Powered by Deep Web Technologies
Note: This page contains sample records for the topic "vehicle usage number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

VEHICLE USAGE LOG Department ________________________________________ Vehicle Homebase ____________________________ Week Ended (Sunday) _________________  

E-Print Network (OSTI)

VEHICLE USAGE LOG Department ________________________________________ Vehicle Homebase of the owning Unit. Vehicle Homebase: Enter the City, Zip Code, Building, or other location designation. Week

Johnston, Daniel

2

The impact of residential density on vehicle usage and fuel consumption  

E-Print Network (OSTI)

on vehicle usage and energy consumption. Journal of Urbanon vehicle usage and fuel consumption Jinwon Kim and Davidon vehicle usage and fuel consumption* Jinwon Kim and David

Kim, Jinwon; Brownstone, David

2010-01-01T23:59:59.000Z

3

The Impact of Residential Density on Vehicle Usage and Energy Consumption  

E-Print Network (OSTI)

residential transportation energy usage is vital for theDensity on Vehicle Usage and Energy Consumption Table 2Density on Vehicle Usage and Energy Consumption with

Golob, Thomas F.; Brownstone, David

2005-01-01T23:59:59.000Z

4

A MOOS MODULE FOR MONITORING ENERGY USAGE OF AUTONOMOUS VEHICLES  

E-Print Network (OSTI)

A MOOS MODULE FOR MONITORING ENERGY USAGE OF AUTONOMOUS VEHICLES Anthony Kanago, Kevin Roos, James--Tracking the energy usage of an autonomous underwater vehicle (AUV) and making accurate data available provides especially effectively in energy-aware systems, allowing inspection vehicles (which typically travel farther

Idaho, University of

5

The Impact of Residential Density on Vehicle Usage and Energy Consumption  

E-Print Network (OSTI)

Vehicle Usage and Energy Consumption Table 2 Housing Unitsresidential vehicular energy consumption is graphed as aon Vehicle Usage and Energy Consumption with vehicles, but

Golob, Thomas F.; Brownstone, David

2005-01-01T23:59:59.000Z

6

Identify Vehicle Usage Mission Constraints for Reducing Greenhouse Gas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Identify Vehicle Usage Mission Constraints for Reducing Greenhouse Identify Vehicle Usage Mission Constraints for Reducing Greenhouse Gas Emissions Identify Vehicle Usage Mission Constraints for Reducing Greenhouse Gas Emissions October 7, 2013 - 11:46am Addthis YOU ARE HERE: Step 2 As Federal agencies work to identify opportunities for right-sizing the fleet and replacing inefficient vehicles with new, efficient, and/or alternatively fueled models to reduce greenhouse gas (GHG) emissions, they should flag potential mission constraints associated with vehicle usage. This may involve further data collection to understand the mission considerations associated with individual vehicles. For instance, in Figure 1, Vehicle 004 appears to be underutilized, having both a low user-to-vehicle ratio and a relatively low time in use per day. However,

7

The Impact of Residential Density on Vehicle Usage and Energy Consumption  

E-Print Network (OSTI)

on Vehicle Usage and Energy Consumption References Bento,Vehicle Usage and Energy Consumption UCI-ITS-WP-05-1 Thomason Vehicle Usage and Energy Consumption Thomas F. Golob

Golob, Thomas F; Brownstone, David

2005-01-01T23:59:59.000Z

8

The impact of residential density on vehicle usage and fuel consumption  

E-Print Network (OSTI)

characteristics on household residential choice and auto2009. The impact of residential density on vehicle usage and2010-05) The impact of residential density on vehicle usage

Kim, Jinwon; Brownstone, David

2010-01-01T23:59:59.000Z

9

The Impact of Residential Density on Vehicle Usage and Energy Consumption  

E-Print Network (OSTI)

residential transportation energy usage is vital for theDensity on Vehicle Usage and Energy Consumption ReferencesDensity on Vehicle Usage and Energy Consumption UCI-ITS-WP-

Golob, Thomas F; Brownstone, David

2005-01-01T23:59:59.000Z

10

Determine Vehicle Usage and Refueling Trends to Minimize Greenhouse Gas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Usage and Refueling Trends to Minimize Greenhouse Vehicle Usage and Refueling Trends to Minimize Greenhouse Gas Emissions Determine Vehicle Usage and Refueling Trends to Minimize Greenhouse Gas Emissions October 7, 2013 - 11:42am Addthis YOU ARE HERE Step 2 Once a Federal agency has identified its most important mobile greenhouse gas (GHG) emission sources overall, it can work with individual sites to determine vehicle usage and refueling trends. Agencies can compare the results of this analysis to internal standards and requirements to identify GHG mitigation opportunities for assets that are underperforming or underutilized. Two examples of this type of analysis focus on: Alternative fuel consumption Vehicle utilization. Figure 1 - An image of a vertical, stacked bar chart titled 'Alternative Fuel Use in AFVs.' The frequency data axis is labeled 'Gallons of Gasoline Equivalent' with a scale of 0-1,400,000 in increments of 200,000. The stacked bar labeled 'CNG Dual Fuel Vehicles' shows CNG from 0-300,000 gallons and Gasoline from 300,000-800,000 gallons. The stacked bar labeled 'E-85 Flex Fuel Vehicles' shows E85 from 0-1,000,000 gallons and Gasoline from 1,000,000-1,250,000 gallons.

11

The Impact of Residential Density on Vehicle Usage and Energy Consumption  

E-Print Network (OSTI)

Understanding total residential transportation energy usageon Vehicle Usage and Energy Consumption total annual fuelUsage and Energy Consumption Gasoline-equivalent gallons per year total

Golob, Thomas F; Brownstone, David

2005-01-01T23:59:59.000Z

12

The Impact of Residential Density on Vehicle Usage and Energy Consumption  

E-Print Network (OSTI)

Kenworthy (1989a). Gasoline consumption and cities. Journalon Vehicle Usage and Energy Consumption References Bento,Vehicle Usage and Energy Consumption UCI-ITS-WP-05-1 Thomas

Golob, Thomas F; Brownstone, David

2005-01-01T23:59:59.000Z

13

Learning policies for battery usage optimization in electric vehicles  

Science Conference Proceedings (OSTI)

The high cost, limited capacity, and long recharge time of batteries pose a number of obstacles for the widespread adoption of electric vehicles. Multi-battery systems that combine a standard battery with supercapacitors are currently one of the most ...

Stefano Ermon; Yexiang Xue; Carla Gomes; Bart Selman

2012-09-01T23:59:59.000Z

14

The Impact of Residential Density on Vehicle Usage and Energy Consumption  

E-Print Network (OSTI)

Kenworthy (1989a). Gasoline consumption and cities. JournalVehicle Usage and Energy Consumption Table 2 Housing Unitsvehicular energy consumption is graphed as a function of

Golob, Thomas F.; Brownstone, David

2005-01-01T23:59:59.000Z

15

The Impact of Residential Density on Vehicle Usage and Energy Consumption  

E-Print Network (OSTI)

DC. Steiner, R.L. (1994). Residential density and traveland Brownstone The Impact of Residential Density on VehicleUsage Total annual residential vehicular energy consumption

Golob, Thomas F.; Brownstone, David

2005-01-01T23:59:59.000Z

16

The Impact of Residential Density on Vehicle Usage and Energy Consumption  

E-Print Network (OSTI)

DC. Steiner, R.L. (1994). Residential density and traveland Brownstone The Impact of Residential Density on VehicleWP-05-1 The Impact of Residential Density on Vehicle Usage

Golob, Thomas F; Brownstone, David

2005-01-01T23:59:59.000Z

17

Number: 305 Most Dangerous Vehicles ...  

Science Conference Proceedings (OSTI)

... top> Number: 314 Marine Vegetation Description: Commercial harvesting of marine vegetation such as algae, seaweed and ...

2002-12-12T23:59:59.000Z

18

Ownership and usage of small passenger vehicles: findings from the 1977 National Personal Transportation Study  

SciTech Connect

This report examines current patterns in the ownership and usage of small vehicles by private households. The analysis was conducted to shed additional light on the market potential for smaller, energy efficient vehicles, in particular, electric cars. The 1977 Nationwide Personal Transportation Survey (NPTS) was used to obtain information on the socio-demographic characteristics and the travel and vehicle ownership behavior of US households based on a national probability sample. The issues posed to direct the investigation of small vehicle ownership and use behavior include: the ownership of small vehicles; the proportion of the private vehicle population accounted for by small vehicles; how small and large vehicles compare in terms of physical characteristics and performance and terms of usage; and how small/large vehicle ownership and usage differences are explained by household differences or physical differences in the vehicles themselves. The study's approach to these issues has focused on descriptive data analysis, employing such tools as cross-classification tables, distributions, and graphic displays. (MCW)

1981-12-01T23:59:59.000Z

19

Table A1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel ...  

U.S. Energy Information Administration (EIA)

Number of Vehicles Vehicle-Miles Traveled Motor Fuel Consumption Motor Fuel 2001 Household and Vehicle Expenditures ... Age of Primary Driver 16 to 17 Years ...

20

Table HC6.7 Air-Conditioning Usage Indicators by Number of Household...  

Gasoline and Diesel Fuel Update (EIA)

7 Air-Conditioning Usage Indicators by Number of Household Members, 2005 Total... 111.1 30.0 34.8 18.4 15.9...

Note: This page contains sample records for the topic "vehicle usage number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Table HC6.12 Home Electronics Usage Indicators by Number of...  

U.S. Energy Information Administration (EIA) Indexed Site

2 Home Electronics Usage Indicators by Number of Household Members, 2005 Total... 111.1 30.0 34.8 18.4...

22

Number of alternative fuel vehicles in vehicle fleets increased in ...  

U.S. Energy Information Administration (EIA)

Gasoline and diesel electric hybrids are not AFVs as defined in the Energy ... Vehicles consuming alternative transportation fuels are primarily part of ...

23

How Households Use Different Types of Vehicles: A Structural Driver Allocation and Usage Model  

E-Print Network (OSTI)

types Mini cars have approximately average usage. SubcompactCompact cars have greater than average usage only if theycar is driven morethan otherwise expected. The . -elationships between usage

Golob, Thomas F.; Kim, Seyoung; Ren, Weiping

1996-01-01T23:59:59.000Z

24

How Households Use Different Types of Vehicles: A Structural Driver Allocation and Usage Model  

E-Print Network (OSTI)

the first car. Mid-size car usage also involves the secondTypes Mini cars have approximately average usage. SubcompactCompact cars have greater than average usage only if they

Golob, Thomas F.; Kim, Seyoung K.; Ren, Weiping Willliam

1995-01-01T23:59:59.000Z

25

Usage of Electric Vehicle Supply Equipment Along the Corridors between the EV Project Major Cities  

DOE Green Energy (OSTI)

The report explains how the EVSE are being used along the corridors between the EV Project cities. The EV Project consists of a nationwide collaboration between Idaho National Laboratory (INL), ECOtality North America, Nissan, General Motors, and more than 40 other city, regional and state governments, and electric utilities. The purpose of the EV Project is to demonstrate the deployment and use of approximately 14,000 Level II (208-240V) electric vehicle supply equipment (EVSE) and 300 fast chargers in 16 major cities. This research investigates the usage of all currently installed EV Project commercial EVSE along major interstate corridors. ESRI ArcMap software products are utilized to create geographic EVSE data layers for analysis and visualization of commercial EVSE usage. This research locates the crucial interstate corridors lacking sufficient commercial EVSE and targets locations for future commercial EVSE placement. The results and methods introduced in this research will be used by INL for the duration of the EV Project.

Mindy Kirkpatrick

2012-05-01T23:59:59.000Z

26

Table HC6.5 Space Heating Usage Indicators by Number of Household Members, 2005  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Number of Household Members, 2005 5 Space Heating Usage Indicators by Number of Household Members, 2005 Total U.S. Housing Units.................................. 111.1 30.0 34.8 18.4 15.9 12.0 Do Not Have Heating Equipment..................... 1.2 0.3 0.3 Q 0.2 0.2 Have Space Heating Equipment....................... 109.8 29.7 34.5 18.2 15.6 11.8 Use Space Heating Equipment........................ 109.1 29.5 34.4 18.1 15.5 11.6 Have But Do Not Use Equipment.................... 0.8 Q Q Q Q Q Space Heating Usage During 2005 Heated Floorspace (Square Feet) None............................................................ 3.6 1.0 0.8 0.5 0.5 0.7 1 to 499........................................................ 6.1 3.0 1.6 0.6 0.6 0.3 500 to 999.................................................... 27.7 11.6 8.3 3.6 2.7 1.6 1,000 to 1,499..............................................

27

EV Project Nissan Leaf Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

EV Project Nissan Leaf Vehicle Summary Report Region: All Number of vehicles: 35 Reporting period: January 2011 through March 2011 Vehicle Usage Number of trips 3,364 Total...

28

Table HC6.7 Air-Conditioning Usage Indicators by Number of Household Members, 2005  

U.S. Energy Information Administration (EIA) Indexed Site

7 Air-Conditioning Usage Indicators by Number of Household Members, 2005 7 Air-Conditioning Usage Indicators by Number of Household Members, 2005 Total........................................................................ 111.1 30.0 34.8 18.4 15.9 12.0 Do Not Have Cooling Equipment.......................... 17.8 5.4 5.3 2.7 2.5 2.0 Have Cooling Equipment...................................... 93.3 24.6 29.6 15.7 13.4 10.0 Use Cooling Equipment....................................... 91.4 24.0 29.1 15.5 13.2 9.7 Have Equipment But Do Not Use it...................... 1.9 0.6 0.5 Q 0.2 0.4 Type of Air-Conditioning Equipment 1, 2 Central System................................................... 65.9 15.3 22.6 10.7 9.9 7.3 Without a Heat Pump....................................... 53.5 12.5 17.9 8.7 8.2 6.3 With a Heat Pump............................................ 12.3

29

Table HC6.12 Home Electronics Usage Indicators by Number of Household Members, 2005  

U.S. Energy Information Administration (EIA) Indexed Site

2 Home Electronics Usage Indicators by Number of Household Members, 2005 2 Home Electronics Usage Indicators by Number of Household Members, 2005 Total................................................................................ 111.1 30.0 34.8 18.4 15.9 12.0 Personal Computers Do Not Use a Personal Computer............................. 35.5 16.3 9.4 4.0 2.7 3.2 Use a Personal Computer.......................................... 75.6 13.8 25.4 14.4 13.2 8.8 Most-Used Personal Computer Type of PC Desk-top Model..................................................... 58.6 10.0 20.0 11.2 10.1 7.3 Laptop Model........................................................ 16.9 3.7 5.4 3.2 3.1 1.5 Hours Turned on Per Week Less than 2 Hours................................................. 13.6 4.0 4.7 1.7 1.8 1.4 2 to 15 Hours........................................................

30

Table 5.1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel Consumption . U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel Consumption and Expenditures, 1994 1993 Household and 1994 Vehicle Characteristics RSE Column Factor: Number of Vehicles Vehicle-Miles Traveled Motor Fuel Consumption Motor Fuel Expenditures RSE Row Factor: (million) (percent) (billion) (percent) (billion gallons) (gallon percent) (quadril- lion Btu) (billion dollars) (percent) 0.9 0.8 1.1 1.0 1.1 1.0 1.1 1.1 1.0 Household Characteristics Total .................................................... 156.8 100.0 1,793 100.0 90.6 100.0 11.2 104.7 100.0 2.8 Census Region and Division Northeast ........................................... 26.6 17.0 299 16.7 14.5 16.0 1.8 17.2 16.4 5.7 New England ................................... 7.6 4.8 84 4.7 4.1 4.5 0.5 4.8 4.6 13.8 Middle Atlantic

31

Vehicle Technologies Office: Fact #738: July 30, 2012 Number of New Light  

NLE Websites -- All DOE Office Websites (Extended Search)

8: July 30, 2012 8: July 30, 2012 Number of New Light Vehicle Dealerships Decreasing to someone by E-mail Share Vehicle Technologies Office: Fact #738: July 30, 2012 Number of New Light Vehicle Dealerships Decreasing on Facebook Tweet about Vehicle Technologies Office: Fact #738: July 30, 2012 Number of New Light Vehicle Dealerships Decreasing on Twitter Bookmark Vehicle Technologies Office: Fact #738: July 30, 2012 Number of New Light Vehicle Dealerships Decreasing on Google Bookmark Vehicle Technologies Office: Fact #738: July 30, 2012 Number of New Light Vehicle Dealerships Decreasing on Delicious Rank Vehicle Technologies Office: Fact #738: July 30, 2012 Number of New Light Vehicle Dealerships Decreasing on Digg Find More places to share Vehicle Technologies Office: Fact #738:

32

Vehicle Technologies Office: Fact #301: January 5, 2004 Number of Household  

NLE Websites -- All DOE Office Websites (Extended Search)

1: January 5, 1: January 5, 2004 Number of Household Vehicles has Grown Significantly to someone by E-mail Share Vehicle Technologies Office: Fact #301: January 5, 2004 Number of Household Vehicles has Grown Significantly on Facebook Tweet about Vehicle Technologies Office: Fact #301: January 5, 2004 Number of Household Vehicles has Grown Significantly on Twitter Bookmark Vehicle Technologies Office: Fact #301: January 5, 2004 Number of Household Vehicles has Grown Significantly on Google Bookmark Vehicle Technologies Office: Fact #301: January 5, 2004 Number of Household Vehicles has Grown Significantly on Delicious Rank Vehicle Technologies Office: Fact #301: January 5, 2004 Number of Household Vehicles has Grown Significantly on Digg Find More places to share Vehicle Technologies Office: Fact #301:

33

Octane number requirements of vehicles at high altitude  

Science Conference Proceedings (OSTI)

Past tests of vehicles show that their octane number requirements decrease with altitude. As a result, gasoline marketers sell lower-octane-number(ON) gasoline in the mountain states and other high-altitude areas. The current ASTM specifications, which allow reduction of gasoline octane of 1.0 to 1.5 ON per thousand feet, are based on CRC test programs run on 1967 to 1972 model vehicles. However, many new vehicles are now equipped with sophisticated electronic engine systems for control of emissions and improvement of performance and fuel economy at all altitudes. Because these new systems could minimize the altitude effect on octane requirement, Amoco Oil tested twelve 1984-1986 model cars and light trucks. The authors found their ON requirements were reduced on average about 0.2 ON per thousand feet on an (R+M)/2 basis (RMON/1,000 feet). The authors expect octane demand on gasoline suppliers in high-altitude areas to increase as these new cars make up a larger part of the vehicle population, and this could raise the cost of gasoline.

Callison, J.C.

1987-01-01T23:59:59.000Z

34

Vehicle Technologies Office: Fact #649: November 15, 2010 Number of New  

NLE Websites -- All DOE Office Websites (Extended Search)

9: November 15, 9: November 15, 2010 Number of New Light Vehicle Dealerships Continues to Shrink to someone by E-mail Share Vehicle Technologies Office: Fact #649: November 15, 2010 Number of New Light Vehicle Dealerships Continues to Shrink on Facebook Tweet about Vehicle Technologies Office: Fact #649: November 15, 2010 Number of New Light Vehicle Dealerships Continues to Shrink on Twitter Bookmark Vehicle Technologies Office: Fact #649: November 15, 2010 Number of New Light Vehicle Dealerships Continues to Shrink on Google Bookmark Vehicle Technologies Office: Fact #649: November 15, 2010 Number of New Light Vehicle Dealerships Continues to Shrink on Delicious Rank Vehicle Technologies Office: Fact #649: November 15, 2010 Number of New Light Vehicle Dealerships Continues to Shrink on Digg

35

PHEV Utility Factors (UFs) Derived from Households' Vehicle Usage Patterns Jamie Davies, Ken Kurani  

E-Print Network (OSTI)

to calculate electrical consumption, emissions, fuel costs, and battery lifetime and degradation. Of particular of Battery Electric Vehicles (BEVs) while allowing consumers to make use of the familiar gasoline refueling, each household starts the day with a fully charged battery and does not recharge throughout the day

California at Davis, University of

36

Vehicle Technologies Office: Fact #677: May 30, 2011 Number of Hybrid  

NLE Websites -- All DOE Office Websites (Extended Search)

7: May 30, 2011 7: May 30, 2011 Number of Hybrid Models, 2001-2011 to someone by E-mail Share Vehicle Technologies Office: Fact #677: May 30, 2011 Number of Hybrid Models, 2001-2011 on Facebook Tweet about Vehicle Technologies Office: Fact #677: May 30, 2011 Number of Hybrid Models, 2001-2011 on Twitter Bookmark Vehicle Technologies Office: Fact #677: May 30, 2011 Number of Hybrid Models, 2001-2011 on Google Bookmark Vehicle Technologies Office: Fact #677: May 30, 2011 Number of Hybrid Models, 2001-2011 on Delicious Rank Vehicle Technologies Office: Fact #677: May 30, 2011 Number of Hybrid Models, 2001-2011 on Digg Find More places to share Vehicle Technologies Office: Fact #677: May 30, 2011 Number of Hybrid Models, 2001-2011 on AddThis.com... Fact #677: May 30, 2011 Number of Hybrid Models, 2001-2011

37

Vehicle Technologies Office: Fact #782: June 3, 2013 Number of Refueling  

NLE Websites -- All DOE Office Websites (Extended Search)

2: June 3, 2013 2: June 3, 2013 Number of Refueling Stations Continues to Shrink to someone by E-mail Share Vehicle Technologies Office: Fact #782: June 3, 2013 Number of Refueling Stations Continues to Shrink on Facebook Tweet about Vehicle Technologies Office: Fact #782: June 3, 2013 Number of Refueling Stations Continues to Shrink on Twitter Bookmark Vehicle Technologies Office: Fact #782: June 3, 2013 Number of Refueling Stations Continues to Shrink on Google Bookmark Vehicle Technologies Office: Fact #782: June 3, 2013 Number of Refueling Stations Continues to Shrink on Delicious Rank Vehicle Technologies Office: Fact #782: June 3, 2013 Number of Refueling Stations Continues to Shrink on Digg Find More places to share Vehicle Technologies Office: Fact #782: June 3, 2013 Number of Refueling Stations Continues to Shrink on

38

Vehicle Technologies Office: Fact #803: November 11, 2013 Average Number of  

NLE Websites -- All DOE Office Websites (Extended Search)

3: November 11, 3: November 11, 2013 Average Number of Transmission Gears is on the Rise to someone by E-mail Share Vehicle Technologies Office: Fact #803: November 11, 2013 Average Number of Transmission Gears is on the Rise on Facebook Tweet about Vehicle Technologies Office: Fact #803: November 11, 2013 Average Number of Transmission Gears is on the Rise on Twitter Bookmark Vehicle Technologies Office: Fact #803: November 11, 2013 Average Number of Transmission Gears is on the Rise on Google Bookmark Vehicle Technologies Office: Fact #803: November 11, 2013 Average Number of Transmission Gears is on the Rise on Delicious Rank Vehicle Technologies Office: Fact #803: November 11, 2013 Average Number of Transmission Gears is on the Rise on Digg Find More places to share Vehicle Technologies Office: Fact #803:

39

Table A16. U.S. Number of Vehicles by Vehicle Type, 2001 (Million ...  

U.S. Energy Information Administration (EIA)

Types Passenger Car Van (Large and Minivan) Sport Utility Vehicle Pickup Truck Recreational Vehicle Household Characteristics Total..... 191.0 112.4 18.4 23.2 35.6 ...

40

Vehicle Technologies Office: Fact #812: January 13, 2014 The Number of  

NLE Websites -- All DOE Office Websites (Extended Search)

Fact #812: January 13, Fact #812: January 13, 2014 The Number of Models Achieving 40 MPG or More is Increasing Rapidly to someone by E-mail Share Vehicle Technologies Office: Fact #812: January 13, 2014 The Number of Models Achieving 40 MPG or More is Increasing Rapidly on Facebook Tweet about Vehicle Technologies Office: Fact #812: January 13, 2014 The Number of Models Achieving 40 MPG or More is Increasing Rapidly on Twitter Bookmark Vehicle Technologies Office: Fact #812: January 13, 2014 The Number of Models Achieving 40 MPG or More is Increasing Rapidly on Google Bookmark Vehicle Technologies Office: Fact #812: January 13, 2014 The Number of Models Achieving 40 MPG or More is Increasing Rapidly on Delicious Rank Vehicle Technologies Office: Fact #812: January 13, 2014 The Number of Models Achieving 40 MPG or More is Increasing Rapidly on Digg

Note: This page contains sample records for the topic "vehicle usage number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Variability of Battery Wear in Light Duty Plug-In Electric Vehicles Subject to Ambient Temperature, Battery Size, and Consumer Usage: Preprint  

DOE Green Energy (OSTI)

Battery wear in plug-in electric vehicles (PEVs) is a complex function of ambient temperature, battery size, and disparate usage. Simulations capturing varying ambient temperature profiles, battery sizes, and driving patterns are of great value to battery and vehicle manufacturers. A predictive battery wear model developed by the National Renewable Energy Laboratory captures the effects of multiple cycling and storage conditions in a representative lithium chemistry. The sensitivity of battery wear rates to ambient conditions, maximum allowable depth-of-discharge, and vehicle miles travelled is explored for two midsize vehicles: a battery electric vehicle (BEV) with a nominal range of 75 mi (121 km) and a plug-in hybrid electric vehicle (PHEV) with a nominal charge-depleting range of 40 mi (64 km). Driving distance distributions represent the variability of vehicle use, both vehicle-to-vehicle and day-to-day. Battery wear over an 8-year period was dominated by ambient conditions for the BEV with capacity fade ranging from 19% to 32% while the PHEV was most sensitive to maximum allowable depth-of-discharge with capacity fade ranging from 16% to 24%. The BEV and PHEV were comparable in terms of petroleum displacement potential after 8 years of service, due to the BEV?s limited utility for accomplishing long trips.

Wood, E.; Neubauer, J.; Brooker, A. D.; Gonder, J.; Smith, K. A.

2012-08-01T23:59:59.000Z

42

Development of a particle number and particle mass vehicle emissions inventory for an urban fleet  

Science Conference Proceedings (OSTI)

Motor vehicles are major emitters of gaseous and particulate matter pollution in urban areas, and exposure to particulate matter pollution can have serious health effects, ranging from respiratory and cardiovascular disease to mortality. Motor vehicle ... Keywords: Emission factors, Motor vehicle inventory, PM 1, PM 10, PM 2.5, Particle emissions, Particle mass, Particle number, South-East Queensland, Traffic modelling, Transport modelling, Ultrafine particles

Diane U. Keogh; Luis Ferreira; Lidia Morawska

2009-11-01T23:59:59.000Z

43

Infrastructure, Components and System Level Testing and Analysis of Electric Vehicles: Cooperative Research and Development Final Report, CRADA Number CRD-09-353  

DOE Green Energy (OSTI)

Battery technology is critical for the development of innovative electric vehicle networks, which can enhance transportation sustainability and reduce dependence on petroleum. This cooperative research proposed by Better Place and NREL will focus on predicting the life-cycle economics of batteries, characterizing battery technologies under various operating and usage conditions, and designing optimal usage profiles for battery recharging and use.

Neubauer, J.

2013-05-01T23:59:59.000Z

44

Table 10.5 Estimated Number of Alternative-Fueled Vehicles in Use ...  

U.S. Energy Information Administration (EIA)

11 "Vehicles in Use" data represent accumulated acquisitions, ... some vehicle manufacturers began including E85-fueling capability in certain model lines of vehicles.

45

A Structural Model of Vehicle Use in Two-Vehicle Households  

E-Print Network (OSTI)

vehicle sports car implies that usage is shifted towardthecars as secondcars have a weakerpositive relationship to usage,

Golob, Thomas F.; Kim, Seyoung; Ren, Weiping

1994-01-01T23:59:59.000Z

46

Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) supports the development and deployment of advanced vehicle technologies, including advances in electric vehicles, engine efficiency, and lightweight materials....

47

Alternative Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

There are a number of alternative and advanced vehiclesor vehicles that run on alternative fuels. Learn more about the following types of vehicles:

48

Usage Demographics 2010  

NLE Websites -- All DOE Office Websites (Extended Search)

NERSC Usage Demographics 2010 Academic Usage Usage by Discipline DOE & Other Lab Usage Usage by Institution Type Last edited: 2012-10-30 13:51:35...

49

Automotive materials usage trends  

SciTech Connect

The materials composition of US passenger cars is traced from 1960 and projected into 1990's. Sales-weighted average vehicle-weight trends are analyzed in terms of shifts in the large/small car mix, downsizing, and downweighting. The growth in the usage of lightweight materials: -high strength steels, cast/wrought aluminum, plastics and composites - are examined in detail. Usage trends in a host of other materials such as alloy steels, zinc, lead, copper, etc. are also discussed. An approximate quantitative analysis of changes in the usage of steel by the automotive industry worldwide show that about 10% of total decline in Western-World steel consumption is accounted for by the automotive industry. An assessment is presented for automotive industry use of critical materials such as chromium in alloy steels/cast irons and the platinum group metals in exhaust-gas catalysts. 10 references, 13 figures, 9 tables.

Gjostein, N.A.

1986-01-01T23:59:59.000Z

50

Brain usage  

NLE Websites -- All DOE Office Websites (Extended Search)

usage Name: A W Chen Status: NA Age: NA Location: NA Country: NA Date: NA Question: For my science fair project I would like to know if every part of the brain is used all the...

51

Brain Usage  

NLE Websites -- All DOE Office Websites (Extended Search)

Usage Name: Matt Location: NA Country: NA Date: NA Question: what percentage of the brain does the average human use? Replies: This is a very difficult question to address. Your...

52

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

3. 3. Vehicle Miles Traveled This chapter presents information on household vehicle usage, as measured by the number of vehicle miles traveled (VMT). VMT is one of the two most important components used in estimating household vehicle fuel consumption. (The other, fuel efficiency, is discussed in Chapter 4). In addition, this chapter examines differences in driving behavior based on the characteristics of the household and the type of vehicle driven. Trends in household driving patterns are also examined using additional information from the Department of Transportation's Nationwide Personal Transportation Survey (NPTS). Household VMT is a measure of the demand for personal transportation. Demand for transportation may be viewed from either an economic or a social perspective. From the economic point-of-view, the use of a household vehicle represents the consumption of one

53

Heavy-duty truck population, activity and usage patterns. Final report  

SciTech Connect

The objective of the study was to update the heavy-duty truck (HDT) population, activity (e.g., vehicle miles traveled (VMT), numbers of starts and trips, trip duration, etc.), and usage patterns type of service/business (e.g., delivery, construction, etc.), area of operation (i.e., local, short-haul, long-haul) for HDT`s registered and/or operated in California. The population and activity estimates were done on a weight-class-specific basis light-heavy-duty, medium-heavy-duty and heavy-heavy-duty. Population, activity and usage estimates were based primarily on Department of Motor Vehicles (DMV) registration data and Truck Inventory and Usage Survey (TIUS) data. In addition to the analysis of existing data (i.e., DMV and TIUS), 42 HDTs were fitted with on-board data loggers that recorded numbers of trips and starts, daily VMT and travel by time-of-day.

