station Wagons Minicompact Cars Minivan Small Pickup Trucks Small Station Wagons Special Purpose Vehicles Sport...

142

Search for Model Year 2007 Vehicles by EPA Size Class  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Select Class... Compact Cars Large Cars Midsize Cars Midsize Station Wagons Minicompact Cars Minivan Small Station Wagons Sport Utility Vehicle Standard Pickup Trucks Subcompact...

143

Search for Model Year 1994 Vehicles by EPA Size Class  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Select Class... Compact Cars Large Cars Midsize Cars Midsize-Large Station Wagons Minicompact Cars Small Pickup Trucks Small Station Wagons Special Purpose Vehicles Standard...

144

Search for Model Year 2004 Vehicles by EPA Size Class  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Select Class... Compact Cars Large Cars Midsize Cars Midsize Station Wagons Minicompact Cars Minivan Small Station Wagons Sport Utility Vehicle Standard Pickup Trucks Subcompact...

145

Search for Model Year 1999 Vehicles by EPA Size Class  

NLE Websites -- All DOE Office Websites (Extended Search)

9 Select Class... Compact Cars Large Cars Midsize Cars Midsize Station Wagons Minicompact Cars Minivan Small Pickup Trucks Small Station Wagons Special Purpose Vehicle Sport...

146

Search for Model Year 2001 Vehicles by EPA Size Class  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Select Class... Compact Cars Large Cars Midsize Cars Midsize Station Wagons Minicompact Cars Minivan Small Pickup Trucks Small Station Wagons Special Purpose Vehicle Sport...

147

Evaluating the impact of advanced vehicle and fuel technologies in U.S. light duty vehicle fleet  

E-Print Network (OSTI)

The unrelenting increase in oil use by the U.S. light-duty vehicle (LDV) fleet presents an extremely challenging energy and environmental problem. A variety of propulsion technologies and fuels have the promise to reduce ...

Bandivadekar, Anup P

2008-01-01T23:59:59.000Z

148

The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis--A Reflively Designed Survey of New-car-buying, Multi-vehicle California Households  

E-Print Network (OSTI)

of electric vehicles the safety of compressed gas vehicleselectric vehicles the practicality of home recharging or the safety

Turrentine, Thomas; Kurani, Kenneth

1995-01-01T23:59:59.000Z

149

Light-Duty Vehicle Program Emissions Results (Interim Results...  

NLE Websites -- All DOE Office Websites (Extended Search)

Procedure (FTP) emissions testing of flexible- fuel methanol, ethanol, and dedicated CNG vehicles from the U. S. Federal Fleet was completed in 1995. The vehicles tested in the...

150

Light-Duty Vehicle Energy Consumption by Fuel Type from EIA AEO...  

Open Energy Info (EERE)

Linked Data Search Share this page on Facebook icon Twitter icon Light-Duty Vehicle Energy Consumption by Fuel Type from EIA AEO 2011 Early Release Dataset Summary...

151

Desulfurization Effects on a Light-Duty Diesel Vehicle NOx Adsorber Exhaust Emission Control System  

DOE Green Energy (OSTI)

Analyzes the effects on gaseous emissions, before and after desulfurization, on a light-duty diesel vehicle with a NOx adsorber catalyst.

Tatur, M.; Tomazic, D.; Tyrer, H.; Thornton, M.; Kubsh, J.

2006-05-01T23:59:59.000Z

152

Southern California: The Detroit of Electric Cars?  

E-Print Network (OSTI)

electric cars as a potential solution. and susceptible to rapid change; (c) con- ulations governing vehicle safety

Scott, Allen J.

1993-01-01T23:59:59.000Z

153

APBF-DEC NOx Adsorber/DPF Project: Light-Duty Passenger Car Platform  

DOE Green Energy (OSTI)

A 1.9L turbo direct injection (TDI) diesel engine was modified to achieve the upcoming Tier 2 Bin 5 emission standard in combination with a NOx adsorber catalyst (NAC) and a diesel particulate filter (DPF). The primary objective for developing this test bed is to investigating the effects of different fuel sulfur contents on the performance of an advanced emission control system (ECS) in a light-duty application. During the development process, the engine-out emissions were minimized by applying a state-of-the-art combustion system in combination with cooled exhaust gas recirculation (EGR). The subsequent calibration effort resulted in emission levels requiring 80-90 percent nitrogen-oxide (NOx) and particulate matter (PM) conversion rates by the corresponding ECS. The strategy development included ean/rich modulation for NAC regeneration, as well as, the desulfurization of the NAC and the regeneration of the DPF. Two slightly different ECS were investigated and calibrated. The initial vehicle results in an Audi A4 station wagon over the federal test procedure (FTP), US 06, and the highway fuel economy test (HFET) cycle indicate the potential of these configuration to meet the future Tier 2 emission standard.

Tomazic, D; Tatur, M; Thornton, M

2003-08-24T23:59:59.000Z

154

Vehicle Technologies Office: 2012 Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Archive 2 Archive #760 Commuting to Work, 1960-2010 December 31, 2012 #759 Rural vs. Urban Driving Differences December 24, 2012 #758 U.S. Production of Crude Oil by State, 2011 December 17, 2012 #757 The U.S. Manufactures More Light Trucks than Cars December 10, 2012 #756 Midwest Produces Two-Thirds of All Light Vehicles December 3, 2012 #755 Chargepoint, Blink and Nissan Take the Lead in Public Electric Vehicle Chargers November 26, 2012 #754 Vehicle Sales in the U.S. and China, 2002-2011 November 19, 2012 #753 Sources of Electricity by State November 12, 2012 #752 Western Europe Plug-in Car Sales, 2012 November 5, 2012 #751 Plug-in Car Sales Higher in the U.S. Compared to Western Europe and China October 29, 2012 #750 Electric Vehicle Energy Requirements for Combined City/Highway Driving October 22, 2012

155

Myths Regarding Alternative Fuel Vehicle Demand by Light-Duty Vehicle Fleets  

E-Print Network (OSTI)

unlikely). For electric vehicles the primary safety concernsand safety issues of mckel C M metal-hydride batteries for electric vehicles

Nesbitt, Kevin; Sperling, Daniel

1998-01-01T23:59:59.000Z

156

Myths Regarding Alternative Fuel Vehicle Demand by Light-Duty Vehicle Fleets  

E-Print Network (OSTI)

respondents beheve compressed natural gas vehicles are asbelieved that compressed natural gas vehlcles (CNGVs) werethat he converts compressed natural gas vehicles back to

Nesbitt, Kevin; Sperling, Daniel

1998-01-01T23:59:59.000Z

157

Used Car Fuel Economy Label  

NLE Websites -- All DOE Office Websites (Extended Search)

Actual fuel economy will vary for many reasons, including driving conditions and how the car was driven and maintained. Aftermarket modifications to the vehicle can affect fuel...

158

Cars on a diet : the material and energy impacts of passenger vehicle weight reduction in the U.S.  

E-Print Network (OSTI)

Vehicle weight reduction is a known strategy to address growing concerns about greenhouse gas emissions and fuel use by passenger vehicles. We find that every 10% reduction in vehicle weight can cut fuel consumption by ...

Cheah, Lynette W. (Lynette Wan Ting)

2010-01-01T23:59:59.000Z

159

Vehicle Technologies Office: 2010 Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

0 Archive 0 Archive #655 New Freight Analysis Tool December 27, 2010 #654 New Light Vehicle Leasing is Big in 2010 December 20, 2010 #653 Import Cars and Trucks Gaining Ground December 13, 2010 #652 U.S. Crude Oil Production Rises December 6, 2010 #651 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 November 29, 2010 #650 Diesel Fuel Prices hit a Two-Year High November 22, 2010 #649 Number of New Light Vehicle Dealerships Continues to Shrink November 15, 2010 #648 Conventional and Alternative Fuel Prices November 8, 2010 #647 Sales Shifting from Light Trucks to Cars November 1, 2010 #646 Prices for Used Vehicles Rise Sharply from 2008 to 2010 October 25, 2010 #645 Price of Diesel versus Gasoline in Europe October 18, 2010 #644 Share of Diesel Vehicle Sales Decline in Western Europe October 11, 2010

160

Vehicle Technologies Office: Fact #536: September 15, 2008 Average...  

NLE Websites -- All DOE Office Websites (Extended Search)

6: September 15, 2008 Average Used Car Prices Up and Used Light Truck Prices Down to someone by E-mail Share Vehicle Technologies Office: Fact 536: September 15, 2008 Average Used...

Note: This page contains sample records for the topic "vehicles cars light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis -- A Reflexively Designed Survey of New-Car-Buying Multi-Vehicle California Households  

E-Print Network (OSTI)

and the demand electric vehicles", Transportation ResearchA,Critical Review Electric Vehicle MarketStudies", ReleasableR. (1993) Report of the Electric Vehicle at-HomeRefi~ehng

Turrentine, Thomas; Kurani, Kenneth S.

2001-01-01T23:59:59.000Z

162

The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis--A Reflively Designed Survey of New-car-buying, Multi-vehicle California Households  

E-Print Network (OSTI)

a sidebar to a longer article on electric vehicles. ) Cogan,R. Electric vehicles: Powerplay on the auto circuit. MotorA Critical Review of Electric Vehicle Market Studies",

Turrentine, Thomas; Kurani, Kenneth

1995-01-01T23:59:59.000Z

163

San Francisco City CarShare: Travel-Demand Trends and Second-Year Impacts  

E-Print Network (OSTI)

influenced private-car usage, belonging to City CarSharesurvey about their car-share usage. Members completed theUsage Exhibit B.1. City CarShare In-Vehicle Survey Instrument CITY CARSHARE SURVEY -- Car

Cervero, Robert; Tsai, Yu-Hsin

2003-01-01T23:59:59.000Z

164

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

The All American Utility Vehicle is built on a rust-proof, all-aluminum chassis. Sunray Solar Tops supplied by Eco Trans Alliance, LLC, allows the vehicle to convert solar energy...

165

EcoCAR Challenge 2011  

NLE Websites -- All DOE Office Websites (Extended Search)

Virginia Tech Wins EcoCAR Competition With an Extended-Range Electric Vehicle, The Ohio State University and the University of Waterloo Finish Second and Third Virginia Tech Wins EcoCAR Competition With an Extended-Range Electric Vehicle, The Ohio State University and the University of Waterloo Finish Second and Third EcoCAR logo VirginiaTech EcoCAR winner EcoCAR Winner Virginia Tech. View larger image. Students from Virginia Tech University learned last night that their teamwork, perseverance and hard work have led to top honors when they were named the overall winners of EcoCAR: The NeXt Challenge after designing and building an exceptional extended-range electric vehicle (EREV) using E85 (ethanol). Throughout the three-year competition, the Virginia Tech team hit incremental goals that helped the vehicle achieve fuel efficiency of 81.9 miles per gallon gasoline equivalent, or 70 percent over the stock vehicle,

166

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Q5 Hybrid (2013) Fuel: Hybrid Electric (Hybrid Electric) Class: Sport Utility Vehicle Fuel Economy (Gasoline): 24 mpg city, 30...

167

Vehicle Technologies Office: Favorites  

NLE Websites -- All DOE Office Websites (Extended Search)

Favorites to someone by Favorites to someone by E-mail Share Vehicle Technologies Office: Favorites on Facebook Tweet about Vehicle Technologies Office: Favorites on Twitter Bookmark Vehicle Technologies Office: Favorites on Google Bookmark Vehicle Technologies Office: Favorites on Delicious Rank Vehicle Technologies Office: Favorites on Digg Find More places to share Vehicle Technologies Office: Favorites on AddThis.com... Favorites #248 Top Ten Net Petroleum Importing Countries, 2000 December 23, 2002 #246 U.S. Oil Imports - Top 10 Countries of Origin December 9, 2002 #244 Sport Utility Vehicle Spotlight November 25, 2002 #243 Fuel Economy Leaders for 2003 Model Year Light Trucks November 18, 2002 #242 Fuel Economy Leaders for 2003 Model Year Cars November 11, 2002 #238 Automobile and Truck Population by Vehicle Age, 2001 October 14, 2002

168

Car Sharing within Households –  

E-Print Network (OSTI)

The objective of this paper was to analyse two activities: who rents a car and why? Which households share the driving of their cars? In order to do that, the Parc-Auto (Car-Fleet) database, built from annual postal surveys conducted with a panel of 10,000 French households, has been processed. Among approximately one hundred questions in the survey, two key questions have been crossed against many social, economic, demographic, geographic or time variables. KQ1: “During the last 12 months, did you — or another person from your home — rent a car in France for personal purposes? ” KQ2: “Is this car occasionally used by other persons?” Here are the main findings. Renting households are mainly working, high income households, living in the core of big cities, and in particular in Paris. Most of them have two wage-sheets and two cars, one of which is generally a recent, high power, high quality car. Car rental is mainly an occasional practice. Yet for a minority of renters, it is a sustained habit. Households with more licence holders than cars share the most: about three quarters of them share their cars. On the contrary, single driver-single car households have less opportunity to share: only 15 % share. Household car sharing shed light on the gender role within households: while 58 % of the main users of the shared cars are male, 55 % of secondary users are female. Household car sharing is mainly a regular practice. Finally, without diminishing the merits of innovative transport solutions proposed here and there, it is not a waste of time to give some insight on self established behaviour within households. This reveals that complex patterns have been built over time by the people themselves, to cope with diverse situations that cannot be easily handled by straightforward classifications. The car cannot be reduced to a personal object. Household car sharing also carries strong links with the issue of car dependency. Sifting car availability and choice

Francis Papon; Laurent Hivert

2008-01-01T23:59:59.000Z

169

California Greenhouse Gas Emissions Standards for Light-Duty Vehicles (Update) (released in AEO2006)  

Reports and Publications (EIA)

The State of California was given authority under CAAA90 to set emissions standards for light-duty vehicles that exceed Federal standards. In addition, other States that do not comply with the National Ambient Air Quality Standards (NAAQS) set by the EPA under CAAA90 were given the option to adopt Californias light-duty vehicle emissions standards in order to achieve air quality compliance. CAAA90 specifically identifies hydrocarbon, carbon monoxide, and NOx as vehicle-related air pollutants that can be regulated. California has led the Nation in developing stricter vehicle emissions standards, and other States have adopted the California standards.

Information Center

2006-02-01T23:59:59.000Z

170

2014 Best and Worst MPG Cars  

NLE Websites -- All DOE Office Websites (Extended Search)

Cars Cars 2014 Most Efficient Cars by EPA Size Class (including Electric Drive Vehicles) 2014 Most Efficient Cars by EPA Size Class (excluding Electric Drive Vehicles) 2014 Least Efficient Cars by EPA Size Class 2014 Most Fuel Efficient Cars (including electric vehicles) EPA Class Vehicle Description Fuel Economy Combined Two-Seaters smart fortwo electric drive Convertible A-1, 55kw DCPM, Electric Vehicle 107* smart fortwo electric drive coupe smart fortwo electric drive coupe A-1, 55kw DCPM, Electric Vehicle 107* Minicompacts Fiat 500e Fiat 500e A-1, 82 kW AC Induction, Electric Vehicle 116* Subcompacts Chevrolet Spark EV Chevrolet Spark EV A-1, 104 kW ACPM, Electric Vehicle< 119* Compacts Ford Focus Electric Ford Focus Electric Automatic (CVT), 107 kW AC Induction, Electric Vehicle

171

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric (Dedicated) Class: Neighborhood Electric Vehicle Estimated Range: 35 city Battery: 6 12-volt flooded electrolyte Dealer: Locate a dealer Description: The GEM e2 is a...

172

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric (Dedicated) Class: Neighborhood Electric Vehicle Estimated Range: 30 city Battery: absorbed glass mat lead-acid (6 12-volt batteries) Engine: Brushless 3 phase...

173

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Passenger Van (2011) Fuel: Electric (Dedicated) Class: Neighborhood Electric Vehicle Battery: 6 12-volt lead acid (72) Dealer: Locate a dealer Description: The Greentruck EVP1000...

174

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric (Dedicated) Class: Neighborhood Electric Vehicle Estimated Range: 40 city Battery: Absorbed glass mat lead-acid (6 12-volt batteries) Dealer: Locate a dealer...

175

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Crew Cab (2011) Fuel: Electric (Dedicated) Class: Neighborhood Electric Vehicle Battery: 6 12-volt lead-acid (72) Dealer: Locate a dealer Description: The Greentruck EVX1000...

176

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric (Dedicated) Class: Neighborhood Electric Vehicle Estimated Range: 40 city Battery: 9 8-volt gel batteries Engine: 7.0 hp motor Dealer: Locate a dealer Description: The...

177

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric (Dedicated) Class: Neighborhood Electric Vehicle Estimated Range: 35 city Battery: 6 12-volt flooded electrolyte Dealer: Locate a dealer Description: The GEM eS is a...

178

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric (Dedicated) Class: Neighborhood Electric Vehicle Estimated Range: 40 city Battery: 6 12-volt lead-acid Dealer: Locate a dealer Description: The Greentruck EVC1000 is a...

179

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric (Dedicated) Class: Neighborhood Electric Vehicle Estimated Range: 30 city Battery: 6 12-volt gel batteries Dealer: Locate a dealer Description: The GEM e6 has seating...

180

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric (Dedicated) Class: Neighborhood Electric Vehicle Estimated Range: 30 city Battery: 6 12-volt flooded electrolyte Dealer: Locate a dealer Description: The GEM eS is a...

Note: This page contains sample records for the topic "vehicles cars light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric (Dedicated) Class: Neighborhood Electric Vehicle Estimated Range: 30 city Battery: 6 12-volt flooded electrolyte Dealer: Locate a dealer Description: The GEM e4 has...

182

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Extended Cab (2011) Fuel: Electric (Dedicated) Class: Neighborhood Electric Vehicle Battery: 12 6-volt lead-acid (72 volts) Dealer: Locate a dealer Description: The Greentruck...

183

Intelligent Car System  

E-Print Network (OSTI)

In modern life the road safety has becomes the core issue. One single move of a driver can cause horrifying accident. The main goal of intelligent car system is to make communication with other cars on the road. The system is able to control to speed, direction and the distance between the cars the intelligent car system is able to recognize traffic light and is able to take decision according to it. This paper presents a framework of the intelligent car system. I validate several aspect of our system using simulation.

Siddique, Qasim

2012-01-01T23:59:59.000Z

184

Vehicle Technologies Office: Favorites  

NLE Websites -- All DOE Office Websites (Extended Search)

Favorites Favorites #248 Top Ten Net Petroleum Importing Countries, 2000 December 23, 2002 #246 U.S. Oil Imports - Top 10 Countries of Origin December 9, 2002 #244 Sport Utility Vehicle Spotlight November 25, 2002 #243 Fuel Economy Leaders for 2003 Model Year Light Trucks November 18, 2002 #242 Fuel Economy Leaders for 2003 Model Year Cars November 11, 2002 #238 Automobile and Truck Population by Vehicle Age, 2001 October 14, 2002 #234 2003 Model Year Alternative Fuel Vehicles September 16, 2002 #233 Vehicles per Thousand People: U.S. Compared to Other Countries September 9, 2002 #230 Hybrid Electric Vehicles in the United States August 19, 2002 #229 Medium and Heavy Truck Sales August 12, 2002 #228 New Light Vehicle Sales Shares, 1976-2001 August 5, 2002

185

The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis--A Reflively Designed Survey of New-car-buying, Multi-vehicle California Households  

E-Print Network (OSTI)

even after purchase incentives for natural gas and electricnatural gas, and gasoline vehicles. The use of purchase incentives

Turrentine, Thomas; Kurani, Kenneth

1995-01-01T23:59:59.000Z

186

Mobility Chains Analysis of Technologies for Passenger Cars and Light-Duty Vehicles  

E-Print Network (OSTI)

biological processes, thermochemical processes, and steam and electricity generation. The Role of Biomass BOUNDARY Fuel pathways simulated in this study are divided into five stages: biomass farming; biomass it undergoes anaerobic and aerobic fermentation. In the thermochemical plant (TCP), biomass feedstock undergoes

Argonne National Laboratory

187

Efficiency Improvement Opportunities for Light-Duty Natural-Gas-Fueled Vehicles  

Science Conference Proceedings (OSTI)

The purpose of this report is to evaluate and make recommendations concerning technologies that promise to improve the efilciency of compressed natural gas (CNG) light-duty vehicles. Technical targets for CNG automotive technology given in the March 1998 OffIce of Advanced Automotive Technologies research and development plan were used as guidance for this effort. The technical target that necessitates this current study is to validate technologies that enable CNG light vehicles to have at least 10% greater - fuel economy (on a miles per gallon equivalent basis) than equivalent gasoline vehicles by 2006. Other tar- gets important to natural gas (NG) automotive technology and this study are to: (1) increase CNG vehicle range to 380 miles, (2) reduce the incremental vehicle cost (CNG vs gasoline) to $1500, and (3) meet the California ultra low-emission vehicle (ULEV) and Federal Tier 2 emission standards expected to be in effect in 2004.

Staunton, R.H.; Thomas, J.F.

1998-12-01T23:59:59.000Z

188

Light-Duty Alternative Fuel Vehicles: Federal Test Procedure Emissions Results  

DOE Green Energy (OSTI)

In support of the U.S. Department of Energy's development and deployment of alternative fuels for environmental and national security reasons, NREL has managed a series of light-duty vehicle emissions tests on alternative fuel vehicles (AFVs). The purpose of this report is to give a detailed evaluation of the final emissions test results on vehicles tested on methanol, ethanol, and compressed natural gas.

Kelly, K.; Eudy, L.; Coburn, T.

1999-12-13T23:59:59.000Z

189

Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

LIGHT-DUTY VEHICLES LIGHT-DUTY VEHICLES Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies TRANSPORTATION ENERGY FUTURES SERIES: Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy March 2013 Prepared by ARGONNE NATIONAL LABORATORY Argonne, Illinois 60439 managed by U Chicago Argonne, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC02-06CH11357 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or

190

Figure 71. Average fuel economy of new light-duty vehicles, 1980 ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 71. Average fuel economy of new light-duty vehicles, 1980-2040 (miles per gallon, CAFE compliance values) History Reference case

191

Can U.S. Supply Accommodate Shifts to Diesel-Fueled Light-Duty Vehicles?  

Reports and Publications (EIA)

The presentation explores if diesel-fueled light-duty vehicle growth in the U.S. might be large enough to create refinery constraints that would hinder that growth.

Information Center

2005-10-12T23:59:59.000Z

192

Investigating the Mobility of Light Autonomous Tracked Vehicles Using a High Performance Computing  

E-Print Network (OSTI)

Investigating the Mobility of Light Autonomous Tracked Vehicles Using a High Performance Computing limiting the scope and impact of high performance computing (HPC). This scenario is rapidly changing due

193

An Analysis of the Relationship between Casualty Risk Per Crash and Vehicle Mass and Footprint for Model Year 2000-2007 Light-Duty Vehicles-Preliminary report  

E-Print Network (OSTI)

variables, on 13-state casualty risk per crash, lightvariables, on 13-state casualty risk per crash, lighton crashes with heavier light-duty trucks, by case vehicle

Wenzel, Tom

2013-01-01T23:59:59.000Z

194

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Q5 (2013) Fuel: Flex Fuel (E85) (Flexible Fuel) Class: Sport Utility Vehicle Fuel Economy (Gasoline): 20 mpg city, 28 mpg highway Fuel Economy (Flex Fuel (E85)): 14 mpg city, 19...

195

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Jeep - Grand Cherokee 2WD AWD (2014) Fuel: Flex Fuel (E85) (Flexible Fuel) Class: Sport Utility Vehicle Fuel Economy (Gasoline): 17 mpg city, 24 mpg highway Fuel Economy (Flex...

196

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Q5 AWD (2014) Fuel: Flex Fuel (E85) Class: Sport Utility Vehicle Fuel Economy (gasoline): 20 mpg city, 28 mpg highway Fuel Economy (E85): 14 mpg city, 19...

197

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Audi - Q5 Hybrid, AWD (2014) Fuel: Hybrid Electric Class: Sport Utility Vehicle Fuel Economy: 24 mpg city, 30 mpg highway Emission Certification: LEV II ULEV, Tier 2 Bin 5 Engine:...

198

Demonstration of Alternative Fuel, Light and Heavy Duty Vehicles in State and Municipal Vehicle Fleets  

Science Conference Proceedings (OSTI)

This project involved the purchase of two Compressed Natural Gas School Buses and two electric Ford Rangers to demonstrate their viability in a municipal setting. Operational and maintenance data were collected for analysis. In addition, an educational component was undertaken with middle school children. The children observed and calculated how electric vehicles could minimize pollutants through comparison to conventionally powered vehicles.

Kennedy, John H.; Polubiatko, Peter; Tucchio, Michael A.

2002-02-06T23:59:59.000Z

199

EcoCAR Design and Development Process for a Plug-in E85 Split Parallel Architecture Hybrid Electric Vehicle  

E-Print Network (OSTI)

requirements. A literature review was performed to understand the potential of vehicle subsystems and their interactions on a total vehicle level. The Controls Subteam utilized the Powertrain Systems Analysis Toolkit (PSAT) to model the stock vehicle. This information is used in the hybrid component selection and sizing. The result of this design process is a hybrid vehicle powertrain that can be classified as an Extended Range Electric Vehicle (EREV), built on a Split Parallel Architecture (SPA) that uses grid electric energy and E85 fuel. The platform can meet or exceed the stock performance requirements while reducing petroleum energy consumption by an estimated 80 %. The vehicle design is predicted to achieve an SAE J1711 utility factor corrected fuel consumption of 2.4 l/100 km (100 mpgge) with an estimated all electric range of 75 km (47 miles). Using E-85 fuel (corn-based in North America for the 2015 timeframe), the well-to-wheel petroleum energy use and greenhouse gas emissions are reduced by 80 % and 40 % respectively when compared to the stock 4-cylinder gasoline vehicle. The design and control strategy are tested on a controller Hardware-in-the-Loop (HIL) chassis combined with the actual Hybrid Vehicle Supervisory Controller and software for the competition vehicle.

