Powered by Deep Web Technologies
Note: This page contains sample records for the topic "vehicle weight buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Vehicle Technologies Office: Transit Buses: Today's Pioneers in Fuel Cell  

NLE Websites -- All DOE Office Websites (Extended Search)

Transit Buses: Today's Transit Buses: Today's Pioneers in Fuel Cell Transportation to someone by E-mail Share Vehicle Technologies Office: Transit Buses: Today's Pioneers in Fuel Cell Transportation on Facebook Tweet about Vehicle Technologies Office: Transit Buses: Today's Pioneers in Fuel Cell Transportation on Twitter Bookmark Vehicle Technologies Office: Transit Buses: Today's Pioneers in Fuel Cell Transportation on Google Bookmark Vehicle Technologies Office: Transit Buses: Today's Pioneers in Fuel Cell Transportation on Delicious Rank Vehicle Technologies Office: Transit Buses: Today's Pioneers in Fuel Cell Transportation on Digg Find More places to share Vehicle Technologies Office: Transit Buses: Today's Pioneers in Fuel Cell Transportation on AddThis.com... Transit Buses: Today's Pioneers in Fuel Cell Transportation

2

Vehicle Technologies Office: Fact #555: January 26, 2009 Transit Buses are  

NLE Websites -- All DOE Office Websites (Extended Search)

5: January 26, 5: January 26, 2009 Transit Buses are Relying Less on Diesel Fuel to someone by E-mail Share Vehicle Technologies Office: Fact #555: January 26, 2009 Transit Buses are Relying Less on Diesel Fuel on Facebook Tweet about Vehicle Technologies Office: Fact #555: January 26, 2009 Transit Buses are Relying Less on Diesel Fuel on Twitter Bookmark Vehicle Technologies Office: Fact #555: January 26, 2009 Transit Buses are Relying Less on Diesel Fuel on Google Bookmark Vehicle Technologies Office: Fact #555: January 26, 2009 Transit Buses are Relying Less on Diesel Fuel on Delicious Rank Vehicle Technologies Office: Fact #555: January 26, 2009 Transit Buses are Relying Less on Diesel Fuel on Digg Find More places to share Vehicle Technologies Office: Fact #555: January 26, 2009 Transit Buses are Relying Less on Diesel Fuel on

3

Vehicle Modeling and Verification of CNG-Powered Transit Buses  

E-Print Network (OSTI)

Modeling and Verification of CNG-Powered Transit BusesModeling and Verification of CNG-Powered Transit Buses.Modeling and Veri?cation of CNG-Powered Transit Buses J.K.

Hedrick, J. K.; Ni, A.

2004-01-01T23:59:59.000Z

4

Indianapolis Public Transportation Corporation. Advanced Technology Vehicles in Service: Diesel Hybrid Electric Buses (Fact Sheet).  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Web site and in print publications. Web site and in print publications. TESTING ADVANCED VEHICLES INDIANAPOLIS PUBLIC TRANSPORTATION â—† DIESEL HYBRID ELECTRIC BUSES Indianapolis Public Transportation DIESEL HYBRID ELECTRIC BUSES NREL/PIX 13504, 13505, 13583 THE INDIANAPOLIS PUBLIC TRANSPORTATION CORPORATION (INDYGO) provides transit service in the Indianapolis Metropolitan area, using 226 vehicles to serve 28 fixed and demand response routes. IndyGo vehicles

5

Alternative fuel transit buses: Interim results from the National Renewable Energy Laboratory (NREL) Vehicle Evaluation Program  

DOE Green Energy (OSTI)

The transit bus program is designed to provide a comprehensive study of the alternative fuels currently used by the transit bus industry. The study focuses on the reliability, fuel economy, operating costs, and emissions of vehicles running on the various fuels and alternative fuel engines. The alternative fuels being tested are methanol, ethanol, biodiesel and natural gas. The alternative fuel buses in this program use the most common alternative fuel engines from the heavy-duty engine manufacturers. Data are collected in four categories: Bus and route descriptions; Bus operating data; Emissions data; and, Capital costs. The goal is to collect 18 months of data on each test bus. This report summarizes the interim results from the project to date. The report addresses performance and reliability, fuel economy, costs, and emissions of the busses in the program.

Motta, R.; Norton, P.; Kelly, K.J.; Chandler, K.

1995-05-01T23:59:59.000Z

6

Fuel Cell Vehicle World Survey 2003-Fuel Cells in Transit Buses  

NLE Websites -- All DOE Office Websites (Extended Search)

range of heavy-duty diesel, compressed natural gas (CNG), and liquefied natural gas (LNG) transit buses. NABI, Inc., is a wholly owned subsidiary of NABI Rt., which was...

7

Vehicle Technologies Office: Fact #621: May 3, 2010 Gross Vehicle Weight  

NLE Websites -- All DOE Office Websites (Extended Search)

1: May 3, 2010 1: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight to someone by E-mail Share Vehicle Technologies Office: Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight on Facebook Tweet about Vehicle Technologies Office: Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight on Twitter Bookmark Vehicle Technologies Office: Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight on Google Bookmark Vehicle Technologies Office: Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight on Delicious Rank Vehicle Technologies Office: Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight on Digg Find More places to share Vehicle Technologies Office: Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight on AddThis.com...

8

Alternative fuel transit buses  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory (NREL) is a U.S. Department of Energy (DOE) national laboratory; this project was funded by DOE. One of NREL`s missions is to objectively evaluate the performance, emissions, and operating costs of alternative fuel vehicles so fleet managers can make informed decisions when purchasing them. Alternative fuels have made greater inroads into the transit bus market than into any other. Each year, the American Public Transit Association (APTA) surveys its members on their inventory and buying plans. The latest APTA data show that about 4% of the 50,000 transit buses in its survey run on an alternative fuel. Furthermore, 1 in 5 of the new transit buses that members have on order are alternative fuel buses. This program was designed to comprehensively and objectively evaluate the alternative fuels in use in the industry.

Motta, R.; Norton, P.; Kelly, K. [and others

1996-10-01T23:59:59.000Z

9

Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Vehicle (NGV) Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Weight Exemption on Google Bookmark Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Weight Exemption on Delicious Rank Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas Vehicle (NGV) Weight Exemption

10

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Weight Limit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) Weight Limit Exemption to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Weight Limit Exemption on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Weight Limit Exemption on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Weight Limit Exemption on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Weight Limit Exemption on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Weight Limit Exemption on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Weight Limit Exemption on AddThis.com... More in this section... Federal State Advanced Search

11

Lightweight Buses With Electric Drive Improve Fuel Economy and Passenger Experience  

NLE Websites -- All DOE Office Websites (Extended Search)

Lightweight Buses With Electric Drive Improve Lightweight Buses With Electric Drive Improve Fuel Economy and Passenger Experience Background The standard, 40-foot diesel- powered transit bus is noisy, consumes a gallon of fuel for every three miles it travels, weighs 28,000 pounds, and contributes significantly to ur- ban air pollution. While hybrid electric buses do exist, they are very expensive, and typi- cally get just four miles to the gallon. Autokinetics and the Department of Energy Office of FreedomCAR and Vehicle Technologies Program saw sig- nificant room for improvement in hybrid electric buses-in terms of weight and noise reduction, better fuel economy, lower cost, and rider percep- tion-using lightweight body

12

Materials Development for Vehicle Weight Reduction and the ...  

Science Conference Proceedings (OSTI)

For example, weight reduction can also enable wider use of electric and hybrid drive vehicles by improving range or reducing battery size. Heavy-duty trucks can  ...

13

Alternative Fuel Transit Buses  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

35th St. Craig Ave. Alt Blvd. Colucci Pkwy. Final Results from the National Renewable Energy Laboratory Vehicle Evaluation Program Final Results from the National Renewable Energy Laboratory Vehicle Evaluation Program N T Y A U E O F E N E R G D E P A R T M E N I T E D S T A T S O F A E R I C M Produced for the U.S. Department of Energy (DOE) by the National Renewable Energy Laboratory (NREL), a U.S. DOE national laboratory Transit Buses Alternative Fuel Alternative Fuel Final Results from the National Renewable Energy Laboratory (NREL) Vehicle Evaluation Program by Robert Motta, Paul Norton, and Kenneth Kelly, NREL Kevin Chandler, Battelle Leon Schumacher, University of Missouri Nigel Clark,West Virginia University October 1996 The authors wish to thank all the transit agencies that participated in this program.

14

New York City Transit Drives Hybrid Electric Buses into the Future; Advanced Technology Vehicles in Service, Advanced Vehicle Testing Activity (Fact Sheet)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

DEPARTMENT OF ENERGY HYBRID DEPARTMENT OF ENERGY HYBRID ELECTRIC TRANSIT BUS EVALUATIONS The role of AVTA is to bridge the gap between R&D and commercial availability of advanced vehicle technologies that reduce U.S. petroleum use while improving air quality. AVTA supports the U.S. Department of Energy's FreedomCAR and Vehicle Technologies Program in moving these technologies from R&D to market deployment by examining market factors

15

School Buses Get Greener in Bluegrass State | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

School Buses Get Greener in Bluegrass State School Buses Get Greener in Bluegrass State School Buses Get Greener in Bluegrass State September 10, 2010 - 11:45am Addthis Ed McNeel, superintendent of Corbin's school district, poses aboard the district's new hybrid-diesel bus. | Photo Courtesy of Susie Hart. Ed McNeel, superintendent of Corbin's school district, poses aboard the district's new hybrid-diesel bus. | Photo Courtesy of Susie Hart. Lindsay Gsell What are the key facts? Kentucky will receive 213 hybrid diesel buses in the next year. The project is funded with nearly $13 million in Clean Cities Recovery Act funding. The new buses will be more than 60% more fuel efficient than traditional vehicles. It's September and traditional school buses are once again on the roads in large numbers. However, throughout Kentucky, a new type of school bus will hit the road

16

New Yellow School Buses Harness the Sun in Wisconsin | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to the charge gained from the solar array, the buses also recharge their batteries using regenerative braking, just like traditional hybrid vehicles. The school bus-with the need...

17

Feasibility Study Of Advanced Technology Hov Systems: Volume 2b: Emissions Impact Of Roadway-powered Electric Buses, Light-duty Vehicles, And Automobiles  

E-Print Network (OSTI)

and Russell, A. , Electric Vehicles and the Environment:Roadway Powered Electric Vehicle ---An All-Electric Hybrid8th International Electric Vehicle Symposium, Washington,

Miller, Mark A.; Dato, Victor; Chira-chavala, Ted

1992-01-01T23:59:59.000Z

18

COMPARISON OF CLEAN DIESEL BUSES TO CNG BUSES  

Science Conference Proceedings (OSTI)

Using previously published data on regulated and unregulated emissions, this paper will compare the environmental performance of current generation transit buses operated on compressed natural gas (CNG) to current generation transit buses operated on ultra low sulfur diesel fuel (ULSD) and incorporating diesel particulate filters (DPF). Unregulated emissions evaluated include toxic compounds associated with adverse health effects (carbonyl, PAH, NPAH, benzene) as well as PM particle count and size distribution. For all regulated and unregulated emissions, both technologies are shown to be comparable. DPF equipped diesel buses and CNG buses have virtually identical levels of PM mass emissions and particle number emissions. DPF-equipped diesel buses have lower HC and CO emissions and lower emissions of toxic substances such as benzene, carbonyls and PAHs than CNG buses. CNG buses have lower NOx emissions than DPF-equipped buses, though CNG bus NOx emissions are shown to be much more variable. In addition, this paper will compare the capital and operating costs of CNG and DPF-equipped buses. The cost comparison is primarily based on the experience of MTA New York City Transit in operating CNG buses since 1995 and DPF-equipped buses fueled with ULSD since 2001. Published data on the experience of other large transit agencies in operating CNG buses is used to validate the NYCT experience. The incremental cost (compared to ''baseline'' diesel) of operating a typical 200-bus depot is shown to be six times higher for CNG buses than for ''clean diesel'' buses. The contributors to this increased cost for CNG buses are almost equally split between increased capital costs for purchase of buses and installation of fueling infrastructure, and increased operating costs for purchase of fuel, bus maintenance, and fuel station maintenance.

Lowell, D.; Parsley, W.; Bush,C; Zupo, D.

2003-08-24T23:59:59.000Z

19

Charter Buses | Staff Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Charter Buses for Tours and Special Events Charter Buses for Tours and Special Events Bus Request: Requests for tours and special events may be made by contacting the Transportation Office at 631-344-2535. Cancellation Policy: All cancellations must be made by phone to 631-344-2535 only during BNL business hours. Reservation must be canceled ten (10) business days prior to avoid penalty. Cancel two (2) to nine (9) business days prior - $150.00 penalty. Cancel within 24 hours - full fee will be charged. Staff Services maintains a contract that includes drivers for the rental of coaches, school buses, and vans for on-site tours and the transportation of large numbers of employees and visitors off-site. Our contract bus service rates are shown below: Hampton Jitney - Coaches Equipment Rates 8 Hour Day 4 Hour

20

NYCT Diesel Hybrid-Electric Buses Program Status Update  

DOE Green Energy (OSTI)

Program status update focuses on the experiences gathered during New York City Transit's deployment of hybrid electric buses in its fleet. This report is part of an ongoing Department of Energy (DOE), Office of Heavy Vehicle Technologies program to study heavy-duty alternative fuel and advanced technology vehicles in the United States. DOE's National Renewable Energy Laboratory (NREL) is conducting the Transit Bus Evaluation Project to compare alternative fuel or advanced technology and diesel fuel buses. Information for the comparison comes from data collected on the operational, maintenance, performance, and emissions characteristics of alternative fuel or advanced technology buses currently being used in vehicle fleets and comparable diesel fuel buses serving as controls within the same fleet. This report highlights the New York City Transit (NYCT) alternative fuel and advanced technology programs including its diesel hybrid-electric buses. As part of the NREL Transit Bus Evaluation Project, data collection and evaluation of the Orion VI diesel hybrid-electric buses at NYCT are nearly complete. Final reports from the evaluation are being prepared by NREL and Battelle (NREL's support contractor for the project) and will be available in early 2002. If you want to know more about this transit bus program, its components, advanced technology vehicles, or incentive programs, contact any of the following personnel or visit the Web sites listed.

Not Available

2002-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle weight buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Hydrogen-Powered Buses Brochure Â… 2010  

NLE Websites -- All DOE Office Websites (Extended Search)

Powered by Powered by Hydrogen EERE Information Center 1-877-EERE-INFO (1-877-337-3463) eere.energy.gov/informationcenter Prepared by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy. October 2010 Source: NREL, Dennis Schroeder Source: NREL, Dennis Schroeder Hydrogen-Powered Buses Showcase Advanced Vehicle Technologies Visitors to federal facilities across the country may now have the opportunity to tour the sites in a hydrogen- powered shuttle bus. The U.S. Department of Energy (DOE) is supporting the demonstration of hydrogen-powered vehicles and hydrogen infrastructure at federal facilities across the country. Nine facilities will receive fourteen hydrogen- powered buses to demonstrate this market-ready advanced technology. Produced by Ford Motor Company, the

22

Cars on a diet : the material and energy impacts of passenger vehicle weight reduction in the U.S.  

E-Print Network (OSTI)

Vehicle weight reduction is a known strategy to address growing concerns about greenhouse gas emissions and fuel use by passenger vehicles. We find that every 10% reduction in vehicle weight can cut fuel consumption by ...

Cheah, Lynette W. (Lynette Wan Ting)

2010-01-01T23:59:59.000Z

23

New Buses Transport Students and Savings in Texas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buses Transport Students and Savings in Texas Buses Transport Students and Savings in Texas New Buses Transport Students and Savings in Texas July 29, 2010 - 6:27pm Addthis Students look underneath one of Fort Worth Independent School District's new hybrid diesel buses. | Photo courtesy of FWISD Students look underneath one of Fort Worth Independent School District's new hybrid diesel buses. | Photo courtesy of FWISD Lindsay Gsell This fall, when students in Texas' Fort Worth Independent School District (FWISD) board school buses, some of them will be riding on the district's new hybrid electric diesel vehicles. Thanks to Recovery Act funding from the U.S. Department of Energy's Clean Cities program, the district was able to purchase 25 buses-enough to transport 1,800 students to school while saving the district 12,000 gallons

24

Hydrogen Station & Hydrogen ICE Vehicles Operation  

NLE Websites -- All DOE Office Websites (Extended Search)

19 INL Alternative Fuel Fleet (318 vehicles) * 79 B20 motor coach buses * 7 Dedicated LNG motor coach buses * 154 Bi-fuel light-duty CNG vehicles * 52 Bi-fuel E85 (85% ethanol)...

25

Boise Buses Running Strong with Clean Cities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Boise Buses Running Strong with Clean Cities Boise Buses Running Strong with Clean Cities Boise Buses Running Strong with Clean Cities May 28, 2013 - 12:05pm Addthis Working with Republic Services, the city of Boise and Valley Regional Transit, Treasure Valley Clean Cities built four compressed natural gas (CNG) fueling stations that allowed all three organizations to transition to CNG vehicles. | Photo courtesy of Valley Regional Transit. Working with Republic Services, the city of Boise and Valley Regional Transit, Treasure Valley Clean Cities built four compressed natural gas (CNG) fueling stations that allowed all three organizations to transition to CNG vehicles. | Photo courtesy of Valley Regional Transit. Shannon Brescher Shea Communications Manager, Clean Cities Program What are the key facts?

26

LPG buses in southern California leave the competition at the curb  

SciTech Connect

This paper reports that after the first year of a landmark experiment in which LPG has been competing against methanol and CNG in city buses, propane appears to be pulling out in front of the pack. According to Efren Medellin, superintendent of vehicle maintenance at the Orange County Transit Authority, two LPG buses had registered a total of 31,000 moles with relatively little, if any, downtime. The two methanol buses had run a total of 30,000 miles while the two CNG buses had traveled only 5000 miles. Furthermore the methanol and CNG buses have had their share of downtime for new parts and other problems. The propane-powered buses appear to be running consistently well without mechanical difficulties. The only problem that occurred was occasional backfiring. As a result, the electronic controls were replaced and no subsequent complaints were heard.

1992-03-01T23:59:59.000Z

27

Advanced Vehicle Testing Activity Hybrids, Hydrogen and other...  

NLE Websites -- All DOE Office Websites (Extended Search)

avoided 318 INL Alternative Fuel Vehicles * 79 B20 motor coach buses * 7 Dedicated LNG motor coach buses * 154 Bi-fuel light-duty CNG vehicles * 52 Bi-fuel E85 (85% ethanol)...

28

Kansas City Buses Provide a Clean Ride for Kids | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kansas City Buses Provide a Clean Ride for Kids Kansas City Buses Provide a Clean Ride for Kids Kansas City Buses Provide a Clean Ride for Kids March 18, 2011 - 2:25pm Addthis Kansas City Buses Provide a Clean Ride for Kids Dennis A. Smith Director, National Clean Cities What does this project do? Creates infrastructure such as fueling stations to support compressed natural gas vehicles. Saves the Kansas City, Kansas School District money Reduces pollution Educates students about natural gas technologies. On Wednesday March 16, the Kansas City, Kansas School District welcomed some newcomers to their community - 47 natural gas school buses deployed as part of the Clean Cities Alternative Fuel Vehicle Pilot Program, supported by the American Recovery and Reinvestment Act. Kansas City's mayor, the school's director of transportation, and the Kansas City Clean

29

Impact of Compressed Natural Gas Fueled Buses on Street Pavements 6. Performing Organization Code 7. Author(s)  

E-Print Network (OSTI)

Federal Clean Air Act Amendments of 1990 (CAAA) and the Energy Policy Act of 1992 (EPACT), together with other state regulations have encouraged or mandated transit systems to use alternative fuels to power bus fleets. Among such fuels, compressed natural gas (CNG) is attractive, although it must be stored in robust, heavy pressurized cylinders, capable of withstanding pressures up to 5,000 psi. Such systems are typically heavier than conventional diesel storage tanks. As a result, this raises gross vehicle weight, sometimes significantly, which then increases the consumption of the pavement over which CNG buses operate. Capital Metro, the Austin, Texas transit authority, is currently evaluating a number of CNG fueled buses. As part of the U.S. DOT Region Six University Transportation Centers Program (UTCP), a study was instigated into the scale of incremental pavement consumption associated with the operation of these buses. The study suggests that replacing current vehicles with CNG powered models utilizing aluminum storage tanks would raise average network equivalent single rehabilitation costs across the network of over four percent. Finally, it recommends that full cost study be undertaken with evaluation of the adoption of

Dingyi Yang; Robert Harrison

1995-01-01T23:59:59.000Z

30

Wireless Power Transfer for Electric Vehicles  

SciTech Connect

As Electric and Hybrid Electric Vehicles (EVs and HEVs) become more prevalent, there is a need to change the power source from gasoline on the vehicle to electricity from the grid in order to mitigate requirements for onboard energy storage (battery weight) as well as to reduce dependency on oil by increasing dependency on the grid (our coal, gas, and renewable energy instead of their oil). Traditional systems for trains and buses rely on physical contact to transfer electrical energy to vehicles in motion. Until recently, conventional magnetically coupled systems required a gap of less than a centimeter. This is not practical for vehicles of the future.

Scudiere, Matthew B [ORNL; McKeever, John W [ORNL

2011-01-01T23:59:59.000Z

31

Advanced Vehicle Testing Activity: Transit Vehicle Testing Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Planning and Transit Division: Advanced Technology Vehicles in Service: LNG Turbine Hybrid Electric Buses, February 2002 (PDF 446 KB PDF ) Dallas Area Rapid...

32

Non-CFC air conditioning for transit buses  

SciTech Connect

In the United Sates, more than 80% of transit city buses are air conditioned. Vapor compression refrigeration systems are standard for air conditioning buses and account for up to 25% of fuel consumption in the cooling season. Vapor compression devices use chlorofluorocarbons (CFCs), chemicals that contributes to Earths`s ozone depletion and to global warming. Currently, evaporative cooling is an economical alternative to CFC vapor compression refrigeration for air conditioning buses. It does not use CFCs but is restricted in use to arid climates. This limitation can be eliminated by dehumidifying the supply air using desiccants. We studied desiccant systems for cooling transit buses and found that the use of a desiccant-assisted evaporative cooling system is feasible and can deliver the required cooling. The weight and the size of the desiccant system though larger than vapor compression systems, can be easily accommodated within a bus. Fuel consumption for naming desiccant systems was about 70% less than CFC refrigeration system, resulting in payback periods of less than 2.5 years under most circumstances. This preliminary study indicated that desiccant systems combined with evaporative cooling is a CFC-free option to vapor compression refrigeration for air conditioning of transit buses. The concept is ready to be tested in a fun prototype scale in a commercial bus.

Pesaran, A.A.; Parent, Y.O.; Bharathan, D.

1992-11-01T23:59:59.000Z

33

Non-CFC air conditioning for transit buses  

Science Conference Proceedings (OSTI)

In the United Sates, more than 80% of transit city buses are air conditioned. Vapor compression refrigeration systems are standard for air conditioning buses and account for up to 25% of fuel consumption in the cooling season. Vapor compression devices use chlorofluorocarbons (CFCs), chemicals that contributes to Earths's ozone depletion and to global warming. Currently, evaporative cooling is an economical alternative to CFC vapor compression refrigeration for air conditioning buses. It does not use CFCs but is restricted in use to arid climates. This limitation can be eliminated by dehumidifying the supply air using desiccants. We studied desiccant systems for cooling transit buses and found that the use of a desiccant-assisted evaporative cooling system is feasible and can deliver the required cooling. The weight and the size of the desiccant system though larger than vapor compression systems, can be easily accommodated within a bus. Fuel consumption for naming desiccant systems was about 70% less than CFC refrigeration system, resulting in payback periods of less than 2.5 years under most circumstances. This preliminary study indicated that desiccant systems combined with evaporative cooling is a CFC-free option to vapor compression refrigeration for air conditioning of transit buses. The concept is ready to be tested in a fun prototype scale in a commercial bus.

Pesaran, A.A.; Parent, Y.O.; Bharathan, D.

1992-11-01T23:59:59.000Z

34

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Signs for  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) Signs for School Buses to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Signs for School Buses on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Signs for School Buses on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Signs for School Buses on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Signs for School Buses on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Signs for School Buses on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Signs for School Buses on AddThis.com... More in this section... Federal State Advanced Search

35

Alternative Fuel Vehicles | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

the transit authority to maintain its service while reducing harmful emissions. From electric cars and propane vehicles to natural gas-powered buses and trucks that run on...

36

DOE Hydrogen Analysis Repository: Ethanol-Diesel Blends in Buses and  

NLE Websites -- All DOE Office Websites (Extended Search)

Ethanol-Diesel Blends in Buses and Tractors Ethanol-Diesel Blends in Buses and Tractors Project Summary Full Title: Fuel-Cycle Energy and Emission Impacts of Ethanol-Diesel Blends in Urban Buses and Farming Tractors Project ID: 86 Principal Investigator: Michael Wang Brief Description: This project studied the full fuel-cycle energy and emissions effects of ethanol-diesel blends relative to those of petroleum diesel when used in urban transit buses and farming tractors. Keywords: Ethanol; diesel; emissions; well-to-wheels (WTW) Purpose Numerous studies have been conducted to evaluate the fuel-cycle energy and greenhouse gas (GHG) emission effects of ethanol-gasoline blends relative to those of gasoline for applications in spark- ignition engine vehicles. Those studies did not address the energy and emission effects of

37

Boise Buses Running Strong with Clean Cities  

Energy.gov (U.S. Department of Energy (DOE))

A local Clean Cities coalition helped Idaho's Valley Regional Transit switch to compressed natural gas buses, allowing the transit authority to maintain its service while reducing harmful emissions.

38

Fuel and emission impacts of heavy hybrid vehicles.  

DOE Green Energy (OSTI)

Hybrid powertrains for certain heavy vehicles may improve fuel economy and reduce emissions. Of particular interest are commercial vehicles, typically in Classes 3-6, that travel in urban areas. Hybrid strategies and associated energy/emissions benefits for these classes of vehicles could be significantly different from those for passenger cars. A preliminary analysis has been conducted to investigate the energy and emissions performance of Class 3 and 6 medium-duty trucks and Class 6 school buses under eight different test cycles. Three elements are associated with this analysis: (1) establish baseline fuel consumption and emission scenario's from selected, representative baseline vehicles and driving schedules; (2) identify sources of energy inefficiency from baseline technology vehicles; and (3) assess maximum and practical potentials for energy savings and emissions reductions associated with heavy vehicle hybridization under real-world driving conditions. Our analysis excludes efficiency gains associated with such other measures as vehicle weight reduction and air resistance reduction, because such measures would also benefit conventional technology vehicles. Our research indicates that fuel economy and emission benefits of hybridization can be very sensitive to different test cycles. We conclude that, on the basis of present-day technology, the potential fuel economy gains average about 60-75% for Class 3 medium-duty trucks and 35% for Class 6 school buses. The fuel economy gains can be higher in the future, as hybrid technology continues to improve. The practical emissions reduction potentials associated with vehicle hybridization are significant as well.

An, F.; Eberhardt, J. J.; Stodolsky, F.

1999-03-02T23:59:59.000Z

39

Emissions from Buses with DDC 6V92 Engines Using Synthetic Diesel Fuel  

DOE Green Energy (OSTI)

Synthetic diesel fuel can be made from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, synthetic diesel fuels may also economically competitive with California diesel fuel if .roduced in large volumes. Previous engine laboratory and field tests using a heavy-duty chassis dynamometer indicate that synthetic diesel fuel made using the Fischer-Tropsch (F-T) catalytic conversion process is a promising alternative fuel, because it can be used in unmodified diesel engines, and can reduce exhaust emissions substantially. The objective of this study was a preliminary assessment of the emissions from older model transit operated on Mossgas synthetic diesel fuel. The study compared emissions from transit buses operating on Federal no. 2 Diesel fuel, Mossgas synthetic diesel (MGSD), and a 50/50 blend of the two fuels. The buses were equipped with unmodified Detroit Diesel 6V92 2-stroke diesel engines. Six 40-foot buses were tested. Three of the buses had recently rebuilt engines and were equipped with an oxidation catalytic converter. Vehicle emissions measurements were performed using West Virginia University's unique transportable chassis dynamometer. The emissions were measured over the Central Business District (CBD) driving cycle. The buses performed well on both neat and blended MGSD fuel. Three buses without catalytic converters were tested. Compared to their emissions when operating on Federal no. 2 diesel fuel, these buses emitted an average of 5% lower oxides of nitrogen (NOx) and 20% lower particulate matter (PM) when operating on neat MGSD fuel. Catalyst equipped buses emitted an average of 8% lower NOx and 31% lower PM when operating on MGSD than when operating on Federal no. 2 diesel fuel.

Paul Norton; Keith Vertin; Nigel N. Clark; Donald W. Lyons; Mridul Gautam; Stephen Goguen; James Eberhardt

1999-05-03T23:59:59.000Z

40

Alternative Fuel Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alternative Fuel Vehicles Alternative Fuel Vehicles Learn how a local Clean Cities coalition helped Idaho's Valley Regional Transit switch to compressed natural gas buses, allowing the transit authority to maintain its service while reducing harmful emissions. Learn how a local Clean Cities coalition helped Idaho's Valley Regional Transit switch to compressed natural gas buses, allowing the transit authority to maintain its service while reducing harmful emissions. From electric cars and propane vehicles to natural gas-powered buses and trucks that run on biodiesel, today's options for alternative fuel vehicles are vast. Increasing the use of alternative fuels and vehicles will help reduce consumers' fuel costs, minimize pollution and increase

Note: This page contains sample records for the topic "vehicle weight buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Environmental Life-cycle Assessment of Passenger Transportation: A Detailed Methodology for Energy, Greenhouse Gas and Criteria Pollutant Inventories of Automobiles, Buses, Light Rail, Heavy Rail and Air  

E-Print Network (OSTI)

2005. [FTA 2006] U.S. Non-Rail Vehicle Market ViabilityWelding BART’s Aluminum Rail Transit Cars, Welding JournalAutomobiles, Buses, Light Rail, Heavy Rail and Air Mikhail

Chester, Mikhail; Horvath, Arpad

2007-01-01T23:59:59.000Z

42

Vehicle Technologies Office: Fact #636: August 16, 2010 Transportation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Use by Mode, 2008 Bar graph showing the transportation energy use by mode (buses, rail, pipeline, water, air, mediumheavy trucks, and light vehicles) for 2008. For more...

43

Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Buses Shuttle Propane Buses Shuttle Visitors in Maine to someone by E-mail Share Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Facebook Tweet about Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Twitter Bookmark Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Google Bookmark Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Delicious Rank Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Digg Find More places to share Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on AddThis.com... Oct. 13, 2012 Propane Buses Shuttle Visitors in Maine W atch how travelers in Bar Harbor, Maine, rely on propane-powered shuttle buses. For information about this project, contact Maine Clean Communities.