Fischer, M.

1998-07-01T23:59:59.000Z

54

Usage of Electronic Monograph  

Science Conference Proceedings (OSTI)

Usage of Electronic Monograph. The following table shows the approximate usage of the monograph since April 1998. ...

2013-08-02T23:59:59.000Z

55

Advanced Vehicle Testing Activity - Publications by Date  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Infrastructure and Usage Information (SLIDES) - February 2013 (PDF 2.8MB) SAE Hybrid Vehicle Technologies Symposium: On-Road Results from Charging Infrastructure and...

56

Alternative Vehicle Basics  

Energy.gov (U.S. Department of Energy (DOE))

There are a number of alternative and advanced vehiclesor vehicles that run on alternative fuels. Learn more about the following types of vehicles:

57

Vehicle ownership and mode use: the challenge of sustainability  

E-Print Network (OSTI)

this issue examined car ownership and usage decisions. Thecar-ownership over time. The next two examine the vehicle ownership and usage

Srinivasan, Sivaramakrishnan; Walker, Joan L.

2009-01-01T23:59:59.000Z

58

Autonomous Vehicle and Smelter Technologies  

Science Conference Proceedings (OSTI)

These include asset tracking, vehicle usage analysis, pedestrian detection ... Provide Primary Control Power for Stabilizing the Frequency in the Electricity Grid .

59

Exploring iPhone Usage: The Influence of Socioeconomic Differences on Smartphone Adoption, Usage and Usability  

E-Print Network (OSTI)

on device usage. Among our findings are that a large number of applications were uninstalled, lower SESExploring iPhone Usage: The Influence of Socioeconomic Differences on Smartphone Adoption, Usage. of Electrical and Computer Engineering, 2 Dept. of Psychology, Rice University, Houston, TX {rahmati, chad

Zhong, Lin

60

Number  

Office of Legacy Management (LM)

' ' , /v-i 2 -i 3 -A, This dow'at consists ~f--~-_,_~~~p.~,::, Number -------of.-&--copies, 1 Series.,-a-,-. ! 1 THE UNIVERSITY OF ROCHESTER 1; r-.' L INTRAMURALCORRESPONDENCE i"ks' 3 2.. September 25, 1947 Memo.tor Dr. A. H, Dovdy . From: Dr. H. E, Stokinger Be: Trip Report - Mayvood Chemical Works A trip vas made Nednesday, August 24th vith Messrs. Robert W ilson and George Sprague to the Mayvood Chemical F!orks, Mayvood, New Jersey one of 2 plants in the U.S.A. engaged in the production of thorium compounds. The purpose of the trip vas to: l 1. Learn the type of chemical processes employed in the thorium industry (thorium nitrate). 2. Survey conditions of eeosure of personnel associated vith these chemical processes. 3. Obtain samples of atmospheric contaminants in the plant, as

Note: This page contains sample records for the topic "vehicle usage number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Brookhaven Logo Usage  

NLE Websites -- All DOE Office Websites (Extended Search)

Logo Usage The Correct Usage of the BNL Logo - The following examples picture correct and incorrect use of the Laboratory logo. If you need assistance in using the logo, contact...

62

Context: Usage and Effectiveness  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. Context: Usage and Effectiveness. US Navy Aircraft Halon 1301 Effectivity Analysis.. Tedeschi, M.; Leach, W.; 1995. ...

2011-12-14T23:59:59.000Z

63

Household Vehicles Energy Consumption 1994 - PDF Tables  

U.S. Energy Information Administration (EIA)

Table 1 U.S. Number of Vehicles, Vehicle Miles, Motor Fuel Consumption and Expenditures, 1994 Table 2 U.S. per Household Vehicle Miles Traveled, Vehicle Fuel ...

64

APS LOM Shop Usage  

NLE Websites -- All DOE Office Websites (Extended Search)

Division XSD Groups Industry Argonne Home Advanced Photon Source APS LOM Shop Usage User Shop Access - Policies and Procedures User Shop Orientation User Shop...

65

Comparative analysis of selected fuel cell vehicles  

DOE Green Energy (OSTI)

Vehicles powered by fuel cells operate more efficiently, more quietly, and more cleanly than internal combustion engines (ICEs). Furthermore, methanol-fueled fuel cell vehicles (FCVs) can utilize major elements of the existing fueling infrastructure of present-day liquid-fueled ICE vehicles (ICEVs). DOE has maintained an active program to stimulate the development and demonstration o fuel cell technologies in conjunction with rechargeable batteries in road vehicles. The purpose of this study is to identify and assess the availability of data on FCVs, and to develop a vehicle subsystem structure that can be used to compare both FCVs and ICEV, from a number of perspectives--environmental impacts, energy utilization, materials usage, and life cycle costs. This report focuses on methanol-fueled FCVs fueled by gasoline, methanol, and diesel fuel that are likely to be demonstratable by the year 2000. The comparative analysis presented covers four vehicles--two passenger vehicles and two urban transit buses. The passenger vehicles include an ICEV using either gasoline or methanol and an FCV using methanol. The FCV uses a Proton Exchange Membrane (PEM) fuel cell, an on-board methanol reformer, mid-term batteries, and an AC motor. The transit bus ICEV was evaluated for both diesel and methanol fuels. The transit bus FCV runs on methanol and uses a Phosphoric Acid Fuel Cell (PAFC) fuel cell, near-term batteries, a DC motor, and an on-board methanol reformer. 75 refs.

NONE

1993-05-07T23:59:59.000Z

66

Vehicle Technologies Office: Fact #352: December 27, 2004 Automotive  

NLE Websites -- All DOE Office Websites (Extended Search)

2: December 27, 2: December 27, 2004 Automotive Industry Material Usage to someone by E-mail Share Vehicle Technologies Office: Fact #352: December 27, 2004 Automotive Industry Material Usage on Facebook Tweet about Vehicle Technologies Office: Fact #352: December 27, 2004 Automotive Industry Material Usage on Twitter Bookmark Vehicle Technologies Office: Fact #352: December 27, 2004 Automotive Industry Material Usage on Google Bookmark Vehicle Technologies Office: Fact #352: December 27, 2004 Automotive Industry Material Usage on Delicious Rank Vehicle Technologies Office: Fact #352: December 27, 2004 Automotive Industry Material Usage on Digg Find More places to share Vehicle Technologies Office: Fact #352: December 27, 2004 Automotive Industry Material Usage on AddThis.com...

67

Adaptive web usage profiling  

Science Conference Proceedings (OSTI)

Web usage models and profiles capture significant interests and trends from past accesses. They are used to improve user experience, say through recommendation of pages, pre-fetching of pages, etc. While browsing behavior changes dynamically over time, ...

Bhushan Shankar Suryavanshi; Nematollaah Shiri; Sudhir P. Mudur

2005-08-01T23:59:59.000Z

68

Robotics and Energy Usage  

E-Print Network (OSTI)

It is commonly assumed that the use of robots in an industrial plant will cut energy usage, because robots require no heat, light, or air conditioning in their work space. However, in analyzing industrial installations, we have found that, in practice, energy usage may either increase or decrease depending on the parameters of the particular facility. This paper describes our findings at the plants of various manufacturers. We performed on-site studies at plants operated by Chrysler Corporation in St. Louis (62 welding robots) and Franklin Manufacturing Company in St. Cloud, Minnesota (4 spray painting robots used in freezer manufacture), We also examined data on energy effects of robots from John Deere, caterpillar, and GM Guide Division. The effect of robots on electricity usage and other forms of energy usage are analyzed in this paper.

Hershey, R. L.; Fenton, S. E.; Letzt, A. M.

1983-01-01T23:59:59.000Z

69

Exemplary Units Markup Language usage  

Science Conference Proceedings (OSTI)

Sample UnitsML tools and usage. ... Its usage is limited to demonstrating capabilities of plain XSLT processing with the data stored in UnitsML. ...

70

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 Number of vehicles: 143 Number of vehicle days driven: 6,598 All operation Overall gasoline fuel economy (mpg) 73.7 Overall AC electrical energy consumption (AC Whmi) 170...

71

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 Number of vehicles: 145 Number of vehicle days driven: 6,817 All operation Overall gasoline fuel economy (mpg) 66.6 Overall AC electrical energy consumption (AC Whmi) 171...

72

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

2011 Number of vehicles: 135 Number of vehicle days driven: 4,746 All operation Overall gasoline fuel economy (mpg) 68.6 Overall AC electrical energy consumption (AC Whmi) 175...

73

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

June 2011 Number of vehicles: 66 Number of vehicle days driven: 845 All operation Overall gasoline fuel economy (mpg) 85.0 Overall AC electrical energy consumption (AC Whmi) 181...

74

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 Number of vehicles: 143 Number of vehicle days driven: 5,795 All operation Overall gasoline fuel economy (mpg) 67.8 Overall AC electrical energy consumption (AC Whmi) 180...

75

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

2011 Number of vehicles: 110 Number of vehicle days driven: 3,227 All operation Overall gasoline fuel economy (mpg) 74.8 Overall AC electrical energy consumption (AC Whmi) 185...

76

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 Number of vehicles: 144 Number of vehicle days driven: 7,129 All operation Overall gasoline fuel economy (mpg) 72.5 Overall AC electrical energy consumption (AC Whmi) 166...

77

Definition: Reduced Oil Usage (Not Monetized) | Open Energy Information  

Open Energy Info (EERE)

Usage (Not Monetized) Usage (Not Monetized) Jump to: navigation, search Dictionary.png Reduced Oil Usage (Not Monetized) The functions that provide this benefit eliminate the need to send a line worker or crew to the switch or capacitor locations to operate them eliminate the need for truck rolls to perform diagnosis of equipment condition, and reduce truck rolls for meter reading and measurement purposes. This reduces the fuel consumed by a service vehicle or line truck. The use of plug-in electric vehicles can also lead to this benefit since the electrical energy used by plug-in electric vehicles displaces the equivalent amount of oil.[1] References ↑ SmartGrid.gov 'Description of Benefits' An LikeLike UnlikeLike You like this.Sign Up to see what your friends like. inline Glossary Definition

78

How Usage is Charged at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

usage usage is charged How usage is charged MPP Charging (Computational Systems) When a job runs on a NERSC MPP system, such as Hopper, charges accrue against one of the user's repository allocations. The unit of accounting for these charges is the "MPP Hour". A parallel job is charged for exclusive use of each multi-core node allocated to the job. The MPP charge for such a job is calculated as the product of: the job's elapsed wall-clock time in hours, the number of nodes allocated to the job (regardless of the number actually used), the number of cores available on each allocated node, a machine charge factor (MCF) based on typical performance of the machine relative to Hopper (MCF=1.0), and a queue charge factor (QCF). Queue priority scheduling gives users

79

Alternative Fuel Vehicle Data  

Reports and Publications (EIA)

This report contains data on the number of onroad alternative fuel vehicles and hybrid vehicles made available by both the original equipment manufacturers and aftermarket vehicle conversion facilities and data on the use of alternative fueled vehicles and the amount of fuel they consume.

Information Center

2013-04-08T23:59:59.000Z

80

Vehicle-to-Grid (V2G) Data Dictionary  

Science Conference Proceedings (OSTI)

This data dictionary describes where to find specific data related to the vehicle-to-grid (V2G) infrastructure and its relationship to renewable energy sources, energy storage, and vehicle and electricity usage. Four sections of data listings are presented: renewable energy, vehicle usage, energy storage, and electricity usage; each section describes several available data sets in each field. This report provides a resource for continuing research in these fields and lists data sources related to integra...

2011-04-29T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle usage number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

usage_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

Usage Indicators Tables Usage Indicators Tables (Million U.S. Households; 60 pages, 247 kb) Contents Pages HC6-1a. Usage Indicators by Climate Zone, Million U.S. Households, 2001 5 HC6-2a. Usage Indicators by Year of Construction, Million U.S. Households, 2001 5 HC6-3a. Usage Indicators by Household Income, Million U.S. Households, 2001 5 HC6-4a. Usage Indicators by Type of Housing Unit, Million U.S. Households, 2001 5 HC6-5a. Usage Indicators by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 5 HC6-6a. Usage Indicators by Type of Rented Housing Unit, Million U.S. Households, 2001 5 HC6-7a. Usage Indicators by Four Most Populated States, Million U.S. Households, 2001 5

82

Design of Electric Drive Vehicle Batteries for Long Life and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Kandler Smith, NREL EDV Battery Robust Design - 1 Design of Electric Drive Vehicle Batteries for Long Life and Low Cost Robustness to Geographic and Consumer-Usage Variation...

83

Analysis Tool Generates Custom Vehicle Drive Cycles Based on...  

NLE Websites -- All DOE Office Websites (Extended Search)

usage, supplying information needed to perform vital development tasks, such as sizing electric motors in a hybrid vehicle configuration or optimizing battery storage in an...

84

Electric and Hybrid Vehicle Program Site Operator Program Quarterly...  

NLE Websites -- All DOE Office Websites (Extended Search)

vehicle range through both reduced battery capacity and increased accessory usage. q Battery pack life for a given type is not uniform and frequently much shorter than...

85

VEHICLE TECHNOLOGIES PROGRAM Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing Activity North American PHEV Demonstration Monthly Summary Report - Hymotion Prius (V2Green data logger) Total Number Vehicles - 169 (May 2010) Total Cumulative Test...

86

Energy Usage | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Usage Energy Usage How much do you spend per year compared to others? A state-by-state map of per capita energy expenditures. Subtopics Storage Consumption Transmission Smart Grid...

87

Memory Usage Considerations on Franklin  

NLE Websites -- All DOE Office Websites (Extended Search)

the memory requirement vvia internal checking in their codes or by some tools. Craypat could track heap usage. And IPM also tracks memory usage. Last edited: 2013-06-30 08:33:51...

88

Usage by Job Size  

NLE Websites -- All DOE Office Websites (Extended Search)

Usage by Job Usage by Job Size Table Usage by Job Size Table page loading animation Usage Query Interface System All Hopper Edison Carver Planck Matgen Franklin Hopper 1 Magellan Dirac Bassi Jacquard Seaborg User Account (Repo) Execution Queue All Debug Interactive Premium Regular Short Regular Long Regular Small Regular Medium Regular Big Regular Extra Big Killable Low Transfer IO Task Special System Serial Big Memory Westmere === Inactive === Magellan Serial Magellan Short Magellan Small Magellan Medium Magellan Big Magellan Long Regular 1 Regular 1 Long Regular 16 Regular 32 Regular 48 Full Config Seaborg Serial Batch 16 Batch 32 Batch 64 Submit Queue all interactive debug premium regular low DOE Office all ASCR BER BES FES HEP NP Summary for jobs that completed after Jan Feb Mar Apr May Jun July Aug Sep Oct Nov Dec 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 @ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

89

Rex 2 : design, construction, and operation of an unmanned underwater vehicle  

E-Print Network (OSTI)

The practical usage of unmanned underwater vehicles (UUVs) is limited by vehicle and operation cost, difficulty in accurate navigation, and communication between the vehicle and operator. The "Rex 2" UUV employs a system ...

Owens, Dylan

2009-01-01T23:59:59.000Z

90

VEHICLE SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 of 5 Page 1 of 5 VEHICLE SPECIFICATIONS 1 Vehicle Features Base Vehicle: 2011 Nissan Leaf VIN: JN1AZ0CP5BT000356 Class: Mid-size Seatbelt Positions: 5 Type: EV Motor Type: Three-Phase, Four-Pole Permanent Magnet AC Synchronous Max. Power/Torque: 80 kW/280 Nm Max. Motor Speed: 10,390 rpm Cooling: Active - Liquid cooled Battery Manufacturer: Automotive Energy Supply Corporation Type: Lithium-ion - Laminate type Cathode/Anode Material: LiMn 2 O 4 with LiNiO 2 /Graphite Pack Location: Under center of vehicle Number of Cells: 192 Cell Configuration: 2 parallel, 96 series Nominal Cell Voltage: 3.8 V Nominal System Voltage: 364.8 V Rated Pack Capacity: 66.2 Ah Rated Pack Energy: 24 kWh Max. Cell Charge Voltage 2 : 4.2 V Min. Cell Discharge Voltage 2 : 2.5 V

91

CloudMonitor: Profiling Power Usage  

E-Print Network (OSTI)

In Cloud Computing platforms the addition of hardware monitoring devices to gather power usage data can be impractical or uneconomical due to the large number of machines to be metered. CloudMonitor, a monitoring tool that can generate power models for software-based power estimation, can provide insights to the energy costs of deployments without additional hardware. Accurate power usage data leads to the possibility of Cloud providers creating a separate tariff for power and therefore incentivizing software developers to create energy-efficient applications.

Smith, James William; Ward, Jonathan Stuart; Sommerville, Ian

2012-01-01T23:59:59.000Z

92

Near Term Hybrid Passenger Vehicle Development Program. Phase I, Final report. Appendix A: mission analysis and performance specification studies. Volume II. Appendices  

DOE Green Energy (OSTI)

These appendices to the mission analysis report for the Near Term Hybrid Vehicle program contain data on passenger vehicle usage by purpose, trip length, travel speed, vehicle age, vehicle ownership and fuel economy, and US demographics. (LCL)

Traversi, M.; Barbarek, L.A.C.

1979-05-18T23:59:59.000Z

93

Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy  

NLE Websites -- All DOE Office Websites (Extended Search)

3: March 8, 2010 3: March 8, 2010 Vehicle Occupancy Rates to someone by E-mail Share Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Facebook Tweet about Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Twitter Bookmark Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Google Bookmark Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Delicious Rank Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Digg Find More places to share Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on AddThis.com... Fact #613: March 8, 2010 Vehicle Occupancy Rates The average number of persons occupying a car is 1.59 and has not changed

94

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

. . Trends in Household Vehicle Stock The 1991 RTECS counted more than 150 million vehicles in use by U.S. households. This chapter examines recent trends in the vehicle stock, as measured by the RTECS and other reputable vehicle surveys. It also provides some details on the type and model year of the household vehicle stock, and identifies regional differences in vehicle stock. Because vehicles are continuously being bought and sold, this chapter also reports findings relating to turnover of the vehicle stock in 1991. Finally, it examines the average vehicle stock in 1991 (which takes into account the acquisition and disposal of household vehicles over the course of the year) and identifies variations in the average number of household vehicles based on differences in household characteristics. Number of Household Vehicles Over the past 8 years, the stock of household vehicles has

95

Brownstone and Fang 1 A VEHICLE OWNERSHIP AND UTILIZATION CHOICE MODEL WITH ENDOGENOUS RESIDENTIAL DENSITY  

E-Print Network (OSTI)

This paper explores the impact of residential density on households vehicle type and usage choices using the 2001 National Household Travel Survey (NHTS). Attempts to quantify the effect of urban form on households vehicle choice and utilization often encounter the problem of sample selectivity. Household characteristics that are unobservable to the researchers might determine simultaneously where to live, what vehicles to choose, and how much to drive them. Unless this simultaneity is modeled, any relationship between residential density and vehicle choice may be biased. This paper extends the Bayesian multivariate ordered probit and tobit model developed in Fang (2008) to treat local residential density as endogenous. The model includes equations for vehicle ownership and usage in terms of number of cars, number of trucks (vans, sports utility vehicles, and pickup trucks), miles traveled by cars, and miles traveled by trucks. We carry out policy simulations which show that an increase in residential density has a negligible effect on car choice and utilization, but slightly reduces truck choice and utilization. We also perform an out-of-sample forecast using a holdout sample to test the robustness of the model. * Corresponding author.

David Brownstone; Hao (audrey Fang

2009-01-01T23:59:59.000Z

96

Improving energy usage  

SciTech Connect

The Phillips Petroleum Company's Borger Refinery and NGL Process Center Energy Conservation program has been one of surveying, making revisions and additions to, and redesign of processes and equipment to conserve energy. Special emphasis has been placed on minimizing energy usage in the design of new processes in the plants. In 1972 an average of 758,800 Btu's were used to process each barrel of fresh charge. Now 7.5 days of fresh charge are being saved to the plant each year. The energy-use reduction programs discussed were: (1) furnace and boiler excess-oxygen and combustibles control program; (2) installation of an Applied Automation, Inc., Fractionator Computer Control System named Optrol; and (3) the steam-trap program. 1 figure. (DP)

Haage, P.R.

1983-03-01T23:59:59.000Z

97

Usage of Appliances in U - Energy Information Administration  

U.S. Energy Information Administration (EIA)

U.S. Households Usage of Appliances in 1997. Household PCs by Year. The number of personal computers (PCs) in U.S. households has risen from zero in 1976, when the ...

98

RECS Propane Usage Form_v1 (Draft).xps  

Gasoline and Diesel Fuel Update (EIA)

propane usage for this housing unit between September 2008 and April 2010. Delivery Number Enter the Delivery Date for each delivery 1 2 3 4 5 6 7 8 9 10 Enter the Total Dollar...

99

Chapter 2. Vehicle Characteristics  

U.S. Energy Information Administration (EIA) Indexed Site

2. Vehicle Characteristics 2. Vehicle Characteristics Chapter 2. Vehicle Characteristics U.S. households used a fleet of nearly 157 million vehicles in 1994. Despite remarkable growth in the number of minivans and sport-utility vehicles, passenger cars continued to predominate in the residential vehicle fleet. This chapter looks at changes in the composition of the residential fleet in 1994 compared with earlier years and reviews the effect of technological changes on fuel efficiency (how efficiently a vehicle engine processes motor fuel) and fuel economy (how far a vehicle travels on a given amount of fuel). Using data unique to the Residential Transportation Energy Consumption Survey, it also explores the relationship between residential vehicle use and family income.

100

HPSS Usage Examples at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Examples Advanced Usage Examples Transferring Data from Batch Jobs Once you have set up your automatic HPSS authentication you can access HPSS within batch scripts. Read More ...

Note: This page contains sample records for the topic "vehicle usage number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

VEHICLE SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

VEHICLE SPECIFICATIONS 1 Vehicle Features Base Vehicle: 2011 Chevrolet Volt VIN: 1G1RD6E48BUI00815 Class: Compact Seatbelt Positions: 4 Type 2 : Multi-Mode PHEV (EV, Series, and Power-split) Motor Type: 12-pole permanent magnet AC synchronous Max. Power/Torque: 111 kW/370 Nm Max. Motor Speed: 9500 rpm Cooling: Active - Liquid cooled Generator Type: 16-pole permanent magnet AC synchronous Max. Power/Torque: 55 kW/200 Nm Max. Generator Speed: 6000 rpm Cooling: Active - Liquid cooled Battery Manufacturer: LG Chem Type: Lithium-ion Cathode/Anode Material: LiMn 2 O 4 /Hard Carbon Number of Cells: 288 Cell Config.: 3 parallel, 96 series Nominal Cell Voltage: 3.7 V Nominal System Voltage: 355.2 V Rated Pack Capacity: 45 Ah Rated Pack Energy: 16 kWh Weight of Pack: 435 lb

102

Electricity Grid: Impacts of Plug-In Electric Vehicle Charging  

E-Print Network (OSTI)

discusses how electricity demands for vehicle charging cantiming of vehicle electricity demands. challenges associatedand timing of vehicle electricity demand. As the number of

Yang, Christopher; McCarthy, Ryan

2009-01-01T23:59:59.000Z

103

The UCONABC usage control model  

Science Conference Proceedings (OSTI)

In this paper, we introduce the family of UCONABC models for usage control (UCON), which integrate Authorizations (A), oBligations (B), and Conditions (C). We call these core models because they address the essence of UCON, leaving ... Keywords: access control, digital rights management, privacy, trust, usage control

Jaehong Park; Ravi Sandhu

2004-02-01T23:59:59.000Z

104

step 1: retrieve usage step 2: convert usage  

E-Print Network (OSTI)

planet #12;step 2: convert usage data to ghg electricity conversion EPA eGRID database provides state by state data on: lbs CO2 / MWh lbs NOx / MWH eGRID Massachusetts ­ specific conversion factors only

Paulsson, Johan

105

Vehicle Technologies Office: 2004 Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Archive to someone 4 Archive to someone by E-mail Share Vehicle Technologies Office: 2004 Archive on Facebook Tweet about Vehicle Technologies Office: 2004 Archive on Twitter Bookmark Vehicle Technologies Office: 2004 Archive on Google Bookmark Vehicle Technologies Office: 2004 Archive on Delicious Rank Vehicle Technologies Office: 2004 Archive on Digg Find More places to share Vehicle Technologies Office: 2004 Archive on AddThis.com... 2004 Archive #352 Automotive Industry Material Usage December 27, 2004 #351 Gasohol Use Is Up December 20, 2004 #350 U.S. Oil Imports: Top Ten Countries of Origin December 13, 2004 #349 Crude Oil Production: OPEC, the Persian Gulf, and the United States December 6, 2004 #348 U.S. Trade Deficit, 2001-2003 November 29, 2004 #347 The Relationship of VMT and GDP November 22, 2004

106

Battery management system for Li-Ion batteries in hybrid electric vehicles.  

E-Print Network (OSTI)

??The Battery Management System (BMS) is the component responsible for the effcient and safe usage of a Hybrid Electric Vehicle (HEV) battery pack. Its main (more)

Marangoni, Giacomo

2010-01-01T23:59:59.000Z

107

Modeling and Validation of a Fuel Cell Hybrid Vehicle  

E-Print Network (OSTI)

This paper describes the design and construction of a fuel cell hybrid electric vehicle based on the conversion of a five passenger production sedan. The vehicle uses a relatively small fuel cell stack to provide average power demands, and a battery pack to provide peak power demands for varied driving conditions. A model of this vehicle was developed using ADVISOR, an A__dvanced Vehicle Simulator that tracks energy flow and fuel usage within the vehicle drivetrain and energy conversion components.

Michael J. Ogburn; Douglas J. Nelson; Keith Wipke; Tony Markel

2000-01-01T23:59:59.000Z

108

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

Aggregate Aggregate Ratio: See Mean and Ratio Estimate. AMPD: Average miles driven per day. See Appendix B, "Estimation Methodologies." Annual Vehicle Miles Traveled: See Vehicle Miles Traveled. Automobile: Includes standard passenger car, 2-seater car and station wagons; excludes passenger vans, cargo vans, motor homes, pickup trucks, and jeeps or similar vehicles. See Vehicle. Average Household Energy Expenditures: A ratio estimate defined as the total household energy expenditures for all RTECS households divided by the total number of households. See Ratio Estimate, and Combined Household Energy Expenditures. Average Number of Vehicles per Household: The average number of vehicles used by a household for personal transportation during 1991. For this report, the average number of vehicles per household is computed as the ratio of the total number of vehicles to the

109

Residential hot water usage: A review of published metered studies. Topical report, August-December 1994  

SciTech Connect

The report presents a review of residential hot water usage studies. The studies included were published and publicly available, they measured actual hot water usage or energy usage, and they had sufficient demographic information to determine the number of people per household. The available hot water usage data were normalized to a 135 F setpoint temperature to eliminate the variations in usage caused by different water heater thermostat settings. Typical hot water usage as a function of family size was determined from linear regression analyses of the normalized metered studies` data points. A national average hot water usage of 53 gallons per day was determined from the regression analyses and census data on average household size. The review of metered studies also shows that there is no discernible difference in hot water usage for households with either electric or gas water heaters.

Paul, D.D.; Ide, B.E.; Hartford, P.A.

1994-12-01T23:59:59.000Z

110

Vehicle Technologies Office: Fact #454: January 29, 2007 Relationship  

NLE Websites -- All DOE Office Websites (Extended Search)

4: January 29, 4: January 29, 2007 Relationship between Vehicle Miles and the Number of Vehicles in a Household to someone by E-mail Share Vehicle Technologies Office: Fact #454: January 29, 2007 Relationship between Vehicle Miles and the Number of Vehicles in a Household on Facebook Tweet about Vehicle Technologies Office: Fact #454: January 29, 2007 Relationship between Vehicle Miles and the Number of Vehicles in a Household on Twitter Bookmark Vehicle Technologies Office: Fact #454: January 29, 2007 Relationship between Vehicle Miles and the Number of Vehicles in a Household on Google Bookmark Vehicle Technologies Office: Fact #454: January 29, 2007 Relationship between Vehicle Miles and the Number of Vehicles in a Household on Delicious Rank Vehicle Technologies Office: Fact #454: January 29, 2007

111

Plug-in Vehicles and Charging Infrastructure Usage Patterns:...  

NLE Websites -- All DOE Office Websites (Extended Search)

y p g pp p y bid NETL (National Energy Testing Laboratory) contract * For the EV Project, ECOtality is the project lead and INL j , y p j provides data collection,...

112

Energy Basics: Electric Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

113

Energy Basics: Propane Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

114

Energy Basics: Alternative Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

115

Energy Basics: Alternative Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

fuels. Learn more about the following types of vehicles: Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

116

EERE: Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies Office and initiatives, using efficient vehicles, and access vehicle and fuel information. Photo of a ethanol and biodiesel fueling station Photo of three big-rig...

117

Assessment of the Greenhouse Gas Emission Reduction Potential of Ultra-Clean Hybrid-Electric Vehicles  

E-Print Network (OSTI)

ENERGY USAGE, AND GREENHOUSE EMISSIONS GAS 4. ASSESSMENT ANDgas consumption (miles per gallon or Wh mile) of a vehicle, calculation of the fuel usageGas from Biomass from Solar Carbon Dioxide Table 2: [gin ~mlsslons~-~iJfr Usage

Burke, A.F.; Miller, M.

1997-01-01T23:59:59.000Z

118

Foreseeing the Market for Hydrogen Fuel-Cell Vehicles: Stakeholders' Perspectives and Models of New Technology Diffusion  

E-Print Network (OSTI)

and Associates (2005). Hybrid Vehicle Market Share Expectedsales Year Number of new hybrid vehicles sold Number of newsold Market share of hybrid vehicles It can be observed that

Collantes, Gustavo O

2005-01-01T23:59:59.000Z

119

FORESEEING THE MARKET FOR HYDROGEN FUEL-CELL VEHICLES: STAKEHOLDERS PERSPECTIVES AND MODELS OF NEW TECHNOLOGY DIFFUSION  

E-Print Network (OSTI)

and Associates (2005). Hybrid Vehicle Market Share Expectedsales Year Number of new hybrid vehicles sold Number of newsold Market share of hybrid vehicles It can be observed that

Collantes, Gustavo

2005-01-01T23:59:59.000Z

120

Vehicle Technologies Office: Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Energy Storage Improving the batteries for electric drive vehicles, including hybrid electric (HEV) and plug-in electric (PEV) vehicles, is key to improving vehicles' economic, social, and environmental sustainability. In fact, transitioning to a light-duty fleet of HEVs and PEVs could reduce U.S. foreign oil dependence by 30-60% and greenhouse gas emissions by 30-45%, depending on the exact mix of technologies. For a general overview of electric drive vehicles, see the DOE's Alternative Fuel Data Center's pages on Hybrid and Plug-in Electric Vehicles and Vehicle Batteries. While a number of electric drive vehicles are available on the market, further improvements in batteries could make them more affordable and convenient to consumers. In addition to light-duty vehicles, some heavy-duty manufacturers are also pursuing hybridization of medium and heavy-duty vehicles to improve fuel economy and reduce idling.