Gantt Lynn; Nelson Doug; Christensen Jason; Robinson Adam

2009-01-01T23:59:59.000Z

200

Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles  

E-Print Network (OSTI)

of Oregon Hybrid Gas-Electric Car Owners. July 2003. [14]of electric vehicles and the lack of stylish small car

Heffner, Reid R.; Kurani, Ken; Turrentine, Tom

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicles cars light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity, Hydrogen/CNG Blended Fuels Performance Testing in a Ford F-150  

Science Conference Proceedings (OSTI)

Federal regulation requires energy companies and government entities to utilize alternative fuels in their vehicle fleets. To meet this need, several automobile manufacturers are producing compressed natural gas (CNG)-fueled vehicles. In addition, several converters are modifying gasoline-fueled vehicles to operate on both gasoline and CNG (Bifuel). Because of the availability of CNG vehicles, many energy company and government fleets have adopted CNG as their principle alternative fuel for transportation. Meanwhile, recent research has shown that blending hydrogen with CNG (HCNG) can reduce emissions from CNG vehicles. However, blending hydrogen with CNG (and performing no other vehicle modifications) reduces engine power output, due to the lower volumetric energy density of hydrogen in relation to CNG. Arizona Public Service (APS) and the U.S. Department of Energy’s Advanced Vehicle Testing Activity (DOE AVTA) identified the need to determine the magnitude of these effects and their impact on the viability of using HCNG in existing CNG vehicles. To quantify the effects of using various blended fuels, a work plan was designed to test the acceleration, range, and exhaust emissions of a Ford F-150 pickup truck operating on 100% CNG and blends of 15 and 30% HCNG. This report presents the results of this testing conducted during May and June 2003 by Electric Transportation Applications (Task 4.10, DOE AVTA Cooperative Agreement DEFC36- 00ID-13859).

James E. Francfort

2003-11-01T23:59:59.000Z

202

Vehicle Technologies Office: 2012 Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Archive to someone 2 Archive to someone by E-mail Share Vehicle Technologies Office: 2012 Archive on Facebook Tweet about Vehicle Technologies Office: 2012 Archive on Twitter Bookmark Vehicle Technologies Office: 2012 Archive on Google Bookmark Vehicle Technologies Office: 2012 Archive on Delicious Rank Vehicle Technologies Office: 2012 Archive on Digg Find More places to share Vehicle Technologies Office: 2012 Archive on AddThis.com... 2012 Archive #760 Commuting to Work, 1960-2010 December 31, 2012 #759 Rural vs. Urban Driving Differences December 24, 2012 #758 U.S. Production of Crude Oil by State, 2011 December 17, 2012 #757 The U.S. Manufactures More Light Trucks than Cars December 10, 2012 #756 Midwest Produces Two-Thirds of All Light Vehicles December 3, 2012

203

Floating Cars  

E-Print Network (OSTI)

land- scape of destroyed cars provides a stark illustrationTHE ACCESS ALMANAC Floating Cars BY DANIEL BALDWIN HESS S Uof the excessive number of cars in the United States, where

Hess, Daniel Baldwin

2006-01-01T23:59:59.000Z

204

Rethinking the Car of the Future  

E-Print Network (OSTI)

cars that use ultracapamtors and battenes, certain hybrid-hybrid vehicle designs that were also funded before PNGV ISSUES iN SCIENCE AND TECkINOLOGY RETHINKING THE CAR

Sperling, Daniel

2001-01-01T23:59:59.000Z

205

Rethinking the Car of the Future  

E-Print Network (OSTI)

cars that use ultracapamtors and battenes, certain hybrid-hybrid vehicle designs that were also funded before PNGV ISSUES iN SCIENCE AND TECkINOLOGY RETHINKING THE CAR

Sperling, Daniel

1996-01-01T23:59:59.000Z

206

Car Charging Group Inc | Open Energy Information  

Open Energy Info (EERE)

Car Charging Group Inc Jump to: navigation, search Name Car Charging Group, Inc. Place Miami Beach, Florida Product Miami Beach, USA based installer of plug-in vehicle charge...

207

Light-Duty Fuel Cell Vehicles State of Development  

E-Print Network (OSTI)

delivered by Honda and Toyota within hours of each other on December 23, 2002. The current inventory includes concept vehicles like the General Motors HyWire and comparable visions from Toyota and Daimler, such as generating electricity in an emergency or power failure. It is telling that Toyota, which is regarded

208

Carsharing and Station Cars in Asia: An Overview of Japan and Singapore  

E-Print Network (OSTI)

carsharing, station-car, hybrids) operating in Japan iselectric-hybrid vehicles, and a sports car. The minimumhybrids are outfitted with in-vehicle devices allowing one-way trips and instant car

Barth, Matthew; Shaheen, Susan; Fukuda, Tuenjai; Fukuda, Atsushi

2005-01-01T23:59:59.000Z

209

Vehicle Technologies Office: 2010 Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

0 Archive to someone 0 Archive to someone by E-mail Share Vehicle Technologies Office: 2010 Archive on Facebook Tweet about Vehicle Technologies Office: 2010 Archive on Twitter Bookmark Vehicle Technologies Office: 2010 Archive on Google Bookmark Vehicle Technologies Office: 2010 Archive on Delicious Rank Vehicle Technologies Office: 2010 Archive on Digg Find More places to share Vehicle Technologies Office: 2010 Archive on AddThis.com... 2010 Archive #655 New Freight Analysis Tool December 27, 2010 #654 New Light Vehicle Leasing is Big in 2010 December 20, 2010 #653 Import Cars and Trucks Gaining Ground December 13, 2010 #652 U.S. Crude Oil Production Rises December 6, 2010 #651 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 November 29, 2010 #650 Diesel Fuel Prices hit a Two-Year High November 22, 2010

210

U.S. Department of Energy FreedomCar & Vehicle Technologies Program CARB Executive Order Exemption Process for a Hydrogen-fueled Internal Combustion engine Vehicle -- Status Report  

DOE Green Energy (OSTI)

The CARB Executive Order Exemption Process for a Hydrogen-fueled Internal Combustion Engine Vehicle was undertaken to define the requirements to achieve a California Air Resource Board Executive Order for a hydrogenfueled vehicle retrofit kit. A 2005 to 2006 General Motors Company Sierra/Chevrolet Silverado 1500HD pickup was assumed to be the build-from vehicle for the retrofit kit. The emissions demonstration was determined not to pose a significant hurdle due to the non-hydrocarbon-based fuel and lean-burn operation. However, significant work was determined to be necessary for Onboard Diagnostics Level II compliance. Therefore, it is recommended that an Experimental Permit be obtained from the California Air Resource Board to license and operate the vehicles for the durability of the demonstration in support of preparing a fully compliant and certifiable package that can be submitted.

Not Available

2008-04-01T23:59:59.000Z

211

Propane-Fueled Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Propane-Fueled Vehicle Basics Propane-Fueled Vehicle Basics Propane-Fueled Vehicle Basics August 20, 2013 - 9:16am Addthis There are more than 270,000 on-road propane vehicles in the United States and more than 10 million worldwide. Many are used in fleets, including light- and heavy-duty trucks, buses, taxicabs, police cars, and rental and delivery vehicles. Compared with vehicles fueled with conventional diesel and gasoline, propane vehicles can produce significantly fewer harmful emissions. The availability of new light-duty original equipment manufacturer propane vehicles has declined in recent years. However, certified installers can economically and reliably retrofit many light-duty vehicles for propane operation. Propane engines and fueling systems are also available for heavy-duty vehicles such as school buses and street sweepers.

212

Lightweight materials in the light-duty passenger vehicle market: Their market penetration potential and impacts  

DOE Green Energy (OSTI)

This paper summarizes the results of a lightweight materials study. Various lightweight materials are examined and the most cost effective are selected for further analysis. Aluminum and high-performance polymer matrix composites (PMCS) are found to have the highest potential for reducing the weight of automobiles and passenger-oriented light trucks. Weight reduction potential for aluminum and carbon fiber-based PMCs are computed based on a set of component-specific replacement criteria (such as stiffness and strength), and the consequent incremental cost scenarios are developed. The authors assume that a materials R and D program successfully reduces the cost of manufacturing aluminum and carbon fiber PMC-intensive vehicles. A vehicle choice model is used to project market shares for the lightweight vehicles. A vehicle survival and age-related usage model is employed to compute energy consumption over time for the vehicle stock. After a review of projected costs, the following two sets of vehicles are characterized to compete with the conventional materials vehicles: (1) aluminum vehicles with limited replacement providing 19% weight reduction (AIV-Mid), and (2) aluminum vehicles with the maximum replacement providing 31% weight reduction (AIV-Max). Assuming mass-market introduction in 2005, the authors project a national petroleum energy savings of 3% for AIV-Mid and 5% for AIV-Max in 2030.

Stodolsky, F. [Argonne National Lab., IL (United States). Center for Transportation Research]|[Argonne National Lab., Washington, DC (United States); Vyas, A.; Cuenca, R. [Argonne National Lab., IL (United States). Center for Transportation Research

1995-06-01T23:59:59.000Z

213

FreedomCAR :electrical energy storage system abuse test manual for electric and hybrid electric vehicle applications.  

DOE Green Energy (OSTI)

This manual defines a complete body of abuse tests intended to simulate actual use and abuse conditions that may be beyond the normal safe operating limits experienced by electrical energy storage systems used in electric and hybrid electric vehicles. The tests are designed to provide a common framework for abuse testing various electrical energy storage systems used in both electric and hybrid electric vehicle applications. The manual incorporates improvements and refinements to test descriptions presented in the Society of Automotive Engineers Recommended Practice SAE J2464 ''Electric Vehicle Battery Abuse Testing'' including adaptations to abuse tests to address hybrid electric vehicle applications and other energy storage technologies (i.e., capacitors). These (possibly destructive) tests may be used as needed to determine the response of a given electrical energy storage system design under specifically defined abuse conditions. This manual does not provide acceptance criteria as a result of the testing, but rather provides results that are accurate and fair and, consequently, comparable to results from abuse tests on other similar systems. The tests described are intended for abuse testing any electrical energy storage system designed for use in electric or hybrid electric vehicle applications whether it is composed of batteries, capacitors, or a combination of the two.

Doughty, Daniel Harvey; Crafts, Chris C.

2006-08-01T23:59:59.000Z

214

CalCars | Open Energy Information  

Open Energy Info (EERE)

engineers, environmentalists and consumers promoting 100+MPG plug-in hybrid electric vehicles (PHEVs). References CalCars1 LinkedIn Connections CrunchBase Profile No...

215

Motor Vehicle Plant Lighting Level Best Practices | ENERGY STAR Buildings &  

NLE Websites -- All DOE Office Websites (Extended Search)

Motor Vehicle Plant Lighting Level Best Practices Motor Vehicle Plant Lighting Level Best Practices Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories

216

Shared-Use Vehicle Systems  

E-Print Network (OSTI)

Small, Battery-Powered Electric Cars as a Component ofelectric, hybrid-electric, natural gas) cars make up theelectric vehicles and shared-use systems, particularly commuter station cars (

Shaheen, Susan

2004-01-01T23:59:59.000Z

217

Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) supports the development and deployment of advanced vehicle technologies, including advances in electric vehicles, engine efficiency, and lightweight materials....

218

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Type Fuel Type All Bi-Fuel Natural Gas (16) Bi-Fuel Propane (12) Biodiesel (B20) (11) Electric (13) Flex Fuel (E85) (91) Hybrid Electric (36) Hydrogen (3) Methanol (0) Natural Gas (4) Plug-in Hybrid Electric (10) Propane (2) Manufacturer All Acura (2) Audi (6) BMW (6) Bentley Motors (4) Buick (2) Cadillac (4) Chevrolet (25) Chrysler (3) Coda Automotive (0) Dodge (7) Fiat (1) Fisker Automotive (0) Ford (48) GMC (19) General Motors EV (0) HUMMER (0) Honda (8) Hyundai (2) Infiniti (4) Jaguar (6) Jeep (1) Kia (2) Land Rover (4) Lexus (5) Lincoln (2) Mazda (0) Mazda (0) McLaren (1) Mercedes-Benz (8) Mercury (0) Mitsubishi (1) Nissan (4) Plymouth (0) Porsche (2) QUANTUM-PROCON (0) Ram (5) Saab (0) Saturn (0) Scion (1) Smart (1) Solectria (0) Subaru (1) Tesla (1) Tesla Motors (0) Toyota (10) Vehicle

219

Assessment of Fuel Economy Technologies for Light-Duty Vehicles  

SciTech Connect

An analysis of the number of stations and vehicles necessary to achieve future goals for sales of ethanol fuel (E85) is presented. Issues related to the supply of ethanol, which may turn out to be of even greater concern, are not analyzed here. A model of consumers decisions to purchase E85 versus gasoline based on prices, availability, and refueling frequency is derived, and preliminary results for 2010, 2017, and 2030 consistent with the president s 2007 biofuels program goals are presented. A limited sensitivity analysis is carried out to indicate key uncertainties in the trade-off between the number of stations and fuels. The analysis indicates that to meet a 2017 goal of 26 billion gallons of E85 sold, on the order of 30% to 80% of all stations may need to offer E85 and that 125 to 200 million flexible-fuel vehicles (FFVs) may need to be on the road, even if oil prices remain high. These conclusions are tentative for three reasons: there is considerable uncertainty about key parameter values, such as the price elasticity of choice between E85 and gasoline; the future prices of E85 and gasoline are uncertain; and the method of analysis used is highly aggregated it does not consider the potential benefits of regional strategies or the possible existence of market segments predisposed to purchase E85. Nonetheless, the preliminary results indicate that the 2017 biofuels program goals are ambitious and will require a massive effort to produce enough FFVs and ensure widespread availability of E85.

Greene, David L [ORNL

2008-01-01T23:59:59.000Z

220

Design, Control and Evaluation of a Prototype Three Phase Inverter in a BLDC Drive System for an Ultra-Light Electric Vehicle.  

E-Print Network (OSTI)

??With an evolving vehicle industry there has been an increase in the demand for light electric vehicles. This thesis was conducted in order to gain… (more)

Larsson, Philip

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicles cars light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

What's a hydrogen blended fueled vehicle?  

NLE Websites -- All DOE Office Websites (Extended Search)

available for testing. However, development of fuel cell vehicles continues in earnest by vehicle manufacturers and other groups such as DOE's FreedomCar & Vehicle Technologies...

222

Quantifying the benefits of hybrid vehicles  

E-Print Network (OSTI)

the first green vehicle, manufacturers created the first “market for safety in vehicles, manufacturers were initiallymanufacturers are convinced that car buyers are interested in green vehicles and

Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

2006-01-01T23:59:59.000Z

223

Find a SmartWay Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

You are here: Find a Car - Home > Find a SmartWay Vehicle Find a SmartWay Vehicle Looking for an environmentally friendly vehicle? SmartWay Logo Cars and trucks awarded EPA's...

224

Effect of E85 on Tailpipe Emissions from Light-Duty Vehicles  

Science Conference Proceedings (OSTI)

E85, which consists of nominally 85% fuel grade ethanol and 15% gasoline, must be used in flexible-fuel (or 'flexfuel') vehicles (FFVs) that can operate on fuel with an ethanol content of 0-85%. Published studies include measurements of the effect of E85 on tailpipe emissions for Tier 1 and older vehicles. Car manufacturers have also supplied a large body of FFV certification data to the U.S. Environmental Protection Agency, primarily on Tier 2 vehicles. These studies and certification data reveal wide variability in the effects of E85 on emissions from different vehicles. Comparing Tier 1 FFVs running on E85 to similar non-FFVs running on gasoline showed, on average, significant reductions in emissions of oxides of nitrogen (NOx; 54%), non-methane hydrocarbons (NMHCs; 27%), and carbon monoxide (CO; 18%) for E85. Comparing Tier 2 FFVs running on E85 and comparable non-FFVs running on gasoline shows, for E85 on average, a significant reduction in emissions of CO (20%), and no significant effect on emissions of non-methane organic gases (NMOGs). NOx emissions from Tier 2 FFVs averaged approximately 28% less than comparable non-FFVs. However, perhaps because of the wide range of Tier 2 NOx standards, the absolute difference in NOx emissions between Tier 2 FFVs and non-FFVs is not significant (P 0.28). It is interesting that Tier 2 FFVs operating on gasoline produced approximately 13% less NMOGs than non-FFVs operating on gasoline. The data for Tier 1 vehicles show that E85 will cause significant reductions in emissions of benzene and butadiene, and significant increases in emissions of formaldehyde and acetaldehyde, in comparison to emissions from gasoline in both FFVs and non-FFVs. The compound that makes up the largest proportion of organic emissions from E85-fueled FFVs is ethanol.

Yanowitz, J.; McCormick, R. L.

2009-02-01T23:59:59.000Z

225

Predicting Light-Duty Vehicle Fuel Economy as a Function of Highway Speed  

SciTech Connect

The www.fueleconomy.gov website offers information such as window label fuel economy for city, highway, and combined driving for all U.S.-legal light-duty vehicles from 1984 to the present. The site is jointly maintained by the U.S. Department of Energy and the U.S. Environmental Protection Agency (EPA), and also offers a considerable amount of consumer information and advice pertaining to vehicle fuel economy and energy related issues. Included with advice pertaining to driving styles and habits is information concerning the trend that as highway cruising speed is increased, fuel economy will degrade. An effort was undertaken to quantify this conventional wisdom through analysis of dynamometer testing results for 74 vehicles at steady state speeds from 50 to 80 mph. Using this experimental data, several simple models were developed to predict individual vehicle fuel economy and its rate of change over the 50-80 mph speed range interval. The models presented require a minimal number of vehicle attributes. The simplest model requires only the EPA window label highway mpg value (based on the EPA specified estimation method for 2008 and beyond). The most complex of these simple model uses vehicle coast-down test coefficients (from testing prescribed by SAE Standard J2263) known as the vehicle Target Coefficients, and the raw fuel economy result from the federal highway test. Statistical comparisons of these models and discussions of their expected usefulness and limitations are offered.

Thomas, John F [ORNL; Hwang, Ho-Ling [ORNL; West, Brian H [ORNL; Huff, Shean P [ORNL

2013-01-01T23:59:59.000Z

226

Figure 73. Sales of light-duty vehicles using non-gasoline ...  

U.S. Energy Information Administration (EIA)

Sales of light-duty vehicles using non-gasoline technologies by type, 2011, 2025, ... Hybrid electric Flex-fuel Micro Total 2011.00 0.06 5.38E-03 0.54 0.25 1.61 0.01 2.49

227

Technical System Targets: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles  

E-Print Network (OSTI)

is to be determined. e Onboard efficiency is the energy efficiency for delivering hydrogen from the storage systemTechnical System Targets: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles a Storage to the powerplant divided by the total mass/volume of the complete storage system, including all stored hydrogen

228

Light-Duty Vehicle Energy Consumption by Fuel Type from EIA AEO...  

Open Energy Info (EERE)

Light-Duty Vehicle Energy Consumption by Fuel Type from EIA AEO 2011 Early Release Supplemental Table 47 of EIA AEO 2011 Early Release
2011-02-23T16:04:28Z 2011-03-31T19:33:44Z...

229

Hacking cars  

Science Conference Proceedings (OSTI)

Researchers have discovered important security flaws in modern automobile systems. Will car thieves learn to pick locks with their laptops?

Alex Wright

2011-11-01T23:59:59.000Z

230

EVS-25 Shenzhen, China, Nov. 5-9, 2010 The 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition  

E-Print Network (OSTI)

significant amounts of the daily driving energy for the US light duty vehicle (cars, pickups, SUVs, and vans emission intensity (ton CO2/MWh), while in others regions with significant clean generation (hydro

231

Impact of Canada's Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network (OSTI)

April 5. Canadian Vehicle Manufacturers Association (CVMA),equivalent Canadian Vehicle Manufacturers’ Associationof the Canadian Vehicle Manufacturers’ Association, Joe

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

232

Impact of Canada’s Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network (OSTI)

April 5. Canadian Vehicle Manufacturers Association (CVMA),equivalent Canadian Vehicle Manufacturers’ Associationof the Canadian Vehicle Manufacturers’ Association, Joe

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

233

Federal Alternative Fuel Program Light Duty Vehicle Operations. Second annual report to Congress for fiscal year 1992  

DOE Green Energy (OSTI)

This annual report to Congress details the second year of the Federal light duty vehicle operations as required by Section 400AA(b)(1)(B) of the Energy Policy and Conservation Act as amended by the Alternative Motor Fuels Act of 1988, Public Law 100-494. In 1992, the Federal alternative fuel vehicle fleet expanded significantly, from the 65 M85 (85 percent methanol and 15 percent unleaded gasoline) vehicles acquired in 1991 to an anticipated total of 3,267 light duty vehicles. Operating data are being collected from slightly over 20 percent, or 666, of these vehicles. The 601 additional vehicles that were added to the data collection program in 1992 include 75 compressed natural gas Dodge full-size (8-passenger) vans, 25 E85 (85 percent denatured ethanol and 15 percent unleaded gasoline) Chevrolet Lumina sedans, 250 M85 Dodge Spirit sedans (planned to begin operation in fiscal year 1993), and 251 compressed natural gas Chevrolet C-20 pickup trucks. Figure ES-1 illustrates the locations where the Federal light duty alternative fuel vehicles that are participating in the data collection program are operating. The primary criteria for placement of vehicles will continue to include air quality attainment status and the availability of an alternative fuel infrastructure to support the vehicles. This report details the second year of the Federal light duty vehicle operations, from October 1991 through September 1992.

Not Available

1993-07-01T23:59:59.000Z

234

Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Electric Vehicles A neighborhood electric vehicle (NEV) is 4-wheeled vehicle, larger than a golf cart but smaller than most light-duty passenger vehicles. NEVs are...

235

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low Emission Vehicle Low Emission Vehicle (LEV) Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle (LEV) Standards Any new light-duty passenger car, light-duty truck, or medium-duty

236

U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Oil Bypass Filter Technology Evaluation Final Report  

SciTech Connect

This Oil Bypass Filter Technology Evaluation final report documents the feasibility of using oil bypass filters on 17 vehicles in the Idaho National Laboratory (INL) fleet during a 3-year test period. Almost 1.3 million test miles were accumulated, with eleven 4-cycle diesel engine buses accumulating 982,548 test miles and six gasoline-engine Chevrolet Tahoes accumulating 303,172 test miles. Two hundred and forty oil samples, taken at each 12,000-mile bus servicing event and at 3,000 miles for the Tahoes, documented the condition of the engine oils for continued service. Twenty-eight variables were normally tested, including the presence of desired additives and undesired wear metals such as iron and chrome, as well as soot, water, glycol, and fuel. Depending on the assumptions employed, the INL found that oil bypass filter systems for diesel engine buses have a positive payback between 72,000 and 144,000 miles. For the Tahoes, the positive payback was between 66,000 and 69,000 miles.

L. R. Zirker; J. E. Francfort; J. J. Fielding

2006-03-01T23:59:59.000Z

237

Additional Development of a Dedicated Liquefied Petroleum Gas (LPG) Ultra Low Emissions Vehicle (ULEV)  

DOE Green Energy (OSTI)

This report describes the last in a series of three projects designed to develop a commercially competitive LPG light-duty passenger car that meets California ULEV standards and corporate average fuel economy (CAFE) energy efficiency guidelines for such a vehicle. In this project, IMPCO upgraded the vehicle's LPG vapor fuel injection system and performed emissions testing. The vehicle met the 1998 ULEV standards successfully, demonstrating the feasibility of meeting ULEV standards with a dedicated LPG vehicle.

IMPCO Technologies

1998-10-28T23:59:59.000Z

238

Additional Development of a Dedicated Liquefied Petroleum Gas (LPG) Ultra Low Emissions Vehicle (ULEV)  

SciTech Connect

This report describes the last in a series of three projects designed to develop a commercially competitive LPG light-duty passenger car that meets California ULEV standards and corporate average fuel economy (CAFE) energy efficiency guidelines for such a vehicle. In this project, IMPCO upgraded the vehicle's LPG vapor fuel injection system and performed emissions testing. The vehicle met the 1998 ULEV standards successfully, demonstrating the feasibility of meeting ULEV standards with a dedicated LPG vehicle.

IMPCO Technologies

1998-10-28T23:59:59.000Z

239

Electric Vehicle (EV) Carsharing in A Senior Adult Community  

E-Print Network (OSTI)

Electric Vehicle (EV) Carsharing in A Senior Adult Community Susan;86% 0 0 65% 35% 0% 72% 25% 3% Single-car households Two-car households No-car households % of Respondents Cars per Household Interview (n=7) Focus

Kammen, Daniel M.

240

California Greenhouse Gas Emissions Standards for Light-Duty Vehicles (released in AEO2005)  

Reports and Publications (EIA)

In July 2002, California Assembly Bill 1493 (A.B. 1493) was signed into law. The law requires that the California Air Resources Board (CARB) develop and adopt, by January 1, 2005, greenhouse gas emission standards for light-duty vehicles that provide the maximum feasible reduction in emissions. In estimating the feasibility of the standard, CARB is required to consider cost-effectiveness, technological capability, economic impacts, and flexibility for manufacturers in meeting the standard.

Information Center

2005-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicles cars light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Estimating the impact on fuel tax revenues from a changing light vehicle fleet with increased advanced internal combustion engine vehicles and electric vehicles.  

