Powered by Deep Web Technologies
Note: This page contains sample records for the topic "vehicle weight buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Life-cycle Energy and Emissions Inventories for Motorcycles, Diesel Automobiles, School Buses, Electric Buses, Chicago Rail, and New York City Rail  

E-Print Network [OSTI]

captured  for  both  diesel  and  electric  vehicles.   The for the urban diesel bus,  the electric buses’ fraction of Motorcycles, Diesel Automobiles, School  Buses, Electric 

Chester, Mikhail; Horvath, Arpad

2009-01-01T23:59:59.000Z

2

Fuel Cells in Transit Buses Transit buses are widely viewed as one of the best strategies for commercializing fuel cells for  

E-Print Network [OSTI]

for commercializing fuel cells for vehicles and transitioning to a hydrogen economy. Many advantages have beenFuel Cells in Transit Buses Summary Transit buses are widely viewed as one of the best strategies identified regarding the use of transit buses as fuel cell platforms. For example: · Transit buses have well

3

NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastruct...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vehicle Technologies Program Review Presentation NJ COMPRESSED NATURAL GAS REFUSE TRUCKS, SHUTTLE BUSES AND INFRASTRUCTURE Chuck Feinberg, Principal Investigator New Jersey Clean...

4

Coordinated Vehicle Platoon Control: Weighted and Constrained Consensus and Communication Network Topologies  

E-Print Network [OSTI]

Coordinated Vehicle Platoon Control: Weighted and Constrained Consensus and Communication Network a new method for enhancing highway safety and efficiency by coordinated control of vehicle platoons. One performance. Vehicle deployment is formulated as a weighted and constrained consensus control problem

Zhang, Hongwei

5

Webinar: Fuel Cell Buses  

Broader source: Energy.gov [DOE]

Video recording and text version of the webinar titled, Fuel Cell Buses, originally presented on September 12, 2013.

6

Cars on a diet : the material and energy impacts of passenger vehicle weight reduction in the U.S.  

E-Print Network [OSTI]

Vehicle weight reduction is a known strategy to address growing concerns about greenhouse gas emissions and fuel use by passenger vehicles. We find that every 10% reduction in vehicle weight can cut fuel consumption by ...

Cheah, Lynette W. (Lynette Wan Ting)

2010-01-01T23:59:59.000Z

7

COMPARISON OF CLEAN DIESEL BUSES TO CNG BUSES  

SciTech Connect (OSTI)

Using previously published data on regulated and unregulated emissions, this paper will compare the environmental performance of current generation transit buses operated on compressed natural gas (CNG) to current generation transit buses operated on ultra low sulfur diesel fuel (ULSD) and incorporating diesel particulate filters (DPF). Unregulated emissions evaluated include toxic compounds associated with adverse health effects (carbonyl, PAH, NPAH, benzene) as well as PM particle count and size distribution. For all regulated and unregulated emissions, both technologies are shown to be comparable. DPF equipped diesel buses and CNG buses have virtually identical levels of PM mass emissions and particle number emissions. DPF-equipped diesel buses have lower HC and CO emissions and lower emissions of toxic substances such as benzene, carbonyls and PAHs than CNG buses. CNG buses have lower NOx emissions than DPF-equipped buses, though CNG bus NOx emissions are shown to be much more variable. In addition, this paper will compare the capital and operating costs of CNG and DPF-equipped buses. The cost comparison is primarily based on the experience of MTA New York City Transit in operating CNG buses since 1995 and DPF-equipped buses fueled with ULSD since 2001. Published data on the experience of other large transit agencies in operating CNG buses is used to validate the NYCT experience. The incremental cost (compared to ''baseline'' diesel) of operating a typical 200-bus depot is shown to be six times higher for CNG buses than for ''clean diesel'' buses. The contributors to this increased cost for CNG buses are almost equally split between increased capital costs for purchase of buses and installation of fueling infrastructure, and increased operating costs for purchase of fuel, bus maintenance, and fuel station maintenance.

Lowell, D.; Parsley, W.; Bush,C; Zupo, D.

2003-08-24T23:59:59.000Z

8

Behavioral Response to Hydrogen Fuel Cell Vehicles and Refueling: Results of California Drive Clinics  

E-Print Network [OSTI]

on the attitude towards hydrogen fuel cell buses in the CUTEthe attitude towards hydrogen fuel cell buses in Stockholm.8680 BEHAVIORAL RESPONSE TO HYDROGEN FUEL CELL VEHICLES AND

Martin, Elliot W; Shaheen, Susan A; Lipman, T E; Lidicker, Jeffrey

2009-01-01T23:59:59.000Z

9

Feasibility Study Of Advanced Technology Hov Systems: Volume 2b: Emissions Impact Of Roadway-powered Electric Buses, Light-duty Vehicles, And Automobiles  

E-Print Network [OSTI]

LIGHT-DUTY VEHICLES, AND AUTOMOBILES Mark A. Miller Victorand The analysis involves automobiles in California arePowered Electric Automobiles -a---- Range of Estimated

Miller, Mark A.; Dato, Victor; Chira-chavala, Ted

1992-01-01T23:59:59.000Z

10

Wireless Power Transfer for Electric Vehicles  

SciTech Connect (OSTI)

As Electric and Hybrid Electric Vehicles (EVs and HEVs) become more prevalent, there is a need to change the power source from gasoline on the vehicle to electricity from the grid in order to mitigate requirements for onboard energy storage (battery weight) as well as to reduce dependency on oil by increasing dependency on the grid (our coal, gas, and renewable energy instead of their oil). Traditional systems for trains and buses rely on physical contact to transfer electrical energy to vehicles in motion. Until recently, conventional magnetically coupled systems required a gap of less than a centimeter. This is not practical for vehicles of the future.

Scudiere, Matthew B [ORNL; McKeever, John W [ORNL

2011-01-01T23:59:59.000Z

11

AVTA: Plug-In Hybrid Electric School Buses  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following set of reports describes data collected from testing several plug-in hybrid electric school buses in locations in three different states. This research was conducted by the National Renewable Energy Laboratory (NREL).

12

Behavioral Response to Hydrogen Fuel Cell Vehicles and Refueling: A Comparative Analysis of Short- and Long-Term Exposure  

E-Print Network [OSTI]

on the attitude towards hydrogen fuel cell buses in the CUTEBEHAVIORAL RESPONSE TO HYDROGEN FUEL CELL VEHICLES ANDBEHAVIORAL RESPONSE TO HYDROGEN FUEL CELL VEHICLES AND

Martin, Elliot; Shaheen, Susan; Lipman, Timothy; Lidicker, Jeffery

2008-01-01T23:59:59.000Z

13

Vehicle Technologies Office Merit Review 2014: Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight  

Broader source: Energy.gov [DOE]

Presentation given by Cooper Tire at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about improving vehicle fuel efficiency...

14

NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastruct...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure 2012 DOE Hydrogen and Fuel Cells...

15

Enterprise converting buses to biodiesel | Department of Energy  

Energy Savers [EERE]

Enterprise converting buses to biodiesel Enterprise converting buses to biodiesel April 1, 2010 - 6:48pm Addthis Paul Lester Communications Specialist, Office of Energy Efficiency...

16

COMPARATIVE STUDY ON EXHAUST EMISSIONS FROM DIESEL- AND CNG-POWERED URBAN BUSES  

SciTech Connect (OSTI)

Couple years ago, ADEME engaged programs dedicated to the urban buses exhaust emissions studies. The measures associated with the reduction of atmospheric and noise pollution has particular importance in the sector of urban buses. In many cases, they illustrate the city's environmental image and contribute to reinforcing the attractiveness of public transport. France's fleet in service, presently put at about 14,000 units, consumes about 2 per cent of the total energy of city transport. It causes about 2 per cent of the HC emissions and from 4 to 6 per cent of the NOx emissions and particles. These vehicles typically have a long life span (about 15 years) and are relatively expensive to buy, about 150.000 euros per unit. Several technical solutions were evaluated to quantify, on a real condition cycle for buses, on one hand pollutants emissions, fuel consumption and on the other hand reliability, cost in real existing fleet. This paper presents main preliminary results on urban buses exhaust emission on two different cases: - existing Diesel buses, with fuel modifications (Diesel with low sulphur content), Diesel with water emulsion and bio-Diesel (30% oil ester in standard Diesel fuel); renovating CNG powered Euro II buses fleet, over representative driving cycles, set up by ADEME and partners. On these cycles, pollutants (regulated and unregulated) were measured as well as fuel consumption, at the beginning of a program and one year after to quantify reliability and increase/decrease of pollutants emissions. At the same time, some after-treatment technologies were tested under real conditions and several vehicles. Information such as fuel consumption, lubricant analysis, problem on the technology were following during a one year program. On the overall level, it is the combination of various action, pollution-reduction and renewal that will make it possible to meet the technological challenge of reducing emissions and fuel consumption by urban bus networks.

COROLLER, P; PLASSAT, G

2003-08-24T23:59:59.000Z

17

Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

18

Clean Cities' Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Brochure)  

SciTech Connect (OSTI)

Guide describes the alternative fuel and advanced medium- and heavy-duty vehicles available on the market, including buses, vans, refuse haulers, and more.

Not Available

2010-09-01T23:59:59.000Z

19

Port Authority of Allegheny County: Green Facts Hybrid Buses  

E-Print Network [OSTI]

28 hybrid diesel-electric buses in its fleet. · A diesel-electric hybrid drive system stores energy to supplement the diesel engine when needed and offers many benefits: o Compared to diesel buses, hybrids mileage than diesel-only buses and also achieve better acceleration. o A hybrid's brakes and engine

Sibille, Etienne

20

Vehicle Technologies Office Merit Review 2014: High Strength, Light-Weight Engines for Heavy Duty Trucks  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high strength,...

Note: This page contains sample records for the topic "vehicle weight buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Life-cycle Energy and Emissions Inventories for Motorcycles, Diesel Automobiles, School Buses, Electric Buses, Chicago Rail, and New York City Rail  

E-Print Network [OSTI]

bus,  the electric buses’ fraction of energy consumed was Energy and Emissions Inventories for Motorcycles, Diesel Automobiles, School  Buses, Electric Energy and Emissions Inventories for Motorcycles, Diesel Automobiles, School Buses, Electric 

Chester, Mikhail; Horvath, Arpad

2009-01-01T23:59:59.000Z

22

Life-cycle Energy and Emissions Inventories for Motorcycles, Diesel Automobiles, School Buses, Electric Buses, Chicago Rail, and New York City Rail  

E-Print Network [OSTI]

Motorcycles, Diesel Automobiles, School  Buses, Electric for Motorcycles, Diesel Automobiles, School Buses, Electric Life?cycle Model of an Automobile.  Environmental Science & 

Chester, Mikhail; Horvath, Arpad

2009-01-01T23:59:59.000Z

23

Case Study: Ebus Hybrid Electric Buses and Trolleys  

SciTech Connect (OSTI)

Evaluation focuses on the demonstration of hybrid electric buses and trolleys produced by Ebus Inc. at the Indianapolis Transportation Corporation and the Knoxville Area Transit.

Barnitt, R.

2006-07-01T23:59:59.000Z

24

Fuel Cell Buses (Text Version) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

technology validation team. She has two primary areas of focus: evaluating performance data on fuel cell buses to help determine the status of the technology, and analyze the...

25

Evaluation of Alternative Field Buses for Lighting Control Applications  

E-Print Network [OSTI]

2003, Jose Gutierrez, Eaton Corporation March 22, 2005 PageBuses for Lighting Control Applications Eaton CorporationEaton Corporation is a global $7.3 billion diversified

Koch, Ed; Rubinstein, Francis

2005-01-01T23:59:59.000Z

26

Alameda-Contra Costa Transit District Fuel Cell Transit Buses...  

Office of Environmental Management (EM)

Results Update This report is an update to the 2007 preliminary results report on hydrogen fuel cell and diesel buses operating at Alameda-Contra Costa Transit District....

27

Alameda-Contra Costa Transit District (AC Transit) Fuel Cell Transit Buses: Preliminary Evaluation Results  

SciTech Connect (OSTI)

This report provides an evaluation of three prototype fuel cell-powered transit buses operating at AC Transit in Oakland, California, and six baseline diesel buses similar in design to the fuel cell buses.

Chandler, K.; Eudy, L.

2007-03-01T23:59:59.000Z

28

Demonstration of Alternative Fuel, Light and Heavy Duty Vehicles in State and Municipal Vehicle Fleets  

SciTech Connect (OSTI)

This project involved the purchase of two Compressed Natural Gas School Buses and two electric Ford Rangers to demonstrate their viability in a municipal setting. Operational and maintenance data were collected for analysis. In addition, an educational component was undertaken with middle school children. The children observed and calculated how electric vehicles could minimize pollutants through comparison to conventionally powered vehicles.

Kennedy, John H.; Polubiatko, Peter; Tucchio, Michael A.

2002-02-06T23:59:59.000Z

29

King County Metro Transit Hybrid Articulated Buses: Final Evaluation Results  

SciTech Connect (OSTI)

Final technical report compares and evaluates new diesel and diesel hybrid-electric articulated buses operated as part of the King County Metro Transit (KC Metro) fleet in Seattle, Washington. The evaluation lasted 12 months.

Chandler, K.; Walkowicz, K.

2006-12-01T23:59:59.000Z

30

Can propane school buses save money and provide other benefits...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Can propane school buses save money and provide other benefits? October 1, 2014 Tweet EmailPrint School districts across the country are looking for ways to save money and be more...

31

Strategies for Sharing Bottleneck Capacity among Buses and Cars  

E-Print Network [OSTI]

at first, since bus-car sharing strategies for facilities ofsharing the middle link’s median lane between cars andfor Sharing Bottleneck Capacity among Buses and Cars by

Guler, Sukran Ilgin

2012-01-01T23:59:59.000Z

32

Summary of Swedish Experiences on CNG and "Clean" Diesel Buses  

Broader source: Energy.gov (indexed) [DOE]

diesel (i.e. Euro II) with ox cat CNG buses in 1992 (Gothenburg); later also biogas Retrofit particulate filters (i.e. CRT TM ) in mid 1990's Environmental zones in...

33

Assessment of the Greenhouse Gas Emission Reduction Potential of Ultra-Clean Hybrid-Electric Vehicles  

E-Print Network [OSTI]

Table ES-3: Summaryof Hybrid Vehicle Fuel Economy Results onmal ICE and Series Hybrid Vehicles (t) Vehicle Test Weight (I) Conventional and Series Hybrid Vehicles had same weight,

Burke, A.F.; Miller, M.

1997-01-01T23:59:59.000Z

34

Alameda-Contra Costa Transit District (AC Transit) Fuel Cell Transit Buses: Third Evaluation Report and Appendices  

SciTech Connect (OSTI)

This report describes operations at Alameda-Contra Costa Transit district for three protoype fuel cell buses and six diesel buses operating from the same location.

Chandler, K.; Eudy, L.

2008-07-01T23:59:59.000Z

35

Liquefied Natural Gas for Trucks and Buses  

SciTech Connect (OSTI)

Liquefied natural gas (LNG) is being developed as a heavy vehicle fuel. The reason for developing LNG is to reduce our dependency on imported oil by eliminating technical and costs barriers associated with its usage. The U.S. Department of Energy (DOE) has a program, currently in its third year, to develop and advance cost-effective technologies for operating and refueling natural gas-fueled heavy vehicles (Class 7-8 trucks). The objectives of the DOE Natural Gas Vehicle Systems Program are to achieve market penetration by reducing vehicle conversion and fuel costs, to increase consumer acceptance by improving the reliability and efficiency, and to improve air quality by reducing tailpipe emissions. One way to reduce fuel costs is to develop new supplies of cheap natural gas. Significant progress is being made towards developing more energy-efficient, low-cost, small-scale natural gas liquefiers for exploiting alternative sources of natural gas such as from landfill and remote gas sites. In particular, the DOE program provides funds for research and development in the areas of; natural gas clean up, LNG production, advanced vehicle onboard storage tanks, improved fuel delivery systems and LNG market strategies. In general, the program seeks to integrate the individual components being developed into complete systems, and then demonstrate the technology to establish technical and economic feasibility. The paper also reviews the importance of cryogenics in designing LNG fuel delivery systems.

James Wegrzyn; Michael Gurevich

2000-06-19T23:59:59.000Z

36

Fuel Cell Buses in U.S. Transit Fleets: Current Status 2012 ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Buses in U.S. Transit Fleets: Current Status 2012 Fuel Cell Buses in U.S. Transit Fleets: Current Status 2012 This report is the sixth in an annual series of reports that...

37

Fuel Cell Transit Buses: ThunderPower Bus Evaluation at SunLine...  

Broader source: Energy.gov (indexed) [DOE]

Fuel Cell Transit Buses: ThunderPower Bus Evaluation at SunLine Transit Agency Fuel Cell Transit Buses: ThunderPower Bus Evaluation at SunLine Transit Agency Report details the...

38

E-Print Network 3.0 - alternative field buses Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

buses Search Powered by Explorit Topic List Advanced Search Sample search results for: alternative field buses Page: << < 1 2 3 4 5 > >> 1 A national laboratory of the U.S....

39

Fuel Cell Buses in U.S. Transit Fleets: Summary of Experiences...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Buses in U.S. Transit Fleets: Summary of Experiences and Current Status Fuel Cell Buses in U.S. Transit Fleets: Summary of Experiences and Current Status This report...

40

100,000-Mile Evaluation of Transit Buses Operated on Biodiesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

00,000-Mile Evaluation of Transit Buses Operated on Biodiesel Blends (B20) 100,000-Mile Evaluation of Transit Buses Operated on Biodiesel Blends (B20) Presentation given at DEER...

Note: This page contains sample records for the topic "vehicle weight buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses  

SciTech Connect (OSTI)

An evaluation of emissions of natural gas and diesel buses operated by the Washington Metro Area Transit Authority.

Melendez, M.; Taylor, J.; Wayne, W. S.; Smith, D.; Zuboy, J.

2005-12-01T23:59:59.000Z

42

New York City Transit Hybrid and CNG Transit Buses: Final Evaluation Results  

SciTech Connect (OSTI)

This report describes the evaluation results for new Orion VII buses at NYCT with CNG propulsion and new hybrid propulsion.

Barnitt, R.; Chandler, K.

2006-11-01T23:59:59.000Z

43

Electric vehicle repairs and modifications  

SciTech Connect (OSTI)

This informal report describes the electric vehicle (EV) inspection and the necessary maintenance and repairs required to improve reliable operation of five Volkswagen (VW) Electrotransporter vans and five VW EV buses. The recommendations of TVA, EPRI, GES, Volkswagen, Siemens, and Hoppecke have been carried out in this effort. These modifications were necessary before entering the EPRI/TVA phase II and III continuing program. As new energy storage systems are explored using the VW test-bed vehicles in the battery field testing program, additional modifications may be required. All modifications will be submitted to the vehicle and component manufacturer for general assessment and recommendations. At present three different types of battery systems are being evaluated in six VW vehicles. The two Hoppecke and Exide utilize the modified Hoppecke charging systems. The other batteries being tested require off-board chargers specified by their manufacturer and are separate from the vehicle system.

Buffett, R.K.

1982-11-01T23:59:59.000Z

44

To Evaluate Zero Emission Propulsion and Support Technology for Transit Buses  

SciTech Connect (OSTI)

This report provides evaluation results for prototype fuel cell transit buses operating at Santa Clara Valley Transportation Authority (VTA) in San Jose, California, in partnership with the San Mateo County Transit District in San Carlos, California. VTA has been operating three fuel cell transit buses in extra revenue service since February 28, 2005. This report provides descriptions of the equipment used, early experiences, and evaluation results from the operation of the buses and the supporting hydrogen infrastructure from March 2005 through July 2006.

Kevin Chandler; Leslie Eudy

2006-11-01T23:59:59.000Z

45

SunLine Transit Agency, Hydrogen Powered Transit Buses: Preliminary Evaluation Results  

SciTech Connect (OSTI)

This paper provides preliminary results from an evaluation by DOE's National Renewable Energy Laboratory of hydrogen-powered transit buses at SunLine Transit Agency.

Chandler, K.; Eudy, L.

2007-02-01T23:59:59.000Z

46

100,000-Mile Evaluation of Transit Buses Operated on Biodiesel Blends (B20)  

SciTech Connect (OSTI)

Evaluates the emissions, fuel economy, and maintenance of five 40-foot transit buses operated on B20 compared to four on petroleum diesel.

Proc, K.; Barnitt, R.; Hayes, R. R.; Ratcliff, M.; McCormick, R. L.; Ha, L.; Fang, H. L.

2006-11-01T23:59:59.000Z

47

Fuel Cell Buses in U.S. Transit Fleets: Current Status 2012  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Buses in U.S. Transit Fleets: Current Status 2012 Leslie Eudy National Renewable Energy Laboratory Kevin Chandler Battelle Christina Gikakis Federal Transit...

48

New York City Transit Hybrid and CNG Transit Buses: Interim Evaluation Results  

SciTech Connect (OSTI)

This report focuses on the evaluation of compressed natural gas (CNG) and diesel hybrid electric bus propulsion systems in New York City Transit's transit buses.

Chandler, K.; Eberts, E.; Eudy, L.

2006-01-01T23:59:59.000Z

49

E-Print Network 3.0 - alternative fuel buses Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

applications for alternative fuel or advanced... ) mandated a conversion from diesel to alternative fuel buses. Investigation into alternatives to diesel... , preliminary studies...

50

Fuel Cell Transit Buses: ThunderPower Bus Evaluation at SunLine...  

Broader source: Energy.gov (indexed) [DOE]

ThunderPower Bus Evaluation at SunLine Transit Agency Transit Buses Hydrogen, Fuel Cells & Infrastructure Technologies Program Fuel Cell A Strong Energy Portfolio for a Strong...

51

A pressure control scheme for air brakes in commercial vehicles  

E-Print Network [OSTI]

This research is focused on developing a control scheme for regulating the pressure in the brake chamber of an air brake system found in most commercial vehicles like trucks, tractor-trailers and buses. Such a control scheme can be used...

Bowlin, Christopher Leland

2007-04-25T23:59:59.000Z

52

Improving Vehicle Fuel Efficiency Through Tire Design, Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight 2012 DOE Hydrogen...

53

Environmental Life-cycle Assessment of Passenger Transportation: A Detailed Methodology for Energy, Greenhouse Gas and Criteria Pollutant Inventories of Automobiles, Buses, Light Rail, Heavy Rail and Air  

E-Print Network [OSTI]

A Life-Cycle Model of an Automobile, Environmental Science &Pollutant Inventories of Automobiles, Buses, Light Rail,Pollutant Inventories of Automobiles, Buses, Light Rail,

Chester, Mikhail; Horvath, Arpad

2007-01-01T23:59:59.000Z

54

Fuel Cell School Buses: Report to Congress | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings | DepartmentCase Study Fuel CellSummitSchool Buses:

55

Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuels inGoIndianaPennsylvania School BusesFuels

56

Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuels inGoIndianaPennsylvania SchoolPropane Buses

57

NREL - Advanced Vehicles and Fuels Basics - Center for Transportation Technologies and Systems 2010  

ScienceCinema (OSTI)

We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. Researchers at the National Renewable Energy Laboratory (NREL) are helping the nation achieve these goals by developing transportation technologies like: advanced vehicle systems and components; alternative fuels; as well as fuel cells, hybrid electric, and plug-in hybrid vehicles. For a text version of this video visit http://www.nrel.gov/learning/advanced_vehicles_fuels.html

None

2013-05-29T23:59:59.000Z

58

King County Metro Transit Hybrid Articulated Transit Buses: Interim Evaluation Results  

SciTech Connect (OSTI)

Interim technical report compares and evaluates new diesel and diesel hybrid-electric articulated buses operated as part of the King County Metro Transit (KC Metro) fleet in Seattle, Washington.

Chandler, K.; Walkowicz, K.

2006-04-01T23:59:59.000Z

59

SunLine Transit Agency Hydrogen-Powered Transit Buses: Third...  

Broader source: Energy.gov (indexed) [DOE]

describes operations at SunLine Transit Agency for a protoype fuel cell bus, a prototype hydrogen hybrid interal combustion engine bus, and five new compressed natural gas buses....

60

Fuel Cell Buses in U.S. Transit Fleets: Current Status 2009  

SciTech Connect (OSTI)

This report documents progress in meeting the technological challenges of fuel cell propulsion for transportation based on current fuel cell transit bus demonstrations and plans for more fuel cell transit buses and hydrogen infrastructure.

Eudy, L.; Chandler, K.; Gikakis, C.

2009-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle weight buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

SunLine Transit Agency Hydrogen-Powered Transit Buses: Third Evaluation Report (Report and Appendices)  

SciTech Connect (OSTI)

This report describes operations at SunLine Transit Agency for a protoype fuel cell bus, a prototype hydrogen hybrid interal combustion engine bus, and five new compressed natural gas buses.

Chandler, K.; Eudy, L.

2008-06-01T23:59:59.000Z

62

Evaluating Exhaust Emission Performance of Urban Buses Using...  

Broader source: Energy.gov (indexed) [DOE]

Emissions Reduction (DEER) Conference Presentation: VTT Technical Research Centre of Finland 2004deererkkila.pdf More Documents & Publications Heavy Duty Vehicle In-Use...

63

NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastruct...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt051tifeinberg2011...

64

NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastruct...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. tiarravt051feinberg2010...

65

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Broader source: Energy.gov (indexed) [DOE]

Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation 2010 DOE Vehicle Technologies...

66

Santa Clara Valley Transportation Authority and San Mateo County Transit District; Fuel Cell Transit Buses: Preliminary Evaluation Results  

SciTech Connect (OSTI)

Report provides preliminary results from an evaluation of prototype fuel cell transit buses operating at Santa Clara Valley Transportation Authority (VTA) in San Jose, California.

Eudy, L.; Chandler, K.

2006-03-01T23:59:59.000Z

67

Santa Clara Valley Transportation Authority and San Mateo County Transit District -- Fuel Cell Transit Buses: Evaluation Results  

SciTech Connect (OSTI)

This report provides evaluation results for prototype fuel cell transit buses operating at Santa Clara Valley Transportation Authority in San Jose, California.

Chandler, K.; Eudy, L.

2006-11-01T23:59:59.000Z

68

Indianapolis Public Transportation Corporation. Advanced Technology Vehicles in Service: Diesel Hybrid Electric Buses (Fact Sheet).  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisiana Laws andDakota1 CleanbuttonbuttonWeb site and

69

Evaluation of Alternative Field Buses for Lighting ControlApplications  

SciTech Connect (OSTI)

The Subcontract Statement of Work consists of two major tasks. This report is the Final Report in fulfillment of the contract deliverable for Task 1. The purpose of Task 1 was to evaluate existing and emerging protocols and standards for interfacing sensors and controllers for communicating with integrated lighting control systems in commercial buildings. The detailed task description follows: Task 1. Evaluate alternative sensor/field buses. The objective of this task is to evaluate existing and emerging standards for interfacing sensors and controllers for communicating with integrated lighting control systems in commercial buildings. The protocols to be evaluated will include at least: (1) 1-Wire Net, (2) DALI, (3) MODBUS (or appropriate substitute such as EIB) and (4) ZigBee. The evaluation will include a comparative matrix for comparing the technical performance features of the different alternative systems. The performance features to be considered include: (1) directionality and network speed, (2) error control, (3) latency times, (4) allowable cable voltage drop, (5) topology, and (6) polarization. Specifically, Subcontractor will: (1) Analyze the proposed network architecture and identify potential problems that may require further research and specification. (2) Help identify and specify additional software and hardware components that may be required for the communications network to operate properly. (3) Identify areas of the architecture that can benefit from existing standards and technology and enumerate those standards and technologies. (4) Identify existing companies that may have relevant technology that can be applied to this research. (5) Help determine if new standards or technologies need to be developed.

Koch, Ed; Rubinstein, Francis

2005-03-21T23:59:59.000Z

70

Heavy vehicle hybrid propulsion systems R and D program plan, FY 2000-2005  

SciTech Connect (OSTI)

This report contains the program plan and background information for the Heavy Vehicle Hybrid Propulsion R and D Program sponsored by the Department of Energy's Office of Heavy Vehicle Technologies. The program is a collaboration between industry and government established for the development of advanced hybrid-electric propulsion technology for urban cycle trucks and buses. It targets specific applications to enhance potential market success. Potential end-users are also involved.

None

2000-07-01T23:59:59.000Z

71

Fuel Cell Buses in U.S. Transit Fleets: Current Status 2010  

SciTech Connect (OSTI)

This status report, fourth in a series of annual status reports from the U.S. Department of Energy's National Renewable Energy Laboratory, summarizes progress and accomplishments from demonstrations of fuel cell transit buses in the United States. This year's assessment report provides the results from the fifth year of operation of five Van Hool, ISE, and UTC Power fuel cell buses operating at AC Transit, SunLine, and CTTRANSIT. The achievements and challenges of this bus design, implementation, and operating are presented, with a focus on the next steps for implementing larger numbers and new and different designs of fuel cell buses. The major positive result from nearly five years of operation is the dramatic increase in reliability experienced for the fuel cell power system.

Eudy, L.; Chandler, K.; Gigakis, C.

2010-11-01T23:59:59.000Z

72

Fuel Cell Buses in U.S. Transit Fleets: Current Status 2011  

SciTech Connect (OSTI)

This status report, fifth in a series of annual status reports from the U.S. Department of Energy's National Renewable Energy Laboratory (NREL), discusses the achievements and challenges of fuel cell propulsion for transit and summarizes the introduction of fuel cell transit buses in the United States. Progress this year includes an increase in the number of fuel cell electric buses (FCEBs), from 15 to 25, operating at eight transit agencies, as well as increased diversity of the fuel cell design options for transit buses. The report also provides an analysis of the combined results from fuel cell transit bus demonstrations evaluated by NREL with a focus on the most recent data through July 2011 including fuel cell power system reliability and durability; fuel economy; roadcall; and hydrogen fueling results. These evaluations cover 22 of the 25 FCEBs currently operating.

Eudy, L.; Chandler, K.; Gikakis, C.