44

Alternative Fuels Data Center: Propane Buses Save Money for Virginia  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Buses Save Propane Buses Save Money for Virginia Schools to someone by E-mail Share Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on Facebook Tweet about Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on Twitter Bookmark Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on Google Bookmark Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on Delicious Rank Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on Digg Find More places to share Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on AddThis.com... Feb. 25, 2010 Propane Buses Save Money for Virginia Schools F ind out how Gloucester County Schools' propane buses are quieter and cost

45

COMPARATIVE STUDY ON EXHAUST EMISSIONS FROM DIESEL- AND CNG-POWERED URBAN BUSES  

DOE Green Energy (OSTI)

Couple years ago, ADEME engaged programs dedicated to the urban buses exhaust emissions studies. The measures associated with the reduction of atmospheric and noise pollution has particular importance in the sector of urban buses. In many cases, they illustrate the city's environmental image and contribute to reinforcing the attractiveness of public transport. France's fleet in service, presently put at about 14,000 units, consumes about 2 per cent of the total energy of city transport. It causes about 2 per cent of the HC emissions and from 4 to 6 per cent of the NOx emissions and particles. These vehicles typically have a long life span (about 15 years) and are relatively expensive to buy, about 150.000 euros per unit. Several technical solutions were evaluated to quantify, on a real condition cycle for buses, on one hand pollutants emissions, fuel consumption and on the other hand reliability, cost in real existing fleet. This paper presents main preliminary results on urban buses exhaust emission on two different cases: - existing Diesel buses, with fuel modifications (Diesel with low sulphur content), Diesel with water emulsion and bio-Diesel (30% oil ester in standard Diesel fuel); renovating CNG powered Euro II buses fleet, over representative driving cycles, set up by ADEME and partners. On these cycles, pollutants (regulated and unregulated) were measured as well as fuel consumption, at the beginning of a program and one year after to quantify reliability and increase/decrease of pollutants emissions. At the same time, some after-treatment technologies were tested under real conditions and several vehicles. Information such as fuel consumption, lubricant analysis, problem on the technology were following during a one year program. On the overall level, it is the combination of various action, pollution-reduction and renewal that will make it possible to meet the technological challenge of reducing emissions and fuel consumption by urban bus networks.

COROLLER, P; PLASSAT, G

2003-08-24T23:59:59.000Z

46

Alternative Fuels Data Center: School Buses Go Green in Virginia  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

School Buses Go Green School Buses Go Green in Virginia to someone by E-mail Share Alternative Fuels Data Center: School Buses Go Green in Virginia on Facebook Tweet about Alternative Fuels Data Center: School Buses Go Green in Virginia on Twitter Bookmark Alternative Fuels Data Center: School Buses Go Green in Virginia on Google Bookmark Alternative Fuels Data Center: School Buses Go Green in Virginia on Delicious Rank Alternative Fuels Data Center: School Buses Go Green in Virginia on Digg Find More places to share Alternative Fuels Data Center: School Buses Go Green in Virginia on AddThis.com... Oct. 1, 2011 School Buses Go Green in Virginia " We've taken some important first steps toward lower emissions and reduced dependence on foreign oil. Everybody needs to be doing everything they can

47

Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) supports the development and deployment of advanced vehicle technologies, including advances in electric vehicles, engine efficiency, and lightweight materials....

48

WEIGHTS  

NLE Websites -- All DOE Office Websites (Extended Search)

208 VAC 3-Phase 2008 Electric Transportation Applications All Rights Reserved Base Vehicle: 2008 Roush Industries Roush REV VIN: 9BFBT32N767991505 Seatbelt Positions: Two...

49

Analysis of the Relationship Between Vehicle Weight/Size and Safety, and Implications for Federal Fuel Economy Regulation  

SciTech Connect

This report analyzes the relationship between vehicle weight, size (wheelbase, track width, and their product, footprint), and safety, for individual vehicle makes and models. Vehicle weight and footprint are correlated with a correlation coefficient (R{sup 2}) of about 0.62. The relationship is stronger for cars (0.69) than for light trucks (0.42); light trucks include minivans, fullsize vans, truck-based SUVs, crossover SUVs, and pickup trucks. The correlation between wheelbase and track width, the components of footprint, is about 0.61 for all light vehicles, 0.62 for cars and 0.48 for light trucks. However, the footprint data used in this analysis does not vary for different versions of the same vehicle model, as curb weight does; the analysis could be improved with more precise data on footprint for different versions of the same vehicle model. Although US fatality risk to drivers (driver fatalities per million registered vehicles) decreases as vehicle footprint increases, there is very little correlation either for all light vehicles (0.01), or cars (0.07) or trucks (0.11). The correlation between footprint and fatality risks cars impose on drivers of other vehicles is also very low (0.01); for trucks the correlation is higher (0.30), with risk to others increasing as truck footprint increases. Fatality risks reported here do not account for differences in annual miles driven, driver age or gender, or crash location by vehicle type or model. It is difficult to account for these factors using data on national fatal crashes because the number of vehicles registered to, for instance, young males in urban areas is not readily available by vehicle type or model. State data on all police-reported crashes can be used to estimate casualty risks that account for miles driven, driver age and gender, and crash location. The number of vehicles involved in a crash can act as a proxy of the number of miles a given vehicle type, or model, is driven per year, and is a preferable unit of exposure to a serious crash than the number of registered vehicles. However, because there are relatively few fatalities in the states providing crash data, we calculate casualty risks, which are the sum of fatalities and serious or incapacitating injuries, per vehicle involved in a crash reported to the police. We can account for driver age/gender and driving location effects by excluding from analysis crashes (and casualties) involving young males and the elderly, and occurring in very rural or very urban counties. Using state data on all police-reported crashes in five states, we find that excluding crashes involving young male and elderly drivers has little effect on casualty risk; however, excluding crashes that occurred in the most rural and most urban counties (based on population density) increases casualty risk for all vehicle types except pickups. This suggests that risks for pickups are overstated unless they account for the population density of the county in which the crashes occur. After removing crashes involving young males and elderly drivers, and those occurring in the most rural and most urban counties, we find that casualty risk in all light-duty vehicles tends to increase with increasing weight or footprint; however, the correlation (R{sup 2}) between casualty risk and vehicle weight is 0.31, while the correlation with footprint is 0.23. These relationships are stronger for cars than for light trucks. The correlation between casualty risk in frontal crashes and light-duty vehicle wheelbase is 0.12, while the correlation between casualty risk in left side crashes and track width is 0.36. We calculated separately the casualty risks vehicles impose on drivers of the other vehicles with which they crash. The correlation between casualty risk imposed by light trucks on drivers of other vehicles and light truck footprint is 0.15, while the correlation with light truck footprint is 0.33; risk imposed on others increases as light truck weight or footprint increases. Our analysis indicates that, after excluding crashes involving young m

Wenzel, Thomas P.

2010-03-02T23:59:59.000Z

50

Alternative Fuels Data Center: Clean Transportation Fuels for School Buses  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Clean Transportation Clean Transportation Fuels for School Buses to someone by E-mail Share Alternative Fuels Data Center: Clean Transportation Fuels for School Buses on Facebook Tweet about Alternative Fuels Data Center: Clean Transportation Fuels for School Buses on Twitter Bookmark Alternative Fuels Data Center: Clean Transportation Fuels for School Buses on Google Bookmark Alternative Fuels Data Center: Clean Transportation Fuels for School Buses on Delicious Rank Alternative Fuels Data Center: Clean Transportation Fuels for School Buses on Digg Find More places to share Alternative Fuels Data Center: Clean Transportation Fuels for School Buses on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Clean Transportation Fuels for School Buses

51

Alternative Fuels Data Center: Biodiesel Requirement for School Buses  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Requirement Requirement for School Buses to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Requirement for School Buses on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Requirement for School Buses on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Requirement for School Buses on Google Bookmark Alternative Fuels Data Center: Biodiesel Requirement for School Buses on Delicious Rank Alternative Fuels Data Center: Biodiesel Requirement for School Buses on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Requirement for School Buses on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Requirement for School Buses Every school bus that is capable of operating on diesel fuel must be

52

Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Buses Help Propane Buses Help Minnesota Schools Carve out Greener Future to someone by E-mail Share Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve out Greener Future on Facebook Tweet about Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve out Greener Future on Twitter Bookmark Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve out Greener Future on Google Bookmark Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve out Greener Future on Delicious Rank Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve out Greener Future on Digg Find More places to share Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve out Greener Future on AddThis.com...

53

Alternative Fuels Data Center: Biodiesel Use in School Buses  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Use in Biodiesel Use in School Buses to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Use in School Buses on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Use in School Buses on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Use in School Buses on Google Bookmark Alternative Fuels Data Center: Biodiesel Use in School Buses on Delicious Rank Alternative Fuels Data Center: Biodiesel Use in School Buses on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Use in School Buses on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Use in School Buses The South Carolina Department of Education must fuel state school bus fleets with biodiesel when feasible. (Reference South Carolina Code of Laws

54

Tempe Transportation Division: LNG Turbine Hybrid Electric Buses  

SciTech Connect

Fact sheet describes the performance of liquefied natural gas (LNG) turbine hybrid electric buses used in Tempe's Transportation Division.

Not Available

2002-02-01T23:59:59.000Z

55

Transit Users Group Supports Transit Agencies with Natural Gas Buses  

Science Conference Proceedings (OSTI)

Fact sheet describes the benefits of the Transit Users Group, which supports transit groups with compressed natural gas (CNG) buses.

Not Available

2002-04-01T23:59:59.000Z

56

Clean Cities' Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Brochure)  

DOE Green Energy (OSTI)

Guide describes the alternative fuel and advanced medium- and heavy-duty vehicles available on the market, including buses, vans, refuse haulers, and more.

Not Available

2010-09-01T23:59:59.000Z

57

Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid Electric Hybrid Electric Shuttle Buses Offer Free Rides in Maryland to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free Rides in Maryland on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free Rides in Maryland on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free Rides in Maryland on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free Rides in Maryland on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free Rides in Maryland on Digg Find More places to share Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free Rides in Maryland on AddThis.com... June 18, 2010

58

Alternative Fuels Data Center: Compressed Natural Gas School Buses Grant  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas School Buses Grant and Loan Pilot Program to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas School Buses Grant and Loan Pilot Program on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas School Buses Grant and Loan Pilot Program on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas School Buses Grant and Loan Pilot Program on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas School Buses Grant and Loan Pilot Program on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas School Buses Grant and Loan Pilot Program on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas School Buses Grant and Loan Pilot Program on AddThis.com...

59

Hybrid vehicle potential assessment. Volume 7. Hybrid vehicle review  

DOE Green Energy (OSTI)

Review of hybrid vehicles (HVs) built during the past ten years or planned to be built in the near future is presented. An attempt is made to classify and analyze these vehicles to get an overall picture of their key characteristics. The review includes on-road hybrid passenger cars, trucks, vans, and buses.

Leschly, K.O.

1979-09-30T23:59:59.000Z

60

Experiences from Ethanol Buses and Fuel Station Report - Nanyang | Open  

Open Energy Info (EERE)

Experiences from Ethanol Buses and Fuel Station Report - Nanyang Experiences from Ethanol Buses and Fuel Station Report - Nanyang Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Experiences from Ethanol Buses and Fuel Station Report - Nanyang Agency/Company /Organization: BioEthanol for Sustainable Transport Focus Area: Fuels & Efficiency Topics: Best Practices Website: www.best-europe.org/upload/BEST_documents/info_documents/Best%20report This report addresses the experience of introducing ethanol buses and fuel stations in Nanyang (China). Though the demonstration met initial obstacles, significant data and information was collected. The responses from drivers and passengers show that the ethanol buses were well accepted, and the function and performance of the ethanol buses was satisfactory. How to Use This Tool

Note: This page contains sample records for the topic "vehicle weight buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Inspection of compressed natural gas cylinders on school buses  

DOE Green Energy (OSTI)

The US Department of Energy (DOE) is sponsoring compressed natural gas (CNF)-powered school bus demonstrations in various locations around the country. Early in 1994, two non-DOE-sponsored CNG pickup trucks equipped with composite-reinforced-aluminum fuel cylinders experienced cylinder ruptures during refueling. As reported by the Gas Research Institute (GRI): ...analysis of the cylinder ruptures on the pickup trucks revealed that they were due to acid-induced stress corrosion cracking (SCC) of the overwrap. The overwrap that GRI refers to is a resin-impregnated fiber that is wrapped around the outside of the gas cylinder for added strength. Because ensuring the safety of the CNG vehicles it sponsors is of paramount concern to DOE, the Department, through the National Renewable Energy Laboratory (NREL), conducted inspections of DOE-sponsored vehicles nationwide. The work had three objectives: inspection, documentation, and education. First, inspectors visited sites where CNG-powered school buses sponsored by DOE are based, and inspected the CNG cylinders for damage. Second, information learned during the inspections was collected for DOE. Third, the inspections found that the education and awareness of site personnel, in terms of cylinder damage detection, needed to be increased.

NONE

1995-07-01T23:59:59.000Z

62

Case Study: Ebus Hybrid Electric Buses and Trolleys  

DOE Green Energy (OSTI)

Evaluation focuses on the demonstration of hybrid electric buses and trolleys produced by Ebus Inc. at the Indianapolis Transportation Corporation and the Knoxville Area Transit.

Barnitt, R.

2006-07-01T23:59:59.000Z

63

Alternative Fuels Data Center: Biodiesel Use in School Buses...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Louisiana Legislature. The Board will consider the environmental and economic advantages and disadvantages of using biodiesel in school buses. (Reference House Resolution 72, 201...

64

Alameda-Contra Costa Transit District (AC Transit) Fuel Cell Transit Buses: Preliminary Evaluation Results  

DOE Green Energy (OSTI)

This report provides an evaluation of three prototype fuel cell-powered transit buses operating at AC Transit in Oakland, California, and six baseline diesel buses similar in design to the fuel cell buses.

Chandler, K.; Eudy, L.

2007-03-01T23:59:59.000Z

65

Vehicle Modeling and Verification of CNG-Powered Transit Buses  

E-Print Network (OSTI)

by Compressed Natural Gas. . . . . . . . .. . 2 Internalbuses powered by compressed natural gas (CNG) engines. ThisBus Powered by Compressed Natural Gas The remainder of the

Hedrick, J. K.; Ni, A.

2004-01-01T23:59:59.000Z

66

The BEST Experiences with Bioethanol Buses | Open Energy Information  

Open Energy Info (EERE)

The BEST Experiences with Bioethanol Buses The BEST Experiences with Bioethanol Buses Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The BEST Experiences with Bioethanol Buses Agency/Company /Organization: BioEthanol for Sustainable Transport Focus Area: Fuels & Efficiency Topics: Best Practices Website: www.best-europe.org/upload/BEST_documents/info_documents/Best%20report This report summarizes the results of the BioEthanol for Sustainable Transport (BEST) demonstration of bioethanol buses. The conclusion is that bioethanol is a suitable fuel for public transport. Bioethanol has a potential to replace diesel in compression engines. How to Use This Tool This tool is most helpful when using these strategies: Avoid - Cut the need for travel Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies

67

Enterprise converting buses to biodiesel | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enterprise converting buses to biodiesel Enterprise converting buses to biodiesel Enterprise converting buses to biodiesel April 1, 2010 - 6:48pm Addthis Paul Lester Communications Specialist, Office of Energy Efficiency and Renewable Energy Rental car customers may be able to breathe a little easier during their next trip to the airport. Alamo Rent A Car, Enterprise Rent-A-Car, and National Car Rental, all brands operated by the subsidiaries of Enterprise Holdings, are converting their airport shuttle buses to run on biodiesel fuel. The move is a good one for the environment, and will ultimately reduce the company's carbon emissions. "We are saving 420,000 gallons of petroleum diesel," says Lee Broughton, director of corporate identity and sustainability for Enterprise Holdings. Hydrocarbon and particulate matter emissions will plummet, making the air

68

Experiences from Introduction of Ethanol Buses and Ethanol Fuel Station |  

Open Energy Info (EERE)

Experiences from Introduction of Ethanol Buses and Ethanol Fuel Station Experiences from Introduction of Ethanol Buses and Ethanol Fuel Station Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Experiences from Introduction of Ethanol Buses and Ethanol Fuel Station Agency/Company /Organization: BioEthanol for Sustainable Transport Focus Area: Fuels & Efficiency Topics: Best Practices Website: www.best-europe.org/upload/BEST_documents/info_documents/Best%20report Ethanol buses were demonstrated within BioEthanol for Sustainable Transport (BEST). This report describes the problems at the sites and how they were solved. The aim of the report is to guide other local transport authorities on how to deal with the questions raised when a bus demonstration begins. How to Use This Tool This tool is most helpful when using these strategies:

69

Alternative fuel transit buses: The Pierce Transit Success Story  

DOE Green Energy (OSTI)

The Pierce transit program for operating mass transit buses on compressed natural gas (CNG) is described. Cost, reliability, fuel efficiency, emission of combustion products, and future trends are discussed.

NONE

1996-10-01T23:59:59.000Z

70

King County Metro Transit Hybrid Articulated Buses: Final Evaluation Results  

DOE Green Energy (OSTI)

Final technical report compares and evaluates new diesel and diesel hybrid-electric articulated buses operated as part of the King County Metro Transit (KC Metro) fleet in Seattle, Washington. The evaluation lasted 12 months.

Chandler, K.; Walkowicz, K.

2006-12-01T23:59:59.000Z

71

Life-cycle Energy and Emissions Inventories for Motorcycles, Diesel Automobiles, School Buses, Electric Buses, Chicago Rail, and New York City Rail  

E-Print Network (OSTI)

Buses, and Metropolitan Rail  Mikhail Chester and Arpad Buses, and Metropolitan Rail  Mikhail Chester and Arpad 2005, Metra (2005)]  Metra Rail, 2005.  Available Daily 

Chester, Mikhail; Horvath, Arpad

2009-01-01T23:59:59.000Z

72

Impact of battery weight and charging patterns on the economic and environmental benefits of plug-in hybrid vehicles  

E-Print Network (OSTI)

incentives. The federal Qualified Plug-In Electric Drive Motor Vehicle Tax Credit is available for PEV. Advances in electric-drive technologies enabled commercializa- tion of hybrid electric vehicles (HEVs That Affect All-Electric and Hybrid Electric Vehicle Efficiency and Range section). The time required to fully

Michalek, Jeremy J.

73

Evaluation of Orion/BAE Hybrid Buses and Orion CNG Buses at New York City Transit: Preprint  

DOE Green Energy (OSTI)

This paper prepared for the 2005 American Public Transportation Association Bus & Paratransit Conference discusses the NREL/DOE evaluation of hybrid electric transit buses operated by New York City Transit.

Eudy, L.; Barnitt, R.; Chandler, K.

2005-05-01T23:59:59.000Z

74

Alternative Fuels Data Center: Glacier-Waterton Park Powers Buses With  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Glacier-Waterton Park Glacier-Waterton Park Powers Buses With Propane to someone by E-mail Share Alternative Fuels Data Center: Glacier-Waterton Park Powers Buses With Propane on Facebook Tweet about Alternative Fuels Data Center: Glacier-Waterton Park Powers Buses With Propane on Twitter Bookmark Alternative Fuels Data Center: Glacier-Waterton Park Powers Buses With Propane on Google Bookmark Alternative Fuels Data Center: Glacier-Waterton Park Powers Buses With Propane on Delicious Rank Alternative Fuels Data Center: Glacier-Waterton Park Powers Buses With Propane on Digg Find More places to share Alternative Fuels Data Center: Glacier-Waterton Park Powers Buses With Propane on AddThis.com... Dec. 31, 2004 Glacier-Waterton Park Powers Buses With Propane F ind out how Glacier-Waterton International Peace Park uses propane buses.

75

Propane-Fueled Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Propane-Fueled Vehicle Basics Propane-Fueled Vehicle Basics Propane-Fueled Vehicle Basics August 20, 2013 - 9:16am Addthis There are more than 270,000 on-road propane vehicles in the United States and more than 10 million worldwide. Many are used in fleets, including light- and heavy-duty trucks, buses, taxicabs, police cars, and rental and delivery vehicles. Compared with vehicles fueled with conventional diesel and gasoline, propane vehicles can produce significantly fewer harmful emissions. The availability of new light-duty original equipment manufacturer propane vehicles has declined in recent years. However, certified installers can economically and reliably retrofit many light-duty vehicles for propane operation. Propane engines and fueling systems are also available for heavy-duty vehicles such as school buses and street sweepers.

76

Demonstration of Alternative Fuel, Light and Heavy Duty Vehicles in State and Municipal Vehicle Fleets  

Science Conference Proceedings (OSTI)

This project involved the purchase of two Compressed Natural Gas School Buses and two electric Ford Rangers to demonstrate their viability in a municipal setting. Operational and maintenance data were collected for analysis. In addition, an educational component was undertaken with middle school children. The children observed and calculated how electric vehicles could minimize pollutants through comparison to conventionally powered vehicles.

Kennedy, John H.; Polubiatko, Peter; Tucchio, Michael A.

2002-02-06T23:59:59.000Z

77

Liquefied Natural Gas for Trucks and Buses  

DOE Green Energy (OSTI)

Liquefied natural gas (LNG) is being developed as a heavy vehicle fuel. The reason for developing LNG is to reduce our dependency on imported oil by eliminating technical and costs barriers associated with its usage. The U.S. Department of Energy (DOE) has a program, currently in its third year, to develop and advance cost-effective technologies for operating and refueling natural gas-fueled heavy vehicles (Class 7-8 trucks). The objectives of the DOE Natural Gas Vehicle Systems Program are to achieve market penetration by reducing vehicle conversion and fuel costs, to increase consumer acceptance by improving the reliability and efficiency, and to improve air quality by reducing tailpipe emissions. One way to reduce fuel costs is to develop new supplies of cheap natural gas. Significant progress is being made towards developing more energy-efficient, low-cost, small-scale natural gas liquefiers for exploiting alternative sources of natural gas such as from landfill and remote gas sites. In particular, the DOE program provides funds for research and development in the areas of; natural gas clean up, LNG production, advanced vehicle onboard storage tanks, improved fuel delivery systems and LNG market strategies. In general, the program seeks to integrate the individual components being developed into complete systems, and then demonstrate the technology to establish technical and economic feasibility. The paper also reviews the importance of cryogenics in designing LNG fuel delivery systems.

James Wegrzyn; Michael Gurevich

2000-06-19T23:59:59.000Z

78

Alameda-Contra Costa Transit District (AC Transit) Fuel Cell Transit Buses: Third Evaluation Report and Appendices  

DOE Green Energy (OSTI)

This report describes operations at Alameda-Contra Costa Transit district for three protoype fuel cell buses and six diesel buses operating from the same location.

Chandler, K.; Eudy, L.

2008-07-01T23:59:59.000Z

79

Alternative Fuels Data Center: Pennsylvania School Buses Run on Natural Gas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Pennsylvania School Pennsylvania School Buses Run on Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Pennsylvania School Buses Run on Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Pennsylvania School Buses Run on Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Pennsylvania School Buses Run on Natural Gas on Google Bookmark Alternative Fuels Data Center: Pennsylvania School Buses Run on Natural Gas on Delicious Rank Alternative Fuels Data Center: Pennsylvania School Buses Run on Natural Gas on Digg Find More places to share Alternative Fuels Data Center: Pennsylvania School Buses Run on Natural Gas on AddThis.com... Feb. 16, 2013 Pennsylvania School Buses Run on Natural Gas F ind out how schools in Pennsylvania transport students in compressed

80

Alternative Fuels Data Center: Natural Gas School Buses Help Kansas City  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas School Natural Gas School Buses Help Kansas City Save Money to someone by E-mail Share Alternative Fuels Data Center: Natural Gas School Buses Help Kansas City Save Money on Facebook Tweet about Alternative Fuels Data Center: Natural Gas School Buses Help Kansas City Save Money on Twitter Bookmark Alternative Fuels Data Center: Natural Gas School Buses Help Kansas City Save Money on Google Bookmark Alternative Fuels Data Center: Natural Gas School Buses Help Kansas City Save Money on Delicious Rank Alternative Fuels Data Center: Natural Gas School Buses Help Kansas City Save Money on Digg Find More places to share Alternative Fuels Data Center: Natural Gas School Buses Help Kansas City Save Money on AddThis.com... Nov. 12, 2011 Natural Gas School Buses Help Kansas City Save Money

Note: This page contains sample records for the topic "vehicle weight buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Vehicle Technologies Office: Fact #475: June 25, 2007 Light Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

5: June 25, 2007 Light Vehicle Weight on the Rise to someone by E-mail Share Vehicle Technologies Office: Fact 475: June 25, 2007 Light Vehicle Weight on the Rise on Facebook...

82

Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses  

DOE Green Energy (OSTI)

An evaluation of emissions of natural gas and diesel buses operated by the Washington Metro Area Transit Authority.

Melendez, M.; Taylor, J.; Wayne, W. S.; Smith, D.; Zuboy, J.

2005-12-01T23:59:59.000Z

83

New York City Transit Hybrid and CNG Transit Buses: Final Evaluation Results  

DOE Green Energy (OSTI)

This report describes the evaluation results for new Orion VII buses at NYCT with CNG propulsion and new hybrid propulsion.

Barnitt, R.; Chandler, K.

2006-11-01T23:59:59.000Z

84

Blog Feed: Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 18, 2011 March 18, 2011 Kansas City Buses Provide a Clean Ride for Kids On Wednesday March 16, the Kansas City, Kansas School District welcomed some newcomers to their community - 47 natural gas school buses deployed as part of the Clean Cities Alternative Fuel Vehicle Pilot Program. March 18, 2011 Driving "Back to the Future": Flex-Fuel Vehicle Awareness How Flexible Fuel Vehicles are empowering consumers and reducing our reliance on foreign oil. March 17, 2011 Manhattan Beer Distributors' first diesel-electric hybrid delivery vehicle | Photo Courtesy of Manhattan Beer Distributors Green Beer: Not Just for St. Patrick's Day How the Clean Cities program has helped small business fleets like Manhattan Beer Distributors adopt fuel efficient vehicle technology --

85

NREL: Learning - Advanced Vehicles and Fuels Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Vehicles and Fuels Basics Advanced Vehicles and Fuels Basics Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player This video provides an overview of the Center for Transportation Technologies and Systems and its research. Video produced for NREL by Fireside Production. Text Version We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. And we can help to reduce our nation's growing reliance on imported oil by running our vehicles on renewable and alternative fuels. Advanced vehicles and fuels can also put the brakes on air pollution and improve our environment. At least 250 million vehicles are in use in the United States today. They include all kinds of passenger cars, trucks, vans, buses, and large

86

Lower Merion a Key Player in Alternative Fuel Buses  

DOE Green Energy (OSTI)

This 2-page Clean Cities fact sheet describes the use of natural gas power in buses by the Lower Merion School District, located in the western suburbs of Philadelphia, PA. It includes information on the history of the program, along with contact information for the local Clean Cities Coordinator and Lower Merion School District.

Not Available

2004-04-01T23:59:59.000Z

87

Assessment of the Greenhouse Gas Emission Reduction Potential of Ultra-Clean Hybrid-Electric Vehicles  

E-Print Network (OSTI)

Table ES-3: Summaryof Hybrid Vehicle Fuel Economy Results onmal ICE and Series Hybrid Vehicles (t) Vehicle Test Weight (I) Conventional and Series Hybrid Vehicles had same weight,

Burke, A.F.; Miller, M.

1997-01-01T23:59:59.000Z

88

Alternative Fuels Data Center: Biodiesel and Propane Fuel Buses for Dallas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel and Propane Biodiesel and Propane Fuel Buses for Dallas County Schools to someone by E-mail Share Alternative Fuels Data Center: Biodiesel and Propane Fuel Buses for Dallas County Schools on Facebook Tweet about Alternative Fuels Data Center: Biodiesel and Propane Fuel Buses for Dallas County Schools on Twitter Bookmark Alternative Fuels Data Center: Biodiesel and Propane Fuel Buses for Dallas County Schools on Google Bookmark Alternative Fuels Data Center: Biodiesel and Propane Fuel Buses for Dallas County Schools on Delicious Rank Alternative Fuels Data Center: Biodiesel and Propane Fuel Buses for Dallas County Schools on Digg Find More places to share Alternative Fuels Data Center: Biodiesel and Propane Fuel Buses for Dallas County Schools on AddThis.com... Oct. 2, 2009

89

Alternative Fuels Data Center: Propane Vehicle Training  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Vehicle Propane Vehicle Training to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Training on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Training on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Training on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Training on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Training on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicle Training on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Propane Vehicle Training The Railroad Commission of Texas Alternative Energy Division offers free safety and maintenance training on propane vehicles, buses, and forklifts.

90

High Energy Batteries for Hybrid Buses  

DOE Green Energy (OSTI)

EnerDel batteries have already been employed successfully for electric vehicle (EV) applications. Compared to EV applications, hybrid electric vehicle (HEV) bus applications may be less stressful, but are still quite demanding, especially compared to battery applications for consumer products. This program evaluated EnerDel cell and pack system technologies with three different chemistries using real world HEV-Bus drive cycles recorded in three markets covering cold, hot, and mild climates. Cells were designed, developed, and fabricated using each of the following three chemistries: (1) Lithium nickel manganese cobalt oxide (NMC) - hard carbon (HC); (2) Lithium manganese oxide (LMO) - HC; and (3) LMO - lithium titanium oxide (LTO) cells. For each cell chemistry, battery pack systems integrated with an EnerDel battery management system (BMS) were successfully constructed with the following features: real time current monitoring, cell and pack voltage monitoring, cell and pack temperature monitoring, pack state of charge (SOC) reporting, cell balancing, and over voltage protection. These features are all necessary functions for real-world HEV-Bus applications. Drive cycle test data was collected for each of the three cell chemistries using real world drive profiles under hot, mild, and cold climate conditions representing cities like Houston, Seattle, and Minneapolis, respectively. We successfully tested the battery packs using real-world HEV-Bus drive profiles under these various climate conditions. The NMC-HC and LMO-HC based packs successfully completed the drive cycles, while the LMO-LTO based pack did not finish the preliminary testing for the drive cycles. It was concluded that the LMO-HC chemistry is optimal for the hot or mild climates, while the NMC-HC chemistry is optimal for the cold climate. In summary, the objectives were successfully accomplished at the conclusion of the project. This program provided technical data to DOE and the public for assessing EnerDel technology, and helps DOE to evaluate the merits of underlying technology. The successful completion of this program demonstrated the capability of EnerDel battery packs to satisfactorily supply all power and energy requirements of a real-world HEV-Bus drive profile. This program supports green solutions to metropolitan public transportation problems by demonstrating the effectiveness of EnerDel lithium ion batteries for HEV-Bus applications.

Bruce Lu

2010-12-31T23:59:59.000Z

91

Evaluation of Alternative Field Buses for Lighting Control Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative Field Buses Alternative Field Buses for Lighting Control Applications Prepared By: Ed Koch, Akua Controls Francis Rubinstein, Lawrence Berkeley National Laboratory Prepared For: Broadata Communications Torrence, CA May 15, 2005 DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name,

92

King County Metro Transit Hybrid Articulated Buses: Interim Evaluation Results  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

King County Metro Transit King County Metro Transit Hybrid Articulated Buses: Interim Evaluation Results K. Chandler Battelle K. Walkowicz National Renewable Energy Laboratory Technical Report NREL/TP-540-39742 April 2006 King County Metro Transit Hybrid Articulated Buses: Interim Evaluation Results K. Chandler Battelle K. Walkowicz National Renewable Energy Laboratory Prepared under Task No. FC06.3000 Technical Report NREL/TP-540-39742 April 2006 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

93

Un-Regulated Emissions from CRT-Equipped Transit Buses  

DOE Green Energy (OSTI)

Demonstrate applicability of the CRT TM to both new 4-stroke and older 2-stroke diesel engines Document the emissions reductions available using CRT TM retrofits in conjunction with reduced sulfur diesel fuel Evaluate the durability of CRTs in rigorous New York City bus service Apply new measurement and monitoring technologies for PM and toxic emissions Compare diesel-CRTTM with CNG and diesel-electric hybrid buses

Gibbs, Richard

2000-08-20T23:59:59.000Z

94

NREL: Learning - Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Vehicles Hybrid Electric Vehicles Photo of the front and part of the side of a bus parked at the curb of a city street with tall buildings in the background. This diesel hybrid electric bus operated by the Metropolitan Transit Authority, New York City Transit, was part of a test study that recently investigated the fuel efficiency and reliability of these buses. Credit: Leslie Eudy Today's hybrid electric vehicles (HEVs) range from small passenger cars to sport utility vehicles (SUVs) and large trucks. Though they often look just like conventional vehicles, HEVs usually include an electric motor as well as a small internal combustion engine (ICE). This combination provides greater fuel economy and fewer emissions than most conventional ICE vehicles do. HEVs are powered by two energy sources: an energy conversion unit, such as

95

Top 9 Things You Didn't Know about Alternative Fuel Vehicles | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9 Things You Didn't Know about Alternative Fuel Vehicles 9 Things You Didn't Know about Alternative Fuel Vehicles Top 9 Things You Didn't Know about Alternative Fuel Vehicles October 12, 2012 - 3:04pm Addthis Denver International Airport is one of many airports across the U.S. that is turning to alternative fuel vehicles. The airport maintains 324 alternative fuel vehicles, including 210 buses, sweepers, and other vehicles that use compressed natural gas, and 114 electric and hybrid-electric vehicles. As of 2010, alternative vehicles made up 32 percent of the airport's fleet. | Photo courtesy of Dean Armstrong, NREL. Denver International Airport is one of many airports across the U.S. that is turning to alternative fuel vehicles. The airport maintains 324 alternative fuel vehicles, including 210 buses, sweepers, and other

96

To Evaluate Zero Emission Propulsion and Support Technology for Transit Buses  

DOE Green Energy (OSTI)

This report provides evaluation results for prototype fuel cell transit buses operating at Santa Clara Valley Transportation Authority (VTA) in San Jose, California, in partnership with the San Mateo County Transit District in San Carlos, California. VTA has been operating three fuel cell transit buses in extra revenue service since February 28, 2005. This report provides descriptions of the equipment used, early experiences, and evaluation results from the operation of the buses and the supporting hydrogen infrastructure from March 2005 through July 2006.