Note: This page contains sample records for the topic "vehicle usage number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

2011 Radioactive Materials Usage Survey for Unmonitored Point Sources  

SciTech Connect

This report provides the results of the 2011 Radioactive Materials Usage Survey for Unmonitored Point Sources (RMUS), which was updated by the Environmental Protection (ENV) Division's Environmental Stewardship (ES) at Los Alamos National Laboratory (LANL). ES classifies LANL emission sources into one of four Tiers, based on the potential effective dose equivalent (PEDE) calculated for each point source. Detailed descriptions of these tiers are provided in Section 3. The usage survey is conducted annually; in odd-numbered years the survey addresses all monitored and unmonitored point sources and in even-numbered years it addresses all Tier III and various selected other sources. This graded approach was designed to ensure that the appropriate emphasis is placed on point sources that have higher potential emissions to the environment. For calendar year (CY) 2011, ES has divided the usage survey into two distinct reports, one covering the monitored point sources (to be completed later this year) and this report covering all unmonitored point sources. This usage survey includes the following release points: (1) all unmonitored sources identified in the 2010 usage survey, (2) any new release points identified through the new project review (NPR) process, and (3) other release points as designated by the Rad-NESHAP Team Leader. Data for all unmonitored point sources at LANL is stored in the survey files at ES. LANL uses this survey data to help demonstrate compliance with Clean Air Act radioactive air emissions regulations (40 CFR 61, Subpart H). The remainder of this introduction provides a brief description of the information contained in each section. Section 2 of this report describes the methods that were employed for gathering usage survey data and for calculating usage, emissions, and dose for these point sources. It also references the appropriate ES procedures for further information. Section 3 describes the RMUS and explains how the survey results are organized. The RMUS Interview Form with the attached RMUS Process Form(s) provides the radioactive materials survey data by technical area (TA) and building number. The survey data for each release point includes information such as: exhaust stack identification number, room number, radioactive material source type (i.e., potential source or future potential source of air emissions), radionuclide, usage (in curies) and usage basis, physical state (gas, liquid, particulate, solid, or custom), release fraction (from Appendix D to 40 CFR 61, Subpart H), and process descriptions. In addition, the interview form also calculates emissions (in curies), lists mrem/Ci factors, calculates PEDEs, and states the location of the critical receptor for that release point. [The critical receptor is the maximum exposed off-site member of the public, specific to each individual facility.] Each of these data fields is described in this section. The Tier classification of release points, which was first introduced with the 1999 usage survey, is also described in detail in this section. Section 4 includes a brief discussion of the dose estimate methodology, and includes a discussion of several release points of particular interest in the CY 2011 usage survey report. It also includes a table of the calculated PEDEs for each release point at its critical receptor. Section 5 describes ES's approach to Quality Assurance (QA) for the usage survey. Satisfactory completion of the survey requires that team members responsible for Rad-NESHAP (National Emissions Standard for Hazardous Air Pollutants) compliance accurately collect and process several types of information, including radioactive materials usage data, process information, and supporting information. They must also perform and document the QA reviews outlined in Section 5.2.6 (Process Verification and Peer Review) of ES-RN, 'Quality Assurance Project Plan for the Rad-NESHAP Compliance Project' to verify that all information is complete and correct.

Sturgeon, Richard W. [Los Alamos National Laboratory

2012-06-27T23:59:59.000Z

122

2011 Radioactive Materials Usage Survey for Unmonitored Point Sources  

SciTech Connect

This report provides the results of the 2011 Radioactive Materials Usage Survey for Unmonitored Point Sources (RMUS), which was updated by the Environmental Protection (ENV) Division's Environmental Stewardship (ES) at Los Alamos National Laboratory (LANL). ES classifies LANL emission sources into one of four Tiers, based on the potential effective dose equivalent (PEDE) calculated for each point source. Detailed descriptions of these tiers are provided in Section 3. The usage survey is conducted annually; in odd-numbered years the survey addresses all monitored and unmonitored point sources and in even-numbered years it addresses all Tier III and various selected other sources. This graded approach was designed to ensure that the appropriate emphasis is placed on point sources that have higher potential emissions to the environment. For calendar year (CY) 2011, ES has divided the usage survey into two distinct reports, one covering the monitored point sources (to be completed later this year) and this report covering all unmonitored point sources. This usage survey includes the following release points: (1) all unmonitored sources identified in the 2010 usage survey, (2) any new release points identified through the new project review (NPR) process, and (3) other release points as designated by the Rad-NESHAP Team Leader. Data for all unmonitored point sources at LANL is stored in the survey files at ES. LANL uses this survey data to help demonstrate compliance with Clean Air Act radioactive air emissions regulations (40 CFR 61, Subpart H). The remainder of this introduction provides a brief description of the information contained in each section. Section 2 of this report describes the methods that were employed for gathering usage survey data and for calculating usage, emissions, and dose for these point sources. It also references the appropriate ES procedures for further information. Section 3 describes the RMUS and explains how the survey results are organized. The RMUS Interview Form with the attached RMUS Process Form(s) provides the radioactive materials survey data by technical area (TA) and building number. The survey data for each release point includes information such as: exhaust stack identification number, room number, radioactive material source type (i.e., potential source or future potential source of air emissions), radionuclide, usage (in curies) and usage basis, physical state (gas, liquid, particulate, solid, or custom), release fraction (from Appendix D to 40 CFR 61, Subpart H), and process descriptions. In addition, the interview form also calculates emissions (in curies), lists mrem/Ci factors, calculates PEDEs, and states the location of the critical receptor for that release point. [The critical receptor is the maximum exposed off-site member of the public, specific to each individual facility.] Each of these data fields is described in this section. The Tier classification of release points, which was first introduced with the 1999 usage survey, is also described in detail in this section. Section 4 includes a brief discussion of the dose estimate methodology, and includes a discussion of several release points of particular interest in the CY 2011 usage survey report. It also includes a table of the calculated PEDEs for each release point at its critical receptor. Section 5 describes ES's approach to Quality Assurance (QA) for the usage survey. Satisfactory completion of the survey requires that team members responsible for Rad-NESHAP (National Emissions Standard for Hazardous Air Pollutants) compliance accurately collect and process several types of information, including radioactive materials usage data, process information, and supporting information. They must also perform and document the QA reviews outlined in Section 5.2.6 (Process Verification and Peer Review) of ES-RN, 'Quality Assurance Project Plan for the Rad-NESHAP Compliance Project' to verify that all information is complete and correct.

Sturgeon, Richard W. [Los Alamos National Laboratory

2012-06-27T23:59:59.000Z

123

Office of Inspector General audit report on vehicle fleet management at the Idaho National Engineering and Environmental Laboratory  

SciTech Connect

In a prior report, Audit of Light Vehicle Fleet Management at the Idaho National Engineering Laboratory, WR-B-93-7, September 29, 1993, the Office of Inspector General (OIG) concluded that vehicle fleet operations might be done more cost effectively by the General Services Administration (GSA) than by Idaho Operations Office (Idaho) and its contractor. The report also concluded that a significant number of vehicles were underused and the fleet was too large. Accordingly, the report contained recommendations that a cost comparison study be conducted to ascertain the most economical and efficient method of managing fleet operations and that vehicle usage data be reviewed periodically by the contractor, with prompt reassignment or disposal of significantly underused vehicles. Thus, the purpose of this audit was to determine if action has been taken to implement recommendations in the prior report. Specifically, the objectives of the current audit were to determine whether a cost comparison had been performed and whether the fleet was still too large. In this report, the authors recommend that Idaho annually review individual vehicle use against mileage standards and promptly dispose of or reassign vehicles not meeting the standards. The authors also recommend that the Idaho Deputy Manager be provided a vehicle assignment report for review and approval.

1999-03-01T23:59:59.000Z

124

Energy usage in super markets  

SciTech Connect

The supermarket industry used 450 billion Btu's of energy each day, enough to heat 2 million homes. But more important than the overall energy usage is what energy is costing the supermarket operator; in many cases energy costs exceed rent. This special research report is designed to help the supermarket management determine if their stores are excessive energy users and to provide valuable data for planning remodels and new stores. The report is presented in five sections. The first two sections, General Observations and Monthly Electrical Usage and Demand Power, can easily be used by all supermarket operators. The third and fourth sections contain more detailed statistics that will be valuable to industry people who want to analyze energy usage more thoroughly. The statistics in section 1-4 are reported for various geographic regions and store sizes. Section five is the sample distribution which provides an insight into what other stores are using for refrigeration, lighting, etc. The information in this report is average for a typical supermarket and should be used only as that when compared to a specific supermarket facility.

Gerke, E.

1976-01-01T23:59:59.000Z

125

Household Vehicles Energy Use: Latest Data and Trends - Table A01  

U.S. Energy Information Administration (EIA)

Table A1. U.S. Number of Vehicles, Vehicles-Miles, Motor Fuel Consumption and Expenditures, 2001: 2001 Household and Vehicle Characteristics

126

Towards Sustainable Material Usage: Investigating Limits to ...  

Science Conference Proceedings (OSTI)

Presentation Title, Towards Sustainable Material Usage: Investigating Limits to ... secondary resources decreases energy consumption; this energy advantage...

127

Traffic characterization and internet usage in rural Africa  

Science Conference Proceedings (OSTI)

While Internet connectivity has reached a significant part of the world's population, those living in rural areas of the developing world are still largely disconnected. Recent efforts have provided Internet connectivity to a growing number of remote ... Keywords: internet usage, interviews, rural networks

David L. Johnson; Veljko Pejovic; Elizabeth M. Belding; Gertjan van Stam

2011-03-01T23:59:59.000Z

128

Vehicle Technology and Alternative Fuel Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Technology and Alternative Fuel Basics Vehicle Technology and Alternative Fuel Basics Vehicle Technology and Alternative Fuel Basics Photo of an electric car plugged in and charging. Learn more about exciting technologies and ongoing research in alternative and advanced vehicles-or vehicles that run on fuels other than traditional petroleum. Alternative Vehicles There are a variety of alternative vehicle fuels available. Learn more about: Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane Vehicles Also learn about: Vehicle Battery Basics Vehicle Emissions Basics Alternative Fuels There are a number of alternative fuel and advanced technology vehicles. Learn more about the following types of vehicles: Biodiesel Electricity Ethanol Hydrogen Natural Gas

129

Resource and Fuels Usage Contacting the Authors  

E-Print Network (OSTI)

) % of 1990 usage Natural gas 577 24% Biomass 494 1190% Renewables 182 106% Nuclear 73 62% Coal 561 908 sectors · LDV is least carbon-intensive Total Energy (PJ) % of 1990 usage Natural gas 122 5% Biomass 891T activity) 9% line (218% PxT activity) In-State Emissions Total Energy (PJ) % of 1990 usage Natural gas 123

California at Davis, University of

130

Vehicle Technologies Office: Hybrid and Vehicle Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid and Vehicle Hybrid and Vehicle Systems to someone by E-mail Share Vehicle Technologies Office: Hybrid and Vehicle Systems on Facebook Tweet about Vehicle Technologies Office: Hybrid and Vehicle Systems on Twitter Bookmark Vehicle Technologies Office: Hybrid and Vehicle Systems on Google Bookmark Vehicle Technologies Office: Hybrid and Vehicle Systems on Delicious Rank Vehicle Technologies Office: Hybrid and Vehicle Systems on Digg Find More places to share Vehicle Technologies Office: Hybrid and Vehicle Systems on AddThis.com... Just the Basics Hybrid & Vehicle Systems Modeling & Simulation Integration & Validation Benchmarking Parasitic Loss Reduction Propulsion Systems Advanced Vehicle Evaluations Energy Storage Advanced Power Electronics & Electrical Machines

131

Advanced Vehicle Testing Activity: Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Neighborhood Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing...

132

Advanced Vehicle Testing Activity: Urban Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Urban Electric Vehicles Toyota Urban Electric Vehicle Urban electric vehicles (UEVs) are regular passenger vehicles with top speeds of about 60 miles per hour (mph) and a...

133

Advanced Vehicle Testing Activity: Urban Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Urban Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Urban Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Urban...

134

Advanced Vehicle Testing Activity: Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Hybrid Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Hybrid...

135

CMVRTC: Overweight Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

Heavy and overweight vehicle brake testing for combination five-axle Heavy and overweight vehicle brake testing for combination five-axle tractor-flatbed scale The Federal Motor Carrier Safety Administration, in coordination with the Federal Highway Administration, sponsored the Heavy and Overweight Vehicle Brake Testing (HOVBT) program in order to provide information about the effect of gross vehicle weight (GVW) on braking performance. Because the Federal Motor Carrier Safety Regulations limit the number of braking system defects that may exist for a vehicle to be allowed to operate on the roadways, the examination of the effect of brake defects on brake performance for increased loads is also relevant. The HOVBT program seeks to provide relevant information to policy makers responsible for establishing load limits, beginning with providing test data for a

136

APS Guideline for Hand Tool and Portable Power Tool Usage  

NLE Websites -- All DOE Office Websites (Extended Search)

Hand Tool and Portable Power Tool Usage Hand Tool and Portable Power Tool Usage Introduction CAT/XSD recognizes that the misuse and improper maintenance of hand tools and portable power tools cause a significant number of injuries to even "experienced" workers. Consequently, CAT/XSD has adopted the following policies and procedures to minimize the hazards associated with the use of such equipment at the APS. These guidelines apply to all use of hand tools and portable power tools by CAT/XSD personnel while performing maintenance or installation activities at the APS. Although CAT/XSD feels that most of the guidelines also apply to tool usage during experimental activities, CAT/XSD will not require that short-term users complete the training described below. Using Tools Safely If you have not had formal training in the use of common tools, either view

137

Household vehicles energy consumption 1991  

Science Conference Proceedings (OSTI)

The purpose of this report is to provide information on the use of energy in residential vehicles in the 50 States and the District of Columbia. Included are data about: the number and type of vehicles in the residential sector, the characteristics of those vehicles, the total annual Vehicle Miles Traveled (VMT), the per household and per vehicle VMT, the vehicle fuel consumption and expenditures, and vehicle fuel efficiencies. The data for this report are based on the household telephone interviews from the 1991 RTECS, conducted during 1991 and early 1992. The 1991 RTECS represents 94.6 million households, of which 84.6 million own or have access to 151.2 million household motor vehicles in the 50 States and the District of Columbia.

Not Available

1993-12-09T23:59:59.000Z

138

Predicting hourly building energy usage  

SciTech Connect

This article presents the results of an evaluation to identify the most accurate method for making hourly energy use predictions. The prediction of energy usage by HVAC systems is important for the purposes of HVAC diagnostics, system control, parameter and system identification, optimization and energy management. Many new techniques are now being applied to the analysis problems involved with predicting the future behavior of HVAC systems and deducing properties of these systems. Similar problems arise in most observational disciplines, including physics, biology and economics.

Kreider, J.F. (Univ. of Colorado, Boulder, CO (United States). Dept. of Civil, Environmental and Architectural Engineering); Haberl, J.S. (Texas A and M Univ., College Station, TX (United States). Mechanical Engineering Dept.)

1994-06-01T23:59:59.000Z

139

Modeling Electric Vehicle Benefits Connected to Smart Grids  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Benefits Connected to Smart Grids Title Modeling Electric Vehicle Benefits Connected to Smart Grids Publication Type Conference Proceedings LBNL Report Number...

140

Device for monitoring utility usage  

SciTech Connect

A device for monitoring utility usage for installation and use by homeowners and consumers with existing public utility meters having a disk that is mounted inside a transparent case and that rotates in response to electrical current usage, the device is described comprising: a disk rotation monitoring assembly for mounting on the exterior of the transparent case, said monitoring assembly comprising: (a) a sensor for sensing disk rotation speed and generating a signal in response thereto; and (b) means for mounting said sensor on the transparent case, said mounting means further comprising means for holding said sensor, means for attaching said holding means to the transparent case, and means for adjusting the position of said holding means to enable precise alignment of said sensor with the plane of the disk such that said sensor is in optical communication with the edge of said disk; one or more remote display terminals in electrical communication with said monitoring assembly, each of said one or more remote terminals comprising: (a) means for receiving said signal and processing said signal into utility consumption data; (b) an electronic memory for storing said data; (c) a visual display for displaying data in a reader-usable format about consumption; and (d) a display controller that enables selective displaying of any of said data on said visual display.

Green, R.G.

1993-05-25T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle usage number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

NEWTON: Blood Group Systems Usage  

NLE Websites -- All DOE Office Websites (Extended Search)

Blood Group Systems Usage Blood Group Systems Usage Name: Kishori Status: student Grade: n/a Location: Outside U.S. Country: India Date: Summer 2013 Question: What is the difference between MN blood group system and ABO bloodgroup system? Although, we nowadays prefer ABO blood groups why do we use MN blood groups in the forensic department? Replies: Humans actually have multiple blood antigens on the surface of our blood cells. Wikipedia says that there are over 50 different blood group antigens. ABO and Rh are just the most dominant. Rh actually has 3 alleles called C, D and E. So one could be CCddee, for example, but clinically, when referring to Rh, only the D antigen is considered. So MN is another system that is also present. The reason it would be considered in forensics is due to population genetics considerations. Certain combinations are found in different percentages depending on what ancestry a person is a part of. Humans evolved in isolation from each other and until relatively recently, were separated due to difficult travel/migration. But even though we can move around the planet easily now, we still carry the history of our ancestry in our DNA. M and N are codominant, like the ABO system.

142

" Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Number of Establishments by Usage of General Energy-Saving Technologies, 2002;" 2 Number of Establishments by Usage of General Energy-Saving Technologies, 2002;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;" " Unit: Establishment Counts." " "," ",,"Computer Control of Building Wide Evironment(c)",,,"Computer Control of Processes or Major Energy-Using Equipment(d)",,,"Waste Heat Recovery",,,"Adjustable - Speed Motors",,,"Oxy - Fuel Firing",,," ",," " " "," ",,,,,,,,,,,,,,,,,"RSE" "NAICS"," ",,,,,,,,,,,,,,,,,"Row"

143

" Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Number of Establishments by Usage of General Energy-Saving Technologies, 1998;" 1. Number of Establishments by Usage of General Energy-Saving Technologies, 1998;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;" " Unit: Establishment Counts." " "," "," ",,,"Computer","Control of","Processes"," "," "," ",,,," ",," " " "," ","Computer Control","of Building-Wide","Environment(b)","or Major","Energy-Using","Equipment(c)","Waste","Heat","Recovery","Adjustable -","Speed","Motors","RSE"

144

An empirical analysis on the adoption of alternative fuel vehicles:The case of natural gas vehicles  

E-Print Network (OSTI)

579594. IANGV, 1997. Natural Gas Vehicle Industry Positionmarket penetration of natural gas vehicles in Switzerland.of NGVs versus number of natural gas refueling stations in

Yeh, Sonia

2007-01-01T23:59:59.000Z

145

Vehicle Technologies Office: Vehicle Technologies Office Recognizes  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Technologies Vehicle Technologies Office Recognizes Outstanding Researchers to someone by E-mail Share Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Facebook Tweet about Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Twitter Bookmark Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Google Bookmark Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Delicious Rank Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Digg Find More places to share Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on AddThis.com...

146

Vehicle Emission Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Emission Basics Vehicle Emission Basics Vehicle Emission Basics November 22, 2013 - 2:07pm Addthis Vehicle emissions are the gases emitted by the tailpipes of vehicles powered by internal combustion engines, which include gasoline, diesel, natural gas, and propane vehicles. Vehicle emissions are composed of varying amounts of: water vapor carbon dioxide (CO2) nitrogen oxygen pollutants such as: carbon monoxide (CO) nitrogen oxides (NOx) unburned hydrocarbons (UHCs) volatile organic compounds (VOCs) particulate matter (PM) A number of factors determine the composition of emissions, including the vehicle's fuel, the engine's technology, the vehicle's exhaust aftertreatment system, and how the vehicle operates. Emissions are also produced by fuel evaporation during fueling or even when vehicles are

147

Electric vehicles  

SciTech Connect

Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

Not Available

1990-03-01T23:59:59.000Z

148

EART 265 Lecture Notes: Energy Energy Usage  

E-Print Network (OSTI)

EART 265 Lecture Notes: Energy Energy Usage US per capita energy usage is 10 kW. This represents 1 of 2 kW. Euro- pean countries tend to use less energy per capita by a factor of 2. China's per capita/4 of the worldwide energy usage, and with 1/20th of the world population gives a global average power consumption

Nimmo, Francis

149

Memory Usage Considerations on Hopper  

NLE Websites -- All DOE Office Websites (Extended Search)

Memory Considerations Memory Considerations Memory Considerations Memory Usage Considerations on Hopper Most Hopper compute nodes have 32 GB of physical memory, but, not all that memory is available to user programs. Compute Node Linux (the kernel), the Lustre file system software, and message passing library buffers all consume memory, as does loading the executable into memory. Thus the precise memory available to an application varies. Approximately 31 GB of memory can be allocated from within an MPI program using all 24 cores per node, i.e., 1.29 GB per MPI task on average. If an application uses 12 MPI tasks per node, then each MPI task could use about 2.58 GB of memory. You may see an error message such as "OOM killer terminated this process." "OOM" means Out of Memory and it means that your code has exhausted the

150

RECS Fuel Oil Usage Form_v1 (Draft).xps  

U.S. Energy Information Administration (EIA) Indexed Site

fuel oil usage for this delivery address between September 2008 and April 2010. Delivery Number Enter the Delivery Date for each delivery 1 2 3 4 5 6 7 8 9 10 Enter the Total...

151

UNCLASSIFIED: Dist A. Approved for public release 2011 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY  

E-Print Network (OSTI)

business. Public Safety vehicles are exempt from this for the purpose of "ride alongs." All occupants are defined as small-sized electric, gasoline or diesel powered service vehicles. They are not "road worthy: The usage of Mines owned golf cart-type utility vehicles, whether gas or electric powered, are restricted

Papalambros, Panos

152

Electric and hybrid vehicle project. Quarterly report of private-sector operations, first quarter 1982  

DOE Green Energy (OSTI)

As of January 1, 1982 sixteen private-sector site operators at 30 sites in the US were involved in electric and hybrid electric-powered vehicle demonstration programs. Data for 1981 and the first quarter of 1982 are presented on vehicle selection, miles accumulated, energy usage, maintenance requirements, reliability and operating performance for demonstration vehicles at each site. (LCL)

None

1982-06-01T23:59:59.000Z

153

Electric Utility Terrain Vehicle Demonstration in a Military Base Application  

Science Conference Proceedings (OSTI)

Utility terrain vehicles (UTVs), also called all terrain vehicles (ATVs), are used for a variety of purposes ranging from transporting people and materials to recreation. Examples of uses include transportation at military bases, for beach patrols, at ports, agricultural locations, industrial sites, and local/municipal applications such as at parks and schools. As of August 30, 2012 the Federal Highway Administration estimated that annual fuel usage of All-terrain vehicles to be approximately 173 ...

2013-07-24T23:59:59.000Z

154

Residential Energy Usage by Origin of Householder  

U.S. Energy Information Administration (EIA)

Home > Energy Users > Residential Home Page > Energy Usage by Origin of Householder. Consumption and Expenditures. NOTE: To View and/or Print PDF's ...

155

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

1. 1. Introduction The purpose of this report is to provide information on the use of energy in residential vehicles in the 50 States and the District of Columbia. Included are data about: the number and type of vehicles in the residential sector, the characteristics of those vehicles, the total annual Vehicle Miles Traveled (VMT), the per household and per vehicle VMT, the vehicle fuel consumption and expenditures, and vehicle fuel efficiencies. The Energy Information Administration (EIA) is mandated by Congress to collect, analyze, and disseminate impartial, comprehensive data about energy--how much is produced, who uses it, and the purposes for which it is used. To comply with this mandate, EIA collects energy data from a variety of sources covering a range of topics 1 . Background The data for this report are based on the household telephone interviews from the 1991 RTECS, conducted

156

EV Project Chevrolet Volt Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

events (mi) 25.8 Avg number of charging events per day when the vehicle was driven 1.4 EV Project Chevrolet Volt Vehicle Summary Report Region: Phoenix, AZ Metropolitan Area...

157

EV Project Chevrolet Volt Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

GPS data anomalies. 2012 ECOtality 532012 5:28:32 PM INLMIS-11-24041 Page 1 of 8 EV Project Chevrolet Volt Vehicle Summary Report Region: Oregon Number of vehicles: 23...

158

Near Term Hybrid Passenger Vehicle Development Program. Phase I, Final report. Appendix A: mission analysis and performance specification studies. Volume I  

DOE Green Energy (OSTI)

Studies are described which were performed for the Near Term Hybrid Vehicle program to determine passenger car usage patterns and to correlate these trip mission characteristics with vehicle design and performance specifications. (LCL)

Traversi, M.; Barbarek, L.A.C.

1979-04-20T23:59:59.000Z

159

Electric Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Electricity can be used as a transportation fuel to power battery electric vehicles (EVs). EVs store electricity in an energy storage device, such as a battery.

160

Energy Basics: Propane Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

gasoline vehicles. Dedicated propane vehicles are designed to run only on propane; bi-fuel propane vehicles have two separate fueling systems that enable the vehicle to use...

Note: This page contains sample records for the topic "vehicle usage number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Flex-fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles Stations that Sell E85 (Alternative Fuels and Advanced Vehicles Data Center AFDC) Flexible Fuel Vehicle (FFV) Cost Calculator (compare costs for operating your vehicle...

162

Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Electric Vehicles A neighborhood electric vehicle (NEV) is 4-wheeled vehicle, larger than a golf cart but smaller than most light-duty passenger vehicles. NEVs are...

163

Household vehicles energy consumption 1994  

SciTech Connect

Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use some 6,000 vehicles provided information to describe vehicle stock, vehicle-miles traveled, energy end-use consumption, and energy expenditures for personal vehicles. The survey results represent the characteristics of the 84.9 million households that used or had access to vehicles in 1994 nationwide. (An additional 12 million households neither owned or had access to vehicles during the survey year.) To be included in then RTECS survey, vehicles must be either owned or used by household members on a regular basis for personal transportation, or owned by a company rather than a household, but kept at home, regularly available for the use of household members. Most vehicles included in the RTECS are classified as {open_quotes}light-duty vehicles{close_quotes} (weighing less than 8,500 pounds). However, the RTECS also includes a very small number of {open_quotes}other{close_quotes} vehicles, such as motor homes and larger trucks that are available for personal use.

NONE

1997-08-01T23:59:59.000Z

164

Advanced Vehicle Testing Activity: Neighborhood Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects to someone by E-mail Share Advanced Vehicle Testing Activity: Neighborhood Electric Vehicle Special Projects on Facebook Tweet about Advanced Vehicle Testing...

165

Advanced Vehicle Testing Activity: Alternative Fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative Fuel Vehicles SuperShuttle CNG Van Alternative fuel vehicles (AFVs) are vehicles designed to operate on alternative fuels such as compressed and liquefied natural gas,...

166

Vehicle Technologies Office: Hybrid and Vehicle Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid and Vehicle Systems Hybrid and vehicle systems research provides an overarching vehicle systems perspective to the technology research and development (R&D) activities of...

167

Advanced Vehicle Testing Activity: Neighborhood Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Procedures to someone by E-mail Share Advanced Vehicle Testing Activity: Neighborhood Electric Vehicle Specifications and Test Procedures on Facebook Tweet about Advanced Vehicle...

168

Advanced Vehicle Testing Activity - Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Electric Vehicles What's New 2013 BRP Commander Electric (PDF 195KB) A Neighborhood Electric Vehicle (NEV) is technically defined as a Low Speed Vehicle (LSV)...

169

Advanced Vehicle Testing Activity - Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

NEVAmerica Baseline Performance Testing 2010 Electric Vehicles International Neighborhood Electric Vehicle 2010 Electric Vehicles International E-Mega 2009 NEVAmerica Baseline...

170

Usage analysis and the web of data  

Science Conference Proceedings (OSTI)

The workshop on Usage Analysis and the Web of Data (USEWOD2011) was the first workshop in the field to investigate combinations of usage data with semantics and the Web of Data. Questions the workshop aims to address are for example: How can semantics ...

Bettina Berendt; Laura Hollink; Vera Hollink; Markus Luczak-Rsch; Knud Mller; David Vallet

2011-05-01T23:59:59.000Z

171

Detecting and analyzing insecure component usage  

Science Conference Proceedings (OSTI)

Software is commonly built from reusable components that provide desired functionalities. Although component reuse significantly improves software productivity, insecure component usage can lead to security vulnerabilities in client applications. ... Keywords: differential testing, insecure component usage, testing and analysis of real-world software

Taeho Kwon; Zhendong Su

2012-11-01T23:59:59.000Z

172

Number of Vehicles - Energy Information Administration  

U.S. Energy Information Administration (EIA)

If you are having any technical problems with this site, please contact the EIA Webmaster at wmaster@eia.doe.gov . Energy Information ...

173

Diesel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles Vehicles Audi A3 Diesel vehicles may be making a comeback. Diesel engines are more powerful and fuel-efficient than similar-sized gasoline engines (about 30-35% more fuel efficient). Plus, today's diesel vehicles are much improved over diesels of the past. Better Performance Improved fuel injection and electronic engine control technologies have Increased power Improved acceleration Increased efficiency New engine designs, along with noise- and vibration-damping technologies, have made them quieter and smoother. Cold-weather starting has been improved also. Cleaner Mercedes ML320 BlueTEC Today's diesels must meet the same emissions standards as gasoline vehicles. Advances in engine technologies, ultra-low sulfur diesel fuel, and improved exhaust treatment have made this possible.

174

Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicles Vehicles Vehicles In the first half of 2013, Americans doubled the number of PEVs they purchased compared to the same period in 2012, and this summer, PEV sales reached a new record high. More than 11,000 PEVs were sold in August 2013 -- that's a 29 percent improvement in sales over the previous monthly record. Learn now about the clean technology revolution that is here today. In the first half of 2013, Americans doubled the number of PEVs they purchased compared to the same period in 2012, and this summer, PEV sales reached a new record high. More than 11,000 PEVs were sold in August 2013 -- that's a 29 percent improvement in sales over the previous monthly record. Learn now about the clean technology revolution that is here today.