2011-11-01T23:59:59.000Z

73

Comparative analysis of selected fuel cell vehicles  

SciTech Connect (OSTI)

Vehicles powered by fuel cells operate more efficiently, more quietly, and more cleanly than internal combustion engines (ICEs). Furthermore, methanol-fueled fuel cell vehicles (FCVs) can utilize major elements of the existing fueling infrastructure of present-day liquid-fueled ICE vehicles (ICEVs). DOE has maintained an active program to stimulate the development and demonstration o fuel cell technologies in conjunction with rechargeable batteries in road vehicles. The purpose of this study is to identify and assess the availability of data on FCVs, and to develop a vehicle subsystem structure that can be used to compare both FCVs and ICEV, from a number of perspectives--environmental impacts, energy utilization, materials usage, and life cycle costs. This report focuses on methanol-fueled FCVs fueled by gasoline, methanol, and diesel fuel that are likely to be demonstratable by the year 2000. The comparative analysis presented covers four vehicles--two passenger vehicles and two urban transit buses. The passenger vehicles include an ICEV using either gasoline or methanol and an FCV using methanol. The FCV uses a Proton Exchange Membrane (PEM) fuel cell, an on-board methanol reformer, mid-term batteries, and an AC motor. The transit bus ICEV was evaluated for both diesel and methanol fuels. The transit bus FCV runs on methanol and uses a Phosphoric Acid Fuel Cell (PAFC) fuel cell, near-term batteries, a DC motor, and an on-board methanol reformer. 75 refs.

NONE

1993-05-07T23:59:59.000Z

74

Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...  

Broader source: Energy.gov (indexed) [DOE]

Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector...

75

Virginia Tech Comprehensive Power-Based Fuel Consumption Model: Modeling Diesel1 and Hybrid Buses2  

E-Print Network [OSTI]

Virginia Tech Comprehensive Power-Based Fuel Consumption Model: Modeling Diesel1 and Hybrid Buses2 is to extend the Virginia Tech Comprehensive Power-Based9 Fuel Consumption Model (VT-CPFM) to include diesel There are currently very few models for estimating diesel and hybrid bus fuel consumption and2 CO2 emission levels

Rakha, Hesham A.

76

Alternative fuels for vehicles fleet demonstration program final report. Volume 1: Summary  

SciTech Connect (OSTI)

The Alternative Fuels for Vehicles Fleet Demonstration Program (AFV-FDP) was a multiyear effort to collect technical data for use in determining the costs and benefits of alternative-fuel vehicles in typical applications in New York State. During 3 years of collecting data, 7.3 million miles of driving were accumulated, 1,003 chassis-dynamometer emissions tests were performed, 862,000 gallons of conventional fuel were saved, and unique information was developed about garage safety recommendations, vehicle performance, and other topics. Findings are organized by vehicle and fuel type. For light-duty compressed natural gas (CNG) vehicles, technology has evolved rapidly and closed-loop, electronically-controlled fuel systems provide performance and emissions advantages over open-loop, mechanical systems. The best CNG technology produces consistently low tailpipe emissions versus gasoline, and can eliminate evaporative emissions. Reduced driving range remains the largest physical drawback. Fuel cost is low ($/Btu) but capital costs are high, indicating that economics are best with vehicles that are used intensively. Propane produces impacts similar to CNG and is less expensive to implement, but fuel cost is higher than gasoline and safety codes limit use in urban areas. Light-duty methanol/ethanol vehicles provide performance and emissions benefits over gasoline with little impact on capital costs, but fuel costs are high. Heavy-duty CNG engines are evolving rapidly and provide large reductions in emissions versus diesel. Capital costs are high for CNG buses and fuel efficiency is reduced, but the fuel is less expensive and overall operating costs are about equal to those of diesel buses. Methanol buses provide performance and emissions benefits versus diesel, but fuel costs are high. Other emerging technologies were also evaluated, including electric vehicles, hybrid-electric vehicles, and fuel cells.

NONE

1997-03-01T23:59:59.000Z

77

Conflict and Criterion Setting in Recognition Memory Tim Curran and Casey DeBuse P. Andrew Leynes  

E-Print Network [OSTI]

Conflict and Criterion Setting in Recognition Memory Tim Curran and Casey DeBuse P. Andrew Leynes a continuum of memora- & Shiffrin, 2004; Norman & O'Reilly, 2003; Reder et al., 2000; bility (e.g., retrieval

Curran, Tim

78

National Renewable Energy Laboratory (NREL) Reports Increase in Durability and Reliability for Current Generation Fuel Cell Buses (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes NREL's accomplishments in evaluating the durability and reliability of fuel cell buses being demonstrated in transit service. Work was performed by the Hydrogen Technology Validation team in the Hydrogen Technologies and Systems Center.

Not Available

2010-11-01T23:59:59.000Z

79

ARMY VEHICLE DURABILITY OPTIMIZATION & RELIABILITY  

E-Print Network [OSTI]

ARMY VEHICLE DURABILITY OPTIMIZATION & RELIABILITY How to Optimize the Vehicle Design to Minimize/Reduce the Weight? Under These Uncertainties, How to Achieve Component Level Reliability? Under These Uncertainties, How to Achieve System Level Reliability? Dynamics Analysis FE Model System Model Dynamic Stress

Kusiak, Andrew

80

Long Beach Transit: Two-Year Evaluation of Gasoline-Electric Hybrid Transit Buses  

SciTech Connect (OSTI)

This report focuses on a gasoline-electric hybrid transit bus propulsion system. The propulsion system is an alternative to standard diesel buses and allows for reductions in emissions (usually focused on reductions of particulate matter and oxides of nitrogen) and petroleum use. Gasoline propulsion is an alternative to diesel fuel and hybrid propulsion allows for increased fuel economy, which ultimately results in reduced petroleum use.

Lammert, M.

2008-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle weight buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Integrated Vehicle Thermal Management - Combining Fluid Loops in Electric Drive Vehicles (Presentation)  

SciTech Connect (OSTI)

Plug-in hybrid electric vehicles and electric vehicles have increased vehicle thermal management complexity, using separate coolant loop for advanced power electronics and electric motors. Additional thermal components result in higher costs. Multiple cooling loops lead to reduced range due to increased weight. Energy is required to meet thermal requirements. This presentation for the 2013 Annual Merit Review discusses integrated vehicle thermal management by combining fluid loops in electric drive vehicles.

Rugh, J. P.

2013-07-01T23:59:59.000Z

82

Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle...  

Energy Savers [EERE]

Maximizing Alternative Fuel Vehicle Efficiency Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency Besides their energy security and environmental benefits,...

83

Vehicle Technologies Office: 2009 Advanced Vehicle Technology...  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2009 Advanced Vehicle...

84

Vehicle Technologies Office: 2008 Advanced Vehicle Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2008 Advanced Vehicle...

85

Kansas City Buses Provide a Clean Ride for Kids | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOEWashington, DC 20585on notice ofThe52009Kansas City Buses

86

Alternative Fuels Data Center: Pennsylvania School Buses Run on Natural Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuels inGoIndianaPennsylvania School Buses Run on

87

Microsoft Word - NUCLEUS - INL Busing-DAT 10-14-2010.docx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fundProject8 -3 Subject: TankINL busing now becoming the DOE

88

Electric vehicles  

SciTech Connect (OSTI)

Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

Not Available

1990-03-01T23:59:59.000Z

89

2011 Hyundai Sonata Hybrid - vin 3539 Advanced Vehicle Testing...  

Broader source: Energy.gov (indexed) [DOE]

Pack Capacity: 5.3 Ah Cooling: ActiveCabin Air Pack Weight: 96 lb BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle Odometer: 5,730 mi Date of...

90

2013 Chevrolet Malibu ECO Hybrid ? VIN 6605, Advanced Vehicle...  

Broader source: Energy.gov (indexed) [DOE]

2 : 3.00 V Thermal Management: Active - Forced air Pack Weight: 65 lb BEGINNING-OF-TEST: BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle...

91

Advanced Vehicle Testing - Beginning-of-Test Battery Testing...  

Broader source: Energy.gov (indexed) [DOE]

2.5 V Thermal Mgmt.: Passive, Vacuum-Sealed Unit Pack Weight: 294 kg BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle Odometer: 6,696 mi Date of...

92

Electric Vehicles  

ScienceCinema (OSTI)

Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

Ozpineci, Burak

2014-07-23T23:59:59.000Z

93

Electric Vehicles  

SciTech Connect (OSTI)

Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

Ozpineci, Burak

2014-05-02T23:59:59.000Z

94

Richmond Electric Vehicle Initiative Electric Vehicle Readiness...  

Office of Environmental Management (EM)

MO) Vehicles Home About Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions Alternative Fuels Modeling, Testing, Data & Results Education...

95

Commercial Vehicle Classification using Vehicle Signature Data  

E-Print Network [OSTI]

Traffic Measurement and Vehicle Classification with SingleG. Ritchie. Real-time Vehicle Classification using InductiveReijmers, J.J. , "On-line vehicle classification," Vehicular

Liu, Hang; Jeng, Shin-Ting; Andre Tok, Yeow Chern; Ritchie, Stephen G.

2008-01-01T23:59:59.000Z

96

In-Order Pulsed Charge Recycling in Off-Chip Data Buses Kimish Patel, Wonbok Lee, Massoud Pedram  

E-Print Network [OSTI]

In-Order Pulsed Charge Recycling in Off-Chip Data Buses Kimish Patel, Wonbok Lee, Massoud Pedram,wonbokle,pedram}@usc.edu ABSTRACT This paper presents in-order pulsed charge recycling to reduce energy consumption in an off-chip data bus. The proposed technique performs charge recycling by employing three steps: i

Pedram, Massoud

97

Simulations of the Fuel Economy and Emissions of Hybrid Transit Buses over Planned Local Routes  

SciTech Connect (OSTI)

We present simulated fuel economy and emissions city transit buses powered by conventional diesel engines and diesel-hybrid electric powertrains of varying size. Six representative city drive cycles were included in the study. In addition, we included previously published aftertreatment device models for control of CO, HC, NOx, and particulate matter (PM) emissions. Our results reveal that bus hybridization can significantly enhance fuel economy by reducing engine idling time, reducing demands for accessory loads, exploiting regenerative braking, and shifting engine operation to speeds and loads with higher fuel efficiency. Increased hybridization also tends to monotonically reduce engine-out emissions, but trends in the tailpipe (post-aftertreatment) emissions involve more complex interactions that significantly depend on motor size and drive cycle details.

Gao, Zhiming [ORNL] [ORNL; LaClair, Tim J [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Smith, David E [ORNL] [ORNL; Franzese, Oscar [ORNL] [ORNL

2014-01-01T23:59:59.000Z

98

Robotic vehicle  

DOE Patents [OSTI]

A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

Box, W. Donald (Oak Ridge, TN)

1997-01-01T23:59:59.000Z

99

Robotic vehicle  

DOE Patents [OSTI]

A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

Box, W. Donald (Oak Ridge, TN)

1998-01-01T23:59:59.000Z

100

Development and Demonstration of Hydrogen and Compressed Natural Gas (H/CNG) Blend Transit Buses: October 15, 2002--September 30, 2004  

SciTech Connect (OSTI)

The report covers literature and laboratory analyses to identify modification requirements of a Cummins Westport B Gas Plus engine for transit buses using a hydrogen/compressed natural fuel blend.

Del Toro, A.; Frailey, M.; Lynch, F.; Munshi, S.; Wayne, S.

2005-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle weight buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Materials Flow Analysis and Dynamic Life-cycle Assessment of Lightweight Automotive Materials in the US Passenger Vehicle Fleet  

E-Print Network [OSTI]

To achieve better fuel economy, automakers are seriously considering vehicle weight and size reduction. This is achieved by using lighter-weight materials like high-strength steel and aluminum, better vehicle design, and ...

Cheah, Lynette Wan Ting

102

Preliminary Assessment of Overweight Mainline Vehicles  

SciTech Connect (OSTI)

The Federal Motor Carrier Safety Administration requested information regarding overweight and oversized vehicle traffic entering inspection stations (ISs) in order to develop strategies for future research efforts and possibly help guide regulatory issues involving overweight commercial motor vehicles (CMVs). For a period of one month, inspection stations in Knox County and Greene County, Tennessee, recorded overweight and oversized vehicles that entered these ISs. During this period, 435 CMVs were recorded using an electronic form filled out by enforcement personnel at the IS. Of the 435 CMVs recorded, 381 had weight information documented with them. The majority (52.2%) of the vehicles recorded were five-axle combination vehicles, and 50.6% of all the vehicles were permitted to operate above the legal weight limit in Tennessee, which is 80,000 lb for vehicles with five or more axles. Only 16.8% of the CMVs recorded were overweight gross (11.5% of permitted vehicles) and 54.1% were overweight on an axle group. The low percentage of overweight gross CMVs was because only 45 of the vehicles over 80,000 lb. were not permitted. On average, axles that were overweight were 2,000 lb. over the legal limit for an axle or group of axles. Of the vehicles recorded, 172 vehicles were given a North American Standard (NAS) inspection during the assessment. Of those, 69% of the inspections were driver-only inspections (Level III) and only 25% of the inspections had a vehicle component (such as a Level I or Level II). The remaining 6% of inspections did not have valid Aspen numbers; the type of was inspection unknown. Data collected on the types of trailers of each vehicle showed that about half of the recorded CMVs could realistically be given a Level I (full vehicle and driver) inspection; this estimate was solely based on trailer type. Enforcement personnel at ISs without an inspection pit have difficulty fully inspecting certain vehicles due to low clearance below the trailer. Because of this, overweight and oversized vehicles were normally only given a Level III (driver) inspection; thus, little is known about the safety of these vehicles. The out-of-service (OOS) rate of all the inspected vehicles (driver and vehicle inspections) was 18.6%, while the OOS rate for vehicle inspections (Level I and II) was 52.4%. Future work will focus on performing Level I inspections on five-axle combination tractor-trailers and the types of violations that overweight vehicles may have. This research will be conducted in Tennessee and possibly in other states as well.

Siekmann, Adam [ORNL; Capps, Gary J [ORNL; Lascurain, Mary Beth [ORNL

2011-11-01T23:59:59.000Z

103

Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 2011 Report1:Energy 2:

104

Heavy and Overweight Vehicle Defects Interim Report  

SciTech Connect (OSTI)

The Federal Highway Administration (FHWA), along with the Federal Motor Carrier Safety Administration (FMCSA), has an interest in overweight commercial motor vehicles, how they affect infrastructure, and their impact on safety on the nation s highways. To assist both FHWA and FMCSA in obtaining more information related to this interest, data was collected and analyzed from two separate sources. A large scale nationwide data collection effort was facilitated by the Commercial Vehicle Safety Alliance as part of a special study on overweight vehicles and an additional, smaller set, of data was collected from the state of Tennessee which included a much more detailed set of data. Over a six-month period, 1,873 Level I inspections were performed in 18 different states that volunteered to be a part of this study. Of the 1,873 inspections, a vehicle out-of-service (OOS) violation was found on 44.79% of the vehicles, a rate significantly higher than the national OOS rate of 27.23%. The main cause of a vehicle being placed OOS was brake-related defects, with approximately 30% of all vehicles having an OOS brake violation. Only about 4% of vehicles had an OOS tire violation, and even fewer had suspension and wheel violations. Vehicle weight violations were most common on an axle group as opposed to a gross vehicle weight violation. About two thirds of the vehicles cited with a weight violation were overweight on an axle group with an average amount of weight over the legal limit of about 2,000 lbs. Data collection is scheduled to continue through January 2014, with more potentially more states volunteering to collect data. More detailed data collections similar to the Tennessee data collection will also be performed in multiple states.

Siekmann, Adam [ORNL; Capps, Gary J [ORNL

2012-12-01T23:59:59.000Z

105

Autonomous vehicles  

SciTech Connect (OSTI)

There are various kinds of autonomous vehicles (AV`s) which can operate with varying levels of autonomy. This paper is concerned with underwater, ground, and aerial vehicles operating in a fully autonomous (nonteleoperated) mode. Further, this paper deals with AV`s as a special kind of device, rather than full-scale manned vehicles operating unmanned. The distinction is one in which the AV is likely to be designed for autonomous operation rather than being adapted for it as would be the case for manned vehicles. The authors provide a survey of the technological progress that has been made in AV`s, the current research issues and approaches that are continuing that progress, and the applications which motivate this work. It should be noted that issues of control are pervasive regardless of the kind of AV being considered, but that there are special considerations in the design and operation of AV`s depending on whether the focus is on vehicles underwater, on the ground, or in the air. The authors have separated the discussion into sections treating each of these categories.

Meyrowitz, A.L. [Navy Center for Applied Research in Artificial Intelligence, Washington, DC (United States)] [Navy Center for Applied Research in Artificial Intelligence, Washington, DC (United States); Blidberg, D.R. [Autonomous Undersea Systems Inst., Lee, NH (United States)] [Autonomous Undersea Systems Inst., Lee, NH (United States); Michelson, R.C. [Georgia Tech Research Inst., Smyrna, GA (United States)] [Georgia Tech Research Inst., Smyrna, GA (United States); [International Association for Unmanned Vehicle Systems, Smyrna, GA (United States)

1996-08-01T23:59:59.000Z

106

Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles  

E-Print Network [OSTI]

of Vehicle Image in Gasoline-Hybrid Electric Vehicles Reidof Vehicle Image in Gasoline-Hybrid Electric Vehicles Reidhigh demand for gasoline-hybrid electric vehicles (HEVs)?

Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

2005-01-01T23:59:59.000Z

107

Vehicle Technologies Office: Hybrid and Vehicle Systems | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hybrid and Vehicle Systems Vehicle Technologies Office: Hybrid and Vehicle Systems Hybrid and vehicle systems research provides an overarching vehicle systems perspective to the...

108

Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles  

E-Print Network [OSTI]

Emissions Comparisons from Alternative Fuel Buses and DieselEmissions Comparisons from Alternative Fuel Buses and Dieselof Biodiesel as an Alternative Fuel for Current and Future

Hajbabaei, Maryam

2013-01-01T23:59:59.000Z

109

Chevrolet Volt Vehicle Demonstration  

Broader source: Energy.gov (indexed) [DOE]

Chevrolet Volt Vehicle Demonstration Fleet Summary Report Reporting period: October 2011 through December 2011 Number of vehicles: 135 Number of vehicle days driven: 4,746 All...

110

New York City Transit Drives Hybrid Electric Buses into the Future; Advanced Technology Vehicles in Service, Advanced Vehicle Testing Activity (Fact Sheet)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andDataNational Libraryornl.gov RonStaffReturning toNewNew

111

Vehicle remote charge-all electric transportation system  

SciTech Connect (OSTI)

The development of a pollution-free transportation system that utilizes technology from the defense industry combines two industries in a commercial venture. In conjunction with the abatement of pollution that an all-electric transportation system would realize, the defense industry is looking for a commercial market for the technology that it has developed over the years. This new transportation system will accomplish both these goals. To date, the most reliable electric source has been overhead tethered lines or on-ground tracks in public transportation. But these greatly reduce the convenience of route changes and are at the mercy of small traffic pattern changes which can cause traffic tie-ups. The ideal electric bus would have a completely mobile energy source, such as a battery pack. But the limited range of a battery powered vehicle has diminished its use to only specific cases. In private vehicles also, the limited range of zero-pollution battery power has reduced the desirability of all-electric transportation. The electric transportation system proposed here will eliminate these problems. Buses will be sent out on their routes with convenient in-route charging. There will be minimum route changes to accommodate vehicle recharging. The buses will have full mobility and can avoid any traffic tie-ups. The charging of these on-board electrical energy storage systems will take place via a wireless power transmission network that will be established along the roadside on existing power line (telephone) poles or new stand-alone poles that would be in conjunction with the existing poles. Radio frequency (RF) wavelengths such as a microwave or a millimeterwave system or optical frequencies (OF), a laser based system, are wireless energy transmission systems. Utilizing this means to establish a nationwide transportation system will take a technology that has been defense based and use it in a commercial application.

Parise, R.J.

1998-07-01T23:59:59.000Z

112

Vehicle Technologies Office: AVTA - Electric Vehicle Community...  

Broader source: Energy.gov (indexed) [DOE]

Making plug-in electric vehicles (PEVs, also known as electric cars) as affordable and convenient as conventional vehicles, as described in the EV Everywhere Grand Challenge,...

113

Vehicle Technologies Office: Advanced Vehicle Testing Activity...  

Energy Savers [EERE]

initative. Together, these projects make up the largest ever deployment of all-electric vehicles, plug-in hybrid electric vehicles, and charging infrastructure in the...

114

Advanced Vehicle Testing & Evaluation  

Broader source: Energy.gov (indexed) [DOE]

Provide benchmark data for advanced technology vehicles Develop lifecycle cost data for production vehicles utilizing advanced power trains Provide fleet...

115

Environmental Life-cycle Assessment of Passenger Transportation: A Detailed Methodology for Energy, Greenhouse Gas and Criteria Pollutant Inventories of Automobiles, Buses, Light Rail, Heavy Rail and Air v.2  

E-Print Network [OSTI]

urban buses 38 Table 30 - Fundamental Environmental Factors for Onroad Modes.. 39 Table 31 - Onroad energy inventory .. 40 Table 32 - Onroad GHG inventory ..

Chester, Mikhail; Horvath, Arpad

2008-01-01T23:59:59.000Z

116

Low Floor Americans with Disabilities Compliant Alternate Fuel Vehicle Project  

SciTech Connect (OSTI)

This project developed a low emission, cost effective, fuel efficient, medium-duty community/transit shuttle bus that meets American's with Disabilities Act (ADA) requirements and meets National Energy Policy Act requirements (uses alternative fuel). The Low Profile chassis, which is the basis of this vehicle is configured to be fuel neutral to accommodate various alternative fuels. Demonstration of the vehicle in Yellowstone Park in summer (wheeled operation) and winter (track operation) demonstrated the feasibility and flexibility for this vehicle to provide year around operation throughout the Parks system as well as normal transit operation. The unique configuration of the chassis which provides ADA access with a simple ramp and a flat floor throughout the passenger compartment, provides maximum access for all passengers as well as maximum flexibility to configure the vehicle for each application. Because this product is derived from an existing medium duty truck chassis, the completed bus is 40-50% less expensive than existing low floor transit buses, with the reliability and durability of OEM a medium duty truck.

James Bartel

2004-11-26T23:59:59.000Z

117

Method and system for reducing errors in vehicle weighing systems  

DOE Patents [OSTI]

A method and system (10, 23) for determining vehicle weight to a precision of <0.1%, uses a plurality of weight sensing elements (23), a computer (10) for reading in weighing data for a vehicle (25) and produces a dataset representing the total weight of a vehicle via programming (40-53) that is executable by the computer (10) for (a) providing a plurality of mode parameters that characterize each oscillatory mode in the data due to movement of the vehicle during weighing, (b) by determining the oscillatory mode at which there is a minimum error in the weighing data; (c) processing the weighing data to remove that dynamical oscillation from the weighing data; and (d) repeating steps (a)-(c) until the error in the set of weighing data is <0.1% in the vehicle weight.

Hively, Lee M. (Philadelphia, TN); Abercrombie, Robert K. (Knoxville, TN)

2010-08-24T23:59:59.000Z

118

Fact #813: January 20, 2014 New Light Vehicle Fuel Economy Continues...  

Energy Savers [EERE]

3: January 20, 2014 New Light Vehicle Fuel Economy Continues to Rise Fact 813: January 20, 2014 New Light Vehicle Fuel Economy Continues to Rise The sales-weighted fuel economy...

119

Fact #657: January 10, 2011 Record Increase for New Light Vehicle...  

Energy Savers [EERE]

7: January 10, 2011 Record Increase for New Light Vehicle Fuel Economy Fact 657: January 10, 2011 Record Increase for New Light Vehicle Fuel Economy The sales-weighted fuel...

120

MathCAD model for the estimation of cost and main characteristics of air-cushion vehicles in the preliminary design stage  

E-Print Network [OSTI]

In the naval architecture terminology, the term ACV (Air Cushion Vehicle) refers to this category of vehicles, in which a significant portion of the weight (or all the weight) is supported by forces arising from air pressures ...

Gougoulidis, Georgios

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle weight buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Environmental, health, and safety issues of fuel cells in transportation. Volume 1: Phosphoric acid fuel-cell buses  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) chartered the Phosphoric Acid Fuel-Cell (PAFC) Bus Program to demonstrate the feasibility of fuel cells in heavy-duty transportation systems. As part of this program, PAFC- powered buses are being built to meet transit industry design and performance standards. Test-bed bus-1 (TBB-1) was designed in 1993 and integrated in March 1994. TBB-2 and TBB-3 are under construction and should be integrated in early 1995. In 1987 Phase I of the program began with the development and testing of two conceptual system designs- liquid- and air-cooled systems. The liquid-cooled PAFC system was chosen to continue, through a competitive award, into Phase H, beginning in 1991. Three hybrid buses, which combine fuel-cell and battery technologies, were designed during Phase III. After completing Phase II, DOE plans a comprehensive performance testing program (Phase HI) to verify that the buses meet stringent transit industry requirements. The Phase III study will evaluate the PAFC bus and compare it to a conventional diesel bus. This NREL study assesses the environmental, health, and safety (EH&S) issues that may affect the commercialization of the PAFC bus. Because safety is a critical factor for consumer acceptance of new transportation-based technologies the study focuses on these issues. The study examines health and safety together because they are integrally related. In addition, this report briefly discusses two environmental issues that are of concern to the Environmental Protection Agency (EPA). The first issue involves a surge battery used by the PAFC bus that contains hazardous constituents. The second issue concerns the regulated air emissions produced during operation of the PAFC bus.

Ring, S.

1994-12-01T23:59:59.000Z

122

Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

123

2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle...  

Energy Savers [EERE]

- Vehicle Systems Simulation and Testing 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle Systems Simulation and Testing Vehicle systems research and development...

124

Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies...  

Broader source: Energy.gov (indexed) [DOE]

Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Describes...

125

Hybrid options for light-duty vehicles.  

SciTech Connect (OSTI)

Hybrid electric vehicles (HEVs) offer great promise in improving fuel economy. In this paper, we analyze why, how, and by how much vehicle hybridization can reduce energy consumption and improve fuel economy. Our analysis focuses on efficiency gains associated solely with vehicle hybridization. We do not consider such other measures as vehicle weight reduction or air- and tire-resistance reduction, because such measures would also benefit conventional technology vehicles. The analysis starts with understanding the energy inefficiencies of light-duty vehicles associated with different operation modes in US and Japanese urban and highway driving cycles, with the corresponding energy-saving potentials. The potential for fuel economy gains due to vehicle hybridization can be estimated almost exclusively on the basis of three elements: the reducibility of engine idling operation, the recoverability of braking energy losses, and the capability of improving engine load profiles to gain efficiency associated with specific HEV configurations and control strategies. Specifically, we evaluate the energy efficiencies and fuel economies of a baseline MY97 Corolla-like conventional vehicle (CV), a hypothetical Corolla-based minimal hybrid vehicle (MHV), and a MY98 Prius-like full hybrid vehicle (FHV). We then estimate energy benefits of both MHVs and FHVs over CVs on a performance-equivalent basis. We conclude that the energy benefits of hybridization vary not only with test cycles, but also with performance requirements. The hybrid benefits are greater for ''Corolla (high) performance-equivalent'' vehicles than for ''Prius (low) performance-equivalent'' vehicles. An increasing acceleration requirement would result in larger fuel economy benefits from vehicle hybridization.

An, F., Stodolsky, F.; Santini, D.

1999-07-19T23:59:59.000Z

126

PASSIVE DETECTION OF VEHICLE LOADING  

SciTech Connect (OSTI)

The Digital Imaging and Remote Sensing Laboratory (DIRS) at the Rochester Institute of Technology, along with the Savannah River National Laboratory is investigating passive methods to quantify vehicle loading. The research described in this paper investigates multiple vehicle indicators including brake temperature, tire temperature, engine temperature, acceleration and deceleration rates, engine acoustics, suspension response, tire deformation and vibrational response. Our investigation into these variables includes building and implementing a sensing system for data collection as well as multiple full-scale vehicle tests. The sensing system includes; infrared video cameras, triaxial accelerometers, microphones, video cameras and thermocouples. The full scale testing includes both a medium size dump truck and a tractor-trailer truck on closed courses with loads spanning the full range of the vehicle's capacity. Statistical analysis of the collected data is used to determine the effectiveness of each of the indicators for characterizing the weight of a vehicle. The final sensing system will monitor multiple load indicators and combine the results to achieve a more accurate measurement than any of the indicators could provide alone.

Garrett, A.

2012-01-03T23:59:59.000Z

127

Chevrolet Volt Vehicle Demonstration  

Broader source: Energy.gov (indexed) [DOE]

Volt Vehicle Demonstration Fleet Summary Report Reporting period: January 2013 through March 2013 Number of vehicles: 146 Number of vehicle days driven: 6,680 4292013 2:38:13 PM...

128

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September bycost than both. Solar-hydrogen fuel- cell vehicles would becost than both. Solar-hydrogen fuel- cell vehicles would be

Delucchi, Mark

1992-01-01T23:59:59.000Z

129

Advanced Aerodynamic Devices to Improve the Performance, Economics, Handling, and Safety of Heavy Vehicles  

SciTech Connect (OSTI)

Research is being conducted at the Georgia Tech Research Institute (GTRI) to develop advanced aerodynamic devices to improve the performance, economics, stability, handling and safety of operation of Heavy Vehicles by using previously-developed and flight-tested pneumatic (blown) aircraft technology. Recent wind-tunnel investigations of a generic Heavy Vehicle model with blowing slots on both the leading and trailing edges of the trailer have been conducted under contract to the DOE Office of Heavy Vehicle Technologies. These experimental results show overall aerodynamic drag reductions on the Pneumatic Heavy Vehicle of 50% using only 1 psig blowing pressure in the plenums, and over 80% drag reductions if additional blowing air were available. Additionally, an increase in drag force for braking was confirmed by blowing different slots. Lift coefficient was increased for rolling resistance reduction by blowing only the top slot, while downforce was produced for traction increase by blowing only the bottom. Also, side force and yawing moment were generated on either side of the vehicle, and directional stability was restored by blowing the appropriate side slot. These experimental results and the predicted full-scale payoffs are presented in this paper, as is a discussion of additional applications to conventional commercial autos, buses, motor homes, and Sport Utility Vehicles.