Kevin Chandler; Leslie Eudy

2006-11-01T23:59:59.000Z

97

Alameda-Contra Costa Transit District Fuel Cell Transit Buses: Evaluation Results Update  

DOE Green Energy (OSTI)

This report is an update to the 2007 preliminary results report on hydrogen fuel cell and diesel buses operating at Alameda-Contra Costa Transit District.

Chandler, K.; Eudy, L.

2007-10-01T23:59:59.000Z

98

100,000-Mile Evaluation of Transit Buses Operated on Biodiesel Blends (B20)  

DOE Green Energy (OSTI)

Evaluates the emissions, fuel economy, and maintenance of five 40-foot transit buses operated on B20 compared to four on petroleum diesel.

Proc, K.; Barnitt, R.; Hayes, R. R.; Ratcliff, M.; McCormick, R. L.; Ha, L.; Fang, H. L.

2006-11-01T23:59:59.000Z

99

Sunline Transit Agency Hydrogen-Powered Transit Buses: Evaluation Results Update  

Science Conference Proceedings (OSTI)

This report provides an update on the evaluation results for hydrogen and CNG-fueled buses opertating at SunLine Transit Agency in California.

Chandler, K.; Eudy, L.

2007-10-01T23:59:59.000Z

100

New York City Transit Diesel Hybrid-Electric Buses Final Results...  

Open Energy Info (EERE)

of facilities, a description of the project start-up process, evaluation results of hybrid buses studied, lessons learned, and recommendations for future alternative fuel...

Note: This page contains sample records for the topic "vehicle weight buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

New York City Transit Hybrid and CNG Transit Buses: Interim Evaluation Results  

DOE Green Energy (OSTI)

This report focuses on the evaluation of compressed natural gas (CNG) and diesel hybrid electric bus propulsion systems in New York City Transit's transit buses.

Chandler, K.; Eberts, E.; Eudy, L.

2006-01-01T23:59:59.000Z

102

SunLine Transit Agency, Hydrogen Powered Transit Buses: Preliminary Evaluation Results  

DOE Green Energy (OSTI)

This paper provides preliminary results from an evaluation by DOE's National Renewable Energy Laboratory of hydrogen-powered transit buses at SunLine Transit Agency.

Chandler, K.; Eudy, L.

2007-02-01T23:59:59.000Z

103

Top 9 Things You Didn't Know about Alternative Fuel Vehicles | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Top 9 Things You Didn't Know about Alternative Fuel Vehicles Top 9 Things You Didn't Know about Alternative Fuel Vehicles October 12, 2012 - 3:04pm Addthis Denver International Airport is one of many airports across the U.S. that is turning to alternative fuel vehicles. The airport maintains 324 alternative fuel vehicles, including 210 buses, sweepers, and other vehicles that use compressed natural gas, and 114 electric and hybrid-electric vehicles. As of 2010, alternative vehicles made up 32 percent of the airport's fleet. | Photo courtesy of Dean Armstrong, NREL. Denver International Airport is one of many airports across the U.S. that is turning to alternative fuel vehicles. The airport maintains 324 alternative fuel vehicles, including 210 buses, sweepers, and other

104

Alternative Fuel Transit Buses: DART's (Dallas Area Rapid Transit) LNG Bus Fleet Final Results  

DOE Green Energy (OSTI)

In 1998, Dallas Area Rapid Transit, a public transit agency in Dallas, Texas, began operating a large fleet of heavy-duty buses powered by liquefied natural gas. As part of a $16 million commitment to alternative fuels, DART operates 139 LNG buses serviced by two new LNG fueling stations.

Chandler, K. [Battelle (US); Norton, P. [National Renewable Energy Lab., Golden, CO (US); Clark, N.

2000-11-07T23:59:59.000Z

105

Bay Area Transit Agencies Propel Fuel Cell Buses Toward Commercialization (Fact Sheet)  

Science Conference Proceedings (OSTI)

This fact sheet describes the Zero Emission Bay Area (ZEBA) demonstration of the next generation of fuel cells buses. Several transit agencies in the San Francisco Bay Area are participating in demonstrating the largest single fleet of fuel cell buses in the United States.

Not Available

2010-07-01T23:59:59.000Z

106

In High Gear: Weights and Measures Week 2013  

Science Conference Proceedings (OSTI)

... the fuel for your vehicle to a cab ... for vehicles using alternative fuels, including electric vehicles. ... groups and regulated industries —celebrate Weights ...

2013-03-05T23:59:59.000Z

107

Natural Gas Buses: Separating Myth from Fact; Autobuses Urbanos de Gas Natural: Separemos el Mito de la Realidad  

DOE Green Energy (OSTI)

Using a myth vs. fact format, this fact sheet addresses common public misconceptions about compressed natural gas buses.

LaRocque, T.

2001-10-01T23:59:59.000Z

108

Modelling and Design Optimization of Low Speed Fuel Cell Hybrid Electric Vehicles  

E-Print Network (OSTI)

of emissions to global climate change. Although electric cars and buses have been the focus of much of electricModelling and Design Optimization of Low Speed Fuel Cell Hybrid Electric Vehicles by Matthew Blair Supervisors: Dr. Zuomin Dong ABSTRACT Electric vehicles, as an emerging transportation platform, have been

Victoria, University of

109

New York City Transit Diesel Hybrid-Electric Buses Final Results: DOE/ NREL  

Open Energy Info (EERE)

Transit Diesel Hybrid-Electric Buses Final Results: DOE/ NREL Transit Diesel Hybrid-Electric Buses Final Results: DOE/ NREL Transit Bus Evaluation Project Jump to: navigation, search Name New York City Transit Diesel Hybrid-Electric Buses Final Results: DOE/ NREL Transit Bus Evaluation Project Agency/Company /Organization Department of Energy Partner National Renewable Energy Laboratory Batelle"National Renewable Energy Laboratory Batelle" cannot be used as a page name in this wiki. Focus Area Transportation Phase Bring the Right People Together, Determine Baseline, Evaluate Options, Develop Finance and Implement Projects Resource Type Guide/manual Availability Publicly available--Free Publication Date 7/1/2002 Website http://www.nrel.gov/docs/fy02o Locality New York City References New York City Transit Diesel Hybrid-Electric Buses Final Results: DOE/ NREL Transit Bus Evaluation Project[1]

110

Experiences from Ethanol Buses and Fuel Station Report - La Spezia | Open  

Open Energy Info (EERE)

Experiences from Ethanol Buses and Fuel Station Report - La Spezia Experiences from Ethanol Buses and Fuel Station Report - La Spezia Jump to: navigation, search Tool Summary Name: Experiences from Ethanol Buses and Fuel Station Report - La Spezia Agency/Company /Organization: BioEthanol for Sustainable Transport Focus Area: Fuels & Efficiency Topics: Best Practices Website: www.best-europe.org/upload/BEST_documents/info_documents/Best%20report This report summarizes the introduction and utilization of E95 buses and E95 pumps in the region of La Spezia (Italy) within the framework of the BioEthanol for Sustainable Transport (BEST) project. How to Use This Tool This tool is most helpful when using these strategies: Avoid - Cut the need for travel Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies

111

Alternative Fuel School Buses Earn High Marks: Reprint from Alternative Fuel News, Vol. 5, No. 3  

DOE Green Energy (OSTI)

A two-page article on school buses that run on alternative fuels including biodiesel and compressed natural gas. Reprinted from Alternative Fuel News, published by the Clean Cities Program of DOE.

Not Available

2002-11-01T23:59:59.000Z

112

SunLine Transit Agency Hydrogen-Powered Transit Buses: Third Evaluation Report (Report and Appendices)  

Science Conference Proceedings (OSTI)

This report describes operations at SunLine Transit Agency for a protoype fuel cell bus, a prototype hydrogen hybrid interal combustion engine bus, and five new compressed natural gas buses.

Chandler, K.; Eudy, L.

2008-06-01T23:59:59.000Z

113

King County Metro Transit Hybrid Articulated Transit Buses: Interim Evaluation Results  

DOE Green Energy (OSTI)

Interim technical report compares and evaluates new diesel and diesel hybrid-electric articulated buses operated as part of the King County Metro Transit (KC Metro) fleet in Seattle, Washington.

Chandler, K.; Walkowicz, K.

2006-04-01T23:59:59.000Z

114

Fuel Cell Buses in U.S. Transit Fleets: Current Status 2009  

DOE Green Energy (OSTI)

This report documents progress in meeting the technological challenges of fuel cell propulsion for transportation based on current fuel cell transit bus demonstrations and plans for more fuel cell transit buses and hydrogen infrastructure.

Eudy, L.; Chandler, K.; Gikakis, C.

2009-10-01T23:59:59.000Z

115

Methanol reformers for fuel cell powered vehicles: Some design considerations  

DOE Green Energy (OSTI)

Fuel cells are being developed for use in automotive propulsion systems as alternatives for the internal combustion engine in buses, vans, passenger cars. The two most important operational requirements for a stand-alone fuel cell power system for a vehicle are the ability to start up quickly and the ability to supply the necessary power on demand for the dynamically fluctuating load. Methanol is a likely fuel for use in fuel cells for transportation applications. It is a commodity chemical that is manufactured from coal, natural gas, and other feedstocks. For use in a fuel cell, however, the methanol must first be converted (reformed) to a hydrogen-rich gas mixture. The desired features for a methanol reformer include rapid start-up, good dynamic response, high fuel conversion, small size and weight, simple construction and operation, and low cost. In this paper the present the design considerations that are important for developing such a reformer, namely: (1) a small catalyst bed for quick starting, small size, and low weight; (2) multiple catalysts for optimum operation of the dissociation and reforming reactions; (3) reforming by direct heat transfer partial oxidation for rapid response to fluctuating loads; and (4) thermal independence from the rest of the fuel cell system. 10 refs., 1 fig.

Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

1990-01-01T23:59:59.000Z

116

NREL: Learning - Vehicle Testing and Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Testing and Analysis Vehicle Testing and Analysis Photo of two large semi-trailer truck cabs parked side by side on a hillside with a shrub-covered hill and sky in the background. Researchers at NREL obtain useful data on energy efficiency during tests conducted both in the laboratory and outdoors in truck cabs like these. Credit: Ken Proc Researchers and engineers test new technologies and vehicles to find out if they will help manufacturers produce more energy-efficient cars, vans, trucks, and buses. They also carry out studies using computer simulations. These studies help to identify the vehicles and components that will provide the best fuel economy and performance at the lowest cost. Fleet Tests and Evaluations NREL's engineers use the latest equipment and techniques to conduct vehicle

117

NREL: Learning - Advanced Vehicle Systems and Components  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Vehicle Systems and Components Advanced Vehicle Systems and Components Photo of a man checking out an advanced battery using testing equipment that includes a long metal tube on a table top. NREL's researchers test new batteries developed for hybrid electric vehicles. Credit: Warren Gretz Researchers and engineers at the NREL work closely with those in the automotive industry to develop new technologies, such as advanced batteries, for storing energy in cars, trucks, and buses. They also help to develop and test new technologies for using that energy more efficiently. And they work on finding new, energy-efficient ways to reduce the amount of fuel needed to heat and cool the interiors, or cabins, of vehicles. To help develop these new technologies, NREL's researchers are improving the efficiency of vehicle systems and components like these:

118

Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicles and Hydrogen Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues Bill Elrick California Fuel Cell Partnership 3/19/2013 The cars are coming HyundaiTucson ix35 FCEV production launch 2/26/13 Daimler/Nissan/Ford joint development announces 2017 launch of affordable FCEV 1/28/13 Toyota partnership with BMW 1/24/2013 Toyota announces sedan-type FCEV launch in 2015 9/24/12 The buses are coming HyundaiTucson ix35 FCEV production launch 2/26/13 Daimler/Nissan/Ford joint development announces 2017 launch of affordable FCEV 1/28/13 Toyota partnership with BMW 1/24/2013 Toyota announces sedan-type FCEV launch in 2015 9/24/12 Fuel Cell Buses too! * CA Roadmap * National Strategy paper CaFCP 2013 Zero emission vehicles in California ZEV Regulation - (www.arb.ca.gov/msprog/zevprog/zevprog.htm)

119

VEHICLE SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

VEHICLE SPECIFICATIONS 1 Vehicle Features Base Vehicle: 2011 Chevrolet Volt VIN: 1G1RD6E48BUI00815 Class: Compact Seatbelt Positions: 4 Type 2 : Multi-Mode PHEV (EV, Series, and Power-split) Motor Type: 12-pole permanent magnet AC synchronous Max. Power/Torque: 111 kW/370 Nm Max. Motor Speed: 9500 rpm Cooling: Active - Liquid cooled Generator Type: 16-pole permanent magnet AC synchronous Max. Power/Torque: 55 kW/200 Nm Max. Generator Speed: 6000 rpm Cooling: Active - Liquid cooled Battery Manufacturer: LG Chem Type: Lithium-ion Cathode/Anode Material: LiMn 2 O 4 /Hard Carbon Number of Cells: 288 Cell Config.: 3 parallel, 96 series Nominal Cell Voltage: 3.7 V Nominal System Voltage: 355.2 V Rated Pack Capacity: 45 Ah Rated Pack Energy: 16 kWh Weight of Pack: 435 lb

120

Santa Clara Valley Transportation Authority and San Mateo County Transit District; Fuel Cell Transit Buses: Preliminary Evaluation Results  

DOE Green Energy (OSTI)

Report provides preliminary results from an evaluation of prototype fuel cell transit buses operating at Santa Clara Valley Transportation Authority (VTA) in San Jose, California.

Eudy, L.; Chandler, K.

2006-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle weight buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Santa Clara Valley Transportation Authority and San Mateo County Transit District -- Fuel Cell Transit Buses: Evaluation Results  

DOE Green Energy (OSTI)

This report provides evaluation results for prototype fuel cell transit buses operating at Santa Clara Valley Transportation Authority in San Jose, California.

Chandler, K.; Eudy, L.

2006-11-01T23:59:59.000Z

122

Evaluation of Alternative Field Buses for Lighting ControlApplications  

Science Conference Proceedings (OSTI)

The Subcontract Statement of Work consists of two major tasks. This report is the Final Report in fulfillment of the contract deliverable for Task 1. The purpose of Task 1 was to evaluate existing and emerging protocols and standards for interfacing sensors and controllers for communicating with integrated lighting control systems in commercial buildings. The detailed task description follows: Task 1. Evaluate alternative sensor/field buses. The objective of this task is to evaluate existing and emerging standards for interfacing sensors and controllers for communicating with integrated lighting control systems in commercial buildings. The protocols to be evaluated will include at least: (1) 1-Wire Net, (2) DALI, (3) MODBUS (or appropriate substitute such as EIB) and (4) ZigBee. The evaluation will include a comparative matrix for comparing the technical performance features of the different alternative systems. The performance features to be considered include: (1) directionality and network speed, (2) error control, (3) latency times, (4) allowable cable voltage drop, (5) topology, and (6) polarization. Specifically, Subcontractor will: (1) Analyze the proposed network architecture and identify potential problems that may require further research and specification. (2) Help identify and specify additional software and hardware components that may be required for the communications network to operate properly. (3) Identify areas of the architecture that can benefit from existing standards and technology and enumerate those standards and technologies. (4) Identify existing companies that may have relevant technology that can be applied to this research. (5) Help determine if new standards or technologies need to be developed.

Koch, Ed; Rubinstein, Francis

2005-03-21T23:59:59.000Z

123

Vehicle Technologies Office: Materials Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

materials such as high-strength steel, magnesium (Mg) alloys, aluminum (Al) alloys, carbon fiber, and polymer composites can directly reduce the weight of a vehicle's body...

124

Guidelines for Conversion of Diesel Buses to Compressed Natural Gas | Open  

Open Energy Info (EERE)

Guidelines for Conversion of Diesel Buses to Compressed Natural Gas Guidelines for Conversion of Diesel Buses to Compressed Natural Gas Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Guidelines for Conversion of Diesel Buses to Compressed Natural Gas Agency/Company /Organization: United Nations Economic and Social Commission for Asia and the Pacific Sector: Energy Focus Area: Energy Efficiency, Transportation Topics: Implementation, Policies/deployment programs, Technology characterizations Resource Type: Guide/manual Website: www.unescap.org/ttdw/Publications/TIS_pubs/pub_1361/pub_1361_fulltext. UN Region: Central Asia, Eastern Asia, South-Eastern Asia, "Pacific" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property.

125

Microsoft Word - NUCLEUS - INL Busing-DAT 10-14-2010.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

INL busing now becoming the DOE role model INL busing now becoming the DOE role model For energy savings and pollution reduction The following message to Integrated Transportation Services from R&D Support Services Director Debby Tate was sent to all her transportation employees last month. There has been a surprising and welcome change in attitude for why we have INL busing. I'd like to share it with you because of the role each of you has played in moving Bus Operations forward in exciting new directions for the future. INL was one of only eight institutions in the nation to win a 2010 GreenGov Presidential Award. The Laboratory received the Lean, Clean & Green Award for extraordinary improvements to fleet sustainability. Robert Gallegos (DOE-ID), Deborah Tate, Scott Wold (Integrated

126

Fuel Cell Buses in U.S. Transit Fleets: Current Status 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Buses in U.S. Transit Fuel Cell Buses in U.S. Transit Fleets: Current Status 2012 Leslie Eudy National Renewable Energy Laboratory Kevin Chandler Battelle Christina Gikakis Federal Transit Administration Technical Report NREL/TP-5600-56406 November 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Fuel Cell Buses in U.S. Transit Fleets: Current Status 2012 Leslie Eudy National Renewable Energy Laboratory Kevin Chandler Battelle Christina Gikakis Federal Transit Administration

127

Fuel Cell Buses in U.S. Transit Fleets: Current Status 2011  

DOE Green Energy (OSTI)

This status report, fifth in a series of annual status reports from the U.S. Department of Energy's National Renewable Energy Laboratory (NREL), discusses the achievements and challenges of fuel cell propulsion for transit and summarizes the introduction of fuel cell transit buses in the United States. Progress this year includes an increase in the number of fuel cell electric buses (FCEBs), from 15 to 25, operating at eight transit agencies, as well as increased diversity of the fuel cell design options for transit buses. The report also provides an analysis of the combined results from fuel cell transit bus demonstrations evaluated by NREL with a focus on the most recent data through July 2011 including fuel cell power system reliability and durability; fuel economy; roadcall; and hydrogen fueling results. These evaluations cover 22 of the 25 FCEBs currently operating.

Eudy, L.; Chandler, K.; Gikakis, C.

2011-11-01T23:59:59.000Z

128

EIA - Household Transportation report: Household Vehicles Energy  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Transportation logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Consumption 1994 August 1997 Release Next Update: EIA has discontinued this series. Based on the 1994 Residential Transportation Energy Consumption Survey conducted by the Energy Information Administration (EIA) - survey series has been discontinued Only light-duty vehicles and recreational vehicles are included in this report. EIA has excluded motorcycles, mopeds, large trucks, and buses. Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use

129

Feasibility and Calculated Performance of Near-Term Pulse Energy Storage Components for Use in Mass Transit Vehicles  

Science Conference Proceedings (OSTI)

Electrically driven mass transit vehicles—trams, light rail, and buses—are typically powered from the utility grid via third-rail or overhead catenary mechanisms. These feed systems supply adequate traction power, but they limit vehicle flexibility and, for safety and aesthetic reasons, are generally undesirable. Electric vehicles can carry their own onboard batteries, but existing and projected near-term battery systems are too bulky for most day-long mass transit uses. Enhancing third-rail ...

2003-07-31T23:59:59.000Z

130

How Vehicles Are Tested  

NLE Websites -- All DOE Office Websites (Extended Search)

simulates cycling. The energy required to move the rollers can be adjusted to account for wind resistance and the vehicle's weight. Photo: Driver running car through test cycle on...

131

Alternative Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

There are a number of alternative and advanced vehicles—or vehicles that run on alternative fuels. Learn more about the following types of vehicles:

132

DOE Hosts Workshop on Transition to Electric Vehicles | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Workshop on Transition to Electric Vehicles Workshop on Transition to Electric Vehicles DOE Hosts Workshop on Transition to Electric Vehicles July 21, 2010 - 12:00am Addthis Washington, DC - On Thursday, July 22, 2010, the Department of Energy will host an electric vehicle workshop at DOE Headquarters in Washington, DC, bringing together more than 150 city officials, vehicle manufacturers, utility companies and other stakeholders. The workshop will help participants better coordinate their efforts to expand the availability and use of electric cars, trucks and buses by discussing the infrastructure investments needed to support the broad deployment of plug-in electric vehicles. Throughout the day, the workshop will focus the discussion on high-impact steps regions can pursue in the near-term to better prepare for

133

DOE Hosts Workshop on Transition to Electric Vehicles | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Hosts Workshop on Transition to Electric Vehicles DOE Hosts Workshop on Transition to Electric Vehicles DOE Hosts Workshop on Transition to Electric Vehicles July 21, 2010 - 12:00am Addthis Washington, DC - On Thursday, July 22, 2010, the Department of Energy will host an electric vehicle workshop at DOE Headquarters in Washington, DC, bringing together more than 150 city officials, vehicle manufacturers, utility companies and other stakeholders. The workshop will help participants better coordinate their efforts to expand the availability and use of electric cars, trucks and buses by discussing the infrastructure investments needed to support the broad deployment of plug-in electric vehicles. Throughout the day, the workshop will focus the discussion on high-impact steps regions can pursue in the near-term to better prepare for

134

Heavy vehicle hybrid propulsion systems R and D program plan, FY 2000-2005  

DOE Green Energy (OSTI)

This report contains the program plan and background information for the Heavy Vehicle Hybrid Propulsion R and D Program sponsored by the Department of Energy's Office of Heavy Vehicle Technologies. The program is a collaboration between industry and government established for the development of advanced hybrid-electric propulsion technology for urban cycle trucks and buses. It targets specific applications to enhance potential market success. Potential end-users are also involved.

None

2000-07-01T23:59:59.000Z

135

Vehicle Technologies Office: Natural Gas Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Research Natural Gas Research Natural gas offers tremendous opportunities for reducing the use of petroleum in transportation. Medium and heavy-duty fleets, which have significant potential to use natural gas, currently consume more than a third of the petroleum in transportation in the U.S. Natural gas is an excellent fit for a wide range of heavy-duty applications, especially transit buses, refuse haulers, and Class 8 long-haul or delivery trucks. In addition, natural gas can be a very good choice for light-duty vehicle fleets with central refueling. See the Alternative Fuels Data Center for a description of the uses and benefits of natural gas vehicles or its Laws and Incentives database for information on tax incentives. The Vehicle Technologies Office (VTO) supports the development of natural gas engines and research into renewable natural gas production.

136

Comparative analysis of selected fuel cell vehicles  

DOE Green Energy (OSTI)

Vehicles powered by fuel cells operate more efficiently, more quietly, and more cleanly than internal combustion engines (ICEs). Furthermore, methanol-fueled fuel cell vehicles (FCVs) can utilize major elements of the existing fueling infrastructure of present-day liquid-fueled ICE vehicles (ICEVs). DOE has maintained an active program to stimulate the development and demonstration o fuel cell technologies in conjunction with rechargeable batteries in road vehicles. The purpose of this study is to identify and assess the availability of data on FCVs, and to develop a vehicle subsystem structure that can be used to compare both FCVs and ICEV, from a number of perspectives--environmental impacts, energy utilization, materials usage, and life cycle costs. This report focuses on methanol-fueled FCVs fueled by gasoline, methanol, and diesel fuel that are likely to be demonstratable by the year 2000. The comparative analysis presented covers four vehicles--two passenger vehicles and two urban transit buses. The passenger vehicles include an ICEV using either gasoline or methanol and an FCV using methanol. The FCV uses a Proton Exchange Membrane (PEM) fuel cell, an on-board methanol reformer, mid-term batteries, and an AC motor. The transit bus ICEV was evaluated for both diesel and methanol fuels. The transit bus FCV runs on methanol and uses a Phosphoric Acid Fuel Cell (PAFC) fuel cell, near-term batteries, a DC motor, and an on-board methanol reformer. 75 refs.

NONE

1993-05-07T23:59:59.000Z

137

CMVRTC: Overweight Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

overweight vehicle data collection overweight vehicle data collection scale The Federal Motor Carrier Safety Administration requested information regarding overweight and oversized vehicle traffic entering inspection stations (ISs) in order to develop strategies for future research efforts and possibly help guide regulatory issues involving overweight commercial motor vehicles (CMVs). For a period of one month, inspection stations in Knox County and Greene County, Tennessee, recorded overweight and oversized vehicles that entered these ISs. During this period, 435 CMVs were recorded using an electronic form filled out by enforcement personnel at the IS. Of the 435 CMVs recorded, 381 had weight information documented with them. The majority (52.2%) of the vehicles recorded were five-axle combination

138

Vehicle Technologies Office: 2013 Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Archive to someone 3 Archive to someone by E-mail Share Vehicle Technologies Office: 2013 Archive on Facebook Tweet about Vehicle Technologies Office: 2013 Archive on Twitter Bookmark Vehicle Technologies Office: 2013 Archive on Google Bookmark Vehicle Technologies Office: 2013 Archive on Delicious Rank Vehicle Technologies Office: 2013 Archive on Digg Find More places to share Vehicle Technologies Office: 2013 Archive on AddThis.com... 2013 Archive #810 Leasing on the Rise December 30, 2013 #809 What Do We Pay for in a Gallon of Gasoline? December 23, 2013 #808 Declining Use of Six- and Eight-Cylinder Engines December 16, 2013 #807 Light Vehicle Weights Leveling Off December 9, 2013 #806 Light Vehicle Market Shares, Model Years 1975-2012 December 2, 2013 #805 Vehicle Technology Penetration November 25, 2013

139

EIA - Gasoline and Diesel Fuel report: Household Vehicles Energy  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 Transportation logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Consumption 1991 December 1993 Release Next Update: August 1997. Based on the 1991 Residential Transportation Energy Consumption Survey conducted by the Energy Information Administration (EIA) - survey series has been discontinued after EIA's 1994 survey. Only light-duty vehicles and recreational vehicles are included in this report. EIA has excluded motorcycles, mopeds, large trucks, and buses. This report, Household Vehicles Energy Consumption 1991, is based on data from the 1991 Residential Transportation Energy Consumption Survey (RTECS). Focusing on vehicle miles traveled (VMT) and energy enduse consumption and expenditures by households for personal transportation, the 1991 RTECS is

140

National Renewable Energy Laboratory (NREL) Reports Increase in Durability and Reliability for Current Generation Fuel Cell Buses (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes NREL's accomplishments in evaluating the durability and reliability of fuel cell buses being demonstrated in transit service. Work was performed by the Hydrogen Technology Validation team in the Hydrogen Technologies and Systems Center.

Not Available

2010-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle weight buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

New York City Transit Hybrid and CNG Transit Buses: Interim Evaluation Results  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

New York City Transit Hybrid New York City Transit Hybrid and CNG Transit Buses: Interim Evaluation Results K. Chandler and E. Eberts Battelle L. Eudy National Renewable Energy Laboratory Technical Report NREL/TP-540-38843 January 2006 New York City Transit Hybrid and CNG Transit Buses: Interim Evaluation Results K. Chandler and E. Eberts Battelle L. Eudy National Renewable Energy Laboratory Prepared under Task No. FC06.3000 Technical Report NREL/TP-540-38843 January 2006 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

142

Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Emission Testing of Washington Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses M. Melendez, J. Taylor, and J. Zuboy National Renewable Energy Laboratory W.S. Wayne West Virginia University D. Smith U.S. Department of Energy Technical Report NREL/TP-540-36355 December 2005 Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses M. Melendez, J. Taylor, and J. Zuboy National Renewable Energy Laboratory W.S. Wayne West Virginia University D. Smith U.S. Department of Energy Prepared under Task No. FC05-9000 Technical Report NREL/TP-540-36355 December 2005 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov

143

Long Beach Transit: Two-Year Evaluation of Gasoline-Electric Hybrid Transit Buses  

DOE Green Energy (OSTI)

This report focuses on a gasoline-electric hybrid transit bus propulsion system. The propulsion system is an alternative to standard diesel buses and allows for reductions in emissions (usually focused on reductions of particulate matter and oxides of nitrogen) and petroleum use. Gasoline propulsion is an alternative to diesel fuel and hybrid propulsion allows for increased fuel economy, which ultimately results in reduced petroleum use.

Lammert, M.

2008-06-01T23:59:59.000Z

144

Alternative Fuels Data Center: Weight Restriction Increase for Natural Gas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Weight Restriction Weight Restriction Increase for Natural Gas Vehicles to someone by E-mail Share Alternative Fuels Data Center: Weight Restriction Increase for Natural Gas Vehicles on Facebook Tweet about Alternative Fuels Data Center: Weight Restriction Increase for Natural Gas Vehicles on Twitter Bookmark Alternative Fuels Data Center: Weight Restriction Increase for Natural Gas Vehicles on Google Bookmark Alternative Fuels Data Center: Weight Restriction Increase for Natural Gas Vehicles on Delicious Rank Alternative Fuels Data Center: Weight Restriction Increase for Natural Gas Vehicles on Digg Find More places to share Alternative Fuels Data Center: Weight Restriction Increase for Natural Gas Vehicles on AddThis.com... More in this section... Federal State Advanced Search

145

CMVRTC: Overweight Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

Heavy and overweight vehicle brake testing for combination five-axle Heavy and overweight vehicle brake testing for combination five-axle tractor-flatbed scale The Federal Motor Carrier Safety Administration, in coordination with the Federal Highway Administration, sponsored the Heavy and Overweight Vehicle Brake Testing (HOVBT) program in order to provide information about the effect of gross vehicle weight (GVW) on braking performance. Because the Federal Motor Carrier Safety Regulations limit the number of braking system defects that may exist for a vehicle to be allowed to operate on the roadways, the examination of the effect of brake defects on brake performance for increased loads is also relevant. The HOVBT program seeks to provide relevant information to policy makers responsible for establishing load limits, beginning with providing test data for a

146

Energy Basics: Electric Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

147

Energy Basics: Propane Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

148

Energy Basics: Alternative Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

149

Energy Basics: Alternative Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

fuels. Learn more about the following types of vehicles: Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

150

Unmanned submarine vehicle  

SciTech Connect

An unmanned self-propelled submarine vehicle is provided with a material exchanger-container having a vertical axis of symmetry aligned with both the vehicle's center of gravity and its center of volume. The exchanger-container has a moveable diaphragm which divides the interior into two compartments, a lower ballast compartment equipped with an unloading apparatus and an upper compartment adapted to receive collected material. Ballast is unloaded during material loading to maintain the weight of the vehicle constant during loading.