E-Print Network (OSTI)

??Advanced fuel economies in both traditional internal combustion engine vehicles (ICEs) and electric vehicles (EVs) have a strong influence on transportation revenue by reducing fuel… (more)

Hall, Andrea Lynn

2013-01-01T23:59:59.000Z

242

Neighborhoods, Cars, and Commuting in New York City: A Discrete Choice Approach  

E-Print Network (OSTI)

D. , 1999. Income’s effect on car and vehicle ownership,Jong, G. , 1990. An indirect utility model of car ownershipand private car use. European Economic Review 34, 971–985.

Salon, Deborah

2008-01-01T23:59:59.000Z

243

Quantifying the benefits of hybrid vehicles  

E-Print Network (OSTI)

secrets, but the price of hybrid cars and trucks are betweenCosts of hybrid vehicles Depending on whether a car companydiesel-hybrid prototypes that attained 70 MPG (Green Car

Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

2006-01-01T23:59:59.000Z

244

The Promise of Fuel-Cell Vehicles  

E-Print Network (OSTI)

The great attraction of electric cars is emissions, highStudies, Fuel-Cell Electric Cars An FCV is an electric-drivepowered electric vehicle, called percent of all cars sold in

Deluchi, Mark; Swan, David

1993-01-01T23:59:59.000Z

245

Modelling of Components for Conventional Car and Hybrid Electric Vehicle in Modelica; Modellering av komponenter för vanlig bil och hybridbil i Modelica.  

E-Print Network (OSTI)

?? Hybrid electric vehicles have two power sources - an internal combustion engine and an electric motor. These vehicles are of great interest because they… (more)

Wallén, Johanna

2004-01-01T23:59:59.000Z

246

Increasing the Fuel Economy and Safety of New Light-Duty Vehicles  

E-Print Network (OSTI)

drivers. They let the vehicle manufacturers off the hook. Weon their website. Vehicle manufacturers have striven toand manufacturers to see them incorporated in new vehicles.

Wenzel, Tom; Ross, Marc

2006-01-01T23:59:59.000Z

247

Environmental Life-cycle Assessment of Passenger Transportation: A Detailed Methodology for Energy, Greenhouse Gas and Criteria Pollutant Inventories of Automobiles, Buses, Light Rail, Heavy Rail and Air  

E-Print Network (OSTI)

2005. [FTA 2006] U.S. Non-Rail Vehicle Market ViabilityWelding BART’s Aluminum Rail Transit Cars, Welding JournalAutomobiles, Buses, Light Rail, Heavy Rail and Air Mikhail

Chester, Mikhail; Horvath, Arpad

2007-01-01T23:59:59.000Z

248

Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program  

E-Print Network (OSTI)

production of further hybrid cars. ” Similarly, Larry Rhodesbuying Priuses as commute cars—hybrids were “fairly popularhybrid vehicles are being made available to (predominately new-car

Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

2009-01-01T23:59:59.000Z

249

NREL: Vehicles and Fuels Research Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL helps industry partners develop the next generation of energy efficient, high performance vehicles and fuels. NREL's transportation research spans from the materials to the systems level. NREL conducts research on the full range of vehicle types, from light-duty passenger cars to heavy-duty freight trucks. NREL's credible transportation research is grounded in real-world data. NREL's integrated approach links automotive technology advances to the full spectrum of renewable energy solutions. NREL researchers examine infrastructure, market conditions and driver behavior, as well as fuels and vehicles. NREL helps put fuel-efficient, low-emission cars and trucks on the road through research and innovation in electric vehicle, biofuel, and conventional automotive technologies. Researchers collaborate with industry

250

Electric cars shift into second gear  

SciTech Connect

High cost and poor performance have hurt the market for electric cars, but more states are passing emission control regulations that will make electric cars more attractive. Federal funding also will promote research on electric vehicle technologies. There is much work to do on battery recharging, range expansion, and weight to make electric cars desirable to the public. The auto industry is lobbying against the regulations because it fears electric cars will not be commercially viable by the deadlines. Other alternatives for reducing auto emissions are explored. The ultimate fate of electric cars will be decided by consumers.

Silber, K.

1994-05-09T23:59:59.000Z

251

Clean Cities: Advanced Vehicle Technology Competitions  

NLE Websites -- All DOE Office Websites (Extended Search)

vehicle solutions. EcoCAR 2: Plugging in to the Future Photo of a plug-in electric vehicle Clean Cities and EcoCAR focus on reducing petroleum consumption in the transportation...

252

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low Emission Vehicle Low Emission Vehicle (LEV) Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle (LEV) Standards Under the Oregon LEV Program, all new passenger cars, light-duty trucks,

253

Light-Duty Diesel Vehicles: Market Issues and Potential Energy and Emissions Impacts  

Gasoline and Diesel Fuel Update (EIA)

2 2 Light-Duty Diesel Vehicles: Market Issues and Potential Energy and Emissions Impacts January 2009 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. Unless referenced otherwise, the information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Service Reports are prepared by the Energy Information Administration upon special request and are based on assumptions specified by the requester.

254

nissan hypermini urban electric vehicle testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Department of Energy FreedomCAR & Vehicle Technologies Program Nissan Hypermini Urban Electric Vehicle Testing TECHNICAL REPORT Roberta Brayer James Francfort January 2006...

255

News and Information about Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

New & Upcoming Electric Vehicles New Models for 2014 Vehicle EPA MPGE Estimates* Price (MSRP) Chevrolet Spark EV Subcompact Car Chevrolet Spark EV Chart: City, 128 mpge; Highway,...

256

Vehicles and Fuels | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicles and Fuels Vehicles and Fuels Photo of an electric car plugged in and charging. Learn more about exciting technologies and ongoing research in alternative and advanced...

257

Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector  

Science Conference Proceedings (OSTI)

Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Vyas, A. D.; Patel, D. M.; Bertram, K. M.

2013-03-01T23:59:59.000Z

258

Vehicle Data for Alternative Fuel Vehicles (AFVs) and Hybrid Fuel Vehicles (HEVs) from the Alternative Fuels and Advanced Vehicles Data Center (AFCD)  

DOE Data Explorer (OSTI)

The AFDC provides search capabilities for many different models of both light-duty and heavy-duty vehicles. Engine and transmission type, fuel and class, fuel economy and emission certification are some of the facts available. The search will also help users locate dealers in their areas and do cost analyses. Information on alternative fuel vehicles and on advanced technology vehicles, along with calculators, resale and conversion information, links to incentives and programs such as Clean Cities, and dozens of fact sheets and publications make this section of the AFDC a valuable resource for car buyers.

259

Vehicle Technologies Office: Fact #501: January 14, 2008 Fuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

class has the greatest range in fuel economy, followed by compact cars, subcompact cars and SUVs. These four vehicle classes all contain hybrid models which greatly extend...

260

Feebates and Fuel Economy Standards: Impacts on Fuel Use in Light-Duty Vehicles and Greenhouse Gas Emissions  

Science Conference Proceedings (OSTI)

This study evaluates the potential impacts of a national feebate system, a market-based policy that consists of graduated fees on low-fuel-economy (or high-emitting) vehicles and rebates for high-fuel-economy (or lowemitting) vehicles. In their simplest form, feebate systems operate under three conditions: a benchmark divides all vehicles into two categories-those charged fees and those eligible for rebates; the sizes of the fees and rebates are a function of a vehicle's deviation from its benchmark; and placement of the benchmark ensures revenue neutrality or a desired level of subsidy or revenue. A model developed by the University of California for the California Air Resources Board was revised and used to estimate the effects of six feebate structures on fuel economy and sales of new light-duty vehicles, given existing and anticipated future fuel economy and emission standards. These estimates for new vehicles were then entered into a vehicle stock model that simulated the evolution of the entire vehicle stock. The results indicate that feebates could produce large, additional reductions in emissions and fuel consumption, in large part by encouraging market acceptance of technologies with advanced fuel economy, such as hybrid electric vehicles.

Greene, David L [ORNL

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicles cars light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Comparative urban drive cycle simulations of light-duty hybrid vehicles with gasoline or diesel engines and emissions controls  

SciTech Connect

Electric hybridization is a very effective approach for reducing fuel consumption in light-duty vehicles. Lean combustion engines (including diesels) have also been shown to be significantly more fuel efficient than stoichiometric gasoline engines. Ideally, the combination of these two technologies would result in even more fuel efficient vehicles. However, one major barrier to achieving this goal is the implementation of lean-exhaust aftertreatment that can meet increasingly stringent emissions regulations without heavily penalizing fuel efficiency. We summarize results from comparative simulations of hybrid electric vehicles with either stoichiometric gasoline or diesel engines that include state-of-the-art aftertreatment emissions controls for both stoichiometric and lean exhaust. Fuel consumption and emissions for comparable gasoline and diesel light-duty hybrid electric vehicles were compared over a standard urban drive cycle and potential benefits for utilizing diesel hybrids were identified. Technical barriers and opportunities for improving the efficiency of diesel hybrids were identified.

Gao, Zhiming [ORNL; Daw, C Stuart [ORNL; Smith, David E [ORNL

2013-01-01T23:59:59.000Z

262

An Analysis of the Relationship between Casualty Risk Per Crash and Vehicle Mass and Footprint for Model Year 2000-2007 Light-Duty Vehicles-Preliminary report  

E-Print Network (OSTI)

Vehicle manufacturer control variables for vehicle manufacturer results in massAccounting for vehicle manufacturer causes a reduction in

Wenzel, Tom

2013-01-01T23:59:59.000Z

263

The U.S. Department of Energy's (DOE's) FreedomCAR and Vehicle Technologies (FCVT) Program is actively evaluating plug-in hybrid electric vehicle (PHEV) technology and researching the most critical technical barriers to  

E-Print Network (OSTI)

for use in hybrid vehicles as well as electric-only vehicles · Hardware-in-the-loop evaluation of advanced is actively evaluating plug-in hybrid electric vehicle (PHEV) technology and researching the most critical and capacitor scaling, thermal management, capacity, and power fade · Using hybrid electric vehicles in fleets

Kemner, Ken

264

Small Cars In Neighborhoods  

E-Print Network (OSTI)

Sperling, quoted in “Electric Car Goals Called Feasible,”automobile- like electric cars; a much longer and morethose eligible to own electric cars. Because the (eventually

Bosselmann, Peter C.; Cullinane, Daniel; Garrison, William L.; Maxey, Carl M.

1993-01-01T23:59:59.000Z

265

A Structural Model of Vehicle Use in Two-Vehicle Households  

E-Print Network (OSTI)

vehicle sports car implies that usage is shifted towardthecars as secondcars have a weakerpositive relationship to usage,

Golob, Thomas F.; Kim, Seyoung; Ren, Weiping

1994-01-01T23:59:59.000Z

266

Symbolism in California’s Early Market for Hybrid Electric Vehicles  

E-Print Network (OSTI)

2006. The Dollars and Sense of Hybrid Cars. AvailableSurvey of Oregon Hybrid Gas-Electric Car Owners. Portland.cars/new-cars/ high-cost-of-hybrid-vehicles-406/overview.htm

Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

2008-01-01T23:59:59.000Z

267

ElisaTM - Car to infrastructure communication in the field  

Science Conference Proceedings (OSTI)

Car to infrastructure (C2I) communication as an aspect of Intelligent Transportation Systems (ITS) is a topic that is currently under wide research. Most works however deal with theoretical analysis, simulative evaluation or closed testbeds. There are ... Keywords: C2C, C2I, C2X, Car to car, Car to infrastructure, Traffic light communication

Benno Schweiger; Christian Raubitschek; Bernard Bäker; Johann Schlichter

2011-10-01T23:59:59.000Z

268

Microsoft Word - EXT-12-27320_Idle-Stop_Light_Duty_Passenger_Vehicles.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

7320 7320 Quantifying the Effects of Idle-Stop Systems on Fuel Economy in Light- Duty Passenger Vehicles Jeffrey Wishart Matthew Shirk Contract No. DE-FC26-05NT42486 December 2012 DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise,

269

Green Racing - Where Clean Cars Finish First  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Technology R&D Center INVENTING THE FUTURE. efficient. clean. safe. Green Racing Where Clean Cars Finish First In green racing, speed is a factor, but the overall winner is determined by a formula that also takes the car's environmental footprint into consideration. Race organizers calculated a principal component of each car's score by using Argonne's Greenhouse gas, Regulated Emissions, and Energy use in Transportation (GREET) model. Research funding provided by the U.S. Department of Energy's Vehicle Technologies Program. Did you know... Opportunity The racetrack is a proving ground that often leads to innovations in consumer vehicles. Green

270

DOE Hydrogen and Fuel Cells Program Record 11002: Number of Cars Equivalent to 100 Metric Tons of Avoided Greenhouse Gases per Year  

NLE Websites -- All DOE Office Websites (Extended Search)

02 Date: January 5, 2011 02 Date: January 5, 2011 Title: Number of Cars Equivalent to 100 Metric Tons of Avoided Greenhouse Gases per Year Originator: Andrea Chew & Tien Nguyen Approved by: Sunita Satyapal Date: January 25, 2011 A conventional mid-size gasoline car emits 0.45 kg of greenhouse gases (GHG) per mile. 1 One hundred (100) metric tons (t) of GHG per year are equivalent to emissions from 17 conventional gasoline cars. Item: The GHG emissions cited above are from an analysis record prepared by the Department of Energy's Fuel Cell Technologies and Vehicle Technologies Programs on life-cycle emissions of greenhouse gases and petroleum use for several light-duty vehicles. 1 For cars that are between 1 and 5 years old, the average mileage is approximately 13,000,

271

Blog Feed: Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 29, 2011 July 29, 2011 President Barack Obama delivers remarks on fuel efficiency standards for 2017-2025 model year cars and light-duty trucks during an event at the Washington Convention Center in Washington, D.C., July 29, 2011. Seated behind the President are at left are auto industry executives and Transportation Secretary Ray LaHood. (Official White House Photo by Samantha Appleton) New Vehicle Fuel Economy Standards Will Continue to Inspire Innovation President Obama announced a landmark agreement with automakers that sets aggressive new fuel-economy standards for cars and light-duty trucks. Find out how the Energy Department is unleashing innovation that will create jobs and make sure that the fuel-efficient vehicles of the future are made in America.

272

Vehicle Technologies Office: 2007 Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Archive 7 Archive #499 Alternative Fuel Models: Gains and Losses December 10, 2007 #498 New Light Vehicle Fuel Economy December 3, 2007 #497 Fuel Drops to Third Place in the Trucking Industry Top Ten Concerns November 26, 2007 #496 Diesel Prices in the U.S. and Selected Countries: Cost and Taxes November 19, 2007 #495 Oil Price and Economic Growth, 1971-2006 November 12, 2007 #494 European Priorities When Buying a New Car November 5, 2007 #493 Market Share - Cars vs. Light Trucks October 29, 2007 #492 Gasoline Taxes in the U.S. and Selected Countries October 22, 2007 #491 Gasoline Prices: U.S. and Selected European Countries October 15, 2007 #490 Traffic Congestion Wastes Fuel October 8, 2007 #489 Share of Travel in Congested Conditions October 1, 2007

273

Forecast of California car and truck fuel demand  

Science Conference Proceedings (OSTI)

The purpose of this work is to forecast likely future car and truck fuel demand in California in light of recent and possible additional improvements in vehicle efficiency. Forecasts of gasoline and diesel fuel demand are made based on projections of primary economic, demographic, and transportation technology variables. Projections of car and light truck stock and new sales are based on regression equations developed from historical data. Feasible future vehicle fuel economies are determined from technical improvements possible with existing technology. Several different cases of market-induced efficiency improvement are presented. Anticipated fuel economy improvements induced by federal mileage standards and rising fuel costs will cause lower future fuel demand, even though vehicle miles traveled will continue to increase both on a per capita and total basis. If only relatively low-cost fuel economy improvements are adopted after about 1985, when federal standards require no further improvements, fuel demand will decrease from the 1982 level of 11.7 billion gallons (gasoline equivalent) to 10.6 billion gallons in 2002, about a 9% reduction. Higher fuel economy levels, based on further refinements in existing technology, can produce an additional 7% reduction in fuel demand by 2002.

Stamets, L.

1983-01-01T23:59:59.000Z

274

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network (OSTI)

Toyota and Ford Hybrids," in Green Car Congress, 21 Februaryplant using idle hybrid airport-rental cars to provide localengine (ICE) hybrids in airport-rental-car and other

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

275

THE EFFECTS OF BIODIESEL BLENDS AND ARCO EC-DIESEL ON EMISSIONS from LIGHT HEAVY-DUTY DIESEL VEHICLES  

DOE Green Energy (OSTI)

Chassis dynamometer tests were performed on 7 light heavy-duty diesel trucks comparing the emissions of a California diesel fuel with emissions from 4 other fuels: ARCO EC-diesel (EC-D) and three 20% biodiesel blends (1 yellow grease and 2 soy-based). The EC-D and the yellow grease biodiesel blend both showed significant reductions in THC and CO emissions over the test vehicle fleet. EC-D also showed reductions in PM emission rates. NOx emissions were comparable for the different fuel types over the range of vehicles tested. The soy-based biodiesel blends did not show significant or consistent emissions differences over all test vehicles. Total carbon accounted for more than 70% of the PM mass for 4 of the 5 sampled vehicles. Elemental and organic carbon ratios varied significantly from vehicle-to-vehicle but showed very little fuel dependence. Inorganic species represented a smaller portion of the composite total, ranging from 0.2 to 3.3% of the total PM. Total PAH emissions ranged from approximately 1.8 mg/mi to 67.8 mg/mi over the different vehicle/fuel combinations representing between 1.6 and 3.8% of the total PM mass.

Durbin, Thomas

2001-08-05T23:59:59.000Z

276

Electric Vehicle Manufacturing in Southern California: Current Developments, Future Prospects  

E-Print Network (OSTI)

developeda two-passenger hybrid car whichoperates on leadto producea hybrid gasoline- electric car (the LA301), withAngeles the 301, a hybrid electric vehicle car project that

Scott, Allen J.

1993-01-01T23:59:59.000Z

277

Magna E-Car Opening | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Magna E-Car Opening Magna E-Car Opening Magna E-Car Opening April 27, 2012 - 4:40pm Addthis Vehicle Technologies Program Manager Patrick B. Davis gets ready to cut the ribbon at Magna E-Car's new electric drive component plant in Michigan. From left: Mike Finney - CEO, Michigan Economic Development Corporation; Gary Meyers - VP/General Manager, Magna E-Car USA, LP; Pat Davis; Kevin Pavlov - Chief Operating Officer, Magna E-Car Systems; Marilyn Hoffman, Township Supervisor, Grand Blanc Township, Michigan; Joseph Graves, State Representative 51st District, Michigan House of Representatives; Tim Herman, CEO, The Genesee County Chamber of Commerce. | Photo courtesy of Magna E-Car. Vehicle Technologies Program Manager Patrick B. Davis gets ready to cut the ribbon at Magna E-Car's new electric drive component plant in Michigan.

278

Zero-Emission Vehicle Scenario Cost Analysis Using A Fuzzy Set-Based Framework  

E-Print Network (OSTI)

a unique city car," Eletric and Hybrid Vehicle TechnologyB. Purcell, "Stepping Ahead," Eletric and Hybrid VehicleJ. Wallace, "Electric Dreams," Eletric and Hybrid Vehicle

Lipman, Timothy Edward

1999-01-01T23:59:59.000Z

279

Effect of Intake Air Filter Condition on Light-Duty Gasoline Vehicles  

SciTech Connect

Proper maintenance can help vehicles perform as designed, positively affecting fuel economy, emissions, and the overall drivability. This effort investigates the effect of one maintenance factor, intake air filter replacement, with primary focus on vehicle fuel economy, but also examining emissions and performance. Older studies, dealing with carbureted gasoline vehicles, have indicated that replacing a clogged or dirty air filter can improve vehicle fuel economy and conversely that a dirty air filter can be significantly detrimental to fuel economy. The effect of clogged air filters on the fuel economy, acceleration and emissions of five gasoline fueled vehicles is examined. Four of these were modern vehicles, featuring closed-loop control and ranging in model year from 2003 to 2007. Three vehicles were powered by naturally aspirated, port fuel injection (PFI) engines of differing size and cylinder configuration: an inline 4, a V6 and a V8. A turbocharged inline 4-cylinder gasoline direct injection (GDI) engine powered vehicle was the fourth modern gasoline vehicle tested. A vintage 1972 vehicle equipped with a carburetor (open-loop control) was also examined. Results reveal insignificant fuel economy and emissions sensitivity of modern vehicles to air filter condition, but measureable effects on the 1972 vehicle. All vehicles experienced a measured acceleration performance penalty with clogged intake air filters.

Thomas, John F [ORNL; Huff, Shean P [ORNL; West, Brian H [ORNL; Norman, Kevin M [ORNL

2012-01-01T23:59:59.000Z

280

Emissions Control Failures in Passenger Cars  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 Emissions Control Failures in Passenger Cars Two measures of car model malfunction probability, fraction of cars over 1% CO (y-axis) and average CO concentration of all cars (x-axis), demonstrate that five 1987-89 car models (14 year-model combinations) have a malfunction probability several times that of all other models. When an automobile's emissions control system fails, it may be because that model is more prone to failure than others, according to a study conducted by the Center's Energy Analysis Program and Marc Ross of the University of Michigan. This finding goes against the conventional wisdom that improper maintenance or deliberate disabling of the emissions systems by car owners is the cause of "high-emitting" vehicles. The results may provide clean-air

Note: This page contains sample records for the topic "vehicles cars light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Future Potential of Hybrid and Diesel Powertrains in the U.S. Light-duty Vehicle Market  

Science Conference Proceedings (OSTI)

Diesel and hybrid technologies each have the potential to increase light-duty vehicle fuel economy by a third or more without loss of performance, yet these technologies have typically been excluded from technical assessments of fuel economy potential on the grounds that hybrids are too expensive and diesels cannot meet Tier 2 emissions standards. Recently, hybrid costs have come down and the few hybrid makes available are selling well. Diesels have made great strides in reducing particulate and nitrogen oxide emissions, and are likely though not certain to meet future standards. In light of these developments, this study takes a detailed look at the market potential of these two powertrain technologies and their possible impacts on light-duty vehicle fuel economy. A nested multinomial logit model of vehicle choice was calibrated to 2002 model year sales of 930 makes, models and engine-transmission configurations. Based on an assessment of the status and outlook for the two technologies, market shares were predicted for 2008, 2012 and beyond, assuming no additional increase in fuel economy standards or other new policy initiatives. Current tax incentives for hybrids are assumed to be phased out by 2008. Given announced and likely introductions by 2008, hybrids could capture 4-7% and diesels 2-4% of the light-duty market. Based on our best guesses for further introductions, these shares could increase to 10-15% for hybrids and 4-7% for diesels by 2012. The resulting impacts on fleet average fuel economy would be about +2% in 2008 and +4% in 2012. If diesels and hybrids were widely available across vehicle classes, makes, and models, they could capture 40% or more of the light-duty vehicle market.

Greene, D.L.

2004-08-23T23:59:59.000Z

282

New Vehicle Fuel Economy Standards Will Continue to Inspire Innovation |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Fuel Economy Standards Will Continue to Inspire Vehicle Fuel Economy Standards Will Continue to Inspire Innovation New Vehicle Fuel Economy Standards Will Continue to Inspire Innovation July 29, 2011 - 1:48pm Addthis President Barack Obama delivers remarks on fuel efficiency standards for 2017-2025 model year cars and light-duty trucks during an event at the Washington Convention Center in Washington, D.C., July 29, 2011. Seated behind the President are at left are auto industry executives and Transportation Secretary Ray LaHood. (Official White House Photo by Samantha Appleton) President Barack Obama delivers remarks on fuel efficiency standards for 2017-2025 model year cars and light-duty trucks during an event at the Washington Convention Center in Washington, D.C., July 29, 2011. Seated behind the President are at left are auto industry executives and

283

Membrane-Based Air Composition Control for Light-Duty Diesel Vehicles: A Benefit and Cost Assessment  

DOE Green Energy (OSTI)

This report presents the methodologies and results of a study conducted by Argonne National Laboratory (Argonne) to assess the benefits and costs of several membrane-based technologies. The technologies evaluated will be used in automotive emissions-control and performance-enhancement systems incorporated into light-duty diesel vehicle engines. Such engines are among the technologies that are being considered to power vehicles developed under the government-industry Partnership for a New Generation of Vehicles (PNGV). Emissions of nitrogen oxides (NO{sub x}) from diesel engines have long been considered a barrier to use of diesels in urban areas. Recently, particulate matter (PM) emissions have also become an area of increased concern because of new regulations regarding emissions of particulate matter measuring 2.5 micrometers or less (PM{sub 2.5}). Particulates are of special concern for diesel engines in the PNGV program; the program has a research goal of 0.01 gram per mile (g/mi) of particulate matter emissions under the Federal Test Procedure (FTP) cycle. This extremely low level (one-fourth the level of the Tier II standard) could threaten the viability of using diesel engines as stand-alone powerplants or in hybrid-electric vehicles. The techniques analyzed in this study can reduce NO{sub x} and particulate emissions and even increase the power density of the diesel engines used in light-duty diesel vehicles.

K. Stork; R. Poola

1998-10-01T23:59:59.000Z

284

Energy Basics: Fuel Cell Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Fuel Cell Vehicles Photo of a blue car with 'The Road to Hydrogen' written on it, filling up at a hydrogen fueling station. Fuel cell vehicles, powered by...