Robert J. Englar

2001-05-14T23:59:59.000Z

130

Graduate Automotive Technology Education (GATE) Program: Center of Automotive Technology Excellence in Advanced Hybrid Vehicle Technology at West Virginia University  

SciTech Connect (OSTI)

This report summarizes the technical and educational achievements of the Graduate Automotive Technology Education (GATE) Center at West Virginia University (WVU), which was created to emphasize Advanced Hybrid Vehicle Technology. The Center has supported the graduate studies of 17 students in the Department of Mechanical and Aerospace Engineering and the Lane Department of Computer Science and Electrical Engineering. These students have addressed topics such as hybrid modeling, construction of a hybrid sport utility vehicle (in conjunction with the FutureTruck program), a MEMS-based sensor, on-board data acquisition for hybrid design optimization, linear engine design and engine emissions. Courses have been developed in Hybrid Vehicle Design, Mobile Source Powerplants, Advanced Vehicle Propulsion, Power Electronics for Automotive Applications and Sensors for Automotive Applications, and have been responsible for 396 hours of graduate student coursework. The GATE program also enhanced the WVU participation in the U.S. Department of Energy Student Design Competitions, in particular FutureTruck and Challenge X. The GATE support for hybrid vehicle technology enhanced understanding of hybrid vehicle design and testing at WVU and encouraged the development of a research agenda in heavy-duty hybrid vehicles. As a result, WVU has now completed three programs in hybrid transit bus emissions characterization, and WVU faculty are leading the Transportation Research Board effort to define life cycle costs for hybrid transit buses. Research and enrollment records show that approximately 100 graduate students have benefited substantially from the hybrid vehicle GATE program at WVU.

Nigle N. Clark

2006-12-31T23:59:59.000Z

131

AVCEM: Advanced-Vehicle Cost and Energy Use Model  

E-Print Network [OSTI]

stack); fuel-cell salvage value (fraction of initial coststack); total cost of vehicle electronics needed specifically for the fuel-cellcosts, expressed as a wage multiplier); specific weight of the fuel-cell stack (

Delucchi, Mark

2005-01-01T23:59:59.000Z

132

In-vehicle UWB Channel Measurement, Model and Spatial Stationarity  

E-Print Network [OSTI]

devices of the passengers with the vehicle. Considering the average weight of wire harness in modern- hicle's communication systems. Connection of moving parts, such as wheels for tyre pressure monitoring

Zemen, Thomas

133

48669Federal Register / Vol. 65, No. 154 / Wednesday, August 9, 2000 / Proposed Rules Type of motor vehicle  

E-Print Network [OSTI]

vehicle Service Brake Systems Emergency brake sys- tems: applica- tion and brak- ing distance in feet from initial speed of 20 mph Braking force as a percent- age of gross vehicle or combination weight mph B. Property-carrying vehicles: (1) Single unit vehicles having a manufacturer's GVWR of 10

134

Apparatus for weighing and identifying characteristics of a moving vehicle  

DOE Patents [OSTI]

Apparatus for weighing a vehicle in motion is provided by employing a plurality of elongated fiber-optic sensors defined by an optical fiber embedded in an encasement of elastomeric material and disposed parallel to each other on the roadway in the path of moving vehicles. Each fiber-optic sensor is provided with contact grid means which can be selectively altered to provide the fiber-optic sensors with sensitivities to vehicular weight different from each other for weighing vehicles in an extended weight range. Switch means are used in conjunction with the fiber-optic sensors to provide signals indicative of the speed of the moving vehicle, the number of axles on the vehicle, weight distribution, tire position, and the wheelbase of the vehicle. The use of a generally N-shaped configuration of switch means also provides a determination of the number of tires on each axle and the tire footprint. When switch means in this configuration are formed of optical fibers, the extent of light transmission through the fibers during contact with the tires of the vehicle is indicative of the vehicle weight.

Muhs, Jeffrey D. (Clinton, TN); Jordan, John K. (Oak Ridge, TN); Tobin, Jr., Kenneth W. (Harriman, TN); LaForge, John V. (Knoxville, TN)

1993-01-01T23:59:59.000Z

135

In-vehicle mm-Wave Channel Model and Measurement  

E-Print Network [OSTI]

and costly cable bundles with wireless links. The current upswing of electrically-propelled vehicles, Ales Prokes The Faculty of Electrical Engineering and Communication Brno University of Technology Brno kilometers of wires weighing easily up to 50 kg [1], while vehicle manufacturers appreciate weight savings

Zemen, Thomas

136

Apparatus for weighing and identifying characteristics of a moving vehicle  

DOE Patents [OSTI]

Apparatus for weighing a vehicle in motion is provided by employing a plurality of elongated fiber-optic sensors defined by an optical fiber embedded in an encasement of elastomeric material and disposed parallel to each other on the roadway in the path of moving vehicles. Each fiber-optic sensor is provided with contact grid means which can be selectively altered to provide the fiber-optic sensors with sensitivities to vehicular weight different from each other for weighing vehicles in an extended weight range. Switch means are used in conjunction with the fiber-optic sensors to provide signals indicative of the speed of the moving vehicle, the number of axles on the vehicle, weight distribution, tire position, and the wheelbase of the vehicle. The use of a generally N-shaped configuration of switch means also provides a determination of the number of tires on each axle and the tire footprint. When switch means in this configuration are formed of optical fibers, the extent of light transmission through the fibers during contact with the tires of the vehicle is indicative of the vehicle weight. 15 figures.

Muhs, J.D.; Jordan, J.K.; Tobin, K.W. Jr.; LaForge, J.V.

1993-11-09T23:59:59.000Z

137

Powertrain & Vehicle Research Centre  

E-Print Network [OSTI]

complexity ·More efficient Vehicles, quicker to market, reduced cost to consumer The Optimisation Task and virtual environments Vehicle baseline testing on rolling road Calibration Control Engine VehiclePowertrain & Vehicle Research Centre Low Carbon Powertrain Development S. Akehurst, EPSRC Advanced

Burton, Geoffrey R.

138

Massachusetts Electric Vehicle Efforts  

E-Print Network [OSTI]

Massachusetts Electric Vehicle Efforts Christine Kirby, MassDEP ZE-MAP Meeting October 24, 2014 #12 · Provide Clean Air · Grow the Clean Energy Economy · Electric vehicles are a key part of the solution #12 is promoting EVs 4 #12;TCI and Electric Vehicles · Established the Northeast Electric Vehicle Network through

California at Davis, University of

139

Alternative Fuel Vehicle Data  

Reports and Publications (EIA)

Annual data released on the number of on-road alternative fuel vehicles and hybrid vehicles made available by both the original equipment manufacturers and aftermarket vehicle conversion facilities. Data on the use of alternative fueled vehicles and the amount of fuel they consume is also available.

2013-01-01T23:59:59.000Z

140

AVTA: 2010 Electric Vehicles International Neighborhood Electric...  

Energy Savers [EERE]

10 Electric Vehicles International Neighborhood Electric Vehicle Testing Results AVTA: 2010 Electric Vehicles International Neighborhood Electric Vehicle Testing Results The...

Note: This page contains sample records for the topic "vehicle weight buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Journal of Asian Electric Vehicles, Volume 9, Number 1, June 2011 Uncontrolled Generation of Traciton Motors in Hybrid Electric Vehicles  

E-Print Network [OSTI]

magnet synchronous machines (PMSM) are provided with advantages of small size, light weight, and high power density, therefore PMSM are primary choice as traction motors in hybrid vehicles. In addition hybrid vehicles use PMSM [Kassakian , 2000]. However, interior permanent magnet synchronous motor (IPMSM

Mi, Chunting "Chris"

142

AGGREGATION ALGORITHMS IN A VEHICLE-TO-VEHICLE-TO-  

E-Print Network [OSTI]

-to-infrastructure (V2V2I) architecture, which is a hybrid of the vehicle-to-vehicle (V2V) and vehicle proposing is a hybrid of the V2I and V2V architectures, which is the vehicle-to-vehicle-to-infrastructure (VAGGREGATION ALGORITHMS IN A VEHICLE-TO-VEHICLE-TO- INFRASTRUCTURE (V2V2I) INTELLIGENT

Miller, Jeffrey A.

143

Modular Energy Storage System for Hydrogen Fuel Cell Vehicles  

SciTech Connect (OSTI)

The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles â?? plug-in electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. The in-depth research into the complex interactions between the lower and higher voltage systems from data obtained via modeling, bench testing and instrumented vehicle data will allow an optimum system to be developed from a performance, cost, weight and size perspective. The subsystems are designed for modularity so that they may be used with different propulsion and energy delivery systems. This approach will allow expansion into new alternative energy vehicle markets.

Janice Thomas

2010-05-31T23:59:59.000Z

144

Vehicle Technologies Office: 2012 Vehicle and Systems Simulation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2012vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

145

Vehicle Technologies Office: 2011 Vehicle and Systems Simulation...  

Energy Savers [EERE]

vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2011vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

146

DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle...  

Broader source: Energy.gov (indexed) [DOE]

1.pdf More Documents & Publications DOE Vehicle Technologies Program 2009 Merit Review Report DOE Vehicle Technologies Program 2009 Merit Review Report - Energy Storage DOE Vehicle...

147

Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles  

E-Print Network [OSTI]

The Images of Hybrid Vehicles Each of the householdsbetween hybrid and non-hybrid vehicles was observed in smallowned Honda Civic Hybrids, vehicles that are virtually

Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

2005-01-01T23:59:59.000Z

148

NREL: Vehicles and Fuels Research - Hybrid Electric Fleet Vehicle...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hybrid Electric Fleet Vehicle Testing How Hybrid Electric Vehicles Work Hybrid electric vehicles combine a primary power source, an energy storage system, and an electric motor to...

149

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt066vsskarner2012...

150

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt066vsskarner2011...

151

Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...  

Energy Savers [EERE]

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt072vssmackie2011...

152

Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...  

Energy Savers [EERE]

2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt072vssmackie2012...

153

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Broader source: Energy.gov (indexed) [DOE]

EVSE Designed And Manufactured To Allow Power And Energy Data Collection And Demand Response Control Residential EVSE Installed For All Vehicles 1,300...

154

Advanced Technology Vehicle Testing  

SciTech Connect (OSTI)

The light-duty vehicle transportation sector in the United States depends heavily on imported petroleum as a transportation fuel. The Department of Energy’s Advanced Vehicle Testing Activity (AVTA) is testing advanced technology vehicles to help reduce this dependency, which would contribute to the economic stability and homeland security of the United States. These advanced technology test vehicles include internal combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban electric vehicles, and electric ground support vehicles. The AVTA tests and evaluates these vehicles with closed track and dynamometer testing methods (baseline performance testing) and accelerated reliability testing methods (accumulating lifecycle vehicle miles and operational knowledge within 1 to 1.5 years), and in normal fleet environments. The Arizona Public Service Alternative Fuel Pilot Plant and H2-fueled vehicles are demonstrating the feasibility of using H2 as a transportation fuel. Hybrid, neighborhood, and urban electric test vehicles are demonstrating successful applications of electric drive vehicles in various fleet missions. The AVTA is also developing electric ground support equipment (GSE) test procedures, and GSE testing will start during the fall of 2003. All of these activities are intended to support U.S. energy independence. The Idaho National Engineering and Environmental Laboratory manages these activities for the AVTA.

James Francfort

2003-11-01T23:59:59.000Z

155

Natural Gas as a Future Fuel for Heavy-Duty Vehicles  

SciTech Connect (OSTI)

In addition to their significant environmental impacts, medium-duty and heavy-duty (HD) vehicles are high volume fuel users. Development of such vehicles, which include transit buses, refuse trucks, and HD Class 6-8 trucks, that are fueled with natural gas is strategic to market introduction of natural gas vehicles (NGV). Over the past five years the Department of Energy's (DOE) Office of Heavy Vehicle Technologies (OHVT) has funded technological developments in NGV systems to support the growth of this sector in the highly competitive transportation market. The goals are to minimize emissions associated with NGV use, to improve on the economies of scale, and to continue supporting the testing and safety assessments of all new systems. This paper provides an overview of the status of major projects under a program supported by DOE/OHVT and managed by Brookhaven National Laboratory. The discussion focuses on the program's technical strategy in meeting specific goals proposed by the N GV industry and the government. Relevant projects include the development of low-cost fuel storage, fueling infrastructure, and HD vehicle applications.

Wai-Lin Litzke; James Wegrzyn

2001-05-14T23:59:59.000Z

156

Electric vehicles move closer to market  

SciTech Connect (OSTI)

This article reports that though battery technology is currently limiting the growth of EVs, the search for improvements is spurring innovative engineering developments. As battery makers, automakers, national laboratories, and others continue their search for a practical source of electric power that will make electric vehicles (EVs) more viable, engineers worldwide are making progress in other areas of EV development. Vector control, for example, enables better regulation of motor torque and speed; composite and aluminum parts reduce the vehicle`s weight, which in turn reduces the load on the motor and battery; and flywheel energy storage systems, supercapacitors, regenerative brake systems, and hybrid/electric drive trains increase range and acceleration. Despite efforts to develop an electric vehicle from the ground up, most of the early EVs to be sold in the United States will likely be converted from gasoline-powered vehicles. Chrysler Corp., for example, is expected to sell electric versions of its minivans and build them on the same assembly line as its gasoline-powered vehicles to reduce costs. The pace of engineering development in this field is fast and furious. Indeed, it is virtually impossible to monitor all emerging EV technology. To meet their quotas, the major automakers may even consider buying credits from smaller, innovative EV manufacturers. But whatever stopgap measures vehicle makers take, technology development will be the driving force behind long-term EV growth.

O`Connor, L.

1995-03-01T23:59:59.000Z

157

The Case for Electric Vehicles  

E-Print Network [OSTI]

land Press, 1995 TESTING ELECTRIC VEHICLE DEMAND IN " HYBRIDThe Case for Electric Vehicles DanieI Sperlmg Reprint UCTCor The Case for Electric Vehicles Darnel Sperling Institute

Sperling, Daniel

2001-01-01T23:59:59.000Z

158

Electric Vehicle Smart Charging Infrastructure  

E-Print Network [OSTI]

for Multiplexed Electric Vehicle Charging”, US20130154561A1,Chynoweth, ”Intelligent Electric Vehicle Charging System”,of RFID Mesh Network for Electric Vehicle Smart Charging

Chung, Ching-Yen

2014-01-01T23:59:59.000Z

159

Coordinating Automated Vehicles via Communication  

E-Print Network [OSTI]

1.1 Vehicle Automation . . . . . . . . . . . 1.1.1 Controlareas of technology in vehicle automation and communicationChapter 1 Introduction Vehicle Automation Automation is an

Bana, Soheila Vahdati

2001-01-01T23:59:59.000Z

160

Vehicle Technologies Office: AVTA - Diesel Internal Combusion...  

Energy Savers [EERE]

Vehicle Technologies Office: AVTA - Diesel Internal Combusion Engine Vehicles Vehicle Technologies Office: AVTA - Diesel Internal Combusion Engine Vehicles The Advanced Vehicle...

Note: This page contains sample records for the topic "vehicle weight buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Hydrogen Vehicles and Refueling Infrastructure in India  

Broader source: Energy.gov (indexed) [DOE]

in taxis, three-wheelers etc Increase the number of buses to at least 10,000 Impact on air quality Particulate pollution stabilised PM10 at ITO Traffic Intersection (March...

162

U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Oil Bypass Filter Technology Evaluation - Sixth Quarterly Report, January - March 2004  

SciTech Connect (OSTI)

This Oil Bypass Filter Technology Evaluation quarterly report (January-March 2004) details the ongoing fleet evaluation of an oil bypass filter technology by the Idaho National Engineering and Environmental Laboratory (INEEL) for the U.S. Department of Energy's FreedomCAR & Vehicle Technologies Program. Eight four-cycle diesel-engine buses used to transport INEEL employees on various routes have been equipped with oil bypass filter systems from the puraDYN Corporation. The bypass filters are reported to have engine oil filtering capability of <1 micron and a built-in additive package to facilitate extended oil-drain intervals. This quarter, the heavy-duty buses traveled 88,747 miles, and as of the end of March 2004, the eight buses have accumulated 412,838 total test miles without requiring an oil change. This represents an avoidance of 34 oil changes, which equates to 1,199 quarts (300 gallons) of new oil not consumed and, furthermore, 1,199 quarts of waste oil not generated.

U.S. Department of Energy; Larry Zirker

2004-06-01T23:59:59.000Z

163

VEHICLE USAGE LOG Department ________________________________________ Vehicle Homebase ____________________________ Week Ended (Sunday) _________________  

E-Print Network [OSTI]

VEHICLE USAGE LOG Department ________________________________________ Vehicle Homebase ____________________________ Week Ended (Sunday) _________________ Door #____________ License Plate ____________________ Vehicle/Supplies (Enter Description such as grade sheets, artifacts, money, etc.) 6. Taking vehicle to Automotive Shop

Yang, Zong-Liang

164

biogas to indian buses come home, dad biosensor lab in singapore sexy statistics world university No reason to rush homeLiU alumna Klara Tiitso enjoys her life in London | page 30  

E-Print Network [OSTI]

biogas to indian buses come home, dad biosensor lab in singapore sexy statistics world university an Indian Master's student whose studies at Linköping inspired him to use biogas as fuel for busses. He

Zhao, Yuxiao

165

Improving Vehicle Efficiency, Reducing Dependence on Foreign Oil (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides an overview of the U.S. Department of Energy's Vehicle Technologies Program. Today, the United States spends about $400 billion each year on imported oil. To realize a secure energy future, America must break its dependence on imported oil and its volatile costs. The transportation sector accounts for about 70% of U.S. oil demand and holds tremendous opportunity to increase America's energy security by reducing oil consumption. That's why the U.S. Department of Energy (DOE) conducts research and development (R and D) on vehicle technologies which can stem America's dependence on oil, strengthen the economy, and protect the environment. Hybrid-electric and plug-in hybrid-electric vehicles can significantly improve fuel economy, displacing petroleum. Researchers are making batteries more affordable and recyclable, while enhancing battery range, performance, and life. This research supports President Obama's goal of putting 1 million electric vehicles on the road by 2015. The program is also working with businesses to develop domestic battery and electric-drive component plants to improve America's economic competitiveness globally. The program facilitates deployment of alternative fuels (ethanol, biodiesel, hydrogen, electricity, propane, and natural gas) and fuel infrastructures by partnering with state and local governments, universities, and industry. Reducing vehicle weight directly improves vehicle efficiency and fuel economy, and can potentially reduce vehicle operating costs. Cost-effective, lightweight, high-strength materials can significantly reduce vehicle weight without compromising safety. Improved combustion technologies and optimized fuel systems can improve near-and mid-term fuel economy by 25% for passenger vehicles and 20% for commercial vehicles by 2015, compared to 2009 vehicles. Reducing the use of oil-based fuels and lubricants in vehicles has more potential to improve the nation's energy security than any other action; even a 1% improvement in vehicle fuel efficiency would save consumers more than $4 billion annually.

Not Available

2012-03-01T23:59:59.000Z

166

Intelligent pothole repair vehicle  

E-Print Network [OSTI]

This thesis presents an endeavor to design and construct a prototype of an automated road repair vehicle called the Intelligent Pothole Repair Vehicle (IPRV). The IPRV is capable of automatically detecting and filling potholes on road surfaces...

Minocher Homji, Ruzbeh Adi

2006-10-30T23:59:59.000Z

167

Social networking in vehicles  

E-Print Network [OSTI]

In-vehicle, location-aware, socially aware telematic systems, known as Flossers, stand to revolutionize vehicles, and how their drivers interact with their physical and social worlds. With Flossers, users can broadcast and ...

Liang, Philip Angus

2006-01-01T23:59:59.000Z

168

Electric Vehicle Research Group  

E-Print Network [OSTI]

.................................................................................9 From diesel to electric: a new era in personnel transport for underground coal minesElectric Vehicle Research Group Annual Report 2012 #12;Table of Contents Executive Summary................................................................................8 C2-25 Electric Vehicle Drivetrain

Liley, David

169

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September byet al. , 1988,1989 HYDROGEN FUEL-CELL VEHICLES: TECHNICALIn the FCEV, the hydrogen fuel cell could supply the "net"

Delucchi, Mark

1992-01-01T23:59:59.000Z

170

Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles  

E-Print Network [OSTI]

of Ultracapacitor-Battery Energy Storage Systems GainingFerdowsi, A New Battery/Ultracapacitor Energy Storage Systemthe vehicle. The energy storage and battery weight for AER

Burke, Andy; Zhao, Hengbing

2010-01-01T23:59:59.000Z

171

Consumer Vehicle Technology Data  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

172

Automated Vehicle-to-Vehicle Collision Avoidance at Intersections  

E-Print Network [OSTI]

Automated Vehicle-to-Vehicle Collision Avoidance at Intersections M. R. Hafner1 , D. Cunningham2 on modified Lexus IS250 test vehicles. The system utilizes vehicle-to-vehicle (V2V) Dedicated Short the velocities of both vehicles with automatic brake and throttle commands. Automatic commands can never cause

Del Vecchio, Domitilla

173

Market penetration scenarios for fuel cell vehicles  

SciTech Connect (OSTI)

Fuel cell vehicles may create the first mass market for hydrogen as an energy carrier. Directed Technologies, Inc., working with the US Department of Energy hydrogen systems analysis team, has developed a time-dependent computer market penetration model. This model estimates the number of fuel cell vehicles that would be purchased over time as a function of their cost and the cost of hydrogen relative to the costs of competing vehicles and fuels. The model then calculates the return on investment for fuel cell vehicle manufacturers and hydrogen fuel suppliers. The model also projects the benefit/cost ratio for government--the ratio of societal benefits such as reduced oil consumption, reduced urban air pollution and reduced greenhouse gas emissions to the government cost for assisting the development of hydrogen energy and fuel cell vehicle technologies. The purpose of this model is to assist industry and government in choosing the best investment strategies to achieve significant return on investment and to maximize benefit/cost ratios. The model can illustrate trends and highlight the sensitivity of market penetration to various parameters such as fuel cell efficiency, cost, weight, and hydrogen cost. It can also illustrate the potential benefits of successful R and D and early demonstration projects. Results will be shown comparing the market penetration and return on investment estimates for direct hydrogen fuel cell vehicles compared to fuel cell vehicles with onboard fuel processors including methanol steam reformers and gasoline partial oxidation systems. Other alternative fueled vehicles including natural gas hybrids, direct injection diesels and hydrogen-powered internal combustion hybrid vehicles will also be analyzed.

Thomas, C.E.; James, B.D.; Lomax, F.D. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

1997-12-31T23:59:59.000Z

174

Safer Vehicles for People and the Planet  

SciTech Connect (OSTI)

Motor vehicles contribute to climate change and petroleum dependence. Improving their fuel economy by making them lighter need not compromise safety. The cars and trucks plying America's roads and highways generate roughly 20 percent of the nation's total emissions of carbon dioxide, a pollutant that is, of course, of increasing concern because of its influence on climate. Motor vehicles also account for most of our country's dependence on imported petroleum, the price of which has recently skyrocketed to near-record levels. So policymakers would welcome the many benefits that would accrue from lessening the amount of fuel consumed in this way. Yet lawmakers have not significantly tightened new vehicle fuel-economy standards since they were first enacted three decades ago. Since then, manufacturers have, for the most part, used advances in automotive technology, ones that could have diminished fuel consumption, to boost performance and increase vehicle weight. In addition, the growth in popularity of pickups, sport utility vehicles (SUVs) and minivans--and the large amounts of gas they typically guzzle--has resulted in the average vehicle using the same amount of fuel per mile as it did 20 years ago. One of the historical impediments to imposing tougher fuel-economy standards has been the long-standing worry that reducing the mass of a car or truck to help meet these requirements would make it more dangerous to its occupants in a crash. People often justify this concern in terms of 'simple physics', noting, for example, that, all else being equal, in a head-on collision, the lighter vehicle is the more strongly decelerated, an argument that continues to sway regulators, legislators and many in the general public. We have spent the past several years examining the research underlying this position--and some recent work challenging it. We have also conducted our own analyses and come to the conclusion that the claim that lighter vehicles are inherently dangerous to those riding in them is flawed. For starters, all else is never equal; other aspects of vehicle design appear to control what really happens in a crash, as reflected in the safety record of different kinds of vehicles. What's more, the use of high-strength steel, light-weight metals such as aluminum and magnesium, and fiber-reinforced plastics now offers automotive engineers the means to fashion vehicles that are simultaneously safer and less massive than their predecessors, and such designs would, of course, enjoy the better fuel economy that shedding pounds brings.

Wenzel, Thomas P; Wenzel, Thomas P; Ross, Marc

2008-03-01T23:59:59.000Z

175

Motor Vehicle Record Procedure Objective  

E-Print Network [OSTI]

Motor Vehicle Record Procedure Objective Outline the procedure for obtaining motor vehicle record (MVR) through Fleet Services. Vehicle Operator Policy 3. Operators with 7 or more points on their motor vehicle record

Kirschner, Denise

176

Powertrain & Vehicle Research Centre  

E-Print Network [OSTI]

Simulation Basic Engine Test Vehicle Test Cost & Complexity Towards Final Product Lean Powertrain Development Viewing Trade-Offs and Finding Optima Realism Advanced Engine Test Vehicle Test Rolling Road Powertrain powertrain development tasks to reduce costs and time to market The vehicle powertrain is the system

Burton, Geoffrey R.

177

Washington State Electric Vehicle  

E-Print Network [OSTI]

Washington State Electric Vehicle Implementation Bryan Bazard Maintenance and Alternate Fuel Technology Manager #12;Executive Order 14-04 Requires the procurement of electric vehicles where and equipment with electricity or biofuel to the "extent practicable" by June 2015 1. The vehicle is due

California at Davis, University of

178

Energy 101: Electric Vehicles  

ScienceCinema (OSTI)

This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

None

2013-05-29T23:59:59.000Z

179

Automotive vehicle sensors  

SciTech Connect (OSTI)

This report is an introduction to the field of automotive vehicle sensors. It contains a prototype data base for companies working in automotive vehicle sensors, as well as a prototype data base for automotive vehicle sensors. A market analysis is also included.

Sheen, S.H.; Raptis, A.C.; Moscynski, M.J.

1995-09-01T23:59:59.000Z

180

William and Mary Athletics State Vehicle / Rental Vehicle / Personal Vehicle Policies  

E-Print Network [OSTI]

William and Mary Athletics State Vehicle / Rental Vehicle / Personal Vehicle Policies Last Update: 2/14/14 W&M's vehicle use policy requires that a driver authorization form be completed and approved before driving any vehicle (including a personal vehicle) for university business or a university

Swaddle, John

Note: This page contains sample records for the topic "vehicle weight buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Vehicle Technologies Office: AVTA - Electric Vehicle Charging...  

Energy Savers [EERE]

the Alternative Fuel Data Center's page on plug-in electric vehicle infrastructure. For a map of the public EVSE available in the U.S., see the Alternative Fuels Station Locator....

182

Energy Star Concepts for Highway Vehicles  

SciTech Connect (OSTI)

The authors of this report, under the sponsorship of the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Weatherization and Intergovernmental Program, have investigated the possible application of Energy Star ratings to passenger cars and light trucks. This study establishes a framework for formulating and evaluating Energy Star rating methods that is comprised of energy- and environmental-based metrics, potential vehicle classification systems, vehicle technology factors, and vehicle selection criteria. The study tests several concepts and Energy Star rating methods using model-year 2000 vehicle data--a spreadsheet model has been developed to facilitate these analyses. This study tests two primary types of rating systems: (1) an outcome-based system that rates vehicles based on fuel economy, GHG emissions, and oil use and (2) a technology-based system that rates vehicles based on the energy-saving technologies they use. Rating methods were evaluated based on their ability to select vehicles with high fuel economy, low GHG emissions, and low oil use while preserving a full range of service (size and acceleration) and body style choice. This study concludes that an Energy Star rating for passenger cars and light trucks is feasible and that several methods could be used to achieve reasonable tradeoffs between low energy use and emissions and diversity in size, performance, and body type. It also shows that methods that consider only fuel economy, GHG emissions, or oil use will not select a diverse mix of vehicles. Finally, analyses suggest that methods that encourage the use of technology only, may result in increases in acceleration power and weight rather than reductions in oil use and GHG emissions and improvements in fuel economy.

Greene, D.L.

2003-06-24T23:59:59.000Z

183

DOE/BNL Liquid Natural Gas Heavy Vehicle Program  

SciTech Connect (OSTI)

As a means of lowering greenhouse gas emissions, increasing economic growth, and reducing the dependency on imported oil, the Department of Energy and Brookhaven National Laboratory (DOE/ BNL) is promoting the substitution of liquefied natural gas (LNG) in heavy-vehicles that are currently being fueled by diesel. Heavy vehicles are defined as Class 7 and 8 trucks (> 118,000 pounds GVVV), and transit buses that have a fuel usage greater than 10,000 gallons per year and driving range of more than 300 miles. The key in making LNG market-competitive with all types of diesel fuels is in improving energy efficiency and reducing costs of LNG technologies through systems integration. This paper integrates together the three LNG technologies of: (1) production from landfills and remote well sites; (2) cryogenic fuel delivery systems; and (3) state-of-the-art storage tank and refueling facilities, with market end-use strategies. The program's goal is to develop these technologies and strategies under a ''green'' and ''clean'' strategy. This ''green'' approach reduces the net contribution of global warming gases by reducing levels of methane and carbon dioxide released by heavy vehicles usage to below recoverable amounts of natural gas from landfills and other natural resources. Clean technology refers to efficient use of energy with low environmental emissions. The objective of the program is to promote fuel competition by having LNG priced between $0.40 - $0.50 per gallon with a combined production, fuel delivery and engine systems efficiency approaching 45%. This can make LNG a viable alternative to diesel.

James E. Wegrzyn; Wai-Lin Litzke; Michael Gurevich

1998-08-11T23:59:59.000Z

184

Lightweight Composite Materials for Heavy Duty Vehicles  

SciTech Connect (OSTI)

The main objective of this project is to develop, analyze and validate data, methodologies and tools that support widespread applications of automotive lightweighting technologies. Two underlying principles are guiding the research efforts towards this objective: • Seamless integration between the lightweight materials selected for certain vehicle systems, cost-effective methods for their design and manufacturing, and practical means to enhance their durability while reducing their Life-Cycle-Costs (LCC). • Smooth migration of the experience and findings accumulated so far at WVU in the areas of designing with lightweight materials, innovative joining concepts and durability predictions, from applications to the area of weight savings for heavy vehicle systems and hydrogen storage tanks, to lightweighting applications of selected systems or assemblies in light–duty vehicles.

Pruez, Jacky; Shoukry, Samir; Williams, Gergis; Shoukry, Mark

2013-08-31T23:59:59.000Z

185

Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector  

SciTech Connect (OSTI)

Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Vyas, A. D.; Patel, D. M.; Bertram, K. M.