Hervieu

1984-05-15T23:59:59.000Z

151

EERE: Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies Office and initiatives, using efficient vehicles, and access vehicle and fuel information. Photo of a ethanol and biodiesel fueling station Photo of three big-rig...

152

Alternative fuels for vehicles fleet demonstration program final report. Volume 1: Summary  

DOE Green Energy (OSTI)

The Alternative Fuels for Vehicles Fleet Demonstration Program (AFV-FDP) was a multiyear effort to collect technical data for use in determining the costs and benefits of alternative-fuel vehicles in typical applications in New York State. During 3 years of collecting data, 7.3 million miles of driving were accumulated, 1,003 chassis-dynamometer emissions tests were performed, 862,000 gallons of conventional fuel were saved, and unique information was developed about garage safety recommendations, vehicle performance, and other topics. Findings are organized by vehicle and fuel type. For light-duty compressed natural gas (CNG) vehicles, technology has evolved rapidly and closed-loop, electronically-controlled fuel systems provide performance and emissions advantages over open-loop, mechanical systems. The best CNG technology produces consistently low tailpipe emissions versus gasoline, and can eliminate evaporative emissions. Reduced driving range remains the largest physical drawback. Fuel cost is low ($/Btu) but capital costs are high, indicating that economics are best with vehicles that are used intensively. Propane produces impacts similar to CNG and is less expensive to implement, but fuel cost is higher than gasoline and safety codes limit use in urban areas. Light-duty methanol/ethanol vehicles provide performance and emissions benefits over gasoline with little impact on capital costs, but fuel costs are high. Heavy-duty CNG engines are evolving rapidly and provide large reductions in emissions versus diesel. Capital costs are high for CNG buses and fuel efficiency is reduced, but the fuel is less expensive and overall operating costs are about equal to those of diesel buses. Methanol buses provide performance and emissions benefits versus diesel, but fuel costs are high. Other emerging technologies were also evaluated, including electric vehicles, hybrid-electric vehicles, and fuel cells.

NONE

1997-03-01T23:59:59.000Z

153

Vehicle Setup Information Downloadable Dynamometer Database ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Toyota Prius Test cell location 2WD Advanced Powertrain Research Facility Document date 872013 Vehicle Dynamometer Input Revision number 3 Notes: Test weight lb Target A lb...

154

Front Vehicle Setup Information Downloadable Dynamometer Database...  

NLE Websites -- All DOE Office Websites (Extended Search)

7222013 Advanced Powertrain Research Facility Test weight lb 3500 Vehicle dynamometer Input Document date 7222013 Revision Number 1 Advanced Powertrain Research Facility Test...

155

EIA - Household Transportation report: Household Vehicles Energy Use:  

U.S. Energy Information Administration (EIA) Indexed Site

Transportation logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Use: Latest Data & Trends November 2005 Release (Next Update: Discontinued) Based on the 2001 National Household Travel Survey conducted by the U.S. Department of Transportation and augmented by EIA Only light-duty vehicles and recreational vehicles are included in this report. EIA has excluded motorcycles, mopeds, large trucks, and buses in an effort to maintain consistency with its past residential transportation series, which was discontinued after 1994. This report, Household Vehicles Energy Use: Latest Data & Trends, provides details on the nation's energy use for household passenger travel. A primary purpose of this report is to release the latest consumer-based data

156

Vehicle Technologies Office: Hybrid and Vehicle Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid and Vehicle Hybrid and Vehicle Systems to someone by E-mail Share Vehicle Technologies Office: Hybrid and Vehicle Systems on Facebook Tweet about Vehicle Technologies Office: Hybrid and Vehicle Systems on Twitter Bookmark Vehicle Technologies Office: Hybrid and Vehicle Systems on Google Bookmark Vehicle Technologies Office: Hybrid and Vehicle Systems on Delicious Rank Vehicle Technologies Office: Hybrid and Vehicle Systems on Digg Find More places to share Vehicle Technologies Office: Hybrid and Vehicle Systems on AddThis.com... Just the Basics Hybrid & Vehicle Systems Modeling & Simulation Integration & Validation Benchmarking Parasitic Loss Reduction Propulsion Systems Advanced Vehicle Evaluations Energy Storage Advanced Power Electronics & Electrical Machines

157

Advanced Vehicle Testing Activity: Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Neighborhood Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing...

158

Advanced Vehicle Testing Activity: Urban Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Urban Electric Vehicles Toyota Urban Electric Vehicle Urban electric vehicles (UEVs) are regular passenger vehicles with top speeds of about 60 miles per hour (mph) and a...

159

Advanced Vehicle Testing Activity: Urban Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Urban Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Urban Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Urban...

160

Advanced Vehicle Testing Activity: Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Hybrid Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Hybrid...

Note: This page contains sample records for the topic "vehicle weight buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Integrated Vehicle Thermal Management - Combining Fluid Loops in Electric Drive Vehicles (Presentation)  

SciTech Connect

Plug-in hybrid electric vehicles and electric vehicles have increased vehicle thermal management complexity, using separate coolant loop for advanced power electronics and electric motors. Additional thermal components result in higher costs. Multiple cooling loops lead to reduced range due to increased weight. Energy is required to meet thermal requirements. This presentation for the 2013 Annual Merit Review discusses integrated vehicle thermal management by combining fluid loops in electric drive vehicles.

Rugh, J. P.

2013-07-01T23:59:59.000Z

162

HEAVY-DUTY VEHICLE IN USE EMISSION PERFORMANCE  

DOE Green Energy (OSTI)

Engines for heavy-duty vehicles are emission certified by running engines according to specified load pattern or duty cycle. In the US, the US Heavy-Duty Transient cycle has been in use already for a number of years, and Europe is, according to the requirements of the Directive 1999/96/EC gradually switching to transient-type testing. Evaluating the in-use emission performance of heavy-duty vehicles presents a problem. Taking engines out of vehicles for engine dynamometer testing is difficult and costly. In addition, engine dynamometer testing does not take into account the properties of the vehicle itself (i.e. mass, transmission etc.). It is also debatable, how well the standardized duty cycles reflect real-life -driving patterns. VTT Processes has recently commissioned a new emission laboratory for heavy-duty vehicles. The facility comprises both engine test stand and a fully transient heavy-duty chassis dynamometer. The roller diameter of the dynamometer is 2.5 meters. Regulated emissions are measured using a full-flow CVS system. The HD vehicle chassis dynamometer measurements (emissions, fuel consumption) has been granted accreditation by the Centre of Metrology and Accreditation (MIKES, Finland). A national program to generate emission data on buses has been set up for the years 2002-2004. The target is to generate emission factors for some 50 different buses representing different degree of sophistication (Euro 1 to Euro5/EEV, with and without exhaust gas aftertreatment), different fuel technologies (diesel, natural gas) and different ages (the effect of aging). The work is funded by the Metropolitan Council of Helsinki, Helsinki City Transport, The Ministry of Transport and Communications Finland and the gas company Gasum Oy. The International Association for Natural Gas Vehicles (IANGV) has opted to buy into the project. For IANGV, VTT will deliver comprehensive emission data (including particle size distribution and chemical and biological characterization of particles) for up-to-date diesel and natural gas vehicles. The paper describes the methodology used for the measurements on buses, the test matrix and some preliminary emission data on both regulated and unregulated emissions.

Nylund, N; Ikonen, M; Laurikko, J

2003-08-24T23:59:59.000Z

163

VEHICLE SPECIFICATIONS Vehicle Features  

NLE Websites -- All DOE Office Websites (Extended Search)

Mazda 3 Mazda 3 VIN: JMZBLA4G601111865 Seatbelt Positions: 5 Standard Features: Air Conditioning Power Locks Power Steering Power Brakes Power Windows Cruise Control Front Disc Brakes Rear Disc Brakes Front Wheel Drive Anti-Lock Brakes Traction Control Air Bags AM/FM Stereo with CD Weights Design Curb Weight: 2,954 lb Delivered Curb Weight: 2,850 lb Distribution F/R (%): 63/37 GVWR: 4,050 lb GAWR F/R: 2,057/1,896 lb Payload 1 : 1,096 lb Performance Goal: 400 lb Dimensions Wheelbase: 103.9 in Track F/R: 60.4/59.8 in Length: 175.6 in Width: 69.1 in Height: 57.9 in Ground Clearance: 6.1 in Performance Goal: 5.0 in Tires Manufacturer: Yokohama Model: YK520 Size: P205/55R17 Pressure F/R: 35/33 psi

164

Integrated Vehicle Thermal Management for Advanced Vehicle Propulsion Technologies  

DOE Green Energy (OSTI)

A critical element to the success of new propulsion technologies that enable reductions in fuel use is the integration of component thermal management technologies within a viable vehicle package. Vehicle operation requires vehicle thermal management systems capable of balancing the needs of multiple vehicle systems that may require heat for operation, require cooling to reject heat, or require operation within specified temperature ranges. As vehicle propulsion transitions away from a single form of vehicle propulsion based solely on conventional internal combustion engines (ICEs) toward a wider array of choices including more electrically dominant systems such as plug-in hybrid electric vehicles (PHEVs), new challenges arise associated with vehicle thermal management. As the number of components that require active thermal management increase, so do the costs in terms of dollars, weight, and size. Integrated vehicle thermal management is one pathway to address the cost, weight, and size challenges. The integration of the power electronics and electric machine (PEEM) thermal management with other existing vehicle systems is one path for reducing the cost of electric drive systems. This work demonstrates techniques for evaluating and quantifying the integrated transient and continuous heat loads of combined systems incorporating electric drive systems that operate primarily under transient duty cycles, but the approach can be extended to include additional steady-state duty cycles typical for designing vehicle thermal management systems of conventional vehicles. The work compares opportunities to create an integrated low temperature coolant loop combining the power electronics and electric machine with the air conditioning system in contrast to a high temperature system integrated with the ICE cooling system.

Bennion, K.; Thornton, M.

2010-04-01T23:59:59.000Z

165

Vehicle Technologies Office: Vehicle Technologies Office Recognizes  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Technologies Vehicle Technologies Office Recognizes Outstanding Researchers to someone by E-mail Share Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Facebook Tweet about Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Twitter Bookmark Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Google Bookmark Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Delicious Rank Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Digg Find More places to share Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on AddThis.com...

166

In-Use Performance Comparison of Hybrid Electric, CNG, and Diesel Buses at New York City Transit  

Science Conference Proceedings (OSTI)

The National Renewable Energy Laboratory (NREL) evaluated the performance of diesel, compressed natural gas (CNG), and hybrid electric (equipped with BAE Systems? HybriDrive propulsion system) transit buses at New York City Transit (NYCT). CNG, Gen I and Gen II hybrid electric propulsion systems were compared on fuel economy, maintenance and operating costs per mile, and reliability.

Barnitt, R. A.

2008-06-01T23:59:59.000Z

167

Electric vehicles  

SciTech Connect

Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

Not Available

1990-03-01T23:59:59.000Z

168

Vehicle systems design optimization study  

DOE Green Energy (OSTI)

The optimization of an electric vehicle layout requires a weight distribution in the range of 53/47 to 62/38 in order to assure dynamic handling characteristics comparable to current production internal combustion engine vehicles. It is possible to achieve this goal and also provide passenger and cargo space comparable to a selected current production sub-compact car either in a unique new design or by utilizing the production vehicle as a base. Necessary modification of the base vehicle can be accomplished without major modification of the structure or running gear. As long as batteries are as heavy and require as much space as they currently do, they must be divided into two packages - one at front under the hood and a second at the rear under the cargo area - in order to achieve the desired weight distribution. The weight distribution criteria requires the placement of batteries at the front of the vehicle even when the central tunnel is used for the location of some batteries. The optimum layout has a front motor and front wheel drive. This configuration provides the optimum vehicle dynamic handling characteristics and the maximum passsenger and cargo space for a given size vehicle.

Gilmour, J. L.

1980-04-01T23:59:59.000Z

169

Natural gas buses: Separating myth from fact (Clean Cities alternative fuel information series fact sheet)  

DOE Green Energy (OSTI)

Increasing numbers of transit agencies across North America are making the choice to convert their bus fleets to compressed natural gas (CNG), and even more are seriously considering it. Natural gas buses now account for at least 20{percent} of all new bus orders. However, it becomes difficult for fleet operators to fairly evaluate the potential benefits of an alternative fuel program if they are confronted with misinformation or poor comparisons based on false assumptions. This fact sheet addresses some of the most common misconceptions that seem to work their way into anecdotal stories, media reports, and even some poorly researched white papers and feasibility studies. It is an expanded version of information that was presented on behalf of the U.S. Department of Energy at the South Coast Air Basin Alternative Fuel and Electric Transit Bus Workshop in Diamond Bar, California, on March 15, 2000.

Parish, R.

2000-04-27T23:59:59.000Z

170

Vehicle Technologies Office: FY 2004 Progress Report for High Strength  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Progress Report 4 Progress Report for High Strength Weight Reduction Materials to someone by E-mail Share Vehicle Technologies Office: FY 2004 Progress Report for High Strength Weight Reduction Materials on Facebook Tweet about Vehicle Technologies Office: FY 2004 Progress Report for High Strength Weight Reduction Materials on Twitter Bookmark Vehicle Technologies Office: FY 2004 Progress Report for High Strength Weight Reduction Materials on Google Bookmark Vehicle Technologies Office: FY 2004 Progress Report for High Strength Weight Reduction Materials on Delicious Rank Vehicle Technologies Office: FY 2004 Progress Report for High Strength Weight Reduction Materials on Digg Find More places to share Vehicle Technologies Office: FY 2004 Progress Report for High Strength Weight Reduction Materials on

171

Vehicle Technologies Office: FY 2005 Progress Report for High Strength  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Progress Report 5 Progress Report for High Strength Weight Reduction Materials to someone by E-mail Share Vehicle Technologies Office: FY 2005 Progress Report for High Strength Weight Reduction Materials on Facebook Tweet about Vehicle Technologies Office: FY 2005 Progress Report for High Strength Weight Reduction Materials on Twitter Bookmark Vehicle Technologies Office: FY 2005 Progress Report for High Strength Weight Reduction Materials on Google Bookmark Vehicle Technologies Office: FY 2005 Progress Report for High Strength Weight Reduction Materials on Delicious Rank Vehicle Technologies Office: FY 2005 Progress Report for High Strength Weight Reduction Materials on Digg Find More places to share Vehicle Technologies Office: FY 2005 Progress Report for High Strength Weight Reduction Materials on

172

Blog Feed: Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 17, 2013 May 17, 2013 Zero Emission Bay Area (ZEBA) -- a group of regional transit agencies in Northern California -- operates twelve, zero-emission, fuel cell buses in real-world service throughout the Bay Area's diverse communities and landscapes. | Photo courtesy of Leslie Eudy, NREL. Top 11 Things You Didn't Know About Fuel Cells Test your fuel cell knowledge with these little-known facts. May 15, 2013 Mississippi's Community Counseling Services converted 29 vans to run on propane, saving more than $1.50 per gallon on fuel or more than $60,000 a year. | Photo courtesy of Community Counseling Services. Clean Cities Helps Nonprofit Cut Fuel Costs with Propane Switching to propane vehicles is helping a Mississippi nonprofit save money and maintain key services.

173

Electric Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Electricity can be used as a transportation fuel to power battery electric vehicles (EVs). EVs store electricity in an energy storage device, such as a battery.

174

Vehicle Technologies Office: Fact #625: May 31, 2010 Distribution...  

NLE Websites -- All DOE Office Websites (Extended Search)

5: May 31, 2010 Distribution of Trucks by On-Road Vehicle Weight to someone by E-mail Share Vehicle Technologies Office: Fact 625: May 31, 2010 Distribution of Trucks by On-Road...

175

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network (OSTI)

James, A cost comparison of fuel-cell and battery electricHowever, battery electric vehicles have lower fuel cost, usebattery-electric vehicles in terms of weight, volume, GHGs and cost,

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

176

Energy Basics: Propane Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

gasoline vehicles. Dedicated propane vehicles are designed to run only on propane; bi-fuel propane vehicles have two separate fueling systems that enable the vehicle to use...

177

Flex-fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles Stations that Sell E85 (Alternative Fuels and Advanced Vehicles Data Center AFDC) Flexible Fuel Vehicle (FFV) Cost Calculator (compare costs for operating your vehicle...

178

Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Electric Vehicles A neighborhood electric vehicle (NEV) is 4-wheeled vehicle, larger than a golf cart but smaller than most light-duty passenger vehicles. NEVs are...

179

Advanced Vehicle Testing Activity: Neighborhood Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects to someone by E-mail Share Advanced Vehicle Testing Activity: Neighborhood Electric Vehicle Special Projects on Facebook Tweet about Advanced Vehicle Testing...

180

Advanced Vehicle Testing Activity: Alternative Fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative Fuel Vehicles SuperShuttle CNG Van Alternative fuel vehicles (AFVs) are vehicles designed to operate on alternative fuels such as compressed and liquefied natural gas,...

Note: This page contains sample records for the topic "vehicle weight buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Vehicle Technologies Office: Hybrid and Vehicle Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid and Vehicle Systems Hybrid and vehicle systems research provides an overarching vehicle systems perspective to the technology research and development (R&D) activities of...

182

Advanced Vehicle Testing Activity: Neighborhood Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Procedures to someone by E-mail Share Advanced Vehicle Testing Activity: Neighborhood Electric Vehicle Specifications and Test Procedures on Facebook Tweet about Advanced Vehicle...

183

Advanced Vehicle Testing Activity - Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Electric Vehicles What's New 2013 BRP Commander Electric (PDF 195KB) A Neighborhood Electric Vehicle (NEV) is technically defined as a Low Speed Vehicle (LSV)...

184

Advanced Vehicle Testing Activity - Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

NEVAmerica Baseline Performance Testing 2010 Electric Vehicles International Neighborhood Electric Vehicle 2010 Electric Vehicles International E-Mega 2009 NEVAmerica Baseline...

185

Diesel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles Vehicles Audi A3 Diesel vehicles may be making a comeback. Diesel engines are more powerful and fuel-efficient than similar-sized gasoline engines (about 30-35% more fuel efficient). Plus, today's diesel vehicles are much improved over diesels of the past. Better Performance Improved fuel injection and electronic engine control technologies have Increased power Improved acceleration Increased efficiency New engine designs, along with noise- and vibration-damping technologies, have made them quieter and smoother. Cold-weather starting has been improved also. Cleaner Mercedes ML320 BlueTEC Today's diesels must meet the same emissions standards as gasoline vehicles. Advances in engine technologies, ultra-low sulfur diesel fuel, and improved exhaust treatment have made this possible.

186

Vehicle Technologies Office: 2013 Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Archive 3 Archive #810 Leasing on the Rise December 30, 2013 #809 What Do We Pay for in a Gallon of Gasoline? December 23, 2013 #808 Declining Use of Six- and Eight-Cylinder Engines December 16, 2013 #807 Light Vehicle Weights Leveling Off December 9, 2013 #806 Light Vehicle Market Shares, Model Years 1975-2012 December 2, 2013 #805 Vehicle Technology Penetration November 25, 2013 #804 Tool Available to Print Used Vehicle Fuel Economy Window Stickers November 18, 2013 #803 Average Number of Transmission Gears is on the Rise November 11, 2013 #802 Market Share by Transmission Type November 4, 2013 #801 Gasoline Direct Injection Continues to Grow October 28, 2013 #800 Characteristics of New Light Vehicles over Time October 21, 2013 #799 Electricity Generation by Source, 2003-2012 September 30, 2013

187

Energy Basics: Fuel Cell Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

188

Energy Basics: Flexible Fuel Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

189

Energy Basics: Hybrid Electric Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

190

Energy Basics: Natural Gas Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

191

Development and Demonstration of Hydrogen and Compressed Natural Gas (H/CNG) Blend Transit Buses: October 15, 2002--September 30, 2004  

DOE Green Energy (OSTI)

The report covers literature and laboratory analyses to identify modification requirements of a Cummins Westport B Gas Plus engine for transit buses using a hydrogen/compressed natural fuel blend.

Del Toro, A.; Frailey, M.; Lynch, F.; Munshi, S.; Wayne, S.

2005-11-01T23:59:59.000Z

192

Fuel processing for fuel cell powered vehicles.  

DOE Green Energy (OSTI)

A number of auto companies have announced plans to have fuel cell powered vehicles on the road by the year 2004. The low-temperature polymer electrolyte fuel cells to be used in these vehicles require high quality hydrogen. Without a hydrogen-refueling infrastructure, these vehicles need to convert the available hydrocarbon fuels into a hydrogen-rich gas on-board the vehicle. Earlier analysis has shown that fuel processors based on partial oxidation reforming are well suited to meet the size and weight targets and the other performance-related needs of on-board fuel processors for light-duty fuel cell vehicles (1).

Ahmed, S.; Wilkenhoener, R.; Lee, S. H. D.; Carter, J. D.; Kumar, R.; Krumpelt, M.

1999-01-22T23:59:59.000Z

193

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Reduction Weight Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any motor vehicle or combination of vehicles equipped with idle reduction technology is allowed to exceed the maximum gross vehicle and axle weight

194

Vehicle emissions and energy consumption impacts of modal shifts  

E-Print Network (OSTI)

Growing concern over air quality has prompted the development of strategies to reduce vehicle emissions in these areas. Concern has also been expressed regarding the current dependency of the U,S, on foreign oil. An option for addressing these concerns is to reduce vehicle-miles travelled (VMT), High- occupancy vehicle (HOV) lanes have been cited as one alternative for achieving this goal. However, latent travel demand frequently negates some or all of the VMT savings brought about by HOV lanes, The net effects of modal shifts to HOV lanes and the subsequent latent travel demand were studied in the thesis, A methodology was developed for estimating vehicle emissions and energy consumption impacts of modal shifts from private vehicles in the freeway mainlanes to buses in an HOV lane when latent travel demand is considered. The methodology was evaluated and determined to yield reasonable results, Finally, the methodology was applied to a freeway corridor in Houston, Texas. The results of the application indicate that reductions in VMT do not necessarily cause reductions in vehicle emissions of interest even when considered, all three of the pollutants of latent travel demand is not consumption was decreased at considered. Energy consumption was decreased a virtually all levels of latent travel demand except where latent travel demand was equivalent to the mode shift.

Mallett, Vickie Lynn

1993-01-01T23:59:59.000Z

195

Low-Cost Methane Liquefaction Plant and Vehicle Refueling Station  

SciTech Connect

The Idaho National Engineering and Environmental Laboratory (INEEL) is currently negotiating a collaborative effort with Pacific Gas and Electric (PG&E) that will advance the use of liquefied natural gas (LNG) as a vehicle fuel. We plan to develop and demonstrate a small-scale methane liquefaction plant (production of 5,000 to 10,000 gallons per day) and a low-cost ($150,000) LNG refueling station to supply fuel to LNG-powered transit buses and other heavy-duty vehicles. INEEL will perform the research and development work. PG&E will deploy the new facilities commercially in two demonstration projects, one in northern California, and one in southern California.

B. Wilding; D. Bramwell

1999-01-01T23:59:59.000Z

196

Vehicle Technologies Office: Key Activities in Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Key Activities in Key Activities in Vehicles to someone by E-mail Share Vehicle Technologies Office: Key Activities in Vehicles on Facebook Tweet about Vehicle Technologies Office: Key Activities in Vehicles on Twitter Bookmark Vehicle Technologies Office: Key Activities in Vehicles on Google Bookmark Vehicle Technologies Office: Key Activities in Vehicles on Delicious Rank Vehicle Technologies Office: Key Activities in Vehicles on Digg Find More places to share Vehicle Technologies Office: Key Activities in Vehicles on AddThis.com... Key Activities Mission, Vision, & Goals Plans, Implementation, & Results Organization & Contacts National Laboratories Budget Partnerships Key Activities in Vehicles We conduct work in four key areas to develop and deploy vehicle technologies that reduce the use of petroleum while maintaining or

197

VEHICLE SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 of 5 Page 1 of 5 VEHICLE SPECIFICATIONS 1 Vehicle Features Base Vehicle: 2011 Nissan Leaf VIN: JN1AZ0CP5BT000356 Class: Mid-size Seatbelt Positions: 5 Type: EV Motor Type: Three-Phase, Four-Pole Permanent Magnet AC Synchronous Max. Power/Torque: 80 kW/280 Nm Max. Motor Speed: 10,390 rpm Cooling: Active - Liquid cooled Battery Manufacturer: Automotive Energy Supply Corporation Type: Lithium-ion - Laminate type Cathode/Anode Material: LiMn 2 O 4 with LiNiO 2 /Graphite Pack Location: Under center of vehicle Number of Cells: 192 Cell Configuration: 2 parallel, 96 series Nominal Cell Voltage: 3.8 V Nominal System Voltage: 364.8 V Rated Pack Capacity: 66.2 Ah Rated Pack Energy: 24 kWh Max. Cell Charge Voltage 2 : 4.2 V Min. Cell Discharge Voltage 2 : 2.5 V

198

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

E27C177982 Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 105 kW Battery: NiMH Seatbelt Positions: Five Payload: 981 lbs Features: Regenerative braking Traction...

199

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

E87C172351 Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 105 kW Battery: NiMH Seatbelt Positions: Five Payload: 981 lbs Features: Regenerative braking Traction...

200

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

Z07S838122 Vehicle Specifications Engine: 2.4 L 4 cylinder Electric Motor: 14.5 kW Battery: NiMH Seatbelt Positions: Five Payload: 1,244 lbs Features: Regenerative braking wABS 4...

Note: This page contains sample records for the topic "vehicle weight buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

2AR194699 Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 60 kW Battery: NiMH Seatbelt Positions: Five Payload: 850 lbs Features: Regenerative braking Traction...

202

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

2WD VIN 1FMYU95H75KC45881 Vehicle Specifications Engine: 2.3 L 4-cylinder Electric Motor: 70 kW Battery: NiMH Seatbelt Positions: Five Features: Four wheel drive Regenerative...

203

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

4AR144757 Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 60 kW Battery: NiMH Seatbelt Positions: Five Payload: 850 lbs Features: Regenerative braking Traction...

204

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

Z37S813344 Vehicle Specifications Engine: 2.4 L 4 cylinder Electric Motor: 14.5 kW Battery: NiMH Seatbelt Positions: Five Payload: 1,244 lbs Features: Regenerative braking wABS 4...

205

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

4WD VIN 1FMCU96H15KE18237 Vehicle Specifications Engine: 2.4 L 4-cylinder Electric Motor: 70 kW Battery: NiMH Seatbelt Positions: Five Features: Four wheel drive Regenerative...

206

VEHICLE SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

SPECIFICATIONS 1 Vehicle VIN:19XFB5F57CE002590 Class: Compact Seatbelt Positions: 5 Type: Sedan CARB 2 : AT-PZEV EPA CityHwyCombined 3 : 273832 MPGe Tires Manufacturer:...

207

Robotic vehicle  

DOE Patents (OSTI)

A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

Box, W.D.

1997-02-11T23:59:59.000Z

208

Preliminary Assessment of Overweight Mainline Vehicles  

DOE Green Energy (OSTI)

The Federal Motor Carrier Safety Administration requested information regarding overweight and oversized vehicle traffic entering inspection stations (ISs) in order to develop strategies for future research efforts and possibly help guide regulatory issues involving overweight commercial motor vehicles (CMVs). For a period of one month, inspection stations in Knox County and Greene County, Tennessee, recorded overweight and oversized vehicles that entered these ISs. During this period, 435 CMVs were recorded using an electronic form filled out by enforcement personnel at the IS. Of the 435 CMVs recorded, 381 had weight information documented with them. The majority (52.2%) of the vehicles recorded were five-axle combination vehicles, and 50.6% of all the vehicles were permitted to operate above the legal weight limit in Tennessee, which is 80,000 lb for vehicles with five or more axles. Only 16.8% of the CMVs recorded were overweight gross (11.5% of permitted vehicles) and 54.1% were overweight on an axle group. The low percentage of overweight gross CMVs was because only 45 of the vehicles over 80,000 lb. were not permitted. On average, axles that were overweight were 2,000 lb. over the legal limit for an axle or group of axles. Of the vehicles recorded, 172 vehicles were given a North American Standard (NAS) inspection during the assessment. Of those, 69% of the inspections were driver-only inspections (Level III) and only 25% of the inspections had a vehicle component (such as a Level I or Level II). The remaining 6% of inspections did not have valid Aspen numbers; the type of was inspection unknown. Data collected on the types of trailers of each vehicle showed that about half of the recorded CMVs could realistically be given a Level I (full vehicle and driver) inspection; this estimate was solely based on trailer type. Enforcement personnel at ISs without an inspection pit have difficulty fully inspecting certain vehicles due to low clearance below the trailer. Because of this, overweight and oversized vehicles were normally only given a Level III (driver) inspection; thus, little is known about the safety of these vehicles. The out-of-service (OOS) rate of all the inspected vehicles (driver and vehicle inspections) was 18.6%, while the OOS rate for vehicle inspections (Level I and II) was 52.4%. Future work will focus on performing Level I inspections on five-axle combination tractor-trailers and the types of violations that overweight vehicles may have. This research will be conducted in Tennessee and possibly in other states as well.

Siekmann, Adam [ORNL; Capps, Gary J [ORNL; Lascurain, Mary Beth [ORNL

2011-11-01T23:59:59.000Z

209

Hydrogen vehicle fueling station  

DOE Green Energy (OSTI)

The authors describe a hydrogen vehicle fueling station that receives and stores hydrogen in liquid form and dispenses it either as a liquid or compressed gas. The economics that accrue from the favorable weight and volume advantages of liquid hydrogen support this concept both now and probably for some time to come. The model for liquid transfer to a 120-liter vehicle tank shows that transfer times under five minutes are feasible with pump-assisted transfer, or for pressure transfer with subcooling greater than 1 K. The model for compressed gas transfer shows that underfilling of nearly 30% can occur during rapid filling. Cooling the fill gas to 214 K completely eliminates underfilling.

Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A.; Prenger, F.C.; Hill, D.D.

1995-09-01T23:59:59.000Z

210

Behavioral Response to Hydrogen Fuel Cell Vehicles and Refueling: Results of California Drive Clinics  

E-Print Network (OSTI)

the public willing to pay for hydrogen buses? A comparativeon the attitude towards hydrogen fuel cell buses in the CUTEInternational Journal of Hydrogen Energy 2007; 32: 4295- 4.

Martin, Elliot W; Shaheen, Susan A; Lipman, T E; Lidicker, Jeffrey

2009-01-01T23:59:59.000Z

211

Heavy and Overweight Vehicle Defects Interim Report  

SciTech Connect

The Federal Highway Administration (FHWA), along with the Federal Motor Carrier Safety Administration (FMCSA), has an interest in overweight commercial motor vehicles, how they affect infrastructure, and their impact on safety on the nation s highways. To assist both FHWA and FMCSA in obtaining more information related to this interest, data was collected and analyzed from two separate sources. A large scale nationwide data collection effort was facilitated by the Commercial Vehicle Safety Alliance as part of a special study on overweight vehicles and an additional, smaller set, of data was collected from the state of Tennessee which included a much more detailed set of data. Over a six-month period, 1,873 Level I inspections were performed in 18 different states that volunteered to be a part of this study. Of the 1,873 inspections, a vehicle out-of-service (OOS) violation was found on 44.79% of the vehicles, a rate significantly higher than the national OOS rate of 27.23%. The main cause of a vehicle being placed OOS was brake-related defects, with approximately 30% of all vehicles having an OOS brake violation. Only about 4% of vehicles had an OOS tire violation, and even fewer had suspension and wheel violations. Vehicle weight violations were most common on an axle group as opposed to a gross vehicle weight violation. About two thirds of the vehicles cited with a weight violation were overweight on an axle group with an average amount of weight over the legal limit of about 2,000 lbs. Data collection is scheduled to continue through January 2014, with more potentially more states volunteering to collect data. More detailed data collections similar to the Tennessee data collection will also be performed in multiple states.

