Powered by Deep Web Technologies
Note: This page contains sample records for the topic "vehicle testing building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Advanced Technology Vehicle Testing  

SciTech Connect (OSTI)

The light-duty vehicle transportation sector in the United States depends heavily on imported petroleum as a transportation fuel. The Department of Energy’s Advanced Vehicle Testing Activity (AVTA) is testing advanced technology vehicles to help reduce this dependency, which would contribute to the economic stability and homeland security of the United States. These advanced technology test vehicles include internal combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban electric vehicles, and electric ground support vehicles. The AVTA tests and evaluates these vehicles with closed track and dynamometer testing methods (baseline performance testing) and accelerated reliability testing methods (accumulating lifecycle vehicle miles and operational knowledge within 1 to 1.5 years), and in normal fleet environments. The Arizona Public Service Alternative Fuel Pilot Plant and H2-fueled vehicles are demonstrating the feasibility of using H2 as a transportation fuel. Hybrid, neighborhood, and urban electric test vehicles are demonstrating successful applications of electric drive vehicles in various fleet missions. The AVTA is also developing electric ground support equipment (GSE) test procedures, and GSE testing will start during the fall of 2003. All of these activities are intended to support U.S. energy independence. The Idaho National Engineering and Environmental Laboratory manages these activities for the AVTA.

James Francfort

2003-11-01T23:59:59.000Z

2

Advanced Technology Vehicle Testing  

SciTech Connect (OSTI)

The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

James Francfort

2004-06-01T23:59:59.000Z

3

Vehicle brake testing system  

DOE Patents [OSTI]

This invention relates to a force measuring system capable of measuring forces associated with vehicle braking and of evaluating braking performance. The disclosure concerns an invention which comprises a first row of linearly aligned plates, a force bearing surface extending beneath and beside the plates, vertically oriented links and horizontally oriented links connecting each plate to a force bearing surface, a force measuring device in each link, a transducer coupled to each force measuring device, and a computing device coupled to receive an output signal from the transducer indicative of measured force in each force measuring device. The present invention may be used for testing vehicle brake systems.

Stevens, Samuel S. (Harriman, TN); Hodgson, Jeffrey W. (Lenoir City, TN)

2002-11-19T23:59:59.000Z

4

Advanced Vehicle Testing & Evaluation  

Broader source: Energy.gov (indexed) [DOE]

Provide benchmark data for advanced technology vehicles Develop lifecycle cost data for production vehicles utilizing advanced power trains Provide fleet...

5

Advanced Vehicle Testing Activity (AVTA) - Vehicle Testing and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced Vehicle Testing Activity (AVTA) Non-PHEV Evaluations and Data Collection AVTA HEV, NEV, BEV and HICEV Demonstrations and Testing Benchmarking of Advanced HEVs and...

6

Advanced Vehicle Testing and Evaluation  

SciTech Connect (OSTI)

The objective of the United States (U.S.) Department of Energy?s (DOEs) Advanced Vehicle Testing and Evaluation (AVTE) project was to provide test and evaluation services for advanced technology vehicles, to establish a performance baseline, to determine vehicle reliability, and to evaluate vehicle operating costs in fleet operations. Vehicles tested include light and medium-duty vehicles in conventional, hybrid, and all-electric configurations using conventional and alternative fuels, including hydrogen in internal combustion engines. Vehicles were tested on closed tracks and chassis dynamometers, as well as operated on public roads, in fleet operations, and over prescribed routes. All testing was controlled by procedures developed specifically to support such testing. Testing and evaluations were conducted in the following phases: ? Development of test procedures, which established testing procedures; ? Baseline performance testing, which established a performance baseline; ? Accelerated reliability testing, which determined vehicle reliability; ? Fleet testing, used to evaluate vehicle economics in fleet operation, and ? End of test performance evaluation. Test results are reported by two means and posted by Idaho National Laboratory (INL) to their website: quarterly progress reports, used to document work in progress; and final test reports. This final report documents work conducted for the entirety of the contract by the Clarity Group, Inc., doing business as ECOtality North America (ECOtality). The contract was performed from 1 October 2005 through 31 March 2013. There were 113 light-duty on-road (95), off-road (3) and low speed (15) vehicles tested.

Garetson, Thomas

2013-03-31T23:59:59.000Z

7

Hydrogen ICE Vehicle Testing Activities  

SciTech Connect (OSTI)

The Advanced Vehicle Testing Activity teamed with Electric Transportation Applications and Arizona Public Service to develop and monitor the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant. The Pilot Plant provides 100% hydrogen, and hydrogen and compressed natural gas (H/CNG)-blended fuels for the evaluation of hydrogen and H/CNG internal combustion engine (ICE) vehicles in controlled and fleet testing environments. Since June 2002, twenty hydrogen and H/CNG vehicles have accumulated 300,000 test miles and 5,700 fueling events. The AVTA is part of the Department of Energy’s FreedomCAR and Vehicle Technologies Program. These testing activities are managed by the Idaho National Laboratory. This paper discusses the Pilot Plant design and monitoring, and hydrogen ICE vehicle testing methods and results.

J. Francfort; D. Karner

2006-04-01T23:59:59.000Z

8

Advanced Vehicle Testing Activity (AVTA) ? PHEV Evaluations...  

Broader source: Energy.gov (indexed) [DOE]

1.pdf More Documents & Publications Advanced Vehicle Testing Activity (AVTA) - Vehicle Testing and Demonstration Activities AVTA PHEV Demonstrations and Testing Argonne...

9

Vehicle Technologies Office: Advanced Vehicle Testing Activity...  

Energy Savers [EERE]

initative. Together, these projects make up the largest ever deployment of all-electric vehicles, plug-in hybrid electric vehicles, and charging infrastructure in the...

10

Advanced Vehicle Testing - Beginning-of-Test Battery Testing...  

Broader source: Energy.gov (indexed) [DOE]

2.5 V Thermal Mgmt.: Passive, Vacuum-Sealed Unit Pack Weight: 294 kg BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle Odometer: 6,696 mi Date of...

11

AVTA: Vehicle to Grid Power Flow Regulations and Building Codes Review  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report is a review of Vehicle-to-Grid power flow regulations and building codes, as informed by the AVTA's testing on plug-in electric vehicle charging equipment. This research was conducted by Idaho National Laboratory.

12

Vehicle Technologies Office Merit Review 2014: Advanced Vehicle Testing & Evaluation  

Broader source: Energy.gov [DOE]

Presentation given by Intertek at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about testing and evaluating advanced...

13

Advanced Powertrain Research Facility Vehicle Test Cell Thermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Powertrain Research Facility Vehicle Test Cell Thermal Upgrade Advanced Powertrain Research Facility Vehicle Test Cell Thermal Upgrade 2010 DOE Vehicle Technologies and Hydrogen...

14

Testing hybrid electric vehicle emissions and fuel economy at the 1994 Hybrid Electric Vehicle Challenge  

SciTech Connect (OSTI)

From June 12--20, 1994, an engineering design competition called the 1994 Hybrid Electric Vehicle (HEV) Challenge was held in Southfield, Michigan. This collegiate-level competition, which involved 36 colleges and universities from across North America, challenged the teams to build a superior HEV. One component of this comprehensive competition was the emissions event. Special HEV testing procedures were developed for the competition to find vehicle emissions and correct for battery state-of-charge while fitting into event time constraints. Although there were some problems with a newly-developed data acquisition system, they were able to get a full profile of the best performing vehicles as well as other vehicles that represent typical levels of performance from the rest of the field. This paper will explain the novel test procedures, present the emissions and fuel economy results, and provide analysis of second-by-second data for several vehicles.

Duoba, M.; Quong, S.; LeBlanc, N.; Larsen, R.P.

1995-06-01T23:59:59.000Z

15

Smart buildings with electric vehicle interconnection as buffer for local renewables?  

E-Print Network [OSTI]

and integrated in smart buildings Is it that simple or doesN ATIONAL L ABORATORY Smart buildings with electric vehicleopportunity employer. Smart buildings with electric vehicle

Stadler, Michael

2012-01-01T23:59:59.000Z

16

Advanced Vehicle Testing Activity (AVTA) Data and Results  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office (VTO) supports work to develop test procedures and carry out testing on a wide range of advanced vehicles and technologies through the Advanced Vehicle Testing...

17

Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality...  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality Breakout Session 2: Frontiers and Horizons Session 2-B:...

18

H2-Assisted NOx Traps: Test Cell Results Vehicle Installations...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

H2-Assisted NOx Traps: Test Cell Results Vehicle Installations H2-Assisted NOx Traps: Test Cell Results Vehicle Installations 2003 DEER Conference Presentation: ArvinMeritor...

19

HEV Fleet Testing Advanced Vehicle Testing Activities - 2010...  

Broader source: Energy.gov (indexed) [DOE]

Testing Advanced Vehicle Testing Activity Maintenance Sheet for 2010 Ford Fusion VIN 3FADP0L32AR194699 Date Mileage Description Cost 1012009 5915 Changed oil and filter 28.77...