2013-03-01T23:59:59.000Z

186

Vehicle underbody fairing  

DOE Patents [OSTI]

A vehicle underbody fairing apparatus for reducing aerodynamic drag caused by a vehicle wheel assembly, by reducing the size of a recirculation zone formed under the vehicle body immediately downstream of the vehicle wheel assembly. The fairing body has a tapered aerodynamic surface that extends from a front end to a rear end of the fairing body with a substantially U-shaped cross-section that tapers in both height and width. Fasteners or other mounting devices secure the fairing body to an underside surface of the vehicle body, so that the front end is immediately downstream of the vehicle wheel assembly and a bottom section of the tapered aerodynamic surface rises towards the underside surface as it extends in a downstream direction.

Ortega, Jason M. (Pacifica, CA); Salari, Kambiz (Livermore, CA); McCallen, Rose (Livermore, CA)

2010-11-09T23:59:59.000Z

187

Advanced Technology Vehicle Testing  

SciTech Connect (OSTI)

The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

James Francfort

2004-06-01T23:59:59.000Z

188

General Vehicle Performance Specifications for the UPRM AUV Vehicle Specifications  

E-Print Network [OSTI]

General Vehicle Performance Specifications for the UPRM AUV Vehicle Specifications Vehicle Characteristics Specification Maximum Depth 700m with 1.5 safety factor Vehicle power 2kWHr Li Ion Rechargeable Transducer 700m rated Paroscientific Depth Sensor will be integrated into the vehicle navigation stream

Gilbes, Fernando

189

VEHICLE USE RECORD M/Y DEPARTMENT VEHICLE LOCATION  

E-Print Network [OSTI]

VEHICLE USE RECORD M/Y DEPARTMENT VEHICLE LOCATION Date Origin/Destination Purpose Time Out Time) Accuracy of Information (b) Valid Driver's License VEHICLE # TAG # VEHICLE MAKE, MODEL, AND YEAR NOTE: Vehicle logs must be maintained for audit purposes. It is important that all of the required information

Watson, Craig A.

190

Accomodating Electric Vehicles  

E-Print Network [OSTI]

Accommodating Electric Vehicles Dave Aasheim 214-551-4014 daasheim@ecotality.com A leader in clean electric transportation and storage technologies ECOtality North America Overview Today ? Involved in vehicle electrification... ECOtality North America Overview Today ?Warehouse Material Handling ? Lift trucks ? Pallet Jacks ? Over 200 Customers ? Over 5,000 Installations ECOtality North America Overview Today ? 1990?s involved in EV1 ? EV Chargers ? Vehicle & battery...

Aasheim, D.

2011-01-01T23:59:59.000Z

191

Quadrennial Technology Review Vehicle Efficiency and Electrification...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Review Vehicle Efficiency and Electrification Workshop Documents Quadrennial Technology Review Vehicle Efficiency and Electrification Workshop Documents QTR Vehicle Efficiency and...

192

Alternative Fuel Vehicle Resources  

Broader source: Energy.gov [DOE]

Alternative fuel vehicles use fuel types other than petroleum and include such fuels as electricity, ethanol, biodiesel, natural gas, hydrogen, and propane. Compared to petroleum, these...

193

Vehicle Emissions Review - 2012  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Emissions Review - 2012 Tim Johnson October 16, 2012 2 Environmental Technologies Summary * Regulations - LEVIII finalized, Tier 3? RDE in Europe developing and very...

194

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

Research Institute 1990 Fuel Cell Status," Proceedings ofMiller, "Introduction: Fuel-Cell-Powered Vehicle DevelopmentPrograms," presented at Fuel Cells for Transportation,

Delucchi, Mark

1992-01-01T23:59:59.000Z

195

U.S. Department of Energy FreedomCAR & Vehicle Technologies Program: Oil Bypass Filter Technology Evaluation Seventh Quarterly Report April - June 2004  

SciTech Connect (OSTI)

This Oil Bypass Filter Technology Evaluation quarterly report (April–June 2004) details the ongoing fleet evaluation of an oil bypass filter technology by the Idaho National Engineering and Environmental Laboratory (INEEL) for the U.S. Department of Energy’s (DOE) FreedomCAR & Vehicle Technologies Program. Eight INEEL four-cycle diesel engine buses used to transport INEEL employees on various routes and six INEEL Chevrolet Tahoes with gasoline engines are equipped with oil bypass filter systems from the puraDYN Corporation. The bypass filters are reported to have engine oil filtering capability of <1 micron and a built-in additive package to facilitate extended oil-drain intervals. This quarter, the eight diesel engine buses traveled 85,632 miles. As of the end of June 2004, the eight buses have accumulated 498,814 miles since the beginning of the test and 473,192 miles without an oil change. This represents an avoidance of 39 oil changes, which equates to 1,374 quarts (343 gallons) of new oil not consumed and, furthermore, 1,374 quarts of waste oil not generated. One bus had its oil changed due to the degraded quality of the engine oil. Also this quarter, the six Tahoe test vehicles traveled 48,193 miles; to date, the six Tahoes have accumulated 109,708 total test miles. The oil for all six of the Tahoes was changed this quarter due to low Total Base Numbers (TBN). The oil used initially in the Tahoe testing was recycled oil; the recycled oil has been replaced with Castrol virgin oil, and the testing was restarted. However, the six Tahoe’s did travel a total of 98,266 miles on the initial engine oil. This represents an avoidance of 26 oil changes, which equates to 130 quarts (32.5 gallons) of new oil not consumed and, consequently, 130 quarts of waste oil not generated. Based on the number of oil changes avoided by the test buses and Tahoes to date, the potential engine oil savings if an oil bypass filter system were used was estimated for the INEEL, DOE complex and all Federal fleets of on-road vehicles. The estimated potential annual engine oil savings for the three fleets are: INEEL – 3,400 gallons, all DOE fleets – 32,000 gallons, and all Federal fleet – 1.7 million gallons.

Larry Zirker; James Francfort; Jordan Fielding

2004-08-01T23:59:59.000Z

196

Georgia Tech Vehicle Acquisition and  

E-Print Network [OSTI]

1 2012 Georgia Tech 10/10/2012 Vehicle Acquisition and Disposition Manual #12;2 Vehicle Procedures Regardless of value, all vehicles should be included in this process. Acquisition of a Vehicle 1. Contact Fleet Coordinator to guide the departments in the purchasing process for all vehicles. 2. Fill out

197

Electric-Drive Vehicle Basics (Brochure)  

SciTech Connect (OSTI)

Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

Not Available

2011-04-01T23:59:59.000Z

198

Vehicle Technologies Office: AVTA - Evaluating Military Bases...  

Energy Savers [EERE]

Military Bases and Fleet Readiness for Electric Vehicles Vehicle Technologies Office: AVTA - Evaluating Military Bases and Fleet Readiness for Electric Vehicles The Vehicle...

199

2012 U.S. Vehicle Analysis  

E-Print Network [OSTI]

Electric Vehicles …………………………………………………………. Dieselperformance of electric vehicles Diesel Vehicle From Tableelectric vehicles ……………………… 3.15: Emission and fuel efficiency performance of diesel

Lam, Ho Yeung Michael

2012-01-01T23:59:59.000Z

200

Vehicle Technologies Office Merit Review 2014: In-Vehicle Evaluation...  

Broader source: Energy.gov (indexed) [DOE]

In-Vehicle Evaluation of Lower-Energy Energy Storage System (LEESS) Devices Vehicle Technologies Office Merit Review 2014: In-Vehicle Evaluation of Lower-Energy Energy Storage...

Note: This page contains sample records for the topic "vehicle weight buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Laboratory to change vehicle traffic-screening regimen at vehicle...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Changes to vehicle traffic-screening Laboratory to change vehicle traffic-screening regimen at vehicle inspection station Lanes two through five will be open 24 hours a day and...

202

> 070131-073Vehicle  

E-Print Network [OSTI]

-how developed with the design ofthe ROAZ ASV [3] [4]. Power is provided by electric batteries. The computer> 070131-073Vehicle for Network Centric Operations H. Ferreira-The design and development of the Swordfish Autonomous Surface Vehicle (ASV) system is discussed. Swordfish

Marques, Eduardo R. B.

203

Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle...  

Broader source: Energy.gov (indexed) [DOE]

nation's vehicle fleet. VTO invested 400 million in 18 projects to demonstrate plug-in electric vehicles (PEVs, also known as electric cars) and infrastructure, including 10...

204

Challenges in Electric Vehicle Adoption and Vehicle-Grid Integration.  

E-Print Network [OSTI]

??With rapid innovation in vehicle and battery technology and strong support from governmental bodies and regulators, electric vehicles (EV) sales are poised to rise. While… (more)

Xi, Xiaomin

2013-01-01T23:59:59.000Z

205

Vehicle Technologies Office: 2010 Vehicle and Systems Simulation...  

Broader source: Energy.gov (indexed) [DOE]

vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2010vsstreport.pdf More Documents & Publications AVTA PHEV Demonstrations and...

206

Vehicle Technologies Office: 2013 Vehicle and Systems Simulation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and field evaluations, codes and standards, industry projects, and vehicle systems optimization. 2013vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

207

NREL: Vehicles and Fuels Research - Hydraulic Hybrid Fleet Vehicle...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydraulic Hybrid Fleet Vehicle Testing How Hydraulic Hybrid Vehicles Work Hydraulic hybrid systems can capture up to 70% of the kinetic energy that would otherwise be lost during...

208

The Vehicle Technologies Market Report  

E-Print Network [OSTI]

The Vehicle Technologies Market Report Center for Transportation Analysis 2360 Cherahala Boulevard Efficiency Transportation: Energy Environment Safety Security Vehicle Technologies T he Oak Ridge National Laboratory's Center for Transportation Analysis developed and published the first Vehicle Technologies Market

209

Improved Accelerated Stress Tests Based on Fuel Cell Vehicle Data  

SciTech Connect (OSTI)

UTC will led a top-tier team of industry and national laboratory participants to update and improve DOE’s Accelerated Stress Tests (AST’s) for hydrogen fuel cells. This in-depth investigation will focused on critical fuel cell components (e.g. membrane electrode assemblies - MEA) whose durability represented barriers for widespread commercialization of hydrogen fuel cell technology. UTC had access to MEA materials that had accrued significant load time under real-world conditions in PureMotion® 120 power plant used in transit buses. These materials are referred to as end-of-life (EOL) components in the rest of this document. Advanced characterization techniques were used to evaluate degradation mode progress using these critical cell components extracted from both bus power plants and corresponding materials tested using the DOE AST’s. These techniques were applied to samples at beginning-of-life (BOL) to serve as a baseline. These comparisons advised the progress of the various failure modes that these critical components were subjected to, such as membrane degradation, catalyst support corrosion, platinum group metal dissolution, and others. Gaps in the existing ASTs predicted the degradation observed in the field in terms of these modes were outlined. Using the gaps, new AST’s were recommended and tested to better reflect the degradation modes seen in field operation. Also, BOL components were degraded in a test vehicle at UTC designed to accelerate the bus field operation.

Patterson, Timothy [Research Engineer] [Research Engineer; Motupally, Sathya [Research Engineer] [Research Engineer

2012-06-01T23:59:59.000Z

210

U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Oil Bypass Filter Technology Evaluation Fifth Quarterly Report October - December 2003  

SciTech Connect (OSTI)

This Oil Bypass Filter Technology Evaluation quarterly report (October-December 2003) details the ongoing fleet evaluation of an oil bypass filter technology by the Idaho National Engineering and Environmental Laboratory (INEEL) for the U.S. Department of Energy's FreedomCAR & Vehicle Technologies Program. Eight four-cycle diesel-engine buses used to transport INEEL employees on various routes have been equipped with oil bypass filter systems from the puraDYN Corporation. The bypass filters are reported to have engine oil filtering capability of <1 micron and a built-in additive package to facilitate extended oil-drain intervals. To date, the eight buses have accumulated 324,091 test miles. This represents an avoidance of 27 oil changes, which equate to 952 quarts (238 gallons) of new oil not conserved and therefore, 952 quarts of waste oil not generated. To validate the extended oil-drain intervals, an oil-analysis regime is used to evaluate the fitness of the oil for continued service by monitoring the presence of necessary additives, undesirable contaminants, and engine-wear metals. The test fleet has been expanded to include six Chevrolet Tahoe sport utility vehicles with gasoline engines.

Larry Zirker; James Francfort

2004-02-01T23:59:59.000Z

211

Vehicle Technologies Office: Propulsion Systems  

Broader source: Energy.gov [DOE]

Vehicle Technologies Office research focuses much of its effort on improving vehicle fuel economy while meeting increasingly stringent emissions standards. Achieving these goals requires a...

212

Gasoline Ultra Fuel Efficient Vehicle  

Broader source: Energy.gov (indexed) [DOE]

Principal Investigator 13MY11 2011 DOE Vehicle Technologies Review Gasoline Ultra Fuel Efficient Vehicle ACE064 "This presentation does not contain any proprietary,...

213

U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Oil Bypass Filter Technology Evaluation Final Report  

SciTech Connect (OSTI)

This Oil Bypass Filter Technology Evaluation final report documents the feasibility of using oil bypass filters on 17 vehicles in the Idaho National Laboratory (INL) fleet during a 3-year test period. Almost 1.3 million test miles were accumulated, with eleven 4-cycle diesel engine buses accumulating 982,548 test miles and six gasoline-engine Chevrolet Tahoes accumulating 303,172 test miles. Two hundred and forty oil samples, taken at each 12,000-mile bus servicing event and at 3,000 miles for the Tahoes, documented the condition of the engine oils for continued service. Twenty-eight variables were normally tested, including the presence of desired additives and undesired wear metals such as iron and chrome, as well as soot, water, glycol, and fuel. Depending on the assumptions employed, the INL found that oil bypass filter systems for diesel engine buses have a positive payback between 72,000 and 144,000 miles. For the Tahoes, the positive payback was between 66,000 and 69,000 miles.

L. R. Zirker; J. E. Francfort; J. J. Fielding

2006-03-01T23:59:59.000Z

214

Advanced Vehicle Electrification and Transportation Sector Electrifica...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Advanced Vehicle Electrification and Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector...

215

A Verified Hybrid Controller For Automated Vehicles  

E-Print Network [OSTI]

con- trollers for vehicle automation," in American ControlTomizuka, Vehicle lateral control for highway automation,"

Lygeros, J.; Godbole, D. N.; Sastry, S.

1997-01-01T23:59:59.000Z

216

Blast resistant vehicle seat  

DOE Patents [OSTI]

Disclosed are various seats for vehicles particularly military vehicles that are susceptible to attack by road-bed explosive devices such as land mines or improvised explosive devices. The seats often have rigid seat shells and may include rigid bracing for rigidly securing the seat to the chassis of the vehicle. Typically embodiments include channels and particulate media such as sand disposed in the channels. A gas distribution system is generally employed to pump a gas through the channels and in some embodiments the gas is provided at a pressure sufficient to fluidize the particulate media when an occupant is sitting on the seat.

Ripley, Edward B

2013-02-12T23:59:59.000Z

217

Rapid road repair vehicle  

DOE Patents [OSTI]

Disclosed are improvments to a rapid road repair vehicle comprising an improved cleaning device arrangement, two dispensing arrays for filling defects more rapidly and efficiently, an array of pre-heaters to heat the road way surface in order to help the repair material better bond to the repaired surface, a means for detecting, measuring, and computing the number, location and volume of each of the detected surface imperfection, and a computer means schema for controlling the operation of the plurality of vehicle subsystems. The improved vehicle is, therefore, better able to perform its intended function of filling surface imperfections while moving over those surfaces at near normal traffic speeds.

Mara, Leo M. (Livermore, CA)

1999-01-01T23:59:59.000Z

218

ROBUST SCALABLE VEHICLE CONTROL VIA NON-DIMENSIONAL VEHICLE DYNAMICS  

E-Print Network [OSTI]

- 1 - ROBUST SCALABLE VEHICLE CONTROL VIA NON-DIMENSIONAL VEHICLE DYNAMICS S. Brennan & A. Alleyne and spatial re-parameterization of the linear vehicle Bicycle Model is presented utilizing non-dimensional ratios of vehicle parameters called -groups. Investigation of the -groups using compiled data from 44

Brennan, Sean

219

ROBUST SCALABLE VEHICLE CONTROL VIA NON-DIMENSIONAL VEHICLE DYNAMICS  

E-Print Network [OSTI]

ROBUST SCALABLE VEHICLE CONTROL VIA NON-DIMENSIONAL VEHICLE DYNAMICS S. Brennan & A. Alleyne Dept, IL 61801 ABSTRACT A temporal and spatial re-parameterization of the well- known linear vehicle Bicycle Model is presented. This parameterization utilizes non-dimensional ratios of vehicle parameters

Brennan, Sean

220

Vehicle Technologies Office: Long-Term Lightweight Materials Research (Magnesium and Carbon Fiber)  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office supports research into magnesium and carbon fiber reinforced composites, which could reduce the weight of some components by 50-75 percent in the long-term.

Note: This page contains sample records for the topic "vehicle weight buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

AVCEM: Advanced Vehicle Cost and Energy Use Model. Overview of AVCEM  

E-Print Network [OSTI]

stack); fuel-cell salvage value (fraction of initial coststack); total cost of vehicle electronics needed specifically for the fuel-cellcosts, expressed as a wage multiplier); specific weight of the fuel-cell stack (

Delucchi, Mark

2005-01-01T23:59:59.000Z

222

Developing a methodology to account for commercial motor vehicles using microscopic traffic simulation models  

E-Print Network [OSTI]

vehicle (CMV) weight and classification data used as input to critical tasks in transportation design, operations, and planning. The evolution of Intelligent Transportation System (ITS) technologies has been providing transportation engineers and planners...

Schultz, Grant George

2004-09-30T23:59:59.000Z

223

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

Rechargeable Zinc-Air Battery System for Electric Vehicles,"hthium/polymer* Zinc-air battery (Electric Fuel)* NickelThe discharge rate for the zinc/air battery was 5 hours at a

Delucchi, Mark

1992-01-01T23:59:59.000Z

224

Alternative Fuel Vehicles: The Case of Compressed Natural Gas (CNG) Vehicles in California Households  

E-Print Network [OSTI]

VEHICLES: THE CASE OF COMPRESSED NATURAL GAS (CNG) VEHICLESyou first learn about compressed natural gas (CNG) vehicles?VEHICLES: THE CASE OF COMPRESSED NATURAL GAS (CNG) VEHICLES

Abbanat, Brian A.

2001-01-01T23:59:59.000Z

225

Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP)  

Broader source: Energy.gov [DOE]

Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

226

Vehicle Technologies Office Merit Review 2014: Smith Electric...  

Broader source: Energy.gov (indexed) [DOE]

Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification Vehicle Technologies Office Merit Review 2014: Smith Electric Vehicles: Advanced...

227

Alternative Fuel Transit Buses  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on DiggFederalNationalandElectric-driveMobile*Drivers35th

228

Near-term electric test vehicle ETV-2. Phase II. Final report  

SciTech Connect (OSTI)

A unique battery-powered passenger vehicle has been developed that provides a significant improvement over conventional electric vehicle performance, particularly during stop-and-go driving. The vehicle is unique in two major respects: (1) the power system incorporates a flywheel that stores energy during regenerative braking and makes possible the acceleration capability needed to keep up with traffic without reducing range to unacceptable values; and (2) lightweight plastic materials are used for the vehicle unibody to minimize weight and increase range. These features were analyzed and demonstrated in an electric test vehicle, ETV-2. Characteristics of this vehicle are summarized. Information is presented on: vehicle design, fabrication, safety testing, and performance testing; power system design and operation; flywheel; battery pack performance; and controls and electronic equipment. (LCL)

Not Available

1981-04-01T23:59:59.000Z

229

Vehicle Repair Policy Outline the policy regarding vehicle repair on University of Michigan (U-M) vehicles.  

E-Print Network [OSTI]

Vehicle Repair Policy Objective Outline the policy regarding vehicle repair on University of Michigan (U-M) vehicles. Policy 1. All vehicle repairs performed on U-M vehicles must be coordinated facility to repair their fleet vehicles. 2. U-M vehicles leased through Fleet Services include routine

Kirschner, Denise

230

Methylotroph cloning vehicle  

DOE Patents [OSTI]

A cloning vehicle comprising: a replication determinant effective for replicating the vehicle in a non-C.sub.1 -utilizing host and in a C.sub.1 -utilizing host; DNA effective to allow the vehicle to be mobilized from the non-C.sub.1 -utilizing host to the C.sub.1 -utilizing host; DNA providing resistance to two antibiotics to which the wild-type C.sub.1 -utilizing host is susceptible, each of the antibiotic resistance markers having a recognition site for a restriction endonuclease; a cos site; and a means for preventing replication in the C.sub.1 -utilizing host. The vehicle is used for complementation mapping as follows. DNA comprising a gene from the C.sub.1 -utilizing organism is inserted at the restriction nuclease recognition site, inactivating the antibiotic resistance marker at that site. The vehicle can then be used to form a cosmid structure to infect the non-C.sub.1 -utilizing (e.g., E. coli) host, and then conjugated with a selected C.sub.1 -utilizing mutant. Resistance to the other antibiotic by the mutant is a marker of the conjugation. Other phenotypical changes in the mutant, e.g., loss of an auxotrophic trait, is attributed to the C.sub.1 gene. The vector is also used to inactivate genes whose protein products catalyze side reactions that divert compounds from a biosynthetic pathway to a desired product, thereby producing an organism that makes the desired product in higher yields.

Hanson, Richard S. (Deephaven, MN); Allen, Larry N. (Excelsior, MN)

1989-04-25T23:59:59.000Z

231

Adaptive Fuzzy Weighted Template Matching Using Invariant Features for a Tracking Application  

E-Print Network [OSTI]

to the cited literature, fuzzy logic is also frequently used in pattern recognition and image processingAdaptive Fuzzy Weighted Template Matching Using Invariant Features for a Tracking Application aerial vehicle. Adaptive-fuzzy weighted sum of square distances (SSDs) are utilized for template matching

Efe, Mehmet Ã?nder

232

Apparatus for stopping a vehicle  

DOE Patents [OSTI]

An apparatus for externally controlling one or more brakes on a vehicle having a pressurized fluid braking system. The apparatus can include a pressurizable vessel that is adapted for fluid-tight coupling to the braking system. Impact to the rear of the vehicle by a pursuit vehicle, shooting a target mounted on the vehicle or sending a signal from a remote control can all result in the fluid pressures in the braking system of the vehicle being modified so that the vehicle is stopped and rendered temporarily inoperable. A control device can also be provided in the driver's compartment of the vehicle for similarly rendering the vehicle inoperable. A driver or hijacker of the vehicle preferably cannot overcome the stopping action from the driver's compartment.

Wattenburg, Willard H. (Walnut Creek, CA); McCallen, David B. (Livermore, CA)

2007-03-20T23:59:59.000Z

233

Environmental Life-cycle Assessment of Passenger Transportation: A Detailed Methodology for Energy, Greenhouse Gas and Criteria Pollutant Inventories of Automobiles, Buses, Light Rail, Heavy Rail and Air  

E-Print Network [OSTI]

Tracks Locomotives & Cars Fuel (Diesel, Electric) RoadwaysVehicles Fuel (Diesel, Electric) Design N K,L,N Production

Chester, Mikhail; Horvath, Arpad

2007-01-01T23:59:59.000Z

234

The Evolution of Sustainable Personal Vehicles  

E-Print Network [OSTI]

energy resource conversion (NREL, 2004). Sustainable Vehicle Energy StorageEnergy, Fuel, & Vehicle Technologies.41 Introduction41 Sustainable Energy Resources..42 Sustainable Vehicle Energy Storage..43 Sustainable

Jungers, Bryan D

2009-01-01T23:59:59.000Z

235

Achieving and Demonstrating Vehicle Technologies Engine Fuel...  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Technologies Engine Fuel Efficiency Milestones Achieving and Demonstrating Vehicle Technologies Engine Fuel Efficiency Milestones 2010 DOE Vehicle Technologies and Hydrogen...

236

Demonstration of Automated Heavy-Duty Vehicles  

E-Print Network [OSTI]

a future in which vehicle automation technologies are ableto support the heavy vehicle automation including PrecisionCommittee on Vehicle-Highway Automation, and the attendees

2006-01-01T23:59:59.000Z

237

Vehicle Technologies Office: Annual Progress Reports | Department...  

Energy Savers [EERE]

Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program DOE Vehicle Technologies Office Annual Merit Review Energy Storage Research...

238

Vehicle Technologies Office Merit Review 2014: Thermoelectric...  

Broader source: Energy.gov (indexed) [DOE]

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles Vehicle Technologies Office Merit Review 2014: Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...

239

The Evolution of Sustainable Personal Vehicles  

E-Print Network [OSTI]

Propulsion Systems for Hybrid Vehicles. The Institution ofA.B. (1996). Ultralight-Hybrid Vehicle Design: OvercomingLightweight Electric/Hybrid Vehicle Design. Reel Educational

Jungers, Bryan D

2009-01-01T23:59:59.000Z

240

Hydrogen Vehicle and Infrastructure Demonstration and Validation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vehicle and Infrastructure Demonstration and Validation Hydrogen Vehicle and Infrastructure Demonstration and Validation 2009 DOE Hydrogen Program and Vehicle Technologies Program...

Note: This page contains sample records for the topic "vehicle weight buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Vehicle brake testing system  

DOE Patents [OSTI]

This invention relates to a force measuring system capable of measuring forces associated with vehicle braking and of evaluating braking performance. The disclosure concerns an invention which comprises a first row of linearly aligned plates, a force bearing surface extending beneath and beside the plates, vertically oriented links and horizontally oriented links connecting each plate to a force bearing surface, a force measuring device in each link, a transducer coupled to each force measuring device, and a computing device coupled to receive an output signal from the transducer indicative of measured force in each force measuring device. The present invention may be used for testing vehicle brake systems.

Stevens, Samuel S. (Harriman, TN); Hodgson, Jeffrey W. (Lenoir City, TN)

2002-11-19T23:59:59.000Z

242

BEEST: Electric Vehicle Batteries  

SciTech Connect (OSTI)

BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

None

2010-07-01T23:59:59.000Z

243

Fuel Economy of the Light-Duty Vehicle Fleet (released in AEO2005)  

Reports and Publications (EIA)

The U.S. fleet of light-duty vehicles consists of cars and light trucks, including minivans, sport utility vehicles (SUVs) and trucks with gross vehicle weight less than 8,500 pounds. The fuel economy of light-duty vehicles is regulated by the (Corporate Average Fuel Economy) CAFE standards set by the National Highway Traffic Safety Administration. Currently, the CAFE standard is 27.5 miles per gallon (mpg) for cars and 20.7 mpg for light trucks. The most recent increase in the CAFE standard for cars was in 1990, and the most recent increase in the CAFE standard for light trucks was in 1996.

2005-01-01T23:59:59.000Z

244

Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

245

Vehicle Mass Impact on Vehicle Losses and Fuel Economy  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

246

Control device for vehicle speed  

SciTech Connect (OSTI)

This patent describes a control device for vehicle speed comprising: a throttle driving means operatively coupled to a throttle valve of a vehicle; a set switch means for commanding memorization of the vehicle speed; a resume switch means for commanding read of the vehicle speed; a vehicle speed detecting means for generating a signal in accordance with the vehicle speed; a vehicle speed memory; an electronical control means for memorizing in the vehicle speed memory vehicle speed information corresponding to the signal obtained from the vehicle speed detecting means in response to actuation of the set switch means. The control means is also for reading out the content of the vehicle speed memory in response to actuation of the resume switch means to control the throttle driving means in accordance with the read-out content; a power supply means for supplying power to the electronical control means; and a power supply control switch means for controlling supply of power to the electronical control means in response to the state of at least one of the set switch means and the resume switch means and the state of the electronical control means. The improvement described here comprises the electronical control means sets the power supply control switch means into such a state that supply of power to the electronical control means is turned OFF, when vehicle speed information is not memorized in the vehicle speed memory.

Kawata, S.; Hyodo, H.

1987-03-03T23:59:59.000Z

247

Propane vehicles : status, challenges, and opportunities.  

SciTech Connect (OSTI)

Propane as an auto fuel has a high octane value and has key properties required for spark-ignited internal combustion engines. To operate a vehicle on propane as either a dedicated fuel or bi-fuel (i.e., switching between gasoline and propane) vehicle, only a few modifications must be made to the engine. Until recently propane vehicles have commonly used a vapor pressure system that was somewhat similar to a carburetion system, wherein the propane would be vaporized and mixed with combustion air in the intake plenum of the engine. This leads to lower efficiency as more air, rather than fuel, is inducted into the cylinder for combustion (Myers 2009). A newer liquid injection system has become available that injects propane directly into the cylinder, resulting in no mixing penalty because air is not diluted with the gaseous fuel in the intake manifold. Use of a direct propane injection system will improve engine efficiency (Gupta 2009). Other systems include the sequential multi-port fuel injection system and a bi-fuel 'hybrid' sequential propane injection system. Carbureted systems remain in use but mostly for non-road applications. In the United States a closed-loop system is used in after-market conversions. This system incorporates an electronic sensor that provides constant feedback to the fuel controller to allow it to measure precisely the proper air/fuel ratio. A complete conversion system includes a fuel controller, pressure regulator valves, fuel injectors, electronics, fuel tank, and software. A slight power loss is expected in conversion to a vapor pressure system, but power can still be optimized with vehicle modifications of such items as the air/fuel mixture and compression ratios. Cold start issues are eliminated for vapor pressure systems since the air/fuel mixture is gaseous. In light-duty propane vehicles, the fuel tank is typically mounted in the trunk; for medium- and heavy-duty vans and trucks, the tank is located under the body of the vehicle. Propane tanks add weight to a vehicle and can slightly increase the consumption of fuel. On a gallon-to-gallon basis, the energy content of propane is 73% that of gasoline, thus requiring more propane fuel to travel an equivalent distance, even in an optimized engine (EERE 2009b).

Rood Werpy, M.; Burnham, A.; Bertram, K.; Energy Systems

2010-06-17T23:59:59.000Z

248

Parametrized maneuvers for autonomous vehicles  

E-Print Network [OSTI]

This thesis presents a method for creating continuously parametrized maneuver classes for autonomous vehicles. These classes provide useful tools for motion planners, bundling sets of related vehicle motions based on a ...

Dever, Christopher W. (Christopher Walden), 1972-

2004-01-01T23:59:59.000Z

249

Commercial Vehicles Collaboration for  

E-Print Network [OSTI]

events (level derived from integrated design and safety analysis) · Protection against fire, depress Vehicle Transition Concepts Astronaut Office letter (June, 2010) describes position on crew suit as a resource to expedite this transition to the commercial market The current astronaut corps can be used

Waliser, Duane E.