Siekmann, Adam [ORNL; Capps, Gary J [ORNL

2012-12-01T23:59:59.000Z

212

Vehicles | Open Energy Information  

Open Energy Info (EERE)

Vehicles Jump to: navigation, search TODO: Add description Related Links List of Companies in Vehicles Sector List of Vehicles Incentives Retrieved from "http:en.openei.orgw...

213

Advanced Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban...

214

Alternative Vehicle Basics  

Energy.gov (U.S. Department of Energy (DOE))

There are a number of alternative and advanced vehicles—or vehicles that run on alternative fuels. Learn more about the following types of vehicles:

215

Vehicles News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

news Office of Energy Efficiency & news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies http://energy.gov/eere/articles/energy-department-announces-45-million-advance-next-generation Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies

216

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption A motor vehicle equipped with idle reduction or emissions reduction technology may exceed the maximum gross vehicle weight and axle weight

217

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption The maximum gross weight limit and axle weight limit for any vehicle or combination of vehicles equipped with idle reduction technology may exceed

218

Advanced Vehicle Testing Activity: Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Electric Vehicles Ford Think Neighbor A neighborhood electric vehicle (NEV) is a four-wheeled vehicle that has a top speed of 20-25 miles per hour (mph). It is larger...

219

VEHICLE DETAILS, BATTERY DESCRIPTION AND SPECIFICATIONS Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 VEHICLE DETAILS, BATTERY DESCRIPTION AND SPECIFICATIONS Vehicle Details Base Vehicle: 2011 Nissan Leaf VIN: JN1AZ0CP5BT000356 Propulsion System: BEV Electric Machine: 80 kW...

220

Robotic vehicle  

DOE Patents (OSTI)

A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 11 figures.

Box, W.D.

1994-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle weight buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Robotic vehicle  

DOE Patents (OSTI)

A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 14 figs.

Box, W.D.

1996-03-12T23:59:59.000Z

222

Environmental, health, and safety issues of fuel cells in transportation. Volume 1: Phosphoric acid fuel-cell buses  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) chartered the Phosphoric Acid Fuel-Cell (PAFC) Bus Program to demonstrate the feasibility of fuel cells in heavy-duty transportation systems. As part of this program, PAFC- powered buses are being built to meet transit industry design and performance standards. Test-bed bus-1 (TBB-1) was designed in 1993 and integrated in March 1994. TBB-2 and TBB-3 are under construction and should be integrated in early 1995. In 1987 Phase I of the program began with the development and testing of two conceptual system designs- liquid- and air-cooled systems. The liquid-cooled PAFC system was chosen to continue, through a competitive award, into Phase H, beginning in 1991. Three hybrid buses, which combine fuel-cell and battery technologies, were designed during Phase III. After completing Phase II, DOE plans a comprehensive performance testing program (Phase HI) to verify that the buses meet stringent transit industry requirements. The Phase III study will evaluate the PAFC bus and compare it to a conventional diesel bus. This NREL study assesses the environmental, health, and safety (EH&S) issues that may affect the commercialization of the PAFC bus. Because safety is a critical factor for consumer acceptance of new transportation-based technologies the study focuses on these issues. The study examines health and safety together because they are integrally related. In addition, this report briefly discusses two environmental issues that are of concern to the Environmental Protection Agency (EPA). The first issue involves a surge battery used by the PAFC bus that contains hazardous constituents. The second issue concerns the regulated air emissions produced during operation of the PAFC bus.

Ring, S.

1994-12-01T23:59:59.000Z

223

Vehicle Smart  

E-Print Network (OSTI)

Abstract: This article explores criteria necessary for reliable communication between electric vehicles (EVs) and electric vehicle service equipment (EVSE). Data will demonstrate that a G3-PLC system has already met the criteria established by the automotive and utility industries. Multiple international tests prove that a G3-PLC implementation is the optimal low-frequency solution. A similar version of this article appeared in the August 2011 issue of Power Systems Design magazine. For the first time, electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) are building a viable market of mobile electrical energy consumers. Not surprisingly, new relationships between electricity providers (the utility companies) and automobile owners are emerging. Many utilities already offer, or are planning to offer, special tariffs, including fixed monthly rates, to EV owners. EVs impose new dynamics and demands on the electrical supply itself. There is, in fact, a symbiotic relationship developing between the EV and energy provider. Because of their large storage capacity, often 10kVH, EVs draw currents of 80A or greater over a period of hours. This strains electrical grid components, especially low-voltage transformers which can overheat and fail while serving consumers ' homes. Meanwhile, the EVs ' electrical storage capacity can also reverse the current flow. It can then supply power back to the grid, thereby helping the utilities to meet demand peaks without starting up high-carbon-output diesel generators. To enable this new dynamic relationship, the EV and the energy provider must communicate. The utility must be able to authenticate the individual vehicle, and bidirectional communications is needed to support negotiation of power flow rates and direction. To

Jim Leclare; Principal Member; Technical Staff

2012-01-01T23:59:59.000Z

224

Advanced Vehicle Testing Activity - Urban Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

are designed to carry two or four passengers. Click here for more information About Urban Electric Vehicles (PDF 128KB) Vehicle Testing Reports Ford THINK City Ford Thnk...

225

Vehicle Technologies Office: Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

that feature one or more advanced technologies, including: Plug-in hybrid electric vehicle technologies Extended range electric vehicle technologies Hybrid electric, pure...

226

Advanced Vehicle Technologies Awards Table | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Technologies Awards Table Vehicle Technologies Awards Table Advanced Vehicle Technologies Awards Table The table contains a listing of the applicants, their locations, the amounts of the awards, and description of each project. The sub-categories of the table include: Advanced fuels and lubricants Light-weighting materials Demonstration Project for a Multi-Material Light-Weight Prototype Vehicle Advanced cells and design technology for electric drive batteries Advanced power electronics and electric motor technology Solid State Thermoelectric Energy Conversion Devices Fleet Efficiency Advanced Vehicle Testing and Evaluation Microsoft Word - VTP $175 Advanced Vehicle Tech project descriptions draft v5 8-2-11 More Documents & Publications Advanced Vehicle Technologies Awards advanced vehicle technologies awards table

227

A comparative analysis of alternative fuels for the INEL vehicle fleet  

DOE Green Energy (OSTI)

This report summarizes the results of a comparative systems analysis of various alternative fuels for use in the buses, mid-size vehicles, and automobiles that make up the vehicle fleet at the Idaho National Engineering Laboratory (INEL). The study was performed as part of the Laboratory Directed Research and Development (LDRD) Program for EG G Idaho, Inc. Regulations will require the INEL to reduce total gasoline and diesel fuel use 10% by 1995 compared with 1991 levels, and will require that 50% of all new vehicles be fueled by some type of alternative fuel by 1998. A model was developed to analyze how these goals could be achieved, and what the cost would be to implement the goals.

Priebe, S.; Boyer, W.; Church, K.

1992-11-01T23:59:59.000Z

228

A comparative analysis of alternative fuels for the INEL vehicle fleet  

DOE Green Energy (OSTI)

This report summarizes the results of a comparative systems analysis of various alternative fuels for use in the buses, mid-size vehicles, and automobiles that make up the vehicle fleet at the Idaho National Engineering Laboratory (INEL). The study was performed as part of the Laboratory Directed Research and Development (LDRD) Program for EG&G Idaho, Inc. Regulations will require the INEL to reduce total gasoline and diesel fuel use 10% by 1995 compared with 1991 levels, and will require that 50% of all new vehicles be fueled by some type of alternative fuel by 1998. A model was developed to analyze how these goals could be achieved, and what the cost would be to implement the goals.

Priebe, S.; Boyer, W.; Church, K.

1992-11-01T23:59:59.000Z

229

Alternative Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

following types of vehicles: Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane Vehicles Addthis Related Articles...

230

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any vehicle or combination of vehicles equipped with idle reduction technology may exceed the state's gross and axle weight limits by up to 400

231

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption A heavy-duty vehicle equipped with an auxiliary power unit may exceed the state's gross vehicle weight limit by up to 400 pounds to compensate for

232

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption A vehicle equipped with idle reduction technology may exceed the state's gross, axle, and bridge vehicle weight limits by up to 400 pounds to

233

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any motor vehicle equipped with qualified idle reduction technology may exceed the state's vehicle weight limits by up to 400 pounds to compensate

234

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Reduction Weight Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any vehicle equipped with a qualified auxiliary power unit (APU) may exceed the state's gross vehicle and axle weight limits by up to 400 pounds to

235

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any vehicle or combination of vehicles equipped with idle reduction technology may exceed the state's gross and axle weight limits by up to 400

236

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any vehicle equipped with qualifying idle reduction technology may exceed the state's gross vehicle weight limits by up to 400 pounds to compensate

237

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any motor vehicle equipped with idle reduction technology may exceed the gross vehicle or internal bridge weight by the amount equal to the

238

Advanced Vehicle Testing Activity - Oil Bypass Filtration Evaluation  

NLE Websites -- All DOE Office Websites (Extended Search)

with oil bypass filter systems from PuraDYN Filter Technologies (8 buses) and Refined Global Solutions (3 buses). Six gasoline-equipped INL Tahoes are also equipped with PuraDYN...

239

VEHICLE SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy: 0.5 kWh Weight of Pack: 65 lb Pack Location: TrunkRear Seat Cooling: Active - Fan cooled MotorGenerator Max. PowerTorque: 15 kW107 Nm Max. Generator Speed: 6000 rpm...

240

Low Floor Americans with Disabilities Compliant Alternate Fuel Vehicle Project  

SciTech Connect

This project developed a low emission, cost effective, fuel efficient, medium-duty community/transit shuttle bus that meets American's with Disabilities Act (ADA) requirements and meets National Energy Policy Act requirements (uses alternative fuel). The Low Profile chassis, which is the basis of this vehicle is configured to be fuel neutral to accommodate various alternative fuels. Demonstration of the vehicle in Yellowstone Park in summer (wheeled operation) and winter (track operation) demonstrated the feasibility and flexibility for this vehicle to provide year around operation throughout the Parks system as well as normal transit operation. The unique configuration of the chassis which provides ADA access with a simple ramp and a flat floor throughout the passenger compartment, provides maximum access for all passengers as well as maximum flexibility to configure the vehicle for each application. Because this product is derived from an existing medium duty truck chassis, the completed bus is 40-50% less expensive than existing low floor transit buses, with the reliability and durability of OEM a medium duty truck.

James Bartel

2004-11-26T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle weight buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Technical evaluation report on the 120 Vac vital instrument buses and inverter Technical Specifications Issue B71  

SciTech Connect

The operation of a Pressurized Water Reactor (PWR) with one of its 120 Vac vital buses energized in an off-normal mode was analyzed. A Probabilistic Risk Assessment was made to determine the increment of risk by energizing a vital bus from an off-site source directly vs energizing it from its normal, uninterruptible source (i.e., a battery/inverter arrangement). The calculations were made based on uninterruptible source energized vital buses as the normal mode. The analysis indicated that a reduction in the incremental risk increase (caused by plant operation with a vital bus being energized in an off-normal mode) can be accomplished by limiting the time permitted in that condition. Currently, the time that a vital bus can be energized in the off-normal mode is not universally time-limited by plant Technical Specifications. Several alternatives for the reduction in incremental risk were examined and their value/impacts were derived. These data indicate that a recommendation be made for a Technical Specification time limitation of 72 hours per year for off-normal energizing a vital bus during operation of a PWR.

St. Leger-Barter, G.; White, R.L.

1982-10-28T23:59:59.000Z

242

Ramping-up Investments in Advanced Vehicle Technologies | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ramping-up Investments in Advanced Vehicle Technologies Ramping-up Investments in Advanced Vehicle Technologies Ramping-up Investments in Advanced Vehicle Technologies August 10, 2011 - 5:06pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs What does this project do? Accelerates the development and deployment of next-generation vehicle technologies. Helps improve vehicle fuel efficiency and create quality jobs. Today, Secretary Chu announced the selection of 40 projects across 15 states to receive more than $175 million to accelerate the development and deployment of next-generation vehicle technologies. From state-of-the-art electric drive batteries to light-weight vehicles, these projects will help improve vehicle fuel efficiency and create quality jobs. The selected projects focus on eight key approaches to improving vehicle

243

Ramping-up Investments in Advanced Vehicle Technologies | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ramping-up Investments in Advanced Vehicle Technologies Ramping-up Investments in Advanced Vehicle Technologies Ramping-up Investments in Advanced Vehicle Technologies August 10, 2011 - 5:06pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs What does this project do? Accelerates the development and deployment of next-generation vehicle technologies. Helps improve vehicle fuel efficiency and create quality jobs. Today, Secretary Chu announced the selection of 40 projects across 15 states to receive more than $175 million to accelerate the development and deployment of next-generation vehicle technologies. From state-of-the-art electric drive batteries to light-weight vehicles, these projects will help improve vehicle fuel efficiency and create quality jobs. The selected projects focus on eight key approaches to improving vehicle

244

Vehicle Technologies Office: Fact #630: July 5, 2010 Fuel Economy vs.  

NLE Websites -- All DOE Office Websites (Extended Search)

0: July 5, 2010 0: July 5, 2010 Fuel Economy vs. Weight and Performance to someone by E-mail Share Vehicle Technologies Office: Fact #630: July 5, 2010 Fuel Economy vs. Weight and Performance on Facebook Tweet about Vehicle Technologies Office: Fact #630: July 5, 2010 Fuel Economy vs. Weight and Performance on Twitter Bookmark Vehicle Technologies Office: Fact #630: July 5, 2010 Fuel Economy vs. Weight and Performance on Google Bookmark Vehicle Technologies Office: Fact #630: July 5, 2010 Fuel Economy vs. Weight and Performance on Delicious Rank Vehicle Technologies Office: Fact #630: July 5, 2010 Fuel Economy vs. Weight and Performance on Digg Find More places to share Vehicle Technologies Office: Fact #630: July 5, 2010 Fuel Economy vs. Weight and Performance on AddThis.com...

245

Vehicle Technologies Office: FY 2003 Progress Report for High-Strength  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Progress Report 3 Progress Report for High-Strength Weight Reduction Materials to someone by E-mail Share Vehicle Technologies Office: FY 2003 Progress Report for High-Strength Weight Reduction Materials on Facebook Tweet about Vehicle Technologies Office: FY 2003 Progress Report for High-Strength Weight Reduction Materials on Twitter Bookmark Vehicle Technologies Office: FY 2003 Progress Report for High-Strength Weight Reduction Materials on Google Bookmark Vehicle Technologies Office: FY 2003 Progress Report for High-Strength Weight Reduction Materials on Delicious Rank Vehicle Technologies Office: FY 2003 Progress Report for High-Strength Weight Reduction Materials on Digg Find More places to share Vehicle Technologies Office: FY 2003 Progress Report for High-Strength Weight Reduction Materials on

246

ORNL light-duty vehicles PC system  

Science Conference Proceedings (OSTI)

This data system, designed by the Oak Ridge National Laboratory (ORNL) and funded by the US Department of Energy (DOE), monitors information on every light-duty vehicle (automobiles and light-duty trucks) sold in the United States since model year 1976. The data are specified in two days. One way is on a model basis (i.e, engine and transmission combinations) and includes data on city, highway, and combined fuel economies; engine size; drive-train; fuel type (gasoline or diesel); interior volume; body type; and other vehicle attributes. The other way is on a make basis (e.g., Ford Escort, Oldsmobile 98) and includes data on sales; Environmental Protection Agency (EPA) size class; the sales-weighted fuel economy; sales-weighted interior volume; sales-weighted engine displacement (cid); curb weight; and other attributes. A unique identification number is assigned to a specific vehicle category. This identification number contains information on the manufacturer, the location of the manufacturer (domestic or import), and the sponsorship of the vehicle (domestic or import). Fuel economies, model year sales and various vehicle characteristics for every make of the 164 million light-duty vehicles sold in the US since model year 1976 can be obtained from this data system. 2 figs., 4 tabs.

Hu, P.S.; Patterson, P.D. (Oak Ridge National Lab., TN (USA))

1989-01-01T23:59:59.000Z

247

Weighted Guidelines  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

───────────────────────────────────Chapter 15.4-2 (July 2010) 1 Weighted Guidelines [References: FAR 15.4, DEAR 915.4] Overview This section provides guidance for applying the Department of Energy's (DOE) structured approach in determining profit/fee. Background The Federal Acquisition Regulation (FAR) requires consideration of certain factors (described in 15.404-4 as "profit-analysis factors" or "common factors") in developing a structured profit/fee approach. It does not prescribe specific government-wide procedures for profit/fee analysis. Actual profit/fee may vary (FAR 15.404-4(a) (1)) as you perform your profit/fee analysis;

248

Modeling and development of the real-time control strategy for parallel hybrid electric urban buses  

Science Conference Proceedings (OSTI)

This paper proposes a feed-forward control model for SWB6105 parallel hybrid electric urban bus (PHEUB) by using Matlab/Simulink. In order to optimize the fuel economy, balance the battery state of charge (SOC), and satisfy the requirements of the vehicle ... Keywords: hybrid powertrain, hybrid system modeling, instantaneous optimization algorithm, logic threshold torque distribution control strategy (LTTDCS), parallel hybrid electric urban bus (PHEUB), real-time control

Yuanjun Huang; Chengliang Yin; Jianwu Zhang

2008-07-01T23:59:59.000Z

249

A Light-Weight Instrumentation System Design  

Science Conference Proceedings (OSTI)

To meet challenging constraints on telemetry system weight and volume, a custom Light-Weight Instrumentation System was developed to collect vehicle environment and dynamics on a short-duration exo-atmospheric flight test vehicle. The total telemetry system, including electronics, sensors, batteries, and a 1 watt transmitter weighs about 1 kg. Over 80 channels of measurement, housekeeping, and telemetry system diagnostic data are transmitted at 128 kbps. The microcontroller-based design uses the automotive industry standard Controller Area Network to interface with and support in-flight control fimctions. Operational parameters are downloaded via a standard asynchronous serial communications intefiace. The basic design philosophy and functionality is described here.

Kidner, Ronald

1999-06-02T23:59:59.000Z

250

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any vehicle or combination of vehicles equipped with fully functional idle

251

Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation  

NLE Websites -- All DOE Office Websites (Extended Search)

Apps for Vehicles Apps for Vehicles Challenge Spurs Innovation in Vehicle Data to someone by E-mail Share Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Facebook Tweet about Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Twitter Bookmark Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Google Bookmark Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Delicious Rank Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Digg Find More places to share Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on AddThis.com... Apps for Vehicles Challenge Spurs Innovation in Vehicle Data

252

Vehicle barrier  

DOE Patents (OSTI)

A vehicle security barrier which can be conveniently placed across a gate opening as well as readily removed from the gate opening to allow for easy passage. The security barrier includes a barrier gate in the form of a cable/gate member in combination with laterally attached pipe sections fixed by way of the cable to the gate member and lateral, security fixed vertical pipe posts. The security barrier of the present invention provides for the use of cable restraints across gate openings to provide necessary security while at the same time allowing for quick opening and closing of the gate areas without compromising security.

Hirsh, Robert A. (Bethel Park, PA)

1991-01-01T23:59:59.000Z

253

Hybrid options for light-duty vehicles.  

DOE Green Energy (OSTI)

Hybrid electric vehicles (HEVs) offer great promise in improving fuel economy. In this paper, we analyze why, how, and by how much vehicle hybridization can reduce energy consumption and improve fuel economy. Our analysis focuses on efficiency gains associated solely with vehicle hybridization. We do not consider such other measures as vehicle weight reduction or air- and tire-resistance reduction, because such measures would also benefit conventional technology vehicles. The analysis starts with understanding the energy inefficiencies of light-duty vehicles associated with different operation modes in US and Japanese urban and highway driving cycles, with the corresponding energy-saving potentials. The potential for fuel economy gains due to vehicle hybridization can be estimated almost exclusively on the basis of three elements: the reducibility of engine idling operation, the recoverability of braking energy losses, and the capability of improving engine load profiles to gain efficiency associated with specific HEV configurations and control strategies. Specifically, we evaluate the energy efficiencies and fuel economies of a baseline MY97 Corolla-like conventional vehicle (CV), a hypothetical Corolla-based minimal hybrid vehicle (MHV), and a MY98 Prius-like full hybrid vehicle (FHV). We then estimate energy benefits of both MHVs and FHVs over CVs on a performance-equivalent basis. We conclude that the energy benefits of hybridization vary not only with test cycles, but also with performance requirements. The hybrid benefits are greater for ''Corolla (high) performance-equivalent'' vehicles than for ''Prius (low) performance-equivalent'' vehicles. An increasing acceleration requirement would result in larger fuel economy benefits from vehicle hybridization.

An, F., Stodolsky, F.; Santini, D.

1999-07-19T23:59:59.000Z

254

Investigation of Class 2b Trucks (Vehicles of 8,500 to 10,000...  

NLE Websites -- All DOE Office Websites (Extended Search)

weight rating HD heavy-duty lbs pounds LDT light-duty trucks LEV low-emission vehicle LNG liquefied natural gas LPG liquefied petroleum gas MDPV medium-duty passenger vehicle MY...

255

Voltage Vehicles | Open Energy Information  

Open Energy Info (EERE)

Sector Vehicles Product Voltage Vehicles is a nascent, full-service alternative fuel vehicle distributor specializing in the full spectrum of electric vehicles (EV) and...

256

MathCAD model for the estimation of cost and main characteristics of air-cushion vehicles in the preliminary design stage  

E-Print Network (OSTI)

In the naval architecture terminology, the term ACV (Air Cushion Vehicle) refers to this category of vehicles, in which a significant portion of the weight (or all the weight) is supported by forces arising from air pressures ...

Gougoulidis, Georgios

2005-01-01T23:59:59.000Z

257

PASSIVE DETECTION OF VEHICLE LOADING  

SciTech Connect

The Digital Imaging and Remote Sensing Laboratory (DIRS) at the Rochester Institute of Technology, along with the Savannah River National Laboratory is investigating passive methods to quantify vehicle loading. The research described in this paper investigates multiple vehicle indicators including brake temperature, tire temperature, engine temperature, acceleration and deceleration rates, engine acoustics, suspension response, tire deformation and vibrational response. Our investigation into these variables includes building and implementing a sensing system for data collection as well as multiple full-scale vehicle tests. The sensing system includes; infrared video cameras, triaxial accelerometers, microphones, video cameras and thermocouples. The full scale testing includes both a medium size dump truck and a tractor-trailer truck on closed courses with loads spanning the full range of the vehicle's capacity. Statistical analysis of the collected data is used to determine the effectiveness of each of the indicators for characterizing the weight of a vehicle. The final sensing system will monitor multiple load indicators and combine the results to achieve a more accurate measurement than any of the indicators could provide alone.

Garrett, A.

2012-01-03T23:59:59.000Z

258

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

Traction Battery for the ETX-II Vehicle, EGG-EP-9688, IdahoElectric Vehicle Powertrain (ETX-II) Performance: VehicleDevelopment Program - ETX-II, Phase II Technical Report, DOE

Delucchi, Mark

1992-01-01T23:59:59.000Z

259

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

1-5): Electric/Hybrid Vehicles: An Emerging Global Industry,1-5): Electric/Hybrid Vehicles: An Emerging Global Industry,1-5): Electric/Hybrid Vehicles: An Emerging Global Industry,

Delucchi, Mark

1992-01-01T23:59:59.000Z

260

Proceedings of the Neighborhood Electric Vehicle Workshop  

E-Print Network (OSTI)

Electric Vehicle Workshop Proceedings Vehicle Safety DesignElectric Vehicle Workshop Proceedings Federal Motor Vehicle SafetyElectric Vehicle Workshop Proceedings FEDERAL MOTOR VEHICLE SAFETY

Lipman, Timothy

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle weight buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Hybrid Electric Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Association Conference Transportation Association Conference Vancouver, Canada December 2005 Hybrid Electric Vehicle Testing Jim Francfort U.S. Department of Energy - FreedomCAR & Vehicle Technologies Program, Advanced Vehicle Testing Activity INL/CON-05-00964 Presentation Outline * Background & goals * Testing partners * Hybrid electric vehicle testing - Baseline performance testing (new HEV models) - 1.5 million miles of HEV fleet testing (160k miles per vehicle in 36 months) - End-of-life HEV testing (rerun fuel economy & conduct battery testing @ 160k miles per vehicle) - Benchmark data: vehicle & battery performance, fuel economy, maintenance & repairs, & life-cycle costs * WWW information location Background * Advanced Vehicle Testing Activity (AVTA) - part of the

262

Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NREL. National Clean Fleets partners are investing in hybrid vehicles to reduce their oil use, vehicle emissions and fuel costs. What's Your PEV Readiness Score? PEV readiness...

263

Vehicles | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

The U.S. Department of Energy (DOE) supports the development and deployment of advanced vehicle technologies, including advances in electric vehicles, engine efficiency, and...

264

Vehicles and Fuels  

Energy.gov (U.S. Department of Energy (DOE))

Learn more about exciting technologies and ongoing research in alternative and advanced vehicles—or vehicles that run on fuels other than traditional petroleum.

265

Vehicle Technologies Office: Features  

NLE Websites -- All DOE Office Websites (Extended Search)

Event June 2013 The eGallon Tool Advances Deployment of Electric Vehicles May 2013 Vehicle Technologies Office Recognizes Outstanding Researchers December 2012 Apps for...

266

Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

Volt Vehicle Summary Report: April - June 2013 (PDF 1.3MB) EV Project Electric Vehicle Charging Infrastructure Summary Report: April - June 2013 (PDF 11MB) Residential...

267

Vehicle Technologies Office: Vehicle Technologies Office Organization...  

NLE Websites -- All DOE Office Websites (Extended Search)

Organization and Contacts Organization Chart for the Vehicle Technologies Program Fuel Technologies and Deployment, Technology Managers Advanced Combustion Engines, Technology...

268

Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Maximizing Alternative Maximizing Alternative Fuel Vehicle Efficiency to someone by E-mail Share Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Facebook Tweet about Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Twitter Bookmark Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Google Bookmark Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Delicious Rank Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Digg Find More places to share Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines

269

Vehicle Technologies Office: Fact #257: March 3, 2003 Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

7: March 3, 2003 Vehicle Occupancy by Type of Vehicle to someone by E-mail Share Vehicle Technologies Office: Fact 257: March 3, 2003 Vehicle Occupancy by Type of Vehicle on...

270

Vehicle Technologies Office: Fact #253: February 3, 2003 Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

3: February 3, 2003 Vehicle Age by Type of Vehicle to someone by E-mail Share Vehicle Technologies Office: Fact 253: February 3, 2003 Vehicle Age by Type of Vehicle on Facebook...

271

Advanced Vehicle Testing Activity: Light-Duty Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Light-Duty Light-Duty Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Light-Duty Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Light-Duty Vehicles on Twitter Bookmark Advanced Vehicle Testing Activity: Light-Duty Vehicles on Google Bookmark Advanced Vehicle Testing Activity: Light-Duty Vehicles on Delicious Rank Advanced Vehicle Testing Activity: Light-Duty Vehicles on Digg Find More places to share Advanced Vehicle Testing Activity: Light-Duty Vehicles on AddThis.com... Home Overview Light-Duty Vehicles Alternative Fuel Vehicles Plug-in Hybrid Electric Vehicles Hybrid Electric Vehicles Micro Hybrid Vehicles ARRA Vehicle and Infrastructure Projects EVSE Testing Energy Storage Testing Hydrogen Internal Combustion Engine Vehicles Other ICE

272

Advanced Aerodynamic Devices to Improve the Performance, Economics, Handling, and Safety of Heavy Vehicles  

Science Conference Proceedings (OSTI)

Research is being conducted at the Georgia Tech Research Institute (GTRI) to develop advanced aerodynamic devices to improve the performance, economics, stability, handling and safety of operation of Heavy Vehicles by using previously-developed and flight-tested pneumatic (blown) aircraft technology. Recent wind-tunnel investigations of a generic Heavy Vehicle model with blowing slots on both the leading and trailing edges of the trailer have been conducted under contract to the DOE Office of Heavy Vehicle Technologies. These experimental results show overall aerodynamic drag reductions on the Pneumatic Heavy Vehicle of 50% using only 1 psig blowing pressure in the plenums, and over 80% drag reductions if additional blowing air were available. Additionally, an increase in drag force for braking was confirmed by blowing different slots. Lift coefficient was increased for rolling resistance reduction by blowing only the top slot, while downforce was produced for traction increase by blowing only the bottom. Also, side force and yawing moment were generated on either side of the vehicle, and directional stability was restored by blowing the appropriate side slot. These experimental results and the predicted full-scale payoffs are presented in this paper, as is a discussion of additional applications to conventional commercial autos, buses, motor homes, and Sport Utility Vehicles.

Robert J. Englar

2001-05-14T23:59:59.000Z

273

Graduate Automotive Technology Education (GATE) Program: Center of Automotive Technology Excellence in Advanced Hybrid Vehicle Technology at West Virginia University  

DOE Green Energy (OSTI)

This report summarizes the technical and educational achievements of the Graduate Automotive Technology Education (GATE) Center at West Virginia University (WVU), which was created to emphasize Advanced Hybrid Vehicle Technology. The Center has supported the graduate studies of 17 students in the Department of Mechanical and Aerospace Engineering and the Lane Department of Computer Science and Electrical Engineering. These students have addressed topics such as hybrid modeling, construction of a hybrid sport utility vehicle (in conjunction with the FutureTruck program), a MEMS-based sensor, on-board data acquisition for hybrid design optimization, linear engine design and engine emissions. Courses have been developed in Hybrid Vehicle Design, Mobile Source Powerplants, Advanced Vehicle Propulsion, Power Electronics for Automotive Applications and Sensors for Automotive Applications, and have been responsible for 396 hours of graduate student coursework. The GATE program also enhanced the WVU participation in the U.S. Department of Energy Student Design Competitions, in particular FutureTruck and Challenge X. The GATE support for hybrid vehicle technology enhanced understanding of hybrid vehicle design and testing at WVU and encouraged the development of a research agenda in heavy-duty hybrid vehicles. As a result, WVU has now completed three programs in hybrid transit bus emissions characterization, and WVU faculty are leading the Transportation Research Board effort to define life cycle costs for hybrid transit buses. Research and enrollment records show that approximately 100 graduate students have benefited substantially from the hybrid vehicle GATE program at WVU.

Nigle N. Clark

2006-12-31T23:59:59.000Z

274

Apps for Vehicles: Why should I care what data is in my car and...  

Open Energy Info (EERE)

interested in vehicle performance may use it to compare engine operations given different oil weights or gasoline octane ratings to determine what engine inputs provide optimal...

275

Assessment of Thermal Control Technologies for Cooling Electric Vehicle Power Electronics  

DOE Green Energy (OSTI)

NREL is assessing thermal control technologies to improve the thermal performance of power electronics devices for electric vehicles, while reducing the cost, weight, and volume of the system.

Kelly, K.; Abraham, T.; Bennion, K.; Bharathan, D.; Narumanchi, S.; O'Keefe, M.