285

Concept of actuation and control for the EO smart connecting car (EO scc)  

Science Conference Proceedings (OSTI)

This paper describes the mechanical structure, electrical layout and control concept of the four-wheeled electric vehicle EO smart connecting car (EO scc). This car is able to change its shape, a feature provided by a foldable chassis, which also allows ... Keywords: car docking, drive by-wire, extended maneuverability, modular electric car, morphology, road train, wheel hub motor

Michael Jahn; Martin Schröer; Yong-Ho Yoo; Mehmed Yüksel; Frank Kirchner

2012-10-01T23:59:59.000Z

286

Probabilistic evaluation of mobile source air pollution: Volume 1 -- Probabilistic modeling of exhaust emissions from light duty gasoline vehicles. Final report, 1 August 1994--31 May 1997  

Science Conference Proceedings (OSTI)

Emission factors for light duty gasoline vehicles (LDGV) are typically developed based upon laboratory testing of vehicles for prescribed driving cycles. In this project, selected LDGV data sets and modeling assumptions used to develop Mobile5a were revisited. Probabilistic estimates of the inter-vehicle variability in emissions and the uncertainty in fleet average emissions for selected vehicle types and driving cycles were made. Case studies focused upon probabilistic analysis of base emission rate and speed correction estimates used in Mobile5a for throttle body and port fuel injected vehicles. Based upon inter-vehicle variability in the data sets and a probabilistic model in which the standard error terms of regression models employed in Mobile5a are also considered, the uncertainty was estimated for average emission factors for the selected fleets of light duty gasoline vehicles. The 90 percent confidence interval for the average emission factor varied in range with pollutant and driving cycle.

Frey, H.C.; Kini, M.D.

1997-12-01T23:59:59.000Z

287

Hybrid Electric Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Association Conference Transportation Association Conference Vancouver, Canada December 2005 Hybrid Electric Vehicle Testing Jim Francfort U.S. Department of Energy - FreedomCAR & Vehicle Technologies Program, Advanced Vehicle Testing Activity INL/CON-05-00964 Presentation Outline * Background & goals * Testing partners * Hybrid electric vehicle testing - Baseline performance testing (new HEV models) - 1.5 million miles of HEV fleet testing (160k miles per vehicle in 36 months) - End-of-life HEV testing (rerun fuel economy & conduct battery testing @ 160k miles per vehicle) - Benchmark data: vehicle & battery performance, fuel economy, maintenance & repairs, & life-cycle costs * WWW information location Background * Advanced Vehicle Testing Activity (AVTA) - part of the

288

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network (OSTI)

Comparative Assessment of Fuel Cell Cars, Massachusettselectric and hydrogen fuel cell vehicles, Journal of PowerTransition to Hydrogen Fuel Cell Vehicles & the Potential

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

289

Assessing deployment strategies for ethanol and flex fuel vehicles in the U.S. light-duty vehicle fleet  

E-Print Network (OSTI)

Within the next 3-7 years the US light duty fleet and fuel supply will encounter what is commonly referred to as the "blend wall". This phenomenon describes the situation when more ethanol production has been mandated than ...

McAulay, Jeffrey L. (Jeffrey Lewis)

2009-01-01T23:59:59.000Z

290

FreedomCAR and Fuel Partnership 2010 Highlights of Technical Accomplishments  

NLE Websites -- All DOE Office Websites (Extended Search)

FreedomCAR and Fuel Partnership FreedomCAR and Fuel Partnership 2010 Highlights of Technical Accomplishments Table of Contents Item Page Preface v Vehicle Technologies Advanced Combustion & Emissions Control * Dual-Fuel (Gasoline+Diesel) RCCI Offers High Efficiency and Low Emissions in Engines 1 * Turbocharger Technology to Deliver Better Performance and Reduced Fuel Consumption 2 * Late Intake Valve Closing Improves Tradeoff Between Diesel-Engine Smoke and NO x Emissions 3 * Modeling of Lean NO x Trap Chemistry 4 * Neutron Radiography Non-Destructive Image of EGR Cooler and DPF Build- ups 5 * Accurate Detailed Chemical Kinetic Surrogate Model for Gasoline 6 * Sources of Inefficiency Identified in Light-Duty, Low-Temperature Diesel Combustion 7 * 2010 FreedomCAR Engine Milestone for 45% Brake Thermal Efficiency Met 8

291

Scrapping Old Cars  

E-Print Network (OSTI)

fleet has been aging, in part because cars just last longer.households today own more cars than they did thirty yearsInstead of trading in an old car for a new one, they are now

Dill, Jennifer

2004-01-01T23:59:59.000Z

292

Speed-sensorless torque control of induction motors for hybrid electric vehicles.  

E-Print Network (OSTI)

??Hybrid Electric Vehicles (HEVs) are exciting new additions to the car markets since they combine the best features of conventional and electric cars to improve… (more)

Fu, Tianjun

2005-01-01T23:59:59.000Z

293

Argonne Transportation - Advanced Vehicle Technology Competitions  

NLE Websites -- All DOE Office Websites (Extended Search)

to co-sponsor EcoCAR2 Virginia Tech Wins EcoCAR Competition With an Extended-Range Electric Vehicle. Read the complete press release. Wall Street Journal: GM Scouts for Talent...

294

Gas Mileage of 2005 Vehicles by Lincoln  

NLE Websites -- All DOE Office Websites (Extended Search)

MPG Estimates Shared By Vehicle Owners 11 City 13 Combined 17 Highway 2005 Lincoln Town Car 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2005 Lincoln Town Car View MPG...

295

Gas Mileage of 2006 Vehicles by Lincoln  

NLE Websites -- All DOE Office Websites (Extended Search)

MPG Estimates Shared By Vehicle Owners 11 City 13 Combined 16 Highway 2006 Lincoln Town Car 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2006 Lincoln Town Car View MPG...

296

Gas Mileage of 2007 Vehicles by Lincoln  

NLE Websites -- All DOE Office Websites (Extended Search)

MPG Estimates Shared By Vehicle Owners 12 City 14 Combined 17 Highway 2007 Lincoln Town Car 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2007 Lincoln Town Car 15 City...

297

Gas Mileage of 1993 Vehicles by Lincoln  

NLE Websites -- All DOE Office Websites (Extended Search)

MPG Estimates Shared By Vehicle Owners 16 City 18 Combined 23 Highway 1993 Lincoln Town Car 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 1993 Lincoln Town Car 16 City...

298

Gas Mileage of 2002 Vehicles by Lincoln  

NLE Websites -- All DOE Office Websites (Extended Search)

MPG Estimates Shared By Vehicle Owners 10 City 12 Combined 15 Highway 2002 Lincoln Town Car 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2002 Lincoln Town Car View MPG...

299

Gas Mileage of 1994 Vehicles by Lincoln  

NLE Websites -- All DOE Office Websites (Extended Search)

MPG Estimates Shared By Vehicle Owners 16 City 18 Combined 23 Highway 1994 Lincoln Town Car 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 1994 Lincoln Town Car View MPG...

300

Gas Mileage of 2004 Vehicles by Lincoln  

NLE Websites -- All DOE Office Websites (Extended Search)

MPG Estimates Shared By Vehicle Owners 11 City 13 Combined 16 Highway 2004 Lincoln Town Car 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2004 Lincoln Town Car View MPG...

Note: This page contains sample records for the topic "vehicles cars light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Gas Mileage of 2008 Vehicles by Lincoln  

NLE Websites -- All DOE Office Websites (Extended Search)

MPG Estimates Shared By Vehicle Owners 12 City 14 Combined 18 Highway 2008 Lincoln Town Car 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2008 Lincoln Town Car 15 City...

302

FreedomCAR and Fuel Partnership 2006 Highlights of Technical Accomplishments  

NLE Websites -- All DOE Office Websites (Extended Search)

FreedomCAR and Fuel Partnership 2006 Highlights of Technical Accomplishments Table of Contents Item Page Preface iii Vehicle Technologies Advanced Combustion & Emissions Control * Model of 3D Diesel Particulate Filter Shows Location Where Soot Collects 1 * High-Efficiency, Low-Emission Combustion Achieved at Modal Test Conditions Relevant for Small-Car FTP 2 * KIVA Enhanced for Faster Computations and HCCI Combustion 3 * Durability of a DOC-UREA SCT-DPF System for a Light-Duty Truck Studied for 120,000 Miles 4 Electrical & Electronics * DC/DC Converter for Fuel Cell and Hybrid Vehicles 5 * Silicon-Silicon Carbide Hybrid Inverter 6 Electrochemical Energy Storage * New High-Power Cell Chemistry Identified 7 * Gap Analysis Software Developed 8

303

VRML2 Car Welding  

Science Conference Proceedings (OSTI)

VRML2 Car Welding. by Qiming Wang. Click on the base of the robot to start spot welding the car. This file follows VRML97 conventions. ...

304

Rental Car Information - TMS  

Science Conference Proceedings (OSTI)

About the 8th Biennial Workshop on OMVPE: Rental Car Information ... ...has been selected as the Official Car Rental Company for The Minerals, Metals ...

305

Rental Car Information  

Science Conference Proceedings (OSTI)

About the 4th International Symposium on 718 and Others: Rental Car Information ... ...has been selected as the Official Car Rental Company for the 4th  ...

306

Ultracapacitors for Electric and Hybrid Vehicles - Performance Requirements, Status of the Technology, and R&D Needs  

E-Print Network (OSTI)

5. Burke, A.F. , Electric/Hybrid Vehicle Super Car Designsin Electric and Hybrid Vehicles, SAE Paper No. 951951,for Electric and Hybrid Vehicles - A Technology Update,

Burke, Andrew F

1995-01-01T23:59:59.000Z

307

How Vehicles Are Tested  

NLE Websites -- All DOE Office Websites (Extended Search)

simulates cycling. The energy required to move the rollers can be adjusted to account for wind resistance and the vehicle's weight. Photo: Driver running car through test cycle on...

308

Travel Time Estimation Using Floating Car Data  

E-Print Network (OSTI)

This report explores the use of machine learning techniques to accurately predict travel times in city streets and highways using floating car data (location information of user vehicles on a road network). The aim of this report is twofold, first we present a general architecture of solving this problem, then present and evaluate few techniques on real floating car data gathered over a month on a 5 Km highway in New Delhi.

Sevlian, Raffi

2010-01-01T23:59:59.000Z

309

Plasma Catalysis for NOx Reduction from Light-Duty Diesel Vehicles  

SciTech Connect

The control of NOx (NO and NO2) emissions from so-called ‘lean-burn’ vehicle engines remains a challenge. In this program, we have been developing a novel plasma/catalyst technology for the remediation of NOx under lean (excess oxygen) conditions, specifically for compression ignition direct injection (CIDI) diesel engines that have significant fuel economy benefits over conventional stoichiometric gasoline engines. Program efforts included: (1) improving the catalyst and plasma reactor efficiencies for NOx reduction; (2) studies to reveal important details of the reaction mechanism(s) that can then guide our catalyst and reactor development efforts; (3) evaluating the performance of prototype systems on real engine exhaust; and (4) studies of the effects of the plasma on particulate matter (PM) in real diesel engine exhaust. Figure 1 is a conceptual schematic of a plasma/catalyst device, which also shows our current best understanding of the role of the various components of the overall device for reducing NOx from the exhaust of a CIDI engine. When this program was initiated, it was not at all clear what the plasma was doing and, as such, what class of catalyst materials might be expected to produce good results. With the understanding of the role of the plasma (as depicted in Figure 1) obtained in this program, faujasite zeolite-based catalysts were developed and shown to produce high activity for NOx reduction of plasma-treated exhaust in a temperature range expected for light-duty diesel engines. These materials are the subject of a pending patent application, and were recognized with a prestigious R&D100 Award in 2002. In addition, PNNL staff were awarded a Federal Laboratory Consortium (FLC) Award in 2003 “For Excellence in Technology Transfer”. The program also received the DOE’s 2001 CIDI Combustion and Emission Control Program Special Recognition Award and 2004 Advanced Combustion Engine R&D Special Recognition Award.

Barlow, Stephan E.; Kwak, Ja Hun; Peden, Charles HF; Szanyi, Janos; Tonkyn, Russell G.; Howden, Ken; Hoard, John W.; Cho, Byong; Schmieg, Steven J.; Brooks, David J.; Nunn, Steven; Davis, Patrick

2004-12-31T23:59:59.000Z

310

ABSTRACT UNIVERSITY OF LUND CAR SHARING NETWORKS ROLE OF CAR SHARING IN TRANSPORTATION  

E-Print Network (OSTI)

Transportation within Canada plays a fundamental role in society; with mobility, people are able to interact (pursue leisure, conduct business, and transport goods), and access services. Personal vehicles are the main mode of transportation today and have many costs on society such as greenhouse gas emissions. Canada has recently ratified the Kyoto Protocol and now faces unique challenges of reducing emissions through encouraging sustainable transportation. Car sharing networks have great potential to sponsor emission reductions through reduced personal vehicle usage, without sacrificing personal mobility. Car Sharing is a sustainable alternative to the traditional personal vehicle. Car sharing is defined by a joint access sharing of automobiles that allow members to rent vehicles on an as needed pay per use basis located in urban dense neighbourhoods. Evaluating the role of car sharing and analysis in regards to sustainable transportation objectives are explored. This research defines sustainable development and its parameters to be inclusive of both a broad and narrow consideration. Car Sharing offers social, economic and environmental benefits. One social and economic benefit emphasized is an increase in equity within low income users. This equity may be achieved through increased affordability by shifting fixed pricing structures and providing an alternative to costly fixed capital (vehicle ownership) expenditures. Another advantage includes a reduced vehicle

Spencer Brown

2005-01-01T23:59:59.000Z

311

Argonne Transportation - Engines - Reducing Heavy Vehicle Idling  

NLE Websites -- All DOE Office Websites (Extended Search)

Reducing Vehicle Idling Reducing Vehicle Idling What is Idling? graphic of a hypothetical no-idling sign When a vehicle's engine is on but the vehicle is not in motion, it is idling. Sitting at traffic lights, waiting in a running car to pick someone up, trucks idling while their drivers make deliveries or sleep during rest stops - these are all examples of idling. Why Care About Idling? Although many individual idling episodes are small, the cumulative impacts of idling are large! Consider that idling in the United States uses more than 6 billion gallons of fuel at a cost of more than $20 billion EACH year. Add to that the costs of maintenance related to the extra engine running time and the added emissions of particulates (PM10), nitrogen oxides (NOx), carbon monoxide (CO) and carbon dioxide (CO2) related to

312

FY 2004 Annual Progress Report for Heavy Vehicle Systems Optimization  

NLE Websites -- All DOE Office Websites (Extended Search)

HEAVY HEAVY VEHICLE SYSTEMS OPTIMIZATION FreedomCAR and Vehicle Technologies Program U.S. Department of Energy FreedomCAR and Vehicle Technologies Program 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FY 2004 Annual Progress Report for Heavy Vehicle Systems Optimization Energy Efficiency and Renewable Energy FreedomCAR and Vehicle Technologies Program Approved by Dr. Sidney Diamond Technology Area Development Specialist February 2005 Heavy Vehicle Systems Optimization Program FY 2004 Annual Report iii Contents Foreword by Dr. Sidney Diamond, FreedomCAR and Vehicle Technologies Program, Energy Efficiency and Renewable Energy, U.S. Department of Energy ................................. 1 I. Aerodynamic Drag Reduction......................................................................................................

313

Putting policy in drive : coordinating measures to reduce fuel use and greenhouse gas emissions from U.S. light-duty vehicles  

E-Print Network (OSTI)

The challenges of energy security and climate change have prompted efforts to reduce fuel use and greenhouse gas emissions in light-duty vehicles within the United States. Failures in the market for lower rates of fuel ...

Evans, Christopher W. (Christopher William)

2008-01-01T23:59:59.000Z

314

Energy Star Concepts for Highway Vehicles  

Science Conference Proceedings (OSTI)

The authors of this report, under the sponsorship of the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Weatherization and Intergovernmental Program, have investigated the possible application of Energy Star ratings to passenger cars and light trucks. This study establishes a framework for formulating and evaluating Energy Star rating methods that is comprised of energy- and environmental-based metrics, potential vehicle classification systems, vehicle technology factors, and vehicle selection criteria. The study tests several concepts and Energy Star rating methods using model-year 2000 vehicle data--a spreadsheet model has been developed to facilitate these analyses. This study tests two primary types of rating systems: (1) an outcome-based system that rates vehicles based on fuel economy, GHG emissions, and oil use and (2) a technology-based system that rates vehicles based on the energy-saving technologies they use. Rating methods were evaluated based on their ability to select vehicles with high fuel economy, low GHG emissions, and low oil use while preserving a full range of service (size and acceleration) and body style choice. This study concludes that an Energy Star rating for passenger cars and light trucks is feasible and that several methods could be used to achieve reasonable tradeoffs between low energy use and emissions and diversity in size, performance, and body type. It also shows that methods that consider only fuel economy, GHG emissions, or oil use will not select a diverse mix of vehicles. Finally, analyses suggest that methods that encourage the use of technology only, may result in increases in acceleration power and weight rather than reductions in oil use and GHG emissions and improvements in fuel economy.

Greene, D.L.

2003-06-24T23:59:59.000Z

315

Electric powertrains : opportunities and challenges in the US light-duty vehicle fleet  

E-Print Network (OSTI)

Managing impending environmental and energy challenges in the transport sector requires a dramatic reduction in both the petroleum consumption and greenhouse gas (GHG) emissions of in-use vehicles. This study quantifies ...

Kromer, Matthew A

2007-01-01T23:59:59.000Z

316

Hydrogen Storage Options: Technologies and Comparisons for Light-Duty Vehicle Applications  

E-Print Network (OSTI)

B. , and Ovshinsky, S.R. , A Hydrogen ICE Vehicle Powered byM. , and Stetson, N. , Solid Hydrogen Storage Systems forpaper from Texaco Ovonic Hydrogen Systems, Rochester Hills,

Burke, Andrew; Gardnier, Monterey

2005-01-01T23:59:59.000Z

317

Light-Duty Drive Cycle Simulations of Diesel Engine-Out Exhaust Properties for an RCCI-Enabled Vehicle  

SciTech Connect

In-cylinder blending of gasoline and diesel fuels to achieve low-temperature reactivity controlled compression ignition (RCCI) can reduce NOx and PM emissions while maintaining or improving brake thermal efficiency compared to conventional diesel combustion (CDC). Moreover, the dual-fueling RCCI is able to achieve these benefits by tailoring combustion reactivity over a wider range of engine operation than is possible with a single fuel. However, the currently demonstrated range of stable RCCI combustion just covers a portion of the engine speed-load range required in several light-duty drive cycles. This means that engines must switch from RCCI to CDC when speed and load fall outside of the stable RCCI range. In this study we investigated the impact of RCCI as it has recently been demonstrated on practical engine-out exhaust temperature and emissions by simulating a multi-mode RCCI-enabled vehicle operating over two urban and two highway driving cycles. To implement our simulations, we employed experimental engine maps for a multi-mode RCCI/CDC engine combined with a standard mid-size, automatic transmission, passenger vehicle in the Autonomie vehicle simulation platform. Our results include both detailed transient and cycle-averaged engine exhaust temperature and emissions for each case, and we note the potential implications of the modified exhaust properties on catalytic emissions control and utilization of waste heat recovery on future RCCI-enabled vehicles.

Gao, Zhiming [ORNL; Curran, Scott [ORNL; Daw, C Stuart [ORNL; Wagner, Robert M [ORNL

2013-01-01T23:59:59.000Z

318

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network (OSTI)

combustion Prius, Eco Fuel CNG Hybrid Escape, and Solara methanol vehicle, and a CNG vehicle. The participants werewas predominately the CNG vehicle. The authors explain the

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

319

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network (OSTI)

and S. E. Letendre, "Electric Vehicles as a New Power Sourceassessment for fuel cell electric vehicles." Argonne, Ill. :at 20th International Electric Vehicle Symposium (EVS-20),

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

320

SERVICES Rental Car Agreement  

E-Print Network (OSTI)

This Management Memorandum announces the new contracts between the State of California and the commercial rental car vendors. This year the Department of General Services (DGS) competitively bid the commercial car rental contract resulting in a contract with a primary car rental vendor and a secondary car rental vendor. The primary car rental vendor is Enterprise Rent A Car for all government travel. In the event that the primary vendor is unable to provide service the secondary vendor must be used. Vanguard Car Rental USA is the secondary vendor. Vanguard Car Rental USA is the parent company of Alamo and National Car Rental. Departments are required to ensure that the secondary vendor is only used when the primary vendor cannot provide service. Contract Information The new rental car contracts require vendors to provide counter bypass. Counter bypass allows government employees traveling on official State

unknown authors

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicles cars light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

EcoCAR Reaches the Finish Line | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EcoCAR Reaches the Finish Line EcoCAR Reaches the Finish Line EcoCAR Reaches the Finish Line June 21, 2011 - 2:09pm Addthis The EcoCAR Challenege is a competition that challenges participating students from across North America to re-engineer a vehicle donated by General Motors. With the goal of minimizing the vehicle's fuel consumption and emissions, while maintaining its utility, safety and performance, teams had to find the best combination of cutting-edge technologies to meet these objectives. Shannon Brescher Shea Communications Manager, Clean Cities Program Last Thursday, the Library of Congress's vaunted halls were filled with undergraduate and graduate students on the edge of their seats, waiting to hear the first place winner of the EcoCAR: The NeXt Challenge competition. As Patrick Davis, Vehicle Technologies Program Manager for the Department

322

Could TEG Improve Your Car's Efficiency? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Could TEG Improve Your Car's Efficiency? Could TEG Improve Your Car's Efficiency? Could TEG Improve Your Car's Efficiency? August 16, 2010 - 10:00am Addthis This image shows how a thermoelectric generator would be placed in a passenger car. | Photo courtesy of BMW This image shows how a thermoelectric generator would be placed in a passenger car. | Photo courtesy of BMW Lorelei Laird Writer, Energy Empowers What are the key facts? A Thermoelectric Generator (TEG) recaptures lost vehicle heat for better efficiency. This project is funded in part with $7.15 million federal Vehicle Technologies Program grant. This is targeted for the U.S. market in 2018 models. More than half of the gas we buy -- and the money we spend on it -- is wasted. Even the most efficient drivers are at the mercy of their vehicles'

323

Could TEG Improve Your Car's Efficiency? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Could TEG Improve Your Car's Efficiency? Could TEG Improve Your Car's Efficiency? Could TEG Improve Your Car's Efficiency? August 16, 2010 - 10:00am Addthis This image shows how a thermoelectric generator would be placed in a passenger car. | Photo courtesy of BMW This image shows how a thermoelectric generator would be placed in a passenger car. | Photo courtesy of BMW Lorelei Laird Writer, Energy Empowers What are the key facts? A Thermoelectric Generator (TEG) recaptures lost vehicle heat for better efficiency. This project is funded in part with $7.15 million federal Vehicle Technologies Program grant. This is targeted for the U.S. market in 2018 models. More than half of the gas we buy -- and the money we spend on it -- is wasted. Even the most efficient drivers are at the mercy of their vehicles'

324

Alternative Fuel Vehicles | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

the transit authority to maintain its service while reducing harmful emissions. From electric cars and propane vehicles to natural gas-powered buses and trucks that run on...

325

Electric Vehicles: Compare Side-by-Side  

NLE Websites -- All DOE Office Websites (Extended Search)

Cars Station Wagons SUVs & Vans Fuel Economy Specs Personalize 2013 Smart fortwo Electric Drive Convertible 2013 Smart fortwo Electric Drive Coupe Electric Vehicle 2013 Smart...

326

Electrochemical Capacitors as Energy Storage in Hybrid-Electric Vehicles: Present Status and Future Prospects  

E-Print Network (OSTI)

passenger cars using the ultracapacitors in micro-hybrid,passenger car using both carbon/carbon and hybrid carbonhybrid vehicle designs and operating strategies are shown in Table 1 for a mid-size passenger car.

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

327

Background Car Color and Safety  

E-Print Network (OSTI)

A frequently asked question of Foundation staff is "What is the safest car color?" Psychological studies show that color has an effect on behavior, and there are other studies about color and conspicuity, but there are very few studies examining the impact of car color on crash rates. "Colors can create conditions that can cause fatigue, increase stress, decrease visual perception, damage eyesight, increase possible worker errors, and negatively affect orientation and safety " (www.colormatters.com). Studies examining traditional color psychology find blue is relaxing and red increases heart rate and blood pressure. Color affects mood and people make purchasing decisions based on color. However, it seems unlikely that a person who dislikes the color orange, for example, would purposely crash into an orange vehicle. General studies have also been done to show the most visible colors for day and night; however, there are no studies directly addressing the relationship between car color (conspicuity) and crashes among passenger vehicles. The study below discusses colors for fire fighting equipment, and presumably it would have some relevance for passenger

unknown authors

2004-01-01T23:59:59.000Z

328

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network (OSTI)

status, gender, and age), vehicle type (energy storage andstatus, gender, and age), vehicle type (energy storage and

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

329

Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles  

DOE Green Energy (OSTI)

Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS -- NOx = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY -- The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT -- Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

Stang, John H.

2005-12-19T23:59:59.000Z

330

Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles  

DOE Green Energy (OSTI)

Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS--NO{sub x} = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NO{sub x} = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY--The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT--Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

John H. Stang

2005-12-31T23:59:59.000Z

331

Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles  

Science Conference Proceedings (OSTI)

Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS NOx = 0.50 g/mi PM = 0.05 g/mi CO = 2.8 g/mi NMHC = 0.07 g/mi California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi PM = 0.01 g/mi (2) FUEL ECONOMY The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

Stang, John H.

1997-12-01T23:59:59.000Z

332

TransForum v9n1 - EcoCAR  

NLE Websites -- All DOE Office Websites (Extended Search)

solutions and embrace innovations ranging from plug-in hydrogen fuel cells to all-electric vehicles. EcoCAR, which is sponsored by the U.S. Department of Energy (DOE) and...