20

VEHICLE-BARRIER TRACKING OF ASCALED CRASH TEST FOR ROADSIDE BARRIER DESIGN  

E-Print Network [OSTI]

reality of the vehicle-barrier impact. Scaled testing may thus be a cost effective method to evaluateVEHICLE-BARRIER TRACKING OF ASCALED CRASH TEST FOR ROADSIDE BARRIER DESIGN Giuseppina Amato1 Engineering, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK 2 Trinity College Dublin, Dept

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "vehicle testing building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Nissan Hypermini Urban Electric Vehicle Testing  

SciTech Connect (OSTI)

The U.S. Department of Energy’s (DOE’s) Advanced Vehicle Testing Activity (AVTA), which is part of DOE’s FreedomCAR and Vehicle Technologies Program, in partnership with the California cities of Vacaville and Palm Springs, collected mileage and maintenance and repairs data for a fleet of eleven Nissan Hypermini urban electric vehicles (UEVs). The eleven Hyperminis were deployed for various periods between January 2001 and June 2005. During the combined total of 439 months of use, the eleven Hyperminis were driven a total of 41,220 miles by staff from both cities. This equates to an average use of about 22 miles per week per vehicle. There were some early problems with the vehicles, including a charging problem and a need to upgrade the electrical system. In addition, six vehicles required drive system repairs. However, the repairs were all made under warranty. The Hyperminis were generally well-liked and provided drivers with the ability to travel any of the local roads. Full charging of the Hypermini’s lithiumion battery pack required up to 4 hours, with about 8–10 miles of range available for each hour of battery charging. With its right-side steering wheel, some accommodation of the drivers’ customary driving methods was required to adapt for different blind spots and vehicle manipulation. For that reason, the drivers received orientation and training before using the vehicle. The Hypermini is instrumented in kilometers rather than in miles, which required an adjustment for the drivers to calculate speed and range. As the drivers gained familiarity with the vehicles, there was increased acceptance and a preference for using it over traditional city vehicles. In all cases, the Hyperminis attracted a great amount of attention and interest from the general public.

James Francfort; Robert Brayer

2006-01-01T23:59:59.000Z

22

Idaho National Laboratory Testing of Advanced Technology Vehicles  

Broader source: Energy.gov (indexed) [DOE]

* Development of a testbed vehicle capable of testing a range of energy storage systems (ESS) via onroad testing and vehicle-based dynamometer testing * Test ESS intended for EVs,...

23

AVTA: 2013 BRP Neighborhood Electric Vehicle Testing Results...  

Energy Savers [EERE]

describe testing results of the 2013 BRP neighborhood electric vehicle. Neighborhood electric vehicles reach speeds of no more than 35 miles per hour and are only allowed on...

24

AVTA: 2009 Vantage Neighborhood Electric Vehicle Testing Results...  

Energy Savers [EERE]

The following reports describe testing results of two 2009 Vantage neighborhood electric vehicles (a pickup truck style and a van style). Neighborhood electric vehicles...

25

Fact #591: October 5, 2009 Consumer Reports Tests Vehicle Fuel...  

Broader source: Energy.gov (indexed) [DOE]

Seven vehicles were tested by Consumer Reports recently to determine the fuel economy of the vehicles at a given speed. For these vehicles, the decline in fuel economy from a speed...

26

Dynamometer tests of the Ford Ecostar Electric Vehicle No. 41  

SciTech Connect (OSTI)

A Ford Ecostar vehicle was tested in the Idaho National Engineering Laboratory (INEL) Hybrid Electric Vehicle (HEV) Laboratory over several standard driving regimes. The test vehicle was delivered to the INEL in February 19, 1995 under the DOE sponsored Modular Electric Vehicle Program. This report presents the results of several dynamometer driving cycle tests and a constant current discharge, and presents observations regarding the vehicle state-of-charge indicator and remaining range indicator.

Cole, G.H.; Richardson, R.A.; Yarger, E.J.

1995-09-01T23:59:59.000Z

27

2011 Hyundai Sonata Hybrid - vin 3539 Advanced Vehicle Testing...  

Broader source: Energy.gov (indexed) [DOE]

Pack Capacity: 5.3 Ah Cooling: ActiveCabin Air Pack Weight: 96 lb BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle Odometer: 5,730 mi Date of...

28

2013 Chevrolet Volt - VIN 3929 - Advanced Vehicle Testing - Beginning...  

Broader source: Energy.gov (indexed) [DOE]

Voltage 3 : 3.00 V Thermal Management: Active - Liquid cooled BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle Odometer: 4,007 mi Date of...

29

Department of Mechanical Engineering Spring 2012 Space Vehicle Water Drop Test and Vehicle Design  

E-Print Network [OSTI]

PENNSTATE Department of Mechanical Engineering Spring 2012 Space Vehicle Water Drop Test and Vehicle Design Overview The team was tasked with modelling the accelerations and pressures of an impact of the scaled landing vehicle to reduce the accelerations and pressures of the vehicle. Objectives Provide

Demirel, Melik C.

30

2011 Hyundai Sonata 3539 - Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing hybrid electric vehicle batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid (VIN KMHEC4A47BA003539). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Matthew Shirk; Tyler Gray; Jeffrey Wishart

2014-09-01T23:59:59.000Z

31

In-Vehicle Testing and Computer Modeling of Electric Vehicle Batteries  

E-Print Network [OSTI]

-extending series hybrid electric vehicle (HEV) by the student members of the Society of Automotive Engineers (SAEIn-Vehicle Testing and Computer Modeling of Electric Vehicle Batteries B. Thomas, W.B. Gu, J driving conditions as opposed to purely experimental testing. The new approach is cost- effective, greatly

Wang, Chao-Yang

32

Electric Vehicle Supply Equipment (EVSE) Test Report: AeroVironment  

Broader source: Energy.gov (indexed) [DOE]

pROGRAM Electric Vehicle Supply Equipment (EVSE) Test Report: AeroVironment EVSE Features LED status light EVSE Specifications Grid connection Hardwired Connector type J1772 Test...

33

Vehicle Technologies Office Merit Review 2014: INL Testing of...  

Broader source: Energy.gov (indexed) [DOE]

INL Testing of Wireless Charging Systems Vehicle Technologies Office Merit Review 2014: INL Testing of Wireless Charging Systems Presentation given by Idaho National Laboratory at...

34

AVTA: Ford Escape PHEV Advanced Research Vehicle 2010 Testing...  

Broader source: Energy.gov (indexed) [DOE]

results of testing done on a plug-in hybrid electric Ford Escape Advanced Research Vehicle, an experimental model not currently for sale. The baseline performance testing...

35

Toyota Gen III Prius Hybrid Electric Vehicle Accelerated Testing...  

Broader source: Energy.gov (indexed) [DOE]

HEV Accelerated Testing - September 2011 Two model year 2010 Toyota Generation III Prius hybrid electric vehicles (HEVs) entered Accelerated testing during July 2009 in a fleet in...

36

Modelling, Simulation, Testing, and Optimization of Advanced Hybrid Vehicle Powertrains  

E-Print Network [OSTI]

Modelling, Simulation, Testing, and Optimization of Advanced Hybrid Vehicle Powertrains By Jeffrey of the author. #12;ii Modelling, Simulation, Testing and Optimization of Advanced Hybrid Vehicle Powertrains prototypes. A comprehensive survey of the state of the art of commercialized hybrid vehicle powertrains

Victoria, University of

37

Analysis of electric vehicle interconnection with commercial building microgrids  

SciTech Connect (OSTI)

The outline of this presentation is: (1) global concept of microgrid and electric vehicle (EV) modeling; (2) Lawrence Berkeley National Laboratory's Distributed Energy Resources Customer Adoption Model (DER-CAM); (3) presentation summary - how does the number of EVs connected to the building change with different optimization goals (cost versus CO{sub 2}); (3) ongoing EV modeling for California: the California commercial end-use survey (CEUS) database, objective: 138 different typical building - EV connections and benefits; (4) detailed analysis for healthcare facility: optimal EV connection at a healthcare facility in southern California; and (5) conclusions. Conclusions are: (1) EV Charging/discharging pattern mainly depends on the objective of the building (cost versus CO{sub 2}); (2) performed optimization runs show that stationary batteries are more attractive than mobile storage when putting more focus on CO{sub 2} emissions. Why? Stationary storage is available 24 hours a day for energy management - more effective; (3) stationary storage will be charged by PV, mobile only marginally; (4) results will depend on the considered region and tariff - final work will show the results for 138 different buildings in nine different climate zones and three major utility service territories.

Stadler, Michael; Mendes, Goncalo; Marnay, Chris; M& #233; gel, Olivier; Lai, Judy

2011-04-01T23:59:59.000Z

38

AVTA: Nissan Leaf All-Electric Vehicle 2011 Testing Reports  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on an all-electric 2011 Nissan Leaf. The baseline performance testing provides a point of comparison for the other test results. Taken together, these reports give an overall view of how this vehicle functions under extensive testing. This research was conducted by Idaho National Laboratory.

39

Electric Vehicle Supply Equipment (EVSE) Test Report: Voltec...  

Broader source: Energy.gov (indexed) [DOE]

VEhICLE TEChNOLOgIES pROgRAm Electric Vehicle Supply Equipment (EVSE) Test Report: Voltec 240V EVSE Features Integrated Flashlight 25ft of coiled cable Auto-reset EVSE...

40

Advanced Vehicle Testing Activity (AVTA) ? Non-PHEV Evaluations...  

Energy Savers [EERE]

Non-PHEV Evaluations and Data Collection Advanced Vehicle Testing Activity (AVTA) Non-PHEV Evaluations and Data Collection Presentation from the U.S. DOE Office of Vehicle...

Note: This page contains sample records for the topic "vehicle testing building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

BetterBuildings Webinar Transcription- Financial Vehicles within an Integrated Energy Efficiency Program  

Broader source: Energy.gov [DOE]

"Financial Vehicles Within an Integrated Energy Efficiency Program," webinar transcript from the U.S. Department of Energy's Better Buildings program.

42

Department of Mechanical Engineering Fall 2012 Unmanned Underwater Vehicle Test Tank and Obstacle Course  

E-Print Network [OSTI]

PENNSTATE Department of Mechanical Engineering Fall 2012 Unmanned Underwater Vehicle Test Tank and Obstacle Course Overview The purpose of this project is to design and build a test tank to showcase multiple UUVs in a competition. The tank will be vital in demonstrating the abilities of the UUVs

Demirel, Melik C.

43

Vehicle to Grid Communications Field Testing  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

44

Vehicle Mass and Fuel Efficiency Impact Testing  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

45

Advanced Vehicle Testing Activity (AVTA) ? Non-PHEV Evaluations...  