2008-01-01T23:59:59.000Z

276

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compatible Vehicles: Compatible Vehicles: Cargotec - Ottawa 4x2 Elgin Sweeper Company - Broom Bear/Crosswind/Eagle/Pelican North American Bus Industries - 60BRT North American Bus Industries - 31LFW / 35LFW / 40LFW ElDorado National - E-Z Rider II BRT ElDorado National - Axess ElDorado National - XHF Champion Bus Inc. - CTS - Front Engine Motor Coach Industries - D4500 CT Hybrid Commuter Coach Gillig Corp. - Diesel-Electric Hybrid Bus and CNG Bus Freightliner - Business Class M2 112 Blue Bird Corp. - All American Rear Engine Capacity Trucks - TJ9000 Heil Environmental - RapidRail McNeilus - Rear Load (Std, HD, XC, Tag, MS, Metro-Pak) McNeilus - CNG Cement Mixer North American Bus Industries - 42BRT Heil Environmental - DuraPack Python Heil Environmental - Rear Loader Thomas Built Buses - Saf-T-Liner HDX CNG

277

Vehicle Technologies Office: About the Vehicle Technologies Office: Moving  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Vehicle About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles to someone by E-mail Share Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Facebook Tweet about Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Twitter Bookmark Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Google Bookmark Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Delicious Rank Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Digg Find More places to share Vehicle Technologies Office: About the

278

Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

9: August 6, 9: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts to someone by E-mail Share Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Facebook Tweet about Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Twitter Bookmark Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Google Bookmark Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Delicious

279

Alternative Fuel Vehicle Data  

Reports and Publications (EIA)

This report contains data on the number of onroad alternative fuel vehicles and hybrid vehicles made available by both the original equipment manufacturers and aftermarket vehicle conversion facilities and data on the use of alternative fueled vehicles and the amount of fuel they consume.

Information Center

2013-04-08T23:59:59.000Z

280

Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

5: November 25, 5: November 25, 2013 Vehicle Technology Penetration to someone by E-mail Share Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Facebook Tweet about Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Twitter Bookmark Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Google Bookmark Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Delicious Rank Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Digg Find More places to share Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on AddThis.com... Fact #805: November 25, 2013

Note: This page contains sample records for the topic "vehicle weight buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Vehicle Technologies Office: Ambassadors  

NLE Websites -- All DOE Office Websites (Extended Search)

Ambassadors to someone Ambassadors to someone by E-mail Share Vehicle Technologies Office: Ambassadors on Facebook Tweet about Vehicle Technologies Office: Ambassadors on Twitter Bookmark Vehicle Technologies Office: Ambassadors on Google Bookmark Vehicle Technologies Office: Ambassadors on Delicious Rank Vehicle Technologies Office: Ambassadors on Digg Find More places to share Vehicle Technologies Office: Ambassadors on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness Workforce Development Plug-in Electric Vehicle Basics Ambassadors Workplace Charging Challenge Clean Cities Coalitions Clean Cities logo. Clean Cities National: A network of nearly 100 Clean Cities coalitions, supported by the

282

DOE Hydrogen Analysis Repository: Advanced Vehicle Introduction...  

NLE Websites -- All DOE Office Websites (Extended Search)

Keywords: Vehicle characteristics; market penetration; advanced technology vehicles; hybrid electric vehicle (HEV) Purpose Vehicle Choice Model - Estimate market penetration...

283

Accelerating Electric Vehicle Deployment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accelerating Electric Vehicle Deployment Accelerating Electric Vehicle Deployment Accelerating Electric Vehicle Deployment Accelerating Electric Vehicle Deployment More Documents &...

284

Weighted Guidelines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Weighted Guidelines Weighted Guidelines Weighted Guidelines More Documents & Publications Weighted Guidelines DOE F 4220.23 OPAM Policy Acquisition Guides...

285

Weighted Guidelines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Weighted Guidelines Weighted Guidelines Weighted Guidelines More Documents & Publications Weighted Guidelines OPAM Policy Acquisition Guides DOE F 4220.23...

286

Apparatus for weighing and identifying characteristics of a moving vehicle  

DOE Patents (OSTI)

Apparatus for weighing a vehicle in motion is provided by employing a plurality of elongated fiber-optic sensors defined by an optical fiber embedded in an encasement of elastomeric material and disposed parallel to each other on the roadway in the path of moving vehicles. Each fiber-optic sensor is provided with contact grid means which can be selectively altered to provide the fiber-optic sensors with sensitivities to vehicular weight different from each other for weighing vehicles in an extended weight range. Switch means are used in conjunction with the fiber-optic sensors to provide signals indicative of the speed of the moving vehicle, the number of axles on the vehicle, weight distribution, tire position, and the wheelbase of the vehicle. The use of a generally N-shaped configuration of switch means also provides a determination of the number of tires on each axle and the tire footprint. When switch means in this configuration are formed of optical fibers, the extent of light transmission through the fibers during contact with the tires of the vehicle is indicative of the vehicle weight. 15 figures.

Muhs, J.D.; Jordan, J.K.; Tobin, K.W. Jr.; LaForge, J.V.

1993-11-09T23:59:59.000Z

287

Apparatus for weighing and identifying characteristics of a moving vehicle  

DOE Patents (OSTI)

Apparatus for weighing a vehicle in motion is provided by employing a plurality of elongated fiber-optic sensors defined by an optical fiber embedded in an encasement of elastomeric material and disposed parallel to each other on the roadway in the path of moving vehicles. Each fiber-optic sensor is provided with contact grid means which can be selectively altered to provide the fiber-optic sensors with sensitivities to vehicular weight different from each other for weighing vehicles in an extended weight range. Switch means are used in conjunction with the fiber-optic sensors to provide signals indicative of the speed of the moving vehicle, the number of axles on the vehicle, weight distribution, tire position, and the wheelbase of the vehicle. The use of a generally N-shaped configuration of switch means also provides a determination of the number of tires on each axle and the tire footprint. When switch means in this configuration are formed of optical fibers, the extent of light transmission through the fibers during contact with the tires of the vehicle is indicative of the vehicle weight.

Muhs, Jeffrey D. (Clinton, TN); Jordan, John K. (Oak Ridge, TN); Tobin, Jr., Kenneth W. (Harriman, TN); LaForge, John V. (Knoxville, TN)

1993-01-01T23:59:59.000Z

288

Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

6: February 9, 6: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled to someone by E-mail Share Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Facebook Tweet about Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Twitter Bookmark Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Google Bookmark Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Delicious Rank Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Digg Find More places to share Vehicle Technologies Office: Fact #306:

289

biogas to indian buses come home, dad biosensor lab in singapore sexy statistics world university No reason to rush homeLiU alumna Klara Tiitso enjoys her life in London | page 30  

E-Print Network (OSTI)

biogas to indian buses come home, dad biosensor lab in singapore sexy statistics world university an Indian Master's student whose studies at Linköping inspired him to use biogas as fuel for busses. He

Zhao, Yuxiao

290

Load calculation and system evaluation for electric vehicle climate control  

DOE Green Energy (OSTI)

This paper presents an analysis of the applicability of alternative systems for electric vehicle (EV) heating and air conditioning (HVAC). The paper consists of two parts. The first part is a cooling and heating load calculation for electric vehicles. The second part is an evaluation of several systems that can provide the desired cooling and heating in EVs. These systems are ranked according to their overall weight The overall weight is calculated by adding the system weight and the weight of the battery necessary to provide energy for system operation. The system with the minimum overall weight is considered to be the best, because minimum vehicle weight decreases the energy required for propulsion, and therefore increases the vehicle range. Three systems are considered as the best choices for EV HVAC. These are, vapor compression, ice storage and adsorption systems. These systems are evaluated, including calculations of system weight, system volume, and COP. The paper also includes a calculation on how the battery energy storage capacity affects the overall system weights and the selection of the optimum system. The results indicate that, at the conditions analyzed in this paper, an ice storage system has the minimum weight of all the systems considered. Vapor compression air conditioners become the system with the minimum weight for battery storage capacities above 230 kJ/kg.

Aceves, S.M.; Comfort, W.J. III

1994-09-12T23:59:59.000Z

291

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption A heavy-duty vehicle that is equipped with qualified idle reduction technology may exceed the Arizona weight limitations specified in Arizona

292

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any vehicle equipped with qualified idle reduction technology may exceed the state's gross and axle weight limits by up to 400 pounds to compensate

293

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Reduction Weight Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any motor vehicle equipped with qualified idle reduction technology may exceed the state gross and axle weight limits to compensate for the added

294

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Reduction Weight Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any motor vehicle equipped with qualified idle reduction technology may exceed the state gross, axle, tandem, or bridge weight limits by up to 400

295

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any motor vehicle equipped with idle reduction technology may exceed the state gross, axle, and tandem weight limits by up to 400 pounds to account

296

National Renewable Energy Laboratory (NREL) Reports Increase in Durability and Reliability for Current Generation Fuel Cell Buses (Fact Sheet), Hydrogen and Fuel Cell Technical Highlights (HFCTH)  

NLE Websites -- All DOE Office Websites (Extended Search)

869 * November 2010 869 * November 2010 National Renewable Energy Laboratory (NREL) Reports Increase in Durability and Reliability for Current Generation Fuel Cell Buses NREL Team: Hydrogen Technology Validation, Leslie Eudy Accomplishment: NREL recently reported an increase in durability and reliability for fuel cell systems demonstrated in transit service (first reported in July 2010). Context: The transit industry provides an excellent test-bed for developing and optimizing advanced transportation technologies, such as fuel cells. In coordination with the Federal Transit Administration, the Department of Energy (DOE) funds the evaluation of fuel cell buses (FCBs) in real-world service. Under this funding, NREL has collected and analyzed data on nine early generation FCBs operated by four transit agencies in the United States.

297

Development and Demonstration of Hydrogen and Compressed Natural Gas (H/CNG) Blend Transit Buses: October 15, 2002-September 30, 2004  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Development and Demonstration Development and Demonstration of Hydrogen and Compressed Natural Gas (H/CNG) Blend Transit Buses October 15, 2002 - September 30, 2004 A. Del Toro SunLine Services Group Thousand Palms, California M. Frailey National Renewable Energy Laboratory Golden, Colorado F. Lynch Hydrogen Components Inc. Littleton, Colorado S. Munshi Westport Innovations Inc. Vancouver, British Columbia, Canada S. Wayne West Virginia University Morgantown, West Virginia Technical Report NREL/TP-540-38707 November 2005 Development and Demonstration of Hydrogen and Compressed Natural Gas (H/CNG) Blend Transit Buses October 15, 2002 - September 30, 2004 A. Del Toro SunLine Services Group Thousand Palms, California M. Frailey National Renewable Energy Laboratory Golden, Colorado

298

Modular Energy Storage System for Hydrogen Fuel Cell Vehicles  

SciTech Connect

The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles â?? plug-in electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. The in-depth research into the complex interactions between the lower and higher voltage systems from data obtained via modeling, bench testing and instrumented vehicle data will allow an optimum system to be developed from a performance, cost, weight and size perspective. The subsystems are designed for modularity so that they may be used with different propulsion and energy delivery systems. This approach will allow expansion into new alternative energy vehicle markets.

Janice Thomas

2010-05-31T23:59:59.000Z

299

Advanced Vehicle Testing Activity: Urban Electric Vehicle Special...  

NLE Websites -- All DOE Office Websites (Extended Search)

Special Projects to someone by E-mail Share Advanced Vehicle Testing Activity: Urban Electric Vehicle Special Projects on Facebook Tweet about Advanced Vehicle Testing Activity:...

300

Advanced Vehicle Testing Activity: Full-Size Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing Reports to someone by E-mail Share Advanced Vehicle Testing Activity: Full-Size Electric Vehicle Testing Reports on Facebook Tweet about Advanced Vehicle Testing Activity:...

Note: This page contains sample records for the topic "vehicle weight buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Advanced Vehicle Testing Activity: Electric Vehicle Supply Equipment...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Supply Equipment (EVSE) Testing The Advanced Vehicle Testing Activity is tasked by the U.S. Department of Energy's (DOE) Vehicle Technologies Office (VTO) to...

302

Advanced Vehicle Testing Activity: Urban Electric Vehicle Testing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing Reports to someone by E-mail Share Advanced Vehicle Testing Activity: Urban Electric Vehicle Testing Reports on Facebook Tweet about Advanced Vehicle Testing Activity:...

303

Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles  

E-Print Network (OSTI)

The Images of Hybrid Vehicles Each of the householdsbetween hybrid and non-hybrid vehicles was observed in smallowned Honda Civic Hybrids, vehicles that are virtually

Heffner, Reid R.; Kurani, Ken; Turrentine, Tom

2005-01-01T23:59:59.000Z

304

Advanced Vehicle Testing Activity: Urban Electric Vehicle Specificatio...  

NLE Websites -- All DOE Office Websites (Extended Search)

Test Procedures to someone by E-mail Share Advanced Vehicle Testing Activity: Urban Electric Vehicle Specifications and Test Procedures on Facebook Tweet about Advanced Vehicle...

305

Advanced Vehicle Testing Activity: Full-Size Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects to someone by E-mail Share Advanced Vehicle Testing Activity: Full-Size Electric Vehicle Special Projects on Facebook Tweet about Advanced Vehicle Testing Activity:...

306

Advanced Vehicle Testing Activity: Hybrid Electric Vehicle Testing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing Reports to someone by E-mail Share Advanced Vehicle Testing Activity: Hybrid Electric Vehicle Testing Reports on Facebook Tweet about Advanced Vehicle Testing Activity:...

307

Advanced Vehicle Testing Activity: Hybrid Electric Vehicle Specificati...  

NLE Websites -- All DOE Office Websites (Extended Search)

Test Procedures to someone by E-mail Share Advanced Vehicle Testing Activity: Hybrid Electric Vehicle Specifications and Test Procedures on Facebook Tweet about Advanced Vehicle...

308

Advanced Vehicle Testing Activity: Full-Size Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Procedures to someone by E-mail Share Advanced Vehicle Testing Activity: Full-Size Electric Vehicle Specifications and Test Procedures on Facebook Tweet about Advanced Vehicle...

309

Advanced Vehicle Testing Activity: Electric Vehicle Supply Equipment...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Supply Equipment (EVSE) Testing to someone by E-mail Share Advanced Vehicle Testing Activity: Electric Vehicle Supply Equipment (EVSE) Testing on Facebook Tweet...

310

VEHICLE USAGE LOG Department ________________________________________ Vehicle Homebase ____________________________ Week Ended (Sunday) _________________  

E-Print Network (OSTI)

VEHICLE USAGE LOG Department ________________________________________ Vehicle Homebase of the owning Unit. Vehicle Homebase: Enter the City, Zip Code, Building, or other location designation. Week

Johnston, Daniel

311

Search for Model Year 2014 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Type Model Year: 2014 Select Class... Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Plug-in Hybrid Vehicles...

312

Search for Model Year 2000 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

313

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

RR0DF106791 RR0DF106791 Hybrid Propulsion System: Mild Parallel Belt-Alternator Starter (BAS) Number of Electric Machines: 1 Motor: 15 kW (peak), AC induction Battery Specifications Manufacturer: Hitachi Type: Cylindrical Lithium-ion Number of Cells: 32 Nominal Cell Voltage: 3.6 V Nominal System Voltage: 115.2 V Rated Pack Capacity: 4.4 Ah Maximum Cell Charge Voltage 2 : 4.10 V Minimum Cell Discharge Voltage 2 : 3.00 V Thermal Management: Active - Forced air Pack Weight: 65 lb BEGINNING-OF-TEST: BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle Odometer: 5,715 mi Date of Test: January 8, 2013 Static Capacity Test Measured Average Capacity: 3.98 Ah Measured Average Energy Capacity: 460 Wh HPPC Test Pulse Discharge Power @ 50% DOD

314

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

RRXDF106605 RRXDF106605 Hybrid Propulsion System: Mild Parallel Belt-Alternator Starter (BAS) Number of Electric Machines: 1 Motor: 15 kW (peak), AC induction Battery Specifications Manufacturer: Hitachi Type: Cylindrical Lithium-ion Number of Cells: 32 Nominal Cell Voltage: 3.6 V Nominal System Voltage: 115.2 V Rated Pack Capacity: 4.4 Ah Maximum Cell Charge Voltage 2 : 4.10 V Minimum Cell Discharge Voltage 2 : 3.00 V Thermal Management: Active - Forced air Pack Weight: 65 lb BEGINNING-OF-TEST: BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle Odometer: 4,244 mi Date of Test: January 9, 2013 Static Capacity Test Measured Average Capacity: 3.88 Ah Measured Average Energy Capacity: 450 Wh HPPC Test Pulse Discharge Power @ 50% DOD

315

Intelligent Systems Software for Unmanned Air Vehicles  

E-Print Network (OSTI)

weighted fuzzy AND and OR nodes, but can also have pre-trained neural networks as nodes. Fuzzy logic, where vehicles use a consensus algorithm based upon graph theory in order to arrive at the correct., and Gibson, R. E., "A Fuzzy-Logic Architecture for Autonomous Multisensor Data Fusion," IEEE Trans. Ind

316

Vehicle Technologies Office: Lubricants  

NLE Websites -- All DOE Office Websites (Extended Search)

Lubricants to someone by Lubricants to someone by E-mail Share Vehicle Technologies Office: Lubricants on Facebook Tweet about Vehicle Technologies Office: Lubricants on Twitter Bookmark Vehicle Technologies Office: Lubricants on Google Bookmark Vehicle Technologies Office: Lubricants on Delicious Rank Vehicle Technologies Office: Lubricants on Digg Find More places to share Vehicle Technologies Office: Lubricants on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Fuel Effects on Combustion Lubricants Natural Gas Research Biofuels End-Use Research Materials Technologies Lubricants As most vehicles are on the road for more than 15 years before they are retired, investigating technologies that will improve today's vehicles is

317

Chapter 2. Vehicle Characteristics  

U.S. Energy Information Administration (EIA) Indexed Site

2. Vehicle Characteristics 2. Vehicle Characteristics Chapter 2. Vehicle Characteristics U.S. households used a fleet of nearly 157 million vehicles in 1994. Despite remarkable growth in the number of minivans and sport-utility vehicles, passenger cars continued to predominate in the residential vehicle fleet. This chapter looks at changes in the composition of the residential fleet in 1994 compared with earlier years and reviews the effect of technological changes on fuel efficiency (how efficiently a vehicle engine processes motor fuel) and fuel economy (how far a vehicle travels on a given amount of fuel). Using data unique to the Residential Transportation Energy Consumption Survey, it also explores the relationship between residential vehicle use and family income.

318

Advanced Technology Vehicle Testing  

DOE Green Energy (OSTI)

The light-duty vehicle transportation sector in the United States depends heavily on imported petroleum as a transportation fuel. The Department of Energy’s Advanced Vehicle Testing Activity (AVTA) is testing advanced technology vehicles to help reduce this dependency, which would contribute to the economic stability and homeland security of the United States. These advanced technology test vehicles include internal combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban electric vehicles, and electric ground support vehicles. The AVTA tests and evaluates these vehicles with closed track and dynamometer testing methods (baseline performance testing) and accelerated reliability testing methods (accumulating lifecycle vehicle miles and operational knowledge within 1 to 1.5 years), and in normal fleet environments. The Arizona Public Service Alternative Fuel Pilot Plant and H2-fueled vehicles are demonstrating the feasibility of using H2 as a transportation fuel. Hybrid, neighborhood, and urban electric test vehicles are demonstrating successful applications of electric drive vehicles in various fleet missions. The AVTA is also developing electric ground support equipment (GSE) test procedures, and GSE testing will start during the fall of 2003. All of these activities are intended to support U.S. energy independence. The Idaho National Engineering and Environmental Laboratory manages these activities for the AVTA.

James Francfort

2003-11-01T23:59:59.000Z

319

Advanced Vehicle Testing Activity: Alternative Fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

are vehicles designed to operate on alternative fuels such as compressed and liquefied natural gas, liquefied petroleum gas (propane), ethanol, biodiesel, electricity, and...

320

Advanced Vehicle Testing Activity - Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Hyundai Sonata (4932) Battery Report 2010 Ultra-Battery Honda Civic Battery Report Some hybrid electric vehicles (HEVs) combine a conventional internal combustion engine (using...

Note: This page contains sample records for the topic "vehicle weight buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

VEHICLE TECHNOLOGIES PROGRAM Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing Activity North American PHEV Demonstration Monthly Summary Report - Hymotion Prius (V2Green data logger) Total Number Vehicles - 169 (May 2010) Total Cumulative Test...

322

Advanced Vehicle Testing Activity: Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

motor of an electric vehicle. Other hybrids combine a fuel cell with batteries to power electric propulsion motors. Fuel Cell Concept: Fuel passes through an anode, electrolyte,...

323

Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Medium- and Medium- and Heavy-Duty Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Twitter Bookmark Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Google Bookmark Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Delicious Rank Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Digg Find More places to share Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on AddThis.com... Home Overview Light-Duty Vehicles Medium- and Heavy-Duty Vehicles Transit Vehicles Trucks Idle Reduction Oil Bypass Filter Airport Ground Support Equipment Medium and Heavy Duty Hybrid Electric Vehicles

324

Vehicle Setup Information Downloadable Dynamometer Database (D  

NLE Websites -- All DOE Office Websites (Extended Search)

Architecture Architecture Conventional 2013 Nissan Altima Test Cell Location 2WD Advanced Powertrain Research Facility Document Date 8/7/2013 Vehicle Dynamometer Input 2.5L DOHC 16V Inline 4 cylinder Transmission- CVT *AS VEHICLE WAS TESTED ON A 2WD DYNAMOMETER WITHOUT A "DYNO MODE", DECEL FUEL CUTOFF WAS FOUND TO BE LIMITED Revision Number 3 Notes: Test weight [lb] Target A [lb] 3500 42.94 Target B [lb/mph] Target C [lb/mph^2] -0.4448 0.02333 2.5L DOHC 16V Inline 4 cylinder Transmission- CVT *AS VEHICLE WAS TESTED ON A 2WD DYNAMOMETER WITHOUT A "DYNO MODE", DECEL FUEL CUTOFF WAS FOUND TO BE LIMITED Test Fuel Information 2.5L DOHC 16V Inline 4 cylinder Transmission- CVT *AS VEHICLE WAS TESTED ON A 2WD DYNAMOMETER WITHOUT A "DYNO MODE", DECEL FUEL CUTOFF WAS FOUND TO BE

325

Natural Gas as a Future Fuel for Heavy-Duty Vehicles  

DOE Green Energy (OSTI)

In addition to their significant environmental impacts, medium-duty and heavy-duty (HD) vehicles are high volume fuel users. Development of such vehicles, which include transit buses, refuse trucks, and HD Class 6-8 trucks, that are fueled with natural gas is strategic to market introduction of natural gas vehicles (NGV). Over the past five years the Department of Energy's (DOE) Office of Heavy Vehicle Technologies (OHVT) has funded technological developments in NGV systems to support the growth of this sector in the highly competitive transportation market. The goals are to minimize emissions associated with NGV use, to improve on the economies of scale, and to continue supporting the testing and safety assessments of all new systems. This paper provides an overview of the status of major projects under a program supported by DOE/OHVT and managed by Brookhaven National Laboratory. The discussion focuses on the program's technical strategy in meeting specific goals proposed by the N GV industry and the government. Relevant projects include the development of low-cost fuel storage, fueling infrastructure, and HD vehicle applications.

Wai-Lin Litzke; James Wegrzyn

2001-05-14T23:59:59.000Z

326

Adsorption air conditioner for electric vehicle applications. Revision 1  

DOE Green Energy (OSTI)

This paper shows an analysis of the applicability of an adsorption system for electric vehicle (EV) air conditioning. Adsorption systems are designed and optimized to provide the required cooling for four combinations of vehicle characteristics and driving cycles. The resulting adsorption systems are compared with vapor compression air conditioners that can satisfy the cooling load. The objective function is the overall system weight, which includes the cooling system weight and the weight of the battery necessary to provide energy for air conditioner operation. The system with the minimum overall weight is considered to be the best, because a lower weight results in an increased vehicle range. The results indicate that, for the conditions analyzed in this paper, vapor compression air conditioners are superior to adsorption systems not only because they are lighter, but also because they have a higher COP and are more compact.

Aceves, S.M.

1994-07-27T23:59:59.000Z

327

Vehicle Research Laboratory - FEERC  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Research Laboratory Vehicle Research Laboratory Expertise The overall FEERC team has been developed to encompass the many disciplines necessary for world-class fuels, engines, and emissions-related research, with experimental, analytical, and modeling capabilities. Staff members specialize in areas including combustion and thermodynamics, emissions measurements, analytical chemistry, catalysis, sensors and diagnostics, dynamometer cell operations, engine controls and control theory. FEERC engineers have many years of experience in vehicle research, chassis laboratory development and operation, and have developed specialized systems and methods for vehicle R&D. Selected Vehicle Research Topics In-use investigation of Lean NOx Traps (LNTs). Vehicle fuel economy features such as lean operation GDI engines,

328

Feasibility Study Of Advanced Technology Hov Systems: Volume 2b: Emissions Impact Of Roadway-powered Electric Buses, Light-duty Vehicles, And Automobiles  

E-Print Network (OSTI)

of 20 mph. Regenerative braking affects energy consumptionenergy consumption is significantly affected by both the driving cycle, and to some extent, regenerative

Miller, Mark A.; Dato, Victor; Chira-chavala, Ted

1992-01-01T23:59:59.000Z

329

Feasibility Study Of Advanced Technology Hov Systems: Volume 2b: Emissions Impact Of Roadway-powered Electric Buses, Light-duty Vehicles, And Automobiles  

E-Print Network (OSTI)

SCR sox - low sulfur oil 30 Source: Wang f et al. (1989).the three major fuel sources (gas, oil, and coal) assumed inIGCC Oil-fired: Residual Boiler Cogen-Turbine Source: N/A co

Miller, Mark A.; Dato, Victor; Chira-chavala, Ted

1992-01-01T23:59:59.000Z

330

Feasibility Study Of Advanced Technology Hov Systems: Volume 2b: Emissions Impact Of Roadway-powered Electric Buses, Light-duty Vehicles, And Automobiles  

E-Print Network (OSTI)

Excluding Conventional - Coal-fired Power Plants Chapter VI.of Conventional Coal-fired Power Plants The procedureCase II: Conventional Coal-fired Power Plants The procedure

Miller, Mark A.; Dato, Victor; Chira-chavala, Ted

1992-01-01T23:59:59.000Z

331

FY06 High Strength Weight Reduction Materials Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

HigH StrengtH HigH StrengtH WeigHt reduction MaterialS U.S. Department of Energy Office of FreedomCAR and Vehicle Technologies 1000 Independence Avenue S.W. Washington, DC 20585-0121 FY 2006 Progress Report for High Strength Weight Reduction Materials Energy Efficiency and Renewable Energy Office of FreedomCAR and Vehicle Technologies Advanced Materials Technologies Edward Wall Program Manager, OFCVT Rogelio Sullivan Advanced Materials Technologies Team Leader James Eberhardt Chief Scientist March 2006 High Strength Weight Reduction Materials FY 2006 Progress Report CONTENTS 1. INTRODUCTION................................................................................................................................... 1 2. MATERIALS DEVELOPMENT .......................................................................................................... 3

332

Emission Impacts of Electric Vehicles  

E-Print Network (OSTI)

greenhouse effect, and electric vehicles," Proceedingso/9thInternational Electric Vehicles Symposium, 1988. 14. R. M.of 9th International Electric Vehicles Sympo- sium, 1988.

Wang, Quanlu; DeLuchi, Mark A.; Sperling, Daniel

1990-01-01T23:59:59.000Z

333

The Case for Electric Vehicles  

E-Print Network (OSTI)

land Press, 1995 TESTING ELECTRIC VEHICLE DEMAND IN " HYBRIDThe Case for Electric Vehicles DanieI Sperlmg Reprint UCTCor The Case for Electric Vehicles Darnel Sperling Institute

Sperling, Daniel

2001-01-01T23:59:59.000Z

334

Alternative Fuels Data Center: Flexible Fuel Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Diesel Vehicles Electricity | Hybrid & Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane |...

335

Alternative Fuels Data Center: Vehicle Conversions  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Diesel Vehicles Electricity | Hybrid & Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane |...

336

Vehicle Detection by Sensor Network Nodes  

E-Print Network (OSTI)

frequency. Table 4.2: ? and ? Ground truth (# of vehicles)truth (# of vehicles) Detection result (# of vehicles) Tabletruth ( of vehicles) Detection result ( of vehicles) Table

Ding, Jiagen; Cheung, Sing-Yiu; Tan, Chin-woo; Varaiya, Pravin

2004-01-01T23:59:59.000Z

337

Demonstration of Automated Heavy-Duty Vehicles  

E-Print Network (OSTI)

by compressed natural gas (CNG) in spark-ignition engines,buses are powered by a CNG spark-ignition engine, providedno matter whether it is a CNG or a diesel engine [4, 5].

2006-01-01T23:59:59.000Z

338

Vehicle Technologies Office: Fact #586: August 31, 2009 New Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

6: August 31, 2009 New Vehicle Fuel Economies by Vehicle Type to someone by E-mail Share Vehicle Technologies Office: Fact 586: August 31, 2009 New Vehicle Fuel Economies by...

339

Advanced Vehicle Testing Activity - Stop-Start Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Stop-Start Vehicles Stop-start Vehicles allow the internal combustion engine to shut-down when the vehicle stops in traffic, and re-start quickly to launch the vehicle. Fuel is...

340

Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-in Hybrid Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing...

Note: This page contains sample records for the topic "vehicle weight buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Advanced Vehicle Testing Activity: Full-Size Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Full-Size Electric Vehicle Basics to someone by E-mail Share Advanced Vehicle Testing Activity: Full-Size Electric Vehicle Basics on Facebook Tweet about Advanced Vehicle Testing...

342

Advanced Vehicle Testing Activity: Full-Size Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Full-Size Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Full-Size Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity:...

343

Vehicle Technologies Office: Plug-in Electric Vehicle Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-in Electric Vehicle Basics to someone by E-mail Share Vehicle Technologies Office: Plug-in Electric Vehicle Basics on Facebook Tweet about Vehicle Technologies Office: Plug-in...

344

Weights and Measures  

Science Conference Proceedings (OSTI)

... OIML) to bring efficiency and cost savings to US manufacturers and other ... Metrology Seminar November 4-15, 2013. 2013-11-18: Vehicle and Axle ...

2013-11-05T23:59:59.000Z

345

Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per  

NLE Websites -- All DOE Office Websites (Extended Search)

5: September 15, 5: September 15, 2003 Vehicles per Thousand People: An International Comparison to someone by E-mail Share Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Facebook Tweet about Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Twitter Bookmark Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Google Bookmark Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Delicious Rank Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Digg

346

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any vehicle equipped with idle reduction technology may exceed the state's

347

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any motor vehicle equipped with an auxiliary power unit (APU) or other idle

348

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any vehicle equipped with idle reduction technology may exceed the state's

349

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption A vehicle equipped with a fully functional idle reduction system designed to reduce fuel use and emissions from engine idling may exceed the maximum

350

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption A vehicle equipped with qualified idle reduction technology may exceed the

351

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption A motor vehicle equipped with a fully functional idle reduction system designed to reduce fuel use and emissions from engine idling may exceed the

352

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any heavy-duty vehicle equipped with an auxiliary power unit or other qualified idle reduction technology may exceed the state gross, axle,

353

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any motor vehicle equipped with an auxiliary power unit or other idle reduction technology may exceed the gross, single axle, tandem axle, or

354

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption A commercial vehicle equipped with idle reduction technology may exceed the

355

Vehicle Technologies Office: Favorites  

NLE Websites -- All DOE Office Websites (Extended Search)

Favorites to someone by Favorites to someone by E-mail Share Vehicle Technologies Office: Favorites on Facebook Tweet about Vehicle Technologies Office: Favorites on Twitter Bookmark Vehicle Technologies Office: Favorites on Google Bookmark Vehicle Technologies Office: Favorites on Delicious Rank Vehicle Technologies Office: Favorites on Digg Find More places to share Vehicle Technologies Office: Favorites on AddThis.com... Favorites #248 Top Ten Net Petroleum Importing Countries, 2000 December 23, 2002 #246 U.S. Oil Imports - Top 10 Countries of Origin December 9, 2002 #244 Sport Utility Vehicle Spotlight November 25, 2002 #243 Fuel Economy Leaders for 2003 Model Year Light Trucks November 18, 2002 #242 Fuel Economy Leaders for 2003 Model Year Cars November 11, 2002 #238 Automobile and Truck Population by Vehicle Age, 2001 October 14, 2002

356

Vehicle Technologies Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

News News Site Map Printable Version Share this resource Send a link to Vehicle Technologies Office: News to someone by E-mail Share Vehicle Technologies Office: News on Facebook Tweet about Vehicle Technologies Office: News on Twitter Bookmark Vehicle Technologies Office: News on Google Bookmark Vehicle Technologies Office: News on Delicious Rank Vehicle Technologies Office: News on Digg Find More places to share Vehicle Technologies Office: News on AddThis.com... Vehicle Technologies News Blog Newsletters Information for Media Subscribe to News Updates News December 18, 2013 USDA Offers $118 Million for Renewable Energy, Smart Grid Projects The U.S. Department of Agriculture (USDA) announced $73 million in funding for renewable energy projects and $45 million for smart grid technology as

357

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 Number of vehicles: 143 Number of vehicle days driven: 6,598 All operation Overall gasoline fuel economy (mpg) 73.7 Overall AC electrical energy consumption (AC Whmi) 170...