333

Prof. Perot Pricey Oil Could Be Boon for European Car  

E-Print Network (OSTI)

MIE 230 Prof. Perot Pricey Oil Could Be Boon for European Car By LAURENCE FROST, AP Business Writer PARIS - Record-high oil prices might seem like bad news for the auto industry. But one European Car, an electric pump compresses air into a tank. The air in turn pumps pistons that take the vehicle

Perot, Blair

334

Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy  

NLE Websites -- All DOE Office Websites (Extended Search)

3: March 8, 2010 3: March 8, 2010 Vehicle Occupancy Rates to someone by E-mail Share Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Facebook Tweet about Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Twitter Bookmark Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Google Bookmark Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Delicious Rank Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Digg Find More places to share Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on AddThis.com... Fact #613: March 8, 2010 Vehicle Occupancy Rates The average number of persons occupying a car is 1.59 and has not changed

335

Vehicle Technologies Office: Educational Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Deployment Deployment Site Map Printable Version Share this resource Send a link to Vehicle Technologies Office: Educational Activities to someone by E-mail Share Vehicle Technologies Office: Educational Activities on Facebook Tweet about Vehicle Technologies Office: Educational Activities on Twitter Bookmark Vehicle Technologies Office: Educational Activities on Google Bookmark Vehicle Technologies Office: Educational Activities on Delicious Rank Vehicle Technologies Office: Educational Activities on Digg Find More places to share Vehicle Technologies Office: Educational Activities on AddThis.com... Energy Policy Act (EPAct) Clean Cities Educational Activities Graduate Automotive Technology Education (GATE) Educational Activities EcoCAR 2: Plugging In to the Future EcoCAR 2: Plugging In to the Future is the successor to EcoCAR: The NeXt

336

On Road Fuel Economy Performance of Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Road Fuel Economy Performance of Hybrid Electric Vehicles Lee Slezak Office of FreedomCAR and Vehicle Technologies U.S. Department of Energy Jim Francfort Advanced Vehicle Testing...

337

Applied ecotechnological issues for recycling cars  

Science Conference Proceedings (OSTI)

The paper shows the need for recycling cars. Recycling operation is particularly complicated because after dismantling and split a wide range of material resulting in a proportion different and difficult to separate. There are presented two recycling ... Keywords: end-of-life-vehicle recycling, hammer mill technology, shrreder technology

Gheorghe Amza; Zoia Apostolescu; Mihaiela Iliescu; Zlatko Garac; Sanda Paise; Maria Groza

2011-07-01T23:59:59.000Z

338

Optimum flywheel sizing for parallel and series hybrid vehicles  

DOE Green Energy (OSTI)

Flywheels have the possibility of providing high turnaround efficiency and high specific power output. These characteristics are very important for the successful manufacture of parallel and series hybrid vehicles, which have the potential for providing high fuel economy and very low emissions with range and performance comparable to today`s light-duty vehicles. Flywheels have a high specific power output, but relatively low specific energy output. Therefore, it is of importance to determine energy and power requirements for flywheels applied to light-duty vehicles. Vehicle applications that require an energy storage system with high power and low energy are likely to benefit from a flywheel. In this paper, a vehicle simulation code and a flywheel model are applied to the calculation of optimum flywheel energy storage capacity for a parallel and a series hybrid vehicle. A conventional vehicle is also evaluated as a base-case, to provide an indication of the fuel economy gains that can be obtained with flywheel hybrid vehicles. The results of the analysis indicate that the optimum flywheel energy storage capacity is relatively small. This results in a low weight unit that has a significant power output and high efficiency. Emissions generated by the hybrid vehicles are not calculated, but have the potential of being significantly lower than the emissions from the conventional car.

Aceves, S.M.; Smith, J.R.

1996-12-20T23:59:59.000Z

339

The effects of driving style and vehicle performance on the real-world fuel consumption of U.S. light-duty vehicles  

E-Print Network (OSTI)

Even with advances in vehicle technology, both conservation and methods for reducing the fuel consumption of existing vehicles are needed to decrease the petroleum consumption and greenhouse gas emissions of the U.S. ...

Berry, Irene Michelle

2010-01-01T23:59:59.000Z

340

Fuel Cell Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cell Vehicles Fuel Cell Vehicles August 20, 2013 - 9:11am Addthis Photo of a blue car with 'The Road to Hydrogen' written on it, filling up at a hydrogen fueling station. Fuel...

Note: This page contains sample records for the topic "vehicles cars light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Sneaking Interaction Techniques into Electric Vehicles Sebastian Loehmann  

E-Print Network (OSTI)

Due to the release of several electric vehicles (EV) to the car market, the number of sales from regular combustion engine cars to create electric vehicle information systems (EVIS). We argue in the near future. With the introduction of cars like the Nissan Leaf, the Ford Focus Electric or the soon

342

Vehicle Technologies Office: Fact #450: January 1, 2007 Information Sources  

NLE Websites -- All DOE Office Websites (Extended Search)

0: January 1, 0: January 1, 2007 Information Sources for First-Time Car Buyers to someone by E-mail Share Vehicle Technologies Office: Fact #450: January 1, 2007 Information Sources for First-Time Car Buyers on Facebook Tweet about Vehicle Technologies Office: Fact #450: January 1, 2007 Information Sources for First-Time Car Buyers on Twitter Bookmark Vehicle Technologies Office: Fact #450: January 1, 2007 Information Sources for First-Time Car Buyers on Google Bookmark Vehicle Technologies Office: Fact #450: January 1, 2007 Information Sources for First-Time Car Buyers on Delicious Rank Vehicle Technologies Office: Fact #450: January 1, 2007 Information Sources for First-Time Car Buyers on Digg Find More places to share Vehicle Technologies Office: Fact #450: January 1, 2007 Information Sources for First-Time Car Buyers on

343

Vehicle Technologies Office: Fact #752: November 5, 2012 Western Europe  

NLE Websites -- All DOE Office Websites (Extended Search)

2: November 5, 2: November 5, 2012 Western Europe Plug-in Car Sales, 2012 to someone by E-mail Share Vehicle Technologies Office: Fact #752: November 5, 2012 Western Europe Plug-in Car Sales, 2012 on Facebook Tweet about Vehicle Technologies Office: Fact #752: November 5, 2012 Western Europe Plug-in Car Sales, 2012 on Twitter Bookmark Vehicle Technologies Office: Fact #752: November 5, 2012 Western Europe Plug-in Car Sales, 2012 on Google Bookmark Vehicle Technologies Office: Fact #752: November 5, 2012 Western Europe Plug-in Car Sales, 2012 on Delicious Rank Vehicle Technologies Office: Fact #752: November 5, 2012 Western Europe Plug-in Car Sales, 2012 on Digg Find More places to share Vehicle Technologies Office: Fact #752: November 5, 2012 Western Europe Plug-in Car Sales, 2012 on AddThis.com...

344

EcoCAR Challenge  

NLE Websites -- All DOE Office Websites (Extended Search)

and Analysis Computing Center Working With Argonne Contact TTRDC EcoCAR logo The Ohio State University Takes First Place at 2009 EcoCAR Competition University of Victoria...

345

Car Rental Information  

Science Conference Proceedings (OSTI)

Hertz Rent-A-Car System has been selected as the Official Car Rental Company for the 1997 TMS Annual Meeting. Special rates are being offered and will be ...

346

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network (OSTI)

includes “car-company” battery cost estimates, scaled toas the desire to keep battery cost, and thus size, down isjustify current marginal battery costs. So, too, might there

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

347

NREL: Vehicles and Fuels Research - NREL to Showcase Two Advanced Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

to Showcase Two Advanced Vehicles at Estes Park Coolest Car Show on to Showcase Two Advanced Vehicles at Estes Park Coolest Car Show on July 4 July 1, 2013 The National Renewable Energy Laboratory (NREL) will showcase two advanced Toyota vehicles -- a Highlander fuel cell hybrid vehicle (FCHV-adv) and a plug-in Prius hybrid electric vehicle -- at The Coolest Car Show in Colorado in Estes Park on July 4. Representatives from NREL will be on hand to answer questions about the vehicles on display and provide information and educational literature about alternative fuels and advanced vehicles. "We like to reach out to the community and provide information on alternative vehicle technologies and this is a great event to do that with all of the vehicle enthusiasts," said NREL's Melanie Caton. The car show, which is hosted by Estes Park Museum Friends and Foundation,

348

Top 10 Things You Didn't Know About Electric Vehicles | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

of the energy from gasoline-powered vehicles. 6. Unlike gasoline-powered vehicles, electric cars emit no tailpipe pollutants when running on electricity -- cleaning the air...

349

Keeping Children Safe in Cars  

E-Print Network (OSTI)

seats manufactured for older cars without shoulder belts,assembled and installed in the car, and that can be trickyimpossible depending on the car’s age and model. Finally,

Cooper, Jill

2004-01-01T23:59:59.000Z

350

Comments on the Joint Proposed Rulemaking to Establish Light-Duty Vehicle Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards  

SciTech Connect

I appreciate the opportunity to provide comments on the joint rulemaking to establish greenhouse gas emission and fuel economy standards for light-duty vehicles. My comments are directed at the choice of vehicle footprint as the attribute by which to vary fuel economy and greenhouse gas emission standards, in the interest of protecting vehicle occupants from death or serious injury. I have made several of these points before when commenting on previous NHTSA rulemakings regarding CAFE standards and safety. The comments today are mine alone, and do not necessarily represent the views of the US Department of Energy, Lawrence Berkeley National Laboratory, or the University of California. My comments can be summarized as follows: (1) My updated analysis of casualty risk finds that, after accounting for drivers and crash location, there is a wide range in casualty risk for vehicles with the same weight or footprint. This suggests that reducing vehicle weight or footprint will not necessarily result in increased fatalities or serious injuries. (2) Indeed, the recent safety record of crossover SUVs indicates that weight reduction in this class of vehicles resulted in a reduction in fatality risks. (3) Computer crash simulations can pinpoint the effect of specific design changes on vehicle safety; these analyses are preferable to regression analyses, which rely on historical vehicle designs, and cannot fully isolate the effect of specific design changes, such as weight reduction, on crash outcomes. (4) There is evidence that automakers planned to build more large light trucks in response to the footprint-based light truck CAFE standards. Such an increase in the number of large light trucks on the road may decrease, rather than increase, overall safety.

Wenzel, Thomas P

2009-10-27T23:59:59.000Z

351

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network (OSTI)

H 2 FCVs, plug- in hybrids, and vehicle-to-grid (V2G) power.markets using primarily hybrid vehicles in fleet and otherin hybrid, Plug-out hybrid, Vehicle-to-grid power, Vehicular

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

352

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network (OSTI)

Early Markets for Hybrid Electric Vehicles," University ofof Plug-In Hybrid Electric Vehicles on Wind Energy Markets,"Power Assist Hybrid Electric Vehicles, and Plug-In Hybrid

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

353

Chapter 2. Vehicle Characteristics  

U.S. Energy Information Administration (EIA) Indexed Site

2. Vehicle Characteristics 2. Vehicle Characteristics Chapter 2. Vehicle Characteristics U.S. households used a fleet of nearly 157 million vehicles in 1994. Despite remarkable growth in the number of minivans and sport-utility vehicles, passenger cars continued to predominate in the residential vehicle fleet. This chapter looks at changes in the composition of the residential fleet in 1994 compared with earlier years and reviews the effect of technological changes on fuel efficiency (how efficiently a vehicle engine processes motor fuel) and fuel economy (how far a vehicle travels on a given amount of fuel). Using data unique to the Residential Transportation Energy Consumption Survey, it also explores the relationship between residential vehicle use and family income.

354

A strategy for the use of light emitting diodes by autonomous underwater vehicles  

E-Print Network (OSTI)

Light Emitting Diode (LED) technology has advanced dramatically in a few short years. An expensive and difficult to manufacture LED array containing nearly 100 individual LEDs and measuring at least 5 cm² can now be replaced ...

Curran, Joseph R. (Joseph Robinson)

2004-01-01T23:59:59.000Z

355

Increasing the Fuel Economy and Safety of New Light-Duty Vehicles  

E-Print Network (OSTI)

Automotive Technology and Fuel Economy Trends: 1975 Through2004. “The effect of fuel economy on automobile safety: aM. , 2002. “Near-term fuel economy potential for light-duty

Wenzel, Tom; Ross, Marc

2006-01-01T23:59:59.000Z

356

EcoCar Drives Students to Innovate | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EcoCar Drives Students to Innovate EcoCar Drives Students to Innovate EcoCar Drives Students to Innovate October 26, 2010 - 5:21pm Addthis EcoCar Drives Students to Innovate Shannon Brescher Shea Communications Manager, Clean Cities Program Last year, Americans used about 138 billion gallons of gasoline - mostly imported - for transportation, costing Americans about $300 billion. The Department of Energy, through the Recovery Act, is investing in more fuel-efficient battery and electric vehicles to reduce these costs and training a strong, talented workforce to develop these cleaner, more sustainable technologies. Recognizing the importance of engaging students in this endeavor, the Department of Energy and General Motors (GM) established the EcoCar Challenge - a three-year Advanced Vehicle

357

Electric car arrives - again  

Science Conference Proceedings (OSTI)

The first mass-produced electric cars in modern times are here, although they are expensive, limited in capability and unfamiliar to most prospective consumers. This article presents a brief history of the reintroduction of the modern electric car as well as discussions of the limitations of development, alternative routes to both producing and selling electric cars or some modified version of electric cars, economic incentives and governmental policies, and finally a snapshot description of the future for electric cars. 6 refs., 1 tab.

Dunn, S.

1997-03-01T23:59:59.000Z

358

What Do You Think of Electric 'Cars of the Future'? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

What Do You Think of Electric 'Cars of the Future'? What Do You Think of Electric 'Cars of the Future'? What Do You Think of Electric 'Cars of the Future'? April 29, 2010 - 7:30am Addthis On Tuesday, Shannon wrote about plug-in hybrid electric vehicles and all-electric vehicles. DOE is has a number of projects in the works to encourage development and adoption of these vehicles. While the flying "cars of the future" we imagined in years past have not come to fruition, plug-in and all-electric vehicles have given us a new vision for the "cars of the future," and it's an efficient one! What do you think of electric "cars of the future"? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. Please comment

359

What Do You Think of Electric 'Cars of the Future'? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Think of Electric 'Cars of the Future'? Think of Electric 'Cars of the Future'? What Do You Think of Electric 'Cars of the Future'? April 29, 2010 - 7:30am Addthis On Tuesday, Shannon wrote about plug-in hybrid electric vehicles and all-electric vehicles. DOE is has a number of projects in the works to encourage development and adoption of these vehicles. While the flying "cars of the future" we imagined in years past have not come to fruition, plug-in and all-electric vehicles have given us a new vision for the "cars of the future," and it's an efficient one! What do you think of electric "cars of the future"? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. Please comment with your answers, and also feel free to respond to other comments. E-mail

360

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network (OSTI)

goals for automotive fuel cell power systems hydrogen vs.a comparative assessment for fuel cell electric vehicles."plug-out hydrogen-fuel- cell vehicles: “Mobile Electricity"

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicles cars light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

EcoCAR Challenge: Finish Line | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EcoCAR Challenge: Finish Line EcoCAR Challenge: Finish Line EcoCAR Challenge: Finish Line Addthis Description The EcoCAR Challenege is a competition that challenges participating students from across North America to re-engineer a vehicle donated by General Motors. With the goal of minimizing the vehicle's fuel consumption and emissions, while maintaining its utility, safety and performance, teams had to find the best combination of cutting-edge technologies to meet these objectives. Speakers Secretary Steven Chu; MIchael Bly, Lynn Gnatt, Carlos Cubero-Ponce, Ryan Melsert, Eric Schacht, Andrew Eldridge, Duration 4:23 Topic Alternative Fuel Vehicles Fuel Economy Batteries Hydrogen & Fuel Cells Credit Energy Department Video (Music.) LYNN GANTT (Virginia Tech): There are 16 universities that compete in the

362

Vehicle Technologies Office: Fact #541: October 20, 2008 New...  

NLE Websites -- All DOE Office Websites (Extended Search)

1: October 20, 2008 New Car Prices: The Past 100 Years to someone by E-mail Share Vehicle Technologies Office: Fact 541: October 20, 2008 New Car Prices: The Past 100 Years on...

363

Vehicle Technologies Office: Fact #315: April 12, 2004 China...  

NLE Websites -- All DOE Office Websites (Extended Search)

5: April 12, 2004 China Passenger Car Sales to someone by E-mail Share Vehicle Technologies Office: Fact 315: April 12, 2004 China Passenger Car Sales on Facebook Tweet about...

364

Vehicle Technologies Office: Fact #342: October 18, 2004 Passenger...  

NLE Websites -- All DOE Office Websites (Extended Search)

2: October 18, 2004 Passenger Car Sales in China to someone by E-mail Share Vehicle Technologies Office: Fact 342: October 18, 2004 Passenger Car Sales in China on Facebook Tweet...

365

Vehicle Technologies Office: Fact #365: March 28, 2005 The Cost...  

NLE Websites -- All DOE Office Websites (Extended Search)

5: March 28, 2005 The Cost of Driving a Car to someone by E-mail Share Vehicle Technologies Office: Fact 365: March 28, 2005 The Cost of Driving a Car on Facebook Tweet about...

366

Demonstration of oxygen-enriched combustion system on a light-duty vehicle to reduce cold-start emissions  

DOE Green Energy (OSTI)

The oxygen content in the ambient air drawn by combustion engines can be increased by polymer membranes. The authors have previously demonstrated that 23 to 25% (concentration by volume) oxygen-enriched intake air can reduce hydrocarbons (HC), carbon monoxide (CO), air toxics, and ozone-forming potential (OFP) from flexible-fueled vehicles (FFVs) that use gasoline or M85. When oxygen-enriched air was used only during the initial start-up and warm-up periods, the emission levels of all three regulated pollutants [CO, nonmethane hydrocarbons (NMHC), and NO{sub x}] were lower than the U.S. EPA Tier II (year 2004) standards (without adjusting for catalyst deterioration factors). In the present work, an air separation membrane module was installed on the intake of a 2.5-L FFV and tested at idle and free acceleration to demonstrate the oxygen-enrichment concept for initial start-up and warm-up periods. A bench-scale, test set-up was developed to evaluate the air separation membrane characteristics for engine applications. On the basis of prototype bench tests and from vehicle tests, the additional power requirements and module size for operation of the membrane during the initial period of the cold-phase, FTP-75 cycle were evaluated. A prototype membrane module (27 in. long, 3 in. in diameter) supplying about 23% oxygen-enriched air in the engine intake only during the initial start-up and warm-up periods of a 2.5-L FFV requires additional power (blower) of less than one horsepower. With advances in air separation membranes to develop compact modules, oxygen enrichment of combustion air has the potential of becoming a more practical technique for controlling exhaust emissions from light-duty vehicles.

Sekar, R.; Poola, R.B.

1997-08-01T23:59:59.000Z

367

Table A16. U.S. Number of Vehicles by Vehicle Type, 2001 (Million ...  

U.S. Energy Information Administration (EIA)

Types Passenger Car Van (Large and Minivan) Sport Utility Vehicle Pickup Truck Recreational Vehicle Household Characteristics Total..... 191.0 112.4 18.4 23.2 35.6 ...

368

New and Upcoming Diesel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

2014 Model Year Diesels Vehicle EPA MPG Estimates Price (MSRP) Audi A6 quattro Midsize Car Audi A6 quattro Chart: City, 24; Highway, 38; Combined, 29 45,200-57,500 Audi A7...

369

Idle Stop Vehicle Testing Downloadable Dynamometer Database  

E-Print Network (OSTI)

Battery Electric Vehicle (BEV) PHEV EREV Charge Sustaining (CS) Hybrid Electric Vehicle (HEV) Fuel Cell vehicle terminology map for SAE J1715 Increased electric power and energy Increasedelectricpowerandenergy #12;Note: Manual Transmission Vehicle Shift schedules for Dynamometers Most cars in the US use

Kemner, Ken

370

Noise Test Scores—1970 Clean Air Car Race  

Science Conference Proceedings (OSTI)

The 1970 Clean Air Car Race was the first annual race from MIT to Cal Tech by college students in vehicles that meet stringent air pollution requirements. There were 45 vehicles entered in five engine classifications: internal combustion (both gaseous and liquid fuels)

C. W. Dietrich; N. R. Paulhus

1971-01-01T23:59:59.000Z

371

Fuel Economy of Hybrids, Diesels, and Alternative Fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

You are here: Find a Car - Home > Hybrids, Diesels, and Alternative Fuel You are here: Find a Car - Home > Hybrids, Diesels, and Alternative Fuel Vehicles Hybrids, Diesels, and Alternative Fuel Vehicles Search by Vehicle Type 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 Select Vehicle Type Diesel Electric Ethanol-Gasoline Hybrid Plug-in Hybrid Natural Gas Bifuel Natural Gas Bifuel Propane Go More Search Options Browse New Cars Hybrid Vehicles Plug-in Hybrid Vehicles Battery Electric Vehicles Diesel Vehicles Flex-Fuel Vehicles CNG Vehicles Related Information How Hybrid Vehicles Work How Fuel Cell Vehicles Work MotorWeek Videos Compare Hybrids Compare Diesels Extreme MPG Tax Incentive Information Center Alternative Fuel Station Locator Alternative Fuel and Advanced Vehicle Data Center | Share I want to... Compare Side-by-Side

372

Drive cycle analysis of butanol/diesel blends in a light-duty vehicle.  

Science Conference Proceedings (OSTI)

The potential exists to displace a portion of the petroleum diesel demand with butanol and positively impact engine-out particulate matter. As a preliminary investigation, 20% and 40% by volume blends of butanol with ultra low sulfur diesel fuel were operated in a 1999 Mercedes Benz C220 turbo diesel vehicle (Euro III compliant). Cold and hot start urban as well as highway drive cycle tests were performed for the two blends of butanol and compared to diesel fuel. In addition, 35 MPH and 55 MPH steady-state tests were conducted under varying road loads for the two fuel blends. Exhaust gas emissions, fuel consumption, and intake and exhaust temperatures were acquired for each test condition. Filter smoke numbers were also acquired during the steady-state tests.

Miers, S. A.; Carlson, R. W.; McConnell, S. S.; Ng, H. K.; Wallner, T.; LeFeber, J.; Energy Systems; Esper Images Video & Multimedia

2008-10-01T23:59:59.000Z

373

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

Aggregate Aggregate Ratio: See Mean and Ratio Estimate. AMPD: Average miles driven per day. See Appendix B, "Estimation Methodologies." Annual Vehicle Miles Traveled: See Vehicle Miles Traveled. Automobile: Includes standard passenger car, 2-seater car and station wagons; excludes passenger vans, cargo vans, motor homes, pickup trucks, and jeeps or similar vehicles. See Vehicle. Average Household Energy Expenditures: A ratio estimate defined as the total household energy expenditures for all RTECS households divided by the total number of households. See Ratio Estimate, and Combined Household Energy Expenditures. Average Number of Vehicles per Household: The average number of vehicles used by a household for personal transportation during 1991. For this report, the average number of vehicles per household is computed as the ratio of the total number of vehicles to the

374

Field assessment of an aluminum intensive passenger car  

DOE Green Energy (OSTI)

Ford Motor Co. has made a small batch of ``aluminum intensive vehicles`` (AIV), consisting of mid-size cars (Taurus/Sable) with all-aluminum bodies. The first twenty vehicles were made for internal evaluation at Ford, but the second batch of twenty has been placed on the hands of selected independent users, primarily automotive suppliers, for long term field assessment. The mass reduction achieved in the body of an AIV is shown, and compared with an equivalent standard steel body. Argonne obtained one of these vehicles last October; this is an assessment of the fuel consumption and other operational characteristics of this type of car to date.

Cuenca, R.M.

1994-12-31T23:59:59.000Z

375

Vehicle Technologies Office: Fact #343: October 25, 2004 Reasons for  

NLE Websites -- All DOE Office Websites (Extended Search)

3: October 25, 3: October 25, 2004 Reasons for Rejecting a Particular New Car Model to someone by E-mail Share Vehicle Technologies Office: Fact #343: October 25, 2004 Reasons for Rejecting a Particular New Car Model on Facebook Tweet about Vehicle Technologies Office: Fact #343: October 25, 2004 Reasons for Rejecting a Particular New Car Model on Twitter Bookmark Vehicle Technologies Office: Fact #343: October 25, 2004 Reasons for Rejecting a Particular New Car Model on Google Bookmark Vehicle Technologies Office: Fact #343: October 25, 2004 Reasons for Rejecting a Particular New Car Model on Delicious Rank Vehicle Technologies Office: Fact #343: October 25, 2004 Reasons for Rejecting a Particular New Car Model on Digg Find More places to share Vehicle Technologies Office: Fact #343:

376

Environmental Assessment of Plug-In Hybrid Electric Vehicles, Volume 1: Nationwide Greenhouse Gas Emissions  

Science Conference Proceedings (OSTI)

How would air quality and greenhouse gas emissions be affected if significant numbers of Americans drove cars that were fueled by the power grid? A recently completed assessment conducted by the Electric Power Research Institute and the Natural Resources Defense Council made a detailed study of the question looking at a variety of scenarios involving the U.S. fleet of power generation and its fleet of light-duty and medium-duty cars and trucks.The study focused on plug-in hybrid electric vehicles (PHEVs)...