Broader source: Energy.gov (indexed) [DOE]

simulation and analysis technical team every other month * Testing results and life-cycle costs are used by vehicle modelers * Partnering with private sector testers provides...

46

Postirradiation Testing Laboratory (327 Building)  

SciTech Connect (OSTI)

A Standards/Requirements Identification Document (S/RID) is the total list of the Environment, Safety and Health (ES and H) requirements to be implemented by a site, facility, or activity. These requirements are appropriate to the life cycle phase to achieve an adequate level of protection for worker and public health and safety, and the environment during design, construction, operation, decontamination and decommissioning, and environmental restoration. S/RlDs are living documents, to be revised appropriately based on change in the site`s or facility`s mission or configuration, a change in the facility`s life cycle phase, or a change to the applicable standards/requirements. S/RIDs encompass health and safety, environmental, and safety related safeguards and security (S and S) standards/requirements related to the functional areas listed in the US Department of Energy (DOE) Environment, Safety and Health Configuration Guide. The Fluor Daniel Hanford (FDH) Contract S/RID contains standards/requirements, applicable to FDH and FDH subcontractors, necessary for safe operation of Project Hanford Management Contract (PHMC) facilities, that are not the direct responsibility of the facility manager (e.g., a site-wide fire department). Facility S/RIDs contain standards/requirements applicable to a specific facility that are the direct responsibility of the facility manager. S/RlDs are prepared by those responsible for managing the operation of facilities or the conduct of activities that present a potential threat to the health and safety of workers, public, or the environment, including: Hazard Category 1 and 2 nuclear facilities and activities, as defined in DOE 5480.23. Selected Hazard Category 3 nuclear, and Low Hazard non-nuclear facilities and activities, as agreed upon by RL. The Postirradiation Testing Laboratory (PTL) S/RID contains standards/ requirements that are necessary for safe operation of the PTL facility, and other building/areas that are the direct responsibility of the specific facility manager. The specific DOE Orders, regulations, industry codes/standards, guidance documents and good industry practices that serve as the basis for each element/subelement are identified and aligned with each subelement.

Kammenzind, D.E.

1997-05-28T23:59:59.000Z

47

2011 Hyundai Sonata 4932 - Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid HEV (VIN KMHEC4A43BA004932). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

Tyler Gray; Matthew Shirk; Jeffrey Wishart

2013-07-01T23:59:59.000Z

48

A Fuel-Cell Vehicle Test Station.  

E-Print Network [OSTI]

??Due to concerns about energy security, rising oil prices, and adverse effects of internal combustion engine vehicles on the environment, the automotive industry is quickly… (more)

Thorne, Michelle I

2008-01-01T23:59:59.000Z

49

Vehicle Technologies Office Merit Review 2014: Post-Test Analysis...  

Broader source: Energy.gov (indexed) [DOE]

Post-Test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory Vehicle Technologies Office Merit Review 2014: Post-Test Analysis of Lithium-Ion Battery...

50

US advanced battery consortium in-vehicle battery testing procedure  

SciTech Connect (OSTI)

This article describes test procedures to be used as part of a program to monitor the performance of batteries used in electric vehicle applications. The data will be collected as part of an electric vehicle testing program, which will include battery packs from a number of different suppliers. Most data will be collected by on-board systems or from driver logs. The paper describes the test procedure to be implemented for batteries being used in this testing.

NONE

1997-03-01T23:59:59.000Z

51

Analysis of electric vehicle interconnection with commercial building microgrids  

E-Print Network [OSTI]

Judy Lai, and Vincent Battaglia: “The added economic andMarnay, and Vincent Battaglia: “Plug-in Electric Vehicle

Stadler, Michael

2011-01-01T23:59:59.000Z

52

Project Impact Assessments: Building America FY14 Field Test...  

Energy Savers [EERE]

Project Impact Assessments: Building America FY14 Field Test Technical Support - 2014 BTO Peer Review Project Impact Assessments: Building America FY14 Field Test Technical Support...

53

BetterBuildings Webinar Transcription - Financial Vehicles within...  

Energy Savers [EERE]

Financial Institution Partners Transcript.doc Better Buildings Neighborhood Program Home Accomplishments History Better Buildings Partners Stories Interviews Videos Contact Us...

54

Vehicle Technologies Office Merit Review 2014: Idaho National Laboratory Testing of Advanced Technology Vehicles  

Broader source: Energy.gov [DOE]

Presentation given by Idaho National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about testing of advanced...

55

AVTA: 2014 Mazda Mazda3 i-ELOOP Vehicle Testing Reports  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road....

56

Vehicle to Electric Vehicle Supply Equipment Smart Grid Communications Interface Research and Testing Report  

SciTech Connect (OSTI)

Plug-in electric vehicles (PEVs), including battery electric, plug-in hybrid electric, and extended range electric vehicles, are under evaluation by the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) and other various stakeholders to better understand their capability and potential petroleum reduction benefits. PEVs could allow users to significantly improve fuel economy over a standard hybrid electric vehicles, and in some cases, depending on daily driving requirements and vehicle design, PEVs may have the ability to eliminate petroleum consumption entirely for daily vehicle trips. The AVTA is working jointly with the Society of Automotive Engineers (SAE) to assist in the further development of standards necessary for the advancement of PEVs. This report analyzes different methods and available hardware for advanced communications between the electric vehicle supply equipment (EVSE) and the PEV; particularly Power Line Devices and their physical layer. Results of this study are not conclusive, but add to the collective knowledge base in this area to help define further testing that will be necessary for the development of the final recommended SAE communications standard. The Idaho National Laboratory and the Electric Transportation Applications conduct the AVTA for the United States Department of Energy's Vehicle Technologies Program.

Kevin Morrow; Dimitri Hochard; Jeff Wishart

2011-09-01T23:59:59.000Z

57

2010 Ford Fusion VIN 4757 Hybrid Electric Vehicle Battery Test...  

Broader source: Energy.gov (indexed) [DOE]

1 2010 Ford Fusion VIN 4757 Hybrid Electric Vehicle Battery Test Results Tyler Gray Matthew Shirk January 2013 The Idaho National Laboratory is a U.S. Department of Energy National...

58

2010 Honda Insight VIN 0141 Hybrid Electric Vehicle Battery Test...  

Broader source: Energy.gov (indexed) [DOE]

2 2010 Honda Insight VIN 0141 Hybrid Electric Vehicle Battery Test Results Tyler Gray Mathew Shirk January 2013 The Idaho National Laboratory is a U.S. Department of Energy...

59

2010 Toyota Prius VIN 0462 Hybrid Electric Vehicle Battery Test...  

Broader source: Energy.gov (indexed) [DOE]

5 2010 Toyota Prius VIN 0462 Hybrid Electric Vehicle Battery Test Results Tyler Gray Matthew Shirk January 2013 The Idaho National Laboratory is a U.S. Department of Energy...

60

2010 Toyota Prius VIN 6063 Hybrid Electric Vehicle Battery Test...  

Broader source: Energy.gov (indexed) [DOE]

6 2010 Toyota Prius VIN 6063 Hybrid Electric Vehicle Battery Test Results Tyler Gray Matthew Shirk January 2013 The Idaho National Laboratory is a U.S. Department of Energy...

Note: This page contains sample records for the topic "vehicle testing building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

2010 Honda Insight VIN 1748 Hybrid Electric Vehicle Battery Test...  

Broader source: Energy.gov (indexed) [DOE]

3 2010 Honda Insight VIN 1748 Hybrid Electric Vehicle Battery Test Results Tyler Gray Matthew Shirk January 2013 The Idaho National Laboratory is a U.S. Department of Energy...

62

Putting electric vehicles to the test  

E-Print Network [OSTI]

the needs of the daily commuter? Can they match the performance we've come to expect from their fossil fuel sectors. Dr. Swan and his father have three electric vehicles ­ two 2000 Ford Ranger EV trucks and a 2002 uses a full charge in a day. He uses a Ranger to get to work and hauls any cargo or trailers he needs

63

Analysis of electric vehicle interconnection with commercial building microgrids  

E-Print Network [OSTI]

energy costs, CO 2 emissions, or multiple objectives of providing services to a building microgrid produces technology neutral

Stadler, Michael

2011-01-01T23:59:59.000Z

64

Potential use of battery packs from NCAP tested vehicles.  

SciTech Connect (OSTI)

Several large electric vehicle batteries available to the National Highway Traffic Safety Administration are candidates for use in future safety testing programs. The batteries, from vehicles subjected to NCAP crashworthiness testing, are considered potentially damaged due to the nature of testing their associated vehicles have been subjected to. Criteria for safe shipping to Sandia is discussed, as well as condition the batteries must be in to perform testing work. Also discussed are potential tests that could be performed under a variety of conditions. The ultimate value of potential testing performed on these cells will rest on the level of access available to the battery pack, i.e. external access only, access to the on board monitoring system/CAN port or internal electrical access to the battery. Greater access to the battery than external visual and temperature monitoring would likely require input from the battery manufacturer.

Lamb, Joshua; Orendorff, Christopher J.