358

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 Number of vehicles: 145 Number of vehicle days driven: 6,817 All operation Overall gasoline fuel economy (mpg) 66.6 Overall AC electrical energy consumption (AC Whmi) 171...

359

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

2011 Number of vehicles: 135 Number of vehicle days driven: 4,746 All operation Overall gasoline fuel economy (mpg) 68.6 Overall AC electrical energy consumption (AC Whmi) 175...

360

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

June 2011 Number of vehicles: 66 Number of vehicle days driven: 845 All operation Overall gasoline fuel economy (mpg) 85.0 Overall AC electrical energy consumption (AC Whmi) 181...

Note: This page contains sample records for the topic "vehicle weight buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 Number of vehicles: 143 Number of vehicle days driven: 5,795 All operation Overall gasoline fuel economy (mpg) 67.8 Overall AC electrical energy consumption (AC Whmi) 180...

362

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

2011 Number of vehicles: 110 Number of vehicle days driven: 3,227 All operation Overall gasoline fuel economy (mpg) 74.8 Overall AC electrical energy consumption (AC Whmi) 185...

363

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 Number of vehicles: 144 Number of vehicle days driven: 7,129 All operation Overall gasoline fuel economy (mpg) 72.5 Overall AC electrical energy consumption (AC Whmi) 166...

364

Social networking in vehicles  

E-Print Network (OSTI)

In-vehicle, location-aware, socially aware telematic systems, known as Flossers, stand to revolutionize vehicles, and how their drivers interact with their physical and social worlds. With Flossers, users can broadcast and ...

Liang, Philip Angus

2006-01-01T23:59:59.000Z

365

Vehicle Technologies Office: Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

vehicles. In fact, every hybrid vehicle on the market currently uses Nickel-Metal-Hydride high-voltage batteries in its battery system. Lithium ion batteries appear to be the...

366

Vehicle Technologies Office: Partners  

NLE Websites -- All DOE Office Websites (Extended Search)

Partners to someone by Partners to someone by E-mail Share Vehicle Technologies Office: Partners on Facebook Tweet about Vehicle Technologies Office: Partners on Twitter Bookmark Vehicle Technologies Office: Partners on Google Bookmark Vehicle Technologies Office: Partners on Delicious Rank Vehicle Technologies Office: Partners on Digg Find More places to share Vehicle Technologies Office: Partners on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness Workforce Development Plug-in Electric Vehicle Basics Partners The interactive map below highlights Workplace Charging Challenge Partners across the country who are installing plug-in electric vehicle charging infrastructure for their employees. Select a worksite to learn more about

367

Hybrid Electric Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

- 1.5 million miles of HEV fleet testing (160k miles per vehicle in 36 months) - End-of-life HEV testing (rerun fuel economy & conduct battery testing @ 160k miles per vehicle) -...

368

Improving Vehicle Efficiency, Reducing Dependence on Foreign Oil (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet provides an overview of the U.S. Department of Energy's Vehicle Technologies Program. Today, the United States spends about $400 billion each year on imported oil. To realize a secure energy future, America must break its dependence on imported oil and its volatile costs. The transportation sector accounts for about 70% of U.S. oil demand and holds tremendous opportunity to increase America's energy security by reducing oil consumption. That's why the U.S. Department of Energy (DOE) conducts research and development (R and D) on vehicle technologies which can stem America's dependence on oil, strengthen the economy, and protect the environment. Hybrid-electric and plug-in hybrid-electric vehicles can significantly improve fuel economy, displacing petroleum. Researchers are making batteries more affordable and recyclable, while enhancing battery range, performance, and life. This research supports President Obama's goal of putting 1 million electric vehicles on the road by 2015. The program is also working with businesses to develop domestic battery and electric-drive component plants to improve America's economic competitiveness globally. The program facilitates deployment of alternative fuels (ethanol, biodiesel, hydrogen, electricity, propane, and natural gas) and fuel infrastructures by partnering with state and local governments, universities, and industry. Reducing vehicle weight directly improves vehicle efficiency and fuel economy, and can potentially reduce vehicle operating costs. Cost-effective, lightweight, high-strength materials can significantly reduce vehicle weight without compromising safety. Improved combustion technologies and optimized fuel systems can improve near-and mid-term fuel economy by 25% for passenger vehicles and 20% for commercial vehicles by 2015, compared to 2009 vehicles. Reducing the use of oil-based fuels and lubricants in vehicles has more potential to improve the nation's energy security than any other action; even a 1% improvement in vehicle fuel efficiency would save consumers more than $4 billion annually.

Not Available

2012-03-01T23:59:59.000Z

369

Flexible Fuel Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Flexible fuel vehicles (FFVs) are capable of operating on gasoline, E85 (85% ethanol, 15% gasoline), or a mixture of both. There are almost 8 million flexible fuel vehicles on U.S. roads today, but many FFV owners don't know their vehicle is one.

370

Realising low carbon vehicles  

E-Print Network (OSTI)

MorganMotorCompany #12;Hybrid and electric vehicle design and novel power trains Cranfield has an impressive track record in the design and integration of near-to-market solutions for hybrid, electric and fuel cell vehicles coupe body the vehicle is powered by advanced lithium-ion batteries, and also features a novel all-electric

371

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Thomas Built Buses - Saf-T-Liner C2e Hybrid Application: Bus - School Fuel Type: Hybrid - Diesel Electric Maximum Seating: 81...

372

Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

2: October 3, 2: October 3, 2005 Household Vehicle Ownership to someone by E-mail Share Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Facebook Tweet about Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Twitter Bookmark Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Google Bookmark Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Delicious Rank Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Digg Find More places to share Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on AddThis.com... Fact #392: October 3, 2005 Household Vehicle Ownership Household vehicle ownership has changed significantly over the last 40

373

Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

5: February 5, 5: February 5, 2007 Household Vehicle Miles to someone by E-mail Share Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Facebook Tweet about Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Twitter Bookmark Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Google Bookmark Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Delicious Rank Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Digg Find More places to share Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on AddThis.com... Fact #455: February 5, 2007 Household Vehicle Miles The graphs below show the average vehicle miles of travel (VMT) - daily

374

VEHICLE FOR SLAVE ROBOT  

DOE Patents (OSTI)

A reeling device is designed for an electrical cable supplying power to the slave slde of a remote control manipulator mounted on a movable vehicle. As the vehicle carries the slave side about in a closed room, the device reels the cable in and out to maintain a variable length of the cable between the vehicle and a cable inlet in the wall of the room. The device also handles a fixed length of cable between the slave side and the vehicle, in spite of angular movement of the slave side with respect to the vehicle. (AEC)

Goertz, R.C.; Lindberg, J.F.

1962-01-30T23:59:59.000Z

375

Pneumatic brake control for precision stopping of heavy-duty vehicles  

E-Print Network (OSTI)

stopping” of a 40 foot CNG bus for the Bus Precision Dockingfor two different 40 foot CNG buses (c1 and c2). Althoughpressure of two different CNG buses (c1 and c2) speeds since

Bu, Fanping; Tan, Han-Shue

2007-01-01T23:59:59.000Z

376

Vehicle Technologies Office: Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

Deployment Deployment Site Map Printable Version Share this resource Send a link to Vehicle Technologies Office: Deployment to someone by E-mail Share Vehicle Technologies Office: Deployment on Facebook Tweet about Vehicle Technologies Office: Deployment on Twitter Bookmark Vehicle Technologies Office: Deployment on Google Bookmark Vehicle Technologies Office: Deployment on Delicious Rank Vehicle Technologies Office: Deployment on Digg Find More places to share Vehicle Technologies Office: Deployment on AddThis.com... Energy Policy Act (EPAct) Clean Cities Educational Activities Deployment Our nation's energy security depends on the efficiency of our transportation system and on which fuels we use. Transportation in the United States already consumes much more oil than we produce here at home

377

Vehicle Technologies Office: Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Batteries to someone by Batteries to someone by E-mail Share Vehicle Technologies Office: Batteries on Facebook Tweet about Vehicle Technologies Office: Batteries on Twitter Bookmark Vehicle Technologies Office: Batteries on Google Bookmark Vehicle Technologies Office: Batteries on Delicious Rank Vehicle Technologies Office: Batteries on Digg Find More places to share Vehicle Technologies Office: Batteries on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Batteries Battery Systems Applied Battery Research Long-Term Exploratory Research Ultracapacitors Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Materials Technologies Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various

378

Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicles Vehicles Vehicles EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. Image of three semi truck cabs. The one on the left is yellow, the middle is green, and the far right truck is red. The U.S. Department of Energy (DOE) supports the development and deployment of advanced vehicle technologies, including advances in electric vehicles, engine efficiency, and lightweight materials. Since 2008, the Department of

379

Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

1: January 8, 1: January 8, 2007 Household Vehicle Trips to someone by E-mail Share Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Facebook Tweet about Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Twitter Bookmark Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Google Bookmark Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Delicious Rank Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Digg Find More places to share Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on AddThis.com... Fact #451: January 8, 2007 Household Vehicle Trips In a day, the average household traveled 32.7 miles in 2001 (the latest

380

Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy  

NLE Websites -- All DOE Office Websites (Extended Search)

3: March 8, 2010 3: March 8, 2010 Vehicle Occupancy Rates to someone by E-mail Share Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Facebook Tweet about Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Twitter Bookmark Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Google Bookmark Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Delicious Rank Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Digg Find More places to share Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on AddThis.com... Fact #613: March 8, 2010 Vehicle Occupancy Rates The average number of persons occupying a car is 1.59 and has not changed

Note: This page contains sample records for the topic "vehicle weight buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual  

NLE Websites -- All DOE Office Websites (Extended Search)

FY 2008 DOE Vehicle FY 2008 DOE Vehicle Technologies Office Annual Merit Review to someone by E-mail Share Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Facebook Tweet about Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Twitter Bookmark Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Google Bookmark Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Delicious Rank Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Digg Find More places to share Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on AddThis.com... Publications

382

Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

8: February 16, 8: February 16, 2009 Transit Vehicle Age and Cost to someone by E-mail Share Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on Facebook Tweet about Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on Twitter Bookmark Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on Google Bookmark Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on Delicious Rank Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on Digg Find More places to share Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on AddThis.com... Fact #558: February 16, 2009 Transit Vehicle Age and Cost

383

Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

3: January 22, 3: January 22, 2007 Household Vehicle Ownership to someone by E-mail Share Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Facebook Tweet about Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Twitter Bookmark Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Google Bookmark Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Delicious Rank Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Digg Find More places to share Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on AddThis.com... Fact #453: January 22, 2007 Household Vehicle Ownership

384

Vehicle Technologies Office: Key Activities in Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Activities in Vehicles Activities in Vehicles We conduct work in four key areas to develop and deploy vehicle technologies that reduce the use of petroleum while maintaining or improving performance, power, and comfort. Research and development (R&D); testing and analysis; government and community stakeholder support; and education help people access and use efficient, clean vehicles that meet their transportation needs. Researcher loads a sample mount of battery cathode materials for X-ray diffraction, an analysis tool for obtaining information on the crystallographic structure and composition of materials. Research and Development of New Technologies Develop durable and affordable advanced batteries as well as other forms of energy storage. Improve the efficiency of combustion engines.

385

Vehicle Technologies Office: Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

October 1-2, 2013 2013 Natural Gas Vehicle Conference & Expo November 18-21, 2013 World LNG Fuels Conference & Expo January 21-23, 2014 More Events Contacts | Web Site Policies |...

386

Advanced Vehicle Testing Activity - Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Vehicles What's New 2012 Hyundai Sonata (4932) Battery Report (PDF 574KB) 2010 Ultra-Battery Honda Civic Battery Report (PDF 614KB) 2013 Chevrolet Malibu Baseline...

387

VEHICLE TECHNOLOGIES PROGRAM Electric Vehicle Preparedness  

NLE Websites -- All DOE Office Websites (Extended Search)

state or reflect those of the U.S. Government or any agency thereof. INLEXT-13-29359 Electric Vehicle Preparedness Task 1: Assessment of Data and Survey Results for Joint Base...

388

VEHICLE TECHNOLOGIES PROGRAM Electric Vehicle Preparedness  

NLE Websites -- All DOE Office Websites (Extended Search)

state or reflect those of the U.S. Government or any agency thereof. INLEXT-13-29360 Electric Vehicle Preparedness Task 1: Assessment of Data and Survey Results for NAS...

389

Weights and Measures Division Connections  

Science Conference Proceedings (OSTI)

Office of Weights and Measures Connections. Welcome to the Office of Weights and Measures newsletter “Weights and ...

2013-09-11T23:59:59.000Z

390

PERFORMANCE STATISTICS WEIghTS  

NLE Websites -- All DOE Office Websites (Extended Search)

2650 lbs 2650 lbs Delivered Curb Weight 9 : 2615 lbs Distribution F/R 9 (%): 58.6/41.4 GVWR: 3164 lbs GAWR F/R: 1797/1378lbs Payload 5 : 564 lbs Performance Goal: 400 lbs DIMENSIONS Wheelbase: 95.9 in Track F/R: 59.6/59.1 in Length: 160.6 in Width: 68.5 in Height: 54.9 in Ground Clearance: 5.3 in Performance Goal: 5.0 in TIRES Tire Mfg: Dunlop Tire Model: SP Sport 1000m Tire Size: 195 / 55 R16 86V Tire Pressure F/R: 30/30 psi Spare Installed: Yes ENgINE Model: 1.5 L I4 Output 8 : 122 hp @ 6000 rpm Configuration: Inline Four-cylinder Displacement: 1.5 L Fuel Tank Capacity: 10.6 gal Fuel Type: Unleaded Gasoline © 2010 Electric Transportation Applications All Rights Reserved VEhICLE FEATuRES Base Vehicle: 2011 Honda CRZ EX Hybrid VIN: JHMZF1C64BS002982

391

PERFORMANCE STATISTICS WEIghTS  

NLE Websites -- All DOE Office Websites (Extended Search)

245 lbs 245 lbs Delivered Curb Weight: 4118 lbs GVWR: 5675 lbs GAWR F/R: 2865/3130 lbs Distribution F/R: 59/41 % Payload: 1557 lbs Performance Goal: 400 lbs DIMENSIONS Wheelbase: 106.7 in Track F/R: 61.9/61.1 in Length: 185.3 in Width: 71.5 in Height: 68.6 in Ground Clearance: 5.9 in Performance Goal: 5.0 in TIRES Tire Mfg: Goodyear Tire Model: Integrity Tire Size: P225/65R17 Tire Pressure F/R: 32/32 Spare Installed: Yes ENgINE Model: 3MZ-FE Output: 208 hp @ 5600 rpm Configuration: V6 Displacement: 3.3 L Fuel Tank Capacity: 17.2 gal Fuel Type: Unleaded Gasoline © 2010 Electric Transportation Applications All Rights Reserved VEhICLE FEATuRES Base Vehicle: 2006 Highlander VIN: JTEDW21A860005681 Seatbelt Positions: Seven Standard Features: Air Conditioning

392

PERFORMANCE STATISTICS WEIghTS  

NLE Websites -- All DOE Office Websites (Extended Search)

365 lbs 365 lbs Delivered Curb Weight: 4510 lbs Distribution F/R: 57/43 % GVWR: 5520 lbs GAWR F/R: 2865/2865 lbs Payload: 1010 lbs Performance Goal: 400 lbs DIMENSIONS Wheelbase: 107.0 inches Track F/R: 62/61.2 inches Length: 187.2 inches Width: 72.6 inches Height: 66.4 inches Ground Clearance: 7.1 inches Performance Goal: 5.0 inches TIRES Tire Mfg: Goodyear Tire Model: Eagle RS-A Tire Size: P215/55R18 Tire Pressure F/R: 30/30 psi Spare Installed: Yes ENgINE Model: 3MZ-FE Output: 208 hp @ 5600 rpm Configuration: DOHC V6 Displacement: 3.3 L Fuel Tank Capacity: 17.2 Gallons Fuel Type: Unleaded Gasoline © 2010 Electric Transportation Applications All Rights Reserved VEhICLE FEATuRES Base Vehicle: 2006 Lexus RX 400h VIN: JTJHW31U160002575 Seatbelt Positions: Five

393

Search for Model Year 2001 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

(Propane) Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

394

Search for Model Year 2004 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles Bifuel (Propane) Compressed Natural Gas Vehicles Diesel Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

395

Search for Model Year 2008 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Class... Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

396

Search for Model Year 2003 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

(Propane) Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

397

Search for Model Year 2002 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

(Propane) Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

398

Energy Star Concepts for Highway Vehicles  

Science Conference Proceedings (OSTI)

The authors of this report, under the sponsorship of the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Weatherization and Intergovernmental Program, have investigated the possible application of Energy Star ratings to passenger cars and light trucks. This study establishes a framework for formulating and evaluating Energy Star rating methods that is comprised of energy- and environmental-based metrics, potential vehicle classification systems, vehicle technology factors, and vehicle selection criteria. The study tests several concepts and Energy Star rating methods using model-year 2000 vehicle data--a spreadsheet model has been developed to facilitate these analyses. This study tests two primary types of rating systems: (1) an outcome-based system that rates vehicles based on fuel economy, GHG emissions, and oil use and (2) a technology-based system that rates vehicles based on the energy-saving technologies they use. Rating methods were evaluated based on their ability to select vehicles with high fuel economy, low GHG emissions, and low oil use while preserving a full range of service (size and acceleration) and body style choice. This study concludes that an Energy Star rating for passenger cars and light trucks is feasible and that several methods could be used to achieve reasonable tradeoffs between low energy use and emissions and diversity in size, performance, and body type. It also shows that methods that consider only fuel economy, GHG emissions, or oil use will not select a diverse mix of vehicles. Finally, analyses suggest that methods that encourage the use of technology only, may result in increases in acceleration power and weight rather than reductions in oil use and GHG emissions and improvements in fuel economy.

Greene, D.L.

2003-06-24T23:59:59.000Z

399

DOE/BNL Liquid Natural Gas Heavy Vehicle Program  

DOE Green Energy (OSTI)

As a means of lowering greenhouse gas emissions, increasing economic growth, and reducing the dependency on imported oil, the Department of Energy and Brookhaven National Laboratory (DOE/ BNL) is promoting the substitution of liquefied natural gas (LNG) in heavy-vehicles that are currently being fueled by diesel. Heavy vehicles are defined as Class 7 and 8 trucks (> 118,000 pounds GVVV), and transit buses that have a fuel usage greater than 10,000 gallons per year and driving range of more than 300 miles. The key in making LNG market-competitive with all types of diesel fuels is in improving energy efficiency and reducing costs of LNG technologies through systems integration. This paper integrates together the three LNG technologies of: (1) production from landfills and remote well sites; (2) cryogenic fuel delivery systems; and (3) state-of-the-art storage tank and refueling facilities, with market end-use strategies. The program's goal is to develop these technologies and strategies under a ''green'' and ''clean'' strategy. This ''green'' approach reduces the net contribution of global warming gases by reducing levels of methane and carbon dioxide released by heavy vehicles usage to below recoverable amounts of natural gas from landfills and other natural resources. Clean technology refers to efficient use of energy with low environmental emissions. The objective of the program is to promote fuel competition by having LNG priced between $0.40 - $0.50 per gallon with a combined production, fuel delivery and engine systems efficiency approaching 45%. This can make LNG a viable alternative to diesel.

James E. Wegrzyn; Wai-Lin Litzke; Michael Gurevich

1998-08-11T23:59:59.000Z

400

Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

9: May 10, 2004 9: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison to someone by E-mail Share Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on Facebook Tweet about Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on Twitter Bookmark Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on Google Bookmark Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on Delicious Rank Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on Digg Find More places to share Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on

Note: This page contains sample records for the topic "vehicle weight buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

300: December 29, 300: December 29, 2003 World Vehicle Production by Country/Region to someone by E-mail Share Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on Facebook Tweet about Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on Twitter Bookmark Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on Google Bookmark Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on Delicious Rank Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on Digg Find More places to share Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on

402

Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Progress Report 3 Progress Report for Heavy Vehicle Propulsion Materials Program to someone by E-mail Share Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Facebook Tweet about Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Twitter Bookmark Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Google Bookmark Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Delicious Rank Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Digg Find More places to share Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on

403

Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

5: January 11, 5: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 to someone by E-mail Share Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Facebook Tweet about Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Twitter Bookmark Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Google Bookmark Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Delicious Rank Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Digg Find More places to share Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on AddThis.com...

404

Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

39: October 6, 39: October 6, 2008 Light Vehicle Production by State to someone by E-mail Share Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Facebook Tweet about Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Twitter Bookmark Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Google Bookmark Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Delicious Rank Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Digg Find More places to share Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on AddThis.com... Fact #539: October 6, 2008

405

Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

1: January 23, 1: January 23, 2012 Top Vehicles around the Globe, 2011 to someone by E-mail Share Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on Facebook Tweet about Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on Twitter Bookmark Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on Google Bookmark Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on Delicious Rank Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on Digg Find More places to share Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on AddThis.com...

406

Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Progress Report 4 Progress Report for Heavy Vehicle Propulsion Materials Program to someone by E-mail Share Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Facebook Tweet about Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Twitter Bookmark Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Google Bookmark Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Delicious Rank Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Digg Find More places to share Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on

407

Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

8: November 23, 8: November 23, 2009 Hybrid Vehicle Sales by Model to someone by E-mail Share Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Facebook Tweet about Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Twitter Bookmark Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Google Bookmark Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Delicious Rank Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Digg Find More places to share Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on AddThis.com... Fact #598: November 23, 2009

408

Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector  

Science Conference Proceedings (OSTI)

Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Vyas, A. D.; Patel, D. M.; Bertram, K. M.

2013-03-01T23:59:59.000Z

409

Vehicle Technologies Office: Favorites  

NLE Websites -- All DOE Office Websites (Extended Search)

Favorites Favorites #248 Top Ten Net Petroleum Importing Countries, 2000 December 23, 2002 #246 U.S. Oil Imports - Top 10 Countries of Origin December 9, 2002 #244 Sport Utility Vehicle Spotlight November 25, 2002 #243 Fuel Economy Leaders for 2003 Model Year Light Trucks November 18, 2002 #242 Fuel Economy Leaders for 2003 Model Year Cars November 11, 2002 #238 Automobile and Truck Population by Vehicle Age, 2001 October 14, 2002 #234 2003 Model Year Alternative Fuel Vehicles September 16, 2002 #233 Vehicles per Thousand People: U.S. Compared to Other Countries September 9, 2002 #230 Hybrid Electric Vehicles in the United States August 19, 2002 #229 Medium and Heavy Truck Sales August 12, 2002 #228 New Light Vehicle Sales Shares, 1976-2001 August 5, 2002

410

Vehicle Technologies Office: Lubricants  

NLE Websites -- All DOE Office Websites (Extended Search)

Lubricants Lubricants As most vehicles are on the road for more than 15 years before they are retired, investigating technologies that will improve today's vehicles is essential. Because 11.5 percent of fuel energy is consumed by engine friction, decreasing this friction through lubricants can lead to substantial improvements in the fuel economy of current vehicles, without needing to wait for the fleet to turn over. In fact, a 1 percent fuel savings in the existing vehicle fleet possible through lubricants could save 97 thousand barrels of oil a day or $3.5 billion a year. Because of these benefits, the Vehicle Technologies Office supports research on lubricants that can improve the efficiency of internal combustion engine vehicles, complementing our work on advanced combustion engine technology.

411

Advanced Technology Vehicle Testing  

DOE Green Energy (OSTI)

The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

James Francfort

2004-06-01T23:59:59.000Z

412

Prospects for electric vehicles  

Science Conference Proceedings (OSTI)

This paper discusses the current state-of- the-art of electric vehicles (EVs) with examples of recently developed prototype vehicles - Electric G-Van, Chrysler TEVan, Eaton DSEP and Ford/GE ETX-II. The acceleration, top speed and range of these electric vehicles are delineated to demonstrate their performance capabilities, which are comparable with conventional internal combustion engine (ICE) vehicles. The prospects for the commercialization of the Electric G-van and the TEVan and the improvements expected from the AC drive systems of the DSEP and ETX-II vehicles are discussed. The impacts of progress being made in the development of a fuel cell/battery hybrid bus and advanced EVs on the competitiveness of EVs with ICE vehicles and their potential for reduction of air pollution and utility load management are postulated.

Patil, P.G. (Research and Development, Electric and Hybrid Propulsion Div., U.S. Dept. of Energy, Washington, DC (US))

1990-12-01T23:59:59.000Z

413

Advanced Technology Vehicles Manufacturing Incentive Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program A fact sheet detailling the advanced technology vehicles...

414

Mobile Autonomous Vehicle Obstacle Detection and ...  

Science Conference Proceedings (OSTI)

... vehicles from different manufacturers and to ... for Automated Guided Vehicle Safety Standards ... Control of Manufacturing Vehicles Research Towards ...

2013-01-11T23:59:59.000Z

415

Hybrid Vehicle Technology - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

* Batteries * Batteries * Modeling * Testing Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Hybrid Vehicle Technology revolutionize transportation Argonne's Research Argonne researchers are developing and testing various hybrid electric vehicles (HEVs) and their components to identify the technologies, configurations, and engine control strategies that provide the best combination of high fuel economy and low emissions. Vehicle Validation Argonne also serves as the lead laboratory for hardware-in-the-loop (HIL) and technology validation for the U.S. Department of Energy (DOE). HIL is a

416

Vehicle Technologies Office: Ultracapacitors  

NLE Websites -- All DOE Office Websites (Extended Search)

converter, which would increase the cost of the vehicle. The use of ultracapacitors for regenerative braking can greatly improve fuel efficiency under stop-and-go urban driving...

417

MOTOR VEHICLE MANUFACTURING TECHNOLOGY  

Science Conference Proceedings (OSTI)

... about half of the value added in light vehicles ... Selected Program White Papers. ... This white paper defines a program which supports the development ...

2011-10-19T23:59:59.000Z

418

VEHICLE TECHNOLOGIES PROGRAM - Energy  

75 vehicle technologies program ed wall, program manager ed.wall@ee.doe.gov (202) 586-8055 venture capital technology showcase aug 21 and 22, 2007

419

Electric Vehicle Public Charging -  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Public Charging - Time vs. Energy March, 2013 A critical factor for successful PEV adoption is the deployment and use of charging infrastructure in non-...

420

Electric Vehicle Fleet  

NLE Websites -- All DOE Office Websites (Extended Search)

A98 0577 Electric Vehicle Fleet Operations in the United States Jim Francfort Presented to: 31st International Symposium on Automotive Technology and Automation Dusseldorf, Germany...

Note: This page contains sample records for the topic "vehicle weight buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

. . Trends in Household Vehicle Stock The 1991 RTECS counted more than 150 million vehicles in use by U.S. households. This chapter examines recent trends in the vehicle stock, as measured by the RTECS and other reputable vehicle surveys. It also provides some details on the type and model year of the household vehicle stock, and identifies regional differences in vehicle stock. Because vehicles are continuously being bought and sold, this chapter also reports findings relating to turnover of the vehicle stock in 1991. Finally, it examines the average vehicle stock in 1991 (which takes into account the acquisition and disposal of household vehicles over the course of the year) and identifies variations in the average number of household vehicles based on differences in household characteristics. Number of Household Vehicles Over the past 8 years, the stock of household vehicles has

422

Electric-Drive Vehicle Basics (Brochure)  

DOE Green Energy (OSTI)

Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

Not Available

2011-04-01T23:59:59.000Z

423

Vehicle Technologies Program Awards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Technologies Program Awards Vehicle Technologies Program Awards vtpnum.zip More Documents & Publications Advanced Vehicle Technologies Awards Table Advanced Vehicle...

424

Vehicle Technologies Program (EERE) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Technologies Program (EERE) Vehicle Technologies Program (EERE) information about the Vehicle Technologies Program (EERE) Vehicle Technologies Program (EERE) More Documents...

425

American Electric Vehicles Inc | Open Energy Information  

Open Energy Info (EERE)

Vehicles Inc Jump to: navigation, search Name American Electric Vehicles Inc Place Palmer Lake, Colorado Zip 80133 Sector Vehicles Product American Electric Vehicles (AEV) builds...

426

Advanced Vehicle Technologies Awards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Vehicle Technologies Awards Advanced Vehicle Technologies Awards Microsoft Word - VTP 175 Advanced Vehicle Tech project descriptions draft v5 8-2-11 AdvancedVehiclesTechn...

427

Household Vehicles Energy Consumption 1994 - PDF Tables  

U.S. Energy Information Administration (EIA)

Table 1 U.S. Number of Vehicles, Vehicle Miles, Motor Fuel Consumption and Expenditures, 1994 Table 2 U.S. per Household Vehicle Miles Traveled, Vehicle Fuel ...

428

Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

4: January 26, 4: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions to someone by E-mail Share Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Facebook Tweet about Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Twitter Bookmark Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Google Bookmark Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Delicious Rank Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Digg Find More places to share Vehicle Technologies Office: Fact #304:

429

Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

6: December 2, 6: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 to someone by E-mail Share Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Facebook Tweet about Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Twitter Bookmark Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Google Bookmark Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Delicious Rank Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Digg Find More places to share Vehicle Technologies Office: Fact #806:

430

Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per  

NLE Websites -- All DOE Office Websites (Extended Search)

8: April 12, 8: April 12, 2010 Vehicles per Household and Other Demographic Statistics to someone by E-mail Share Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Facebook Tweet about Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Twitter Bookmark Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Google Bookmark Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Delicious Rank Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Digg Find More places to share Vehicle Technologies Office: Fact #618:

431

Advanced Vehicle Testing Activity: Full-Size Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Full-Size Electric Vehicle Fleet and Reliability Test Reports to someone by E-mail Share Advanced Vehicle Testing Activity: Full-Size Electric Vehicle Fleet and Reliability Test...

432

Vehicle Technologies Office: Draft Plug-In Hybrid Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Draft Plug-In Hybrid Electric Vehicle R&D Plan to someone by E-mail Share Vehicle Technologies Office: Draft Plug-In Hybrid Electric Vehicle R&D Plan on Facebook Tweet about...

433

Vehicle Technologies Office: Fact #322: May 31, 2004 Hybrid Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

2: May 31, 2004 Hybrid Vehicle Registrations to someone by E-mail Share Vehicle Technologies Office: Fact 322: May 31, 2004 Hybrid Vehicle Registrations on Facebook Tweet about...

434

VEHICLE AND BATTERY DESCRIPTIONS AND SPECIFICATIONS Vehicle Details  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 VEHICLE AND BATTERY DESCRIPTIONS AND SPECIFICATIONS Vehicle Details Base Vehicle: 2011 Honda CR-Z VIN: JHMZF1C67BS004466 Electric Machine 1 : 10 kW (peak), permanent magnet...

435

VEHICLE AND BATTERY DESCRIPTIONS AND SPECIFICATIONS Vehicle Details  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 VEHICLE AND BATTERY DESCRIPTIONS AND SPECIFICATIONS Vehicle Details Base Vehicle: 2011 Honda CR-Z VIN: JHMZF1C64BS002982 Electric Machine 1 : 10 kW (peak), permanent magnet...