175

Vehicle Technologies Office: Fact #633: July 26, 2010 Alternative Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

3: July 26, 2010 3: July 26, 2010 Alternative Fuel Vehicles to someone by E-mail Share Vehicle Technologies Office: Fact #633: July 26, 2010 Alternative Fuel Vehicles on Facebook Tweet about Vehicle Technologies Office: Fact #633: July 26, 2010 Alternative Fuel Vehicles on Twitter Bookmark Vehicle Technologies Office: Fact #633: July 26, 2010 Alternative Fuel Vehicles on Google Bookmark Vehicle Technologies Office: Fact #633: July 26, 2010 Alternative Fuel Vehicles on Delicious Rank Vehicle Technologies Office: Fact #633: July 26, 2010 Alternative Fuel Vehicles on Digg Find More places to share Vehicle Technologies Office: Fact #633: July 26, 2010 Alternative Fuel Vehicles on AddThis.com... Fact #633: July 26, 2010 Alternative Fuel Vehicles The Energy Information Administration publishes estimates of the number of

176

Energy Basics: Fuel Cell Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

177

Energy Basics: Flexible Fuel Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

178

Energy Basics: Hybrid Electric Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

179

Energy Basics: Natural Gas Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

180

Projections of highway vehicle population, energy demand, and CO{sub 2} emissions in India through 2040.  

Science Conference Proceedings (OSTI)

This paper presents projections of motor vehicles, oil demand, and carbon dioxide (CO{sub 2}) emissions for India through the year 2040. The populations of highway vehicles and two-wheelers are projected under three different scenarios on the basis of economic growth and average household size in India. The results show that by 2040, the number of highway vehicles in India would be 206-309 million. The oil demand projections for the Indian transportation sector are based on a set of nine scenarios arising out of three vehicle-growth and three fuel-economy scenarios. The combined effects of vehicle-growth and fuel-economy scenarios, together with the change in annual vehicle usage, result in a projected demand in 2040 by the transportation sector in India of 404-719 million metric tons (8.5-15.1 million barrels per day). The corresponding annual CO{sub 2} emissions are projected to be 1.2-2.2 billion metric tons.

Arora, S.; Vyas, A.; Johnson, L.; Energy Systems

2011-02-22T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle usage number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Study of Oil Degradation in Extended Idle Operation Heavy Duty Vehicles  

E-Print Network (OSTI)

Advances in engine oil technology and increased combustion efficiency has resulted in the longer oil intervals in vehicles. Current oil change interval practice only takes into account the mileage a vehicle has driven and does not consider other vehicle operations that affect oil life like extended idle. Routine oil sampling is one way to ensure optimal oil intervals, but the price continuous analysis can be prohibitive. It is possible to use on board diagnostic (OBD) data to correlate oil degradation to engine usage in order to develop an algorithm that is applicable to many vehicles. While much research has been conducted for light duty vehicles, little has been completed for heavy duty vehicles, in particular vehicles that idle a majority of their time. This study uses multiple heavy duty vehicles that are monitored by monthly routine oil analysis and logging of on board diagnostic data to determine the effects extended idle has on the wear rate of oil. The vehicles were used in their normal operation; this resulted in an average idle run time of 60% of run time and no less than 50% in a single vehicle. At each sample the quality of the oil and the operation of the engines were assessed. The results of the oil analysis showed very little degradation of oil. As expected, a negative correlation was seen in viscosity and total base number (TBN) but not abnormal when compared to base oil. Significant degradation was not seen even after using the vehicle passed the manufacturer recommended oil intervals. Analysis of engine operation showed that the temperature of the oil was optimal for 85% of idle operation. In addition, oil pressures at idle were sufficiently higher than the minimum pressure recommended by the manufacturer, but was less than half of the average in use oil pressure. The combination of low pressure and optimal temperature has resulted in little oil degradation. The results from the study have shown that extended idling in the study vehicles can be treated similar to long trip interval service for oil degradation. Additionally, extended idling did not result in abnormal engine wear or excessive contamination.

Kader, Michael Kirk

2013-05-01T23:59:59.000Z

182

Vehicle Technologies Office: 2008 Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Archive to someone 8 Archive to someone by E-mail Share Vehicle Technologies Office: 2008 Archive on Facebook Tweet about Vehicle Technologies Office: 2008 Archive on Twitter Bookmark Vehicle Technologies Office: 2008 Archive on Google Bookmark Vehicle Technologies Office: 2008 Archive on Delicious Rank Vehicle Technologies Office: 2008 Archive on Digg Find More places to share Vehicle Technologies Office: 2008 Archive on AddThis.com... 2008 Archive #551 Truck Stop Electrification Sites December 29, 2008 #550 Clean Cities Coalitions December 22, 2008 #549 Biofuels Corridor extends from the Great Lakes to the Gulf of Mexico December 15, 2008 #548 Number of Gasoline Stations Continues to Decline in 2007 December 8, 2008 #547 Research and Development (R&D) Spending in the Automotive Industry December 1, 2008

183

Survey and update of F-14a mission profiles for TF30 engine usage. Final report  

SciTech Connect

The mission profiles and maintenance procedures relating to the TF30-P-412 engines have been investigated to find out whether an observed reduction in engine usage was due to different aircraft missions or new flight procedures. A survey of fleet squadron personnel revealed mission profiles are essentially the same; however, fewer air combat engagements and landing practices account for the lower usage. The F-14 role is now more evenly distributed between air combat and intercepts, while the total number of these missions remains constant. A future advanced technology engine in this aircraft is likely to encounter higher usage requirements if there are no throttle cycle restrictions.

Cote, S.M.

1982-04-30T23:59:59.000Z

184

Vehicle Technologies Office: Key Activities in Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Key Activities in Key Activities in Vehicles to someone by E-mail Share Vehicle Technologies Office: Key Activities in Vehicles on Facebook Tweet about Vehicle Technologies Office: Key Activities in Vehicles on Twitter Bookmark Vehicle Technologies Office: Key Activities in Vehicles on Google Bookmark Vehicle Technologies Office: Key Activities in Vehicles on Delicious Rank Vehicle Technologies Office: Key Activities in Vehicles on Digg Find More places to share Vehicle Technologies Office: Key Activities in Vehicles on AddThis.com... Key Activities Mission, Vision, & Goals Plans, Implementation, & Results Organization & Contacts National Laboratories Budget Partnerships Key Activities in Vehicles We conduct work in four key areas to develop and deploy vehicle technologies that reduce the use of petroleum while maintaining or

185

Incorporating stakeholders' perspectives into models of new technology diffusion: The case of fuel-cell vehicles  

E-Print Network (OSTI)

J.D. Power, et al. , Hybrid Vehicle Market Share Expected tosales Year Number of new hybrid vehicles sold Number of newsold Market share of hybrid vehicles G.O. Collantes /

Collantes, Gustavo O

2007-01-01T23:59:59.000Z

186

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

E27C177982 Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 105 kW Battery: NiMH Seatbelt Positions: Five Payload: 981 lbs Features: Regenerative braking Traction...

187

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

E87C172351 Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 105 kW Battery: NiMH Seatbelt Positions: Five Payload: 981 lbs Features: Regenerative braking Traction...

188

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

Z07S838122 Vehicle Specifications Engine: 2.4 L 4 cylinder Electric Motor: 14.5 kW Battery: NiMH Seatbelt Positions: Five Payload: 1,244 lbs Features: Regenerative braking wABS 4...

189

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

2AR194699 Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 60 kW Battery: NiMH Seatbelt Positions: Five Payload: 850 lbs Features: Regenerative braking Traction...

190

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

2WD VIN 1FMYU95H75KC45881 Vehicle Specifications Engine: 2.3 L 4-cylinder Electric Motor: 70 kW Battery: NiMH Seatbelt Positions: Five Features: Four wheel drive Regenerative...

191

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

4AR144757 Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 60 kW Battery: NiMH Seatbelt Positions: Five Payload: 850 lbs Features: Regenerative braking Traction...

192

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

Z37S813344 Vehicle Specifications Engine: 2.4 L 4 cylinder Electric Motor: 14.5 kW Battery: NiMH Seatbelt Positions: Five Payload: 1,244 lbs Features: Regenerative braking wABS 4...

193

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

4WD VIN 1FMCU96H15KE18237 Vehicle Specifications Engine: 2.4 L 4-cylinder Electric Motor: 70 kW Battery: NiMH Seatbelt Positions: Five Features: Four wheel drive Regenerative...

194

VEHICLE SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

SPECIFICATIONS 1 Vehicle VIN:19XFB5F57CE002590 Class: Compact Seatbelt Positions: 5 Type: Sedan CARB 2 : AT-PZEV EPA CityHwyCombined 3 : 273832 MPGe Tires Manufacturer:...

195

Robotic vehicle  

DOE Patents (OSTI)

A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

Box, W.D.

1997-02-11T23:59:59.000Z

196

Collect Data to Evaluate Greenhouse Gas Emissions Profile for Vehicles and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicles and Mobile Equipment Vehicles and Mobile Equipment Collect Data to Evaluate Greenhouse Gas Emissions Profile for Vehicles and Mobile Equipment October 7, 2013 - 11:34am Addthis YOU ARE HERE Step 2 Data needs for greenhouse gas (GHG) mitigation planning related to Federal agency vehicles and mobile equipment can be described in terms of five key categories: Vehicle Inventory A detailed vehicle profile is essential to right-sizing an agency's vehicle inventory and thereby reducing fuel use, emissions, and operating costs. In combination with vehicle usage and mission data, this information can be used to develop an optimal vehicle acquisition plan and vehicle allocation methodology (VAM) to identify vehicles that may represent good candidates for reassignment or disposal. This data assists in correctly sizing a fleet

197

Alternative Fuels and Vehicles Information Resources (Brochure)  

DOE Green Energy (OSTI)

A brochure listing and describing Web sites and telephone numbers of resources for people interested in alternative fuels and related vehicles. Most are sponsored by DOE.

Not Available

2002-04-01T23:59:59.000Z

198

Alternative Fuels and Vehicles Information Resources (Brochure)  

DOE Green Energy (OSTI)

A brochure listing and describing Web sites and telephone numbers of resources for people interested in alternative fuels and related vehicles. Most are sponsored by DOE.

Not Available

2002-11-01T23:59:59.000Z

199

Vehicle Setup Information Downloadable Dynamometer Database ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Toyota Prius Test cell location 2WD Advanced Powertrain Research Facility Document date 872013 Vehicle Dynamometer Input Revision number 3 Notes: Test weight lb Target A lb...

200

Front Vehicle Setup Information Downloadable Dynamometer Database...  

NLE Websites -- All DOE Office Websites (Extended Search)

7222013 Advanced Powertrain Research Facility Test weight lb 3500 Vehicle dynamometer Input Document date 7222013 Revision Number 1 Advanced Powertrain Research Facility Test...

Note: This page contains sample records for the topic "vehicle usage number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

General Guidance on Data Usage and Management  

NLE Websites -- All DOE Office Websites (Extended Search)

General Guidance on Data Usage and Management General Guidance on Data Usage and Management Summary Data Usage Credit Data Management and Documentation: Introduction Our philosophy Data management Record measured values Zero versus missing value Metadata Data documentation Define variables Specify units Provide citations For additional information Summary Ensure long-term preservation of, and full and open access to, high-quality data sets Give proper credit to the researchers providing the data Provide thorough, yet simple, documentation: how the data were produced, what they mean Generate ASCII data and documentation files; they ensure readibility by virtually all users Define variable names and units Point to, or provide, important publications that further document the data Data usage CDIAC fully supports the July 1991 Policy Statements on Data Management for

202

ERP Usage in Practice: An Empirical Investigation  

Science Conference Proceedings (OSTI)

This study presents the results of an exploratory study of Fortune 1000 firms and their enterprise resource planning ERP usage, as well as benefits and changes they have realized from ERP. The study empirically examines ERP in these organizations to ...

Mary C. Jones; Randall Young

2006-01-01T23:59:59.000Z

203

Material impacts on operational energy usage  

E-Print Network (OSTI)

Decisions regarding materials and construction of a building are made all the time in the architectural process, but thought is not always given to how those choices may affect the buildings ultimate energy usage and the ...

Love, Andrea, S.M. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

204

Microsoft Word - Epoxy Usage Form.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

Division Form Rev. 41111 Monthly Epoxy Usage Form (Weight in Grams) Date Initials CTD 101K Stycast Catalyst Epon Resin Epicure Part A Part B Part C 2850 24LV 815828 3140...

205

Utilization of LPG for vehicles in Japan  

SciTech Connect

LPG demand for vehicles amounts to 1.8 MM tons annually, equivalent to about 11% of the total LPG consumption in Japan. The feature which dominates the demand of LPG as a vehicle fuel in Japan is the high penetration of LPG powered vehicles into taxi fleets. This has been made possible following the rationalization in the taxi business in the early 1960s. Today, three quarters of LPG vehicles, numbering some 235,000 while representing only about 1% of the total number of vehicles, account for nearly 93% of all taxicabs.

Kusakabe, M.; Makino, M.; Tokunoh, M.

1988-01-01T23:59:59.000Z

206

Electricity Use in California: Past Trends and Present Usage...  

NLE Websites -- All DOE Office Websites (Extended Search)

Use in California: Past Trends and Present Usage Patterns Title Electricity Use in California: Past Trends and Present Usage Patterns Publication Type Journal Article Year of...

207

Building Energy Software Tools Directory: Energy Usage Forecasts  

NLE Websites -- All DOE Office Websites (Extended Search)

Alphabetically Tools by Platform PC Mac UNIX Internet Tools by Country Related Links Energy Usage Forecasts Energy Usage Forecasts Quick and easy web-based tool that provides...

208

CNST NanoFab Facility User Computer Security and Usage ...  

Science Conference Proceedings (OSTI)

Page 1. CNST NanoFab Facility User Computer Security and Usage Policy ... CNST NanoFab Facility User Computer Security and Usage Policy ...

2013-07-31T23:59:59.000Z

209

arXiv.org help - arXiv usage statistics  

NLE Websites -- All DOE Office Websites (Extended Search)

by major subject areas through January 2013 Access and download statistics: Today's usage for arXiv.org (not including mirrors) Institutional Usage Statistics: 2009, 2010,...

210

A Statistical Model of Vehicle Emissions and Fuel Consumption  

E-Print Network (OSTI)

A number of vehicle emission models are overly simple, such as static speed-dependent models widely used in

Cappiello, Alessandra

2002-09-17T23:59:59.000Z

211

Integrated Vehicle Thermal Management for Advanced Vehicle Propulsion Technologies  

DOE Green Energy (OSTI)

A critical element to the success of new propulsion technologies that enable reductions in fuel use is the integration of component thermal management technologies within a viable vehicle package. Vehicle operation requires vehicle thermal management systems capable of balancing the needs of multiple vehicle systems that may require heat for operation, require cooling to reject heat, or require operation within specified temperature ranges. As vehicle propulsion transitions away from a single form of vehicle propulsion based solely on conventional internal combustion engines (ICEs) toward a wider array of choices including more electrically dominant systems such as plug-in hybrid electric vehicles (PHEVs), new challenges arise associated with vehicle thermal management. As the number of components that require active thermal management increase, so do the costs in terms of dollars, weight, and size. Integrated vehicle thermal management is one pathway to address the cost, weight, and size challenges. The integration of the power electronics and electric machine (PEEM) thermal management with other existing vehicle systems is one path for reducing the cost of electric drive systems. This work demonstrates techniques for evaluating and quantifying the integrated transient and continuous heat loads of combined systems incorporating electric drive systems that operate primarily under transient duty cycles, but the approach can be extended to include additional steady-state duty cycles typical for designing vehicle thermal management systems of conventional vehicles. The work compares opportunities to create an integrated low temperature coolant loop combining the power electronics and electric machine with the air conditioning system in contrast to a high temperature system integrated with the ICE cooling system.

Bennion, K.; Thornton, M.

2010-04-01T23:59:59.000Z

212

Record of Technical Change {number_sign}2 for ''Corrective Action Investigation Plan for Corrective Action Unit 240: Area 25 Vehicle Washdown, Nevada Test Site, Nevada,'' Revision 0, DOE/NV--532  

Science Conference Proceedings (OSTI)

This Record of Technical Change updates the technical informatioin provided in ''Corrective Action Investigation Plan for Corrective Action Unit 240: Area 25 Vehicle Washdown, Nevada Test Site, Nevada,'' Revision 0, DOE/NV--532.

USDOE Nevada Operations Office

2000-03-16T23:59:59.000Z

213

Specifying and checking component usage  

Science Conference Proceedings (OSTI)

One of today's challenges is producing reliable software in the face of an increasing number of interacting components. Our system CHET lets developers define specifications describing how a component should be used and checks these specifications in ... Keywords: automata, components, finite-state, flow analysis, specifications, verification

Steven P. Reiss

2005-09-01T23:59:59.000Z

214

Plug-In Hybrid Electric Vehicles - Prototypes  

NLE Websites -- All DOE Office Websites (Extended Search)

Prototypes Prototypes A PHEV prototype being prepared for testing. A plug-in electric vehicle (PHEV) prototype is prepared for testing at Argonne National Laboratory. What is a PHEV? A plug-in hybrid electric vehicle, or PHEV, is similar to today's hybrid electric vehicles on the market today, but with a larger battery that is charged both by the vehicle's gasoline engine and from plugging into a standard 110 V electrical outlet for a few hours each day. PHEVs and HEVs both use battery-powered motors and gasoline-powered engines for high fuel efficiency, but PHEVs can further reduce fuel usage by employing electrical energy captured through daily charging. Prototype as Rolling Test Bed As part of Argonne's multifaceted PHEV research program, Argonne researchers have constructed a PHEV prototype that serves as a rolling test

215

Vehicles | Open Energy Information  

Open Energy Info (EERE)

Vehicles Jump to: navigation, search TODO: Add description Related Links List of Companies in Vehicles Sector List of Vehicles Incentives Retrieved from "http:en.openei.orgw...

216

Advanced Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban...

217

Vehicles News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

news Office of Energy Efficiency & news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies http://energy.gov/eere/articles/energy-department-announces-45-million-advance-next-generation Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies

218

Vehicle Technologies Office: 2010 Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

0 Archive 0 Archive #655 New Freight Analysis Tool December 27, 2010 #654 New Light Vehicle Leasing is Big in 2010 December 20, 2010 #653 Import Cars and Trucks Gaining Ground December 13, 2010 #652 U.S. Crude Oil Production Rises December 6, 2010 #651 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 November 29, 2010 #650 Diesel Fuel Prices hit a Two-Year High November 22, 2010 #649 Number of New Light Vehicle Dealerships Continues to Shrink November 15, 2010 #648 Conventional and Alternative Fuel Prices November 8, 2010 #647 Sales Shifting from Light Trucks to Cars November 1, 2010 #646 Prices for Used Vehicles Rise Sharply from 2008 to 2010 October 25, 2010 #645 Price of Diesel versus Gasoline in Europe October 18, 2010 #644 Share of Diesel Vehicle Sales Decline in Western Europe October 11, 2010

219

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Detailed Tables The following tables present detailed characteristics of vehicles in the residential sector. Data are from the 1991 Residential Transportation Energy Consumption Survey. The "Glossary" contains the definitions of terms used in the tables. Table Organization The "Detailed Tables" section consists of three types of tables: (1) Tables of totals such as number of vehicle miles traveled (VMT) or gallons consumed; (2) Tables of per household statistics such as VMT per household; and (3) Tables of per vehicle statistics such as vehicle fuel consumption per vehicle. The tables have been grouped together by specific topics such as model year data, or family income data to facilitate finding related information. The Quick-Reference Guide to the detailed tables indicates major topics of each table. Row and Column Factors These tables present estimates

220

Vehicle Technologies Office: 2013 Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Archive 3 Archive #810 Leasing on the Rise December 30, 2013 #809 What Do We Pay for in a Gallon of Gasoline? December 23, 2013 #808 Declining Use of Six- and Eight-Cylinder Engines December 16, 2013 #807 Light Vehicle Weights Leveling Off December 9, 2013 #806 Light Vehicle Market Shares, Model Years 1975-2012 December 2, 2013 #805 Vehicle Technology Penetration November 25, 2013 #804 Tool Available to Print Used Vehicle Fuel Economy Window Stickers November 18, 2013 #803 Average Number of Transmission Gears is on the Rise November 11, 2013 #802 Market Share by Transmission Type November 4, 2013 #801 Gasoline Direct Injection Continues to Grow October 28, 2013 #800 Characteristics of New Light Vehicles over Time October 21, 2013 #799 Electricity Generation by Source, 2003-2012 September 30, 2013

Note: This page contains sample records for the topic "vehicle usage number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Plug-In Electric Vehicle Fast Charge Station Operational Analysis with Integrated Renewables: Preprint  

SciTech Connect

The growing, though still nascent, plug-in electric vehicle (PEV) market currently operates primarily via level 1 and level 2 charging in the United States. Fast chargers are still a rarity, but offer a confidence boost to oppose 'range anxiety' in consumers making the transition from conventional vehicles to PEVs. Because relatively no real-world usage of fast chargers at scale exists yet, the National Renewable Energy Laboratory developed a simulation to help assess fast charging needs based on real-world travel data. This study documents the data, methods, and results of the simulation run for multiple scenarios, varying fleet sizes, and the number of charger ports. The grid impact of this usage is further quantified to assess the opportunity for integration of renewables; specifically, a high frequency of fast charging is found to be in demand during the late afternoons and evenings coinciding with grid peak periods. Proper integration of a solar array and stationary battery thus helps ease the load and reduces the need for new generator construction to meet the demand of a future PEV market.

Simpson, M.; Markel, T.

2012-08-01T23:59:59.000Z

222

Advanced Vehicle Testing Activity: Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Electric Vehicles Ford Think Neighbor A neighborhood electric vehicle (NEV) is a four-wheeled vehicle that has a top speed of 20-25 miles per hour (mph). It is larger...

223

VEHICLE DETAILS, BATTERY DESCRIPTION AND SPECIFICATIONS Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 VEHICLE DETAILS, BATTERY DESCRIPTION AND SPECIFICATIONS Vehicle Details Base Vehicle: 2011 Nissan Leaf VIN: JN1AZ0CP5BT000356 Propulsion System: BEV Electric Machine: 80 kW...

224

Robotic vehicle  

DOE Patents (OSTI)

A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 11 figures.

Box, W.D.

1994-03-15T23:59:59.000Z

225

Robotic vehicle  

DOE Patents (OSTI)

A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 14 figs.

Box, W.D.

1996-03-12T23:59:59.000Z

226

Automobile usage patterns. Highlight report. Volume XIV  

SciTech Connect

A report is given as part of a series of studies dealing with general public behavior and attitudes towards energy conservation. Specifically, this study concentrates on automobile usage patterns. The study is based on 1,007 telephone interviews and includes topics such as car usage affected by lifestyle, car usage patterns, planned trips as compared with routine or spontaneous trips, times per week trip is usually made, analysis of trips, the extent to which shopping trips are done by phone instead of by car, willingness to cut out trips, factors deterring car use, and a summary which concludes that the primary way that people could cut down automobile use without eliminating leisure time use would be in more careful planning of trip for shopping and errands. Another important finding in this study is lack of sensitivity to gasoline prices. (GRA)

Rappeport, M.; Labaw, P.

1975-09-01T23:59:59.000Z

227

Vehicle-to-Vehicle-to-Infrastructure (V2V2I) Intelligent Transportation System Architecture  

E-Print Network (OSTI)

Abstract In this paper, I describe the vehicle-tovehicle-to-infrastructure (V2V2I) architecture, which is a hybrid of the vehicle-to-vehicle (V2V) and vehicle-toinfrastructure (V2I) architectures. The V2V2I architecture leverages the benefits of fast queries and responses from the V2I architecture, but with the advantage of a distributed architecture not having a single point-of-failure from the V2V architecture. In the V2V2I architecture, the transportation network is broken into zones in which a single vehicle is known as the Super Vehicle. Only Super Vehicles are able to communicate with the central infrastructure or with other Super Vehicles, and all other vehicles can only communicate with the Super Vehicle responsible for the zone in which they are currently traversing. I describe the Super Vehicle Detection (SVD) algorithm for how a vehicle can find or become a Super Vehicle of a zone and how Super Vehicles can aggregate the speed and location data from all of the vehicles within their zone to still ensure an accurate representation of the network. I perform an analysis using FreeSim to determine the trade-offs experienced based on the size and number of zones within a transportation network and describe the benefits of the V2V2I architecture over the pure V2I or V2V architectures. I.

Jeffrey Miller

2008-01-01T23:59:59.000Z

228

Vehicle Smart  

E-Print Network (OSTI)

Abstract: This article explores criteria necessary for reliable communication between electric vehicles (EVs) and electric vehicle service equipment (EVSE). Data will demonstrate that a G3-PLC system has already met the criteria established by the automotive and utility industries. Multiple international tests prove that a G3-PLC implementation is the optimal low-frequency solution. A similar version of this article appeared in the August 2011 issue of Power Systems Design magazine. For the first time, electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) are building a viable market of mobile electrical energy consumers. Not surprisingly, new relationships between electricity providers (the utility companies) and automobile owners are emerging. Many utilities already offer, or are planning to offer, special tariffs, including fixed monthly rates, to EV owners. EVs impose new dynamics and demands on the electrical supply itself. There is, in fact, a symbiotic relationship developing between the EV and energy provider. Because of their large storage capacity, often 10kVH, EVs draw currents of 80A or greater over a period of hours. This strains electrical grid components, especially low-voltage transformers which can overheat and fail while serving consumers ' homes. Meanwhile, the EVs ' electrical storage capacity can also reverse the current flow. It can then supply power back to the grid, thereby helping the utilities to meet demand peaks without starting up high-carbon-output diesel generators. To enable this new dynamic relationship, the EV and the energy provider must communicate. The utility must be able to authenticate the individual vehicle, and bidirectional communications is needed to support negotiation of power flow rates and direction. To

Jim Leclare; Principal Member; Technical Staff

2012-01-01T23:59:59.000Z

229

Advanced Vehicle Testing Activity - Urban Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

are designed to carry two or four passengers. Click here for more information About Urban Electric Vehicles (PDF 128KB) Vehicle Testing Reports Ford THINK City Ford Thnk...

230

Vehicle Technologies Office: Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

that feature one or more advanced technologies, including: Plug-in hybrid electric vehicle technologies Extended range electric vehicle technologies Hybrid electric, pure...

231

Reducing the Energy Usage of Office Applications  

E-Print Network (OSTI)

In this paper, we demonstrate how component-based middleware can reduce the energy usage of closed-source applications. We rst describe how the Puppeteer system exploits well-dened interfaces exported by applications to modify their behavior. We then present a detailed study of the energy usage of Microsoft's PowerPoint application and show that adaptive policies can reduce energy expenditure by 49% in some instances. In addition, we use the results of the study to provide general advice to developers of applications and middleware that will enable them to create more energy-ecient software. 1

Jason Flinn; Eyal De Lara; M. Satyanarayanan; Dan S. Wallach; Willy Zwaenepoel; Willy

2001-01-01T23:59:59.000Z

232

Fuel processing for fuel cell powered vehicles.  

DOE Green Energy (OSTI)

A number of auto companies have announced plans to have fuel cell powered vehicles on the road by the year 2004. The low-temperature polymer electrolyte fuel cells to be used in these vehicles require high quality hydrogen. Without a hydrogen-refueling infrastructure, these vehicles need to convert the available hydrocarbon fuels into a hydrogen-rich gas on-board the vehicle. Earlier analysis has shown that fuel processors based on partial oxidation reforming are well suited to meet the size and weight targets and the other performance-related needs of on-board fuel processors for light-duty fuel cell vehicles (1).

Ahmed, S.; Wilkenhoener, R.; Lee, S. H. D.; Carter, J. D.; Kumar, R.; Krumpelt, M.

1999-01-22T23:59:59.000Z

233

DOE/ID-Number  

NLE Websites -- All DOE Office Websites (Extended Search)

Funding Project as they were the only electric vehicles available for leasing from vehicle manufacturers at the time. Federal Fleet Acquisitions of Electric Vehicles 0 2 4 6...

234

An agent-based model to study market penetration of plug-in hybrid electric vehicles  

E-Print Network (OSTI)

of fuel costs, to agent willingness to adopt the PHEV technology, to PHEV purchase price and rebates, to PHEV battery range, and to heuristic values related to gasoline usage. Our simulations indicate of expected lifetime fuel costs associated with different vehicles (e.g., on vehicle stickers

Vermont, University of

235

Alternative Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

following types of vehicles: Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane Vehicles Addthis Related Articles...

236

Challenges for the vehicle tester in characterizing hybrid electric vehicles  

DOE Green Energy (OSTI)

Many problems are associated with applying test methods, like the Federal Test Procedure (FTP), for HEVs. Although there has been considerable progress recently in the area of HEV test procedure development, many challenges are still unsolved. A major hurdle to overcoming the challenges of developing HEV test procedures is the lack of HEV designs available for vehicle testing. Argonne National Laboratory has tested hybrid electric vehicles (HEVs) built by about 50 colleges and universities from 1994 to 1997 in annual vehicle engineering competitions sponsored in part by the U.S. Department of Energy (DOE). From this experience, the Laboratory has gathered information about the basics of HEV testing and issues important to successful characterization of HEVs. A collaboration between ANL and the Society of Automotive Engineer`s (SAE) HEV Test Procedure Task Force has helped guide the development of test protocols for their proposed procedures (draft SAE J1711) and test methods suited for DOE vehicle competitions. HEVs use an electrical energy storage device, which requires that HEV testing include more time and effort to deal with the effects of transient energy storage as the vehicle is operating in HEV mode. HEV operation with electric-only capability can be characterized by correcting the HEV mode data using results from electric-only operation. HEVs without electric-only capability require multiple tests conducted to form data correlations that enable the tester to find the result that corresponds to a zero net change in SOC. HEVs that operate with a net depletion of charge cannot be corrected for battery SOC and are characterized with emissions and fuel consumption results coupled with the electrical energy usage rate. 9 refs., 8 figs.

Duoba, M.