250

Light weight phosphate cements  

DOE Patents [OSTI]

A sealant having a specific gravity in the range of from about 0.7 to about 1.6 for heavy oil and/or coal bed methane fields is disclosed. The sealant has a binder including an oxide or hydroxide of Al or of Fe and a phosphoric acid solution. The binder may have MgO or an oxide of Fe and/or an acid phosphate. The binder is present from about 20 to about 50% by weight of the sealant with a lightweight additive present in the range of from about 1 to about 10% by weight of said sealant, a filler, and water sufficient to provide chemically bound water present in the range of from about 9 to about 36% by weight of the sealant when set. A porous ceramic is also disclosed.

Wagh, Arun S. (Naperville, IL); Natarajan, Ramkumar, (Woodridge, IL); Kahn, David (Miami, FL)

2010-03-09T23:59:59.000Z

251

Generalized constructive tree weights  

SciTech Connect (OSTI)

The Loop Vertex Expansion (LVE) is a quantum field theory (QFT) method which explicitly computes the Borel sum of Feynman perturbation series. This LVE relies in a crucial way on symmetric tree weights which define a measure on the set of spanning trees of any connected graph. In this paper we generalize this method by defining new tree weights. They depend on the choice of a partition of a set of vertices of the graph, and when the partition is non-trivial, they are no longer symmetric under permutation of vertices. Nevertheless we prove they have the required positivity property to lead to a convergent LVE; in fact we formulate this positivity property precisely for the first time. Our generalized tree weights are inspired by the Brydges-Battle-Federbush work on cluster expansions and could be particularly suited to the computation of connected functions in QFT. Several concrete examples are explicitly given.

Rivasseau, Vincent, E-mail: vincent.rivasseau@th.u-psud.fr, E-mail: adrian.tanasa@ens-lyon.org [LPT, CNRS UMR 8627, Univ. Paris 11, 91405 Orsay Cedex, France and Perimeter Institute for Theoretical Physics, 31 Caroline St. N, Ontario N2L 2Y5, Waterloo (Canada)] [LPT, CNRS UMR 8627, Univ. Paris 11, 91405 Orsay Cedex, France and Perimeter Institute for Theoretical Physics, 31 Caroline St. N, Ontario N2L 2Y5, Waterloo (Canada); Tanasa, Adrian, E-mail: vincent.rivasseau@th.u-psud.fr, E-mail: adrian.tanasa@ens-lyon.org [Université Paris 13, Sorbonne Paris Cité, 99, Avenue Jean-Baptiste Clément LIPN, Institut Galilée, CNRS UMR 7030, F-93430 Villetaneuse, France and Horia Hulubei National Institute for Physics and Nuclear Engineering, P.O.B. MG-6, 077125 Magurele (Romania)] [Université Paris 13, Sorbonne Paris Cité, 99, Avenue Jean-Baptiste Clément LIPN, Institut Galilée, CNRS UMR 7030, F-93430 Villetaneuse, France and Horia Hulubei National Institute for Physics and Nuclear Engineering, P.O.B. MG-6, 077125 Magurele (Romania)

2014-04-15T23:59:59.000Z

252

Gasoline Ultra Fuel Efficient Vehicle  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

253

Weighted control systems  

E-Print Network [OSTI]

) 50 3-10 Defects per Unit Control Charts (Sudden Increase in Number of Defects) 51 3-11 Defects per Unit Control Charts (Slow Increase in Number of Defects) 52 3-12 O. C. Curves of Fraction Defectives Control Charts. 54 3-13 O. C. Curves.... The exponential smoothing principle was introduced to quality control field in 1959. It was first adapted in the mean control chart [25]. Through this control system, the most recent information is weighted and combined with the weighted past observations. 10...

Al-Radhi, Adhi Omar

1974-01-01T23:59:59.000Z

254

Methylotroph cloning vehicle  

DOE Patents [OSTI]

A cloning vehicle comprising: a replication determinant effective for replicating the vehicle in a non-C[sub 1]-utilizing host and in a C[sub 1]-utilizing host; DNA effective to allow the vehicle to be mobilized from the non-C[sub 1]-utilizing host to the C[sub 1]-utilizing host; DNA providing resistance to two antibiotics to which the wild-type C[sub 1]-utilizing host is susceptible, each of the antibiotic resistance markers having a recognition site for a restriction endonuclease; a cos site; and a means for preventing replication in the C[sub 1]-utilizing host. The vehicle is used for complementation mapping as follows. DNA comprising a gene from the C[sub 1]-utilizing organism is inserted at the restriction nuclease recognition site, inactivating the antibiotic resistance marker at that site. The vehicle can then be used to form a cosmid structure to infect the non-C[sub 1]-utilizing (e.g., E. coli) host, and then conjugated with a selected C[sub 1]-utilizing mutant. Resistance to the other antibiotic by the mutant is a marker of the conjugation. Other phenotypical changes in the mutant, e.g., loss of an auxotrophic trait, is attributed to the C[sub 1] gene. The vector is also used to inactivate genes whose protein products catalyze side reactions that divert compounds from a biosynthetic pathway to a desired product, thereby producing an organism that makes the desired product in higher yields. 3 figs.

Hanson, R.S.; Allen, L.N.

1989-04-25T23:59:59.000Z

255

Utility vehicle safety Operator training program  

E-Print Network [OSTI]

Utility vehicle safety Operator training program #12;Permissible use Utility Vehicles may only Utility Vehicle operator · When equipped with the "Required Equipment" · On public roadways within Drivers" · Obey all traffic regulations · Trained; update training every two years · Operate vehicles

Minnesota, University of

256

VEHICLE OPERATING PROCEDURES DEPARTMENT OF BIOLOGICAL SCIENCE  

E-Print Network [OSTI]

VEHICLE OPERATING PROCEDURES DEPARTMENT OF BIOLOGICAL SCIENCE GENERAL INFORMATION Vehicles resposniblity and disciplinary action. Vehicles may be used by faculty or staff from other departments complete the vehicle usage agreement form certifying that they have a valid driver's license

Ronquist, Fredrik

257

Electric-Drive Vehicle engineering  

E-Print Network [OSTI]

Electric-Drive Vehicle engineering COLLEGE of ENGINEERING Electric-drive engineers for 80 years t Home to nation's first electric-drive vehicle engineering program and alternative-credit EDGE Engineering Entrepreneur Certificate Program is a great addition to an electric-drive vehicle

Berdichevsky, Victor

258

Vehicle Operation and Parking Policy  

E-Print Network [OSTI]

Vehicle Operation and Parking Policy Responsible Administrative Unit: Finance & Administration in this policy. 2.0 POLICY STATEMENT This policy is intended to promote safe driving by operators of all vehicles are in effect at all times and apply to all persons and vehicles physically present on the CSM campus

259

UWO Vehicle ACCIDENT REPORTING FORM  

E-Print Network [OSTI]

UWO Vehicle ­ ACCIDENT REPORTING FORM To be completed at the scene. (Important: Do not admit liability or discuss any settlement.) If there are personal injuries or severe damage to the vehicle, call 911. If vehicle is drivable and if it's safe to do so, pull to the side of road away from traffic. Put

Sinnamon, Gordon J.

260

VEHICLE NETWORKS: ACHIEVING REGULAR FORMATION  

E-Print Network [OSTI]

VEHICLE NETWORKS: ACHIEVING REGULAR FORMATION MADALENA CHAVES, ROBERT DAY, LUCIA GOMEZ a network of vehicles exchanging information among themselves with the intention of achieving a specified the performance of the vehicle network. A stochastic model for information flow is also considered, allowing

Note: This page contains sample records for the topic "vehicle weight buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Vehicle Operation and Parking Policy  

E-Print Network [OSTI]

Vehicle Operation and Parking Policy Responsible Administrative Unit: Finance & Administration STATEMENT This policy is intended to promote safe driving by operators of all vehicles utilizing streets and apply to all persons and vehicles physically present on the CSM campus. For the purpose of this policy

262

Vehicle Management Driver Safety Program  

E-Print Network [OSTI]

Vehicle Management and Driver Safety Program Manual Facilities & Operations / Finance & Administration Version 2 April 2012 #12;© 2012 University of Alberta. #12;The Vehicle Management and Driver of employment. Driver Acknowledgement I have received the University of Alberta, Vehicle Management and Driver

Machel, Hans

263

Study Pinpoints Sources of Polluting Vehicle Emissions (Fact Sheet)  

SciTech Connect (OSTI)

Unburned lubricant produces 60%-90% of organic carbon emissions. While diesel fuel is often viewed as the most polluting of conventional petroleum-based fuels, emissions from gasoline engines can more significantly degrade air quality. Gasoline exhaust is at least as toxic on a per-unit-mass basis as diesel exhaust, and contributes up to 10 times more particulate matter (PM) to the emission inventory. Because emissions from both fuels can gravely impact health and the environment, researchers at the National Renewable Energy Laboratory (NREL) launched a study to understand how these pollutants relate to fuels, lubricants, and engine operating conditions. NREL's Collaborative Lubricating Oil Study on Emissions (CLOSE) project tested a variety of vehicles over different drive cycles at moderate (72 F) and cold (20 F) temperatures. Testing included: (1) Normal and high-emitting light-, medium-, and heavy-duty vehicles; (2) Gasoline, diesel, and compressed natural gas (CNG)-powered vehicles; (3) New and aged lubricants representative of those currently on the market; and (4) Gasoline containing no ethanol, E10, Texas-mandated low-emission diesel fuel, biodiesel, and CNG. The study confirmed that normally functioning emission control systems for gasoline light-duty vehicles are very effective at controlling organic carbon (OC) emissions. Diesel vehicles without aftertreatment emission control systems exhibited OC emissions approximately one order of magnitude higher than gasoline vehicles. High-emitter gasoline vehicles produced OC emissions similar to diesel vehicles without exhaust aftertreatment emission control. Exhaust catalysts combusted or converted more than 75% of lubricating oil components in the exhaust gases. Unburned crankcase lubricant made up 60%-90% of OC emissions. This OC represented 20%-50% of emitted PM in all but two of the vehicles. Three-way catalysts proved effective at reducing most of the OC. With high PM emitters or vehicles with deteriorated aftertreatment, high-molecular-weight fuel components and unburned lubricant were emitted at higher rates than in vehicles in good repair, with functioning emissions systems. Light-duty gasoline, medium-duty diesel, and heavy-duty natural gas vehicles produced more particles with fresh oil than with aged oil. The opposite trend was observed in light- and medium-duty high PM emitters. This effect was not readily apparent with heavy-duty diesel vehicles, perhaps because the lubricant represented a much smaller fraction of the total PM in those trucks.

Not Available

2012-03-01T23:59:59.000Z

264

Advanced Vehicle Electrification and Transportation Sector Electrifica...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and...

265

Advanced Vehicle Electrification & Transportation Sector Electrificati...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector Electrification 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies...

266

Achieving and Demonstrating Vehicle Technologies Engine Fuel...  

Broader source: Energy.gov (indexed) [DOE]

Engine Fuel Efficiency Milestones Achieving and Demonstrating Vehicle Technologies Engine Fuel Efficiency Milestones 2009 DOE Hydrogen Program and Vehicle Technologies...

267

2012 U.S. Vehicle Analysis  

E-Print Network [OSTI]

Vehicles …………………………………………………………….. Ethanol Fuel Mixturesperformance of ethanol fuel mixtures vehicles ……….. Summaryon diesel, electricity, and ethanol fuel mixtures (ethanol/

Lam, Ho Yeung Michael

2012-01-01T23:59:59.000Z

268

Vehicle Technologies Office: Financial Opportunities - Active...  

Energy Savers [EERE]

Vehicle Technologies Office: Financial Opportunities - Active Solicitations Vehicle Technologies Office: Financial Opportunities - Active Solicitations To explore current financial...

269

Transportation and its Infrastructure  

E-Print Network [OSTI]

Evaluation of Hybrid Diesel-Electric Transit Buses - Finalof braking energy in diesel-electric vehicles (see the webCNG buses, hybrid diesel-electric buses and taxi renovation)

2007-01-01T23:59:59.000Z

270

Miniature Autonomous Robotic Vehicle (MARV)  

SciTech Connect (OSTI)

Sandia National Laboratories (SNL) has recently developed a 16 cm{sup 3} (1 in{sup 3}) autonomous robotic vehicle which is capable of tracking a single conducting wire carrying a 96 kHz signal. This vehicle was developed to assess the limiting factors in using commercial technology to build miniature autonomous vehicles. Particular attention was paid to the design of the control system to search out the wire, track it, and recover if the wire was lost. This paper describes the test vehicle and the control analysis. Presented in the paper are the vehicle model, control laws, a stability analysis, simulation studies and experimental results.

Feddema, J.T.; Kwok, K.S.; Driessen, B.J.; Spletzer, B.L.; Weber, T.M.

1996-12-31T23:59:59.000Z

271

Fuel-Cycle energy and emission impacts of ethanol-diesel blends in urban buses and farming tractors.  

SciTech Connect (OSTI)

About 2.1 billion gallons of fuel ethanol was used in the United States in 2002, mainly in the form of gasoline blends containing up to 10% ethanol (E10). Ethanol use has the potential to increase in the U.S. blended gasoline market because methyl tertiary butyl ether (MTBE), formerly the most popular oxygenate blendstock, may be phased out owing to concerns about MTBE contamination of the water supply. Ethanol would remain the only viable near-term option as an oxygenate in reformulated gasoline production and to meet a potential federal renewable fuels standard (RFS) for transportation fuels. Ethanol may also be blended with additives (co-solvents) into diesel fuels for applications in which oxygenation may improve diesel engine emission performance. Numerous studies have been conducted to evaluate the fuel-cycle energy and greenhouse gas (GHG) emission effects of ethanol-gasoline blends relative to those of gasoline for applications in spark-ignition engine vehicles (see Wang et al. 1997; Wang et al. 1999; Levelton Engineering et al. 1999; Shapouri et al. 2002; Graboski 2002). Those studies did not address the energy and emission effects of ethanol-diesel (E-diesel or ED) blends relative to those of petroleum diesel fuel in diesel engine vehicles. The energy and emission effects of E-diesel could be very different from those of ethanol-gasoline blends because (1) the energy use and emissions generated during diesel production (so-called ''upstream'' effects) are different from those generated during gasoline production; and (2) the energy and emission performance of E-diesel and petroleum diesel fuel in diesel compression-ignition engines differs from that of ethanol-gasoline blends in spark-ignition (Otto-cycle-type) engine vehicles. The Illinois Department of Commerce and Community Affairs (DCCA) commissioned Argonne National Laboratory to conduct a full fuel-cycle analysis of the energy and emission effects of E-diesel blends relative to those of petroleum diesel when used in the types of diesel engines that will likely be targeted first in the marketplace. This report documents the results of our study. The draft report was delivered to DCCA in January 2003. This final report incorporates revisions by the sponsor and by Argonne.

Wang, M.; Saricks, C.; Lee, H.

2003-09-11T23:59:59.000Z

272

Method and appartus for converting static in-ground vehicle scales into weigh-in-motion systems  

DOE Patents [OSTI]

An apparatus and method for converting in-ground static weighing scales for vehicles to weigh-in-motion systems. The apparatus upon conversion includes the existing in-ground static scale, peripheral switches and an electronic module for automatic computation of the weight. By monitoring the velocity, tire position, axle spacing, and real time output from existing static scales as a vehicle drives over the scales, the system determines when an axle of a vehicle is on the scale at a given time, monitors the combined weight output from any given axle combination on the scale(s) at any given time, and from these measurements automatically computes the weight of each individual axle and gross vehicle weight by an integration, integration approximation, and/or signal averaging technique.

Muhs, Jeffrey D. (Lenior City, TN); Scudiere, Matthew B. (Oak Ridge, TN); Jordan, John K. (Oak Ridge, TN)

2002-01-01T23:59:59.000Z

273

Rapid road repair vehicle  

DOE Patents [OSTI]

Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find an the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was was heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past.

Mara, Leo M. (Livermore, CA)

1998-01-01T23:59:59.000Z

274

Vehicle rear suspension mechanism  

SciTech Connect (OSTI)

A vehicle rear suspension mechanism is described which consists of: a suspension member connected with a vehicle body; wheel hub means supporting a rear wheel having a wheel center plane for rotation about a rotating axis; and connecting means for connecting the wheel hub means with the suspension member. The connecting means include ball joint means having a pivot center located forwardly of and below the rotating axis of the rear wheel and connecting the wheel hub means to the suspension member pivotably about the pivot center, first resilient means located between the wheel hub means and the suspension member rearwardly of and above the rotating axis of the rear wheel, and second resilient means located between the wheel hub means and the suspension member forwardly of and above the rotating axis of the rear wheel.

Kijima, T.; Maebayashi, J.

1986-08-05T23:59:59.000Z

275

Life Cycle Energy and Environmental Assessment of Aluminum-Intensive Vehicle Design  

SciTech Connect (OSTI)

Advanced lightweight materials are increasingly being incorporated into new vehicle designs by automakers to enhance performance and assist in complying with increasing requirements of corporate average fuel economy standards. To assess the primary energy and carbon dioxide equivalent (CO2e) implications of vehicle designs utilizing these materials, this study examines the potential life cycle impacts of two lightweight material alternative vehicle designs, i.e., steel and aluminum of a typical passenger vehicle operated today in North America. LCA for three common alternative lightweight vehicle designs are evaluated: current production ( Baseline ), an advanced high strength steel and aluminum design ( LWSV ), and an aluminum-intensive design (AIV). This study focuses on body-in-white and closures since these are the largest automotive systems by weight accounting for approximately 40% of total curb weight of a typical passenger vehicle. Secondary mass savings resulting from body lightweighting are considered for the vehicles engine, driveline and suspension. A cradle-to-cradle life cycle assessment (LCA) was conducted for these three vehicle material alternatives. LCA methodology for this study included material production, mill semi-fabrication, vehicle use phase operation, and end-of-life recycling. This study followed international standards ISO 14040:2006 [1] and ISO 14044:2006 [2], consistent with the automotive LCA guidance document currently being developed [3]. Vehicle use phase mass reduction was found to account for over 90% of total vehicle life cycle energy and CO2e emissions. The AIV design achieved mass reduction of 25% (versus baseline) resulting in reductions in total life cycle primary energy consumption by 20% and CO2e emissions by 17%. Overall, the AIV design showed the best breakeven vehicle mileage from both primary energy consumption and climate change perspectives.

Das, Sujit [ORNL

2014-01-01T23:59:59.000Z

276

Unmanned Aerospace Vehicle Workshop  

SciTech Connect (OSTI)

The Unmanned Aerospace Vehicle (UAV) Workshop concentrated on reviewing and refining the science experiments planned for the UAV Demonstration Flights (UDF) scheduled at the Oklahoma Cloud and Radiation Testbed (CART) in April 1994. These experiments were focused around the following sets of parameters: Clear sky, daylight; Clear-sky, night-to-day transition; Clear sky - improve/validate the accuracy of radiative fluxes derived from satellite-based measurements; Daylight, clouds of opportunity; and, Daylight, broken clouds.

Vitko, J. Jr. [Sandia National Labs., Livermore, CA (United States)

1995-04-01T23:59:59.000Z

277

Alternative Fuel Vehicle  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative Fuel Vehicle & Fueling Infrastructure

278

Stabilizer for motor vehicle  

SciTech Connect (OSTI)

This patent describes a stabilizer for a motor vehicle comprising: a rod-shaped torsion section extending in the transverse direction of a motor vehicle; a pair of arm sections continuous with both ends of the torsion section and extending in the longitudinal direction of the motor vehicle; a first member attached to the torsion section or at least one of the arm sections and formed with an axially penetrating cylindrical bore; a columnar second member inserted in the bore of the first member; at least one coil spring disposed between the inner peripheral surface of the bore of the first member and the outer peripheral surface of the second member and wound around the second member, at least one end of the coil spring being a free end; an operating member connected to the free end of the coil spring, at least a part of the operating member being located outside the first member; and drive means coupled to the operating member and adapted to apply a force in a direction such that the diameter of the coil spring is increased or reduced.

Takadera, I.; Kuroda, S.

1986-11-11T23:59:59.000Z

279

CityCarControl : an electric vehicle drive-by-wire solution for distributed steering, braking and throttle control  

E-Print Network [OSTI]

In this paper, we propose CityCarControl, a system to manage the steering, braking, and throttle of a new class of intra-city electric vehicles. These vehicles have a focus on extreme light-weight and a small parking ...

Brown, Thomas B., M. Eng. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

280

Hydrogen as a fuel for fuel cell vehicles: A technical and economic comparison  

SciTech Connect (OSTI)

All fuel cells currently being developed for near term use in vehicles require hydrogen as a fuel. Hydrogen can be stored directly or produced onboard the vehicle by reforming methanol, ethanol or hydrocarbon fuels derived from crude oil (e.g., Diesel, gasoline or middle distillates). The vehicle design is simpler with direct hydrogen storage, but requires developing a more complex refueling infrastructure. In this paper, the authors compare three leading options for fuel storage onboard fuel cell vehicles: compressed gas hydrogen storage; onboard steam reforming of methanol; onboard partial oxidation (POX) of hydrocarbon fuels derived from crude oil. Equilibrium, kinetic and heat integrated system (ASPEN) models have been developed to estimate the performance of onboard steam reforming and POX fuel processors. These results have been incorporated into a fuel cell vehicle model, allowing us to compare the vehicle performance, fuel economy, weight, and cost for various fuel storage choices and driving cycles. A range of technical and economic parameters were considered. The infrastructure requirements are also compared for gaseous hydrogen, methanol and hydrocarbon fuels from crude oil, including the added costs of fuel production, storage, distribution and refueling stations. Considering both vehicle and infrastructure issues, the authors compare hydrogen to other fuel cell vehicle fuels. Technical and economic goals for fuel cell vehicle and hydrogen technologies are discussed. Potential roles for hydrogen in the commercialization of fuel cell vehicles are sketched.

Ogden, J.; Steinbugler, M.; Kreutz, T. [Princeton Univ., NJ (United States). Center for Energy and Environmental Studies

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle weight buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Retrofiting survivability of military vehicles  

SciTech Connect (OSTI)

In Iraq the terrain was such that vehicles could be distributed horizontally, which reduced the effectiveness of mines. In the mountainous terrain of Pakistan and Afghanistan vehicles are forced to use the few, passable roads, which are dirt and easily seeded with plentiful, cheap, intelligent mines. It is desirable to reduce the losses to such mines, preferably by retrofit means that do not greatly increase weight or cost or reduce maneuverability. V-bottom vehicles - A known approach to reducing vulnerability is the Buffalo, a large vehicle developed by South Africa to address mine warfare. It has large tires, high axles, and a reinforced, v-shaped bottom that deflects the blast from explosions below. It is developed and tested in combat, but is expensive and has reduced off-road mobility. The domestic MRAP has similar cost and mobility issue. The addition of v-shaped blast deflectors to vehicles such as Humvees could act much as the deflector on a Buffalo, but a Humvee is closer to the ground, so the explosive's expansion would be reduced. The deflector would also reduce a Humvee's clearance for rough terrain, and a deflector of adequate thickness to address the blast by itself could further increase cost and reduce mobility. Reactive armor is developed and has proven effective against shaped and explosive charges from side or top attack. It detects their approach, detonates, and defeats them by interfering with jet formation. If the threat was a shaped charge from below, they would be a logical choice. But the bulk of the damage to Humvees appears to be from the blast from high explosive mines for which the colliding shock from reactive armor could increase that from the explosive. Porous materials such as sand can strongly attenuate the kinetic energy and pressure of a strong shock. Figure 1 shows the kinetic energy (KE), momentum (Mu), velocity (u), and mass (M) of a spherically expanding shock as functions of radius for a material with a porosity of 0.5. Over the range from 0.5 to 4.5 cm the shock KE is attenuated by a factor of {approx}70, while its momentum is changed little. The shock and particle velocity falls by a factor of 200 while the mass increases by a factor of 730. In the limit of very porous media u {approx} 1/M, so KE {approx} 1/M, which falls by a factor of {approx}600, while momentum Mu does not change at all. Figure 2 shows the KE, Mu, u, and M for a material with a porosity of 1.05, for which the KE changes little. In the limit of media of very low porosity, u {approx} 1/{radical}M, so KE is constant while Mu {approx} {radical}M, which increases by a factor of 15. Thus, if the goal is to reduce the peak pressure from strong explosions below, very porous materials, which strongly reduce pressure but do not increase momentum, are preferred to non-porous materials, which amplify momentum but do not decrease pressure. These predictions are in qualitative accord with the results of experiments at Los Alamos in which projectiles from high velocity, large caliber cannons were stopped by one to two sandbags. The studies were performed primarily to determine the effectiveness of sand in stopping fragments of various sizes, but could be extended to study sand's effectiveness in attenuating blast pressure. It would also be useful to test the above predictions on the effectiveness of media with higher porosity. Water barriers have been discussed but not deployed in previous retrofit survivability studies for overseas embassies. They would detect the flash from the mine detonation below, trigger a thin layer of explosive above a layer of water, and drive water droplets into the approaching blast wave. The blast loses energy in evaporating the droplets and loses momentum in slowing them. Under favorable conditions that could attenuate the pressure in the blast enough to prevent the penetration or disruption of the vehicle. However, such barriers would depend on prompt and reliable detonation detection and water droplet dispersal, which have not been tested. There is a large literature on the theoretical effec

Canavan, Gregory H [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

282

Advanced Vehicle Testing and Evaluation  

SciTech Connect (OSTI)

The objective of the United States (U.S.) Department of Energy?s (DOEs) Advanced Vehicle Testing and Evaluation (AVTE) project was to provide test and evaluation services for advanced technology vehicles, to establish a performance baseline, to determine vehicle reliability, and to evaluate vehicle operating costs in fleet operations. Vehicles tested include light and medium-duty vehicles in conventional, hybrid, and all-electric configurations using conventional and alternative fuels, including hydrogen in internal combustion engines. Vehicles were tested on closed tracks and chassis dynamometers, as well as operated on public roads, in fleet operations, and over prescribed routes. All testing was controlled by procedures developed specifically to support such testing. Testing and evaluations were conducted in the following phases: ? Development of test procedures, which established testing procedures; ? Baseline performance testing, which established a performance baseline; ? Accelerated reliability testing, which determined vehicle reliability; ? Fleet testing, used to evaluate vehicle economics in fleet operation, and ? End of test performance evaluation. Test results are reported by two means and posted by Idaho National Laboratory (INL) to their website: quarterly progress reports, used to document work in progress; and final test reports. This final report documents work conducted for the entirety of the contract by the Clarity Group, Inc., doing business as ECOtality North America (ECOtality). The contract was performed from 1 October 2005 through 31 March 2013. There were 113 light-duty on-road (95), off-road (3) and low speed (15) vehicles tested.

Garetson, Thomas

2013-03-31T23:59:59.000Z

283

automated vehicle control for ground vehicles: Topics by E-print...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a Robot Vehicle James L. Crowley Patrick Cartesian coordinate space. In the same sense, robot vehicles require a "vehicle controller" to command. This paper presents the design of...

284

Myths Regarding Alternative Fuel Vehicle Demand by Light-Duty Vehicle Fleets  

E-Print Network [OSTI]

eet demand for alternative-fuel vehicles in California.Britain MYTHS REGARDING ALTERNATIVE FUEL VEHICLE DEMAND BYinitial market for alternative fuel vehicles (AFVs). We

Nesbitt, Kevin; Sperling, Daniel

1998-01-01T23:59:59.000Z

285

Advanced Vehicle Testing Activity (AVTA) - Vehicle Testing and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced Vehicle Testing Activity (AVTA) Non-PHEV Evaluations and Data Collection AVTA HEV, NEV, BEV and HICEV Demonstrations and Testing Benchmarking of Advanced HEVs and...

286

Vehicle Technologies Office Merit Review 2014: Advanced Vehicle Testing & Evaluation  

Broader source: Energy.gov [DOE]

Presentation given by Intertek at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about testing and evaluating advanced...

287

Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies...  

Broader source: Energy.gov (indexed) [DOE]

vehicle into an electric power source. Although electricity production may contribute to air pollution, the U.S. Environmental Protection Agency (EPA) considers EVs Hybrid and...

288

Vehicle Technologies Office Merit Review 2014: Consumer Vehicle Technology Data  

Broader source: Energy.gov [DOE]

Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about consumer...

289

Vehicle Technologies Office Merit Review 2014: Vehicle & Systems...  

Energy Savers [EERE]

& Testing Presentation given by U.S. Department of Energy at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

290

Mack LNG vehicle development  

SciTech Connect (OSTI)

The goal of this project was to install a production-ready, state-of-the-art engine control system on the Mack E7G natural gas engine to improve efficiency and lower exhaust emissions. In addition, the power rating was increased from 300 brake horsepower (bhp) to 325 bhp. The emissions targets were oxides of nitrogen plus nonmethane hydrocarbons of less than 2.5 g/bhp-hr and particulate matter of less than 0.05 g/bhp-hr on 99% methane. Vehicle durability and field testing were also conducted. Further development of this engine should include efficiency improvements and oxides of nitrogen reductions.

Southwest Research Institute

2000-01-05T23:59:59.000Z

291

Hybrid vehicle motor alignment  

DOE Patents [OSTI]

A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.

Levin, Michael Benjamin (Ann Arbor, MI)

2001-07-03T23:59:59.000Z

292

Vehicles | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudha Patri MechanicalofVehicles - ORNL inverter

293

Vehicle Technologies Office News  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research PetroleumDepartment of Energy KavehHeavy Vehicle FuelCombustion

294

Hybrid Vehicle Program. Final report  

SciTech Connect (OSTI)

This report summarizes the activities on the Hybrid Vehicle Program. The program objectives and the vehicle specifications are reviewed. The Hybrid Vehicle has been designed so that maximum use can be made of existing production components with a minimum compromise to program goals. The program status as of the February 9-10 Hardware Test Review is presented, and discussions of the vehicle subsystem, the hybrid propulsion subsystem, the battery subsystem, and the test mule programs are included. Other program aspects included are quality assurance and support equipment. 16 references, 132 figures, 47 tables.

None

1984-06-01T23:59:59.000Z

295

Vehicle Technologies Office: Information Resources  

Broader source: Energy.gov [DOE]

From here you can access additional information on advanced transportation technologies; view programmatic publications and technical information; learn the basics of hybrid vehicle technology;...