436

Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles  

E-Print Network (OSTI)

Image in Gasoline-Hybrid Electric Vehicles Reid R. HeffnerImage in Gasoline-Hybrid Electric Vehicles Reid R. Heffner,6, 2005 Abstract Hybrid electric vehicles (HEVs) have image,

Heffner, Reid R.; Kurani, Ken; Turrentine, Tom

2005-01-01T23:59:59.000Z

437

Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles  

E-Print Network (OSTI)

6, 2005 Abstract Hybrid electric vehicles (HEVs) have image,Image in Gasoline-Hybrid Electric Vehicles Reid R. HeffnerImage in Gasoline-Hybrid Electric Vehicles Reid R. Heffner,

Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

2005-01-01T23:59:59.000Z

438

Vehicle Technologies Office: Plug-in Electric Vehicle Research...  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-in Electric Vehicle Research and Development to someone by E-mail Share Vehicle Technologies Office: Plug-in Electric Vehicle Research and Development on Facebook Tweet about...

439

Hybrid Electric Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Hybrid electric vehicles (HEVs) combine the benefits of high fuel economy and low emissions with the power, range, and convenience of conventional diesel and gasoline fueling. HEV technologies also have potential to be combined with alternative fuels and fuel cells to provide additional benefits. Future offerings might also include plug-in hybrid electric vehicles.

440

Powertrain & Vehicle Research Centre  

E-Print Network (OSTI)

the engine, transmission and aftertreatment systems. Optimising such a system for ultra low fuel consumption emulating hardware in the test cell environment Engine testing becomes a combination of real world and virtual environments Vehicle baseline testing on rolling road Calibration Control Engine Vehicle

Burton, Geoffrey R.

Note: This page contains sample records for the topic "vehicle weight buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Optimum flywheel sizing for parallel and series hybrid vehicles  

DOE Green Energy (OSTI)

Flywheels have the possibility of providing high turnaround efficiency and high specific power output. These characteristics are very important for the successful manufacture of parallel and series hybrid vehicles, which have the potential for providing high fuel economy and very low emissions with range and performance comparable to today`s light-duty vehicles. Flywheels have a high specific power output, but relatively low specific energy output. Therefore, it is of importance to determine energy and power requirements for flywheels applied to light-duty vehicles. Vehicle applications that require an energy storage system with high power and low energy are likely to benefit from a flywheel. In this paper, a vehicle simulation code and a flywheel model are applied to the calculation of optimum flywheel energy storage capacity for a parallel and a series hybrid vehicle. A conventional vehicle is also evaluated as a base-case, to provide an indication of the fuel economy gains that can be obtained with flywheel hybrid vehicles. The results of the analysis indicate that the optimum flywheel energy storage capacity is relatively small. This results in a low weight unit that has a significant power output and high efficiency. Emissions generated by the hybrid vehicles are not calculated, but have the potential of being significantly lower than the emissions from the conventional car.

Aceves, S.M.; Smith, J.R.

1996-12-20T23:59:59.000Z

442

Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Procedures to someone by E-mail Share Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle Specifications and Test Procedures on Facebook Tweet about Advanced...

443

Advanced Vehicle Testing Activity - Hybrid Electric Vehicle and...  

NLE Websites -- All DOE Office Websites (Extended Search)

max speed, braking, & handling DOE - Advanced Vehicle Testing Activity Hybrid Electric Vehicle Testing * Fleet and accelerated reliability testing - 6 Honda Insights...

444

Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles  

E-Print Network (OSTI)

are substantially higher, particularly for the Toyota Prius.In 2004, Toyota updated the Prius, introducing a larger,vehicles, including the Toyota Prius. Vehicle 2004 Sales (11

Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

2005-01-01T23:59:59.000Z

445

NREL: Vehicles and Fuels Research - 2013 Vehicle Buyer's Guide...  

NLE Websites -- All DOE Office Websites (Extended Search)

options, including hybrids, flex-fuel vehicles, and vehicles that run on natural gas, propane, electricity, or biodiesel. In addition to a comprehensive list of this year's...

446

Advanced Vehicle Testing Activity - Full Size Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Full Size Electric Vehicles What's New Baseline Performance Testing for 2011 Nissan Leaf Battery Testing for 2011 Nissan Leaf - When New The Advanced Vehicle Testing Activity...

447

Vehicle Technologies Office: Battery Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Systems A hybrid vehicle uses two or more forms of energy to propel the vehicle. Many hybrid electric vehicles (HEV) sold today are referred to as "hybrids" because it...

448

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 of 6 VEHICLE DETAILS AND BATTERY SPECIFICATIONS 1 Vehicle Details Base Vehicle: 2013 Chevrolet Volt VIN: 1G1RA6E40DU103929 Propulsion System: Multi-Mode PHEV (EV, Series,...

449

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 VEHICLE DETAILS AND BATTERY SPECIFICATIONS 1 Vehicle Details Base Vehicle: 2011 Chevrolet Volt VIN: 1G1RD6E48BU100815 Propulsion System: Multi-Mode PHEV (EV, Series, and...

450

Propane Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicles Propane Vehicles August 20, 2013 - 9:16am Addthis There are more than 270,000 on-road propane vehicles in the United States and more than 10 million worldwide. Many are...

451

Which Vehicles Are Tested  

NLE Websites -- All DOE Office Websites (Extended Search)

Which Vehicles Are Tested Which Vehicles Are Tested Popular Vehicles Exempt from Federal Fuel Economy Standards Prior to 2011 Pickups SUVs Vans Manufacturer Model Chevrolet Avalanche 2500 Series ¾ Ton Silverado 2500/3500 Series Dodge RAM 2500/3500 Series Ford F-250/350 Series GMC Sierra 2500/3500 Series Manufacturer Model Chevrolet Suburban ¾ Ton* Ford Excursion§ GMC Yukon XL ¾ Ton* Hummer H1§ and H2§ Manufacturer Model Chevrolet Express 2500 Passenger* Express 3500 Cargo Ford E Series Passenger (w/ 6.8L Triton or 6.0L Diesel Engine)* E Series Cargo (w/ 6.8L Triton or 6.0L Diesel Engine) GMC Savanna 2500/3500 Passenger* Savanna 3500 Cargo Note: These vehicles are given as examples. This is not a comprehensive list. * No longer exempt as of 2011 § No longer made Manufacturers do not test every new vehicle offered for sale. They are only

452

Vehicle body cover  

SciTech Connect

This patent describes a vehicle body covered with a vehicle body cover which comprises: a front cover part, a rear cover part, a pair of side cover parts, and a roof cover part: the front cover part having portions adapted to cover only a hood, an area around a windshield and tops of front fenders of a vehicle body. The portion covering the hood is separated from the portions covering the tops of the fenders by cuts in the front cover part, the front cover part having an un-cut portion corresponding to a position at which the hood is hinged to the car body. The front cover part has a cut-out at a position corresponding to the windshield of the vehicle body and the front cover part has at least one cut-out at a position corresponding to where a rear view mirror is attached to the vehicle body; and the rear cover part having portions adapted to cover an area around a rear window, a trunk lid and a rear end of the vehicle body, the portion covering the trunk lid separated from the rest of the rear cover part by cuts corresponding to three sides of the trunk lid and an un-cut portion corresponding to a position at which the trunk lid is hinged to the vehicle body. The rear cover part has a hole at position corresponding to a trunk lid lock, a cut-out portion at a position corresponding to the rear window of the vehicle body, a cut-out at a position corresponding to a license plate of the vehicle body and cut-outs at positions corresponding to rear taillights of the vehicle body.

Hirose, T.

1987-01-13T23:59:59.000Z

453

Vehicle Technologies Office: Plug-in Electric Vehicle Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics Basics Plug-in electric vehicles (PEVs), which include both plug-in hybrid electric vehicles and all-electric vehicles, use electricity as either their primary fuel or to improve efficiency. Commonly Used PEV Terms All-electric vehicle (AEV) - A vehicle with plug-in capability; driving energy comes entirely from its battery. Plug-in hybrid electric vehicle (PHEV) - A vehicle with plug-in capability; driving energy can come from either its battery or a liquid fuel like gasoline, diesel, or biofuels. Plug-in electric vehicle (PEV) - Any vehicle with plug-in capability. This includes AEVs and PHEVs. Hybrid electric vehicle (HEV) - A vehicle that has an electric drive system and battery but does not have plug-in capability; driving energy comes only from liquid fuel.

454

Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

1: November 29, 1: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 to someone by E-mail Share Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 on Facebook Tweet about Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 on Twitter Bookmark Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 on Google Bookmark Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 on Delicious Rank Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 on Digg

455

Vehicle Technologies Office: Battery Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Systems to someone by E-mail Share Vehicle Technologies Office: Battery Systems on Facebook Tweet about Vehicle Technologies Office: Battery Systems on Twitter Bookmark...

456

Vehicle Technologies Office: Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage to someone by E-mail Share Vehicle Technologies Office: Energy Storage on Facebook Tweet about Vehicle Technologies Office: Energy Storage on Twitter Bookmark...

457

Energy Basics: Hybrid Electric Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

a hybrid electric vehicle. Hybrid electric vehicles (HEVs) combine the benefits of high fuel economy and low emissions with the power, range, and convenience of conventional diesel...

458

Electric Vehicle Field Operations Program  

NLE Websites -- All DOE Office Websites (Extended Search)

vehicle performance information. The final product is a report describing energy use, miles driven, maintenance requirements, and overall vehicle performance. Fleet Testing....

459

EERE: Vehicle Technologies Office - Webmaster  

NLE Websites -- All DOE Office Websites (Extended Search)

Webmaster Site Map Printable Version Share this resource Send a link to EERE: Vehicle Technologies Office - Webmaster to someone by E-mail Share EERE: Vehicle Technologies Office -...

460

Vehicle Technologies Office: National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratories to someone by E-mail Share Vehicle Technologies Office: National Laboratories on Facebook Tweet about Vehicle Technologies Office: National Laboratories on...

Note: This page contains sample records for the topic "vehicle weight buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Vehicle Technologies Office: Workforce Development  

NLE Websites -- All DOE Office Websites (Extended Search)

electric vehicle supply equipment (EVSE, also known as electric vehicle chargers). EVSE Residential Charging Installation introductory videos: Clean Cities provides a video...

462

Technology Analysis - Heavy Vehicle Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

the GPRA benefits estimates for EERE's Vehicle Technologies Program's heavy vehicle technology research activities. Argonne researchers develop the benefits analysis using four...

463

Motor Vehicle Parts Compliance Requirements  

Science Conference Proceedings (OSTI)

... The OVSC compliance testing program is a strong incentive for manufacturers of motor vehicles and items of motor vehicle equipment to ...

2012-09-24T23:59:59.000Z

464

Vehicle Technologies Office: Propulsion Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Manufacturers use propulsion (or powertrain) materials in the components that move vehicles of every size and shape. Conventional vehicles use these materials in...

465

Electric vehicles | Open Energy Information  

Open Energy Info (EERE)

Electric vehicles Jump to: navigation, search TODO: add content Electric vehicles first came into existence in the mid-19th century, when electricity was among the preferred...

466

Load calculation and system evaluation for electric vehicle climate control  

DOE Green Energy (OSTI)

Providing air conditioning for electric vehicles (EVs) represents an important challenge, because vapor compression air conditioners, which are common in gasoline powered vehicles, may consume a substantial part of the total energy stored in the EV battery. This report consists of two major parts. The first part is a cooling and heating load calculation for electric vehicles. The second part is an evaluation of several systems that can be used to provide the desired cooling and heating in EVs. Four cases are studied. Short range and full range EVs are each analyzed twice, first with the regular vehicle equipment, and then with a fan and heat reflecting windows, to reduce hot soak. Recent legislation has allowed the use of combustion heating whenever the ambient temperature drops below 5{degrees}C. This has simplified the problem of heating, and made cooling the most important problem. Therefore, systems described in this project are designed for cooling, and their applicability to heating at temperatures above 5{degrees}C is described. If the air conditioner systems cannot be used to cover the whole heating load at 5{degrees}C, then the vehicle requires a complementary heating system (most likely a heat recovery system or electric resistance heating). Air conditioners are ranked according to their overall weight. The overall weight is calculated by adding the system weight and the weight of the battery necessary to provide energy for system operation.

Aceves-Saborio, S.; Comfort, W.J. III

1993-10-27T23:59:59.000Z

467

Lightweight materials in the light-duty passenger vehicle market: Their market penetration potential and impacts  

DOE Green Energy (OSTI)

This paper summarizes the results of a lightweight materials study. Various lightweight materials are examined and the most cost effective are selected for further analysis. Aluminum and high-performance polymer matrix composites (PMCS) are found to have the highest potential for reducing the weight of automobiles and passenger-oriented light trucks. Weight reduction potential for aluminum and carbon fiber-based PMCs are computed based on a set of component-specific replacement criteria (such as stiffness and strength), and the consequent incremental cost scenarios are developed. The authors assume that a materials R and D program successfully reduces the cost of manufacturing aluminum and carbon fiber PMC-intensive vehicles. A vehicle choice model is used to project market shares for the lightweight vehicles. A vehicle survival and age-related usage model is employed to compute energy consumption over time for the vehicle stock. After a review of projected costs, the following two sets of vehicles are characterized to compete with the conventional materials vehicles: (1) aluminum vehicles with limited replacement providing 19% weight reduction (AIV-Mid), and (2) aluminum vehicles with the maximum replacement providing 31% weight reduction (AIV-Max). Assuming mass-market introduction in 2005, the authors project a national petroleum energy savings of 3% for AIV-Mid and 5% for AIV-Max in 2030.

Stodolsky, F. [Argonne National Lab., IL (United States). Center for Transportation Research]|[Argonne National Lab., Washington, DC (United States); Vyas, A.; Cuenca, R. [Argonne National Lab., IL (United States). Center for Transportation Research

1995-06-01T23:59:59.000Z

468

U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Oil Bypass Filter Technology Evaluation Final Report  

SciTech Connect

This Oil Bypass Filter Technology Evaluation final report documents the feasibility of using oil bypass filters on 17 vehicles in the Idaho National Laboratory (INL) fleet during a 3-year test period. Almost 1.3 million test miles were accumulated, with eleven 4-cycle diesel engine buses accumulating 982,548 test miles and six gasoline-engine Chevrolet Tahoes accumulating 303,172 test miles. Two hundred and forty oil samples, taken at each 12,000-mile bus servicing event and at 3,000 miles for the Tahoes, documented the condition of the engine oils for continued service. Twenty-eight variables were normally tested, including the presence of desired additives and undesired wear metals such as iron and chrome, as well as soot, water, glycol, and fuel. Depending on the assumptions employed, the INL found that oil bypass filter systems for diesel engine buses have a positive payback between 72,000 and 144,000 miles. For the Tahoes, the positive payback was between 66,000 and 69,000 miles.

L. R. Zirker; J. E. Francfort; J. J. Fielding

2006-03-01T23:59:59.000Z

469

VEHICLE ACCESS PORTALS  

NLE Websites -- All DOE Office Websites (Extended Search)

East Jemez Road (Map 1) East Jemez Road (Map 1) VEHICLE ACCESS PORTALS Traffic Lane 1: Closed except for emergencies and maintenance operations. Traffic Lanes 2-7: Drivers required to stop and present LANL badges or other form of valid identification to Protective Force officers. Drivers may proceed upon direction of the officers. Note: Commercial delivery vehicle drivers must also pres- ent their inspection passes from Post 10. More Information: spp-questions@lanl.gov Non-work Hours Vehicles entering LANL at the East Jemez VAPs during non-work hours (between 7

470

Vehicle Technologies Office: Ambassadors  

NLE Websites -- All DOE Office Websites (Extended Search)

Ambassadors Ambassadors Workplace Charging Challenge Clean Cities Coalitions Clean Cities logo. Clean Cities National: A network of nearly 100 Clean Cities coalitions, supported by the Vehicle Technologies Office, brings together public and private stakeholders to deploy plug-in electric vehicles, alternative and renewable fuels, idle-reduction measures, fuel economy improvements, and other petroleum reduction strategies. Clean Cities coordinators are knowledgeable about local incentives and policies for workplace charging as well as other aspects of plug-in electric vehicle community readiness. Workplace Charging Challenge Ambassadors The Workplace Charging Challenge enlists stakeholder organizations as Ambassadors to promote and support workplace charging. The directory below highlights Workplace Charging Challenge Ambassadors across the country.

471

Blast resistant vehicle seat  

DOE Patents (OSTI)

Disclosed are various seats for vehicles particularly military vehicles that are susceptible to attack by road-bed explosive devices such as land mines or improvised explosive devices. The seats often have rigid seat shells and may include rigid bracing for rigidly securing the seat to the chassis of the vehicle. Typically embodiments include channels and particulate media such as sand disposed in the channels. A gas distribution system is generally employed to pump a gas through the channels and in some embodiments the gas is provided at a pressure sufficient to fluidize the particulate media when an occupant is sitting on the seat.

Ripley, Edward B

2013-02-12T23:59:59.000Z

472

Ultra Large Castings to Produce Low Cost Aluminum Vehicle Structures  

DOE Green Energy (OSTI)

Through a cooperative effort with the U.S. Department of Energy (DOE) Office of Heavy Vehicle Technologies (OHVT), Alcoa is developing a casting process to produce ultra large thin wall components. The casting process is a low pressure, metal mold, multiport injection vertical casting process. The specific system for demonstration of the process is located at Alcoa's Technology Center and will be capable of producing parts extending 3 M long, 1.7 M wide and 0.4 M high. For example, single castings of car floor pan frames or side wall aperture structures are candidates for this installation. This shall provide a major opportunity to reduce the cost of lightweight transportation vehicle structures by (a) reducing the components or part count and (b) reducing the cost of assembly. To develop and demonstrate the process, an inner panel of the Chrysler minivan liftgate will be first produced on this system. Through computer analyses, the cast inner panel design was developed to satisfy both structural performance and casting process requirements. Currently, this is an 11 part assembly of steel components. At the time of this abstract, the numerous system components are in various phases of fabrication and site preparation is fully underway, with system shakedown beginning in the second quarter of 1999. Successful demonstration of caster system operation is anticipated to occur during the third quarter and production of a high quality product during the fourth quarter. Although the process is targeted toward reducing the cost of lightweight trucks, buses and autos, consideration is being given to application in the aircraft industry.

T. N. Meyer; M. J. Kinosz; E. M. Bradac; M. Mbaye; J. T. Burg; M. A. Klingensmith

1999-04-26T23:59:59.000Z

473

Understanding Corn Test Weight  

E-Print Network (OSTI)

Corn test weight (TW) is an often discussed topic of conversation among corn growers. The topic moves to the forefront in years when corn has been stressed at some point during the grain filling period or when the growing season is ended by frost before physiological maturity is reached. In many cases, the concept of test weight is misunderstood. Test weight is volumetric measurement. An official bushel measures 1.244 cubic feet. To measure TW, we usually take the weight of some smaller unit of measure and make a conversion. The official minimum allowable TW for U.S. No. 1 yellow corn is 56 lbs. per bushel, while No. 2 corn is 54 lbs. per bushel. It's unknown how this all started hundreds of years ago, but perhaps it was easier and more fair to sell things based on volume (length x width x height), something a person could see, instead of weight. Today, of course, corn is sold by weight and often in 56-pound blocks that we, for some reason, still call a bushel. Because weight is contingent on moisture content, grain buyers base their price on a "standard " moisture of (usually) 15 or 15.5 percent. Test weight and yield... Sometimes high TW is associated with high grain yield and low TW is associated with low grain yield. In fact, there is a poor relationship between TW and yield. The same TW can exist across a

Mike Rankin

2009-01-01T23:59:59.000Z

474

Search for Model Year 2013 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Class... Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Plug-in Hybrid Vehicles Search by Make Search by Model Search...

475

Search for Model Year 2012 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Class... Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Plug-in Hybrid Vehicles Search by Make Search by Model Search...

476

Search for Model Year 2011 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Class... Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Plug-in Hybrid Vehicles Search by Make Search by Model Search...

477

Vehicle Technologies Office: 2009 DOE Hydrogen Program and Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Hydrogen DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting to someone by E-mail Share Vehicle Technologies Office: 2009 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Facebook Tweet about Vehicle Technologies Office: 2009 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Twitter Bookmark Vehicle Technologies Office: 2009 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Google Bookmark Vehicle Technologies Office: 2009 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Delicious Rank Vehicle Technologies Office: 2009 DOE Hydrogen Program and

478

Vehicle Technologies Office: 2010 DOE Hydrogen Program and Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Hydrogen DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting to someone by E-mail Share Vehicle Technologies Office: 2010 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Facebook Tweet about Vehicle Technologies Office: 2010 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Twitter Bookmark Vehicle Technologies Office: 2010 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Google Bookmark Vehicle Technologies Office: 2010 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Delicious Rank Vehicle Technologies Office: 2010 DOE Hydrogen Program and

479

Vehicle Technologies Office: 2011 DOE Hydrogen Program and Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

1 DOE Hydrogen 1 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting to someone by E-mail Share Vehicle Technologies Office: 2011 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Facebook Tweet about Vehicle Technologies Office: 2011 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Twitter Bookmark Vehicle Technologies Office: 2011 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Google Bookmark Vehicle Technologies Office: 2011 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Delicious Rank Vehicle Technologies Office: 2011 DOE Hydrogen Program and

480

Vehicle Technologies Office: Fact #233: September 9, 2002 Vehicles per  

NLE Websites -- All DOE Office Websites (Extended Search)

3: September 9, 3: September 9, 2002 Vehicles per Thousand People: United States Compared with Other Countries to someone by E-mail Share Vehicle Technologies Office: Fact #233: September 9, 2002 Vehicles per Thousand People: United States Compared with Other Countries on Facebook Tweet about Vehicle Technologies Office: Fact #233: September 9, 2002 Vehicles per Thousand People: United States Compared with Other Countries on Twitter Bookmark Vehicle Technologies Office: Fact #233: September 9, 2002 Vehicles per Thousand People: United States Compared with Other Countries on Google Bookmark Vehicle Technologies Office: Fact #233: September 9, 2002 Vehicles per Thousand People: United States Compared with Other Countries on Delicious Rank Vehicle Technologies Office: Fact #233: September 9, 2002

Note: This page contains sample records for the topic "vehicle weight buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

0: October 22, 0: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving to someone by E-mail Share Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Facebook Tweet about Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Twitter Bookmark Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Google Bookmark Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Delicious Rank Vehicle Technologies Office: Fact #750: October 22, 2012

482

VEHICLE SPECIFICATIONS Vehicle Features Base Vehicle: 2010 Honda  

NLE Websites -- All DOE Office Websites (Extended Search)

Honda Honda Civic Hybrid VIN: JHMFA3F24AS005577 Seatbelt Positions: 5 Standard Features: Air Conditioning Power Locks Power Steering Power Brakes Power Windows Cruise Control Front Disc Brakes Rear Disc Brakes Front Wheel Drive Regenerative Braking Anti-Lock Brakes Traction Control Air Bags AM/FM Stereo with CD State of Charge Meter 1 Weights Design Curb Weight: 2877 lb Delivered Curb Weight: 2982 lb Distribution F/R (%): 57/43 GVWR: 3792 lb GAWR F/R: 1973/1841 lb Payload 2 : 810 lb Performance Goal: 400 lb Dimensions Wheelbase: 106.3 in Track F/R: 59.1/60.2 in Length: 177.3 in Width: 69.0 in Height: 56.3 in Ground Clearance: 6.0 in Performance Goal: 5.0 in Tires Manufacturer: Bridgestone

483

VEHICLE SPECIFICATIONS Vehicle Features Base Vehicle: 2010 Smart  

NLE Websites -- All DOE Office Websites (Extended Search)

Smart Smart Fortwo MHD VIN: WME4513341K406476 Seatbelt Positions: 2 Standard Features: Air Conditioning Power Locks Power Steering Power Brakes Power Windows Cruise Control Front Disc Brakes Rear Drum Brakes Rear Wheel Drive Anti-Lock Brakes Traction Control Air Bags AM/FM Stereo with CD player Weights Design Curb Weight:1,818 lb Delivered Curb Weight: 1.742 lb Distribution F/R (%):44/56 GVWR: 2,244 lb GAWR F/R: 968/1,452 lb Payload 1 : 426 lb Performance Goal: 400 lb Dimensions Wheelbase: 73.5 in Track F/R: 50.5/54.5 in Length: 106.1 in Width: 61.4 in Height: 60.7 in Ground Clearance: 6.25 in Performance Goal: 5.0 in Tires Manufacturer: Continental Model: ContiproContact Size: Front -P155/60/R15

484

vehicle | OpenEI  

Open Energy Info (EERE)

vehicle vehicle Dataset Summary Description Supplemental Tables 48-56 of EIA AEO 2011 Early Release Source EIA Date Released December 08th, 2010 (4 years ago) Date Updated Unknown Keywords AEO Annual Energy Outlook EIA Energy Information Administration light-duty sales TEF Transportation Energy Futures vehicle Data text/csv icon Light-Duty_Vehicle_Sales_by_Technology_Type.csv (csv, 1.1 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote

485

Vehicle Technologies Office: Benchmarking  

NLE Websites -- All DOE Office Websites (Extended Search)

Benchmarking Benchmarking Research funded by the Vehicle Technologies Office produces a great deal of valuable data, but it is important to compare those research results with similar work done elsewhere in the world. Through laboratory testing, researchers can compare vehicles and components to validate models, support technical target-setting, and provide data to help guide technology development tasks. Benchmarking activities fall into two primary areas: Vehicle and component testing, in which researchers test and analyze emerging technologies obtained from sources throughout the world. The results are used to continually assess program efforts. Model validation, in which researchers use test data to validate the accuracy of vehicle and component computer models including: overall measures such as fuel economy, state-of-charge energy storage across the driving cycle, and transient component behavior, such as fuel rate and torque.

486

Vehicle Technologies Office: Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

in light-duty vehicles (including passe Details Bookmark & Share View Related Clean Cities Now Vol. 17, No. 2 The Fall 2013 issue of the biannual newsletter for the U.S....

487

Vehicle Cost Calculator  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Plug-in Hybrid Electric Natural Gas (CNG) Flex Fuel (E85) Biodiesel (B20) Next Vehicle Cost Calculator U.S. Department of Energy Energy Efficiency and Renewable Energy...

488

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

355,058 Average Ambient Temperature (deg F) 46.0 Electric Vehicle mode operation (EV) Gasoline fuel economy (mpg) No Fuel Used AC electrical energy consumption (AC Whmi) 416...

489

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

2,405,406 Average Ambient Temperature (deg F) 61.4 Electric Vehicle mode operation (EV) Gasoline fuel economy (mpg) No Fuel Used AC electrical energy consumption (AC Whmi) 355...

490

Energy Basics: Electric Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Photo of an electric bus driving up a hill. Electricity can be used as a transportation fuel to power battery electric vehicles (EVs). EVs store electricity in an energy storage...

491

Natural Gas Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Natural gas vehicles (NGVs) are either fueled exclusively with compressed natural gas or liquefied natural gas (dedicated NGVs) or are capable of natural gas and gasoline fueling (bi-fuel NGVs).

492

Materials - Vehicle Recycling  

NLE Websites -- All DOE Office Websites (Extended Search)

end-of-life vehicles are shredded, along with other metal bearing items such as home appliances, process equipment and demolition debris, and their metals content is recovered for...

493

Light Duty Vehicle Pathways  

NLE Websites -- All DOE Office Websites (Extended Search)

in 2030 0 5 10 15 20 25 30 Million BarrelsDay IMPORTS DOMESTIC OIL SUPPLY OIL DEMAND ELECTRICITY RES. & COM. INDUSTRY MISC. TRANSPORT AIR TRUCKS LIGHT DUTY VEHICLES ETHANOL...

494

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

local gasoline taxes ($/gal) This is equal to total motorgasoline tax in cents/mi) Vehicle efficiency parameters: input data 0.89 0.89 Once-through efficiency of electric motor,

Delucchi, Mark

1992-01-01T23:59:59.000Z

495

Household Vehicles Energy Consumption  

Reports and Publications (EIA)

This report provides newly available national and regional data and analyzes the nation's energy use by light-duty vehicles. This release represents the analytical component of the report, with a data component having been released in early 2005.

Mark Schipper

2005-11-30T23:59:59.000Z

496

Electric Vehicle Infrastructure  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrastructure JOHN DAVIS: Nearly everyone who owns a plug-in electric vehicle has some capacity to replenish the battery at home, either with a dedicated 220-volt charger, or by...

497

Vehicle Management Driver Safety Program  

E-Print Network (OSTI)

in the city of La Rochelle [1], using fully automated electric and communicating road vehicles, better known campus was implemented using fully automated electric and communicating vehicles. The vehicles behavior. Safety Autonomous vehicles may need to stop in a progressive way in the case of obstacles in the way

Machel, Hans

498

A desiccant dehumidifier for electric vehicle heating  

DOE Green Energy (OSTI)

Vehicle heating requires a substantial amount of energy. Engines in conventional cars produce enough waste heat to provide comfort heating and defogging/defrosting, even under very extreme conditions. Electric vehicles (EVs), however, generate little waste heat. Using battery energy for heating may consume a substantial fraction of the energy storage capacity, reducing the vehicle range, which is one of the most important parameters in determining EV acceptability. Water vapor generated by the vehicle passengers is in large part responsible for the high heating loads existing in vehicles. In cold climates, the generation of water vapor inside the car may result in water condensation on the windows, diminishing visibility. Two strategies are commonly used to avoid condensation on windows: windows are kept warm, and a large amount of ambient air is introduced in the vehicle. Either strategy results in a substantial heating load. These strategies are often used in combination, and a trade-off exists between them. If window temperature is decreased, ventilation rate has to be increased. Reducing the ventilation rate requires an increase of the temperature of the windows to prevent condensation. An alternative solution is a desiccant dehumidifier, which adsorbs water vapor generated by the passengers. Window temperatures and ventilation rates can then be reduced, resulting in a substantially lower heating load. This paper explores the dehumidifier heating concept. The first part shows the energy savings that could be obtained by using this technology. The second part specifies the required characteristics and dimensions of the system. The results indicate that the desiccant system can reduce the steady-state heating load by 60% or more under typical conditions. The reduction in heating load is such that waste heat may be enough to provide the required heating under most ambient conditions. Desiccant system dimensions and weight appear reasonable for packaging in an EV.

Aceves, S.M.; Smith, J.R.

1996-09-01T23:59:59.000Z

499

Vehicle Technologies Office: Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

Deployment Deployment Our nation's energy security depends on the efficiency of our transportation system and on which fuels we use. Transportation in the United States already consumes much more oil than we produce here at home and the situation is getting worse. Domestic oil production has been dropping steadily for over 20 years, and experts predict that by 2025, about 70% of our oil will be imported. The U.S. Department of Energy's (DOE's) Vehicle Technologies Office supports research and development (R&D) that will lead to new technologies that reduce our nation's dependence on imported oil, further decrease vehicle emissions, and serve as a bridge from today's conventional powertrains and fuels to tomorrow's hydrogen-powered hybrid fuel cell vehicles. The Vehicle Technologies Office also supports implementation programs that help to transition alternative fuels and vehicles into the marketplace, as well as collegiate educational activities to help encourage engineering and science students to pursue careers in the transportation sector. Following are some of the activities that complement the Vehicle Technologies Office's mission.

500

Vehicle Technologies Office: Power Electronics  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Electronics to Power Electronics to someone by E-mail Share Vehicle Technologies Office: Power Electronics on Facebook Tweet about Vehicle Technologies Office: Power Electronics on Twitter Bookmark Vehicle Technologies Office: Power Electronics on Google Bookmark Vehicle Technologies Office: Power Electronics on Delicious Rank Vehicle Technologies Office: Power Electronics on Digg Find More places to share Vehicle Technologies Office: Power Electronics on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Power Electronics Electrical Machines Thermal Control & System Integration Advanced Combustion Engines Fuels & Lubricants Materials Technologies Power Electronics The power electronics activity focuses on research and development (R&D)