2013-10-01T23:59:59.000Z

65

Battery Test Manual For Plug-In Hybrid Electric Vehicles  

SciTech Connect (OSTI)

This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

Jeffrey R. Belt

2010-09-01T23:59:59.000Z

66

Battery Test Manual For Plug-In Hybrid Electric Vehicles  

SciTech Connect (OSTI)

This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

Jeffrey R. Belt

2010-12-01T23:59:59.000Z

67

U.S. Department of Energy -- Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle Testing and Demonstration Activities  

SciTech Connect (OSTI)

The U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA) tests plug-in hybrid electric vehicles (PHEV) in closed track, dynamometer and onroad testing environments. The onroad testing includes the use of dedicated drivers on repeated urban and highway driving cycles that range from 10 to 200 miles, with recharging between each loop. Fleet demonstrations with onboard data collectors are also ongoing with PHEVs operating in several dozen states and Canadian Provinces, during which trips- and miles-per-charge, charging demand and energy profiles, and miles-per-gallon and miles-per-kilowatt-hour fuel use results are all documented, allowing an understanding of fuel use when vehicles are operated in charge depleting, charge sustaining, and mixed charge modes. The intent of the PHEV testing includes documenting the petroleum reduction potential of the PHEV concept, the infrastructure requirements, and operator recharging influences and profiles. As of May 2008, the AVTA has conducted track and dynamometer testing on six PHEV conversion models and fleet testing on 70 PHEVs representing nine PHEV conversion models. A total of 150 PHEVs will be in fleet testing by the end of 2008, all with onboard data loggers. The onroad testing to date has demonstrated 100+ miles per gallon results in mostly urban applications for approximately the first 40 miles of PHEV operations. The primary goal of the AVTA is to provide advanced technology vehicle performance benchmark data for technology modelers, research and development programs, and technology goal setters. The AVTA testing results also assist fleet managers in making informed vehicle purchase, deployment and operating decisions. The AVTA is part of DOE’s Vehicle Technologies Program. These AVTA testing activities are conducted by the Idaho National Laboratory and Electric Transportation Engineering Corporation, with Argonne National Laboratory providing dynamometer testing support. The proposed paper and presentation will discuss PHEV testing activities and results. INL/CON-08-14333

James E. Francfort; Donald Karner; John G. Smart

2009-05-01T23:59:59.000Z

68

Hybrid Electric Vehicle Fleet and Baseline Performance Testing  

SciTech Connect (OSTI)

The U.S. Department of Energy’s Advanced Vehicle Testing Activity (AVTA) conducts baseline performance and fleet testing of hybrid electric vehicles (HEV). To date, the AVTA has completed baseline performance testing on seven HEV models and accumulated 1.4 million fleet testing miles on 26 HEVs. The HEV models tested or in testing include: Toyota Gen I and Gen II Prius, and Highlander; Honda Insight, Civic and Accord; Chevrolet Silverado; Ford Escape; and Lexus RX 400h. The baseline performance testing includes dynamometer and closed track testing to document the HEV’s fuel economy (SAE J1634) and performance in a controlled environment. During fleet testing, two of each HEV model are driven to 160,000 miles per vehicle within 36 months, during which maintenance and repair events, and fuel use is recorded and used to compile life-cycle costs. At the conclusion of the 160,000 miles of fleet testing, the SAE J1634 tests are rerun and each HEV battery pack is tested. These AVTA testing activities are conducted by the Idaho National Laboratory, Electric Transportation Applications, and Exponent Failure Analysis Associates. This paper discusses the testing methods and results.

J. Francfort; D. Karner

2006-04-01T23:59:59.000Z

69

Summary of electric vehicle dc motor-controller tests  

SciTech Connect (OSTI)

Available performance data for production motors are usually of marginal value to the electric vehicle designer. To provide at least a partial remedy to this situation, tests of typical dc propulsion motors and controllers were conducted as part of the DOE Electric Vehicle Program. The objectives of this program were to evaluate the differences in the performance of dc motors when operating with chopper-type controllers and when operating on direct current; and to gain an understanding of the interactions between the motor and the controller which cause these differences. Toward this end, motor-controller tests performed by the NASA Lewis Research Center provided some of the first published data that quantified motor efficiency variations for both ripple-free (straight dc) and chopper modes of operation. Test and analysis work at the University of Pittsburgh explored motor-controller relationships in greater depth. And to provide additional data, 3E Vehicles tested two small motors, both on a dynamometer and in a vehicle, and the Eaton Corporation tested larger motors, using sophisticated instrumentation and digital processing techniques. All the motors tested were direct-current types. Of the separately excited types, seven were series wound and two were shunt wound. One self-excited permanent magnet type was also tested. Four of the series wound motors used brush shifting to obtain good commutation. In almost all cases, controller limitations constrained the test envelope so that the full capability of the motors could not be explored.

McBrien, E F; Tryon, H B

1982-09-01T23:59:59.000Z

70

Legacy Vehicle Fuel System Testing with Intermediate Ethanol Blends  

SciTech Connect (OSTI)

The effects of E10 and E17 on legacy fuel system components from three common mid-1990s vintage vehicle models (Ford, GM, and Toyota) were studied. The fuel systems comprised a fuel sending unit with pump, a fuel rail and integrated pressure regulator, and the fuel injectors. The fuel system components were characterized and then installed and tested in sample aging test rigs to simulate the exposure and operation of the fuel system components in an operating vehicle. The fuel injectors were cycled with varying pulse widths during pump operation. Operational performance, such as fuel flow and pressure, was monitored during the aging tests. Both of the Toyota fuel pumps demonstrated some degradation in performance during testing. Six injectors were tested in each aging rig. The Ford and GM injectors showed little change over the aging tests. Overall, based on the results of both the fuel pump testing and the fuel injector testing, no major failures were observed that could be attributed to E17 exposure. The unknown fuel component histories add a large uncertainty to the aging tests. Acquiring fuel system components from operational legacy vehicles would reduce the uncertainty.

Davis, G. W.; Hoff, C. J.; Borton, Z.; Ratcliff, M. A.

2012-03-01T23:59:59.000Z

71

Hydrogen Fuel Pilot Plant and Hydrogen ICE Vehicle Testing  

SciTech Connect (OSTI)

The U.S. Department Energy's Advanced Vehicle Testing Activity (AVTA) teamed with Electric Transportation Applications (ETA) and Arizona Public Service (APS) to develop the APS Alternative Fuel (Hydrogen) Pilot Plant that produces and compresses hydrogen on site through an electrolysis process by operating a PEM fuel cell in reverse; natural gas is also compressed onsite. The Pilot Plant dispenses 100% hydrogen, 15 to 50% blends of hydrogen and compressed natural gas (H/CNG), and 100% CNG via a credit card billing system at pressures up to 5,000 psi. Thirty internal combustion engine (ICE) vehicles (including Daimler Chrysler, Ford and General Motors vehicles) are operating on 100% hydrogen and 15 to 50% H/CNG blends. Since the Pilot Plant started operating in June 2002, they hydrogen and H/CNG ICE vehicels have accumulated 250,000 test miles.

J. Francfort (INEEL)

2005-03-01T23:59:59.000Z

72

Advanced Vehicle Testing Activity (AVTA) ? PHEV Evaluations...  

Broader source: Energy.gov (indexed) [DOE]

kWh MPG per FWHET Test Cumulative MPG Cumulative AC kWh 15 FY07 EnergyCS Prius - Fuel Costs EnergyCS PHEV Prius UDDS & HWFET Fuel Cost per Mile 0.000 0.005 0.010 0.015...

73

Test plan for performance testing of the Eaton AC-3 electric vehicle  

SciTech Connect (OSTI)

An alternating current (ac) propulsion system for an electric vehicle has been developed and tested by the Eaton Corporation. The test bed vehicle is a modified 1981 Mercury Lynx. The test plan has been prepared specifically for the third modification to this test bed and identified as the Eaton AC-3. The scope of the EG and G testing at INEL to be done on the Eaton AC-3 will include coastdown and dynamometer tests but will not include environmental, on-road, or track testing. Coastdown testing will be performed in accordance with SAE J-1263 (SAE Recommended Practice for Road Load Measurement and Dynamometer Simulation Using Coastdown Techniques).

Crumley, R.L.; Heiselmann, H.W.

1985-04-01T23:59:59.000Z

74

P1.2 -- Hybrid Electric Vehicle and Lithium Polymer NEV Testing  

SciTech Connect (OSTI)

The U.S. Department of Energy’s Advanced Vehicle Testing Activity tests hybrid electric, pure electric, and other advanced technology vehicles. As part of this testing, 28 hybrid electric vehicles (HEV) are being tested in fleet, dynamometer, and closed track environments. This paper discusses some of the HEV test results, with an emphasis on the battery performance of the HEVs. It also discusses the testing results for a small electric vehicle with a lithium polymer traction battery.

J. Francfort

2006-06-01T23:59:59.000Z

75

Additional dynamometer tests of the Ford Ecostar Electric Vehicle No. 41  

SciTech Connect (OSTI)

A Ford Ecostar vehicle was tested in the Idaho National Engineering Laboratory (INEL) Hybrid Electric Vehicle (HEV) Laboratory over two standard driving regimes, coastdown testing, and typical charge testing. The test vehicle was delivered to the INEL in February 19, 1995 under the DOE sponsored Modular Electric Vehicle Program. This report presents the results of dynamometer driving cycle tests, charge data, and coastdown testing for California Air Resources Board (CARB) under a CRADA with the Department Of Energy (DOE).

Cole, G.H.; Richardson, R.A.; Yarger, E.J.

1996-06-01T23:59:59.000Z

76

Heading Lock Maneuver Testing of Autonomous Underwater Vehicle  

E-Print Network [OSTI]

In recent years, Autonomous Underwater Vehicle (UAV) research and development at Bandung Institute of Technology in Indonesia has achieved the testing stage in the field. This testing was still being classified as the early testing, since some of the preliminary tests were carried out in the scale of the laboratory. The paper would discuss the laboratory test and several tests that were done in the field. Discussions were stressed in the procedure and the aim that will be achieved, along with several early results. The testing was carried out in the lake with the area around 8300 Ha and the maximum depth of 50 meters. The location of the testing was chosen with consideration of minimizing the effect of the current and the wave, as well as the location that was not too far from the Laboratory. The type of testing that will be discussed in paper was Heading Lock Maneuver Testing. The vehicle was tested to move with a certain cruising speed, afterwards it was commanded by an arbitrarily selected heading directio...

Muljowidodo, K

2008-01-01T23:59:59.000Z

77

UBC Social Ecological Economic Development Studies (SEEDS) Student Report Electric Vehicle Charging Impact Review for MultiUser Residential Buildings in British Columbia  

E-Print Network [OSTI]

596 Electric Vehicle Charging ­ Impact Review for Multi User Residential Buildings in British .......................................................................................................................................... 4 3 Electric Vehicles in British Columbia .................................................................................................................................... 27 6.1 City of Vancouver ­ Electric Vehicle Provision Regulations

78

An adaptable, low cost test-bed for unmanned vehicle systems research.  