296

The weighted words collector  

E-Print Network [OSTI]

Motivated by applications in bioinformatics, we consider the word collector problem, i.e. the expected number of calls to a random weighted generator of words of length $n$ before the full collection is obtained. The originality of this instance of the non-uniform coupon collector lies in the, potentially large, multiplicity of the words/coupons of a given probability/composition. We obtain a general theorem that gives an asymptotic equivalent for the expected waiting time of a general version of the Coupon Collector. This theorem is especially well-suited for classes of coupons featuring high multiplicities. Its application to a given language essentially necessitates some knowledge on the number of words of a given composition/probability. We illustrate the application of our theorem, in a step-by-step fashion, on three exemplary languages, revealing asymptotic regimes in $\\Theta(\\mu(n)\\cdot n)$ and $\\Theta(\\mu(n)\\cdot \\log n)$, where $\\mu(n)$ is the sum of weights over words of length $n$.

Boisberranger, Jérémie Du; Ponty, Yann

2012-01-01T23:59:59.000Z

297

New York State-wide Alternative Fuel Vehicle Program for Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

New York State-wide Alternative Fuel Vehicle Program for Vehicles and Fueling Stations New York State-wide Alternative Fuel Vehicle Program for Vehicles and Fueling Stations 2010...

298

Hybrid and Plug-In Electric Vehicles (Brochure)  

SciTech Connect (OSTI)

Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

Not Available

2011-10-01T23:59:59.000Z

299

Hybrid and Plug-In Electric Vehicles (Brochure)  

SciTech Connect (OSTI)

Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

Not Available

2011-05-01T23:59:59.000Z

300

Water Emissions from Fuel Cell Vehicles | Department of Energy  

Energy Savers [EERE]

Water Emissions from Fuel Cell Vehicles Water Emissions from Fuel Cell Vehicles Hydrogen fuel cell vehicles (FCVs) emit approximately the same amount of water per mile as vehicles...

Note: This page contains sample records for the topic "vehicle weight buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Fact #706: December 19, 2011 Vocational Vehicle Fuel Consumption...  

Broader source: Energy.gov (indexed) [DOE]

recently published final fuel consumption standards for heavy vehicles called "vocational" vehicles. A vocational vehicle is generally a single-unit work vehicle over 8,500 lbs...

302

Evaluation Of Potential Hybrid Electric Vehicle Applications: Vol I  

E-Print Network [OSTI]

Vehicle Symposium, "The Hybrid Vehicle Revisited", OctoberBus Hv REFERENCES “Hybrid Vehicle Assessment, Phase I,Laboratory, March 1984 “Hybrid Vehicle Engineering Task”

Gris, Arturo E.

1991-01-01T23:59:59.000Z

303

Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource for Project Development  

SciTech Connect (OSTI)

The transportation sector accounts for a large and growing share of global greenhouse gas (GHG) emissions. Worldwide, motor vehicles emit well over 900 million metric tons of carbon dioxide (CO2) each year, accounting for more than 15 percent of global fossil fuel-derived CO2 emissions.1 In the industrialized world alone, 20-25 percent of GHG emissions come from the transportation sector. The share of transport-related emissions is growing rapidly due to the continued increase in transportation activity.2 In 1950, there were only 70 million cars, trucks, and buses on the world’s roads. By 1994, there were about nine times that number, or 630 million vehicles. Since the early 1970s, the global fleet has been growing at a rate of 16 million vehicles per year. This expansion has been accompanied by a similar growth in fuel consumption.3 If this kind of linear growth continues, by the year 2025 there will be well over one billion vehicles on the world’s roads.4 In a response to the significant growth in transportation-related GHG emissions, governments and policy makers worldwide are considering methods to reverse this trend. However, due to the particular make-up of the transportation sector, regulating and reducing emissions from this sector poses a significant challenge. Unlike stationary fuel combustion, transportation-related emissions come from dispersed sources. Only a few point-source emitters, such as oil/natural gas wells, refineries, or compressor stations, contribute to emissions from the transportation sector. The majority of transport-related emissions come from the millions of vehicles traveling the world’s roads. As a result, successful GHG mitigation policies must find ways to target all of these small, non-point source emitters, either through regulatory means or through various incentive programs. To increase their effectiveness, policies to control emissions from the transportation sector often utilize indirect means to reduce emissions, such as requiring specific technology improvements or an increase in fuel efficiency. Site-specific project activities can also be undertaken to help decrease GHG emissions, although the use of such measures is less common. Sample activities include switching to less GHG-intensive vehicle options, such as electric vehicles (EVs) or hybrid electric vehicles (HEVs). As emissions from transportation activities continue to rise, it will be necessary to promote both types of abatement activities in order to reverse the current emissions path. This Resource Guide focuses on site- and project-specific transportation activities. .

National Energy Technology Laboratory

2002-07-31T23:59:59.000Z

304

Light-duty vehicle mpg and market shares report, model year 1988  

SciTech Connect (OSTI)

This issue of Light-Duty Vehicle MPG and Market Shares Report: Model Year 1988 reports the estimated sales-weighted fuel economies, sales, market shares, and other vehicle characteristics of automobiles and light trucks. The estimates are made on a make and model basis, from model year 1976 to model year 1988. Vehicle sales data are used as weighting factors in the sales-weighted estimation procedure. Thus, the estimates represent averages of the overall new vehicle fleet, reflecting the composition of the fleet. Highlights are provided on the trends in the vehicle characteristics from one model year to the next. Analyses are also made on the fuel economy changes to determine the factors which caused the changes. The sales-weighted fuel economy for the new car fleet in model year 1988 showed an improvement of 0.1 mpg from model year 1987, while light trucks showed a 0.2 mpg loss. The 0.2 mpg loss by the light trucks can be attributed to the fact that every light truck size class experienced either losses or no change in their fuel economies from the previous model year, except for the large van size class. Overall, the sales-weighted fuel economy of the entire light-duty vehicle fleet (automobiles and light trucks combined) has remained relatively stable since model year 1986. Domestic light-duty vehicles began to gain popularity over their import counterparts; and light trucks increased their market shares relative to automobiles. Domestic cars regained 0.3% of the automobile market, reversing the previous trend. Similar to the automobile market, domestic light trucks continued to gain popularity over their import counterparts, partly due to the increasing popularity of domestic small vans. 3 refs., 35 figs., 48 tabs.

Hu, P.S.; Williams, L.S.; Beal, D.J.

1989-04-01T23:59:59.000Z

305

Hamilton Weights and Petersen Minors  

E-Print Network [OSTI]

Hamilton Weights and Petersen Minors Hong-Jian Lai and Cun-Quan Zhangy DEPARTMENT OF MATHEMATICS@math.wvu.edu Received April 18, 1997 Abstract: A (1, 2)-eulerian weight w of a cubic graph is called a Hamilton weight if every faithful circuit cover of the graph with respect to w is a set of two Hamilton circuits. Let G

Lai, Hong-jian

306

EV Project Chevrolet Volt Vehicle Summary Report  

Broader source: Energy.gov (indexed) [DOE]

charging events per day when the vehicle was driven 1.5 EV Project Chevrolet Volt Vehicle Summary Report Region: ALL Number of vehicles: 1895 Reporting period: April 2013 through...

307

Fuel Savings from Hybrid Electric Vehicles  

SciTech Connect (OSTI)

NREL's study shows that hybrid electric vehicles can significantly reduce oil imports for use in light-duty vehicles, particularly if drivers switch to smaller, more fuel-efficient vehicles overall.

Bennion, K.; Thornton, M.

2009-03-01T23:59:59.000Z

308

Anonymous vehicle reidentification using heterogeneous detection systems  

E-Print Network [OSTI]

C. A. MacCarley, Video-Based Vehicle Signature Analysis andRamachandran, and S. Ritchie, “Vehicle reidenti?cation usingand R. Jayakrishnan, “Use of vehicle signature analysis and

Oh, Cheol; Jeng, Shin-Ting; Ritchie, Stephen G.

2007-01-01T23:59:59.000Z

309

2012 U.S. Vehicle Analysis  

E-Print Network [OSTI]

and Air Quality. Green Vehicle Guide. Web. May 2012. 2. "Los Angeles 2012 U.S. Vehicle Analysis A thesis submitted inOF THE THESIS 2012 U.S. Vehicle Analysis by Ho Yeung Michael

Lam, Ho Yeung Michael

2012-01-01T23:59:59.000Z

310

Quantifying the benefits of hybrid vehicles  

E-Print Network [OSTI]

The Emergence of Hybrid Vehicles: Ending oil’s strangleholdthe benefits of hybrid vehicles Dr. Thomas Turrentine Dr.the benefits of hybrid vehicles Report prepared for CSAA Dr.

Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

2006-01-01T23:59:59.000Z

311

Solar-Hydrogen Fuel-Cell Vehicles  

E-Print Network [OSTI]

M. A. (1992). Hydrogen Fuel-Cell Vehicles. Re- koebensteinthan both. Solar-hydrogen and fuel-cell vehicles wouldberegulation. Solar-Hydrogen Fuel-Cell Vehicles MarkA. DeLuchi

DeLuchi, Mark A.; Ogden, Joan M.

1993-01-01T23:59:59.000Z

312

Aggregate vehicle travel forecasting model  

SciTech Connect (OSTI)

This report describes a model for forecasting total US highway travel by all vehicle types, and its implementation in the form of a personal computer program. The model comprises a short-run, econometrically-based module for forecasting through the year 2000, as well as a structural, scenario-based longer term module for forecasting through 2030. The short-term module is driven primarily by economic variables. It includes a detailed vehicle stock model and permits the estimation of fuel use as well as vehicle travel. The longer-tenn module depends on demographic factors to a greater extent, but also on trends in key parameters such as vehicle load factors, and the dematerialization of GNP. Both passenger and freight vehicle movements are accounted for in both modules. The model has been implemented as a compiled program in the Fox-Pro database management system operating in the Windows environment.

Greene, D.L.; Chin, Shih-Miao; Gibson, R. [Tennessee Univ., Knoxville, TN (United States)

1995-05-01T23:59:59.000Z

313

Hydrogen ICE Vehicle Testing Activities  

SciTech Connect (OSTI)

The Advanced Vehicle Testing Activity teamed with Electric Transportation Applications and Arizona Public Service to develop and monitor the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant. The Pilot Plant provides 100% hydrogen, and hydrogen and compressed natural gas (H/CNG)-blended fuels for the evaluation of hydrogen and H/CNG internal combustion engine (ICE) vehicles in controlled and fleet testing environments. Since June 2002, twenty hydrogen and H/CNG vehicles have accumulated 300,000 test miles and 5,700 fueling events. The AVTA is part of the Department of Energy’s FreedomCAR and Vehicle Technologies Program. These testing activities are managed by the Idaho National Laboratory. This paper discusses the Pilot Plant design and monitoring, and hydrogen ICE vehicle testing methods and results.

J. Francfort; D. Karner

2006-04-01T23:59:59.000Z

314

2012 Vehicle Technologies Market Report  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory s Center for Transportation Analysis developed and published the first Vehicle Technologies Market Report in 2008. Three editions of the report have been published since that time. This 2012 report details the major trends in U.S. light vehicle and medium/heavy truck markets as well as the underlying trends that caused them. The opening section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national scale. The following section examines light-duty vehicle use, markets, manufacture, and supply chains. The discussion of medium and heavy trucks offers information on truck sales and fuel use. The technology section offers information on alternative fuel vehicles and infrastructure, and the policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standards.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

2013-03-01T23:59:59.000Z

315

Propane Vehicle Demonstration Grant Program  

SciTech Connect (OSTI)

Project Description: Propane Vehicle Demonstration Grants The Propane Vehicle Demonstration Grants was established to demonstrate the benefits of new propane equipment. The US Department of Energy, the Propane Education & Research Council (PERC) and the Propane Vehicle Council (PVC) partnered in this program. The project impacted ten different states, 179 vehicles, and 15 new propane fueling facilities. Based on estimates provided, this project generated a minimum of 1,441,000 new gallons of propane sold for the vehicle market annually. Additionally, two new off-road engines were brought to the market. Projects originally funded under this project were the City of Portland, Colorado, Kansas City, Impco Technologies, Jasper Engines, Maricopa County, New Jersey State, Port of Houston, Salt Lake City Newspaper, Suburban Propane, Mutual Liquid Propane and Ted Johnson.

Jack Mallinger

2004-08-27T23:59:59.000Z

316

Making the case for direct hydrogen storage in fuel cell vehicles  

SciTech Connect (OSTI)

Three obstacles to the introduction of direct hydrogen fuel cell vehicles are often states: (1) inadequate onboard hydrogen storage leading to limited vehicle range; (2) lack of an hydrogen infrastructure, and (3) cost of the entire fuel cell system. This paper will address the first point with analysis of the problem/proposed solutions for the remaining two obstacles addressed in other papers. Results of a recent study conducted by Directed Technologies Inc. will be briefly presented. The study, as part of Ford Motor Company/DOE PEM Fuel Cell Program, examines multiple pure hydrogen onboard storage systems on the basis of weight, volume, cost, and complexity. Compressed gas, liquid, carbon adsorption, and metal hydride storage are all examined with compressed hydrogen storage at 5,000 psia being judged the lowest-risk, highest benefit, near-term option. These results are combined with recent fuel cell vehicle drive cycle simulations to estimate the onboard hydrogen storage requirement for full vehicle range (380 miles on the combined Federal driving schedule). The results indicate that a PNGV-like vehicle using powertrain weights and performance realistically available by the 2004 PNGV target data can achieve approximate fuel economy equivalent to 100 mpg on gasoline (100 mpg{sub eq}) and requires storage of approximately 3.6 kg hydrogen for full vehicle storage quantity allows 5,000 psia onboard storage without altering the vehicle exterior lines or appreciably encroaching on the passenger or trunk compartments.

James, B.D.; Thomas, C.E.; Baum, G.N.; Lomas, F.D. Jr.; Kuhn, I.F. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

1997-12-31T23:59:59.000Z

317

Environmental Life-cycle Assessment of Passenger Transportation: A Detailed Methodology for Energy, Greenhouse Gas and Criteria Pollutant Inventories of Automobiles, Buses, Light Rail, Heavy Rail and Air  

E-Print Network [OSTI]

Life-cycle Assessment (LCA)comprehensive life-cycle assessment (LCA) models to quantifyUCB-ITS-VWP-2007-7 Life-cycle Assessment (LCA) The vehicles,

Chester, Mikhail; Horvath, Arpad

2007-01-01T23:59:59.000Z

318

Security enhanced with increased vehicle inspections  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Security enhanced with increased vehicle inspections Security measures increase as of March: vehicle inspections won't delay traffic New increased security procedures meet LANL's...

319

Blog Feed: Vehicles | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Pat Davis, the Director of our Vehicle Technologies Program, doles out the facts on the costs and benefits of owning an electric vehicle. December 14, 2010 Nanotechnology: Small...

320

Clean Cities Recovery Act: Vehicle & Infrastructure Deployment  

Broader source: Energy.gov (indexed) [DOE]

project through collection of vehicle, infrastructure and training information. RELEVANCE Alternative Fuel & Advance Technology Vehicles Pilot Program Clean Cities Recovery Act:...

Note: This page contains sample records for the topic "vehicle weight buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...  

Broader source: Energy.gov (indexed) [DOE]

Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen On April...

322

Vehicle Technologies Office: Transitioning the Transportation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Office: Transitioning the Transportation Sector - Exploring the Intersection of H2 Fuel Cell and Natural Gas Vehicles Vehicle Technologies Office: Transitioning the Transportation...

323

NREL: Vehicles and Fuels Research - Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

graph illustrating three pathways (biofuel, hydrogen, and electric vehicle) to reduce energy use and greenhouse gas emissions. Electric Vehicle Technologies & Targets 3-D...

324

Vehicle Technologies Office Merit Review 2014: Demonstration...  

Broader source: Energy.gov (indexed) [DOE]

for High Efficiency, Low Emissions Vehicle Applications Presentation given by Wisconsin Engine Research Consultants at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle...

325

Vehicle Technologies Office: AVTA - Evaluating National Parks...  

Energy Savers [EERE]

National Parks and Forest Service Fleets for Plug-in Electric Vehicles Vehicle Technologies Office: AVTA - Evaluating National Parks and Forest Service Fleets for Plug-in Electric...

326

EV Project Chevrolet Volt Vehicle Summary Report  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Summary Report Region: ALL Number of vehicles: 1766 Reporting period: January 2013 through March 2013 1 A trip is defined as all the driving done between consecutive...

327

Measuring & Mitigating Electric Vehicle Adoption Barriers.  

E-Print Network [OSTI]

??Transitioning our cars to run on renewable sources of energy is crucial to addressing concerns over energy security and climate change. Electric vehicles (EVs), vehicles… (more)

Tommy, Carpenter

2015-01-01T23:59:59.000Z

328

Vehicle Technologies Office | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Efficient Vehicle Technologies Secretary Moniz Announces 55 M to Advance Fuel Efficient Vehicle Technologies Energy Secretary Moniz spoke at the Washington Auto Show,...

329

Advanced Technology Vehicles Manufacturing Incentive Program...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program This is an interim final rule that establishes the...

330

Advanced Vehicle Testing Activity (AVTA) ? PHEV Evaluations...  

Broader source: Energy.gov (indexed) [DOE]

1.pdf More Documents & Publications Advanced Vehicle Testing Activity (AVTA) - Vehicle Testing and Demonstration Activities AVTA PHEV Demonstrations and Testing Argonne...

331

NREL: Vehicles and Fuels Research - Success Stories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electric Vehicle, Grid, and Renewable Synergies Fuel, Engine, and Infrastructure Co-Optimization Red engine. Demo Projects Introduce New Class of Natural Gas Vehicles Graph...

332

Blog Feed: Vehicles | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

The MV-1, a new wheelchair accessible, fuel-efficient vehicle | Photo Courtesy of Vehicle Production Group Automotive Accessibility and Efficiency Meet in the Innovative MV-1 A...

333

A new vehicle data bus architecture and IVIS evaluation platform for ITS modulus  

SciTech Connect (OSTI)

An increasing number of ITS-related after-market systems present a set of in-vehicle installation and use problems relatively unique in the history of automobile use. Many automobile manufacturers would like to offer these new state of the art devices to customers, but are hampered by the current design cycle of new cars. While auto manufacturers are indeed using multiplex buses (the automotive equivalent of a computer local area network), problems remain because manufacturers are not converging on a single bus standard. This paper presents a new dual-bus architecture to address these problems, with an In-Vehicle Information System (IVIS) research platform on which the principles embodied in the ITS Data Bus architecture can be evaluated. The dual-bus architecture has been embodied in a proposed SAE standard, with a ratification vote in December, 1996. The architecture and a reference model for the interfaces and protocols of the new bus are presented and described. The goals of the ITS Data Bus are to be inexpensive and easy to install, and to provide for safe and secure functioning. These high-level goals are embodied in the proposed standard. The IVIS Development Platform comprises a number of personal computers linked via ethernet LAN, with a high-end PC serving as the IVIS computer. In this LAN, actual devices can be inserted in place of the original PC which emulated them. This platform will serve as the development and test bed for an ITS Data Bus Conformity Test, the SAE standard for which has also been developed.

Spelt, P.F. [Oak Ridge National Lab., TN (United States); Kirson, A.M. [Motorola, Inc., Northbrook, IL (United States); Scott, S. [Jet Propulsion Lab., Washington, DC (United States)

1998-12-31T23:59:59.000Z

334

Vehicle-to-Vehicle-to-Infrastructure (V2V2I) Intelligent Transportation System Architecture  

E-Print Network [OSTI]

is a hybrid of the vehicle-to-vehicle (V2V) and vehicle-to- infrastructure (V2I) architectures. The V2V2I I am proposing is a hybrid of the V2I and V2V architectures, which is the vehicle-to-vehicleVehicle-to-Vehicle-to-Infrastructure (V2V2I) Intelligent Transportation System Architecture Jeffrey

Miller, Jeffrey A.

335

Smog Check II Evaluation Part II: Overview of Vehicle  

E-Print Network [OSTI]

Smog Check II Evaluation Part II: Overview of Vehicle Emissions . . . . . . . . . . . . Prepared in Later Sections ____________________ 1 3. Older Vehicles Have Higher Emissions on Average _____________ 3 4. The Vehicle Fleet Is Dominated by Newer Vehicles______________ 8 5. More Recent Vehicle Models

Denver, University of

336

Adaptive control of hypersonic vehicles  

E-Print Network [OSTI]

The guidance, navigation and control of hypersonic vehicles are highly challenging tasks due to the fact that the dynamics of the airframe, propulsion system and structure are integrated and highly interactive. Such a ...

Gibson, Travis Eli

2008-01-01T23:59:59.000Z

337

Riverside, CA Vehicle Purchase Incentives  

Broader source: Energy.gov [DOE]

City of Riverside residents and employees are eligible to receive a rebate toward the purchase of qualified natural gas or hybrid electric vehicles purchased from a City of Riverside automobile...

338

Gasoline Ultra Fuel Efficient Vehicle  

Broader source: Energy.gov (indexed) [DOE]

at Wayne State University May 18, 2012 Slide 13 2011 Sonata 6MT, 2.0L GDI Theta Turbo Technologies on Vehicle: EMS Control Algorithms Calibration GDi Pump ECM...

339

Light Duty Vehicle CNG Tanks  

Broader source: Energy.gov (indexed) [DOE]

Vehicle CNG Tanks Dane A. Boysen, PhD Program Director Advanced Research Projects Agency-Energy, US DOE dane.boysen@doe.gov Fiber Reinforced Polymer Composite Manufacturing...

340

Prediction of vehicle impact forces  

E-Print Network [OSTI]

PREDICTION OF VEHICLE IMPACT FORCES A Thesis by DARRELL LAINE KADERKA Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1990 Major Subject...: Civil Engineering PREDICTION OF VEHICLE IMPACT FORCES A Thesis by DARRELL LAINE KADERKA Approved as to style and content by: C. Eugene Buth (Chair of Committee) W. ynn Beason (Member) I? D n E. B ay (Member) es T. P. Yao (Departmen Head) May...

Kaderka, Darrell Laine

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle weight buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Nonlinear Dynamics of Longitudinal Ground Vehicle Traction  

E-Print Network [OSTI]

asphalt b) Wet asphalt c) Gravel d) Packed Snow Nonlinear Dynamics of Longitudinal Ground Vehicle Traction

Shaw, Steven W.

342

Method and system for vehicle refueling  

SciTech Connect (OSTI)

Methods and systems are provided for facilitating refueling operations in vehicles operating with multiple fuels. A vehicle operator may be assisted in refueling the multiple fuel tanks of the vehicle by being provided one or more refueling profiles that take into account the vehicle's future trip plans, the predicted environmental conditions along a planned route, and the operator's preferences.

Surnilla, Gopichandra; Leone, Thomas G; Prasad, Krishnaswamy Venkatesh; Agarwal, Apoorv; Hinds, Brett Stanley

2014-06-10T23:59:59.000Z

343

Plugging Vehicles into Clean Energy October, 2012  

E-Print Network [OSTI]

Plugging Vehicles into Clean Energy 1 October, 2012 Plugging Vehicles into Clean Energy Max-in electric vehicles and clean energy. Giving consumers options to offset energy and emissions associated briefly summarizes the relationship between clean energy and vehicle electrification and describes five

California at Davis, University of

344

Electric and Hydrogen Vehicles Past and Progress  

E-Print Network [OSTI]

status and TSRC research ­ Future? · Hydrogen Fuel Cell Vehicles ­ 20 years ago ­ 10 years ago ­ Current · Transportation Propulsion, Fuels, & Emissions ­ Electric-drive vehicles (including plug-in hybrid and fuel-cell Electric and Fuel Cell Vehicles?Why Electric and Fuel Cell Vehicles? · Transportation accounts for about 33

Kammen, Daniel M.

345

Electric Vehicle Charging as an Enabling Technology  

E-Print Network [OSTI]

Electric Vehicle Charging as an Enabling Technology Prepared for the U.S. Department of Energy technologies, electric vehicles and the appurtenant charging infrastructure, is explored in detail to determine regarding system load profiles, vehicle charging strategies, electric vehicle adoption rates, and storage

346

Explosion proof vehicle for tank inspection  

DOE Patents [OSTI]

An Explosion Proof Vehicle (EPV) having an interior substantially filled with an inert fluid creating an interior pressure greater than the exterior pressure. One or more flexible tubes provide the inert fluid and one or more electrical conductors from a control system to the vehicle. The vehicle is preferably used in subsurface tank inspection, whereby the vehicle is submerged in a volatile fluid.

Zollinger, William T. (Idaho Falls, ID); Klingler, Kerry M. (Idaho Falls, ID); Bauer, Scott G. (Idaho Falls, ID)

2012-02-28T23:59:59.000Z

347

Feasible Path Synthesis for Automated Guided Vehicles  

E-Print Network [OSTI]

Feasible Path Synthesis for Automated Guided Vehicles Reijer Idema 2005 TU Delft FROG Navigation for Automated Guided Vehicles Author: Reijer Idema Supervisors: prof.dr.ir. P. Wesseling (TU Delft) dr.ir. Kees is a manufacturer of Automated Guided Vehicles. They have developed a multitude of vehicles that transport products

Vuik, Kees

348

VEHICLE USAGE AGREEMENT DEPARTMENT OF BIOLOGICAL SCIENCE  

E-Print Network [OSTI]

VEHICLE USAGE AGREEMENT DEPARTMENT OF BIOLOGICAL SCIENCE All drivers of vehicles must certify to the following: 1. I certify that I have a valid driver's license appropriate for the vehicle type and will abide belts. 2. I have read and understand the vehicle operating policies and procedures as defined

Ronquist, Fredrik

349

VEHICLE RESERVATION DO NOT WRITE IN  

E-Print Network [OSTI]

VEHICLE RESERVATION DO NOT WRITE IN SHADED AREAS For Information Call 764-2485 FAX # (76)3-1470 Vehicle No. License OK VEHICLE DAMAGE INSPECTION Circle area of damage and/or describe below: OUTGOING for Rules & Regulations for Vehicle Rentals Reference Number 5 digit # Date Department Short code Requestor

Kirschner, Denise

350

Master Thesis Proposal: Simulation of Vehicle  

E-Print Network [OSTI]

Master Thesis Proposal: Simulation of Vehicle Driving Behavior Based on External Excitations Background For vehicle manufacturers it is important to know how their vehicles are used during the components and also for designing the controls of the vehicle. For example, the load characteristics

Zhao, Yuxiao

351

VEHICLE SERVICES POLICY Table of Contents  

E-Print Network [OSTI]

VEHICLE SERVICES POLICY Table of Contents 1. Policy 2. Procedures a. Vehicle Services Oversight b. Vehicle Maintenance and Inspection c. Authorized Drivers d. Responsibilities Back to Top (To download requirements for AUB's vehicles, the University has adopted a policy of centralizing these activities under one

Shihadeh, Alan

352

VEHICLE RENTAL FACT SHEET January 20, 2012  

E-Print Network [OSTI]

VEHICLE RENTAL FACT SHEET January 20, 2012 When Smithsonian travelers rent a vehicle during official travel, the vehicle should be rented using an individual travel card (if available) and using are not reimbursable so the rental car company CDW should be declined if the vehicle is rented under the government

353

Method and system for vehicle refueling  

DOE Patents [OSTI]

Methods and systems are provided for facilitating refueling operations in vehicles operating with multiple fuels. A vehicle operator may be assisted in refueling the multiple fuel tanks of the vehicle by being provided one or more refueling profiles that take into account the vehicle's future trip plans, the predicted environmental conditions along a planned route, and the operator's preferences.

Surnilla, Gopichandra; Leone, Thomas G; Prasad, Krishnaswamy Venkatesh; Argarwal, Apoorv; Hinds, Brett Stanley

2012-11-20T23:59:59.000Z

354

Planning for Autonomous Underwater Vehicles Zeyn Saigol  

E-Print Network [OSTI]

, 2007 4 / 25 #12;Autonomous Underwater Vehicles Unmanned, untethered submersibles Autosub, developedPlanning for Autonomous Underwater Vehicles Zeyn Saigol Intelligent Robotics Lab meeting July 31 in Southampton Cheaper than manned vehicles Can get to places tethered vehicles can't No need for human

Yao, Xin

355

Using Vehicle Taxes to Reduce Carbon Dioxide Emissions Rates of New Passenger Vehicles: Evidence from France, Germany, and Sweden  

E-Print Network [OSTI]

France, Germany, and Sweden link vehicle taxes to the carbon dioxide (CO2) emissions rates of passenger vehicles. Based on new vehicle registration data from 2005–2010, a vehicle’s tax is negatively correlated with its ...

Klier, Thomas

356

Protection against malevolent use of vehicles at Nuclear Power Plants. Vehicle barrier system selection guidance  

SciTech Connect (OSTI)

This manual provides a simplified procedure for selecting land vehicle barriers that will stop the design basis vehicle threat adopted by the U.S. Nuclear Regulatory Commission. Proper selection and construction of vehicle barriers should prevent intrusion of the design basis vehicle. In addition, vital safety related equipment should survive a design basis vehicle bomb attack when vehicle barriers are properly selected, sited, and constructed. This manual addresses passive vehicle barriers, active vehicle barriers, and site design features that can be used to reduce vehicle impact velocity.

Nebuda, D.T.

1994-08-01T23:59:59.000Z

357

Multi-lane Vehicle-to-Vehicle Networks with Time-Varying Radio Ranges  

E-Print Network [OSTI]

Multi-lane Vehicle-to-Vehicle Networks with Time-Varying Radio Ranges: Information Propagation propagation speed in multi-lane vehicle-to-vehicle networks such as roads or highways. We focus on the impact of time-varying radio ranges and of multiple lanes of vehicles, varying in speed and in density. We assess

Paris-Sud XI, Université de

358

Vehicle Signage Policy Outline the policy regarding signage on University of Michigan (U-M) vehicles.  

E-Print Network [OSTI]

Vehicle Signage Policy Objective Outline the policy regarding signage on University of Michigan (U-M) vehicles. Policy 1. All vehicles owned by U-M will be identified by a vehicle number, U-M decal and special municipal license plate issued by Fleet Services. 2. All signage on vehicles owned by U-M must be approved

Kirschner, Denise

359

CEOAS VEHICLE POLICY CEOAS has 4 vehicles for use by CEOAS personnel.  