1997-08-01T23:59:59.000Z

237

Identifying diverse usage behaviors of smartphone apps  

Science Conference Proceedings (OSTI)

Smartphone users are increasingly shifting to using apps as "gateways" to Internet services rather than traditional web browsers. App marketplaces for iOS, Android, and Windows Phone platforms have made it attractive for developers to deploy apps and ... Keywords: app usage behavior, smartphone apps

Qiang Xu; Jeffrey Erman; Alexandre Gerber; Zhuoqing Mao; Jeffrey Pang; Shobha Venkataraman

2011-11-01T23:59:59.000Z

238

Using Electric Vehicles to Meet Balancing Requirements Associated with Wind Power  

DOE Green Energy (OSTI)

Many states are deploying renewable generation sources at a significant rate to meet renewable portfolio standards. As part of this drive to meet renewable generation levels, significant additions of wind generation are planned. Due to the highly variable nature of wind generation, significant energy imbalances on the power system can be created and need to be handled. This report examines the impact on the Northwest Power Pool (NWPP) region for a 2019 expected wind scenario. One method for mitigating these imbalances is to utilize plug-in hybrid electric vehicles (PHEVs) or battery electric vehicles (BEVs) as assets to the grid. PHEVs and BEVs have the potential to meet this demand through both charging and discharging strategies. This report explores the usage of two different charging schemes: V2GHalf and V2GFull. In V2GHalf, PHEV/BEV charging is varied to absorb the additional imbalance from the wind generation, but never feeds power back into the grid. This scenario is highly desirable to automotive manufacturers, who harbor great concerns about battery warranty if vehicle-to-grid discharging is allowed. The second strategy, V2GFull, varies not only the charging of the vehicle battery, but also can vary the discharging of the battery back into the power grid. This scenario is currently less desirable to automotive manufacturers, but provides an additional resource benefit to PHEV/BEVs in meeting the additional imbalance imposed by wind. Key findings in the report relate to the PHEV/BEV population required to meet the additional imbalance when comparing V2GHalf to V2GFull populations, and when comparing home-only-charging and work-and-home-charging scenarios. Utilizing V2GFull strategies over V2GHalf resulted in a nearly 33% reduction in the number of vehicles required. This reduction indicates fewer vehicles are needed to meet the unhandled energy, but they would utilize discharging of the vehicle battery into the grid. This practice currently results in the voiding of automotive manufacturer's battery warranty, and is not feasible for many customers. The second key finding is the change in the required population when PHEV/BEV charging is available at both home and work. Allowing 10% of the vehicle population access to work charging resulted in nearly 80% of the grid benefit. Home-only charging requires, at best, 94% of the current NWPP light duty vehicle fleet to be a PHEV or BEV. With the introduction of full work charging availability, only 8% of the NWPP light duty vehicle fleet is required. Work charging has primarily been associated with mitigating range anxiety in new electric vehicle owners, but these studies indicate they have significant potential for improving grid reliability. The V2GHalf and V2GFull charging strategies of the report utilize grid frequency as an indication of the imbalance requirements. The introduction of public charging stations, as well as the potential for PHEV/BEVs to be used as a resource for renewable generation integration, creates conditions for additional products into the ancillary services market. In the United Kingdom, such a capability would be bid as a frequency product in the ancillary services market. Such a market could create the need for larger, third-party aggregators or services to manage the use of electric vehicles as a grid resource. Ultimately, customer adoption, usage patterns and habits, and feedback from the power and automotive industries will drive the need.

Tuffner, Francis K.; Kintner-Meyer, Michael CW

2011-07-31T23:59:59.000Z

239

RECS Fuel Oil Usage Form_v1 (Draft).xps  

U.S. Energy Information Administration (EIA) Indexed Site

fuel oil usage for this delivery address between fuel oil usage for this delivery address between September 2008 and April 2010. Delivery Number Enter the Delivery Date for each delivery 1 2 3 4 5 6 7 8 9 10 Enter the Total Dollar Amount including taxes [Exclude late fees, merchandise, repairs, and service charges] 11 12 13 14 15 16 17 18 19 20 Form EIA 457G OMB No. 1905-0092 Expires 1/31/13 2009 RECS Fuel Oil and Kerosene Usage Form Delivery Address: Account Number: $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / Enter the Amount Delivered in Gallons XXXX Type of Fuel Sold was: 1=Fuel Oil #1 2=Fuel Oil #2 3=Kerosene 4=Other Enter the Price per Gallon $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ XXX.XX $ X.XX (select one) 1 2 3 4 MM/DD/YY Page 1 of 2 U.S. Energy Information Administration Independent Statistics & Analysis

240

Google+ virtual field trip: "Vehicle Electrification" (11/18/13) | Argonne  

NLE Websites -- All DOE Office Websites (Extended Search)

Google+ virtual field trip: "Vehicle Electrification" (11/18/13) Google+ virtual field trip: "Vehicle Electrification" (11/18/13) Share Topic Energy Energy efficiency Vehicles Electric drive technology Browse By - Any - Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Diesel ---Electric drive technology ---Hybrid & electric vehicles ---Powertrain research --Building design ---Construction --Manufacturing -Energy sources --Renewable energy ---Bioenergy ---Solar energy --Fossil fuels ---Natural Gas --Nuclear energy ---Nuclear energy modeling & simulation ---Nuclear fuel cycle ---Reactors -Energy usage --Energy storage ---Batteries ----Lithium-ion batteries ----Lithium-air batteries --Electricity transmission --Smart Grid Environment -Biology --Computational biology --Environmental biology

Note: This page contains sample records for the topic "vehicle usage number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Motor vehicles and global warming  

SciTech Connect

Energy use in transportation is one of the contributors to the concern over global warming. The primary greenhouse gases released by the transportation sector are carbon dioxide and chlorofluorocarbons. When all greenhouse gases are considered, CO{sub 2} emissions from the operation of highway vehicles worldwide represent about 4.7% of global warming enhancement. CO{sub 2} emissions from U.S. highway vehicles along represent about 2 to 2.5% of worldwide greenhouse gases. The use of CFCs in automotive air conditioning, in blowing foams for seats and padding and in the manufacture of electronic circuit boards accounted for 15% of the global usage of CFC-12 in 1985 according to the U.S. EPA. The Motor Vehicle Manufacturers Association supports the phase-out of CFC use provided that safe substitutes are available and that adequate lead time is allowed for.They suggest that reduction of greenhouse gases would require planning on a global scope to be effective. One alternative they suggest for further study is a carbon fee for reducing emissions of carbon dioxide. This fee would be levied on each type of fossil fuel, proportional to its carbon content per unit of energy.

Halberstadt, M.L.

1990-03-01T23:59:59.000Z

242

Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation  

NLE Websites -- All DOE Office Websites (Extended Search)

Apps for Vehicles Apps for Vehicles Challenge Spurs Innovation in Vehicle Data to someone by E-mail Share Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Facebook Tweet about Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Twitter Bookmark Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Google Bookmark Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Delicious Rank Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Digg Find More places to share Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on AddThis.com... Apps for Vehicles Challenge Spurs Innovation in Vehicle Data

243

Vehicle barrier  

DOE Patents (OSTI)

A vehicle security barrier which can be conveniently placed across a gate opening as well as readily removed from the gate opening to allow for easy passage. The security barrier includes a barrier gate in the form of a cable/gate member in combination with laterally attached pipe sections fixed by way of the cable to the gate member and lateral, security fixed vertical pipe posts. The security barrier of the present invention provides for the use of cable restraints across gate openings to provide necessary security while at the same time allowing for quick opening and closing of the gate areas without compromising security.

Hirsh, Robert A. (Bethel Park, PA)

1991-01-01T23:59:59.000Z

244

Energy usage of rotating biological contractor facilities  

SciTech Connect

A recent US Environmental Protection Agency field study investigated the energy requirements for rotating biological contactor (RBC) units. The energy measurements for mechanically driven units varied considerably, but the overall average of 2.03 kW/shaft was very close to current manufacturer estimates. The power factor of most of the mechanically driven units was very low, and most installations could benefit from power factor correction. The energy requirements of air driven units also were highly variable and must be evaluated on an individual plant basis. The results of this study provide factual data on energy usage of RBC units, as well as a basis for developing design and operational considerations to reduce energy usage and maximize operational flexibility and plant performance. 9 references, 7 tables.

Gilbert, W.G.; Wheeler, J.F.; MacGregor, A.

1986-01-01T23:59:59.000Z

245

Green Button Helps More Consumers Click with Their Energy Usage...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Helps More Consumers Click with Their Energy Usage Data Green Button Helps More Consumers Click with Their Energy Usage Data September 12, 2013 - 2:41pm Addthis At the White House...

246

Soy Protein ProductsChapter 7 Regulations Regarding Usage  

Science Conference Proceedings (OSTI)

Soy Protein Products Chapter 7 Regulations Regarding Usage Health Nutrition Biochemistry eChapters Health - Nutrition - Biochemistry AOCS Press Downloadable pdf of Chapter 7 Regulations Regarding Usage from the

247

New energy usage patterns in manufacturing  

SciTech Connect

Long term energy demands of industrial societies will exceed energy production capabilities if present usage patterns remain unchanged. Thus the central core of the current energy dilemma involves the change from reliance on petroleum sources to the utilization of more plentiful energy resources. The two energy resources which are plentiful and the technology already exists for their development are coal and uranium. Several concepts of substituting electricity for oil and natural gas are presented.

Hauser, L.G.

1976-01-01T23:59:59.000Z

248

Voltage Vehicles | Open Energy Information  

Open Energy Info (EERE)

Sector Vehicles Product Voltage Vehicles is a nascent, full-service alternative fuel vehicle distributor specializing in the full spectrum of electric vehicles (EV) and...

249

Preliminary Assessment of Overweight Mainline Vehicles  

DOE Green Energy (OSTI)

The Federal Motor Carrier Safety Administration requested information regarding overweight and oversized vehicle traffic entering inspection stations (ISs) in order to develop strategies for future research efforts and possibly help guide regulatory issues involving overweight commercial motor vehicles (CMVs). For a period of one month, inspection stations in Knox County and Greene County, Tennessee, recorded overweight and oversized vehicles that entered these ISs. During this period, 435 CMVs were recorded using an electronic form filled out by enforcement personnel at the IS. Of the 435 CMVs recorded, 381 had weight information documented with them. The majority (52.2%) of the vehicles recorded were five-axle combination vehicles, and 50.6% of all the vehicles were permitted to operate above the legal weight limit in Tennessee, which is 80,000 lb for vehicles with five or more axles. Only 16.8% of the CMVs recorded were overweight gross (11.5% of permitted vehicles) and 54.1% were overweight on an axle group. The low percentage of overweight gross CMVs was because only 45 of the vehicles over 80,000 lb. were not permitted. On average, axles that were overweight were 2,000 lb. over the legal limit for an axle or group of axles. Of the vehicles recorded, 172 vehicles were given a North American Standard (NAS) inspection during the assessment. Of those, 69% of the inspections were driver-only inspections (Level III) and only 25% of the inspections had a vehicle component (such as a Level I or Level II). The remaining 6% of inspections did not have valid Aspen numbers; the type of was inspection unknown. Data collected on the types of trailers of each vehicle showed that about half of the recorded CMVs could realistically be given a Level I (full vehicle and driver) inspection; this estimate was solely based on trailer type. Enforcement personnel at ISs without an inspection pit have difficulty fully inspecting certain vehicles due to low clearance below the trailer. Because of this, overweight and oversized vehicles were normally only given a Level III (driver) inspection; thus, little is known about the safety of these vehicles. The out-of-service (OOS) rate of all the inspected vehicles (driver and vehicle inspections) was 18.6%, while the OOS rate for vehicle inspections (Level I and II) was 52.4%. Future work will focus on performing Level I inspections on five-axle combination tractor-trailers and the types of violations that overweight vehicles may have. This research will be conducted in Tennessee and possibly in other states as well.

Siekmann, Adam [ORNL; Capps, Gary J [ORNL; Lascurain, Mary Beth [ORNL

2011-11-01T23:59:59.000Z

250

Energy Usage Data Standard for US Smart Grid Passes Key ...  

Science Conference Proceedings (OSTI)

Energy Usage Data Standard for US Smart Grid Passes Key Advisory Panel Vote. From NIST Tech Beat: March 1, 2011. ...

2011-03-01T23:59:59.000Z

251

Preliminary evaluation of regulatory and safety issues for sodium-sulfur batteries in electric vehicle applications  

DOE Green Energy (OSTI)

The US Department of Energy (DOE) Electric and Hybrid Vehicle Program is involved in the development and evaluation of sodium-sulfur energy storage batteries for electric vehicle (EV) applications. Laboratory testing of complete battery systems, to be followed by controlled in-vehicle testing and on-road usage, are expected to occur as components of the DOE program during the 1988--1990 time frame. Testing and operation of sodium-sulfur batteries at other DOE contractor facilities may also take place during this time frame. A number of regulatory and safety issues can affect the technical scope, schedule, and cost of the expected programmatic activities. This document describes these issues and requirements, provides a preliminary evaluation of their significance, and lists those critical items that may result from them. The actions needed to permit the conduct of a successful program at DOE contractor facilities are identified, and concerns that could affect the eventual commercialization potential of sodium-sulfur batteries are noted to the extent they are known.

Evans, D.R.; Henriksen, G.L.; Hunt, G.L.

1987-05-01T23:59:59.000Z

252

LEAFing Through New Vehicle Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LEAFing Through New Vehicle Technology LEAFing Through New Vehicle Technology LEAFing Through New Vehicle Technology May 26, 2010 - 11:32am Addthis An artist’s rendering of a Nissan LEAF charging outside a café. | Courtesy The EV Project An artist's rendering of a Nissan LEAF charging outside a café. | Courtesy The EV Project Joshua DeLung Oil and gas price fluctuations and environmental concerns are driving innovators to find new ways to power our vehicles. That's the focus of The EV Project, a new program of ECOtality North America, which was awarded a $114.8 million Recovery Act grant from the U.S. Department of Energy. The EV Project will create a network of charging stations for participants' electric vehicles and gather data on the stations' usage. "As [Energy] Secretary [Steven] Chu rightly pointed out, the only way

253

Vehicle Technologies Office: 2004 Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Archive 4 Archive #352 Automotive Industry Material Usage December 27, 2004 #351 Gasohol Use Is Up December 20, 2004 #350 U.S. Oil Imports: Top Ten Countries of Origin December 13, 2004 #349 Crude Oil Production: OPEC, the Persian Gulf, and the United States December 6, 2004 #348 U.S. Trade Deficit, 2001-2003 November 29, 2004 #347 The Relationship of VMT and GDP November 22, 2004 #346 What Is Made from a Barrel of Crude Oil? November 15, 2004 #345 Vehicle Miles Traveled and the Price of Gasoline November 8, 2004 #344 Refueling Stations November 1, 2004 #343 Reasons for Rejecting a Particular New Car Model October 25, 2004 #342 Passenger Car Sales in China October 18, 2004 #341 Tire Recycling October 11, 2004 #340 Hydrogen Fuel as a Replacement for Gasoline October 4, 2004

254

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

Traction Battery for the ETX-II Vehicle, EGG-EP-9688, IdahoElectric Vehicle Powertrain (ETX-II) Performance: VehicleDevelopment Program - ETX-II, Phase II Technical Report, DOE

Delucchi, Mark

1992-01-01T23:59:59.000Z

255

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

1-5): Electric/Hybrid Vehicles: An Emerging Global Industry,1-5): Electric/Hybrid Vehicles: An Emerging Global Industry,1-5): Electric/Hybrid Vehicles: An Emerging Global Industry,

Delucchi, Mark

1992-01-01T23:59:59.000Z

256

Proceedings of the Neighborhood Electric Vehicle Workshop  

E-Print Network (OSTI)

Electric Vehicle Workshop Proceedings Vehicle Safety DesignElectric Vehicle Workshop Proceedings Federal Motor Vehicle SafetyElectric Vehicle Workshop Proceedings FEDERAL MOTOR VEHICLE SAFETY

Lipman, Timothy

1994-01-01T23:59:59.000Z

257

Hybrid Electric Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Association Conference Transportation Association Conference Vancouver, Canada December 2005 Hybrid Electric Vehicle Testing Jim Francfort U.S. Department of Energy - FreedomCAR & Vehicle Technologies Program, Advanced Vehicle Testing Activity INL/CON-05-00964 Presentation Outline * Background & goals * Testing partners * Hybrid electric vehicle testing - Baseline performance testing (new HEV models) - 1.5 million miles of HEV fleet testing (160k miles per vehicle in 36 months) - End-of-life HEV testing (rerun fuel economy & conduct battery testing @ 160k miles per vehicle) - Benchmark data: vehicle & battery performance, fuel economy, maintenance & repairs, & life-cycle costs * WWW information location Background * Advanced Vehicle Testing Activity (AVTA) - part of the

258

Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NREL. National Clean Fleets partners are investing in hybrid vehicles to reduce their oil use, vehicle emissions and fuel costs. What's Your PEV Readiness Score? PEV readiness...

259

Vehicles | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

The U.S. Department of Energy (DOE) supports the development and deployment of advanced vehicle technologies, including advances in electric vehicles, engine efficiency, and...

260

Vehicles and Fuels  

Energy.gov (U.S. Department of Energy (DOE))

Learn more about exciting technologies and ongoing research in alternative and advanced vehiclesor vehicles that run on fuels other than traditional petroleum.

Note: This page contains sample records for the topic "vehicle usage number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Vehicle Technologies Office: Features  

NLE Websites -- All DOE Office Websites (Extended Search)

Event June 2013 The eGallon Tool Advances Deployment of Electric Vehicles May 2013 Vehicle Technologies Office Recognizes Outstanding Researchers December 2012 Apps for...

262

Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

Volt Vehicle Summary Report: April - June 2013 (PDF 1.3MB) EV Project Electric Vehicle Charging Infrastructure Summary Report: April - June 2013 (PDF 11MB) Residential...

263

Vehicle Technologies Office: Vehicle Technologies Office Organization...  

NLE Websites -- All DOE Office Websites (Extended Search)

Organization and Contacts Organization Chart for the Vehicle Technologies Program Fuel Technologies and Deployment, Technology Managers Advanced Combustion Engines, Technology...

264

"Table HC11.13 Lighting Usage Indicators by Northeast Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Lighting Usage Indicators by Northeast Census Region, 2005" 3 Lighting Usage Indicators by Northeast Census Region, 2005" " Million U.S. Housing Units" ,,"Northeast Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total Northeast" "Lighting Usage Indicators",,,"Middle Atlantic","New England" "Total U.S. Housing Units",111.1,20.6,15.1,5.5 "Indoor Lights Turned On During Summer" "Number of Lights Turned On" "Between 1 and 4 Hours per Day",91.8,16.8,12.2,4.6 "1.",28.6,5,3.5,1.5 "2.",29.5,6.2,4.8,1.4 "3.",14.7,2.5,1.7,0.8 "4.",9.3,1.5,1.1,0.4 "5 or More",9.7,1.6,1.1,0.5 "Energy-Efficient Bulbs Used",31.1,5.2,3.6,1.6

265

"Table HC13.13 Lighting Usage Indicators by South Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Lighting Usage Indicators by South Census Region, 2005" 3 Lighting Usage Indicators by South Census Region, 2005" " Million U.S. Housing Units" ,,"South Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total South" "Lighting Usage Indicators",,,"South Atlantic","East South Central","West South Central" "Total U.S. Housing Units",111.1,40.7,21.7,6.9,12.1 "Indoor Lights Turned On During Summer" "Number of Lights Turned On" "Between 1 and 4 Hours per Day",91.8,33.8,17.5,6.1,10.3 "1.",28.6,11.2,6.5,1.5,3.2 "2.",29.5,10.5,5.4,2,3.1 "3.",14.7,5,2.1,1.2,1.7 "4.",9.3,3.4,1.5,0.8,1.2 "5 or More",9.7,3.7,1.9,0.6,1.2

266

"Table HC14.13 Lighting Usage Indicators by West Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Lighting Usage Indicators by West Census Region, 2005" 3 Lighting Usage Indicators by West Census Region, 2005" " Million U.S. Housing Units" ,,"West Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total West" "Lighting Usage Indicators",,,"Mountain","Pacific" "Total U.S. Housing Units",111.1,24.2,7.6,16.6 "Indoor Lights Turned On During Summer" "Number of Lights Turned On" "Between 1 and 4 Hours per Day",91.8,19.5,6.1,13.4 "1.",28.6,6.1,1.7,4.4 "2.",29.5,6.3,1.8,4.5 "3.",14.7,3.1,1.1,2 "4.",9.3,1.9,0.6,1.3 "5 or More",9.7,2,0.8,1.2 "Energy-Efficient Bulbs Used",31.1,8.6,2.3,6.3 "1.",14.6,3.6,1,2.6

267

Model-Based Analysis of Electric Drive Options for Medium-Duty Parcel Delivery Vehicles: Preprint  

DOE Green Energy (OSTI)

Medium-duty vehicles are used in a broad array of fleet applications, including parcel delivery. These vehicles are excellent candidates for electric drive applications due to their transient-intensive duty cycles, operation in densely populated areas, and relatively high fuel consumption and emissions. The National Renewable Energy Laboratory (NREL) conducted a robust assessment of parcel delivery routes and completed a model-based techno-economic analysis of hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle configurations. First, NREL characterized parcel delivery vehicle usage patterns, most notably daily distance driven and drive cycle intensity. Second, drive-cycle analysis results framed the selection of drive cycles used to test a parcel delivery HEV on a chassis dynamometer. Next, measured fuel consumption results were used to validate simulated fuel consumption values derived from a dynamic model of the parcel delivery vehicle. Finally, NREL swept a matrix of 120 component size, usage, and cost combinations to assess impacts on fuel consumption and vehicle cost. The results illustrated the dependency of component sizing on drive-cycle intensity and daily distance driven and may allow parcel delivery fleets to match the most appropriate electric drive vehicle to their fleet usage profile.

Barnitt, R. A.; Brooker, A. D.; Ramroth, L.

2010-12-01T23:59:59.000Z

268

Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Maximizing Alternative Maximizing Alternative Fuel Vehicle Efficiency to someone by E-mail Share Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Facebook Tweet about Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Twitter Bookmark Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Google Bookmark Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Delicious Rank Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Digg Find More places to share Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines

269

Vehicle Technologies Office: Fact #257: March 3, 2003 Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

7: March 3, 2003 Vehicle Occupancy by Type of Vehicle to someone by E-mail Share Vehicle Technologies Office: Fact 257: March 3, 2003 Vehicle Occupancy by Type of Vehicle on...

270

Vehicle Technologies Office: Fact #253: February 3, 2003 Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

3: February 3, 2003 Vehicle Age by Type of Vehicle to someone by E-mail Share Vehicle Technologies Office: Fact 253: February 3, 2003 Vehicle Age by Type of Vehicle on Facebook...

271

Advanced Vehicle Testing Activity: Light-Duty Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Light-Duty Light-Duty Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Light-Duty Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Light-Duty Vehicles on Twitter Bookmark Advanced Vehicle Testing Activity: Light-Duty Vehicles on Google Bookmark Advanced Vehicle Testing Activity: Light-Duty Vehicles on Delicious Rank Advanced Vehicle Testing Activity: Light-Duty Vehicles on Digg Find More places to share Advanced Vehicle Testing Activity: Light-Duty Vehicles on AddThis.com... Home Overview Light-Duty Vehicles Alternative Fuel Vehicles Plug-in Hybrid Electric Vehicles Hybrid Electric Vehicles Micro Hybrid Vehicles ARRA Vehicle and Infrastructure Projects EVSE Testing Energy Storage Testing Hydrogen Internal Combustion Engine Vehicles Other ICE

272

Department of Energy Federal Acquisition Regulation Clause Usage Guide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Type of Contract: FP SUP Fixed-Price Supply CR SUP Cost-Reimbursement Supply FP SVC Fixed-Price Service CR SVC Cost Reimbursement Service FP CON Fixed-Price Construction CR CON Cost Reimbursement Construction T&M LH Time & Material, Labor Hours FP A-E Fixed Price Architect-Engineer CR A-E Cost Reimbursement Architect-Engineer Comm. Items Commercial Items M&O Management & Operating Other Fac. Mgmt. Other Facility Management SAP Simplified Acquisition Procedures Clause Usage R Required A Required When Applicable NA Not Applicable Provision or Clause (Click on clause number to see its text and prescription FP Sup. CR Sup. FP Serv. Cost Serv. FP Cons. Cost Cons. T&M. L.H. FP A- E Cost A-E Com. Items. M&O Other

273

An assessment of worldwide supercomputer usage  

SciTech Connect

This report provides a comparative study of advanced supercomputing usage in Japan and the United States as of Spring 1994. It is based on the findings of a group of US scientists whose careers have centered on programming, evaluating, and designing high-performance supercomputers for over ten years. The report is a follow-on to an assessment of supercomputing technology in Europe and Japan that was published in 1993. Whereas the previous study focused on supercomputer manufacturing capabilities, the primary focus of the current work was to compare where and how supercomputers are used. Research for this report was conducted through both literature studies and field research in Japan.

Wasserman, H.J.; Simmons, M.L.; Hayes, A.H.

1995-01-01T23:59:59.000Z

274

Environmental concerns related to natural gas vehicles  

Science Conference Proceedings (OSTI)

Vehicles powered by natural gas are currently used in the United States and other parts of the world. While the number of such vehicles in the US is small, the potential exists for substantial growth. For that reason and because natural gas-fueled vehicles have different performance, emission, and safety characteristics than do gasoline- or diesel-fueled vehicles, a study was conducted to document the environmental concerns related to natural gas vhicles. These concerns include those related to vehicle emissions and air quality regulations, safety hazards and regulations, natural gas supply, regulation of natural gas sales, and institutional impacts. This paper reports the results of that study, updated to include the results of several more recent analyses. The paper concludes in particular that while both the safety and emissions records of these vehicles appear satisfactory to date, a comprehensive data base exists in neither area.

Singh, M.K.; Moses, D.O.

1985-01-01T23:59:59.000Z

275

EV Project Nissan Leaf Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

data anomalies. 2012 ECOtality 10232012 9:52:44 AM INLMIS-11-21904 Page 1 of 12 EV Project Nissan Leaf Vehicle Summary Report Region: Phoenix, AZ Metropolitan Area Number...

276

EV Project NIssan Leaf Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

GPS data anomalies. 2012 ECOtality 532012 5:30:52 PM INLMIS-11-21904 Page 1 of 12 EV Project Nissan Leaf Vehicle Summary Report Region: Phoenix, AZ Metropolitan Area Number...

277

EV Project NIssan Leaf Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

events 78% 21% 1% 2011 ECOtality 8102011 1:34:23 PM INLMIS-11-21904 Page 1 of 10 EV Project Nissan Leaf Vehicle Summary Report Region: Phoenix, AZ Metropolitan Area Number...

278

EV Project Nissan Leaf Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

GPS data anomalies. 2012 ECOtality 212013 8:31:28 AM INLMIS-11-21904 Page 1 of 15 EV Project Nissan Leaf Vehicle Summary Report Region: Phoenix, AZ Metropolitan Area Number...

279

EV Project Nissan Leaf Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

data anomalies. 2013 ECOtality 4232013 11:20:12 AM INLMIS-11-21904 Page 1 of 17 EV Project Nissan Leaf Vehicle Summary Report Region: Phoenix, AZ Metropolitan Area Number...

280

EV Project NIssan Leaf Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

events 78% 17% 5% 2011 ECOtality 1262012 2:19:55 PM INLMIS-11-21904 Page 1 of 12 EV Project Nissan Leaf Vehicle Summary Report Region: Phoenix, AZ Metropolitan Area Number...

Note: This page contains sample records for the topic "vehicle usage number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

EV Project Nissan Leaf Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

GPS data anomalies. 2012 ECOtality 7312012 6:48:45 PM INLMIS-11-21904 Page 1 of 12 EV Project Nissan Leaf Vehicle Summary Report Region: Phoenix, AZ Metropolitan Area Number...

282

Reducing Energy Usage in Extractive Distillation  

E-Print Network (OSTI)

Butadiene 1:3 is separated from other C4-hydrocarbons by extractive distillation in a sieve plate tower. Prior to the development work to be described, the pressure in the extraction tower was controlled at a fixed value. The tower pressure-boilup control loop did not behave satisfactorily in the presence of non-condensables which entered with the feed. The capacity of the flooded reflux drum condenser for the tower was limiting production during summer months. The tower pressure control loop was put on manual. The pressure was allowed to drop to its lowest attainable value for the existing conditions of boilup and condenser cooling capability. This manner of operation is known as floating pressure control. By taking advantage of the higher relative volatility at the lower tower pressure, energy usage was reduced and there was an increase in production capacity. The tower operation at a lower temperature reduced tower and reboiler fouling. Substantial savings have resulted from these improvements. The annual energy consumption has been reduced by 25% and maximum productive capacity is higher by 15%. The rate of tower and reboiler fouling has not been fully quantified but is greatly reduced. A more stable tower operation has also contributed to higher productivity and reduced energy usage. Venting of non-condensables does not affect tower stability and the operators have adapted well to the new control strategy.

Saxena, A. C.; Bhandari, V. A.

1985-05-01T23:59:59.000Z

283

Vehicle Technologies Office: About the Vehicle Technologies Office: Moving  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Vehicle About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles to someone by E-mail Share Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Facebook Tweet about Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Twitter Bookmark Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Google Bookmark Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Delicious Rank Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Digg Find More places to share Vehicle Technologies Office: About the

284

Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

9: August 6, 9: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts to someone by E-mail Share Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Facebook Tweet about Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Twitter Bookmark Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Google Bookmark Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Delicious

285

Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

5: November 25, 5: November 25, 2013 Vehicle Technology Penetration to someone by E-mail Share Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Facebook Tweet about Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Twitter Bookmark Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Google Bookmark Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Delicious Rank Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Digg Find More places to share Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on AddThis.com... Fact #805: November 25, 2013

286

Alternative Fuels and Advanced Vehicle Technologies: Information Resources (Brochure)  

DOE Green Energy (OSTI)

A Clean Cities brochure listing and describing Web sites and telephone numbers of resources for people interested in alternative fuels and advanced vehicle technologies.

Not Available

2004-02-01T23:59:59.000Z

287

New Lower Bounds for the Vehicle Routing Problem with ...  

E-Print Network (OSTI)

with 50-199 customers, while the third contains 12 instances with 100-200 customers. The number of vehicles is not explicitly specified in these 66 instances.

288

ChargePoint America Vehicle Charging Infrastructure Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

ChargePoint America Vehicle Charging Infrastructure Summary Report Project Status to Date through: March 2012 Number of Charging Units Charging Electricity Charging Unit -...

289

Vehicle Technologies Office: Ambassadors  

NLE Websites -- All DOE Office Websites (Extended Search)

Ambassadors to someone Ambassadors to someone by E-mail Share Vehicle Technologies Office: Ambassadors on Facebook Tweet about Vehicle Technologies Office: Ambassadors on Twitter Bookmark Vehicle Technologies Office: Ambassadors on Google Bookmark Vehicle Technologies Office: Ambassadors on Delicious Rank Vehicle Technologies Office: Ambassadors on Digg Find More places to share Vehicle Technologies Office: Ambassadors on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness Workforce Development Plug-in Electric Vehicle Basics Ambassadors Workplace Charging Challenge Clean Cities Coalitions Clean Cities logo. Clean Cities National: A network of nearly 100 Clean Cities coalitions, supported by the

290

MOTOR POOL RESERVATIONS Reservation Number:_______________  

E-Print Network (OSTI)

MOTOR POOL RESERVATIONS Reservation Number:_______________ Evanston campus: Chicago campus: 2020: 312/503-9243 E-mail: motor-pool@northwestern.edu E-mail: motor-pool@northwestern.edu Hours: 8:00 a reservations require the "Organization Authorization for University Vehicles" form to be faxed to Motor Pool

Shull, Kenneth R.

291

DOE Hydrogen Analysis Repository: Advanced Vehicle Introduction...  

NLE Websites -- All DOE Office Websites (Extended Search)

Keywords: Vehicle characteristics; market penetration; advanced technology vehicles; hybrid electric vehicle (HEV) Purpose Vehicle Choice Model - Estimate market penetration...

292

Accelerating Electric Vehicle Deployment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accelerating Electric Vehicle Deployment Accelerating Electric Vehicle Deployment Accelerating Electric Vehicle Deployment Accelerating Electric Vehicle Deployment More Documents &...

293

Improving Grid Performance with Electric Vehicle Charging 2011San Diego Gas & Electric Company. All copyright and trademark rights reserved.  