E-Print Network [OSTI]

?? An unmanned vehicle systems test-bed has been developed. The test-bed has been designed to accommodate hardware changes and various vehicle types and algorithms. The… (more)

Goppert, James M.

2011-01-01T23:59:59.000Z

79

EcoCAR Vehicles Get Put to the Test at General Motors' Proving...  

Broader source: Energy.gov (indexed) [DOE]

EcoCAR Vehicles Get Put to the Test at General Motors' Proving Ground EcoCAR Vehicles Get Put to the Test at General Motors' Proving Ground June 13, 2011 - 5:57pm Addthis Virginia...

80

Roadmap for Testing and Validation of Electric Vehicle Communication Standards  

SciTech Connect (OSTI)

Vehicle to grid communication standards are critical to the charge management and interoperability among plug-in electric vehicles (PEVs), charging stations and utility providers. The Society of Automobile Engineers (SAE), International Organization for Standardization (ISO), International Electrotechnical Commission (IEC) and the ZigBee Alliance are developing requirements for communication messages and protocols. While interoperability standards development has been in progress for more than two years, no definitive guidelines are available for the automobile manufacturers, charging station manufacturers or utility backhaul network systems. At present, there is a wide range of proprietary communication options developed and supported in the industry. Recent work by the Electric Power Research Institute (EPRI), in collaboration with SAE and automobile manufacturers, has identified performance requirements and developed a test plan based on possible communication pathways using power line communication (PLC). Though the communication pathways and power line communication technology options are identified, much work needs to be done in developing application software and testing of communication modules before these can be deployed in production vehicles. This paper presents a roadmap and results from testing power line communication modules developed to meet the requirements of SAE J2847/1 standard.

Pratt, Richard M.; Tuffner, Francis K.; Gowri, Krishnan

2012-07-12T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle testing building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

The Micro Craft iSTAR Micro Air Vehicle: Control System Design and Testing  

E-Print Network [OSTI]

-rotating propellers) benefits both reliability and cost. Figure 1: iSTAR Micro Air Vehicle The Micro Craft iSTAR VTOLThe Micro Craft iSTAR Micro Air Vehicle: Control System Design and Testing Larry Lipera i Abstract The iSTAR Micro Air Vehicle (MAV) is a unique 9-inch diameter ducted air vehicle weighing

Rotkowitz, Michael C.

82

Design, Development and Testing of Underwater Vehicles: ITB Experience  

E-Print Network [OSTI]

The last decade has witnessed increasing worldwide interest in the research of underwater robotics with particular focus on the area of autonomous underwater vehicles (AUVs). The underwater robotics technology has enabled human to access the depth of the ocean to conduct environmental surveys, resources mapping as well as scientific and military missions. This capability is especially valuable for countries with major water or oceanic resources. As an archipelagic nation with more than 13,000 islands, Indonesia has one of the most abundant living and non-organic oceanic resources. The needs for the mapping, exploration, and environmental preservation of the vast marine resources are therefore imperative. The challenge of the deep water exploration has been the complex issues associated with hazardous and unstructured undersea and sea-bed environments. The paper reports the design, development and testing efforts of underwater vehicle that have been conducted at Institut Teknologi Bandung. Key technology areas...

Muljowidodo, Said D; Budiyono, Agus; Nugroho, Sapto A

2008-01-01T23:59:59.000Z

83

Virtual Testing for Smart Buildings Julien Bruneau, Charles Consel  

E-Print Network [OSTI]

Virtual Testing for Smart Buildings Julien Bruneau, Charles Consel INRIA Bordeaux Sud-Ouest Talence Consultant Cairo, Egypt wail hannourah@yahoo.com Abstract--Smart buildings promise to revolutionize the way on the quality and cost of these services. However, smart buildings and any technology with direct effect

Paris-Sud XI, Université de

84

Vehicle Technologies Office Merit Review 2014: Vehicle to Grid Communications and Field Testing  

Broader source: Energy.gov [DOE]

Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

85

Autonomie Modeling Tool Improves Vehicle Design and Testing,...  

Energy Savers [EERE]

support, is helping U.S. auto manufacturers develop the next generation of hybrid and electric vehicles. Hybrid and electric vehicles require sophisticated electric drive and...

86

Testing and Validation of Vehicle to Grid Communication Standards...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Greenpower Trap Mufflerl System Idaho Operations AMWTP Fact Sheet Heating Ventilation and Air Conditioning Efficiency Vehicles Home About Vehicle Technologies Office Plug-in...

87

Idaho National Laboratory Testing of Advanced Technology Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation vss021francfort2011o.pdf More Documents & Publications Vehicle...

88

Idaho National Laboratory Testing of Advanced Technology Vehicles  

Broader source: Energy.gov (indexed) [DOE]

* Vehicle and infrastructure demonstration results are published to document - Vehicle fuel economy and electricity consumption as a result of driving and charging behavior -...

89

Laboratory testing of high energy density capacitors for electric vehicles  

SciTech Connect (OSTI)

Laboratory tests of advanced, high energy density capacitors in the Battery Test Laboratory of the Idaho National Engineering Laboratory have been performed to investigate their suitability for load-leveling the battery in an electric vehicle. Two types of devices were tested -- 3 V, 70 Farad, spiral wound, carbon-based, single cell devices and 20 V, 3. 5 Farad, mixed-oxide, multi-cell bipolar devices. The energy density of the devices, based on energy stored during charge to the rated voltage, was found to be 1--2 Wh/kg, which agreed well with that claimed by the manufacturers. Constant power discharge tests were performed at power densities up to 1500 W/kg. Discharges at higher power densities could have been performed had equipment been available to maintain constant power during discharges of less than one second. It was found that the capacitance of the devices were rate dependent with the rate dependency of the carbon-based devices being higher than that of the mixed-oxide devices. The resistance of both types of devices were relatively low being 20--30 milliohms. Testing done in the study showed that the advanced high energy density capacitors can be charged and discharged over cycles (PSFUDS) which approximate the duty cycle that would be encountered if the devices are used to load-level the battery in an electric vehicle. Thermal tests of the advanced capacitors in an insulated environment using the PSFUDS cycle showed the devices do not overheat with their temperatures increasing only 4--5{degrees}C for tests that lasted 5--7 hours. 7 refs., 33 figs., 11 tabs.

Burke, A.F.

1991-10-01T23:59:59.000Z

90

Performance test results for the Eaton dc developmental power train in an electric test bed vehicle  

SciTech Connect (OSTI)

This report presents the results of the tests performed on a direct current (dc) power train in a test bed vehicle developed by the Eaton Corporation for the US Department of Energy (DOE). The tests were performed by EG and G Idaho, Inc. at the Idaho National Engineering Laboratory (INEL). The purpose of the INEL testing was to provide test results from which an evaluation of the performance capabilities of the Eaton dc power train could be made and compared with other vehicle propulsion systems. The planned tests were primarily oriented toward road testing, chassis dynamometer testing, and associated dynamometer coastdown tests for road loss determination. Range tests of the Eaton dc test bed vehicle using an ALCO 2200 lead acid battery pack, produced ranges of 97 km at 56 km/h (60 miles at 35 mph), 79 km at 72 km/h (49 miles at 45 mph), and 47 km at 88 km/h (29 miles at 55 mph). The corresponding net dc energy consumptions are 135 Wh/km (217 Wh/mile), 145 Wh/km (233 Wh/mile), and 178 Wh/km (287 Wh/mile). The energy consumption for the D-cycle test was 241 Wh/km (387 Wh/mile). 8 refs., 11 figs., 16 tabs.

Crumley, R.L.; Donaldson, M.R.

1987-09-01T23:59:59.000Z

91

Interim Test Procedures for Evaluating Electrical Performance and Grid Integration of Vehicle-to-Grid Applications  

SciTech Connect (OSTI)

The objective of this report is to provide a test plan for V2G testing. The test plan is designed to test and evaluate the vehicle's power electronics capability to provide power to the grid, and to evaluate the vehicle's ability to connect and disconnect from the utility according to a subset of the IEEE Std. 1547 tests.

Chakraborty, S.; Kramer, W.; Kroposki, B.; Martin, G.; McNutt, P.; Kuss, M.; Markel, T.; Hoke, A.

2011-06-01T23:59:59.000Z

92

AVTA: Testing Results on the USPS Long-life Vehicle Conversions...  

Energy Savers [EERE]

and development. The following reports describe results of testing conversions to all-electric vehicles of the U.S. Postal Service's standard Long-Life Vehicle used for postal...

93

2011 HONDA CR-Z 2982 - HYBRID ELECTRIC VEHICLE BATTERY TEST RESULTS  

SciTech Connect (OSTI)

The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing traction batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Honda CR-Z (VIN JHMZF1C64BS002982). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Office of the U.S. Department of Energy.

Gray, Tyler [Interek; Shirk, Matthew [Idaho National Laboratory; Wishart, Jeffrey [Interek

2014-09-01T23:59:59.000Z

94

2011 Honda CR-Z 4466 - Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing traction batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Honda CR-Z (VIN JHMZF1C67BS004466). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Office of the U.S. Department of Energy.