E-Print Network [OSTI]

CEOAS VEHICLE POLICY CEOAS has 4 vehicles for use by CEOAS personnel. 1) A Dodge ¾ ton cargo van; vehicle # 096813, located on Orchard Street in a reserved parking space, south of Burt Hall. This cargo/log book. OSU approves charging vehicle use to grants. If logs show the vehicle to be underutilized (thus

Kurapov, Alexander

360

A Paired-Vehicle Recourse Strategy for the Vehicle Routing Problem with Stochastic Demands  

E-Print Network [OSTI]

A Paired-Vehicle Recourse Strategy for the Vehicle Routing Problem with Stochastic Demands Aykagan Institute of Technology Abstract This paper presents a paired-vehicle recourse strategy for the vehicle vehicles is dispatched from a terminal to serve single-period customer demands which are known

Erera, Alan

Note: This page contains sample records for the topic "vehicle weight buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Vehicle Maintenance Policy Outline the policy regarding vehicle maintenance at University of Michigan (U-M).  

E-Print Network [OSTI]

Vehicle Maintenance Policy Objective Outline the policy regarding vehicle maintenance at University of Michigan (U-M). Policy 1. All maintenance performed on U-M vehicles must be coordinated through Garage to repair their fleet vehicles. 2. U-M vehicles leased through Fleet Services include routine maintenance

Kirschner, Denise

362

Vehicle Maintenance Procedure Outline the procedure for vehicle maintenance at University of Michigan (U-M).  

E-Print Network [OSTI]

Vehicle Maintenance Procedure Objective Outline the procedure for vehicle maintenance at University of Michigan (U-M). Procedure 1. Your U-M vehicle has a mechanical and/or safety issue. 2. Contact Garage of the vehicle or if needed, have the vehicle towed to the maintenance facility. 4. If a loaner is needed while

Kirschner, Denise

363

2D Simultaneous Localization And Mapping for Micro Air Vehicles Adrien Angeli1  

E-Print Network [OSTI]

, heavy weight and high energy consumption. Instead, vision seems to be a good alternative: it is cheap2D Simultaneous Localization And Mapping for Micro Air Vehicles Adrien Angeli1 David Filliat2 St to shift from human-controlled aircrafts to partially-autonomous flying agents. Today, one of the main

Paris-Sud XI, Université de

364

Analysis of the AirTouch automatic vehicle location system's ability to locate moving vehicles  

E-Print Network [OSTI]

Automatic vehicle location systems are becoming more prevalent in diverse transportation applications. Their ability to locate vehicles can assist in locating emergency and public transit vehicles for better real-time dispatching as well...

Henry, Tracy Lynn

1995-01-01T23:59:59.000Z

365

Semiotics and Advanced Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Why it Matters to Consumers  

E-Print Network [OSTI]

Would You Buy a Hybrid Vehicle? Study #715238, conducted forcars/high-cost-of-hybrid-vehicles- 406/overview.htm ConsumerRelease. (2005) Most Hybrid Vehicles Not as Cost-Effective

Heffner, Reid R.

2007-01-01T23:59:59.000Z

366

2011 Vehicle Technologies Market Report  

SciTech Connect (OSTI)

This report details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Program (VTP), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. This third edition since this report was started in 2008 offers several marked improvements relative to its predecessors. Most significantly, where earlier editions of this report focused on supplying information through an examination of market drivers, new vehicle trends, and supplier data, this edition uses a different structure. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. In addition to making this sectional re-alignment, this year s edition of the report also takes a different approach to communicating information. While previous editions relied heavily on text accompanied by auxiliary figures, this third edition relies primarily on charts and graphs to communicate trends. Any accompanying text serves to introduce the trends communication by the graphic and highlight any particularly salient observations. The opening section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. For example, Figures 11 through 13 discuss the connections between global oil prices and U.S. GDP, and Figures 20 and 21 show U.S. employment in the automotive sector. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. Figures 26 through 33 offer snapshots of major light-duty vehicle brands in the U.S. and Figures 38 through 43 examine the performance and efficiency characteristics of vehicles sold. The discussion of Medium and Heavy Trucks offers information on truck sales (Figures 58 through 61) and fuel use (Figures 64 through 66). The Technology section offers information on alternative fuel vehicles and infrastructure (Figures 68 through 77), and the Policy section concludes with information on recent, current, and near-future Federal policies like the Cash for Clunkers program (Figures 87 and 88) and the Corporate Automotive Fuel Economy standard (Figures 90 through 99) and. In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible nuggets.

Davis, Stacy Cagle [ORNL; Boundy, Robert Gary [ORNL; Diegel, Susan W [ORNL

2012-02-01T23:59:59.000Z

367

Vehicle security apparatus and method  

DOE Patents [OSTI]

A vehicle security apparatus for use in a motor vehicle, the apparatus comprising an optical key, a receptacle, a receiver and at least one optical fiber. The optical key has a transmitter having at least one first preprogrammed coded signal stored in a first electric circuit. The receptacle receives the optical key and at least one transmittable coded optical signal from the transmitter corresponding to the at least one preprogrammed coded signal stored in the first electric circuit. The receiver compares the at least one transmittable coded optical signal to at least one second preprogrammed coded signal stored in a second electric circuit and the receiver is adapted to trigger switching effects for at least one of enabling starting the motor vehicle and starting the motor vehicle upon determination that the at least one transmittable coded optical signal corresponds to the at least one second preprogrammed signal in the second electric circuit. The at least one optical fiber is operatively connected between the receptacle and the receiver for carrying the optical signal from the receptacle to the receiver. Also disclosed is a method for permitting only authorized use of a motor vehicle.

Veligdan, James T. (Manorville, NY)

1996-02-13T23:59:59.000Z

368

Consumer Vehicle Choice Model Documentation  

SciTech Connect (OSTI)

In response to the Fuel Economy and Greenhouse Gas (GHG) emissions standards, automobile manufacturers will need to adopt new technologies to improve the fuel economy of their vehicles and to reduce the overall GHG emissions of their fleets. The U.S. Environmental Protection Agency (EPA) has developed the Optimization Model for reducing GHGs from Automobiles (OMEGA) to estimate the costs and benefits of meeting GHG emission standards through different technology packages. However, the model does not simulate the impact that increased technology costs will have on vehicle sales or on consumer surplus. As the model documentation states, “While OMEGA incorporates functions which generally minimize the cost of meeting a specified carbon dioxide (CO2) target, it is not an economic simulation model which adjusts vehicle sales in response to the cost of the technology added to each vehicle.” Changes in the mix of vehicles sold, caused by the costs and benefits of added fuel economy technologies, could make it easier or more difficult for manufacturers to meet fuel economy and emissions standards, and impacts on consumer surplus could raise the costs or augment the benefits of the standards. Because the OMEGA model does not presently estimate such impacts, the EPA is investigating the feasibility of developing an adjunct to the OMEGA model to make such estimates. This project is an effort to develop and test a candidate model. The project statement of work spells out the key functional requirements for the new model.

Liu, Changzheng [ORNL] [ORNL; Greene, David L [ORNL] [ORNL

2012-08-01T23:59:59.000Z

369

Vehicle security apparatus and method  

DOE Patents [OSTI]

A vehicle security apparatus for use in a motor vehicle is disclosed, the apparatus comprising an optical key, a receptacle, a receiver and at least one optical fiber. The optical key has a transmitter having at least one first preprogrammed coded signal stored in a first electric circuit. The receptacle receives the optical key and at least one transmittable coded optical signal from the transmitter corresponding to the at least one preprogrammed coded signal stored in the first electric circuit. The receiver compares the at least one transmittable coded optical signal to at least one second preprogrammed coded signal stored in a second electric circuit and the receiver is adapted to trigger switching effects for at least one of enabling starting the motor vehicle and starting the motor vehicle upon determination that the at least one transmittable coded optical signal corresponds to the at least one second preprogrammed signal in the second electric circuit. The at least one optical fiber is operatively connected between the receptacle and the receiver for carrying the optical signal from the receptacle to the receiver. Also disclosed is a method for permitting only authorized use of a motor vehicle. 7 figs.

Veligdan, J.T.

1996-02-13T23:59:59.000Z

370

Hybrid and Plug-In Electric Vehicles (Brochure)  

SciTech Connect (OSTI)

Hybrid and plug-in electric vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

Not Available

2014-05-01T23:59:59.000Z

371

Apps for Vehicles: What are some examples of vehicle data applications...  

Open Energy Info (EERE)

and weather changes * Helping consumers understand the cost and overall potential of electric drive vehicles * Enhanced security with real-time notification of a vehicle...

372

Vehicle Technologies Office Merit Review 2014: Vehicle Thermal Systems Modeling in Simulink  

Broader source: Energy.gov [DOE]

Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

373

Vehicle Technologies Office Merit Review 2014: Vehicle Communications and Charging Control  

Broader source: Energy.gov [DOE]

Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

374

Vehicle Technologies Office Merit Review 2014: Vehicle to Grid Communications and Field Testing  

Broader source: Energy.gov [DOE]

Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

375

Alternative Fuel Vehicles: The Case of Compressed Natural Gas (CNG) Vehicles in California Households  

E-Print Network [OSTI]

same circumstances. iii ALTERNATIVE FUEL VEHICLES: THE CASEDoug; Chelius, Michael, “Alternative Fuel Vehicle Programs:Conventional and Alternative Fuel Response Simulator: A

Abbanat, Brian A.

2001-01-01T23:59:59.000Z

376

Effect of Weight and Roadway Grade on the Fuel Economy of Class-8 Frieght Trucks  

SciTech Connect (OSTI)

In 2006-08, the Oak Ridge National Laboratory, in collaboration with several industry partners, collected real-world performance and situational data for long-haul operations of Class-8 trucks from a fleet engaged in normal freight operations. Such data and information are useful to support Class-8 modeling of combination truck performance, technology evaluation efforts for energy efficiency, and to provide a means of accounting for real-world driving performance within combination truck research and analyses. The present study used the real-world information collected in that project to analyze the effects that vehicle speed and vehicle weight have on the fuel efficiency of Class-8 trucks. The analysis focused on two type of terrains, flat (roadway grades ranging from -1% to 1%) and mild uphill terrains (roadway grades ranging from 1% to 3%), which together covered more than 70% of the miles logged in the 2006-08 project (note: almost 2/3 of the distance traveled on mild uphill terrains was on terrains with 1% to 2% grades). In the flat-terrain case, the results of the study showed that for light and medium loads, fuel efficiency decreases considerably as speed increases. For medium-heavy and heavy loads (total vehicle weight larger than 65,000 lb), fuel efficiency tends to increase as the vehicle speed increases from 55 mph up to about 58-60 mph. For speeds higher than 60 mph, fuel efficiency decreases at an almost constant rate with increasing speed. At any given speed, fuel efficiency decreases and vehicle weight increases, although the relationship between fuel efficiency and vehicle weight is not linear, especially for vehicle weights above 65,000 lb. The analysis of the information collected while the vehicles were traveling on mild upslope terrains showed that the fuel efficiency of Class-8 trucks decreases abruptly with vehicle weight ranging from light loads up to medium-heavy loads. After that, increases in the vehicle weight only decrease fuel efficiency slightly. Fuel efficiency also decreases significantly with speed, but only for light and medium loads. For medium-heavy and heavy, FE is almost constant for speeds ranging from 57 to about 66 mph. For speeds higher than 66 mph, the FE decreases with speed, but at a lower rate than for light and medium loads. Statistical analyses that compared the fuel efficiencies obtained when the vehicles were traveling at 59 mph vs. those achieved when they were traveling at 65 mph or 70 mph indicated that the former were, on average, higher than the latter. This result was statistically significant at the 99.9% confidence level (note: the Type II error i.e., the probability of failing to reject the null hypothesis when the alternative hypothesis is true was 18% and 6%, respectively).

Franzese, Oscar [ORNL; Davidson, Diane [ORNL

2011-11-01T23:59:59.000Z

377

Comparison of Clean Diesel Buses to CNG Buses  

Broader source: Energy.gov (indexed) [DOE]

1.00E+05 1.00E+06 1.00E+07 1.00E+08 Number Concentration, dNdlogDp (cc) PM Particle Count by Size Avg DPF (6019, 6065) Avg CNG (854, 975) without backfires CNG (824) with...

378

Comparison of Clean Diesel Buses to CNG Buses  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart ofMeasuring DopamineEnergy,6. RadiativeLaboratory (LANL) |COMPARISON

379

Guidelines for the Establishment of a Model Neighborhood Electric Vehicle (NEV) Fleet  

SciTech Connect (OSTI)

The U.S. Department of Energy’s Advanced Vehicle Testing Activity tests neighborhood electric vehicles (NEVs) in both track and fleet testing environments. NEVs, which are also known as low speed vehicles, are light-duty vehicles with top speeds of between 20 and 25 mph, and total gross vehicle weights of approximately 2,000 pounds or less. NEVs have been found to be very viable alternatives to internal combustion engine vehicles based on their low operating costs. However, special charging infrastructure is usually necessary for successful NEV fleet deployment. Maintenance requirements are also unique to NEVs, especially if flooded lead acid batteries are used as they have watering requirements that require training, personnel protection equipment, and adherence to maintenance schedules. This report provides guidelines for fleet managers to follow in order to successfully introduce and operate NEVs in fleet environments. This report is based on the NEV testing and operational experience of personnel from the Advanced Vehicle Testing Activity, Electric Transportation Applications, and the Idaho National Laboratory.

Roberta Brayer; Donald Karner; Kevin Morrow; James Francfort

2006-06-01T23:59:59.000Z

380

Innovative Structural and Joining Concepts for Lightweight Design of Heavy Vehicle Systems  

SciTech Connect (OSTI)

Recent advances in the area of Metal Matrix Composites (MMC's) have brought these materials to a maturity stage where the technology is ready for transition to large-volume production and commercialization. The new materials seem to allow the fabrication of higher quality parts at less than 50 percent of the weight as compared to steel, especially when they are selectively reinforced with carbon, silicon carbide, or aluminum oxide fibers. Most of the developments in the MMC materials have been spurred, mainly by applications that require high structural performance at elevated temperatures, the heavy vehicle industry could also benefit from this emerging technology. Increasing requirements of weight savings and extended durability are the main drivers for potential insertion of MMC technology into the heavy vehicle market. Critical elements of a typical tractor-trailer combination, such as highly loaded sections of the structure, engine components, brakes, suspensions, joints and bearings could be improved through judicious use of MMC materials. Such an outcome would promote the DOE's programmatic objectives of increasing the fuel efficiency of heavy vehicles and reducing their life cycle costs and pollution levels. However, significant technical and economical barriers are likely to hinder or even prevent broad applications of MMC materials in heavy vehicles. The tradeoffs between such expected benefits (lower weights and longer durability) and penalties (higher costs, brittle behavior, and difficult to machine) must be thoroughly investigated both from the performance and cost viewpoints, before the transfer of MMC technology to heavy vehicle systems can be properly assessed and implemented. MMC materials are considered to form one element of the comprehensive, multi-faceted strategy pursued by the High Strength/Weight Reduction (HS/WR) Materials program of the U.S. Department of Energy (DOE) for structural weight savings and quality enhancements in heavy vehicles. The research work planed for the first year of this project (June 1, 2003 through May 30, 2004) focused on a theoretical investigation of weight benefits and structural performance tradeoffs associated with the design, fabrication, and joining of MMC components for heavy-duty vehicles. This early research work conducted at West Virginia University yielded the development of integrated material-structural models that predicted marginal benefits and significant barriers to MMC applications in heavy trailers. The results also indicated that potential applications of MMC materials in heavy vehicles are limited to components identified as critical for either loadings or weight savings. Therefore, the scope of the project was expanded in the following year (June 1, 2004 through May 30, 2005) focused on expanding the lightweight material-structural design concepts for heavy vehicles from the component to the system level. Thus, the following objectives were set: (1) Devise and evaluate lightweight structural configurations for heavy vehicles. (2) Study the feasibility of using Metal Matrix Composites (MMC) for critical structural components and joints in heavy vehicles. (3) Develop analysis tools, methods, and validated test data for comparative assessments of innovative design and joining concepts. (4) Develop analytical models and software for durability predictions of typical heavy vehicle components made of particulate MMC or fiber-reinforced composites. This report summarizes the results of the research work conducted during the past two years in this projects.

Jacky C. Prucz; Samir N. Shoukry; Gergis W. William

2005-08-31T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle weight buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Vehicle Battery Safety Roadmap Guidance  

SciTech Connect (OSTI)

The safety of electrified vehicles with high capacity energy storage devices creates challenges that must be met to assure commercial acceptance of EVs and HEVs. High performance vehicular traction energy storage systems must be intrinsically tolerant of abusive conditions: overcharge, short circuit, crush, fire exposure, overdischarge, and mechanical shock and vibration. Fail-safe responses to these conditions must be designed into the system, at the materials and the system level, through selection of materials and safety devices that will further reduce the probability of single cell failure and preclude propagation of failure to adjacent cells. One of the most important objectives of DOE's Office of Vehicle Technologies is to support the development of lithium ion batteries that are safe and abuse tolerant in electric drive vehicles. This Roadmap analyzes battery safety and failure modes of state-of-the-art cells and batteries and makes recommendations on future investments that would further DOE's mission.

Doughty, D. H.

2012-10-01T23:59:59.000Z

382

Heavy Duty Vehicle Futures Analysis.  

SciTech Connect (OSTI)

This report describes work performed for an Early Career Research and Development project. This project developed a heavy-duty vehicle (HDV) sector model to assess the factors influencing alternative fuel and efficiency technology adoption. This model builds on a Sandia light duty vehicle sector model and provides a platform for assessing potential impacts of technological advancements developed at the Combustion Research Facility. Alternative fuel and technology adoption modeling is typically developed around a small set of scenarios. This HDV sector model segments the HDV sector and parameterizes input values, such as fuel prices, efficiencies, and vehicle costs. This parameterization enables sensitivity and trade space analyses to identify the inputs that are most associated with outputs of interest, such as diesel consumption and greenhouse gas emissions. Thus this analysis tool enables identification of the most significant HDV sector drivers that can be used to support energy security and climate change goals.

Askin, Amanda Christine; Barter, Garrett; West, Todd H.; Manley, Dawn Kataoka

2014-05-01T23:59:59.000Z

383

2010 Vehicle Technologies Market Report  

SciTech Connect (OSTI)

In the past five years, vehicle technologies have advanced on a number of fronts: power-train systems have become more energy efficient, materials have become more lightweight, fuels are burned more cleanly, and new hybrid electric systems reduce the need for traditional petroleum-fueled propulsion. This report documents the trends in market drivers, new vehicles, and component suppliers. This report is supported by the U.S. Department of Energy s (DOE s) Vehicle Technologies Program, which develops energy-efficient and environmentally friendly transportation technologies that will reduce use of petroleum in the United States. The long-term aim is to develop "leap frog" technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.

Ward, Jacob [U.S. Department of Energy; Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL

2011-06-01T23:59:59.000Z

384

2008 Vehicle Technologies Market Report  

SciTech Connect (OSTI)

In the past five years, vehicle technologies have advanced on a number of fronts: power-train systems have become more energy efficient, materials have become more lightweight, fuels are burned more cleanly, and new hybrid electric systems reduce the need for traditional petroleum-fueled propulsion. This report documents the trends in market drivers, new vehicles, and component suppliers. This report is supported by the Department of Energy's (DOE's) Vehicle Technologies Program, which develops energy-efficient and environmentally friendly highway transportation technologies that will reduce use of petroleum in the United States. The long-term aim is to develop 'leap frog' technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.

Ward, J.; Davis, S.

2009-07-01T23:59:59.000Z

385

Vehicle to Grid Demonstration Project  

SciTech Connect (OSTI)

This report summarizes the activities and accomplishments of a two-year DOE-funded project on Grid-Integrated Vehicles (GIV) with vehicle to grid power (V2G). The project included several research and development components: an analysis of US driving patterns; an analysis of the market for EVs and V2G-capable EVs; development and testing of GIV components (in-car and in-EVSE); interconnect law and policy; and development and filing of patents. In addition, development activities included GIV manufacturing and licensing of technologies developed under this grant. Also, five vehicles were built and deployed, four for the fleet of the State of Delaware, plus one for the University of Delaware fleet.

Willett Kempton; Meryl Gardner; Michael Hidrue; Fouad Kamilev; Sachin Kamboj; Jon Lilley; Rodney McGee; George Parsons; Nat Pearre; Keith Trnka

2010-12-31T23:59:59.000Z

386

Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles  

E-Print Network [OSTI]

in batteries, ultracapacitors, fuel cells and hybrid vehicleBattery, Hybrid and Fuel Cell Electric Vehicle SymposiumBattery, Hybrid and Fuel Cell Electric Vehicle Symposium

Zhao, Hengbing; Burke, Andy

2009-01-01T23:59:59.000Z

387

taking charge : optimizing urban charging infrastructure for shared electric vehicles  

E-Print Network [OSTI]

This thesis analyses the opportunities and constraints of deploying charging infrastructure for shared electric vehicles in urban environments. Existing electric vehicle charging infrastructure for privately owned vehicles ...

Subramani, Praveen

2012-01-01T23:59:59.000Z

388

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network [OSTI]

vehicle -$1,612 No engine Vehicle retail cost to consumercosts, for hydrogen FCVs and conventional gasoline internal combustion engine vehicles (

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

389

Vehicle Technologies Office's Research Recognized by R&D 100...  

Office of Environmental Management (EM)

Vehicles Home About Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions Alternative Fuels Modeling, Testing, Data & Results Education...

390

Moving toward a commercial market for hydrogen fuel cell vehicles...  

Energy Savers [EERE]

Moving toward a commercial market for hydrogen fuel cell vehicles Moving toward a commercial market for hydrogen fuel cell vehicles Fuel cell vehicles and fueling stations...

391

Electric Vehicles: Performances, Life Cycle Costs, Emissions, and Recharging Requirements  

E-Print Network [OSTI]

Sealed lead-acid electric and vehicle battery development.A. (1987a) ture for electric vehicles. In Resources ElectricInternational Conference. Electric Vehicle De- Universityof

DeLuchi, Mark A.; Wang, Quanlu; Sperling, Daniel

1989-01-01T23:59:59.000Z

392

Advanced Powertrain Research Facility Vehicle Test Cell Thermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Powertrain Research Facility Vehicle Test Cell Thermal Upgrade Advanced Powertrain Research Facility Vehicle Test Cell Thermal Upgrade 2010 DOE Vehicle Technologies and Hydrogen...

393

Development of High Energy Lithium Batteries for Electric Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lithium Batteries for Electric Vehicles Development of High Energy Lithium Batteries for Electric Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program...

394

Interested but unsure: Public attitudes toward electric vehicles in China  

E-Print Network [OSTI]

to pay for electric vehicles and their attributes. Resourceownership and use of electric vehicles–a review ofenvironmental effects of electric vehicles versus compressed

Lo, Kevin

2013-01-01T23:59:59.000Z

395

Ultracapacitor Technologies and Application in Hybrid and Electric Vehicles  

E-Print Network [OSTI]

Moderate Hybrid-electric Vehicles. ESScap06, Switzerland,GH. SIMPLEV: A Simple Electric Vehicle Simulation Program-20 th International Electric Vehicle Symposium, Long Beach,

Burke, Andy

2009-01-01T23:59:59.000Z

396

Enhanced Ethanol Engine And Vehicle Efficiency (Agreement 13425...  

Broader source: Energy.gov (indexed) [DOE]

Enhanced Ethanol Engine And Vehicle Efficiency (Agreement 13425) Enhanced Ethanol Engine And Vehicle Efficiency (Agreement 13425) Presentation from the U.S. DOE Office of Vehicle...

397

Vehicle Technologies Office Merit Review 2014: High-Voltage Solid...  

Broader source: Energy.gov (indexed) [DOE]

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles Vehicle Technologies Office Merit Review 2014: High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...

398

2014 Annual Merit Review Results Report - Hybrid Vehicle Systems...  

Energy Savers [EERE]

Hybrid Vehicle Systems Technologies 2014 Annual Merit Review Results Report - Hybrid Vehicle Systems Technologies Merit review of DOE Vehicle Technologies research activities...

399

NREL: Vehicles and Fuels Research - Systems Analysis and Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

evaluates the impact of emerging technologies on efficiency, performance, cost, and battery life for a full range of vehicles-conventional vehicles, hybrid electric vehicles,...

400

automated vehicle control: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a Robot Vehicle James L. Crowley Patrick Cartesian coordinate space. In the same sense, robot vehicles require a "vehicle controller" to command. This paper presents the design of...

Note: This page contains sample records for the topic "vehicle weight buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

advanced vehicle control: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a Robot Vehicle James L. Crowley Patrick Cartesian coordinate space. In the same sense, robot vehicles require a "vehicle controller" to command. This paper presents the design of...

402

advanced vehicle control systems: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a Robot Vehicle James L. Crowley Patrick Cartesian coordinate space. In the same sense, robot vehicles require a "vehicle controller" to command. This paper presents the design of...

403

Advanced Technology and Alternative Fuel Vehicle Basics | Department...  

Office of Environmental Management (EM)

Vehicles & Fuels Advanced Technology and Alternative Fuel Vehicle Basics Advanced Technology and Alternative Fuel Vehicle Basics August 20, 2013 - 9:00am Addthis Photo of a...

404

Vehicle Technologies Office Merit Review 2014: Advanced Technology...  

Energy Savers [EERE]

Advanced Technology Vehicle Lab Benchmarking - Level 1 Vehicle Technologies Office Merit Review 2014: Advanced Technology Vehicle Lab Benchmarking - Level 1 Presentation given by...

405

Real-time Vehicle Reidentification System for Freeway Performance Measurements  

E-Print Network [OSTI]

Tok, A. (2005). “Anonymous Vehicle Tracking for Real-timeField Investigation of Advanced Vehicle Reidentificationvariance, land changing, and vehicle heterogeneity. In:

Jeng, Shin-Ting

2007-01-01T23:59:59.000Z

406

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

49 Table 13. Vehicle and fuel efficiency and electricity14. Timing profiles and vehicle and fuel pathways includedand generation, Table 18. Vehicle demand and system load

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

407

Commercial Vehicle Classification System using Advanced Inductive Loop Technology  

E-Print Network [OSTI]

Measurement Based on Vehicle Reidentification In proceedingsof Service Based on Anonymous Vehicle Reidentification InInvestigation of Anonymous Vehicle Tracking for Real-Time

Tok, Yeow Chern Andre

2008-01-01T23:59:59.000Z

408

Will China's Vehicle Population Grow Even Faster than Forecasted?  

E-Print Network [OSTI]

2011. “China’s Soaring Vehicle Population: Even Greater Thanversion, “China’s Soaring Vehicle Population: Even Greater2012. “Modeling Future Vehicle Sales and Stock in China,”

Wang, Yunshi; Teter, Jacob; Sperling, Daniel

2012-01-01T23:59:59.000Z

409

Robust Vehicle State Estimation for Improved Traffic Sensing and Management  

E-Print Network [OSTI]

31 3. Vehicle Segmentation from Monocular Video38 3.2.2. Vehicle40 3.2.3. Extraction of Vehicle Structure and

Vu, Anh Quoc

2011-01-01T23:59:59.000Z

410

2008 Annual Merit Review Results Summary - 14. Vehicle Systems...  

Broader source: Energy.gov (indexed) [DOE]

14. Vehicle Systems and Simulation 2008 Annual Merit Review Results Summary - 14. Vehicle Systems and Simulation DOE Vehicle Technologies Annual Merit Review 2008meritreview14.p...

411

Carbonyl Emissions from Gasoline and Diesel Motor Vehicles  

E-Print Network [OSTI]

fraction of light-duty gasoline vehicle particulate matterQuinone emissions from gasoline and diesel motor vehicles.32 organic compounds from gasoline- powered motor vehicles.

Jakober, Chris A.

2008-01-01T23:59:59.000Z

412

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Heat Recovery Program for Passenger Vehicles Thermoelectric Waste Heat Recovery Program for Passenger Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

413

DOE Vehicle Technologies Program 2009 Merit Review Report - Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Review Report DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle Systems DOE Vehicle Technologies Program 2009 Merit Review Report - Safety Codes and Standards...

414

Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles  

E-Print Network [OSTI]

ultracapacitors, fuel cells and hybrid vehicle design. Dr.on electric and hybrid vehicle technology and applicationsand performance. Hybrid vehicles utilizing a load leveling

Zhao, Hengbing; Burke, Andy

2009-01-01T23:59:59.000Z

415

2013 Annual Merit Review Results Report - Hybrid Vehicle Systems...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hybrid Vehicle Systems Technologies 2013 Annual Merit Review Results Report - Hybrid Vehicle Systems Technologies Merit review of DOE Vehicle Technologies research activities...

416

2012 Annual Merit Review Results Report - Hybrid Vehicle Systems...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hybrid Vehicle Systems Technologies 2012 Annual Merit Review Results Report - Hybrid Vehicle Systems Technologies Merit review of DOE Vehicle Technologies research activities...

417

Energy Department Awards Will Promote Electric Vehicles in 24...  

Broader source: Energy.gov (indexed) [DOE]

Will Promote Electric Vehicles in 24 States and Train a Workforce for Advanced Vehicle Development Energy Department Awards Will Promote Electric Vehicles in 24 States and Train a...

418

Vehicle Technologies Office Merit Review 2014: Hydrogen Fuel...  

Energy Savers [EERE]

Vehicle Technologies Office Merit Review 2014: Hydrogen Fuel-Cell Electric Hybrid Truck & Zero Emission Delivery Vehicle Deployment Vehicle Technologies Office Merit Review 2014:...

419

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network [OSTI]

of Energy for hydrogen and fuel cell vehicle markethybrid, electric and hydrogen fuel cell vehicles, Journal ofof the Transition to Hydrogen Fuel Cell Vehicles & the

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

420

Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles  

E-Print Network [OSTI]

simulation tool for hydrogen fuel cell vehicles, Journal ofeconomies of the direct hydrogen fuel cell vehicle withoutMaximizing Direct-Hydrogen Pem Fuel Cell Vehicle Efficiency-

Zhao, Hengbing; Burke, Andy

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle weight buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Electric Vehicle Site Operator Program  

SciTech Connect (OSTI)

Kansas State University, with funding support from federal, state, public, and private companies, is participating in the Department of Energy's Electric Vehicle Site Operator Program. Through participation is this program, Kansas State is demonstrating, testing, and evaluating electric or hybrid vehicle technology. This participation will provide organizations the opportunity to examine the latest EHV prototypes under actual operating conditions. KSU proposes to purchase one (1) electric or hybrid van and four (4) electric cars during the first two years of this five year program. KSU has purchased one G-Van built by Conceptor Industries, Toronto, Canada and has initiated a procurement order to purchase two (2) Soleq 1992 Ford EVcort stationwagons.