E-Print Network (OSTI)

demand of 40 all-electric Advanced Energy PEV Usage Study vehicles as maximum kW demand at each 15 minute to a hairdryer) per PEV in the population · Instantaneous demand, 40 all-electric vehicles for one day (8 hour. 48 kW / 40 vehicles = 1.2 kW per EV in the population, at highest- load moment #12;Demand, Net

California at Davis, University of

294

Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

6: February 9, 6: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled to someone by E-mail Share Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Facebook Tweet about Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Twitter Bookmark Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Google Bookmark Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Delicious Rank Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Digg Find More places to share Vehicle Technologies Office: Fact #306:

295

2010 Vehicle Technologies Market Report  

Science Conference Proceedings (OSTI)

In the past five years, vehicle technologies have advanced on a number of fronts: power-train systems have become more energy efficient, materials have become more lightweight, fuels are burned more cleanly, and new hybrid electric systems reduce the need for traditional petroleum-fueled propulsion. This report documents the trends in market drivers, new vehicles, and component suppliers. This report is supported by the U.S. Department of Energy s (DOE s) Vehicle Technologies Program, which develops energy-efficient and environmentally friendly transportation technologies that will reduce use of petroleum in the United States. The long-term aim is to develop "leap frog" technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.

Ward, Jacob [U.S. Department of Energy; Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL

2011-06-01T23:59:59.000Z

296

Building Energy Software Tools Directory: Energy Usage Forecasts  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Usage Forecasts Energy Usage Forecasts Energy Usage Forecasts Quick and easy web-based tool that provides free 14-day ahead energy usage forecasts based on the degree day forecasts for 1,200 stations in the U.S. and Canada. The user enters the daily non-weather base load and the usage per degree day weather factor; the tool applies the degree day forecast and displays the total energy usage forecast. Helpful FAQs explain the process and describe various options for the calculation of the base load and weather factor. Historical degree day reports and 14-day ahead degree day forecasts are available from the same site. Keywords degree days, historical weather, mean daily temperature, load calculation, energy simulation Validation/Testing Degree day data provided by AccuWeather.com, updated daily at 0700.

297

Cleaning optimization for reduced chemical usage  

SciTech Connect

The use of dilute SC-1 (NH40H:H202:H20) chemistry cleaning processes for particle removal from silicon surfaces has been investigated. Dilute chemistries can be highly effective, especially when high- frequency acoustic energy (megasonics) is applied. The high particle removal efficacy of the dilute chemistry processes presumably arises due to increased double layer effects caused by reduced ionic strength. Dilute chemistry SC- I solutions exhibit somewhat reduced efficacy for removal of certain light organics; however, when dilute SC-1 is used along with other pre-gate cleaning steps (e.g. HF, SC-2, and piranha), then the overall cleaning sequence is quite effective. In addition to providing robust cleaning processes, dilute chemistries also result in significantly lower chemical and rinse water usage. Waste water treatment requirements are also lessened when dilute chemistry cleaning solutions are employed.

Resnick, P.J.; Simonson, G.C.; Matlock, C.A.; Kelly, M.J.

1996-11-01T23:59:59.000Z

298

Chapter 3. Vehicle-Miles Traveled  

U.S. Energy Information Administration (EIA) Indexed Site

3. Vehicle-Miles Traveled 3. Vehicle-Miles Traveled Chapter 3. Vehicle-Miles Traveled Vehicle-miles traveled--the number of miles that residential vehicles are driven--is probably the most important information collected by the Residential Transportation Energy Consumption Survey. Using the data on vehicle-miles traveled allows analysts to answer such questions as: "Are minivans driven more than passenger cars?" "Do people in the West drive more than people elsewhere?" "Do people conserve their new cars by driving them less?" "Who drives more--people in households with children, or other people?" "At what ages do people drive the most?" "How does growing income affect the amount of driving?" In addition to answering those kinds of questions, analysts also use the number of vehicle-miles traveled to compute estimated, on-road vehicle fuel consumption, economy, and expenditures, all of which have important implications for U.S. energy policy and national security (see Chapter 4).

299

Advanced Vehicle Testing Activity: Urban Electric Vehicle Special...  

NLE Websites -- All DOE Office Websites (Extended Search)

Special Projects to someone by E-mail Share Advanced Vehicle Testing Activity: Urban Electric Vehicle Special Projects on Facebook Tweet about Advanced Vehicle Testing Activity:...

300

Advanced Vehicle Testing Activity: Full-Size Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing Reports to someone by E-mail Share Advanced Vehicle Testing Activity: Full-Size Electric Vehicle Testing Reports on Facebook Tweet about Advanced Vehicle Testing Activity:...

Note: This page contains sample records for the topic "vehicle usage number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Advanced Vehicle Testing Activity: Electric Vehicle Supply Equipment...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Supply Equipment (EVSE) Testing The Advanced Vehicle Testing Activity is tasked by the U.S. Department of Energy's (DOE) Vehicle Technologies Office (VTO) to...

302

Advanced Vehicle Testing Activity: Urban Electric Vehicle Testing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing Reports to someone by E-mail Share Advanced Vehicle Testing Activity: Urban Electric Vehicle Testing Reports on Facebook Tweet about Advanced Vehicle Testing Activity:...

303

Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles  

E-Print Network (OSTI)

The Images of Hybrid Vehicles Each of the householdsbetween hybrid and non-hybrid vehicles was observed in smallowned Honda Civic Hybrids, vehicles that are virtually

Heffner, Reid R.; Kurani, Ken; Turrentine, Tom

2005-01-01T23:59:59.000Z

304

Advanced Vehicle Testing Activity: Urban Electric Vehicle Specificatio...  

NLE Websites -- All DOE Office Websites (Extended Search)

Test Procedures to someone by E-mail Share Advanced Vehicle Testing Activity: Urban Electric Vehicle Specifications and Test Procedures on Facebook Tweet about Advanced Vehicle...

305

Advanced Vehicle Testing Activity: Full-Size Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects to someone by E-mail Share Advanced Vehicle Testing Activity: Full-Size Electric Vehicle Special Projects on Facebook Tweet about Advanced Vehicle Testing Activity:...

306

Advanced Vehicle Testing Activity: Hybrid Electric Vehicle Testing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing Reports to someone by E-mail Share Advanced Vehicle Testing Activity: Hybrid Electric Vehicle Testing Reports on Facebook Tweet about Advanced Vehicle Testing Activity:...

307

Advanced Vehicle Testing Activity: Hybrid Electric Vehicle Specificati...  

NLE Websites -- All DOE Office Websites (Extended Search)

Test Procedures to someone by E-mail Share Advanced Vehicle Testing Activity: Hybrid Electric Vehicle Specifications and Test Procedures on Facebook Tweet about Advanced Vehicle...

308

Advanced Vehicle Testing Activity: Full-Size Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Procedures to someone by E-mail Share Advanced Vehicle Testing Activity: Full-Size Electric Vehicle Specifications and Test Procedures on Facebook Tweet about Advanced Vehicle...

309

Advanced Vehicle Testing Activity: Electric Vehicle Supply Equipment...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Supply Equipment (EVSE) Testing to someone by E-mail Share Advanced Vehicle Testing Activity: Electric Vehicle Supply Equipment (EVSE) Testing on Facebook Tweet...

310

Integrate Real-Time Weather with Thermostat Electrical Usage...  

NLE Websites -- All DOE Office Websites (Extended Search)

Xiufeng Pang Weather and its dynamics are big drivers of energy usage. Integration of key weather variables - solar, wind, and temperature - into home energy management and demand...

311

Form EIA-457E (2001) -- Household Bottled Gas Usage  

Annual Energy Outlook 2012 (EIA)

Fuel Oil or Kerosene Usage Form OMB No. 1905-0092, Expiring February 29, 2004 2001 Residential Energy Consumption Survey Answers to Frequently Asked Questions About the...

312

POWER PLANT WATER USAGE AND LOSS STUDY - Final  

NLE Websites -- All DOE Office Websites (Extended Search)

POWER PLANT WATER USAGE AND LOSS STUDY August 2005 Revised May 2007 Prepared for: The United States Department of Energy National Energy Technology Laboratory DOE Gasification...

313

Child Care Availability and Usage Among Welfare Recipients  

E-Print Network (OSTI)

Child Care Availability and Usage Among Welfare Recipients 1the impact that the availability of nearby licensed care hasemployment and that the availability of nearby licensed care

Houston, Douglas; Ong, Paul M.

2003-01-01T23:59:59.000Z

314

NANOFAB TOOL USAGE RATES Effective 1/1/13  

Science Conference Proceedings (OSTI)

... Application specific training beyond general tool usage will require additional training time and should be discussed with process engineer prior to ...

2013-07-18T23:59:59.000Z

315

Search for Model Year 2014 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Type Model Year: 2014 Select Class... Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Plug-in Hybrid Vehicles...

316

Search for Model Year 2000 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

317

Vehicle Technologies Office: Lubricants  

NLE Websites -- All DOE Office Websites (Extended Search)

Lubricants to someone by Lubricants to someone by E-mail Share Vehicle Technologies Office: Lubricants on Facebook Tweet about Vehicle Technologies Office: Lubricants on Twitter Bookmark Vehicle Technologies Office: Lubricants on Google Bookmark Vehicle Technologies Office: Lubricants on Delicious Rank Vehicle Technologies Office: Lubricants on Digg Find More places to share Vehicle Technologies Office: Lubricants on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Fuel Effects on Combustion Lubricants Natural Gas Research Biofuels End-Use Research Materials Technologies Lubricants As most vehicles are on the road for more than 15 years before they are retired, investigating technologies that will improve today's vehicles is

318

Advanced Technology Vehicle Testing  

DOE Green Energy (OSTI)

The light-duty vehicle transportation sector in the United States depends heavily on imported petroleum as a transportation fuel. The Department of Energys Advanced Vehicle Testing Activity (AVTA) is testing advanced technology vehicles to help reduce this dependency, which would contribute to the economic stability and homeland security of the United States. These advanced technology test vehicles include internal combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban electric vehicles, and electric ground support vehicles. The AVTA tests and evaluates these vehicles with closed track and dynamometer testing methods (baseline performance testing) and accelerated reliability testing methods (accumulating lifecycle vehicle miles and operational knowledge within 1 to 1.5 years), and in normal fleet environments. The Arizona Public Service Alternative Fuel Pilot Plant and H2-fueled vehicles are demonstrating the feasibility of using H2 as a transportation fuel. Hybrid, neighborhood, and urban electric test vehicles are demonstrating successful applications of electric drive vehicles in various fleet missions. The AVTA is also developing electric ground support equipment (GSE) test procedures, and GSE testing will start during the fall of 2003. All of these activities are intended to support U.S. energy independence. The Idaho National Engineering and Environmental Laboratory manages these activities for the AVTA.

James Francfort

2003-11-01T23:59:59.000Z

319

Advanced Vehicle Testing Activity: Alternative Fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

are vehicles designed to operate on alternative fuels such as compressed and liquefied natural gas, liquefied petroleum gas (propane), ethanol, biodiesel, electricity, and...

320

Advanced Vehicle Testing Activity - Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Hyundai Sonata (4932) Battery Report 2010 Ultra-Battery Honda Civic Battery Report Some hybrid electric vehicles (HEVs) combine a conventional internal combustion engine (using...

Note: This page contains sample records for the topic "vehicle usage number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Advanced Vehicle Testing Activity: Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

motor of an electric vehicle. Other hybrids combine a fuel cell with batteries to power electric propulsion motors. Fuel Cell Concept: Fuel passes through an anode, electrolyte,...

322

Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Medium- and Medium- and Heavy-Duty Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Twitter Bookmark Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Google Bookmark Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Delicious Rank Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Digg Find More places to share Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on AddThis.com... Home Overview Light-Duty Vehicles Medium- and Heavy-Duty Vehicles Transit Vehicles Trucks Idle Reduction Oil Bypass Filter Airport Ground Support Equipment Medium and Heavy Duty Hybrid Electric Vehicles

323

Ethanol fuel modification for highway vehicle use. Final report  

DOE Green Energy (OSTI)

A number of problems that might occur if ethanol were used as a blending stock or replacement for gasoline in present cars are identified and characterized as to the probability of occurrence. The severity of their consequences is contrasted to those found with methanol in a previous contract study. Possibilities for correcting several problems are reported. Some problems are responsive to fuel modifications but others require or are better dealt with by modification of vehicles and the bulk fuel distribution system. In general, problems with ethanol in blends with gasoline were found to be less severe than those with methanol. Phase separation on exposure to water appears to be the major problem with ethanol/gasoline blends. Another potentially serious problem with blends is the illict recovery of ethanol for beverage usage, or bootlegging, which might be discouraged by the use of select denaturants. Ethanol blends have somewhat greater tendency to vapor lock than base gasoline but less than methanol blends. Gasoline engines would require modification to operate on fuels consisting mostly of ethanol. If such modifications were made, cold starting would still be a major problem, more difficult with ethanol than methanol. Startability can be provided by adding gasoline or light hydrocarbons. Addition of gasoline also reduces the explosibility of ethanol vapor and furthermore acts as denaturant.

Not Available

1980-01-01T23:59:59.000Z

324

Vehicle Research Laboratory - FEERC  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Research Laboratory Vehicle Research Laboratory Expertise The overall FEERC team has been developed to encompass the many disciplines necessary for world-class fuels, engines, and emissions-related research, with experimental, analytical, and modeling capabilities. Staff members specialize in areas including combustion and thermodynamics, emissions measurements, analytical chemistry, catalysis, sensors and diagnostics, dynamometer cell operations, engine controls and control theory. FEERC engineers have many years of experience in vehicle research, chassis laboratory development and operation, and have developed specialized systems and methods for vehicle R&D. Selected Vehicle Research Topics In-use investigation of Lean NOx Traps (LNTs). Vehicle fuel economy features such as lean operation GDI engines,

325

Emission Impacts of Electric Vehicles  

E-Print Network (OSTI)

greenhouse effect, and electric vehicles," Proceedingso/9thInternational Electric Vehicles Symposium, 1988. 14. R. M.of 9th International Electric Vehicles Sympo- sium, 1988.

Wang, Quanlu; DeLuchi, Mark A.; Sperling, Daniel

1990-01-01T23:59:59.000Z

326

The Case for Electric Vehicles  

E-Print Network (OSTI)

land Press, 1995 TESTING ELECTRIC VEHICLE DEMAND IN " HYBRIDThe Case for Electric Vehicles DanieI Sperlmg Reprint UCTCor The Case for Electric Vehicles Darnel Sperling Institute

Sperling, Daniel

2001-01-01T23:59:59.000Z

327

Alternative Fuels Data Center: Flexible Fuel Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Diesel Vehicles Electricity | Hybrid & Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane |...

328

Alternative Fuels Data Center: Vehicle Conversions  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Diesel Vehicles Electricity | Hybrid & Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane |...

329

Vehicle Detection by Sensor Network Nodes  

E-Print Network (OSTI)

frequency. Table 4.2: ? and ? Ground truth (# of vehicles)truth (# of vehicles) Detection result (# of vehicles) Tabletruth ( of vehicles) Detection result ( of vehicles) Table

Ding, Jiagen; Cheung, Sing-Yiu; Tan, Chin-woo; Varaiya, Pravin

2004-01-01T23:59:59.000Z

330

File:06TXAExtraLegalVehiclePermittingProcess.pdf | Open Energy Information  

Open Energy Info (EERE)

TXAExtraLegalVehiclePermittingProcess.pdf TXAExtraLegalVehiclePermittingProcess.pdf Jump to: navigation, search File File history File usage Metadata File:06TXAExtraLegalVehiclePermittingProcess.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 43 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 09:13, 10 June 2013 Thumbnail for version as of 09:13, 10 June 2013 1,275 × 1,650 (43 KB) Abergfel (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information) File usage The following page links to this file: GRR/Section 6-TX-a - Extra-Legal Vehicle Permitting Process

331

A hybrid GA-TS algorithm for open vehicle routing optimization of coal mines material  

Science Conference Proceedings (OSTI)

In the open vehicle routing problem (OVRP), the objective is to minimize the number of vehicles and the total distance (or time) traveled. This study primarily focuses on solving an open vehicle routing problem (OVRP) by applying a novel hybrid genetic ... Keywords: Coal mine material, Genetic algorithms, Hybrid, Open vehicle routing problem, Optimize, Tabu search

Shiwei Yu; Chang Ding; Kejun Zhu

2011-08-01T23:59:59.000Z

332

On the tour partitioning heuristic for the unit demand capacitated vehicle routing problem  

Science Conference Proceedings (OSTI)

The tour partitioning heuristic for the vehicle routing problem assumes an unlimited supply of vehicles. If the number of vehicles is fixed, this heuristic may produce infeasible solutions. We modify the heuristic to guarantee feasibility in this situation ... Keywords: Analysis of algorithms, Heuristic algorithm, Vehicle routing problem

Herbert F. Lewis; Thomas R. Sexton

2007-05-01T23:59:59.000Z

333

Vehicle Technologies Office: Fact #586: August 31, 2009 New Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

6: August 31, 2009 New Vehicle Fuel Economies by Vehicle Type to someone by E-mail Share Vehicle Technologies Office: Fact 586: August 31, 2009 New Vehicle Fuel Economies by...

334

Advanced Vehicle Testing Activity - Stop-Start Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Stop-Start Vehicles Stop-start Vehicles allow the internal combustion engine to shut-down when the vehicle stops in traffic, and re-start quickly to launch the vehicle. Fuel is...

335

Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-in Hybrid Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing...

336

Advanced Vehicle Testing Activity: Full-Size Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Full-Size Electric Vehicle Basics to someone by E-mail Share Advanced Vehicle Testing Activity: Full-Size Electric Vehicle Basics on Facebook Tweet about Advanced Vehicle Testing...

337

Advanced Vehicle Testing Activity: Full-Size Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Full-Size Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Full-Size Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity:...

338

Vehicle Technologies Office: Plug-in Electric Vehicle Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-in Electric Vehicle Basics to someone by E-mail Share Vehicle Technologies Office: Plug-in Electric Vehicle Basics on Facebook Tweet about Vehicle Technologies Office: Plug-in...

339

Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per  

NLE Websites -- All DOE Office Websites (Extended Search)

5: September 15, 5: September 15, 2003 Vehicles per Thousand People: An International Comparison to someone by E-mail Share Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Facebook Tweet about Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Twitter Bookmark Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Google Bookmark Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Delicious Rank Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Digg

340

2007 Nissan Altima-7982 Hybrid Electric Vehicle Battery Test Results  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Nissan Altima hybrid electric vehicle (Vin Number 1N4CL21E27C177982). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Grey; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle usage number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

2006 Toyota Highlander-5681 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Highlander hybrid electric vehicle (Vin Number JTEDW21A860005681). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

342

2006 Toyota Highlander-6395 Hyrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Highlander hybrid electric vehicle (Vin Number JTEDW21A160006395). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

343

2007 Nissan Altima-7982 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Nissan Altima hybrid electric vehicle (Vin Number 1N4CL21E27C177982). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Grey; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

344

2007 Toyota Camry-7129 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Camry hybrid electric vehicle (Vin Number JTNBB46K773007129). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

345

2007 Toyota Camry-7129 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Camry hybrid electric vehicle (Vin Number JTNBB46K773007129). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

346

2006 Toyota Highlander-6395 Hyrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Highlander hybrid electric vehicle (Vin Number JTEDW21A160006395). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

347

2006 Toyota Highlander-5681 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Highlander hybrid electric vehicle (Vin Number JTEDW21A860005681). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

348

Usage derived recommendations for a video digital library  

Science Conference Proceedings (OSTI)

We describe a minimalist methodology to develop usage-based recommender systems for multimedia digital libraries. A prototype recommender system based on this strategy was implemented for the Open Video Project, a digital library of videos that are freely ... Keywords: Open Video Project, Recommender systems, Usage analysis, Video

Johan Bollen; Michael L. Nelson; Gary Geisler; Raquel Araujo

2007-08-01T23:59:59.000Z

349

Towards appliance usage prediction for home energy management  

Science Conference Proceedings (OSTI)

In this paper, we address the problem of predicting the usage of home appliances where a key challenge is to model the everyday routine of homeowners and the inter-dependency between the use of different appliances. To this end, we propose an agent based ... Keywords: home energy management, usage prediction

Ngoc Cuong Truong, Long Tran-Thanh, Enrico Costanza, Sarvapali D. Ramchurn

2013-01-01T23:59:59.000Z

350

Cloud resource usage: extreme distributions invalidating traditional capacity planning models  

Science Conference Proceedings (OSTI)

For years Capacity Planning professionals knew or suspected that various characteristics of computer usage have non-normal distribution. At the same time much of the traditional workload modeling and forecasting is based on mathematical techniques assuming ... Keywords: capacity planning, power law, probability distributions, resource usage, volatility

Charles Z. Loboz

2011-06-01T23:59:59.000Z

351

Who owns leaded fuel vehicles: impact of the phasedown  

DOE Green Energy (OSTI)

The US Environmental Protection Agency has promulgated regulations lowering the allowable level of lead in gasoline from 1.1 g/gal to 0.1 g/gal on January 1, 1986. Impacts of this action on minority groups were assessed in this study, focusing on household ownership of leaded-fuel vehicles, and on the number of small children residing in the households. The number of vehicles requiring leaded gasoline is declining rapidly, from 67.4 million in 1981 to 28.1 million in 1986, and 18.6 million in 1988. The share of vehicle-miles traveled by these vehicles will fall from 40% in 1981 to less than 10% in 1988. Leaded-gasoline vehicles are held by all types of households; the ownership pattern for these older vehicles is very similar to the pattern for all vehicles owned by households grouped by race of householder or region.

LaBelle, S.

1985-04-01T23:59:59.000Z

352

Vehicle Technologies Office: Favorites  

NLE Websites -- All DOE Office Websites (Extended Search)

Favorites to someone by Favorites to someone by E-mail Share Vehicle Technologies Office: Favorites on Facebook Tweet about Vehicle Technologies Office: Favorites on Twitter Bookmark Vehicle Technologies Office: Favorites on Google Bookmark Vehicle Technologies Office: Favorites on Delicious Rank Vehicle Technologies Office: Favorites on Digg Find More places to share Vehicle Technologies Office: Favorites on AddThis.com... Favorites #248 Top Ten Net Petroleum Importing Countries, 2000 December 23, 2002 #246 U.S. Oil Imports - Top 10 Countries of Origin December 9, 2002 #244 Sport Utility Vehicle Spotlight November 25, 2002 #243 Fuel Economy Leaders for 2003 Model Year Light Trucks November 18, 2002 #242 Fuel Economy Leaders for 2003 Model Year Cars November 11, 2002 #238 Automobile and Truck Population by Vehicle Age, 2001 October 14, 2002

353

Vehicle Technologies Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

News News Site Map Printable Version Share this resource Send a link to Vehicle Technologies Office: News to someone by E-mail Share Vehicle Technologies Office: News on Facebook Tweet about Vehicle Technologies Office: News on Twitter Bookmark Vehicle Technologies Office: News on Google Bookmark Vehicle Technologies Office: News on Delicious Rank Vehicle Technologies Office: News on Digg Find More places to share Vehicle Technologies Office: News on AddThis.com... Vehicle Technologies News Blog Newsletters Information for Media Subscribe to News Updates News December 18, 2013 USDA Offers $118 Million for Renewable Energy, Smart Grid Projects The U.S. Department of Agriculture (USDA) announced $73 million in funding for renewable energy projects and $45 million for smart grid technology as

354

Social networking in vehicles  

E-Print Network (OSTI)

In-vehicle, location-aware, socially aware telematic systems, known as Flossers, stand to revolutionize vehicles, and how their drivers interact with their physical and social worlds. With Flossers, users can broadcast and ...

Liang, Philip Angus

2006-01-01T23:59:59.000Z

355

Vehicle Technologies Office: Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

vehicles. In fact, every hybrid vehicle on the market currently uses Nickel-Metal-Hydride high-voltage batteries in its battery system. Lithium ion batteries appear to be the...

356

Vehicle Technologies Office: Partners  

NLE Websites -- All DOE Office Websites (Extended Search)

Partners to someone by Partners to someone by E-mail Share Vehicle Technologies Office: Partners on Facebook Tweet about Vehicle Technologies Office: Partners on Twitter Bookmark Vehicle Technologies Office: Partners on Google Bookmark Vehicle Technologies Office: Partners on Delicious Rank Vehicle Technologies Office: Partners on Digg Find More places to share Vehicle Technologies Office: Partners on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness Workforce Development Plug-in Electric Vehicle Basics Partners The interactive map below highlights Workplace Charging Challenge Partners across the country who are installing plug-in electric vehicle charging infrastructure for their employees. Select a worksite to learn more about

357

Hybrid Electric Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

- 1.5 million miles of HEV fleet testing (160k miles per vehicle in 36 months) - End-of-life HEV testing (rerun fuel economy & conduct battery testing @ 160k miles per vehicle) -...

358

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

RR0DF106791 RR0DF106791 Hybrid Propulsion System: Mild Parallel Belt-Alternator Starter (BAS) Number of Electric Machines: 1 Motor: 15 kW (peak), AC induction Battery Specifications Manufacturer: Hitachi Type: Cylindrical Lithium-ion Number of Cells: 32 Nominal Cell Voltage: 3.6 V Nominal System Voltage: 115.2 V Rated Pack Capacity: 4.4 Ah Maximum Cell Charge Voltage 2 : 4.10 V Minimum Cell Discharge Voltage 2 : 3.00 V Thermal Management: Active - Forced air Pack Weight: 65 lb BEGINNING-OF-TEST: BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle Odometer: 5,715 mi Date of Test: January 8, 2013 Static Capacity Test Measured Average Capacity: 3.98 Ah Measured Average Energy Capacity: 460 Wh HPPC Test Pulse Discharge Power @ 50% DOD

359

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

RRXDF106605 RRXDF106605 Hybrid Propulsion System: Mild Parallel Belt-Alternator Starter (BAS) Number of Electric Machines: 1 Motor: 15 kW (peak), AC induction Battery Specifications Manufacturer: Hitachi Type: Cylindrical Lithium-ion Number of Cells: 32 Nominal Cell Voltage: 3.6 V Nominal System Voltage: 115.2 V Rated Pack Capacity: 4.4 Ah Maximum Cell Charge Voltage 2 : 4.10 V Minimum Cell Discharge Voltage 2 : 3.00 V Thermal Management: Active - Forced air Pack Weight: 65 lb BEGINNING-OF-TEST: BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle Odometer: 4,244 mi Date of Test: January 9, 2013 Static Capacity Test Measured Average Capacity: 3.88 Ah Measured Average Energy Capacity: 450 Wh HPPC Test Pulse Discharge Power @ 50% DOD

360

Analysis of data from electric and hybrid electric vehicle student competitions  

DOE Green Energy (OSTI)

The US Department of Energy sponsored several student engineering competitions in 1993 that provided useful information on electric and hybrid electric vehicles. The electrical energy usage from these competitions has been recorded with a custom-built digital meter installed in every vehicle and used under controlled conditions. When combined with other factors, such as vehicle mass, speed, distance traveled, battery type, and type of components, this information provides useful insight into the performance characteristics of electrics and hybrids. All the vehicles tested were either electric vehicles or hybrid vehicles in electric-only mode, and had an average energy economy of 7.0 km/kwh. Based on the performance of the ``ground-up`` hybrid electric vehicles in the 1993 Hybrid Electric Vehicle Challenge, data revealed a I km/kwh energy economy benefit for every 133 kg decrease in vehicle mass. By running all the electric vehicles at a competition in Atlanta at several different constant speeds, the effects of rolling resistance and aerodynamic drag were evaluated. On average, these vehicles were 32% more energy efficient at 40 km/h than at 72 km/h. The results of the competition data analysis confirm that these engineering competitions not only provide an educational experience for the students, but also show technology performance and improvements in electric and hybrid vehicles by setting benchmarks and revealing trends.

Wipke, K.B. [National Renewable Energy Lab., Golden, CO (United States); Hill, N.; Larsen, R.P. [Argonne National Lab., IL (United States)

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle usage number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

" Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Number of Establishments by Usage of General Energy-Saving Technologies, 2006;" 2 Number of Establishments by Usage of General Energy-Saving Technologies, 2006;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;" " Unit: Establishment Counts." ,,,"Computer Control of Building Wide Evironment(c)",,,"Computer Control of Processes or Major Energy-Using Equipment(d)",,,"Waste Heat Recovery",,,"Adjustable - Speed Motors",,,"Oxy - Fuel Firing",,,," " "NAICS" "Code(a)","Subsector and Industry","Establishments(b)","In Use(e)","Not in Use","Don't Know","In Use(e)","Not in Use","Don't Know","In Use(e)","Not in Use","Don't Know","In Use(e)","Not in Use","Don't Know","In Use(e)","Not in Use","Don't Know"

362

Residential energy usage comparison project: An overview  

SciTech Connect

This report provides an overveiw of the residential energy usage comparison project, an integrated load and market research project sponsored by EPRI and the Southern California Edison Company. Traditional studies of the relative energy consumption of electric and gas household appliances have relied on laboratory analyses and computer simulations. This project was designed to study the appliance energy consumption patterns of actual households. Ninety-two households in Orange County, California, southeast of Los Angeles, served as the study sample. Half of the households received new electric space-conditioning, water-heating, cooking, and clothes-drying equipment; the other half received gas equipment. The electric space-conditioning and water-heating appliances were heat pump technologies. All of the appliances were metered to collect load-shape and energy consumption data. The households were also surveyed periodically to obtain information on their energy needs and their acceptance of the appliances. The metered energy consumption data provide an important benchmark for comparing the energy consumption and costs of alternative end-use technologies. The customer research results provide new insights into customer preferences for fuel and appliance types. 15 figs., 3 tabs.

Smith, B.A.; Uhlaner, R.T.; Cason, T.N. (Quantum Consulting, Inc., Berkeley, CA (USA))

1990-10-01T23:59:59.000Z

363

Flexible Fuel Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Flexible fuel vehicles (FFVs) are capable of operating on gasoline, E85 (85% ethanol, 15% gasoline), or a mixture of both. There are almost 8 million flexible fuel vehicles on U.S. roads today, but many FFV owners don't know their vehicle is one.

364

Realising low carbon vehicles  

E-Print Network (OSTI)

MorganMotorCompany #12;Hybrid and electric vehicle design and novel power trains Cranfield has an impressive track record in the design and integration of near-to-market solutions for hybrid, electric and fuel cell vehicles coupe body the vehicle is powered by advanced lithium-ion batteries, and also features a novel all-electric

365

NYC TLC - Plug-in Electric Vehicle Infrastructure and Usage Informatio...  

NLE Websites -- All DOE Office Websites (Extended Search)

information Bio-mass N l Hydropower Wind G th l Idaho National Laboratory Bio-mass Nuclear Hydropower * U.S. Department of Energy (DOE) laboratory * 890 square mile site...

366

U.S. Plug-in Electric Vehicle Infrastructure and Usage  

NLE Websites -- All DOE Office Websites (Extended Search)

not contain any proprietary or sensitive information Idaho National Laboratory Bio mass Nuclear Hydropower Wind * U.S. Department of Energy (DOE) laboratory * 890 square mile...