Tyler Gray; Matthew Shirk; Jeffrey Wishart

2014-09-01T23:59:59.000Z

95

2010 Honda Insight VIN 0141 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Honda Insight HEV (VIN: JHMZE2H78AS010141). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray

2013-01-01T23:59:59.000Z

96

2010 Ford Fusion VIN 4757 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2010 Ford Fusion HEV (VIN: 3FADP0L34AR144757). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray; Matthew Shirk

2013-01-01T23:59:59.000Z

97

2010 Toyota Prius VIN 6063 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Toyota Prius HEV (VIN JTDKN3DU5A0006063). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray; Matthew Shirk

2013-01-01T23:59:59.000Z

98

2010 Honda Insight VIN 1748 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Honda Insight HEV (VIN: JHMZE2H59AS011748). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray; Matthew Shirk

2013-01-01T23:59:59.000Z

99

2010 Toyota Prius VIN 0462 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Toyota Prius HEV (VIN: JTDKN3DU2A5010462). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray; Matthew Shirk

2013-01-01T23:59:59.000Z

100

AVTA: BWM Mini-E All-Electric Vehicle Testing Report  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on an all-electric 2009 BMW Mini-e, a demonstration vehicle not available on the market. The baseline performance testing provides a point of comparison for the other test results. This research was conducted by Idaho National Laboratory.

Note: This page contains sample records for the topic "vehicle testing building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

US Department of Energy Hybrid Vehicle Battery and Fuel Economy Testing  

SciTech Connect (OSTI)

The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy’s FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August, 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and research and development programs. The AVTA has tested over 200 advanced technology vehicles including full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles. Currently, the AVTA is conducting significant tests of hybrid electric vehicles (HEV). This testing has included all HEVs produced by major automotive manufacturers and spans over 1.3 million miles. The results of all testing are posted on the AVTA web page maintained by the Idaho National Laboratory. Through the course of this testing, the fuel economy of HEV fleets has been monitored and analyzed to determine the "real world" performance of their hybrid energy systems, particularly the battery. While the initial "real world" fuel economy of these vehicles has typically been less than that evaluated by the manufacturer and varies significantly with environmental conditions, the fuel economy and, therefore, battery performance, has remained stable over vehicle life (160,000 miles).

Donald Karner; J.E. Francfort

2005-09-01T23:59:59.000Z

102

Improving Building Energy Simulation Programs Through Diagnostic Testing (Fact Sheet)  

SciTech Connect (OSTI)

New test procedure evaluates quality and accuracy of energy analysis tools for the residential building retrofit market. Reducing the energy use of existing homes in the United States offers significant energy-saving opportunities, which can be identified through building simulation software tools that calculate optimal packages of efficiency measures. To improve the accuracy of energy analysis for residential buildings, the National Renewable Energy Laboratory's (NREL) Buildings Research team developed the Building Energy Simulation Test for Existing Homes (BESTEST-EX), a method for diagnosing and correcting errors in building energy audit software and calibration procedures. BESTEST-EX consists of building physics and utility bill calibration test cases, which software developers can use to compare their tools simulation findings to reference results generated with state-of-the-art simulation tools. Overall, the BESTEST-EX methodology: (1) Tests software predictions of retrofit energy savings in existing homes; (2) Ensures building physics calculations and utility bill calibration procedures perform to a minimum standard; and (3) Quantifies impacts of uncertainties in input audit data and occupant behavior. BESTEST-EX is helping software developers identify and correct bugs in their software, as well as develop and test utility bill calibration procedures.

Not Available

2012-02-01T23:59:59.000Z

103

Monitoring System for Testing the Performance of an Electric Vehicle Using Ultracapacitors  

E-Print Network [OSTI]

Monitoring System for Testing the Performance of an Electric Vehicle Using Ultracapacitors Juan W. Dixon, Micah OrtĂşzar and Jorge Moreno Abstract A monitoring system for an Electric Vehicle, which uses of ultracapacitors in combination with batteries in electric vehicles. The efficiency gain is being monitored

Catholic University of Chile (Universidad CatĂłlica de Chile)

104

Idaho National Laboratory Testing of Advanced Technology Vehicles  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

105

Overview of Vehicle and Systems Simulation and Testing  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

106

Improved Accelerated Stress Tests Based on Fuel Cell Vehicle Data  

SciTech Connect (OSTI)

UTC will led a top-tier team of industry and national laboratory participants to update and improve DOE’s Accelerated Stress Tests (AST’s) for hydrogen fuel cells. This in-depth investigation will focused on critical fuel cell components (e.g. membrane electrode assemblies - MEA) whose durability represented barriers for widespread commercialization of hydrogen fuel cell technology. UTC had access to MEA materials that had accrued significant load time under real-world conditions in PureMotion® 120 power plant used in transit buses. These materials are referred to as end-of-life (EOL) components in the rest of this document. Advanced characterization techniques were used to evaluate degradation mode progress using these critical cell components extracted from both bus power plants and corresponding materials tested using the DOE AST’s. These techniques were applied to samples at beginning-of-life (BOL) to serve as a baseline. These comparisons advised the progress of the various failure modes that these critical components were subjected to, such as membrane degradation, catalyst support corrosion, platinum group metal dissolution, and others. Gaps in the existing ASTs predicted the degradation observed in the field in terms of these modes were outlined. Using the gaps, new AST’s were recommended and tested to better reflect the degradation modes seen in field operation. Also, BOL components were degraded in a test vehicle at UTC designed to accelerate the bus field operation.

Patterson, Timothy [Research Engineer] [Research Engineer; Motupally, Sathya [Research Engineer] [Research Engineer

2012-06-01T23:59:59.000Z

107

Near-term electric test vehicle ETV-2. Phase II. Final report  

SciTech Connect (OSTI)

A unique battery-powered passenger vehicle has been developed that provides a significant improvement over conventional electric vehicle performance, particularly during stop-and-go driving. The vehicle is unique in two major respects: (1) the power system incorporates a flywheel that stores energy during regenerative braking and makes possible the acceleration capability needed to keep up with traffic without reducing range to unacceptable values; and (2) lightweight plastic materials are used for the vehicle unibody to minimize weight and increase range. These features were analyzed and demonstrated in an electric test vehicle, ETV-2. Characteristics of this vehicle are summarized. Information is presented on: vehicle design, fabrication, safety testing, and performance testing; power system design and operation; flywheel; battery pack performance; and controls and electronic equipment. (LCL)

Not Available

1981-04-01T23:59:59.000Z

108

U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity, Hydrogen/CNG Blended Fuels Performance Testing in a Ford F-150  

SciTech Connect (OSTI)

Federal regulation requires energy companies and government entities to utilize alternative fuels in their vehicle fleets. To meet this need, several automobile manufacturers are producing compressed natural gas (CNG)-fueled vehicles. In addition, several converters are modifying gasoline-fueled vehicles to operate on both gasoline and CNG (Bifuel). Because of the availability of CNG vehicles, many energy company and government fleets have adopted CNG as their principle alternative fuel for transportation. Meanwhile, recent research has shown that blending hydrogen with CNG (HCNG) can reduce emissions from CNG vehicles. However, blending hydrogen with CNG (and performing no other vehicle modifications) reduces engine power output, due to the lower volumetric energy density of hydrogen in relation to CNG. Arizona Public Service (APS) and the U.S. Department of Energy’s Advanced Vehicle Testing Activity (DOE AVTA) identified the need to determine the magnitude of these effects and their impact on the viability of using HCNG in existing CNG vehicles. To quantify the effects of using various blended fuels, a work plan was designed to test the acceleration, range, and exhaust emissions of a Ford F-150 pickup truck operating on 100% CNG and blends of 15 and 30% HCNG. This report presents the results of this testing conducted during May and June 2003 by Electric Transportation Applications (Task 4.10, DOE AVTA Cooperative Agreement DEFC36- 00ID-13859).

James E. Francfort

2003-11-01T23:59:59.000Z

109

2010 Honda Civic Hybrid UltraBattery Conversion 5577 - Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of on-road fleet testing. This report documents battery testing performed for the 2010 Honda Civic HEV UltraBattery Conversion (VIN JHMFA3F24AS005577). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

Tyler Gray; Matthew Shirk; Jeffrey Wishart

2013-07-01T23:59:59.000Z

110

2011 Chevrolet Volt VIN 0815 Plug-In Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Advanced Vehicle Testing Activity (AVTA) program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on plug-in hybrid electric vehicles (PHEVs), including testing the PHEV batteries when both the vehicles and batteries are new and at the conclusion of 12,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Chevrolet Volt PHEV (VIN 1G1RD6E48BU100815). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec) dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

Tyler Gray; Matthew Shirk; Jeffrey Wishart

2013-07-01T23:59:59.000Z

111

Vehicle Technologies Office Merit Review 2014: Battery Safety Testing  

Broader source: Energy.gov [DOE]

Presentation given by Sandia National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about battery safety...

112

2011 Hyundai Sonata Hybrid - vin 4932 Advanced Vehicle Testing...  

Broader source: Energy.gov (indexed) [DOE]

Sheets (MSDS) for all unique hazardous materials the vehicle is equipped with, including Energy Storage System (ESS) batteries or capacitors, and auxiliary batteries. (3)...

113

Vehicle Technologies Office Merit Review 2014: Electrochemical Performance Testing  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electrochemical...

114

AVTA: EVSE Testing- NYSERDA Electric Vehicle Charging Infrastructure Reports  

Broader source: Energy.gov [DOE]

These reports describe the charging patterns of drivers participating in the New York State Energy Research and Development Authority's (NYSERDA) electric vehicle (EV) infrastructure project.

115

Real-Time Building Energy Simulation Using EnergyPlus and the Building Controls Test Bed  

SciTech Connect (OSTI)

Most commercial buildings do not perform as well in practice as intended by the design and their performances often deteriorate over time. Reasons include faulty construction, malfunctioning equipment, incorrectly configured control systems and inappropriate operating procedures (Haves et al., 2001, Lee et al., 2007). To address this problem, the paper presents a simulation-based whole building performance monitoring tool that allows a comparison of building actual performance and expected performance in real time. The tool continuously acquires relevant building model input variables from existing Energy Management and Control System (EMCS). It then reports expected energy consumption as simulated of EnergyPlus. The Building Control Virtual Test Bed (BCVTB) is used as the software platform to provide data linkage between the EMCS, an EnergyPlus model, and a database. This paper describes the integrated real-time simulation environment. A proof-of-concept demonstration is also presented in the paper.