2007-07-23T23:59:59.000Z

377

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

Toyota and Ford Hybrids," in Green Car Congress, 21 Februaryplant using idle hybrid airport-rental cars to provide localengine (ICE) hybrids in airport-rental-car and other

Williams, Brett D

2007-01-01T23:59:59.000Z

378

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

Toyota and Ford Hybrids," in Green Car Congress, 21 Februaryplant using idle hybrid airport-rental cars to provide localengine (ICE) hybrids in airport-rental-car and other

Williams, Brett D

2010-01-01T23:59:59.000Z

379

Office of FreedomCAR & Vehicle Technologies  

DOE Green Energy (OSTI)

High-level objective of this project is to develop nanoparticle based additive technology to improve friction and wear characteristics of engine oil with a long-term focus to enhance durability and efficiency of engines. The project encompasses a detailed investigation of various chemicals that favors stable boundary film formation and therefore reduce friction and wear of engine components. These active chemicals designed as nanomaterials will be surface-stabilized to gain maximum dispersion stability in a lubricant media. This effort shall be focused with the following objectives in mind: develop active nanoparticle composite, optimize process design, detailed tribological testing and surface characterization, physical and chemical characterization of nanomaterials, and limited component level testing to document friction and wear improvements. Additional motivation is to minimize sulfur/phosphorous contents and lower ash forming components in additives and therefore improve aftertreatment functioning and emission. This effort shall be focused, over a two year funding period: Phase-I will be primarily a feasibility study, which includes selection of components for active nanoparticles, design and formulation, and synthesis of the active nanoparticles, optimize process design, physical and chemical characterization of nanomaterials, tribological testing and document friction and wear improvements. As a continuous effort of the Phase-I, Phase-II will focus on the optimization of the identified nanoparticle-based additives specifically for DOE strategic goal - minimizing S and P contents in additives and lowering ash-forming components. Additional efforts will also be invested in extended component level tribo-testing, manufacturing process scale-up, cost evaluation, and commercial viability assessment. In boundary lubrication, mating surfaces in direct physical contact are in surface asperities dimensional scale. These conditions may benefit from the nanometric size of the advanced nanoparticle lubricants in the following ways: (1) by supplying nano to sub-micron size lubricating agents which reduce friction and wear at the asperity contact zone, (2) by enabling strong metal adsorption and easy wetting, (3) by reacting with the surface to form durable lubricating 'transient transfer' films, sustain high loads and also retain under high temperatures, and (4) by enabling all these at minimal cost and great environmental safety. Suitably designed nanomaterials can significantly lower sulfur and phosphorus level in the lubricant additive pack, and therefore positively impact after-treatment catalyst life and exhaust emissions.

Cheryl Boucher

2009-09-30T23:59:59.000Z

380

Evaluation of aftermarket CNG conversion kits in light-duty vehicle applications. Final report  

DOE Green Energy (OSTI)

The Institute of Gas Technology (IGT) was contracted by the National Renewable Energy Laboratory (NREL) to evaluate three compressed natural gas (CNG) conversion systems using a 1993 Chevrolet Lumina baseline vehicle. A fourth conversion system was added to the test matrix through funding support from Brooklyn Union. The objective of this project was to measure the Federal Test Procedure (FTP) emissions and fuel economy of the different conversion systems, and to compare the performance to gasoline-fueled operation and each other. Different natural gas compositions were selected to represent the 10th percentile, mean, and 90th percentile compositions distributed in the Continental United States. Testing with these different compositions demonstrated the systems` ability to accommodate the spectrum of gas found in the United States. Each compressed natural gas conversion system was installed and adjusted according to the manufacturer`s instructions. In addition to the FTP testing, an evaluation of the comparative installation times and derivability tests (based on AGA and CRC guidelines) were conducted on each system.

Blazek, C.F.; Rowley, P.F.; Grimes, J.W. [Institute of Gas Technology, Chicago, IL (United States)

1995-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicles cars light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

CARS-CAT  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Advanced Photon Source Advanced Photon Source User Activity Report CARS-CAT, Consortium for Advanced Radiation Sources Collaborative Access Team 13-BM Phase...

382

Broadband CARS Microscopy  

Science Conference Proceedings (OSTI)

... The CARS signal has a frequency-independent non-resonant component and a frequency ... is out of phase with respect to the driving electric field of ...

2012-10-05T23:59:59.000Z

383

Exhibitor: TECHMO CAR & ENGINEERING  

Science Conference Proceedings (OSTI)

Since its foundation in 1961, Techmo Car's objective has always been to improve some of the burdensome and difficult work conditions in the aluminium ...

384

BEEST: Electric Vehicle Batteries  

SciTech Connect

BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

None

2010-07-01T23:59:59.000Z

385

Light truck forecasts  

SciTech Connect

The recent dramatic increase in the number of light trucks (109% between 1963 and 1974) has prompted concern about the energy consequences of the growing popularity of the light truck. An estimate of the future number of light trucks is considered to be a reasonable first step in assessing the energy impact of these vehicles. The monograph contains forecasts based on two models and six scenarios. The coefficients for the models have been derived by ordinary least squares regression of national level time series data. The first model is a two stage model. The first stage estimates the number of light trucks and cars (together), and the second stage applies a share's submodel to determine the number of light trucks. The second model is a simultaneous equation model. The two models track one another remarkably well, within about 2%. The scenarios were chosen to be consistent with those used in the Lindsey-Kaufman study Projection of Light Truck Population to Year 2025. Except in the case of the most dismal economic scenario, the number of light trucks is expected to increase from the 1974 level of 0.09 light truck per person to about 0.12 light truck per person in 1995.

Liepins, G.E.

1979-09-01T23:59:59.000Z

386

Impacts of ethanol fuel level on emissions of regulated and unregulated pollutants from a fleet of gasoline light-duty vehicles  

SciTech Connect

The study investigated the impact of ethanol blends on criteria emissions (THC, NMHC, CO, NOx), greenhouse gas (CO2), and a suite of unregulated pollutants in a fleet of gasoline-powered light-duty vehicles. The vehicles ranged in model year from 1984 to 2007 and included one Flexible Fuel Vehicle (FFV). Emission and fuel consumption measurements were performed in duplicate or triplicate over the Federal Test Procedure (FTP) driving cycle using a chassis dynamometer for four fuels in each of seven vehicles. The test fuels included a CARB phase 2 certification fuel with 11% MTBE content, a CARB phase 3 certification fuel with a 5.7% ethanol content, and E10, E20, E50, and E85 fuels. In most cases, THC and NMHC emissions were lower with the ethanol blends, while the use of E85 resulted in increases of THC and NMHC for the FFV. CO emissions were lower with ethanol blends for all vehicles and significantly decreased for earlier model vehicles. Results for NOx emissions were mixed, with some older vehicles showing increases with increasing ethanol level, while other vehicles showed either no impact or a slight, but not statistically significant, decrease. CO2 emissions did not show any significant trends. Fuel economy showed decreasing trends with increasing ethanol content in later model vehicles. There was also a consistent trend of increasing acetaldehyde emissions with increasing ethanol level, but other carbonyls did not show strong trends. The use of E85 resulted in significantly higher formaldehyde and acetaldehyde emissions than the specification fuels or other ethanol blends. BTEX and 1,3-butadiene emissions were lower with ethanol blends compared to the CARB 2 fuel, and were almost undetectable from the E85 fuel. The largest contribution to total carbonyls and other toxics was during the cold-start phase of FTP.

Karavalakis, Georgios; Durbin, Thomas; Shrivastava, ManishKumar B.; Zheng, Zhongqing; Villella, Phillip M.; Jung, Hee-Jung

2012-03-30T23:59:59.000Z

387

EcoCAR2 Teams Start their Virtual Engines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EcoCAR2 Teams Start their Virtual Engines EcoCAR2 Teams Start their Virtual Engines EcoCAR2 Teams Start their Virtual Engines May 17, 2012 - 4:11pm Addthis A North Carolina State University student works on an EcoCAR vehicle at the Year 3 finals last year in Milford, MI. | Energy Department photo. A North Carolina State University student works on an EcoCAR vehicle at the Year 3 finals last year in Milford, MI. | Energy Department photo. Shannon Brescher Shea Communications Manager, Clean Cities Program What are the key facts? First-year finals of the EcoCar2 competition begin Friday, May 18 in Los Angeles, CA. As the auto industry introduces more alternative fuel and energy efficient vehicles to dealerships across the U.S., teams of university students are also making sure consumers have more choices on the showroom floor.

388

A New Generation of Labels for a New Generation of Cars | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Generation of Labels for a New Generation of Cars New Generation of Labels for a New Generation of Cars A New Generation of Labels for a New Generation of Cars May 25, 2011 - 5:42pm Addthis A New Generation of Labels for a New Generation of Cars John Schueler John Schueler Former New Media Specialist, Office of Public Affairs What does this mean for me? An improved car buying experience Clear cut cost comparisons of vehicles If you've ever gone through the process of shopping for a new car, you know just how difficult it can be to cut through the hype and find the best vehicle for you. For decades, consumers have been turning to fuel economy labels to get gas mileage estimates for city and highway driving, to narrow their choices and make an informed purchase. Today, there are more vehicle choices than ever and consumers want to know

389

A New Generation of Labels for a New Generation of Cars | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A New Generation of Labels for a New Generation of Cars A New Generation of Labels for a New Generation of Cars A New Generation of Labels for a New Generation of Cars May 25, 2011 - 5:42pm Addthis A New Generation of Labels for a New Generation of Cars John Schueler John Schueler Former New Media Specialist, Office of Public Affairs What does this mean for me? An improved car buying experience Clear cut cost comparisons of vehicles If you've ever gone through the process of shopping for a new car, you know just how difficult it can be to cut through the hype and find the best vehicle for you. For decades, consumers have been turning to fuel economy labels to get gas mileage estimates for city and highway driving, to narrow their choices and make an informed purchase. Today, there are more vehicle choices than ever and consumers want to know

390

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network (OSTI)

learned from natural gas for vehicles," Energy Policy, vol.learned from natural gas for vehicles." Energy Policy 30(7):Policy, Flynn, the former president of Canadian firm CNG Fuel Systems discusses lessons from compressed-natural-gas-

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

391

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network (OSTI)

device to compressed-natural-gas-vehicle consumers. ) TheZealand’s use of compressed-natural-gas (CNG) and liquefied-discusses lessons from compressed-natural-gas-vehicle (NGV)

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

392

Vehicle purchase and use data matrices: J. D. Power/DOE New Vehicle Owner Surveys  

DOE Green Energy (OSTI)

Vehicle purchase and use data collected in two recent surveys from buyers of new 1978 and 1979 cars and light-duty trucks are presented. The survey information is broad in scope, extending from the public awareness of fuel economy information to decision-making in the purchase process, to in-use fuel economy. The survey data consequently have many applications in transportation studies. The objective of this report is to make a general summary of the data base contents available to interested individuals and organizations.

Crawford, R.; Dulla, R.

1981-04-01T23:59:59.000Z

393

Vehicle ownership and mode use: the challenge of sustainability  

E-Print Network (OSTI)

this issue examined car ownership and usage decisions. Thecar-ownership over time. The next two examine the vehicle ownership and usage

Srinivasan, Sivaramakrishnan; Walker, Joan L.

2009-01-01T23:59:59.000Z

394

Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Medium- and Medium- and Heavy-Duty Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Twitter Bookmark Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Google Bookmark Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Delicious Rank Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Digg Find More places to share Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on AddThis.com... Home Overview Light-Duty Vehicles Medium- and Heavy-Duty Vehicles Transit Vehicles Trucks Idle Reduction Oil Bypass Filter Airport Ground Support Equipment Medium and Heavy Duty Hybrid Electric Vehicles

395

Who Will Buy Electric Cars?  

E-Print Network (OSTI)

most likely will he electric cars. By 2003, 10 percent mustbig manufacturers say electric cars cost too much to makeoff assembly lines. Early electric cars had the same disad-

Turrentine, Thomas

1995-01-01T23:59:59.000Z

396

Gearing Up for Electric Cars  

E-Print Network (OSTI)

ff sold now,they argue, electric cars would cost too muchandGearing Up for Electric Cars Daniel Sperhng Reprint UCTC Noor Gearing Up for Electric Cars Daniel Sperling Department

Sperling, Daniel

1994-01-01T23:59:59.000Z

397

Car buyers and fuel economy?  

E-Print Network (OSTI)

Fuel ef?ciency; Automobiles; Car buyers 1. Introduction 1.1.M. , ‘‘We probably drive each car about 7000 or 6000 milesgallons per year [for one car]; B. thinks this might be too

Turrentine, Tom; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

398

Table 2.8 Motor Vehicle Mileage, Fuel Consumption, and Fuel ...  

U.S. Energy Information Administration (EIA)

1 Through 2006, data are for passenger cars (and, through 1989, for motorcycles). Beginning in 2007, data are for passenger cars, light trucks, vans, and sport ...

399

US Department of Energy - Office of FreedomCar and Vehicle Technologies and US Centers for Disease Control and Prevention - National Institute for Occupational Safety and Health Inter-Agency Agreement Research on "The Analysis of Genotoxic Activities of Exhaust Emissions from Mobile Natural Gas, Diesel, and Spark-Ignition Engines"  

DOE Green Energy (OSTI)

The US Department of Energy-Office of Heavy Vehicle Technologies (now the DOE-Office of FreedomCar and Vehicle Technologies) signed an Interagency Agreement (IAA) with National Institute for Occupational Safety and Health (NIOSH), No.01-15 DOE, 9/4/01, for 'The analysis of genotoxic activities of exhaust emissions from mobile natural gas, diesel, and spark-ignition engines'; subsequently modified on 3/27/02 (DOE IAG No.01-15-02M1); subsequently modified 9/02/03 (IAA Mod No. 01-15-03M1), as 'The analysis of genotoxic activities of exhaust emissions from mobile internal combustion engines: identification of engine design and operational parameters controlling exhaust genotoxicity'. The DOE Award/Contract number was DE-AI26-01CH11089. The IAA ended 9/30/06. This is the final summary technical report of National Institute for Occupational Safety and Health research performed with the US Department of Energy-Office of FreedomCar and Vehicle Technologies under that IAA: (A) NIOSH participation was requested by the DOE to provide in vitro genotoxicity assays of the organic solvent extracts of exhaust emissions from a suite of in-use diesel or spark-ignition vehicles; (B) research also was directed to develop and apply genotoxicity assays to the particulate phase of diesel exhaust, exploiting the NIOSH finding of genotoxicity expression by diesel exhaust particulate matter dispersed into the primary components of the surfactant coating the surface of the deep lung; (C) from the surfactant-dispersed DPM genotoxicity findings, the need for direct collection of DPM aerosols into surfactant for bioassay was recognized, and design and developmental testing of such samplers was initiated.

William E. Wallace

2006-09-30T23:59:59.000Z

400

1997 EMC: Rental Car Information  

Science Conference Proceedings (OSTI)

Hertz Rent-A-Car System has been selected as the Official Car Rental Company for the 39th Electronic Materials Conference, which is being sponsored by the ...

Note: This page contains sample records for the topic "vehicles cars light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Hybrid vehicle potential assessment. Volume 7. Hybrid vehicle review  

DOE Green Energy (OSTI)

Review of hybrid vehicles (HVs) built during the past ten years or planned to be built in the near future is presented. An attempt is made to classify and analyze these vehicles to get an overall picture of their key characteristics. The review includes on-road hybrid passenger cars, trucks, vans, and buses.

Leschly, K.O.

1979-09-30T23:59:59.000Z

402

Development of a dedicated ethanol ultra-low-emissions vehicle (ULEV): Phase 3 report  

DOE Green Energy (OSTI)

The objective of the 3.5 year project discussed in this report was to develop a commercially competitive vehicle powered by ethanol (or an ethanol blend) that can meet California`s Ultra Low Emissions Vehicle (ULEV) standards and equivalent Corporate Average Fuel Economy (CAFE) energy efficiency for a light duty passenger car application. This particular report summarizes the third phase of the project, which lasted 12 months. Emissions tests were conducted with advanced after-treatment devices on one of the two, almost identical, test vehicles, a 1993 Ford Taurus flexible fuel vehicle. The report also covers tests on the engine removed from the second Taurus vehicle. This engine was modified for an increased compression ratio, fitted with air assist injectors, and included an advanced engine control system with model-based control.

Dodge, L.; Callahan, T.; Leone, D.; Naegeli, D.; Shouse, K.; Smith, L.; Whitney, K. [Southwest Research Inst., San Antonio, TX (United States)] [Southwest Research Inst., San Antonio, TX (United States)

1998-04-01T23:59:59.000Z

403

Electric and hybrid vehicle performance and design goal determination study. Final report  

DOE Green Energy (OSTI)

Recommendations are set forth for performance standards for near-term and advanced electric and hybrid vehicles. Limited market surveys and interviews with present owners of electric vehicles indicated that the most important criterion for private vehicles is low operating cost. This criterion, combined with the low specific energy density and relatively short life of present storage batteries, was the key factor in the minimum performance specified for near-term private electric vehicles: two or more passengers, 50 km range over the SAE J227a/C driving schedule, with a maximum energy use of about 0.9 MJ/km (0.4 kWh/mi). Near-term commercial vehicles have even lower recommended minimum performance, including 50 km on the (less demanding) SAE J227a/B schedule. Heat-engine battery-electric hybrid vehicles may provide the driving range lacking in electric vehicles and use appreciably less fuel than conventional vehicles. Performance standards recommended for near-term hybrid vehicles call for essentially the same performance as for comparably sized near-term electric vehicles, except for increased range capability. Development specifications recommended for advanced hybrids call for substantially reduced petroleum fuel consumption and the same acceleration capability exhibited by present conventional subcompact cars. Performance standards for a light agricultural utility vehicle are developed.

Brennand, J.; Curtis, R.; Fox, H.; Hamilton, W.

1977-08-01T23:59:59.000Z

404

NREL: News Feature - Middle Schoolers Shine in Electric Car Races  

NLE Websites -- All DOE Office Websites (Extended Search)

Middle Schoolers Shine in Electric Car Races Middle Schoolers Shine in Electric Car Races May 24, 2013 In this photo, a boy grins widely as he holds a yellow folder over his model solar car. In the background are several black neoprene tracks and other middle-school students awaiting the starting signal. An adult race judge holds her hand in the air, signaling that everything is ready for the start of the race. Enlarge image Xavier Urquijo from Summit Ridge Middle School in Littleton waits for the start signal to lift the folder covering the solar panel on his team's car, "Knight Hawk." His team was one of 97 from 28 Colorado middle schools racing solar and lithium-ion powered vehicles they designed and built themselves at NREL's 2013 Junior Solar Sprint and Lithium-Ion Battery car competitions on May 18.

405

Electric car design. Interim summary report, Phase I: deliverable item 9  

DOE Green Energy (OSTI)

The work included in this Interim Summary Report is part of the Electric Car Program, the goal of which is to develop by 1979 a totally new electric car with substantially improved performance over those electric cars available in 1976. The rationale used in designing a four-passenger electric car for use in an urban environment is presented. The approach taken was to design an electric car utilizing current technology. On the basis of tradeoff analyses, upgrading improvements were identified which would permit the electric car to more nearly meet all of the ERDA near-term goals. The electric car design, including the chassis, drive train, major components, and the control are summarized. The Phase I electric car design will meet many of the ERDA near-term goals. Upgrading development programs are identified which, when incorporated in Phase II vehicle development, will result in upgraded performance, which essentially meets ERDA's near-term goals.

Not Available

1977-05-09T23:59:59.000Z

406

EcoCAR Reaches the Finish Line | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reaches the Finish Line Reaches the Finish Line EcoCAR Reaches the Finish Line June 21, 2011 - 2:09pm Addthis The EcoCAR Challenege is a competition that challenges participating students from across North America to re-engineer a vehicle donated by General Motors. With the goal of minimizing the vehicle's fuel consumption and emissions, while maintaining its utility, safety and performance, teams had to find the best combination of cutting-edge technologies to meet these objectives. Shannon Brescher Shea Communications Manager, Clean Cities Program Last Thursday, the Library of Congress's vaunted halls were filled with undergraduate and graduate students on the edge of their seats, waiting to hear the first place winner of the EcoCAR: The NeXt Challenge competition. As Patrick Davis, Vehicle Technologies Program Manager for the Department

407

Symbolism in California’s Early Market for Hybrid Electric Vehicles  

E-Print Network (OSTI)

new-cars/ high-cost-of-hybrid-vehicles-406/overview.htm>.For Tony and Ellen, a hybrid vehicle category exists thatprice premium of the hybrid vehicle over an assumed non-

Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

2008-01-01T23:59:59.000Z

408

Lighting.  

SciTech Connect

Since lighting accounts for about one-third of the energy used in commercial buildings, there is opportunity to conserve. There are two ways to reduce lighting energy use: modify lighting systems so that they used less electricity and/or reduce the number of hours the lights are used. This booklet presents a number of ways to do both. Topics covered include: reassessing lighting levels, reducing lighting levels, increasing bulb & fixture efficiency, using controls to regulate lighting, and taking advantage of daylight.

United States. Bonneville Power Administration.

1992-09-01T23:59:59.000Z

409

“Smart” Frequency-Sensing Charge Controller for Electric Vehicles  

As plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs) become more popular, they create additional demand for electricity. Their emergence also raises a host of issues regarding how, where and when car batteries should be ...

410

The fuel cell vehicle's But solutions to America's thirst for speed,  

E-Print Network (OSTI)

have been elu- sive. Electric cars are often a big draw at auto shows, but such vehicles are still that fuel cell vehicles (FCVs) ­ cars that generate electricity from fuel cells ­ can serve a dual role: powering your car as well as supplying electricity at competitive rates, especially in office build- ings

Kammen, Daniel M.

411

Vehicle Technologies Office: Fact #219: June 3, 2002 Average Price of a New  

NLE Websites -- All DOE Office Websites (Extended Search)

9: June 3, 2002 9: June 3, 2002 Average Price of a New Car: 1970-2001 to someone by E-mail Share Vehicle Technologies Office: Fact #219: June 3, 2002 Average Price of a New Car: 1970-2001 on Facebook Tweet about Vehicle Technologies Office: Fact #219: June 3, 2002 Average Price of a New Car: 1970-2001 on Twitter Bookmark Vehicle Technologies Office: Fact #219: June 3, 2002 Average Price of a New Car: 1970-2001 on Google Bookmark Vehicle Technologies Office: Fact #219: June 3, 2002 Average Price of a New Car: 1970-2001 on Delicious Rank Vehicle Technologies Office: Fact #219: June 3, 2002 Average Price of a New Car: 1970-2001 on Digg Find More places to share Vehicle Technologies Office: Fact #219: June 3, 2002 Average Price of a New Car: 1970-2001 on AddThis.com... Fact #219: June 3, 2002

412

Vehicle Technologies Office: Fact #597: November 16, 2009 Median Age of  

NLE Websites -- All DOE Office Websites (Extended Search)

7: November 16, 7: November 16, 2009 Median Age of Cars and Trucks Rising in 2008 to someone by E-mail Share Vehicle Technologies Office: Fact #597: November 16, 2009 Median Age of Cars and Trucks Rising in 2008 on Facebook Tweet about Vehicle Technologies Office: Fact #597: November 16, 2009 Median Age of Cars and Trucks Rising in 2008 on Twitter Bookmark Vehicle Technologies Office: Fact #597: November 16, 2009 Median Age of Cars and Trucks Rising in 2008 on Google Bookmark Vehicle Technologies Office: Fact #597: November 16, 2009 Median Age of Cars and Trucks Rising in 2008 on Delicious Rank Vehicle Technologies Office: Fact #597: November 16, 2009 Median Age of Cars and Trucks Rising in 2008 on Digg Find More places to share Vehicle Technologies Office: Fact #597: November 16, 2009 Median Age of Cars and Trucks Rising in 2008 on

413

Vehicle Technologies Office: Fact #302: January 12, 2004 More People Can  

NLE Websites -- All DOE Office Websites (Extended Search)

2: January 12, 2: January 12, 2004 More People Can Name Hybrid Cars in 2003 to someone by E-mail Share Vehicle Technologies Office: Fact #302: January 12, 2004 More People Can Name Hybrid Cars in 2003 on Facebook Tweet about Vehicle Technologies Office: Fact #302: January 12, 2004 More People Can Name Hybrid Cars in 2003 on Twitter Bookmark Vehicle Technologies Office: Fact #302: January 12, 2004 More People Can Name Hybrid Cars in 2003 on Google Bookmark Vehicle Technologies Office: Fact #302: January 12, 2004 More People Can Name Hybrid Cars in 2003 on Delicious Rank Vehicle Technologies Office: Fact #302: January 12, 2004 More People Can Name Hybrid Cars in 2003 on Digg Find More places to share Vehicle Technologies Office: Fact #302: January 12, 2004 More People Can Name Hybrid Cars in 2003 on AddThis.com...

414

Vehicle Technologies Office: Fact #520: May 26, 2008 Average Price of a New  

NLE Websites -- All DOE Office Websites (Extended Search)

0: May 26, 2008 0: May 26, 2008 Average Price of a New Car, 1970-2006 to someone by E-mail Share Vehicle Technologies Office: Fact #520: May 26, 2008 Average Price of a New Car, 1970-2006 on Facebook Tweet about Vehicle Technologies Office: Fact #520: May 26, 2008 Average Price of a New Car, 1970-2006 on Twitter Bookmark Vehicle Technologies Office: Fact #520: May 26, 2008 Average Price of a New Car, 1970-2006 on Google Bookmark Vehicle Technologies Office: Fact #520: May 26, 2008 Average Price of a New Car, 1970-2006 on Delicious Rank Vehicle Technologies Office: Fact #520: May 26, 2008 Average Price of a New Car, 1970-2006 on Digg Find More places to share Vehicle Technologies Office: Fact #520: May 26, 2008 Average Price of a New Car, 1970-2006 on AddThis.com... Fact #520: May 26, 2008

415

Handicapped car lifting seat  

E-Print Network (OSTI)

Currently there is a lack of assistance in automobile usage for the older people of our society. In an attempt to combat this problem, this thesis designs and builds a working conceptual model of a handicapped car lifting ...