Not Available

1992-01-01T23:59:59.000Z

422

Thermoelectric generator for motor vehicle  

DOE Patents [OSTI]

A thermoelectric generator for producing electric power for a motor vehicle from the heat of the exhaust gasses produced by the engine of the motor vehicle. The exhaust gasses pass through a finned heat transfer support structure which has seat positions on its outside surface for the positioning of thermoelectric modules. A good contact cylinder provides a framework from which a spring force can be applied to the thermoelectric modules to hold them in good contact on their seats on the surface of the heat transfer support structure.

Bass, John C. (6121 La Pintra Dr., La Jolla, CA 92037)

1997-04-29T23:59:59.000Z

423

Thermoelectric generator for motor vehicle  

SciTech Connect (OSTI)

A thermoelectric generator is described for producing electric power for a motor vehicle from the heat of the exhaust gases produced by the engine of the motor vehicle. The exhaust gases pass through a finned heat transfer support structure which has seat positions on its outside surface for the positioning of thermoelectric modules. A good contact cylinder provides a framework from which a spring force can be applied to the thermoelectric modules to hold them in good contact on their seats on the surface of the heat transfer support structure. 8 figs.

Bass, J.C.

1997-04-29T23:59:59.000Z

424

Vehicle barrier with access delay  

DOE Patents [OSTI]

An access delay vehicle barrier for stopping unauthorized entry into secure areas by a vehicle ramming attack includes access delay features for preventing and/or delaying an adversary from defeating or compromising the barrier. A horizontally deployed barrier member can include an exterior steel casing, an interior steel reinforcing member and access delay members disposed within the casing and between the casing and the interior reinforcing member. Access delay members can include wooden structural lumber, concrete and/or polymeric members that in combination with the exterior casing and interior reinforcing member act cooperatively to impair an adversarial attach by thermal, mechanical and/or explosive tools.

Swahlan, David J; Wilke, Jason

2013-09-03T23:59:59.000Z

425

Micro-unmanned aerodynamic vehicle  

DOE Patents [OSTI]

A MEMS-based micro-unmanned vehicle includes at least a pair of wings having leading wing beams and trailing wing beams, at least two actuators, a leading actuator beam coupled to the leading wing beams, a trailing actuator beam coupled to the trailing wing beams, a vehicle body having a plurality of fulcrums pivotally securing the leading wing beams, the trailing wing beams, the leading actuator beam and the trailing actuator beam and having at least one anisotropically etched recess to accommodate a lever-fulcrum motion of the coupled beams, and a power source.

Reuel, Nigel (Rio Rancho, NM); Lionberger, Troy A. (Ann Arbor, MI); Galambos, Paul C. (Albuquerque, NM); Okandan, Murat (Albuquerque, NM); Baker, Michael S. (Albuquerque, NM)

2008-03-11T23:59:59.000Z

426

Low floor mass transit vehicle  

DOE Patents [OSTI]

A mass transit vehicle includes a frame structure that provides an efficient and economical approach to providing a low floor bus. The inventive frame includes a stiff roof panel and a stiff floor panel. A plurality of generally vertical pillars extend between the roof and floor panels. A unique bracket arrangement is disclosed for connecting the pillars to the panels. Side panels are secured to the pillars and carry the shear stresses on the frame. A unique seating assembly that can be advantageously incorporated into the vehicle taking advantage of the load distributing features of the inventive frame is also disclosed.

Emmons, J. Bruce (Beverly Hills, MI); Blessing, Leonard J. (Rochester, MI)

2004-02-03T23:59:59.000Z

427

A prototype bus arrival prediction system using automatic vehicle location data  

E-Print Network [OSTI]

and demonstrated the use and accuracy of ANN techniques on modeling schedule deviations of buses on a route using a time series model. However, this method was not applied to generating passenger information. Travl ink, Minnesota Guidestar s operational test...

Ojili, Srikanth Reddy

1999-01-01T23:59:59.000Z

428

Molecular weight and molecular weight distribution of kraft lignins  

SciTech Connect (OSTI)

Kraft lignins are the lignin degradation products from kraft pulping. They are complex, heterogeneous polymers with some polar character. The molecular weight of kraft lignins greatly affect the physical properties of black liquors, and are of primary importance in separation from black liquor and in evaluating potential uses. Several purified kraft lignins from slash pine were analyzed for number average molecular weight by vapor pressure osmometry (VPO), for weight average molecular weight by low angle laser light scattering (LALLS), and for the molecular weight distribution by high temperature size exclusion chromatography (SEC). The lignins were run in tetrahydrofuran (THF), N,N-dimethyl formamide (DMF), DMF with 0.1M LiBr, and pyridine at conditions above the Theta temperature. Experimental methods are discussed. The results show that VPO may be used to determine M[sub n] for kraft lignins if the purity of the lignins and the identity of the impurities are known. LALLS can be used to determine M[sub w] for kraft lignins if measurements are made at or above the Theta temperature of the lignin-solvent pair. SEC should be used at temperatures at, or above, the Theta temperature of the lignin-solvent pair. Size separation is highly dependent on the solvent used, and DMF is a much better solvent than THF for high temperature SEC. Future work using moment resolution procedures to derive an accurate calibration curve are also discussed.

Schmidl, W.; Dong, D.; Fricke, A.L. (Univ. of Florida, Gainesville, FL (United States))

1990-01-01T23:59:59.000Z

429

An empirical analysis on the adoption of alternative fuel vehicles:The case of natural gas vehicles  

E-Print Network [OSTI]

lessons learned from alternative fuel vehicle programs inShirk, C. , 2000. Alternative Fuel Vehicles Made Available,for sustained adoption of alternative fuel vehicles and

Yeh, Sonia

2007-01-01T23:59:59.000Z

430

New Vehicle Choices, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and Gasoline Tax  

E-Print Network [OSTI]

7: Change in Sales of Hybrid Vehicles Due to Federal Taxof alternative fuels and hybrid vehicles. A primary policythe federal level to hybrid vehicles. This policy, begun in

Martin, Elliot William

2009-01-01T23:59:59.000Z

431

New Vehicle Choice, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and the Gasoline Tax  

E-Print Network [OSTI]

7: Change in Sales of Hybrid Vehicles Due to Federal Taxof alternative fuels and hybrid vehicles. A primary policythe federal level to hybrid vehicles. This policy, begun in

Martin, Elliott William

2009-01-01T23:59:59.000Z

432

EV Project Nissan Leaf Vehicle Summary Report  

Broader source: Energy.gov (indexed) [DOE]

2011 through March 2011 Vehicle Usage Number of trips 3,364 Total distance traveled (mi) 21,706 Avg trip distance (mi) 5.8 Avg distance traveled per day when the vehicle was...

433

EV Project Nissan Leaf Vehicle Summary Report  

Broader source: Energy.gov (indexed) [DOE]

through June 2013 Vehicle Usage Number of trips 1,135,053 Total distance traveled (mi) 8,040,300 Avg trip distance (mi) 7.1 Avg distance traveled per day when the vehicle was...

434

EV Project Nissan Leaf Vehicle Summary Report  

Broader source: Energy.gov (indexed) [DOE]

through September 2012 Vehicle Usage Number of trips 813,430 Total distance traveled (mi) 5,837,173 Avg trip distance (mi) 7.2 Avg distance traveled per day when the vehicle was...

435

EV Project Nissan Leaf Vehicle Summary Report  

Broader source: Energy.gov (indexed) [DOE]

2012 through June 2012 Vehicle Usage Number of trips 787,895 Total distance traveled (mi) 5,666,469 Avg trip distance (mi) 7.2 Avg distance traveled per day when the vehicle was...

436

EV Project Nissan Leaf Vehicle Summary Report  

Broader source: Energy.gov (indexed) [DOE]

through December 2012 Vehicle Usage Number of trips 969,853 Total distance traveled (mi) 6,724,952 Avg trip distance (mi) 6.9 Avg distance traveled per day when the vehicle was...

437

EV Project NIssan Leaf Vehicle Summary Report  

Broader source: Energy.gov (indexed) [DOE]

2012 through March 2012 Vehicle Usage Number of trips 773,602 Total distance traveled (mi) 5,558,155 Avg trip distance (mi) 7.2 Avg distance traveled per day when the vehicle was...

438

EV Project NIssan Leaf Vehicle Summary Report  

Broader source: Energy.gov (indexed) [DOE]

through December 2011 Vehicle Usage Number of trips 707,330 Total distance traveled (mi) 4,878,735 Avg trip distance (mi) 6.9 Avg distance traveled per day when the vehicle was...

439

EV Project NIssan Leaf Vehicle Summary Report  

Broader source: Energy.gov (indexed) [DOE]

2011 through June 2011 Vehicle Usage Number of trips 160,588 Total distance traveled (mi) 1,077,931 Avg trip distance (mi) 6.7 Avg distance traveled per day when the vehicle was...

440

Vehicle Technologies Office | Department of Energy  

Office of Environmental Management (EM)

Read more Buying a New Car? Buying a New Car? Compare gas mileage, emissions, air pollution ratings, and safety data for new and used vehicles. Read more The Vehicle...

Note: This page contains sample records for the topic "vehicle weight buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Vehicle Technologies Office: Electric Drive Technologies  

Broader source: Energy.gov [DOE]

Advanced power electronics and electric motors (APEEM) that make up vehicles' electric drive system are essential to hybrid and plug-in electric vehicles. As such, improvements in these...

442

Performance optimization for unmanned vehicle systems  

E-Print Network [OSTI]

Technological advances in the area of unmanned vehicles are opening new possibilities for creating teams of vehicles performing complex missions with some degree of autonomy. Perhaps the most spectacular example of these ...

Le Ny, Jerome

2008-01-01T23:59:59.000Z

443

Dynamic Vehicle Routing with Stochastic Time Constraints  

E-Print Network [OSTI]

In this paper we study a dynamic vehicle routing problem where demands have stochastic deadlines on their waiting times. Specifically, a network of robotic vehicles must service demands whose time of arrival, location and ...

Pavone, Marco

444

Path Planning Algorithms for Multiple Heterogeneous Vehicles  

E-Print Network [OSTI]

Unmanned aerial vehicles (UAVs) are becoming increasingly popular for surveillance in civil and military applications. Vehicles built for this purpose vary in their sensing capabilities, speed and maneuverability. It is therefore natural to assume...

Oberlin, Paul V.

2010-01-16T23:59:59.000Z

445

Multiple Vehicle Routing Problem with Fuel Constraints  

E-Print Network [OSTI]

In this paper, a Multiple Vehicle Routing Problem with Fuel Constraints (MVRPFC) is considered. This problem consists of a field of targets to be visited, and a collection of vehicles with fuel tanks that may visit the targets. Consideration...

Levy, David

2013-06-26T23:59:59.000Z

446

Algorithms for Multiple Vehicle Routing Problems  

E-Print Network [OSTI]

Surveillance and monitoring applications require a collection of heterogeneous vehicles to visit a set of targets. This dissertation considers three fundamental routing problems involving multiple vehicles that arise in these applications. The main...

Bae, Jung Yun

2014-06-02T23:59:59.000Z

447

Collaborative Military Vehicle Design | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

many others will be allowed and incentivized to contribute to the design of a military vehicle is, I think, astounding VehicleForge-300x225 Share This Article Click to email...

448

International Commercial Vehicle Technology Symposium  

E-Print Network [OSTI]

Cluster (CVC), the Fraunhofer Innovations Cluster for Digital Commercial Vehicle Technology (DNT Fraunhofer Innovation Cluster DNT/FUMI, Fraunhofer ITWM Opening of exhibition and come together WEDNESDAY, 12 innovation projects between the industry and the scientific fraternity. A network like the CVA works like

Steidl, Gabriele

449

Vehicle assisted harpoon breaching tool  

DOE Patents [OSTI]

A harpoon breaching tool that allows security officers, SWAT teams, police, firemen, soldiers, or others to forcibly breach metal doors or walls very quickly (in a few seconds), without explosives. The harpoon breaching tool can be mounted to a vehicle's standard receiver hitch.

Pacheco, James E. (Albuquerque, NM); Highland, Steven E. (Albuquerque, NM)

2011-02-15T23:59:59.000Z

450

Hybrid & Hydrogen Vehicle Research Laboratory  

E-Print Network [OSTI]

such as Challenge X use this facility to develop advanced vehicles. Hydrogen Fueling Station Developed byAir Products and Chemicals, Inc. with funding from US DOE, the commercial hydrogen fueling station was installed at Penn State University Park in Fall 2004. This station will be used to fuel in-service hydrogen

Lee, Dongwon

451

Weighted Watson-Crick automata  

SciTech Connect (OSTI)

There are tremendous works in biotechnology especially in area of DNA molecules. The computer society is attempting to develop smaller computing devices through computational models which are based on the operations performed on the DNA molecules. A Watson-Crick automaton, a theoretical model for DNA based computation, has two reading heads, and works on double-stranded sequences of the input related by a complementarity relation similar with the Watson-Crick complementarity of DNA nucleotides. Over the time, several variants of Watson-Crick automata have been introduced and investigated. However, they cannot be used as suitable DNA based computational models for molecular stochastic processes and fuzzy processes that are related to important practical problems such as molecular parsing, gene disease detection, and food authentication. In this paper we define new variants of Watson-Crick automata, called weighted Watson-Crick automata, developing theoretical models for molecular stochastic and fuzzy processes. We define weighted Watson-Crick automata adapting weight restriction mechanisms associated with formal grammars and automata. We also study the generative capacities of weighted Watson-Crick automata, including probabilistic and fuzzy variants. We show that weighted variants of Watson-Crick automata increase their generative power.

Tamrin, Mohd Izzuddin Mohd [Department of Information System, Kulliyyah of Information and Communication Technology, International Islamic University Malaysia, 50728 Gombak, Selangor (Malaysia); Turaev, Sherzod; Sembok, Tengku Mohd Tengku [Department of Computer Science, Kulliyyah of Information and Communication Technology, International Islamic University Malaysia, 50728 Gombak, Selangor (Malaysia)

2014-07-10T23:59:59.000Z

452

Advanced Technology Vehicle Lab Benchmarking- Level 1  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

453

Vehicle Fuel Economy Improvement through Thermoelectric Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Recovery Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters...

454

Medium and Heavy Duty Vehicle Field Evaluations  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

455

Houston Zero Emission Delivery Vehicle Deployment Project  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

456

Electric Drive Vehicle Climate Control Load Reduction  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

457

AVTA: Neighborhood All-Electric Vehicles  

Broader source: Energy.gov [DOE]

2013 BRP Commander Electric2010 Electric Vehicles International E-Mega2009 Vantage Pickup EVX10002009 Vantage Van EVC1000

458

Vehicle to Grid Communications Field Testing  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

459

Integrated Vehicle Thermal Management Systems (VTMS) Analysis...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Integrated Vehicle Thermal Management Power Electronic Thermal System Performance and Integration Characterization and Development of Advanced Heat Transfer Technologies...

460

Multi-Material Lightweight Prototype Vehicle  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

Note: This page contains sample records for the topic "vehicle weight buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

AVTA: Hybrid-Electric Tractor Vehicles  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following set of reports describes data collected from hybrid-electric tractor vehicles in the Coca-Cola fleet. This research was conducted by the National Renewable Energy Laboratory (NREL).

462

Vehicle Mass and Fuel Efficiency Impact Testing  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

463

Social Implications of Vehicle Choice and Use  

E-Print Network [OSTI]

3.5.2 Lagged retail gasoline pricesand gasoline futures 3.5.3 VehicleFactors . . . . . . . . . . . . . . . . Gasoline Price Lags

Langer, Ashley Anne

2010-01-01T23:59:59.000Z

464

GATE: Energy Efficient Vehicles for Sustainable Mobility  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

465

Advanced Vehicle Electrification and Transportation Sector Electrification  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

466

Codes and Standards to Support Vehicle Electrification  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

467

Advancing Transportation Through Vehicle Electrification- PHEV  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

468

Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles  

E-Print Network [OSTI]

i Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed Resources Board (CARB), battery and fuel cell EDVs are considered Zero Emission Vehicles (ZEV), hybrids for carrying power from hybrid and fuel cell vehicles to the grid. Implications for current industry directions

Firestone, Jeremy

469

Reachability Calculations for Vehicle Safety during Manned/Unmanned Vehicle Interaction  

E-Print Network [OSTI]

Reachability Calculations for Vehicle Safety during Manned/Unmanned Vehicle Interaction Jerry Ding by unmanned aerial vehicles (UAVs) under supervision of human operators, with applications to safety for refining or designing protocols for multi-UAV and/or manned vehicle interaction. The mathematical

Sastry, S. Shankar

470

Department of Mechanical Engineering Spring 2012 Space Vehicle Water Drop Test and Vehicle Design  

E-Print Network [OSTI]

PENNSTATE Department of Mechanical Engineering Spring 2012 Space Vehicle Water Drop Test and Vehicle Design Overview The team was tasked with modelling the accelerations and pressures of an impact of the scaled landing vehicle to reduce the accelerations and pressures of the vehicle. Objectives Provide

Demirel, Melik C.

471

Development and Evaluation of a Novel Traffic Friendly Commuter Vehicle  

E-Print Network [OSTI]

Development and Evaluation of a Novel Traffic Friendly Commuter Vehicle Rajesh Rajamani Department What solutions do researchers in the automotive industry and researchers in the vehicle dynamics lanes - Vehicles will travel together in closely- packed "platoons". Dedicated to automated vehicles

Minnesota, University of

472

Vehicle Fleet Policy Responsible Administrative Unit: Finance & Administration  

E-Print Network [OSTI]

Vehicle Fleet Policy Responsible Administrative Unit: Finance & Administration Policy Contact, and established campus vehicle fleet service under Facilities Management operations. The purpose of the fleet vehicles. This policy is applicable to the entire Mines fleet, which includes department vehicles. 2

473

CONSENSUS SEEKING, FORMATION KEEPING, AND TRAJECTORY TRACKING IN MULTIPLE VEHICLE  

E-Print Network [OSTI]

to mobile robots, unmanned air vehicles, autonomous underwater vehicles, satellites, aircraft, spacecraft controllers for fixed wing unmanned air vehicles and nonholonomic mobile robots with velocity and heading rateCONSENSUS SEEKING, FORMATION KEEPING, AND TRAJECTORY TRACKING IN MULTIPLE VEHICLE COOPERATIVE

Ren, Wei

474

Clean Cities 2011 Vehicle Buyer's Guide  

SciTech Connect (OSTI)

The 2011 Clean Cities Light-Duty Vehicle Buyer's Guide is a consumer publication that provides a comprehensive list of commercially available alternative fuel and advanced vehicles in model year 2011. The guide allows for side-by-side comparisons of fuel economy, price, emissions, and vehicle specifications.

Not Available

2011-01-01T23:59:59.000Z

475

www.ave.kth.se Rail Vehicles  

E-Print Network [OSTI]

www.ave.kth.se Rail Vehicles Part of the Masters program in Vehicle Engineering Master's Thesis: Validation of wheel wear calculation code Background Rail vehicle operators have a genuine concern about wheel and rail wear prediction methodologies, due to the influence of worn profiles in the cost of both

Haviland, David

476

Page 1 of 9 Vehicle Buyers' Guide  

E-Print Network [OSTI]

in Part 3 of the survey. We will discuss vehicles that can be powered by gasoline only, electricity only, or both. We will also discuss how the vehicles that are powered by electricity can be recharged. In Part 3: · With a fully charged battery, the vehicle is powered by electricity for the first 16 to 64 kilometres

477

Optimal Decentralized Protocols for Electric Vehicle Charging  

E-Print Network [OSTI]

1 Optimal Decentralized Protocols for Electric Vehicle Charging Lingwen Gan Ufuk Topcu Steven Low Abstract--We propose decentralized algorithms for optimally scheduling electric vehicle (EV) charging. The algorithms exploit the elasticity and controllability of electric vehicle loads in order to fill the valleys

Low, Steven H.

478

Clean Cities 2014 Vehicle Buyer's Guide (Brochure)  

SciTech Connect (OSTI)

This annual guide features a comprehensive list of 2014 light-duty alternative fuel and advanced vehicles, grouped by fuel and technology. The guide provides model-specific information on vehicle specifications, manufacturer suggested retail price, fuel economy, energy impact, and emissions. The information can be used to identify options, compare vehicles, and help inform purchase decisions.

Not Available

2013-12-01T23:59:59.000Z

479

MOTOR VEHICLE USE PROGRAM DRIVER SAFETY TIPS  

E-Print Network [OSTI]

MOTOR VEHICLE USE PROGRAM DRIVER SAFETY TIPS Observe Speed Limits and Traffic Laws ­ Allow - Employees who drive Institute or privately owned vehicles on Institute business must possess and carry person. Insurance - Employees who operate their privately owned vehicles on Institute business shall

480

Emissions from US waste collection vehicles  

SciTech Connect (OSTI)

Highlights: ? Life-cycle emissions for alternative fuel technologies. ? Fuel consumption of alternative fuels for waste collection vehicles. ? Actual driving cycle of waste collection vehicles. ? Diesel-fueled waste collection vehicle emissions. - Abstract: This research is an in-depth environmental analysis of potential alternative fuel technologies for waste collection vehicles. Life-cycle emissions, cost, fuel and energy consumption were evaluated for a wide range of fossil and bio-fuel technologies. Emission factors were calculated for a typical waste collection driving cycle as well as constant speed. In brief, natural gas waste collection vehicles (compressed and liquid) fueled with North-American natural gas had 6–10% higher well-to-wheel (WTW) greenhouse gas (GHG) emissions relative to diesel-fueled vehicles; however the pump-to-wheel (PTW) GHG emissions of natural gas waste collection vehicles averaged 6% less than diesel-fueled vehicles. Landfill gas had about 80% lower WTW GHG emissions relative to diesel. Biodiesel waste collection vehicles had between 12% and 75% lower WTW GHG emissions relative to diesel depending on the fuel source and the blend. In 2011, natural gas waste collection vehicles had the lowest fuel cost per collection vehicle kilometer travel. Finally, the actual driving cycle of waste collection vehicles consists of repetitive stops and starts during waste collection; this generates more emissions than constant speed driving.

Maimoun, Mousa A., E-mail: mousamaimoun@gmail.com [Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL (United States); Reinhart, Debra R. [Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL (United States); Gammoh, Fatina T. [Quality Department, Airport International Group, Amman (Jordan); McCauley Bush, Pamela [Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL (United States)

2013-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle weight buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Intelligent Planning for Autonomous Underwater Vehicles  

E-Print Network [OSTI]

such as the Mid-Atlantic Ridge 4 / 10 #12;Autonomous Underwater Vehicles Unmanned, untethered submersibles AutosubIntelligent Planning for Autonomous Underwater Vehicles Zeyn Saigol January 31, 2007 Supervisors Underwater Vehicles Classical planning systems Problem specification Markov Decision Processes 2 / 10 #12

Yao, Xin

482

Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery  

DOE Patents [OSTI]

A battery control system for controlling a state of charge of a hybrid vehicle battery includes a detecting arrangement for determining a vehicle operating state or an intended vehicle operating state and a controller for setting a target state of charge level of the battery based on the vehicle operating state or the intended vehicle operating state. The controller is operable to set a target state of charge level at a first level during a mobile vehicle operating state and at a second level during a stationary vehicle operating state or in anticipation of the vehicle operating in the stationary vehicle operating state. The invention further includes a method for controlling a state of charge of a hybrid vehicle battery.

Bockelmann, Thomas R. (Battle Creek, MI); Beaty, Kevin D. (Kalamazoo, MI); Zou, Zhanijang (Battle Creek, MI); Kang, Xiaosong (Battle Creek, MI)

2009-07-21T23:59:59.000Z

483

Vehicle Technologies Office Merit Review 2014: Cost-Competitive...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power Vehicle Technologies Office Merit Review 2014:...

484

Vehicle Technologies Office Merit Review 2014: Integrated Computationa...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Integrated Computational Materials Engineering Approach to Development of Lightweight 3GAHSS Vehicle Assembly Vehicle Technologies Office Merit Review 2014: Integrated...

485

Advanced Vehicles Group: Center for Transportation Technologies and Systems  

SciTech Connect (OSTI)

Describes R&D in advanced vehicle systems and components (e.g., batteries) by NREL's Advanced Vehicles Group.

Not Available

2008-08-01T23:59:59.000Z

486

IN-VEHICLE, HIGH-POWER ENERGY STORAGE SYSTEMS  

Broader source: Energy.gov (indexed) [DOE]

- electric and hybrid vehicle configurations - vehicle modeling (Autonomie) - fuel cells - Hardware in the Loop (HIL) techniques - power electronics - combustion - controls -...

487

Assessment of US electric vehicle programs with ac powertrains  

SciTech Connect (OSTI)

AC powertrain technology is a promising approach to improving the performance of electric vehicles. Four major programs are now under way in the United States to develop ac powertrains: the Ford/General Electric single-shaft electric propulsion system (ETX-II), the Eaton dual-shaft electric propulsion system (DSEP), the Jet Propulsion Laboratories (JPL) integrated ac motor drive and recharge system, and the Massachusetts Institute of Technology (MIT) variable reluctance motor (VRM) drive. The JPL program is sponsored by EPRI; the other three programs are funded by the US Department of Energy. This preliminary assessment of the four powertrain programs focuses on potential performance, costs, safety, and commercial feasibility. Interviews with program personnel were supplemented by computer simulations of electric vehicle performance using the four systems. Each of the four powertrains appears superior to standard dc powertrain technology in terms of performance and weight. The powertrain technologies studied in this assessment are at varying degrees of technological maturity. One or more of the systems may be ready for incorporation into an advanced electric vehicle during the early 1990s. Each individual report will have a separate abstract. 5 refs., 37 figs., 29 tabs.

Kevala, R.J. (Booz, Allen and Hamilton, Inc., Bethesda, MD (USA). Transportation Consulting Div.)

1990-02-01T23:59:59.000Z

488

Control of Multiple Robotic Sentry Vehicles  

SciTech Connect (OSTI)

As part of a project for the Defense Advanced Research Projects Agency, Sandia National Laboratories is developing and testing the feasibility of using of a cooperative team of robotic sentry vehicles to guard a perimeter and to perform surround and diversion tasks. This paper describes on-going activities in the development of these robotic sentry vehicles. To date, we have developed a robotic perimeter detection system which consists of eight ''Roving All Terrain Lunar Explorer Rover'' (RATLER{trademark}) vehicles, a laptop-based base-station, and several Miniature Intrusion Detection Sensors (MIDS). A radio frequency receiver on each of the RATLER vehicles alerts the sentry vehicles of alarms from the hidden MIDS. When an alarm is received, each vehicle decides whether it should investigate the alarm based on the proximity of itself and the other vehicles to the alarm. As one vehicle attends an alarm, the other vehicles adjust their position around the perimeter to better prepare for another alarm. We have also demonstrated the ability to drive multiple vehicles in formation via tele-operation or by waypoint GPS navigation. This is currently being extended to include mission planning capabilities. At the base-station, the operator can draw on an aerial map the goal regions to be surrounded and the repulsive regions to be avoided. A potential field path planner automatically generates a path from the vehicles' current position to the goal regions while avoiding the repulsive regions and the other vehicles. This path is previewed to the operator before the regions are downloaded to the vehicles. The same potential field path planner resides on the vehicle, except additional repulsive forces from on-board proximity sensors guide the vehicle away from unplanned obstacles.

Feddema, J.; Klarer, P.; Lewis, C.

1999-04-01T23:59:59.000Z

489

Impact of Battery Weight and Charging Patterns on the Economic and Environmental Benefits of Plug-in  

E-Print Network [OSTI]

the transportation sector. Because plug-in vehicles require large batteries for energy storage, battery weight can of gasoline consumption with electricity. While the U.S. transportation sector is overwhelming powered Samaras Engineering and Public Policy Carnegie Mellon University 5000 Forbes Avenue Pittsburgh, PA 15213

Michalek, Jeremy J.

490

Sandia National Laboratories: vehicle networks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-activeNationalhydrogentechnologiesvehicle

491

Fact #625: May 31, 2010 Distribution of Trucks by On-Road Vehicle Weight |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 2011 Report1:Energy

492

Fact #807: December 9, 2013 Light Vehicle Weights Leveling Off | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 20112:ofElectric1975-2012 | Department ofof

493

Electric and Hybrid Vehicle Technology: TOPTEC  

SciTech Connect (OSTI)

Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today's electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between refueling'' stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

Not Available

1992-01-01T23:59:59.000Z

494

Electric and Hybrid Vehicle Technology: TOPTEC  

SciTech Connect (OSTI)

Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today`s electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between ``refueling`` stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of ``Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

Not Available

1992-12-01T23:59:59.000Z

495

Impact of Vehicle Air-Conditioning on Fuel Economy, Tailpipe Emissions, and Electric Vehicle Range: Preprint  

SciTech Connect (OSTI)

Vehicle air-conditioning can significantly impact fuel economy and tailpipe emissions of conventional and hybrid electric vehicles and reduce electric vehicle range. In addition, a new US emissions procedure, called the Supplemental Federal Test Procedure, has provided the motivation for reducing the size of vehicle air-conditioning systems in the US. The SFTP will measure tailpipe emissions with the air-conditioning system operating. Current air-conditioning systems can reduce the fuel economy of high fuel-economy vehicles by about 50% and reduce the fuel economy of today's mid-sized vehicles by more than 20% while increasing NOx by nearly 80% and CO by 70%.

Farrington, R.; Rugh, J.

2000-09-22T23:59:59.000Z

496

Vehicle Technologies Office - AVTA: All Electric USPS Long Life Vehicle  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment of EnergyProgram2-26TheUtility-Scaleof EnergyVehicle TechnologiesConversions

497

Vehicle Technologies Office - AVTA: Hybrid-Electric Delivery Vehicles |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment of EnergyProgram2-26TheUtility-Scaleof EnergyVehicle

498

Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment of EnergyProgram2-26TheUtility-Scaleof EnergyVehicleDepartment of Energy

499

Fact #699: October 31, 2011 Transportation Energy Use by Mode...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

gas, and electricity) by various transporation sectors including light vehicles, mediumheavy trucks and buses, air, water, rail, and pipeline. Highway vehicles are responsible...

500

Fleet Management | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fleet management includes commercial and agency owned motor vehicles such as cars, vans, trucks, and buses. Fleet (vehicle) management at the headquarters level includes a range of...