Pang, Xiufeng; Bhattachayra, Prajesh; O'Neill, Zheng; Haves, Philip; Wetter, Michael; Bailey, Trevor

2011-11-01T23:59:59.000Z

116

The Thermal Test and Analysis of Envelope in Existing Buildings  

E-Print Network [OSTI]

). The thickness of polystyrene slab is in Tab .3. ICEBO2006, Shenzhen, China Building Commissioning for Energy Efficiency and Comfort, Vol. VI-5-2 The temperature and the heat flux distributing of wall are shown in Fig.2 and Fig.3. Tab. 2... The temperature distributing of wall ICEBO2006, Shenzhen, China Building Commissioning for Energy Efficiency and Comfort, Vol. VI-5-2 Fig3. The heat flux distributing of wall 5 CONCLUSIONS Through the thermal testing, calculation...

Liu, X.; Li, X.; Sun, J.; Wang, Z.

2006-01-01T23:59:59.000Z

117

U.S. Department of Energy FreedomCAR and Vehicle Technologies Program Advanced Vehicle Testing Activity Federal Fleet Use of Electric Vehicles  

SciTech Connect (OSTI)

Per Executive Order 13031, “Federal Alternative Fueled Vehicle Leadership,” the U.S. Department of Energy’s (DOE’s) Advanced Vehicle Testing Activity provided $998,300 in incremental funding to support the deployment of 220 electric vehicles in 36 Federal fleets. The 145 electric Ford Ranger pickups and 75 electric Chrysler EPIC (Electric Powered Interurban Commuter) minivans were operated in 14 states and the District of Columbia. The 220 vehicles were driven an estimated average of 700,000 miles annually. The annual estimated use of the 220 electric vehicles contributed to 39,000 fewer gallons of petroleum being used by Federal fleets and the reduction in emissions of 1,450 pounds of smog-forming pollution. Numerous attempts were made to obtain information from all 36 fleets. Information responses were received from 25 fleets (69% response rate), as some Federal fleet personnel that were originally involved with the Incremental Funding Project were transferred, retired, or simply could not be found. In addition, many of the Department of Defense fleets indicated that they were supporting operations in Iraq and unable to provide information for the foreseeable future. It should be noted that the opinions of the 25 fleets is based on operating 179 of the 220 electric vehicles (81% response rate). The data from the 25 fleets is summarized in this report. Twenty-two of the 25 fleets reported numerous problems with the vehicles, including mechanical, traction battery, and charging problems. Some of these problems, however, may have resulted from attempting to operate the vehicles beyond their capabilities. The majority of fleets reported that most of the vehicles were driven by numerous drivers each week, with most vehicles used for numerous trips per day. The vehicles were driven on average from 4 to 50 miles per day on a single charge. However, the majority of the fleets reported needing gasoline vehicles for missions beyond the capabilities of the electric vehicles, usually because of range limitations. Twelve fleets reported experiencing at least one charge depletion while driving, whereas nine fleets reported not having this problem. Twenty-four of the 25 fleets responded that the electric vehicles were easy to use and 22 fleets indicated that the payload was adequate. Thirteen fleets reported charging problems; eleven fleets reported no charging problems. Nine fleets reported the vehicles broke down while driving; 14 fleets reported no onroad breakdowns. Some of the breakdowns while driving, however, appear to include normal flat tires and idiot lights coming on. In spite of operation and charging problems, 59% of the fleets responded that they were satisfied, very satisfied, or extremely satisfied with the performance of the electric vehicles. As of September 2003, 74 of the electric vehicles were still being used and 107 had been returned to the manufacturers because the leases had concluded.

Mindy Kirpatrick; J. E. Francfort

2003-11-01T23:59:59.000Z

118

AVTA: 2010 Electric Vehicles International Neighborhood Electric...  

Energy Savers [EERE]

10 Electric Vehicles International Neighborhood Electric Vehicle Testing Results AVTA: 2010 Electric Vehicles International Neighborhood Electric Vehicle Testing Results The...

119

Trip Prediction and Route-Based Vehicle Energy Management  

Broader source: Energy.gov (indexed) [DOE]

Barriers * Start: September 2012 * End: September 2014 * Status: 70% complete * Cost of testing advanced technologies through multiple vehicle builds * Risk aversion of OEM...

120

Hybrid Electric and Plug-in Hybrid Electric Vehicle Testing Activities  

SciTech Connect (OSTI)

The Advanced Vehicle Testing Activity (AVTA) conducts hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV) testing in order to provide benchmark data for technology modeling and research and development programs, and to be an independent source of test data for fleet managers and other early adaptors of advanced-technology vehicles. To date, the AVTA has completed baseline performance testing on 12 HEV models and accumulated 2.7 million fleet testing miles on 35 HEVs. The HEV baseline performance testing includes dynamometer and closed-track testing to document HEV performance in a controlled environment. During fleet testing, two of each HEV model accumulate 160,000 test miles within 36 months, during which maintenance and repair events and fuel use were recorded. Three models of PHEVs, from vehicle converters Energy CS and Hymotion and the original equipment manufacturer Renault, are currently in testing. The PHEV baseline performance testing includes 5 days of dynamometer testing with a minimum of 26 test drive cycles, including the Urban Dynamometer Driving Schedule, the Highway Fuel Economy Driving Schedule, and the US06 test cycle, in charge-depleting and charge-sustaining modes. The PHEV accelerated testing is conducted with dedicated drivers for 4,240 miles, over a series of 132 driving loops that range from 10 to 200 miles over various combinations of defined 10-mile urban and 10-mile highway loops, with 984 hours of vehicle charging. The AVTA is part of the U.S. Department of Energy’s FreedomCAR and Vehicle Technologies Program. These AVTA testing activities were conducted by the Idaho National Laboratory and Electric Transportation Applications, with dynamometer testing conducted at Argonne National Laboratory. This paper discusses the testing methods and results.

Donald Karner

2007-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle testing building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Electric vehicle test and evaluation data: preliminary analysis  

SciTech Connect (OSTI)

The data in this paper summarizes the current experience of DOE private sector site operators and is based on information gathered from electric vehicle (EV) private sector site operators by Booz, Allen and Hamilton under contract to the U.S. Department of Energy. Since January 1980, Booz, Allen has collected and computerized on an IBM Personnel computer data from 16 private sector site operators covering nine vehicle types and over 1.3 million miles of vehicle travel. The paper summarizes key indicators of vehicle performance including energy consumption per mile and miles travelled per charge and reports on results of and plans for special analyses. More detailed information is available from the authors.

Friedman, K.; Magro, W.

1983-06-01T23:59:59.000Z

122

2013 Chevrolet Malibu ECO Advanced Vehicle Testing - Baseline...  

Broader source: Energy.gov (indexed) [DOE]

chassis does not exceed 5 mA at any time the vehicle is connected to an off-board power supply. (24) The automatic disconnect for the ESS batteries shall be capable of...

123

2011 Chevrolte Volt - VIN 0815 - Advanced Vehicle Testing - Baseline...  

Broader source: Energy.gov (indexed) [DOE]

chassis does not exceed 5 mA at any time the vehicle is connected to an off-board power supply. (24) The automatic disconnect for the ESS batteries shall be capable of...

124

2011 Nissan Leaf - VIN 0356 - Advanced Vehicle Testing - Baseline...  

Broader source: Energy.gov (indexed) [DOE]

chassis does not exceed 5 mA at any time the vehicle is connected to an off-board power supply. (24) The automatic disconnect for the ESS batteries shall be capable of...

125

2013 Chevrolte Volt - VIN 3929 - Advanced Vehicle Testing - Baseline...  

Broader source: Energy.gov (indexed) [DOE]

chassis does not exceed 5 mA at any time the vehicle is connected to an off-board power supply. (24) The automatic disconnect for the ESS batteries shall be capable of...

126

Idaho National Laboratory Testing of Advanced Technology Vehicles  

Broader source: Energy.gov (indexed) [DOE]

(FL) * Prepared for work at Marine Corps Base Camp Lejeune (NC) Hydrogen generation and fuel cell vehicle feasibility study in Hawaii * Study begun for GSA fleets in Honolulu, HI...

127

Developing a Test Data Set for Electric Vehicle Applications in Smart Grid Research  

E-Print Network [OSTI]

Developing a Test Data Set for Electric Vehicle Applications in Smart Grid Research Hossein Akhavan data set for PHEV-related research in the field of smart grid. Our developed data set is made available, publicly available data set, smart grid applications, experimental vehicle driving traces, state of charge

Mohsenian-Rad, Hamed

128

U.S. Department of Energy Vehicle Technologies Program: Battery Test Manual For Plug-In Hybrid Electric Vehicles  

SciTech Connect (OSTI)

This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Renata M. Arsenault of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).

Jon P. Christophersen

2014-09-01T23:59:59.000Z

129

Vehicle Technologies Office Merit Review 2014: INL Testing of Wireless Charging Systems  

Broader source: Energy.gov [DOE]

Presentation given by Idaho National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about INL testing of...

130

Just build it! : a fully functional concept vehicle using robotic wheels  

E-Print Network [OSTI]

Interest in electric vehicle drive units is resurging with the proliferation of hybrid and electric vehicles. Currently emerging key-technologies are: in-wheel motors, electric braking, integrated steering activators and ...