367

Emissions from ethanol and LPG fueled vehicles  

DOE Green Energy (OSTI)

This paper addresses the environmental concerns of using neat ethanol and liquified petroleum gas (LPG) as transportation fuels in the US Low-level blends of ethanol (10%) with gasoline have been used as fuels in the US for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the US, but its use has been limited primarily to converted fleet vehicles. Increasing US interest in alternative fuels has raised the possibility of introducing neat ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles and increased production and consumption of fuel ethanol and LPG will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural emissions from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG compared to other transportation fuels. The environmental concerns are reviewed and summarized, but the only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat ethanol fueled vehicles or the increase in LPG fueled vehicles.

Pitstick, M.E.

1992-12-31T23:59:59.000Z

368

Emissions from ethanol and LPG fueled vehicles  

DOE Green Energy (OSTI)

This paper addresses the environmental concerns of using neat ethanol and liquified petroleum gas (LPG) as transportation fuels in the US Low-level blends of ethanol (10%) with gasoline have been used as fuels in the US for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the US, but its use has been limited primarily to converted fleet vehicles. Increasing US interest in alternative fuels has raised the possibility of introducing neat ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles and increased production and consumption of fuel ethanol and LPG will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural emissions from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG compared to other transportation fuels. The environmental concerns are reviewed and summarized, but the only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat ethanol fueled vehicles or the increase in LPG fueled vehicles.

Pitstick, M.E.

1992-01-01T23:59:59.000Z

369

Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

2: October 3, 2: October 3, 2005 Household Vehicle Ownership to someone by E-mail Share Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Facebook Tweet about Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Twitter Bookmark Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Google Bookmark Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Delicious Rank Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Digg Find More places to share Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on AddThis.com... Fact #392: October 3, 2005 Household Vehicle Ownership Household vehicle ownership has changed significantly over the last 40

370

Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

5: February 5, 5: February 5, 2007 Household Vehicle Miles to someone by E-mail Share Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Facebook Tweet about Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Twitter Bookmark Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Google Bookmark Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Delicious Rank Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Digg Find More places to share Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on AddThis.com... Fact #455: February 5, 2007 Household Vehicle Miles The graphs below show the average vehicle miles of travel (VMT) - daily

371

Hybrid vehicle assessment. Phase I. Petroleum savings analysis  

DOE Green Energy (OSTI)

This report presents the results of a comprehensive analysis of near-term electric-hybrid vehicles. Its purpose was to estimate their potential to save significant amounts of petroleum on a national scale in the 1990s. Performance requirements and expected annual usage patterns of these vehicles were first modeled. The projected US fleet composition was estimated, and conceptual hybrid vehicle designs were conceived and analyzed for petroleum use when driven in the expected annual patterns. These petroleum consumption estimates were then compared to similar estimates for projected 1990 conventional vehicles having the same performance and driven in the same patterns. Results are presented in the form of three utility functions and comparisons of several conceptual designs are made. The Hybrid Vehicle (HV) design and assessment techniques are discussed and a general method is explained for selecting the optimum energy management strategy for any vehicle-mission-battery combination. A discussion of lessons learned during the construction and test of the General Electric Hybrid Test Vehicle is also presented. Conclusions and recommendations are presented, and development recommendations are identified.

Levin, R.; Liddle, S.; Deshpande, G.; Trummel, M.; Vivian, H.

1984-03-01T23:59:59.000Z

372

Analyze Data to Evaluate Greenhouse Gas Emissions Profile for Vehicles and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicles and Mobile Equipment Vehicles and Mobile Equipment Analyze Data to Evaluate Greenhouse Gas Emissions Profile for Vehicles and Mobile Equipment October 7, 2013 - 11:36am Addthis YOU ARE HERE Step 2 After a Federal agency has collected detailed information about its vehicle inventory, fuel consumption, usage, mission, and alternative fuel availability, it can analyze the data to determine the most cost-effective options for petroleum reduction and greenhouse gas (GHG) mitigation. Data can be analyzed at the agency, program, fleet (or site), or vehicle level for the following purposes: Determining the most important mobile emission sources Determining whether vehicles are performing and being utilized to minimize GHG emissions Identifying mission constraints. Next Step After analyzing data for evaluating an emissions profile, the next step in

373

VEHICLE FOR SLAVE ROBOT  

DOE Patents (OSTI)

A reeling device is designed for an electrical cable supplying power to the slave slde of a remote control manipulator mounted on a movable vehicle. As the vehicle carries the slave side about in a closed room, the device reels the cable in and out to maintain a variable length of the cable between the vehicle and a cable inlet in the wall of the room. The device also handles a fixed length of cable between the slave side and the vehicle, in spite of angular movement of the slave side with respect to the vehicle. (AEC)

Goertz, R.C.; Lindberg, J.F.

1962-01-30T23:59:59.000Z

374

Table HC6.10 Home Appliances Usage Indicators by Number of ...  

U.S. Energy Information Administration (EIA)

Use Battery-Operated Appliances/Tools..... 54.9 9.9 20.4 9.8 9.0 5.8 Plugged in All the Time..... 10.0 1.8 4.0 1.8 1.6 0.9 Recharged as Needed ...

375

Table HC6.10 Home Appliances Usage Indicators by Number of Household...  

U.S. Energy Information Administration (EIA) Indexed Site

... 25.8 4.1 9.3 4.7 4.5 3.2 Use of Most-Used Ceiling Fan Used All Summer... 18.7 4.7 6.0 2.9 2.9...

376

Vehicle Technologies Office: Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

Deployment Deployment Site Map Printable Version Share this resource Send a link to Vehicle Technologies Office: Deployment to someone by E-mail Share Vehicle Technologies Office: Deployment on Facebook Tweet about Vehicle Technologies Office: Deployment on Twitter Bookmark Vehicle Technologies Office: Deployment on Google Bookmark Vehicle Technologies Office: Deployment on Delicious Rank Vehicle Technologies Office: Deployment on Digg Find More places to share Vehicle Technologies Office: Deployment on AddThis.com... Energy Policy Act (EPAct) Clean Cities Educational Activities Deployment Our nation's energy security depends on the efficiency of our transportation system and on which fuels we use. Transportation in the United States already consumes much more oil than we produce here at home

377

Vehicle Technologies Office: Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Batteries to someone by Batteries to someone by E-mail Share Vehicle Technologies Office: Batteries on Facebook Tweet about Vehicle Technologies Office: Batteries on Twitter Bookmark Vehicle Technologies Office: Batteries on Google Bookmark Vehicle Technologies Office: Batteries on Delicious Rank Vehicle Technologies Office: Batteries on Digg Find More places to share Vehicle Technologies Office: Batteries on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Batteries Battery Systems Applied Battery Research Long-Term Exploratory Research Ultracapacitors Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Materials Technologies Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various

378

Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicles Vehicles Vehicles EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. Image of three semi truck cabs. The one on the left is yellow, the middle is green, and the far right truck is red. The U.S. Department of Energy (DOE) supports the development and deployment of advanced vehicle technologies, including advances in electric vehicles, engine efficiency, and lightweight materials. Since 2008, the Department of

379

Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

1: January 8, 1: January 8, 2007 Household Vehicle Trips to someone by E-mail Share Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Facebook Tweet about Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Twitter Bookmark Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Google Bookmark Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Delicious Rank Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Digg Find More places to share Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on AddThis.com... Fact #451: January 8, 2007 Household Vehicle Trips In a day, the average household traveled 32.7 miles in 2001 (the latest

380

Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual  

NLE Websites -- All DOE Office Websites (Extended Search)

FY 2008 DOE Vehicle FY 2008 DOE Vehicle Technologies Office Annual Merit Review to someone by E-mail Share Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Facebook Tweet about Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Twitter Bookmark Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Google Bookmark Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Delicious Rank Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Digg Find More places to share Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on AddThis.com... Publications

Note: This page contains sample records for the topic "vehicle usage number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

8: February 16, 8: February 16, 2009 Transit Vehicle Age and Cost to someone by E-mail Share Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on Facebook Tweet about Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on Twitter Bookmark Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on Google Bookmark Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on Delicious Rank Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on Digg Find More places to share Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on AddThis.com... Fact #558: February 16, 2009 Transit Vehicle Age and Cost

382

Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

3: January 22, 3: January 22, 2007 Household Vehicle Ownership to someone by E-mail Share Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Facebook Tweet about Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Twitter Bookmark Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Google Bookmark Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Delicious Rank Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Digg Find More places to share Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on AddThis.com... Fact #453: January 22, 2007 Household Vehicle Ownership

383

Case Number:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Name of Petitioner: Name of Petitioner: Date of Filing: Case Number: Department of Energy Washington, DC 20585 JUL 2 2 2009 DEPARTMENT OF ENERGY OFFICE OF HEARINGS AND APPEALS Appeal Dean P. Dennis March 2, 2009 TBA-0072 Dean D. Dennis filed a complaint of retaliation under the Department of Energy (DOE) Contractor Employee Protection Program, 10 C.F.R. Part 708. Mr. Dennis alleged that he engaged in protected activity and that his employer, National Security Technologies, LLC (NSTec ), subsequently terminated him. An Office of Hearings and Appeals (OHA) Hearing Officer denied relief in Dean P. Dennis, Case No. TBH-0072, 1 and Mr. Dennis filed the instant appeal. As discussed below, the appeal is denied. I. Background The DOE established its Contractor Employee Protection Program to "safeguard public

384

JOB NUMBER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

. . . . . . . . . .: LEAVE BLANK (NARA use only) JOB NUMBER N/-&*W- 9d - 3 DATE RECEIVED " -1s - 9 J - NOTIFICATION TOAGENCY , In accordance with the provisions of 44 U.S.C. 3303a the disposition request. including amendments, is ap roved except , . l for items that may be marke,, ,"dis osition not approved" or "withdrawn in c o i m n 10. 4. NAME OF PERSON WITH WHOM TO CONFER 5 TELEPHONE Jannie Kindred (202) 5&-333 5 - 2 -96 6 AGENCYCERTIFICATION -. ~ - I hereby certify that I am authorized to act for this agency in matters pertaining to the disposition of its records and that the records roposed for disposal are not now needed for the business of this agency or wiRnot be needed after t G t r & s s d ; and that written concurrence from

385

KPA Number  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supports CMM-SW Level 3 Supports CMM-SW Level 3 Mapping of the DOE Information Systems Engineering Methodology to the Software Engineering Institute (SEI) Software Capability Maturity Model (CMM-SW) level 3. Date: September 2002 Page 1 KPA Number KPA Activity SEM Section SEM Work Product SQSE Web site http://cio.doe.gov/sqse ORGANIZATION PROCESS FOCUS OPF-1 The software process is assessed periodically, and action plans are developed to address the assessment findings. Chapter 1 * Organizational Process Management * Process Improvement Action Plan * Methodologies ! DOE Methodologies ! SEM OPF-2 The organization develops and maintains a plan for its software process development and improvement activities. Chapter 1 * Organizational Process Management * Process Improvement

386

Vehicle Technologies Office: Key Activities in Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Activities in Vehicles Activities in Vehicles We conduct work in four key areas to develop and deploy vehicle technologies that reduce the use of petroleum while maintaining or improving performance, power, and comfort. Research and development (R&D); testing and analysis; government and community stakeholder support; and education help people access and use efficient, clean vehicles that meet their transportation needs. Researcher loads a sample mount of battery cathode materials for X-ray diffraction, an analysis tool for obtaining information on the crystallographic structure and composition of materials. Research and Development of New Technologies Develop durable and affordable advanced batteries as well as other forms of energy storage. Improve the efficiency of combustion engines.

387

Vehicle Technologies Office: Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

October 1-2, 2013 2013 Natural Gas Vehicle Conference & Expo November 18-21, 2013 World LNG Fuels Conference & Expo January 21-23, 2014 More Events Contacts | Web Site Policies |...

388

Advanced Vehicle Testing Activity - Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Vehicles What's New 2012 Hyundai Sonata (4932) Battery Report (PDF 574KB) 2010 Ultra-Battery Honda Civic Battery Report (PDF 614KB) 2013 Chevrolet Malibu Baseline...

389

VEHICLE TECHNOLOGIES PROGRAM Electric Vehicle Preparedness  

NLE Websites -- All DOE Office Websites (Extended Search)

state or reflect those of the U.S. Government or any agency thereof. INLEXT-13-29359 Electric Vehicle Preparedness Task 1: Assessment of Data and Survey Results for Joint Base...

390

VEHICLE TECHNOLOGIES PROGRAM Electric Vehicle Preparedness  

NLE Websites -- All DOE Office Websites (Extended Search)

state or reflect those of the U.S. Government or any agency thereof. INLEXT-13-29360 Electric Vehicle Preparedness Task 1: Assessment of Data and Survey Results for NAS...

391

DOE/ID-Number  

NLE Websites -- All DOE Office Websites (Extended Search)

... 5 2. Arizona Public Service residential electricity rates for summer peak months ... 5 3. Vehicle to grid scenario...

392

POWER PLANT WATER USAGE AND LOSS STUDY - Final  

NLE Websites -- All DOE Office Websites (Extended Search)

POWER PLANT WATER USAGE AND LOSS STUDY POWER PLANT WATER USAGE AND LOSS STUDY August 2005 Revised May 2007 Prepared for: The United States Department of Energy National Energy Technology Laboratory DOE Gasification Technology Manager: Gary J. Stiegel DOE Project Manager: James R. Longanbach Project Manager: Michael D. Rutkowski Principal Investigators: Michael G. Klett Norma J. Kuehn Ronald L. Schoff Vladimir Vaysman Jay S. White Power Plant Water Usage and Loss Study i August 2005 TABLE OF CONTENTS TABLE OF CONTENTS ...................................................................................................................... I LIST OF TABLES.............................................................................................................................III

393

Level: National Data; Row: NAICS Codes; Column: Usage within Cogeneration Technologies;  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments by Usage of Cogeneration Technologies, 2006; 3 Number of Establishments by Usage of Cogeneration Technologies, 2006; Level: National Data; Row: NAICS Codes; Column: Usage within Cogeneration Technologies; Unit: Establishment Counts. Establishments with Any Cogeneration NAICS Technology Code(a) Subsector and Industry Establishments(b) in Use(c) In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know Total United States 311 Food 14,128 297 99 11,338 2,691 51 11,217 2,860 10 11,333 2,786 164 11,129 2,836 9 11,235 2,884 3112 Grain and Oilseed Milling 580 53 Q 499 38 5 532 42 W 533 W Q 533 44 5 530 45 311221 Wet Corn Milling 47 11 W 35 W W 43 W W 39 W 0 44 3 0 41 6 31131 Sugar Manufacturing

394

Level: National Data; Row: NAICS Codes; Column: Usage within General Energy-Saving Technologies;  

U.S. Energy Information Administration (EIA) Indexed Site

2 Number of Establishments by Usage of General Energy-Saving Technologies, 2006; 2 Number of Establishments by Usage of General Energy-Saving Technologies, 2006; Level: National Data; Row: NAICS Codes; Column: Usage within General Energy-Saving Technologies; Unit: Establishment Counts. NAICS Code(a) Subsector and Industry Establishments(b) In Use(e) Not in Use Don't Know In Use(e) Not in Use Don't Know In Use(e) Not in Use Don't Know In Use(e) Not in Use Don't Know In Use(e) Not in Use Don't Know Total United States 311 Food 14,128 1,632 9,940 2,556 3,509 8,048 2,571 1,590 9,609 2,929 6,260 5,014 2,854 422 9,945 3,762 3112 Grain and Oilseed Milling 580 59 475 46 300 236 Q 154 398 28 446 95 Q 45 442 92 311221 Wet Corn Milling 47 9 34 4 36 W W 27 15 6 38 3 6 8 24 16 31131 Sugar Manufacturing 77

395

Video game console usage and national energy consumption: Results from a field-metering study  

E-Print Network (OSTI)

of usage nationwide, we can estimate total national energythe total combined energy use. 3. Average usage over alltotal game console usage, this suggests that an appreciable fraction of console energy

Desroches, Louis-Benoit

2013-01-01T23:59:59.000Z

396

Search for Model Year 2001 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

(Propane) Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

397

Search for Model Year 2004 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles Bifuel (Propane) Compressed Natural Gas Vehicles Diesel Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

398

Search for Model Year 2008 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Class... Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

399

Search for Model Year 2003 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

(Propane) Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

400

Search for Model Year 2002 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

(Propane) Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

Note: This page contains sample records for the topic "vehicle usage number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Phase I of the Near Term Hybrid Passenger Vehicle Development Program. Final report  

DOE Green Energy (OSTI)

The results of Phase I of the Near-Term Hybrid Vehicle Program are summarized. This phase of the program ws a study leading to the preliminary design of a 5-passenger hybrid vehicle utilizing two energy sources (electricity and gasoline/diesel fuel) to minimize petroleum usage on a fleet basis. This report presents the following: overall summary of the Phase I activity; summary of the individual tasks; summary of the hybrid vehicle design; summary of the alternative design options; summary of the computer simulations; summary of the economic analysis; summary of the maintenance and reliability considerations; summary of the design for crash safety; and bibliography.

Not Available

1980-10-01T23:59:59.000Z

402

Energy Usage Information: Lessons from the Credit Reporting Industry.  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Usage Information: Lessons from the Credit Reporting Industry. Energy Usage Information: Lessons from the Credit Reporting Industry. Speaker(s): Philip Henderson Date: October 4, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Janie Page There has been much discussion about the use of customer energy usage information to deliver value, such as with benchmarking tools that compare energy use in a building to a peer set, continuous commissioning services that diagnose faults in building systems, and tools that estimate expected savings from upgrades. A utility can use customer information to deliver these kinds of services to its customers directly, but most utilities today do not enable companies to obtain a customer's energy usage information in a systematic, automated way to deliver services to the customer, even if

403

Memory Usage Inference for Object-Oriented Programs  

E-Print Network (OSTI)

We present a type-based approach to statically derive symbolic closed-form formulae that characterize the bounds of heap memory usages of programs written in object-oriented languages. Given a program with size and alias ...

Nguyen, Huu Hai

404

People are Strange: Current Behavioral Insights into Energy Usage  

NLE Websites -- All DOE Office Websites (Extended Search)

People are Strange: Current Behavioral Insights into Energy Usage Speaker(s): Susan Mazur-Stommen Date: October 10, 2011 - 12:00pm Location: 90-1099 Seminar HostPoint of Contact:...

405

Energy Usage Information: Lessons from the Credit Reporting Industry...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Usage Information: Lessons from the Credit Reporting Industry. Speaker(s): Philip Henderson Date: October 4, 2012 - 12:00pm Location: 90-3122 Seminar HostPoint of Contact:...

406

Electricity Use in California: Past Trends and Present Usage...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity Use in California: Past Trends and Present Usage Patterns Speaker(s): Rich Brown Date: May 16, 2002 - 12:00pm Location: Bldg. 90 Was explosive growth in electricity...

407

UC Libraries Academic e-Book Usage Survey  

E-Print Network (OSTI)

Usage Study [Q1. Create condition: academic e-book users] 1.Do you use e-books for your academic work? (Select one) a.you generally prefer print books or e-books? (Select one) a.

Li, Chan; Poe, Felicia; Potter, Michele; Quigley, Brian; Wilson, Jacqueline

2011-01-01T23:59:59.000Z

408

FATIGUEPRO: On-Line Fatigue Usage Transient Monitoring System  

Science Conference Proceedings (OSTI)

FATIGUEPRO accurately monitors plant data to calculate actual fatigue usage for critical nuclear plant components. This system should improve plant reliability and contribute to plant life extension by providing a more realistic estimation of fatigue demands.

1988-05-01T23:59:59.000Z

409

NanoFab User Facility Usage Fee Schedule  

Science Conference Proceedings (OSTI)

Page 1. NanoFab User Facility Usage Fee Schedule Effective 11/1/09 Tool Full Rate ($/hr) Reduced Rate ($/hr) Base NanoFab Use 60 30 ...

410

Methodology for combined Integration of electric vehicles and distributed resources into the electric grid  

E-Print Network (OSTI)

Plug-in electric vehicles and distributed generation are expected to appear in growing numbers over the next few decades. Large scale unregulated penetration of plug-in electric vehicles and distributed generation can each ...

Gunter, Samantha Joellyn

2011-01-01T23:59:59.000Z

411

Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

9: May 10, 2004 9: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison to someone by E-mail Share Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on Facebook Tweet about Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on Twitter Bookmark Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on Google Bookmark Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on Delicious Rank Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on Digg Find More places to share Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on

412

Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

300: December 29, 300: December 29, 2003 World Vehicle Production by Country/Region to someone by E-mail Share Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on Facebook Tweet about Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on Twitter Bookmark Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on Google Bookmark Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on Delicious Rank Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on Digg Find More places to share Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on

413

Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Progress Report 3 Progress Report for Heavy Vehicle Propulsion Materials Program to someone by E-mail Share Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Facebook Tweet about Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Twitter Bookmark Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Google Bookmark Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Delicious Rank Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Digg Find More places to share Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on

414

Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

5: January 11, 5: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 to someone by E-mail Share Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Facebook Tweet about Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Twitter Bookmark Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Google Bookmark Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Delicious Rank Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Digg Find More places to share Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on AddThis.com...

415

Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

39: October 6, 39: October 6, 2008 Light Vehicle Production by State to someone by E-mail Share Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Facebook Tweet about Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Twitter Bookmark Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Google Bookmark Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Delicious Rank Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Digg Find More places to share Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on AddThis.com... Fact #539: October 6, 2008

416

Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

1: January 23, 1: January 23, 2012 Top Vehicles around the Globe, 2011 to someone by E-mail Share Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on Facebook Tweet about Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on Twitter Bookmark Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on Google Bookmark Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on Delicious Rank Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on Digg Find More places to share Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on AddThis.com...

417

Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Progress Report 4 Progress Report for Heavy Vehicle Propulsion Materials Program to someone by E-mail Share Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Facebook Tweet about Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Twitter Bookmark Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Google Bookmark Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Delicious Rank Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Digg Find More places to share Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on

418

Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

8: November 23, 8: November 23, 2009 Hybrid Vehicle Sales by Model to someone by E-mail Share Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Facebook Tweet about Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Twitter Bookmark Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Google Bookmark Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Delicious Rank Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Digg Find More places to share Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on AddThis.com... Fact #598: November 23, 2009

419

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

C C Quality of the Data Appendix C Quality of the Data Introduction This appendix discusses several issues relating to the quality of the Residential Transportation Energy Consumption Survey (RTECS) data and to the interpretation of conclusions based on these data. The first section discusses under- coverage of the vehicle stock in the residential sector. The second section discusses the effects of using July 1991 as a time reference for the survey. The remainder of this appendix discusses the treatment of sampling and nonsampling errors in the RTECS, the quality of specific data items such as the Vehicle Identification Number (VIN) and fuel prices, and poststratification procedures used in the 1991 RTECS. The quality of the data collection and the processing of the data affects the accuracy of estimates based on survey data. All the statistics published in this report such as total

420

Vehicle Technologies Office: 2008 Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Archive 8 Archive #551 Truck Stop Electrification Sites December 29, 2008 #550 Clean Cities Coalitions December 22, 2008 #549 Biofuels Corridor extends from the Great Lakes to the Gulf of Mexico December 15, 2008 #548 Number of Gasoline Stations Continues to Decline in 2007 December 8, 2008 #547 Research and Development (R&D) Spending in the Automotive Industry December 1, 2008 #546 Automotive Sales Down in all Major World Markets for the Third Quarter of 2008 November 24, 2008 #545 Historical Alternative Fuel Prices Compared to Gasoline and Diesel November 17, 2008 #544 New Vehicle Leasing, 1997-2007 November 10, 2008 #543 Vehicle Trips to Work November 3, 2008 #542 Transit Trips to Increase in 2008 October 27, 2008 #541 New Car Prices: The Past 100 Years October 20, 2008

Note: This page contains sample records for the topic "vehicle usage number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Vehicle Technologies Office: Favorites  

NLE Websites -- All DOE Office Websites (Extended Search)

Favorites Favorites #248 Top Ten Net Petroleum Importing Countries, 2000 December 23, 2002 #246 U.S. Oil Imports - Top 10 Countries of Origin December 9, 2002 #244 Sport Utility Vehicle Spotlight November 25, 2002 #243 Fuel Economy Leaders for 2003 Model Year Light Trucks November 18, 2002 #242 Fuel Economy Leaders for 2003 Model Year Cars November 11, 2002 #238 Automobile and Truck Population by Vehicle Age, 2001 October 14, 2002 #234 2003 Model Year Alternative Fuel Vehicles September 16, 2002 #233 Vehicles per Thousand People: U.S. Compared to Other Countries September 9, 2002 #230 Hybrid Electric Vehicles in the United States August 19, 2002 #229 Medium and Heavy Truck Sales August 12, 2002 #228 New Light Vehicle Sales Shares, 1976-2001 August 5, 2002

422

Vehicle Technologies Office: Lubricants  

NLE Websites -- All DOE Office Websites (Extended Search)

Lubricants Lubricants As most vehicles are on the road for more than 15 years before they are retired, investigating technologies that will improve today's vehicles is essential. Because 11.5 percent of fuel energy is consumed by engine friction, decreasing this friction through lubricants can lead to substantial improvements in the fuel economy of current vehicles, without needing to wait for the fleet to turn over. In fact, a 1 percent fuel savings in the existing vehicle fleet possible through lubricants could save 97 thousand barrels of oil a day or $3.5 billion a year. Because of these benefits, the Vehicle Technologies Office supports research on lubricants that can improve the efficiency of internal combustion engine vehicles, complementing our work on advanced combustion engine technology.

423

Advanced Technology Vehicle Testing  

DOE Green Energy (OSTI)

The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

James Francfort

2004-06-01T23:59:59.000Z

424

Prospects for electric vehicles  

Science Conference Proceedings (OSTI)

This paper discusses the current state-of- the-art of electric vehicles (EVs) with examples of recently developed prototype vehicles - Electric G-Van, Chrysler TEVan, Eaton DSEP and Ford/GE ETX-II. The acceleration, top speed and range of these electric vehicles are delineated to demonstrate their performance capabilities, which are comparable with conventional internal combustion engine (ICE) vehicles. The prospects for the commercialization of the Electric G-van and the TEVan and the improvements expected from the AC drive systems of the DSEP and ETX-II vehicles are discussed. The impacts of progress being made in the development of a fuel cell/battery hybrid bus and advanced EVs on the competitiveness of EVs with ICE vehicles and their potential for reduction of air pollution and utility load management are postulated.

Patil, P.G. (Research and Development, Electric and Hybrid Propulsion Div., U.S. Dept. of Energy, Washington, DC (US))

1990-12-01T23:59:59.000Z

425

CMVRTC: Overweight Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

overweight vehicle data collection overweight vehicle data collection scale The Federal Motor Carrier Safety Administration requested information regarding overweight and oversized vehicle traffic entering inspection stations (ISs) in order to develop strategies for future research efforts and possibly help guide regulatory issues involving overweight commercial motor vehicles (CMVs). For a period of one month, inspection stations in Knox County and Greene County, Tennessee, recorded overweight and oversized vehicles that entered these ISs. During this period, 435 CMVs were recorded using an electronic form filled out by enforcement personnel at the IS. Of the 435 CMVs recorded, 381 had weight information documented with them. The majority (52.2%) of the vehicles recorded were five-axle combination

426

ORNL light-duty vehicles PC system  

Science Conference Proceedings (OSTI)

This data system, designed by the Oak Ridge National Laboratory (ORNL) and funded by the US Department of Energy (DOE), monitors information on every light-duty vehicle (automobiles and light-duty trucks) sold in the United States since model year 1976. The data are specified in two days. One way is on a model basis (i.e, engine and transmission combinations) and includes data on city, highway, and combined fuel economies; engine size; drive-train; fuel type (gasoline or diesel); interior volume; body type; and other vehicle attributes. The other way is on a make basis (e.g., Ford Escort, Oldsmobile 98) and includes data on sales; Environmental Protection Agency (EPA) size class; the sales-weighted fuel economy; sales-weighted interior volume; sales-weighted engine displacement (cid); curb weight; and other attributes. A unique identification number is assigned to a specific vehicle category. This identification number contains information on the manufacturer, the location of the manufacturer (domestic or import), and the sponsorship of the vehicle (domestic or import). Fuel economies, model year sales and various vehicle characteristics for every make of the 164 million light-duty vehicles sold in the US since model year 1976 can be obtained from this data system. 2 figs., 4 tabs.

Hu, P.S.; Patterson, P.D. (Oak Ridge National Lab., TN (USA))

1989-01-01T23:59:59.000Z

427

ANALYSIS OF CONTROL SYSTEMS FOR VEHICLE HYBRID POWERTRAINS  

E-Print Network (OSTI)

Abstract. Ecological and socioeconomic factors determine high interest in the development of pollution-free vehicles. At present use of electro-vehicles is suppressed by a number of technological factors. Vehicles with alternative powertrains are transitional stage between development of pollution-free vehicles and vehicles with conventional internal combustion engine. According to these aspects the investigation on conventional hybrid drives and their control systems is carried out in the article. The equations that allow evaluating effectiveness of regenerative braking for different variants of hybrid drive are given. The AMESim software is used as the modeling environment, in which models of hybrid vehicles are developed and the results of virtual simulation are analyzed. Also a number of recommendations for increasing of regenerative braking effectiveness are given.

Siarhei Kliauzovich

2007-01-01T23:59:59.000Z

428

"Table HC15.13 Lighting Usage Indicators by Four Most Populated...  

U.S. Energy Information Administration (EIA) Indexed Site

3 Lighting Usage Indicators by Four Most Populated States, 2005" " Million U.S. Housing Units" ,"Housing Units (millions)","Four Most Populated States" "Lighting Usage...

429

"Table HC3.13 Lighting Usage Indicators by Owner-Occupied Housing Unit Zone, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Lighting Usage Indicators by Owner-Occupied Housing Unit Zone, 2005" 3 Lighting Usage Indicators by Owner-Occupied Housing Unit Zone, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Lighting Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total U.S. Housing Units",111.1,78.1,64.1,4.2,1.8,2.3,5.7 "Indoor Lights Turned On During Summer" "Number of Lights Turned On" "Between 1 and 4 Hours per Day",91.8,65,54.3,3.3,1.5,1.6,4.4 "1.",28.6,17.9,14,0.9,0.6,0.7,1.7

430

Vehicle Setup Information Downloadable Dynamometer Database (D  

NLE Websites -- All DOE Office Websites (Extended Search)

Architecture Architecture Conventional 2013 Nissan Altima Test Cell Location 2WD Advanced Powertrain Research Facility Document Date 8/7/2013 Vehicle Dynamometer Input 2.5L DOHC 16V Inline 4 cylinder Transmission- CVT *AS VEHICLE WAS TESTED ON A 2WD DYNAMOMETER WITHOUT A "DYNO MODE", DECEL FUEL CUTOFF WAS FOUND TO BE LIMITED Revision Number 3 Notes: Test weight [lb] Target A [lb] 3500 42.94 Target B [lb/mph] Target C [lb/mph^2] -0.4448 0.02333 2.5L DOHC 16V Inline 4 cylinder Transmission- CVT *AS VEHICLE WAS TESTED ON A 2WD DYNAMOMETER WITHOUT A "DYNO MODE", DECEL FUEL CUTOFF WAS FOUND TO BE LIMITED Test Fuel Information 2.5L DOHC 16V Inline 4 cylinder Transmission- CVT *AS VEHICLE WAS TESTED ON A 2WD DYNAMOMETER WITHOUT A "DYNO MODE", DECEL FUEL CUTOFF WAS FOUND TO BE

431

Advanced Technology Vehicles Manufacturing Incentive Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program A fact sheet detailling the advanced technology vehicles...