Schoenmakers, Sean A

2005-01-01T23:59:59.000Z

416

Advanced Technology Vehicle Testing  

DOE Green Energy (OSTI)

The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

James Francfort

2004-06-01T23:59:59.000Z

417

Lighting  

Energy.gov (U.S. Department of Energy (DOE))

There are many different types of artificial lights, all of which have different applications and uses. Types of lighting include:

418

Ownership and usage of small passenger vehicles: findings from the 1977 National Personal Transportation Study  

SciTech Connect

This report examines current patterns in the ownership and usage of small vehicles by private households. The analysis was conducted to shed additional light on the market potential for smaller, energy efficient vehicles, in particular, electric cars. The 1977 Nationwide Personal Transportation Survey (NPTS) was used to obtain information on the socio-demographic characteristics and the travel and vehicle ownership behavior of US households based on a national probability sample. The issues posed to direct the investigation of small vehicle ownership and use behavior include: the ownership of small vehicles; the proportion of the private vehicle population accounted for by small vehicles; how small and large vehicles compare in terms of physical characteristics and performance and terms of usage; and how small/large vehicle ownership and usage differences are explained by household differences or physical differences in the vehicles themselves. The study's approach to these issues has focused on descriptive data analysis, employing such tools as cross-classification tables, distributions, and graphic displays. (MCW)

1981-12-01T23:59:59.000Z

419

Students Drive Home Innovative Engineering in the EcoCAR2 Competition |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Students Drive Home Innovative Engineering in the EcoCAR2 Students Drive Home Innovative Engineering in the EcoCAR2 Competition Students Drive Home Innovative Engineering in the EcoCAR2 Competition April 18, 2011 - 1:52pm Addthis Participants in the EcoCar2 challenge gather for the spring workshop in Ann Arbor, Michigan. Participants in the EcoCar2 challenge gather for the spring workshop in Ann Arbor, Michigan. Patrick B. Davis Patrick B. Davis Vehicle Technologies Program Manager What does this project do? Engineering students work to re-engineer a standard vehicle, minimizing fuel consumption and emissions while retaining its original level of performance, safety and consumer appeal. The wait is over. After enduring a rigorous selection process, 16 teams have been chosen to compete in EcoCAR2: Plugging into the Future- a

420

EcoCAR: The NeXt Challenge | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EcoCAR: The NeXt Challenge EcoCAR: The NeXt Challenge EcoCAR: The NeXt Challenge May 18, 2010 - 7:30am Addthis While most college students' experience with vehicles goes no further than the beater they picked up for a few thousand dollars, students participating in the EcoCAR: The NeXT Challenge competition get to experience the cutting-edge of driving technology. The competition, which was established by the U.S. Department of Energy and General Motors, is a three year advanced vehicle engineering contest. Yesterday, May 17, was the first day of their Year 2 judging sessions. In EcoCAR, students from 16 universities across North America are competing against each other to build the most environmentally sustainable and practical vehicle. This year's teams have adopted a number of advanced

Note: This page contains sample records for the topic "vehicles cars light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

MOTOR VEHICLE MANUFACTURING TECHNOLOGY  

Science Conference Proceedings (OSTI)

... about half of the value added in light vehicles ... Selected Program White Papers. ... This white paper defines a program which supports the development ...

2011-10-19T23:59:59.000Z

422

Octane number requirements of vehicles at high altitude  

Science Conference Proceedings (OSTI)

Past tests of vehicles show that their octane number requirements decrease with altitude. As a result, gasoline marketers sell lower-octane-number(ON) gasoline in the mountain states and other high-altitude areas. The current ASTM specifications, which allow reduction of gasoline octane of 1.0 to 1.5 ON per thousand feet, are based on CRC test programs run on 1967 to 1972 model vehicles. However, many new vehicles are now equipped with sophisticated electronic engine systems for control of emissions and improvement of performance and fuel economy at all altitudes. Because these new systems could minimize the altitude effect on octane requirement, Amoco Oil tested twelve 1984-1986 model cars and light trucks. The authors found their ON requirements were reduced on average about 0.2 ON per thousand feet on an (R+M)/2 basis (RMON/1,000 feet). The authors expect octane demand on gasoline suppliers in high-altitude areas to increase as these new cars make up a larger part of the vehicle population, and this could raise the cost of gasoline.

Callison, J.C.

1987-01-01T23:59:59.000Z

423

Wheego Electric Cars | Open Energy Information  

Open Energy Info (EERE)

Wheego Electric Cars Wheego Electric Cars Jump to: navigation, search Name Wheego Electric Cars Place Atlanta, Georgia Zip 30318 Sector Vehicles Product Atlanta-based Wheego has designed compact full-speed electric vehicles and low-speed EVs and said it plans to complete testing by summer 2010. The company has signed a battery supply deal with Flux Power. Coordinates 33.748315°, -84.391109° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.748315,"lon":-84.391109,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

424

Living with Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Living with Electric Vehicles Living with Electric Vehicles JOHN DAVIS: On any given weekend, somewhere you'll find a gathering of cars and a group of enthusiasts assembled around them. Be the hotrods classics or sports cars, each genre of the car's evolution has developed loyal following. And electric cars are no exception. The recent National Plug-in day included events held at hundreds of sites across the U.S. enticing EV aficionados to check out the latest models and share their passion for gas-free motoring. JOHN BARRACCA: The dealer gives you 9.3 gallons. I haven't used all of that yet. But, when I get 3 gallons low, I put 3 gallons in. So, I'm still at almost a full tank. The last time I put 3 gallons in was February and this is September 23rd. JOHN DAVIS: All of the owners we talked with were pleased with their plug-in car's fuel

425

TransForum v8n1 - EcoCAR: The NeXt Challenge  

NLE Websites -- All DOE Office Websites (Extended Search)

Mike Wahlstrom and DOEs Steven Boyd perform a safety inspection on U. Tennessees vehicle at the Challenge X Winter Workshop in Los Angeles. EcoCAR logo Argonnes Mike...

426

Real Time Simulation and Online Control for Virtual Test Drives of Cars  

E-Print Network (OSTI)

Virtual prototyping plays a key role in modern car engineering. For virtual test drives of entire cars in the computer, mathematical and computational models of the vehicle, the road, and the driver are presented. The numerical simulation must be performed in real time for application in Hardware-in-the-Loop experiments. Numerical results are presented for the ISO slalom test.

Cornelius Chucholowski; Martin Vögel; Oskar von Stryk; Thiess-Magnus Wolter

1999-01-01T23:59:59.000Z

427

EV Fleet Success: EV Rental Cars at LAX  

Science Conference Proceedings (OSTI)

EV Fleet Success Case Studies is a series documenting successful fleet uses of electric vehicles in a variety of applications throughout the United States. Each case study describes the applications and provides a contact person for additional information, outlines the benefits of EVs and discusses the challenges encountered with the new technology. This study highlights use of electric vehicles made by Ford, General Motors, Honda and Toyota, available through Budget Rent a Car in Los Angeles.

1999-09-10T23:59:59.000Z

428

Vehicle Technology and Alternative Fuel Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Technology and Alternative Fuel Basics Vehicle Technology and Alternative Fuel Basics Vehicle Technology and Alternative Fuel Basics Photo of an electric car plugged in and charging. Learn more about exciting technologies and ongoing research in alternative and advanced vehicles-or vehicles that run on fuels other than traditional petroleum. Alternative Vehicles There are a variety of alternative vehicle fuels available. Learn more about: Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane Vehicles Also learn about: Vehicle Battery Basics Vehicle Emissions Basics Alternative Fuels There are a number of alternative fuel and advanced technology vehicles. Learn more about the following types of vehicles: Biodiesel Electricity Ethanol Hydrogen Natural Gas

429

Fuel Cell Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Photo of a blue car with 'The Road to Hydrogen' written on it, filling up at a hydrogen fueling station. Fuel cell vehicles, powered by hydrogen, have the potential to...

430

Gas Mileage of 2001 Vehicles by Lincoln  

NLE Websites -- All DOE Office Websites (Extended Search)

Lincoln Navigator 4WD View MPG Estimates Shared By Vehicle Owners 10 City 12 Combined 15 Highway 2001 Lincoln Town Car 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2001...

431

Gas Mileage of 1995 Vehicles by Lincoln  

NLE Websites -- All DOE Office Websites (Extended Search)

1995 Lincoln Mark VIII View MPG Estimates Shared By Vehicle Owners 16 City 18 Combined 23 Highway 1995 Lincoln Town Car 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 1995...

432

Gas Mileage of 1990 Vehicles by Lincoln  

NLE Websites -- All DOE Office Websites (Extended Search)

1990 Lincoln Mark VII View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 22 Highway 1990 Lincoln Town Car 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1990...

433

Gas Mileage of 1997 Vehicles by Lincoln  

NLE Websites -- All DOE Office Websites (Extended Search)

1997 Lincoln Mark VIII View MPG Estimates Shared By Vehicle Owners 16 City 19 Combined 24 Highway 1997 Lincoln Town Car 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 1997...

434

Gas Mileage of 1989 Vehicles by Lincoln  

NLE Websites -- All DOE Office Websites (Extended Search)

1989 Lincoln Mark VII View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 22 Highway 1989 Lincoln Town Car 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1989...

435

Gas Mileage of 1999 Vehicles by Lincoln  

NLE Websites -- All DOE Office Websites (Extended Search)

Lincoln Navigator 4WD View MPG Estimates Shared By Vehicle Owners 11 City 13 Combined 15 Highway 1999 Lincoln Town Car 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 1999...

436

Gas Mileage of 2003 Vehicles by Lincoln  

NLE Websites -- All DOE Office Websites (Extended Search)

Lincoln Navigator 2WD View MPG Estimates Shared By Vehicle Owners 11 City 13 Combined 15 Highway 2003 Lincoln Town Car 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2003...

437

Gas Mileage of 2010 Vehicles by Lincoln  

NLE Websites -- All DOE Office Websites (Extended Search)

By Vehicle Owners Gas 14 City 16 Combined 20 Highway E85 9 City 11 Combined 13 Highway 2010 Lincoln Town Car FFV 8 cyl, 4.6 L, Automatic 4-spd, Regular Gas or E85 Compare 2010...

438

Gas Mileage of 1996 Vehicles by Lincoln  

NLE Websites -- All DOE Office Websites (Extended Search)

1996 Lincoln Mark VIII View MPG Estimates Shared By Vehicle Owners 16 City 19 Combined 24 Highway 1996 Lincoln Town Car 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 1996...

439

Gas Mileage of 2000 Vehicles by Lincoln  

NLE Websites -- All DOE Office Websites (Extended Search)

Lincoln Navigator 4WD View MPG Estimates Shared By Vehicle Owners 11 City 13 Combined 15 Highway 2000 Lincoln Town Car 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2000...

440

Gas Mileage of 1998 Vehicles by Lincoln  

NLE Websites -- All DOE Office Websites (Extended Search)

Lincoln Navigator 4WD View MPG Estimates Shared By Vehicle Owners 11 City 12 Combined 15 Highway 1998 Lincoln Town Car 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 1998...

Note: This page contains sample records for the topic "vehicles cars light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

EcoCAR 2 Competition Announces Year Two Winner: Penn State University |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EcoCAR 2 Competition Announces Year Two Winner: Penn State EcoCAR 2 Competition Announces Year Two Winner: Penn State University EcoCAR 2 Competition Announces Year Two Winner: Penn State University May 24, 2013 - 2:14pm Addthis News Media Contact (202) 586-4940 SAN DIEGO, Calif. - EcoCAR 2: Plugging In to the Future today named Pennsylvania State University its Year Two winner at the EcoCAR 2013 Competition in San Diego. The 15 universities competing in EcoCAR 2 gathered in Yuma, Arizona last week for six days of rigorous vehicle testing and evaluation on drive quality and environmental impact at General Motors (GM) Desert Proving Ground. From there, the competition moved to San Diego for a second round of judging by automotive industry experts. EcoCAR 2 -- a three-year competition managed by Argonne National Laboratory

442

EcoCAR 2 Competition Announces Year Two Winner: Penn State University |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EcoCAR 2 Competition Announces Year Two Winner: Penn State EcoCAR 2 Competition Announces Year Two Winner: Penn State University EcoCAR 2 Competition Announces Year Two Winner: Penn State University May 24, 2013 - 2:14pm Addthis News Media Contact (202) 586-4940 SAN DIEGO, Calif. - EcoCAR 2: Plugging In to the Future today named Pennsylvania State University its Year Two winner at the EcoCAR 2013 Competition in San Diego. The 15 universities competing in EcoCAR 2 gathered in Yuma, Arizona last week for six days of rigorous vehicle testing and evaluation on drive quality and environmental impact at General Motors (GM) Desert Proving Ground. From there, the competition moved to San Diego for a second round of judging by automotive industry experts. EcoCAR 2 -- a three-year competition managed by Argonne National Laboratory

443

PSU TOYOTA ELECTRIC VEHICLE PROGRAM POLICY JULY 2010  

E-Print Network (OSTI)

in electric and electronic vehicle components and thus to increase car and road safety. ISO 26262 does methods. Supported by multisensor data fusion this allows to reduce safety requirements for vehicle the vehicle condition and the vehicle environment. From the safety point of view two problematic trends emerge

Bertini, Robert L.

444

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

combustion Prius, Eco Fuel CNG Hybrid Escape, and Solara methanol vehicle, and a CNG vehicle. The participants werewas predominately the CNG vehicle. The authors explain the

Williams, Brett D

2010-01-01T23:59:59.000Z

445

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

combustion Prius, Eco Fuel CNG Hybrid Escape, and Solara methanol vehicle, and a CNG vehicle. The participants werewas predominately the CNG vehicle. The authors explain the

Williams, Brett D

2007-01-01T23:59:59.000Z

446

Present Status and Marketing Prospects of the Emerging Hybrid-Electric and Diesel Technologies to Reduce CO2 Emissions of New Light-Duty Vehicles in California  

E-Print Network (OSTI)

of Conventional vs. Hybrid Vehicles, paper to be presented15 Table 10 Hybrid Vehicle Sales to Date - North America &Power Projections of Hybrid Vehicle Characteristics (1999-

Burke, Andy

2004-01-01T23:59:59.000Z

447

Present Status and Marketing Prospects of the Emerging Hybrid-Electric and Diesel Technologies to Reduce CO2 Emissions of New Light-Duty Vehicles in California  

E-Print Network (OSTI)

Hybrid-electric vehicles Hybrid -Electric Vehicles ..11 Figure 3 Sales of Hybrid Electric Vehicles in the U.S. to

Burke, Andy

2004-01-01T23:59:59.000Z

448

Feasibility Study Of Advanced Technology Hov Systems: Volume 2b: Emissions Impact Of Roadway-powered Electric Buses, Light-duty Vehicles, And Automobiles  

E-Print Network (OSTI)

and Russell, A. , Electric Vehicles and the Environment:Roadway Powered Electric Vehicle ---An All-Electric Hybrid8th International Electric Vehicle Symposium, Washington,

Miller, Mark A.; Dato, Victor; Chira-chavala, Ted

1992-01-01T23:59:59.000Z

449

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

and S. E. Letendre, "Electric Vehicles as a New Power Sourceassessment for fuel cell electric vehicles." Argonne, Ill. :at 20th International Electric Vehicle Symposium (EVS-20),

Williams, Brett D

2007-01-01T23:59:59.000Z

450

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

assessment for fuel cell electric vehicles." Argonne, Ill. :of Plug-In Hybrid Electric Vehicles on Wind Energy Markets,"Recharging and Household Electric Vehicle Market: A Near-

Williams, Brett D

2010-01-01T23:59:59.000Z

451

Work and Car Ownership Among Welfare Recipients  

E-Print Network (OSTI)

Work and Car Ownership Among Welfare Recipients Paul Ongregulation. or Work and Car Ownership Among Welfareexamining the pivotal role of car ownershipin facilitating

Ong, Paul

1995-01-01T23:59:59.000Z

452

Car Access and Welfare-To-Work  

E-Print Network (OSTI)

Problems Related to Child Car, Transportation, and Illness30. March. Ong, Paul "Work and Car Ownership Among WelfareRice (2000). "The Effect of Car Ownershipon the Employment

Ong, Paul M.

2002-01-01T23:59:59.000Z

453

Robust Multiple Car Tracking With Occlusion Reasoning  

E-Print Network (OSTI)

BERKELEY Robust Multiple Car Tracking with OcclusionAND HIGHWAYS Robust Multiple Car Tracking with Occlusiondraws decisions like "stalled car in lane 2 detected", "high

Koler, Dieter; Weber, Joseph; Malik, Jitendra

1994-01-01T23:59:59.000Z

454

2008 Model Fuel Cell Car Competition  

NLE Websites -- All DOE Office Websites (Extended Search)

Model Car Competition Regional Structure Design Competition Structure Judges will grade one car from each school. Each judge can give up to 35 points per car as follows:...

455

2000 TMS Annual Meeting: Car Rental Information  

Science Conference Proceedings (OSTI)

2000 TMS Fall Meeting: Car Rental Information ... Hertz Rent-a-car System has been selected as the official car rental company for the 2000 TMS Fall Meeting, ...

456

New & Upcoming Hybrid Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

New & Upcoming Hybrids New & Upcoming Hybrids 2014 Model Year Vehicle EPA MPG Estimates Price (MSRP) Chevrolet Impala eAssist Large Car Chevrolet Impala eAssist Chart: City, 25; Highway, 35; Combined, 29 NA Infiniti Q50 Hybrid Compact Car Infiniti Q50 Hybrid Chart: City, 29; Highway, 36; Combined, 31 $43,950 Infiniti Q50 Hybrid AWD Compact Car Infiniti Q50 Hybrid AWD Chart: City, 28; Highway, 35; Combined, 30 $45,750 Infiniti Q50S Hybrid Compact Car Infiniti Q50S Hybrid Chart: City, 28; Highway, 34; Combined, 30 $46,350 Infiniti Q50S Hybrid AWD Compact Car Infiniti Q50S Hybrid AWD Chart: City, 27; Highway, 31; Combined, 28 $48,150 Infiniti QX60 Hybrid AWD Standard SUV Infiniti QX60 Hybrid AWD Chart: City, 25; Highway, 28; Combined, 26 NA Infiniti QX60 Hybrid FWD

457

Why Some Vehicles Are Not Listed / 1  

NLE Websites -- All DOE Office Websites (Extended Search)

Understanding the Guide Listings / 1 Understanding the Guide Listings / 1 * Why Some Vehicles Are Not Listed / 1 * Vehicle Classes Used in This Guide / 2 * Tax Incentives and Disincentives / 2 * Why Consider Fuel Economy / 2 * Fueling Options / 3 * Fuel Economy and Annual Fuel Cost Ranges for Vehicle Classes / 3 * Model Year 2011 Fuel Economy Leaders / 4 * 2011 Model Year Vehicles / 6 * Battery Electric Vehicles / 18 * Plug-in Hybrid Electric Vehicles / 19 * Hybrid Electric Vehicles / 20 * Compressed Natural Gas Vehicles / 22 * Diesel Vehicles / 22 * Ethanol Flexible Fuel Vehicles / 24 * Fuel Cell Vehicles / 28 * Index / 29 * USING THE FUEL ECONOMY GUIDE The U.S. Environmental Protection Agency (EPA) and U.S. Department of Energy (DOE) produce the Fuel Economy Guide to help car buyers choose the most fuel-efficient vehicle that meets their

458

Development of a dedicated ethanol ultra-low emission vehicle (ULEV) -- Phase 2 report  

DOE Green Energy (OSTI)

The objective of this 3.5-year project is to develop a commercially competitive vehicle powered by ethanol (or an ethanol blend) that can meet California`s ultra-low emission vehicle (ULEV) standards and equivalent corporate average fuel economy (CAFE) energy efficiency for a light-duty passenger car application. The definition of commercially competitive is independent of fuel cost, but does include technical requirements for competitive power, performance, refueling times, vehicle range, driveability, fuel handling safety, and overall emissions performance. This report summarizes the second phase of this project, which lasted 12 months. This report documents two baseline vehicles, the engine modifications made to the original equipment manufacturer (OEM) engines, advanced aftertreatment testing, and various fuel tests to evaluate the flammability, lubricity, and material compatibility of the ethanol fuel blends.

Dodge, L.G.; Bourn, G.; Callahan, T.J.; Naegeli, D.W.; Shouse, K.R.; Smith, L.R.; Whitney, K.A. [Southwest Research Inst., San Antonio, TX (United States)

1995-09-01T23:59:59.000Z

459

Tracking Progress Last updated 5/24/2013 Plug-in Electric Vehicle 1  

E-Print Network (OSTI)

Tracking Progress Last updated 5/24/2013 Plug-in Electric Vehicle 1 Plug-in Electric Vehicles Over 26 million cars and almost one million trucks consume 40 million gallons of gasoline and 7 million, advanced technology cars and trucks, vehicle manufacturing, and fueling infrastructure are intended

460

Search on Modeling and Collaborative Simulation for Electric Drive Wheeled Armored Vehicle  

Science Conference Proceedings (OSTI)

In order to evaluate the performance of electric transmission wheeled armored vehicle, models of motor driving system and dynamics of the 8 wheels drive vehicles based on ADAMS/Car were constructed, which compose the model of collaborative simulation ... Keywords: ADAMS/Car, Matlab, electric transmission, wheeled armored vehicle, collaborative simulation, dynamic performance

Zili Liao, Guibing Yang, Chunguang Liu, Yu Xiang

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicles cars light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Quantifying the Effects of Idle-Stop Systems on Fuel Economy in Light-Duty Passenger Vehicles  

SciTech Connect

Vehicles equipped with idle-stop (IS) systems are capable of engine shut down when the vehicle is stopped and rapid engine re-start for the vehicle launch. This capability reduces fuel consumption and emissions during periods when the engine is not being utilized to provide propulsion or to power accessories. IS systems are a low-cost and fast-growing technology in the industry-wide pursuit of increased vehicle efficiency, possibly becoming standard features in European vehicles in the near future. In contrast, currently there are only three non-hybrid vehicle models for sale in North America with IS systems and these models are distinctly low-volume models. As part of the United States Department of Energy’s Advanced Vehicle Testing Activity, ECOtality North America has tested the real-world effect of IS systems on fuel consumption in three vehicle models imported from Europe. These vehicles were chosen to represent three types of systems: (1) spark ignition with 12-V belt alternator starter; (2) compression ignition with 12-V belt alternator starter; and (3) direct-injection spark ignition, with 12-V belt alternator starter/combustion restart. The vehicles have undergone both dynamometer and on-road testing; the test results show somewhat conflicting data. The laboratory data and the portion of the on-road data in which driving is conducted on a prescribed route with trained drivers produced significant fuel economy improvement. However, the fleet data do not corroborate improvement, even though the data show significant engine-off time. It is possible that the effects of the varying driving styles and routes in the fleet testing overshadowed the fuel economy improvements. More testing with the same driver over routes that are similar with the IS system-enabled and disabled is recommended. There is anecdotal evidence that current Environmental Protection Agency fuel economy test procedures do not capture the fuel economy gains that IS systems produce in real-world driving. The program test results provide information on the veracity of these claims.

Jeff Wishart; Matthew Shirk

2012-12-01T23:59:59.000Z

462

Virginia Tech Wins EcoCAR Competition | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virginia Tech Wins EcoCAR Competition Virginia Tech Wins EcoCAR Competition Virginia Tech Wins EcoCAR Competition June 17, 2011 - 12:00am Addthis Washington, D.C. - On Thursday evening a team of students from Virginia Tech University learned they received top honors when they were named the overall winners of EcoCAR: The NeXt Challenge after designing and building an extended-range electric vehicle (EREV) using E85 (ethanol). Virginia Tech competed against 15 other universities to take home the top prize of the three-year competition sponsored by the Department of Energy and General Motors. This unique competition helps train students and engineers to become the next generation of workers the U.S. needs to lead the global auto industry. "The ingenuity and dedication shown by the students of Virginia Tech in

463

EcoCAR Challenge Profile: Virginia Tech | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Challenge Profile: Virginia Tech Challenge Profile: Virginia Tech EcoCAR Challenge Profile: Virginia Tech Addthis Description Since childhood, Lynn Gantt has had a deep seeded passion for cars and the mechanics that drive them. The Virginia native spent his weekends rebuilding antique tractors with his dad to race at tractor pulls across the state, and now the Virginia Tech graduate student is the proud team co-leader of Virginia Tech's EcoCAR Challenge team -- the winners of the three-year long competition, as announced last night at an awards ceremony in Washington, D.C.. Speakers Lynn Gantt Duration 1:43 Topic Alternative Fuel Vehicles Fuel Economy Batteries Consumption Credit Energy Department Video LYNN GANTT: My name is Lynn Gantt and I'm the team leader for the Virginia Tech EcoCAR team.

464

EcoCar Students Spread the Word | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EcoCar Students Spread the Word EcoCar Students Spread the Word EcoCar Students Spread the Word June 16, 2011 - 11:34am Addthis Shannon Brescher Shea Communications Manager, Clean Cities Program "If you build it, they will come" is a mantra that might be well suited for rural sporting venues, but the organizers behind the EcoCAR competition realize that in the commercial sector, merely producing a finely tuned product often isn't enough to make it successful. That's why along with challenging students to re-engineer a donated vehicle to minimize gas consumption and emissions while maintaining consumer acceptability, they've made outreach and education key components of the competition. Whether they're speaking to policy makers or elementary school students, each of the teams have worked to convey the benefits of advanced technology

465

Using an electric car: a situated, instrumented and emotional activity  

Science Conference Proceedings (OSTI)

Motivation -- The objective of the study was to specify how drivers deal with the autonomy of their car, be it traditional or electric, how they plan the recharge and how they check it while driving. Research approach -- For the first part ... Keywords: activity, autonomy, contextual situation, electric vehicle, emotions, instruments, recharge, reflexivity, uncertainty, worry

Béatrice Cahour; Claudine Nguyen; Jean-François Forzy; Christian Licoppe

2012-08-01T23:59:59.000Z

466

Electric Cars Coming to Former Delaware GM Plant  

Energy.gov (U.S. Department of Energy (DOE))

If a company’s cars are luxurious enough for the Crown Prince of Denmark, then just imagine how the vehicles — which have a 50-mile, emission-free range on a single electric charge — might be received by folks in the U.S.

467

Scenario analysis of hybrid class 3-7 heavy vehicles.  

DOE Green Energy (OSTI)

The effects of hybridization on heavy-duty vehicles are not well understood. Heavy vehicles represent a broader range of applications than light-duty vehicles, resulting in a wide variety of chassis and engine combinations, as well as diverse driving conditions. Thus, the strategies, incremental costs, and energy/emission benefits associated with hybridizing heavy vehicles could differ significantly from those for passenger cars. Using a modal energy and emissions model, they quantify the potential energy savings of hybridizing commercial Class 3-7 heavy vehicles, analyze hybrid configuration scenarios, and estimate the associated investment cost and payback time. From the analysis, they conclude that (1) hybridization can significantly reduce energy consumption of Class 3-7 heavy vehicles under urban driving conditions; (2) the grid-independent, conventional vehicle (CV)-like hybrid is more cost-effective than the grid-dependent, electric vehicle (EV)-like hybrid, and the parallel configuration is more cost-effective than the series configuration; (3) for CV-like hybridization, the on-board engine can be significantly downsized, with a gasoline or diesel engine used for SUVs perhaps being a good candidate for an on-board engine; (4) over the long term, the incremental cost of a CV-like, parallel-configured Class 3-4 hybrid heavy vehicle is about %5,800 in the year 2005 and $3,000 in 2020, while for a Class 6-7 truck, it is about $7,100 in 2005 and $3,300 in 2020; and (5) investment payback time, which depends on the specific type and application of the vehicle, averages about 6 years under urban driving conditions in 2005 and 2--3 years in 2020.

An, F.; Stodolsky, F.; Vyas, A.; Cuenca, R.; Eberhardt, J. J.

1999-12-23T23:59:59.000Z

468

Vehicle Technologies Office: Fact #30: May 12, 1997 Towing Capacity for  

NLE Websites -- All DOE Office Websites (Extended Search)

0: May 12, 1997 0: May 12, 1997 Towing Capacity for Selected 1996 Model Cars and Trucks to someone by E-mail Share Vehicle Technologies Office: Fact #30: May 12, 1997 Towing Capacity for Selected 1996 Model Cars and Trucks on Facebook Tweet about Vehicle Technologies Office: Fact #30: May 12, 1997 Towing Capacity for Selected 1996 Model Cars and Trucks on Twitter Bookmark Vehicle Technologies Office: Fact #30: May 12, 1997 Towing Capacity for Selected 1996 Model Cars and Trucks on Google Bookmark Vehicle Technologies Office: Fact #30: May 12, 1997 Towing Capacity for Selected 1996 Model Cars and Trucks on Delicious Rank Vehicle Technologies Office: Fact #30: May 12, 1997 Towing Capacity for Selected 1996 Model Cars and Trucks on Digg Find More places to share Vehicle Technologies Office: Fact #30: May

469

Vehicle Technologies Office: Fact #530: August 4, 2008 Towing Capacity for  

NLE Websites -- All DOE Office Websites (Extended Search)

0: August 4, 0: August 4, 2008 Towing Capacity for Selected 2008 Model Cars and Trucks to someone by E-mail Share Vehicle Technologies Office: Fact #530: August 4, 2008 Towing Capacity for Selected 2008 Model Cars and Trucks on Facebook Tweet about Vehicle Technologies Office: Fact #530: August 4, 2008 Towing Capacity for Selected 2008 Model Cars and Trucks on Twitter Bookmark Vehicle Technologies Office: Fact #530: August 4, 2008 Towing Capacity for Selected 2008 Model Cars and Trucks on Google Bookmark Vehicle Technologies Office: Fact #530: August 4, 2008 Towing Capacity for Selected 2008 Model Cars and Trucks on Delicious Rank Vehicle Technologies Office: Fact #530: August 4, 2008 Towing Capacity for Selected 2008 Model Cars and Trucks on Digg Find More places to share Vehicle Technologies Office: Fact #530:

470

Environmental Assessment of Plug-In Hybrid Electric Vehicles, Volume 2: United States Air Quality Analysis Based on AEO-2006 Assumptions for 2030  

Science Conference Proceedings (OSTI)

How would air quality and greenhouse gas emissions be affected if significant numbers of Americans drove cars that were fueled by the power grid? A recently completed assessment conducted by the Electric Power Research Institute and the Natural Resources Defense Council made a detailed study of the question looking at a variety of scenarios involving the U.S. fleet of power generation and its fleet of light-duty and medium-duty cars and trucks. The study focused on plug-in hybrid electric vehicles (PHEVs...

2007-07-23T23:59:59.000Z

471

EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 Stavanger, Norway, May 13-16, 2009  

E-Print Network (OSTI)

, Norway, May 13-16, 2009 Site selection for electric cars of a car-sharing service Luminita Ion1 , T. Cucu, modeling, electric vehicle 1 Introduction Car-sharing is defined as a system which allows to eachEVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 EVS24 Stavanger

Paris-Sud XI, Université de

472

A Dynamic Forecasting System for Vehicle Markets with Clean-Fuel Vehicles  

E-Print Network (OSTI)

Compact Sports Compact Compact Ded CNG Car Car Car CarPickup Van Van Dual CNG Electnc PicKup Car Car Car Car

Bunch, David S; Brownstone, David; Golob, Thomas F

1995-01-01T23:59:59.000Z

473

Ancestor.car - CECM  

E-Print Network (OSTI)

>ANCESTOR 1651 # CAR 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 580 -579 -578 -577 -582 -581 -584 -583 ...

474

The Ability of Automakers to Introduce a Costly, Regulated New Technology: A Case Study of Automotive Airbags in the U.S. Light-Duty Vehicle Market with Implications for Future Automobile and Light Truck Regulation  

E-Print Network (OSTI)

Cir. 1972). Motor Vehicle Manufacturers Association of theon the vehicle model and manufacturer. [31] An additionalgreatly across manufacturers and vehicle segments leading to

Abeles, Ethan

2004-01-01T23:59:59.000Z

475

Vehicle Technologies Office: Fact #611: February 22, 2010 Top...  

NLE Websites -- All DOE Office Websites (Extended Search)

Trucks The top ten lists of best selling cars and light trucks in 2009 show that the Toyota Camry was the best selling car, while the Ford F-Series pickup was the best selling...

476

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

status, gender, and age), vehicle type (energy storage andstatus, gender, and age), vehicle type (energy storage and

Williams, Brett D

2007-01-01T23:59:59.000Z

477

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

status, gender, and age), vehicle type (energy storage andstatus, gender, and age), vehicle type (energy storage and

Williams, Brett D

2010-01-01T23:59:59.000Z

478

EcoCAR 2 Year 1 Winners Announced! | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Year 1 Winners Announced! Year 1 Winners Announced! EcoCAR 2 Year 1 Winners Announced! May 25, 2012 - 1:21pm Addthis EcoCAR 2: Pluggin in to the Future challenges 15 universities across North America to reduce the environmental impact of a 2013 Chevrolet Malibu by minimizing the vehicles' fuel consumption and reducing its emissions while retaining the vehicle's performance, safety, and consumer appeal. | Photo by Myles Regan. EcoCAR 2: Pluggin in to the Future challenges 15 universities across North America to reduce the environmental impact of a 2013 Chevrolet Malibu by minimizing the vehicles' fuel consumption and reducing its emissions while retaining the vehicle's performance, safety, and consumer appeal. | Photo by Myles Regan. Connie Bezanson Education & Outreach Manager, Vehicle Technologies Program

479

Middle Schoolers Face-Off in Model Car Challenge | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Schoolers Face-Off in Model Car Challenge Schoolers Face-Off in Model Car Challenge Middle Schoolers Face-Off in Model Car Challenge May 1, 2012 - 10:04am Addthis The team of James Wei, Andrew Jin, Andy Xu, Allen Guo, and Will Chang from Daniel Wright Middle School, in Lincolnshire, Illinois, built the fastest Lithium-Ion Battery Powered Model Car at this year's competition. At sub-6-second runs, their vehicle easily advanced to victory, being a full second faster than its closest rival. | Photo by Jack Dempsey, National Science Bowl. The team of James Wei, Andrew Jin, Andy Xu, Allen Guo, and Will Chang from Daniel Wright Middle School, in Lincolnshire, Illinois, built the fastest Lithium-Ion Battery Powered Model Car at this year's competition. At sub-6-second runs, their vehicle easily advanced to victory, being a full

480

Lighting  

SciTech Connect

The lighting section of ASHRAE standard 90.1 is discussed. It applies to all new buildings except low-rise residential, while excluding specialty lighting applications such as signage, art exhibits, theatrical productions, medical and dental tasks, and others. In addition, lighting for indoor plant growth is excluded if designed to operate only between 10 p.m. and 6 a.m. Lighting allowances for the interior of a building are determined by the use of the system performance path unless the space functions are not fully known, such as during the initial stages of design or for speculative buildings. In such cases, the prescriptive path is available. Lighting allowances for the exterior of all buildings are determined by a table of unit power allowances. A new addition the exterior lighting procedure is the inclusion of facade lighting. However, it is no longer possible to trade-off power allotted for the exterior with the interior of a building or vice versa. A significant change is the new emphasis on lighting controls.

McKay, H.N. (Hayden McKay Lighting Design, New York, NY (US))

1990-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicles cars light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

TransForum v3n1 - Aluminum-Intensive Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

ARGONNE PREDICTS BENEFITS OF ALUMINUM-INTENSIVE VEHICLES Aluminum Car Frame At the Paris Exposition of 1855, as part of the rich and varied displays of France's evolving...

482

Local government energy management: liquid petroleum gas (LPG) as a motor vehicle fuel  

SciTech Connect

The retrofit or conversion of automotive engines to operate on liquid petroleum gas (LPG) or propane fuel is one of many potentially cost-effective strategies for reducing a local government's annual fleet operating and maintenance costs. The cost effectiveness of an LPG conversion decision is highly dependent on the initial conversion cost, vehicle type, current and projected fuel costs, vehicle fuel economy (miles per gallon), and yearly average mileage. A series of plots have been developed which indicate simple paybacks for the conversion of several vehicle types (passenger car, small and standard pickups, and two and three ton trucks) over a wide range of fuel economies and annual usage patterns. A simple payback of less than three years can be achieved for vehicles with poor fuel economy and high annual use. The figures provided in this report may be used by fleet management personnel as a screening tool to identify those passenger cars, small or standard pickups, or light duty trucks which are candidates for LPG conversion. In addition to examining the benefits of an LPG conversion, local governments should also consider the competing energy management strategies of downsizing, and the acquisition of fuel efficient, diesel powered vehicles.

McCoy, G.A.; Kerstetter, J.

1983-10-01T23:59:59.000Z

483

Department of Energy Announces Advanced Vehicle Technology Competition,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Vehicle Technology Advanced Vehicle Technology Competition, EcoCar2: Plugging into the Future Department of Energy Announces Advanced Vehicle Technology Competition, EcoCar2: Plugging into the Future April 13, 2011 - 12:00am Addthis Washington, DC - Today, at the SAE 2011 World Congress in Detroit, Mich., U.S. Department of Energy's Assistant Secretary for Policy and International Affairs, David Sandalow, announced the official launch of the EcoCar2: Plugging into the Future competition and the sixteen university teams that were selected to participate. EcoCar2 is a unique educational partnership between General Motors and the Department of Energy to help prepare future engineers for opportunities in clean energy and advanced vehicle industries. EcoCar2 is one piece of the Department's broad

484

MOTOR-VEHICLE INFRASTRUCTURE AND SERVICES PROVIDED BY THE PUBLIC SECTOR Report #7 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

FOR REVIEW 5. Robbery of gas station 6. Robbery in parkingvehicles 13. Arson to gas stations and car dealerships 14.to motor-vehicles Arson to gas stations and car dealerships

Delucchi, Mark

2005-01-01T23:59:59.000Z

485

Motor-Vehicle Infrastructure and Services Provided by the Public Sector: Report #7 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

FOR REVIEW 5. Robbery of gas station 6. Robbery in parkingvehicles 13. Arson to gas stations and car dealerships 14.to motor-vehicles Arson to gas stations and car dealerships

Delucchi, Mark; Murphy, James

2005-01-01T23:59:59.000Z

486

Vehicles News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 13, 2011 May 13, 2011 Secretary Chu Highlights More Than 1,800 Electric Vehicle Chargers Installed Under the Recovery Act Investments in Electric Vehicles Helping to Reduce America's Reliance on Imported Oil April 19, 2011 Secretary Chu Announces New Funding and Partnership with Google to Promote Electric Vehicles Since its inception in 1993, DOE's Clean Cities program helped save nearly 3 billion gallons of gasoline April 13, 2011 Department of Energy Announces Advanced Vehicle Technology Competition, EcoCar2: Plugging into the Future Washington, DC - Today, at the SAE 2011 World Congress in Detroit, Mich., U.S. Department of Energy's Assistant Secretary for Policy and International Affairs, David Sandalow, announced the official launch of the EcoCar2: Plugging into the Future competition and the sixteen university

487

Recovering Plastics from Retired Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Shredded plastic materials recovered Shredded plastic materials recovered from retired cars and trucks can be used to manufacture new vehicle parts and other plastic products. Left: Items from shredder residue, recovered polyethylene and polypropylene, and a knee bolster manufactured from recovered plastics. Right: Argonne's froth flotation pilot plant. Background For years vehicle manufacturers have been designing and building new cars and trucks with the goal that structural materials in ELVs will be recycled, reducing the flow of material into the solid-waste stream. At the same time, automakers must ensure that the design materials selected for their ability to be recycled do not impair the safety, reliability, and performance of the completed vehicle. In the United States between 12 and 15 million vehicles reach

488

FY 2006 Annual Progress Report for Heavy Vehicle Systems Optimization Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Heavy veHicle SyStemS Heavy veHicle SyStemS OptimizatiOn prOgram U.S. Department of Energy FreedomCAR and Vehicle Technologies Program 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2006 Annual Progress Report for Heavy Vehicle Systems Optimization Program Submitted to: U.S. Department of Energy Energy Efficiency and Renewable Energy FreedomCAR and Vehicle Technologies Program Advanced Vehicle Technology Analysis and Evaluation Lee Slezak, Technology Manager Heavy Vehicle Systems Optimization Program FY 2006 Annual Report iii CONTENTS I. Aerodynamic Drag Reduction......................................................................................................... 1 A. DOE Project on Heavy Vehicle Aerodynamic Drag .................................................................. 1

489

Analysis of the Relationship Between Vehicle Weight/Size and Safety, and Implications for Federal Fuel Economy Regulation  

SciTech Connect

This report analyzes the relationship between vehicle weight, size (wheelbase, track width, and their product, footprint), and safety, for individual vehicle makes and models. Vehicle weight and footprint are correlated with a correlation coefficient (R{sup 2}) of about 0.62. The relationship is stronger for cars (0.69) than for light trucks (0.42); light trucks include minivans, fullsize vans, truck-based SUVs, crossover SUVs, and pickup trucks. The correlation between wheelbase and track width, the components of footprint, is about 0.61 for all light vehicles, 0.62 for cars and 0.48 for light trucks. However, the footprint data used in this analysis does not vary for different versions of the same vehicle model, as curb weight does; the analysis could be improved with more precise data on footprint for different versions of the same vehicle model. Although US fatality risk to drivers (driver fatalities per million registered vehicles) decreases as vehicle footprint increases, there is very little correlation either for all light vehicles (0.01), or cars (0.07) or trucks (0.11). The correlation between footprint and fatality risks cars impose on drivers of other vehicles is also very low (0.01); for trucks the correlation is higher (0.30), with risk to others increasing as truck footprint increases. Fatality risks reported here do not account for differences in annual miles driven, driver age or gender, or crash location by vehicle type or model. It is difficult to account for these factors using data on national fatal crashes because the number of vehicles registered to, for instance, young males in urban areas is not readily available by vehicle type or model. State data on all police-reported crashes can be used to estimate casualty risks that account for miles driven, driver age and gender, and crash location. The number of vehicles involved in a crash can act as a proxy of the number of miles a given vehicle type, or model, is driven per year, and is a preferable unit of exposure to a serious crash than the number of registered vehicles. However, because there are relatively few fatalities in the states providing crash data, we calculate casualty risks, which are the sum of fatalities and serious or incapacitating injuries, per vehicle involved in a crash reported to the police. We can account for driver age/gender and driving location effects by excluding from analysis crashes (and casualties) involving young males and the elderly, and occurring in very rural or very urban counties. Using state data on all police-reported crashes in five states, we find that excluding crashes involving young male and elderly drivers has little effect on casualty risk; however, excluding crashes that occurred in the most rural and most urban counties (based on population density) increases casualty risk for all vehicle types except pickups. This suggests that risks for pickups are overstated unless they account for the population density of the county in which the crashes occur. After removing crashes involving young males and elderly drivers, and those occurring in the most rural and most urban counties, we find that casualty risk in all light-duty vehicles tends to increase with increasing weight or footprint; however, the correlation (R{sup 2}) between casualty risk and vehicle weight is 0.31, while the correlation with footprint is 0.23. These relationships are stronger for cars than for light trucks. The correlation between casualty risk in frontal crashes and light-duty vehicle wheelbase is 0.12, while the correlation between casualty risk in left side crashes and track width is 0.36. We calculated separately the casualty risks vehicles impose on drivers of the other vehicles with which they crash. The correlation between casualty risk imposed by light trucks on drivers of other vehicles and light truck footprint is 0.15, while the correlation with light truck footprint is 0.33; risk imposed on others increases as light truck weight or footprint increases. Our analysis indicates that, after excluding crashes involving young m

Wenzel, Thomas P.

2010-03-02T23:59:59.000Z

490

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

includes “car-company” battery cost estimates, scaled toas the desire to keep battery cost, and thus size, down isjustify current marginal battery costs. So, too, might there

Williams, Brett D

2010-01-01T23:59:59.000Z

491

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

includes “car-company” battery cost estimates, scaled toas the desire to keep battery cost, and thus size, down isjustify current marginal battery costs. So, too, might there

Williams, Brett D

2007-01-01T23:59:59.000Z

492

Present Status and Marketing Prospects of the Emerging Hybrid-Electric and Diesel Technologies to Reduce CO2 Emissions of New Light-Duty Vehicles in California  

E-Print Network (OSTI)

119, 2003 18. Hermance, D. , Toyota Hybrid System, 1999 SAEGasoline Engine for the Toyota Hybrid System, JSAE papereconomy and emissions of the Toyota and Honda Hybrid Cars (

Burke, Andy

2004-01-01T23:59:59.000Z

493

Advanced Technology Vehicle Testing  

DOE Green Energy (OSTI)

The light-duty vehicle transportation sector in the United States depends heavily on imported petroleum as a transportation fuel. The Department of Energy’s Advanced Vehicle Testing Activity (AVTA) is testing advanced technology vehicles to help reduce this dependency, which would contribute to the economic stability and homeland security of the United States. These advanced technology test vehicles include internal combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban electric vehicles, and electric ground support vehicles. The AVTA tests and evaluates these vehicles with closed track and dynamometer testing methods (baseline performance testing) and accelerated reliability testing methods (accumulating lifecycle vehicle miles and operational knowledge within 1 to 1.5 years), and in normal fleet environments. The Arizona Public Service Alternative Fuel Pilot Plant and H2-fueled vehicles are demonstrating the feasibility of using H2 as a transportation fuel. Hybrid, neighborhood, and urban electric test vehicles are demonstrating successful applications of electric drive vehicles in various fleet missions. The AVTA is also developing electric ground support equipment (GSE) test procedures, and GSE testing will start during the fall of 2003. All of these activities are intended to support U.S. energy independence. The Idaho National Engineering and Environmental Laboratory manages these activities for the AVTA.

James Francfort

2003-11-01T23:59:59.000Z

494

Fuel Savings from Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

NREL's study shows that hybrid electric vehicles can significantly reduce oil imports for use in light-duty vehicles, particularly if drivers switch to smaller, more fuel-efficient vehicles overall.

Bennion, K.; Thornton, M.

2009-03-01T23:59:59.000Z

495

An analysis of the costs of running a station car fleet  

SciTech Connect

Station cars are electric vehicles available at transit stations which may be used for transportation between the transit station and home, work, and/or for errands. This transportation service would be provided by the local transit agency. This report discusses an economic model of the costs of running a station car fleet. While some of these costs are highly uncertain, this analysis is a first look at the required user fees for full cost recovery. The model considers the capital costs of the vehicles and the required infrastructure; the annual fixed vehicle costs for insurance, registration, etc.; the mileage-based costs; and the annual non-vehicle costs for administration, infrastructure maintenance, etc. The model also includes various factors such as the fleet size, the annual mileage, the number of transit stations that would have facilities for station cars, and the number of users. The model specifically examines the cost of using of electric vehicles; however, for comparison, the cost of using a fleet of gasoline-powered vehicles also is calculated. This report examines the sensitivity of the model to the various factors. A principal conclusion from the analysis is that the largest cost contributor is the initial vehicle purchase price. For a given initial purchase price, the factor driving the user fee required for full cost recovery is the number of different daily users of a vehicle. The model also compares the annual cost of transportation using station cars and mass transit to the annual cost of solo commuting. If a station car is used by more than one person a day, and this use replaces the ownership of a conventional vehicle, the annual cost of transportation may be similar. However, for the base case assumptions, the station car user fee required for full cost recovery is higher than the cost of solo commuting.

Zurn, R.M.

1995-02-01T23:59:59.000Z

496

Why Some Vehicles Are Not Listed / 1  

NLE Websites -- All DOE Office Websites (Extended Search)

Tax Incentives and Disincentives / 2 * Why Consider Fuel Economy / 2 * Fueling Options / 2 * Fuel Economy and Annual Fuel Cost Ranges for Vehicle Classes / 3 * Model Year 2012 Fuel Economy Leaders / 4 * 2012 Model Year Vehicles / 5 * Diesel Vehicles / 25 * Compressed Natural Gas Vehicles / 25 * Electric Vehicles / 26 * Hybrid Electric Vehicles / 27 * Plug-in Hybrid Electric Vehicles / 29 * Ethanol Flexible Fuel Vehicles / 30 * Fuel Cell Vehicles / 35 * Index / 36 * USING THE FUEL ECONOMY GUIDE The U.S. Environmental Protection Agency (EPA) and U.S. Department of Energy (DOE) produce the Fuel Economy Guide to help car buyers choose the most fuel-efficient vehicle that meets their needs. The Guide is published in print and on the Web at www.fueleconomy.gov. For additional print copies,please call

497

FreedomCAR and Fuel Partnership 2007 Highlights of Technical Accomplishments  

NLE Websites -- All DOE Office Websites (Extended Search)

FreedomCAR FreedomCAR and Fuel Partnership 2007 Highlights of Technical Accomplishments Table of Contents Item Page Preface iv Vehicle Technologies Advanced Combustion & Emissions Control * Injection Timing Strongly Impacts H 2 - Air Mixing in a Direct-Injection Hydrogen Engine 1 * Demonstrated 2007 Engine Efficiency Milestone of 42% Peak Brake Thermal Efficiency 2 * Kinetic Mechanism for Diesel Lean NO x Trap Regeneration 3 * Studies of Lean NO x Trap Aftertreatment Contribute to Diesel Vehicle Commercialization 4 Electrical & Electronics * Floating Loop Inverter 5 * Sintered Die Attachment 6 * Thermal Systems Analysis for Advanced Vehicle Power Electronics 7 * High Temperature DC Bus Capacitors 8 Electrochemical Energy Storage

498

Feasible CAFE Standard Increases Using Emerging Diesel and Hybrid-Electric Technologies for Light-Duty Vehicles in the United States  

E-Print Network (OSTI)

R&D Co. at the SAE Hybrid Vehicle Symposium in San Diego,already being utilized in hybrid vehicles being marketed byfirst marketed their hybrid vehicles in Japan before doing

Burke, Andy; Abeles, Ethan C.

2004-01-01T23:59:59.000Z

499

Feasible Café Standard Increases Using Emerging Diesel and Hybrid-Electric Technologies for Light-Duty Vehicles in the United States  

E-Print Network (OSTI)

R&D Co. at the SAE Hybrid Vehicle Symposium in San Diego,already being utilized in hybrid vehicles being marketed byfirst marketed their hybrid vehicles in Japan before doing

Burke, Andy; Abeles, Ethan

2004-01-01T23:59:59.000Z

500

Feasible Café Standard Increases Using Emerging Diesel and Hybrid-Electric Technologies for Light-Duty Vehicles in the United States  

E-Print Network (OSTI)

C.J. , The Future of Hybrid- Electric Vehicles and FuelsWith the emergence of hybrid-electric vehicles from JapaneseTechnologies 2.1 Hybrid-electric vehicles Hybrid-electric

Burke, Andy; Abeles, Ethan

2004-01-01T23:59:59.000Z