432

Mobile Autonomous Vehicle Obstacle Detection and ...  

Science Conference Proceedings (OSTI)

... vehicles from different manufacturers and to ... for Automated Guided Vehicle Safety Standards ... Control of Manufacturing Vehicles Research Towards ...

2013-01-11T23:59:59.000Z

433

Hybrid Vehicle Technology - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

* Batteries * Batteries * Modeling * Testing Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Hybrid Vehicle Technology revolutionize transportation Argonne's Research Argonne researchers are developing and testing various hybrid electric vehicles (HEVs) and their components to identify the technologies, configurations, and engine control strategies that provide the best combination of high fuel economy and low emissions. Vehicle Validation Argonne also serves as the lead laboratory for hardware-in-the-loop (HIL) and technology validation for the U.S. Department of Energy (DOE). HIL is a

434

Vehicle Technologies Office: Ultracapacitors  

NLE Websites -- All DOE Office Websites (Extended Search)

converter, which would increase the cost of the vehicle. The use of ultracapacitors for regenerative braking can greatly improve fuel efficiency under stop-and-go urban driving...

435

MOTOR VEHICLE MANUFACTURING TECHNOLOGY  

Science Conference Proceedings (OSTI)

... about half of the value added in light vehicles ... Selected Program White Papers. ... This white paper defines a program which supports the development ...

2011-10-19T23:59:59.000Z

436

VEHICLE TECHNOLOGIES PROGRAM - Energy  

75 vehicle technologies program ed wall, program manager ed.wall@ee.doe.gov (202) 586-8055 venture capital technology showcase aug 21 and 22, 2007

437

Electric Vehicle Public Charging -  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Public Charging - Time vs. Energy March, 2013 A critical factor for successful PEV adoption is the deployment and use of charging infrastructure in non-...

438

Electric Vehicle Fleet  

NLE Websites -- All DOE Office Websites (Extended Search)

A98 0577 Electric Vehicle Fleet Operations in the United States Jim Francfort Presented to: 31st International Symposium on Automotive Technology and Automation Dusseldorf, Germany...

439

Electric-Drive Vehicle Basics (Brochure)  

DOE Green Energy (OSTI)

Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

Not Available

2011-04-01T23:59:59.000Z

440

Vehicle Technologies Program Awards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Technologies Program Awards Vehicle Technologies Program Awards vtpnum.zip More Documents & Publications Advanced Vehicle Technologies Awards Table Advanced Vehicle...

Note: This page contains sample records for the topic "vehicle usage number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Vehicle Technologies Program (EERE) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Technologies Program (EERE) Vehicle Technologies Program (EERE) information about the Vehicle Technologies Program (EERE) Vehicle Technologies Program (EERE) More Documents...

442

American Electric Vehicles Inc | Open Energy Information  

Open Energy Info (EERE)

Vehicles Inc Jump to: navigation, search Name American Electric Vehicles Inc Place Palmer Lake, Colorado Zip 80133 Sector Vehicles Product American Electric Vehicles (AEV) builds...

443

Advanced Vehicle Technologies Awards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Vehicle Technologies Awards Advanced Vehicle Technologies Awards Microsoft Word - VTP 175 Advanced Vehicle Tech project descriptions draft v5 8-2-11 AdvancedVehiclesTechn...

444

Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

4: January 26, 4: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions to someone by E-mail Share Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Facebook Tweet about Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Twitter Bookmark Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Google Bookmark Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Delicious Rank Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Digg Find More places to share Vehicle Technologies Office: Fact #304:

445

Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

6: December 2, 6: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 to someone by E-mail Share Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Facebook Tweet about Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Twitter Bookmark Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Google Bookmark Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Delicious Rank Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Digg Find More places to share Vehicle Technologies Office: Fact #806:

446

Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per  

NLE Websites -- All DOE Office Websites (Extended Search)

8: April 12, 8: April 12, 2010 Vehicles per Household and Other Demographic Statistics to someone by E-mail Share Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Facebook Tweet about Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Twitter Bookmark Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Google Bookmark Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Delicious Rank Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Digg Find More places to share Vehicle Technologies Office: Fact #618:

447

Advanced Vehicle Testing Activity: Full-Size Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Full-Size Electric Vehicle Fleet and Reliability Test Reports to someone by E-mail Share Advanced Vehicle Testing Activity: Full-Size Electric Vehicle Fleet and Reliability Test...

448

Vehicle Technologies Office: Draft Plug-In Hybrid Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Draft Plug-In Hybrid Electric Vehicle R&D Plan to someone by E-mail Share Vehicle Technologies Office: Draft Plug-In Hybrid Electric Vehicle R&D Plan on Facebook Tweet about...

449

Vehicle Technologies Office: Fact #322: May 31, 2004 Hybrid Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

2: May 31, 2004 Hybrid Vehicle Registrations to someone by E-mail Share Vehicle Technologies Office: Fact 322: May 31, 2004 Hybrid Vehicle Registrations on Facebook Tweet about...

450

VEHICLE AND BATTERY DESCRIPTIONS AND SPECIFICATIONS Vehicle Details  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 VEHICLE AND BATTERY DESCRIPTIONS AND SPECIFICATIONS Vehicle Details Base Vehicle: 2011 Honda CR-Z VIN: JHMZF1C67BS004466 Electric Machine 1 : 10 kW (peak), permanent magnet...

451

VEHICLE AND BATTERY DESCRIPTIONS AND SPECIFICATIONS Vehicle Details  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 VEHICLE AND BATTERY DESCRIPTIONS AND SPECIFICATIONS Vehicle Details Base Vehicle: 2011 Honda CR-Z VIN: JHMZF1C64BS002982 Electric Machine 1 : 10 kW (peak), permanent magnet...

452

Vehicle Technologies Office: Fact #475: June 25, 2007 Light Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

5: June 25, 2007 Light Vehicle Weight on the Rise to someone by E-mail Share Vehicle Technologies Office: Fact 475: June 25, 2007 Light Vehicle Weight on the Rise on Facebook...

453

Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles  

E-Print Network (OSTI)

Image in Gasoline-Hybrid Electric Vehicles Reid R. HeffnerImage in Gasoline-Hybrid Electric Vehicles Reid R. Heffner,6, 2005 Abstract Hybrid electric vehicles (HEVs) have image,

Heffner, Reid R.; Kurani, Ken; Turrentine, Tom

2005-01-01T23:59:59.000Z

454

Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles  

E-Print Network (OSTI)

6, 2005 Abstract Hybrid electric vehicles (HEVs) have image,Image in Gasoline-Hybrid Electric Vehicles Reid R. HeffnerImage in Gasoline-Hybrid Electric Vehicles Reid R. Heffner,

Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

2005-01-01T23:59:59.000Z

455

Vehicle Technologies Office: Plug-in Electric Vehicle Research...  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-in Electric Vehicle Research and Development to someone by E-mail Share Vehicle Technologies Office: Plug-in Electric Vehicle Research and Development on Facebook Tweet about...

456

DEVELOPMENT OF A WIRELINE CPT SYSTEM FOR MULTIPLE TOOL USAGE  

SciTech Connect

The first phase of development of a wireline cone penetrometer system for multiple tool usage was completed under DOE award number DE-AR26-98FT40366. Cone penetrometer technology (CPT) has received widespread interest and is becoming more commonplace as a tool for environmental site characterization activities at several Department of Energy (DOE) facilities. Although CPT already offers many benefits for site characterization, the wireline system can improve CPT technology by offering greater utility and increased cost savings. Currently the use of multiple CPT tools during a site characterization (i.e. piezometric cone, chemical sensors, core sampler, grouting tool) must be accomplished by withdrawing the entire penetrometer rod string to change tools. This results in multiple penetrations being required to collect the data and samples that may be required during characterization of a site, and to subsequently seal the resulting holes with grout. The wireline CPT system allows multiple CPT tools to be interchanged during a single penetration, without withdrawing the CPT rod string from the ground. The goal of the project is to develop and demonstrate a system by which various tools can be placed at the tip of the rod string depending on the type of information or sample desired. Under the base contract, an interchangeable piezocone and grouting tool was designed, fabricated, and evaluated. The results of the evaluation indicate that success criteria for the base contract were achieved. In addition, the wireline piezocone tool was validated against ASTM standard cones, the depth capability of the system was found to compare favorably with that of conventional CPT, and the reliability and survivability of the system were demonstrated.

Stephen P. Farrington; Martin L. Gildea; J. Christopher Bianchi

1999-08-01T23:59:59.000Z

457

Hybrid Electric Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Hybrid electric vehicles (HEVs) combine the benefits of high fuel economy and low emissions with the power, range, and convenience of conventional diesel and gasoline fueling. HEV technologies also have potential to be combined with alternative fuels and fuel cells to provide additional benefits. Future offerings might also include plug-in hybrid electric vehicles.

458

Powertrain & Vehicle Research Centre  

E-Print Network (OSTI)

the engine, transmission and aftertreatment systems. Optimising such a system for ultra low fuel consumption emulating hardware in the test cell environment Engine testing becomes a combination of real world and virtual environments Vehicle baseline testing on rolling road Calibration Control Engine Vehicle

Burton, Geoffrey R.

459

Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Procedures to someone by E-mail Share Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle Specifications and Test Procedures on Facebook Tweet about Advanced...

460

Advanced Vehicle Testing Activity - Hybrid Electric Vehicle and...  

NLE Websites -- All DOE Office Websites (Extended Search)

max speed, braking, & handling DOE - Advanced Vehicle Testing Activity Hybrid Electric Vehicle Testing * Fleet and accelerated reliability testing - 6 Honda Insights...

Note: This page contains sample records for the topic "vehicle usage number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles  

E-Print Network (OSTI)

are substantially higher, particularly for the Toyota Prius.In 2004, Toyota updated the Prius, introducing a larger,vehicles, including the Toyota Prius. Vehicle 2004 Sales (11

Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

2005-01-01T23:59:59.000Z

462

NREL: Vehicles and Fuels Research - 2013 Vehicle Buyer's Guide...  

NLE Websites -- All DOE Office Websites (Extended Search)

options, including hybrids, flex-fuel vehicles, and vehicles that run on natural gas, propane, electricity, or biodiesel. In addition to a comprehensive list of this year's...

463

Advanced Vehicle Testing Activity - Full Size Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Full Size Electric Vehicles What's New Baseline Performance Testing for 2011 Nissan Leaf Battery Testing for 2011 Nissan Leaf - When New The Advanced Vehicle Testing Activity...

464

Vehicle Technologies Office: Battery Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Systems A hybrid vehicle uses two or more forms of energy to propel the vehicle. Many hybrid electric vehicles (HEV) sold today are referred to as "hybrids" because it...

465

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 of 6 VEHICLE DETAILS AND BATTERY SPECIFICATIONS 1 Vehicle Details Base Vehicle: 2013 Chevrolet Volt VIN: 1G1RA6E40DU103929 Propulsion System: Multi-Mode PHEV (EV, Series,...

466

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 VEHICLE DETAILS AND BATTERY SPECIFICATIONS 1 Vehicle Details Base Vehicle: 2011 Chevrolet Volt VIN: 1G1RD6E48BU100815 Propulsion System: Multi-Mode PHEV (EV, Series, and...

467

Propane Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicles Propane Vehicles August 20, 2013 - 9:16am Addthis There are more than 270,000 on-road propane vehicles in the United States and more than 10 million worldwide. Many are...

468

Which Vehicles Are Tested  

NLE Websites -- All DOE Office Websites (Extended Search)

Which Vehicles Are Tested Which Vehicles Are Tested Popular Vehicles Exempt from Federal Fuel Economy Standards Prior to 2011 Pickups SUVs Vans Manufacturer Model Chevrolet Avalanche 2500 Series ¾ Ton Silverado 2500/3500 Series Dodge RAM 2500/3500 Series Ford F-250/350 Series GMC Sierra 2500/3500 Series Manufacturer Model Chevrolet Suburban ¾ Ton* Ford Excursion§ GMC Yukon XL ¾ Ton* Hummer H1§ and H2§ Manufacturer Model Chevrolet Express 2500 Passenger* Express 3500 Cargo Ford E Series Passenger (w/ 6.8L Triton or 6.0L Diesel Engine)* E Series Cargo (w/ 6.8L Triton or 6.0L Diesel Engine) GMC Savanna 2500/3500 Passenger* Savanna 3500 Cargo Note: These vehicles are given as examples. This is not a comprehensive list. * No longer exempt as of 2011 § No longer made Manufacturers do not test every new vehicle offered for sale. They are only

469

Sneaking Interaction Techniques into Electric Vehicles Sebastian Loehmann  

E-Print Network (OSTI)

Due to the release of several electric vehicles (EV) to the car market, the number of sales from regular combustion engine cars to create electric vehicle information systems (EVIS). We argue in the near future. With the introduction of cars like the Nissan Leaf, the Ford Focus Electric or the soon

470

Vehicle supervision system based on MEMS geomagnetic sensor  

Science Conference Proceedings (OSTI)

Following the economy of our country rapidly develops in recent years, more and more people possess vehicles of their own, and the number of urban vehicle is increasing fast as well. All of these directly challenge the management of urban traffic and ...

Jin Wang; Guofeng Li; Yiyi Liu; Yi Lu; Xianhu Gao; Yong Zhang; Ke Tao

2009-01-01T23:59:59.000Z

471

Updated October 2009 Vehicle Rentals Enterprise Rent-a-Car  

E-Print Network (OSTI)

employees, including subsidiaries for business and personal use. 4. An increased number of fuel efficient and alternate fuel cars are available in the Enterprise car fleet. 5. Vehicles rented for university business, Shaunavon, and Swift Current, an $8.00 per day surcharge will apply for all vehicles. Renting in Canada

Peak, Derek

472

Vehicle body cover  

SciTech Connect

This patent describes a vehicle body covered with a vehicle body cover which comprises: a front cover part, a rear cover part, a pair of side cover parts, and a roof cover part: the front cover part having portions adapted to cover only a hood, an area around a windshield and tops of front fenders of a vehicle body. The portion covering the hood is separated from the portions covering the tops of the fenders by cuts in the front cover part, the front cover part having an un-cut portion corresponding to a position at which the hood is hinged to the car body. The front cover part has a cut-out at a position corresponding to the windshield of the vehicle body and the front cover part has at least one cut-out at a position corresponding to where a rear view mirror is attached to the vehicle body; and the rear cover part having portions adapted to cover an area around a rear window, a trunk lid and a rear end of the vehicle body, the portion covering the trunk lid separated from the rest of the rear cover part by cuts corresponding to three sides of the trunk lid and an un-cut portion corresponding to a position at which the trunk lid is hinged to the vehicle body. The rear cover part has a hole at position corresponding to a trunk lid lock, a cut-out portion at a position corresponding to the rear window of the vehicle body, a cut-out at a position corresponding to a license plate of the vehicle body and cut-outs at positions corresponding to rear taillights of the vehicle body.

Hirose, T.

1987-01-13T23:59:59.000Z

473

Associating Internet usage with depressive behavior among college students  

E-Print Network (OSTI)

Abstract Depression is a mental health problem affecting a large population of college students. Since college students are active users of the Internet today, investigating associations between symptoms of depression and Internet usage has been an active area of research. While existing studies do provide critical insights, they are limited due to the fact that Internet usage of subjects is characterized by means of self-reported surveys only. In this paper, we report our findings on a month long experiment conducted at Missouri University of Science and Technology on associating depressive symptoms among college students and Internet usage using real Internet data collected continuously, unobtrusively and preserving privacy. In our study, 216 undergraduates were surveyed for depressive symptoms using the CES-D scale. We then collected their on-campus Internet usage via Cisco NetFlow records. Subsequent analysis revealed that several Internet usage features like average packets per flow, peer-to-peer (octets, packets and duration), chat octets, mail (packets and duration), ftp duration, and remote file octets exhibit a statistically significant correlation with depressive symptoms. Additionally, Mann-Whitney U-tests revealed that average packets per flow, remote file octets, chat (octets, packets and duration) and flow duration entropy demonstrate statistically significant differences in the mean values across groups with and without depressive symptoms. To the best of our knowledge, this is the first study that associates depressive symptoms among college students with continuously collected real Internet data.

Raghavendra Kotikalapudi; Frances Montgomery; Donald Wunsch

2012-01-01T23:59:59.000Z

474

MESUR: USAGE-BASED METRICS OF SCHOLARLY IMPACT  

SciTech Connect

The evaluation of scholarly communication items is now largely a matter of expert opinion or metrics derived from citation data. Both approaches can fail to take into account the myriad of factors that shape scholarly impact. Usage data has emerged as a promising complement to existing methods o fassessment but the formal groundwork to reliably and validly apply usage-based metrics of schlolarly impact is lacking. The Andrew W. Mellon Foundation funded MESUR project constitutes a systematic effort to define, validate and cross-validate a range of usage-based metrics of schlolarly impact by creating a semantic model of the scholarly communication process. The constructed model will serve as the basis of a creating a large-scale semantic network that seamlessly relates citation, bibliographic and usage data from a variety of sources. A subsequent program that uses the established semantic network as a reference data set will determine the characteristics and semantics of a variety of usage-based metrics of schlolarly impact. This paper outlines the architecture and methodology adopted by the MESUR project and its future direction.

BOLLEN, JOHAN [Los Alamos National Laboratory; RODRIGUEZ, MARKO A. [Los Alamos National Laboratory; VAN DE SOMPEL, HERBERT [Los Alamos National Laboratory

2007-01-30T23:59:59.000Z

475

Vehicle Technologies Office: Plug-in Electric Vehicle Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics Basics Plug-in electric vehicles (PEVs), which include both plug-in hybrid electric vehicles and all-electric vehicles, use electricity as either their primary fuel or to improve efficiency. Commonly Used PEV Terms All-electric vehicle (AEV) - A vehicle with plug-in capability; driving energy comes entirely from its battery. Plug-in hybrid electric vehicle (PHEV) - A vehicle with plug-in capability; driving energy can come from either its battery or a liquid fuel like gasoline, diesel, or biofuels. Plug-in electric vehicle (PEV) - Any vehicle with plug-in capability. This includes AEVs and PHEVs. Hybrid electric vehicle (HEV) - A vehicle that has an electric drive system and battery but does not have plug-in capability; driving energy comes only from liquid fuel.

476

Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

1: November 29, 1: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 to someone by E-mail Share Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 on Facebook Tweet about Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 on Twitter Bookmark Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 on Google Bookmark Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 on Delicious Rank Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 on Digg

477

The use of web structure and content to identify subjectively interesting web usage patterns  

Science Conference Proceedings (OSTI)

The discipline of Web Usage Mining has grown rapidly in the past few years, despite the crash of the e-commerce boom of the late 1990s. Web Usage Mining is the application of data mining techniques to Web clickstream data in order to extract usage patterns. ... Keywords: Data mining, Web usage mining, World Wide Web

Robert Cooley

2003-05-01T23:59:59.000Z

478

Potentials and limits of secondary spectrum usage by CDMA base stations  

Science Conference Proceedings (OSTI)

With the progress of transmission technology and fast growing demand for ubiquitous high speed wireless services, it is clear that the pressure towards more flexibility in usage of limited spectrum will increase. With concept of spectrum sharing, in ... Keywords: primary exclusive region (PER), secondary spectrum usage, secondary usage allowable region (SAR), secondary usage prohibitive region (SPR)

Eun-Hee Shin; Dongwoo Kim

2009-01-01T23:59:59.000Z

479

A practical ontology for the large-scale modeling of scholarly artifacts and their usage  

Science Conference Proceedings (OSTI)

The large-scale analysis of scholarly artifact usage is constrained primarily by current practices in usage data archiving, privacy issues concerned with the dissemination of usage data, and the lack of a practical ontology for modeling the usage domain. ... Keywords: resource description framework and schema, semantic networks, web ontology language

Marko A. Rodriguez; Johan Bollen; Herbert Van de Sompel

2007-06-01T23:59:59.000Z

480

Vehicle Technologies Office: Battery Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Systems to someone by E-mail Share Vehicle Technologies Office: Battery Systems on Facebook Tweet about Vehicle Technologies Office: Battery Systems on Twitter Bookmark...

Note: This page contains sample records for the topic "vehicle usage number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Vehicle Technologies Office: Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage to someone by E-mail Share Vehicle Technologies Office: Energy Storage on Facebook Tweet about Vehicle Technologies Office: Energy Storage on Twitter Bookmark...

482

Energy Basics: Hybrid Electric Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

a hybrid electric vehicle. Hybrid electric vehicles (HEVs) combine the benefits of high fuel economy and low emissions with the power, range, and convenience of conventional diesel...

483

Electric Vehicle Field Operations Program  

NLE Websites -- All DOE Office Websites (Extended Search)

vehicle performance information. The final product is a report describing energy use, miles driven, maintenance requirements, and overall vehicle performance. Fleet Testing....

484

EERE: Vehicle Technologies Office - Webmaster  

NLE Websites -- All DOE Office Websites (Extended Search)

Webmaster Site Map Printable Version Share this resource Send a link to EERE: Vehicle Technologies Office - Webmaster to someone by E-mail Share EERE: Vehicle Technologies Office -...

485

Vehicle Technologies Office: National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratories to someone by E-mail Share Vehicle Technologies Office: National Laboratories on Facebook Tweet about Vehicle Technologies Office: National Laboratories on...

486

Vehicle Technologies Office: Workforce Development  

NLE Websites -- All DOE Office Websites (Extended Search)

electric vehicle supply equipment (EVSE, also known as electric vehicle chargers). EVSE Residential Charging Installation introductory videos: Clean Cities provides a video...

487

Technology Analysis - Heavy Vehicle Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

the GPRA benefits estimates for EERE's Vehicle Technologies Program's heavy vehicle technology research activities. Argonne researchers develop the benefits analysis using four...

488

Motor Vehicle Parts Compliance Requirements  

Science Conference Proceedings (OSTI)

... The OVSC compliance testing program is a strong incentive for manufacturers of motor vehicles and items of motor vehicle equipment to ...

2012-09-24T23:59:59.000Z

489

Vehicle Technologies Office: Propulsion Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Manufacturers use propulsion (or powertrain) materials in the components that move vehicles of every size and shape. Conventional vehicles use these materials in...

490

Electric vehicles | Open Energy Information  

Open Energy Info (EERE)

Electric vehicles Jump to: navigation, search TODO: add content Electric vehicles first came into existence in the mid-19th century, when electricity was among the preferred...

491

Top 10 tech cars [hybrid electric vehicles  

Science Conference Proceedings (OSTI)

A number of new hybrid electric vehicle owners have expressed their disappointment with their purchase because of poor mileage. Official ratings for fuel use, based on the outdated driving patterns of US government test, turned out to be a poor predictor ...

J. Voelcker

2005-03-01T23:59:59.000Z

492

Ethanol Usage in Urban Public Transportation - Presentation of Results |  

Open Energy Info (EERE)

Ethanol Usage in Urban Public Transportation - Presentation of Results Ethanol Usage in Urban Public Transportation - Presentation of Results Jump to: navigation, search Tool Summary Name: Ethanol Usage in Urban Public Transportation - Presentation of Results Agency/Company /Organization: BioEthanol for Sustainable Transport Focus Area: Fuels & Efficiency Topics: Best Practices Website: cenbio.iee.usp.br/download/publicacoes/SAE_BEST_2010.pdf This paper presents the BioEthanol for Sustainable Transport (BEST) project in Brazil, its partners, and the results from the demonstration tests performed in field, as well as the proposals of public policies that were elaborated and are being implemented. The BEST project was implemented in Sao Paulo as well as eight other cities located in Europe and Asia. How to Use This Tool

493

Form EIA-457E (2001) -- Household Bottled Gas Usage  

U.S. Energy Information Administration (EIA) Indexed Site

F (2001) -- Household Natural Gas Usage Form F (2001) -- Household Natural Gas Usage Form OMB No. 1905-0092, Expiring February 29, 2004 2001 Residential Energy Consumption Survey Answers to Frequently Asked Questions About the Household Natural Gas Usage Form What is the purpose of the Residential Energy Consumption Survey? The Residential Energy Consumption Survey (RECS) collects data on energy consumption and expenditures in U.S. housing units. Over 5,000 statistically selected households across the U.S. have already provided information about their household, the physical characteristics of their housing unit, their energy-using equipment, and their energy suppliers. Now we are requesting the energy billing records for these households from each of their energy suppliers. After all this information has been collected, the information will be used to

494

Form EIA-457E (2001) -- Household Bottled Gas Usage  

U.S. Energy Information Administration (EIA) Indexed Site

E (2001) - Household Electricity Usage Form E (2001) - Household Electricity Usage Form OMB No. 1905-0092, Expiring February 29, 2004 2001 Residential Energy Consumption Survey Answers to Frequently Asked Questions About the Household Electricity Usage Form What is the purpose of the Residential Energy Consumption Survey? The Residential Energy Consumption Survey (RECS) collects data on energy consumption and expenditures in U.S. housing units. Over 5,000 statistically selected households across the U.S. have already provided information about their household, the physical characteristics of their housing unit, their energy-using equipment, and their energy suppliers. Now we are requesting the energy billing records for these households from each of their energy suppliers. After all this information has been collected, the information will be used to

495

Water Usage Law, Major Water Users (Missouri) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Usage Law, Major Water Users (Missouri) Water Usage Law, Major Water Users (Missouri) Water Usage Law, Major Water Users (Missouri) < Back Eligibility Agricultural Commercial Construction Fed. Government Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Tribal Government Utility Savings Category Water Buying & Making Electricity Program Info State Missouri Program Type Environmental Regulations Provider Missouri Department of Natural Resources Any water user with the capability to withdraw or divert 100,000 gallons or more per day from any stream, river, lake, well, spring or other water source must register and file for a permit for water withdrawal and diversion from the Department of Natural Resources. Additionally, no major

496

Mining Software Usage with the Automatic Library Tracking Database (ALTD)  

Science Conference Proceedings (OSTI)

Tracking software usage is important for HPC centers, computer vendors, code developers and funding agencies to provide more efficient and targeted software support, and to forecast needs and guide HPC software effort towards the Exascale era. However, accurately tracking software usage on HPC systems has been a challenging task. In this paper, we present a tool called Automatic Library Tracking Database (ALTD) that has been developed and put in production on several Cray systems. The ALTD infrastructure prototype automatically and transparently stores information about libraries linked into an application at compilation time and also the executables launched in a batch job. We will illustrate the usage of libraries, compilers and third party software applications on a system managed by the National Institute for Computational Sciences.

Hadri, Bilel [ORNL; Fahey, Mark R [ORNL

2013-01-01T23:59:59.000Z

497

Alternative fuel information: Alternative fuel vehicle outlook  

DOE Green Energy (OSTI)

Major automobile manufacturers continue to examine a variety of alternative fuel vehicle (AFV) options in an effort to provide vehicles that meet the fleet requirements of the Clean Air Act Amendments of 1990 (CAAA) and the Energy Policy Act of 1992 (EPACT). The current generation of AFVs available to consumers is somewhat limited as the auto industry attempts to respond to the presently uncertain market. At the same time, however, the automobile industry must anticipate future demand and is therefore engaged in research, development, and production programs on a wide range of alternative fuels. The ultimate composition of the AFV fleet may be determined by state and local regulations which will have the effect of determining demand. Many state and regional groups may require vehicles to meet emission standards more stringent than those required by the federal government. Therefore, a significant impact on the market could occur if emission classifications begin serving as the benchmark for vehicles, rather than simply certifying a vehicle as capable of operating on an ``alternative`` to gasoline. Vehicles classified as Zero-Emissions, or even Inherently Low-Emissions, could most likely be met only by electricity or natural gas, thereby dictating that multi-fuel vehicles would be unable to participate in some clean air markets. In the near-term, the Clinton Administration desires to accelerate the use of alternative fuels as evidenced by an executive order directing the federal government to increase the rate of conversion of the federal fleet beyond that called for in EPACT. The Administration has expressed particular interest in using more compressed natural gas (CNG) as a motor fuel, which has resulted in the auto industry`s strong response of concentrating short-term efforts on CNG vehicles. For the 1994 model year, a number of CNG cars and trucks will be available from major automobile manufacturers.

Not Available

1994-06-01T23:59:59.000Z

498

U. S. research safety vehicle (RSV) phase I program. Volume III. RSV characteristics and performance specifications. Final report, Jan 1974--Apr 1975  

SciTech Connect

Current passenger car usage patterns and factors influencing usage are analyzed and projections of usage patterns in the mid-1980's are made. Current available data on six categories of vehicle accidents are analyzed and projections made of national accident patterns in the mid-80's; the effect of potential reductions in these projections as a result of safety programs and other factors related to driving safety are estimated. Based on the usage and accident projections, the characteristics of an RSV (weighing under 3,000 lbs C.W.) for operation in the mid-1980 traffic environment are described. A recommended set of specifications for the RSV are developed considering the potential safety payoff accruing to an increased level of safety performance, the need for energy conservation, availability of material resources, and changes in vehicle mix. (An executive summary of this report is presented in Volume I).

Andon, J.; Dodson, E.; Khadilkar, A.; Olson, R.; Pauls, L.

1975-06-01T23:59:59.000Z

499

Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations  

NLE Websites -- All DOE Office Websites (Extended Search)

9: August 4, 9: August 4, 2003 Gasoline Stations to someone by E-mail Share Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations on Facebook Tweet about Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations on Twitter Bookmark Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations on Google Bookmark Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations on Delicious Rank Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations on Digg Find More places to share Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations on AddThis.com... Fact #279: August 4, 2003 Gasoline Stations The number of retail outlets that sell gasoline to the public has declined by 17.7% from 1993 to 2002 - from 207,416 in 1993, to 170,678 in 2002.

500

Vehicle Technologies Office: Fact #661: February 7, 2011 Population Density  

NLE Websites -- All DOE Office Websites (Extended Search)

1: February 7, 1: February 7, 2011 Population Density to someone by E-mail Share Vehicle Technologies Office: Fact #661: February 7, 2011 Population Density on Facebook Tweet about Vehicle Technologies Office: Fact #661: February 7, 2011 Population Density on Twitter Bookmark Vehicle Technologies Office: Fact #661: February 7, 2011 Population Density on Google Bookmark Vehicle Technologies Office: Fact #661: February 7, 2011 Population Density on Delicious Rank Vehicle Technologies Office: Fact #661: February 7, 2011 Population Density on Digg Find More places to share Vehicle Technologies Office: Fact #661: February 7, 2011 Population Density on AddThis.com... Fact #661: February 7, 2011 Population Density The density of the population in the U.S., measured as the number of people