Schmitt, Peter, S.M. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

131

Field Testing of Nano-PCM Enhanced Building Envelope Components  

SciTech Connect (OSTI)

The U.S. Department of Energy s (DOE) Building Technologies Program s goal of developing high-performance, energy efficient buildings will require more cost-effective, durable, energy efficient building envelopes. Forty-eight percent of the residential end-use energy consumption is spent on space heating and air conditioning. Reducing envelope-generated heating and cooling loads through application of phase change material (PCM)-enhanced envelope components can facilitate maximizing the energy efficiency of buildings. Field-testing of prototype envelope components is an important step in estimating their energy benefits. An innovative phase change material (nano-PCM) was developed with PCM encapsulated with expanded graphite (interconnected) nanosheets, which is highly conducive for enhanced thermal storage and energy distribution, and is shape-stable for convenient incorporation into lightweight building components. During 2012, two test walls with cellulose cavity insulation and prototype PCM-enhanced interior wallboards were installed in a natural exposure test (NET) facility at Charleston, SC. The first test wall was divided into four sections, which were separated by wood studs and thin layers of foam insulation. Two sections contained nano-PCM-enhanced wallboards: one was a three-layer structure, in which nano-PCM was sandwiched between two gypsum boards, and the other one had PCM dispersed homogeneously throughout graphite nanosheets-enhanced gypsum board. The second test wall also contained two sections with interior PCM wallboards; one contained nano-PCM dispersed homogeneously in gypsum and the other was gypsum board containing a commercial microencapsulated PCM (MEPCM) for comparison. Each test wall contained a section covered with gypsum board on the interior side, which served as control or a baseline for evaluation of the PCM wallboards. The walls were instrumented with arrays of thermocouples and heat flux transducers. Further, numerical modeling of the walls containing the nano-PCM wallboards were performed to determine their actual impact on wall-generated heating and cooling loads. The models were first validated using field data, and then used to perform annual simulations using Typical Meteorological Year (TMY) weather data. This article presents the measured performance and numerical analysis to evaluate the energy-saving potential of the nano-PCM-enhanced building components.

Biswas, Kaushik [ORNL; Childs, Phillip W [ORNL; Atchley, Jerald Allen [ORNL

2013-08-01T23:59:59.000Z

132

Smart buildings with electric vehicle interconnection as buffer for local renewables?  

E-Print Network [OSTI]

Judy Lai, and Vincent Battaglia: “The added economic andMarnay, and Vincent Battaglia: “Plug-in Electric Vehicle

Stadler, Michael

2012-01-01T23:59:59.000Z

133

Vehicle and Systems Simulation and Testing | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwoVulnerabilitiesPowertrainReadiness10 DOE Vehicle

134

2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle...  

Energy Savers [EERE]

- Vehicle Systems Simulation and Testing 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle Systems Simulation and Testing Vehicle systems research and development...

135

Miniature Autonomous Robotic Vehicle (MARV)  

SciTech Connect (OSTI)

Sandia National Laboratories (SNL) has recently developed a 16 cm{sup 3} (1 in{sup 3}) autonomous robotic vehicle which is capable of tracking a single conducting wire carrying a 96 kHz signal. This vehicle was developed to assess the limiting factors in using commercial technology to build miniature autonomous vehicles. Particular attention was paid to the design of the control system to search out the wire, track it, and recover if the wire was lost. This paper describes the test vehicle and the control analysis. Presented in the paper are the vehicle model, control laws, a stability analysis, simulation studies and experimental results.

Feddema, J.T.; Kwok, K.S.; Driessen, B.J.; Spletzer, B.L.; Weber, T.M.

1996-12-31T23:59:59.000Z

136

Real-Time Building Energy Simulation Using EnergyPlus and the Building Controls Test Bed  

E-Print Network [OSTI]

creating a new-generation building energy simulationprogram. Energy and Buildings, 33: 319-331. Haves, P. ,Liu M. 2001. Use of Whole Building Simulation in On- Line

Pang, Xiufeng

2013-01-01T23:59:59.000Z

137

Proposal for a Vehicle Level Test Procedure to Measure Air Conditioning Fuel Use  

SciTech Connect (OSTI)

The air-conditioning (A/C) compressor load significantly impacts the fuel economy of conventional vehicles and the fuel use/range of plug-in hybrid electric vehicles (PHEV). A National Renewable Energy Laboratory (NREL) vehicle performance analysis shows the operation of the air conditioner reduces the charge depletion range of a 40-mile range PHEV from 18% to 30% in a worst case hot environment. Designing for air conditioning electrical loads impacts PHEV and electric vehicle (EV) energy storage system size and cost. While automobile manufacturers have climate control procedures to assess A/C performance, and the U.S. EPA has the SCO3 drive cycle to measure indirect A/C emissions, there is no automotive industry consensus on a vehicle level A/C fuel use test procedure. With increasing attention on A/C fuel use due to increased regulatory activities and the development of PHEVs and EVs, a test procedure is needed to accurately assess the impact of climate control loads. A vehicle thermal soak period is recommended, with solar lamps that meet the SCO3 requirements or an alternative heating method such as portable electric heaters. After soaking, the vehicle is operated over repeated drive cycles or at a constant speed until steady-state cabin air temperature is attained. With this method, the cooldown and steady-state A/C fuel use are measured. This method can be run at either different ambient temperatures to provide data for the GREEN-MAC-LCCP model temperature bins or at a single representative ambient temperature. Vehicles with automatic climate systems are allowed to control as designed, while vehicles with manual climate systems are adjusted to approximate expected climate control settings. An A/C off test is also run for all drive profiles. This procedure measures approximate real-world A/C fuel use and assess the impact of thermal load reduction strategies.

Rugh, J. P.

2010-04-01T23:59:59.000Z

138

NREL: Transportation Research - Alternative Fuel Fleet Vehicle Testing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData and ResourcesOtherForecastingAlternative Fuel Fleet Vehicle

139

Vehicle and Systems Simulation and Testing | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwoVulnerabilitiesPowertrainReadiness10 DOE Vehicle09 DOE

140

Functional Testing Protocols for Commercial Building Efficiency Baseline Modeling Software  

SciTech Connect (OSTI)

This document describes procedures for testing and validating proprietary baseline energy modeling software accuracy in predicting energy use over the period of interest, such as a month or a year. The procedures are designed according to the methodology used for public domain baselining software in another LBNL report that was (like the present report) prepared for Pacific Gas and Electric Company: ?Commercial Building Energy Baseline Modeling Software: Performance Metrics and Method Testing with Open Source Models and Implications for Proprietary Software Testing Protocols? (referred to here as the ?Model Analysis Report?). The test procedure focuses on the quality of the software?s predictions rather than on the specific algorithms used to predict energy use. In this way the software vendor is not required to divulge or share proprietary information about how their software works, while enabling stakeholders to assess its performance.

Jump, David; Price, Phillip N.; Granderson, Jessica; Sohn, Michael

2013-09-06T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle testing building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Grid Interconnection and Performance Testing Procedures for Vehicle-To-Grid (V2G) Power Electronics: Preprint  

SciTech Connect (OSTI)

Bidirectional power electronics can add vehicle-to-grid (V2G) capability in a plug-in vehicle, which then allows the vehicle to operate as a distributed resource (DR). The uniqueness of the battery-based V2G power electronics requires a test procedure that will not only maintain IEEE interconnection standards, but can also evaluate the electrical performance of the vehicle working as a DR. The objective of this paper is to discuss a recently published NREL technical report that provides interim test procedures for V2G vehicles for their integration into the electrical distribution systems and for their performance in terms of continuous output power, efficiency, and losses. Additionally, some other test procedures are discussed that are applicable to a V2G vehicle that desires to provide power reserve functions. A few sample test results are provided based on testing of prototype V2G vehicles at NREL.

Kramer, W.; Chakraborty, S.; Kroposki, B.; Hoke, A.; Martin, G.; Markel, T.

2012-03-01T23:59:59.000Z

142

Comparative Emissions Testing of Vehicles Aged on E0, E15 and E20 Fuels  

SciTech Connect (OSTI)

The Energy Independence and Security Act passed into law in December 2007 has mandated the use of 36 billion ethanol equivalent gallons per year of renewable fuel by 2022. A primary pathway to achieve this national goal is to increase the amount of ethanol blended into gasoline. This study is part of a multi-laboratory test program coordinated by DOE to evaluate the effect of higher ethanol blends on vehicle exhaust emissions over the lifetime of the vehicle.

Vertin, K.; Glinsky, G.; Reek, A.

2012-08-01T23:59:59.000Z

143

Issues in emissions testing of hybrid electric vehicles.  

SciTech Connect (OSTI)

Argonne National Laboratory (ANL) has tested more than 100 prototype HEVs built by colleges and universities since 1994 and has learned that using standardized dynamometer testing procedures can be problematic. This paper addresses the issues related to HEV dynamometer testing procedures and proposes a new testing approach. The proposed ANL testing procedure is based on careful hybrid operation mode characterization that can be applied to certification and R and D. HEVs also present new emissions measurement challenges because of their potential for ultra-low emission levels and frequent engine shutdown during the test cycles.

Duoba, M.; Anderson, J.; Ng, H.

2000-05-23T23:59:59.000Z

144

Smart buildings with electric vehicle interconnection as buffer for local renewables?  

E-Print Network [OSTI]

as buffer for local renewables? Michael Stadler, Gonçaloas buffer for local renewables? *) Michael Stadler Gonçaloowners to integrate renewables and electric vehicles?

Stadler, Michael

2012-01-01T23:59:59.000Z

145

Richmond Electric Vehicle Initiative Electric Vehicle Readiness...  

Office of Environmental Management (EM)

MO) Vehicles Home About Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions Alternative Fuels Modeling, Testing, Data & Results Education...

146

Dynamometer testing of the U.S. Electricar Geo Prizm conversion electric vehicle  

SciTech Connect (OSTI)

A Geo Prizm electric vehicle conversion by U.S. Electricar was tested in the INEL HEV Laboratory over several standard driving regimes. The vehicle, owned by the Los Angeles Department of Water and Power (LADWP), was loaned to the INEL for performance testing under a Cooperative Research and Development Agreement (CRADA) between the U.S. Department of Energy (DOE) and the California Air Resources Board (CARB). The Prizm conversion is the fourth vehicle in the planned test series. A summary of the test results is presented as Table ES-1. For the LA-92 and the Highway Fuel Economy Test cycles, the driving cycle ranges were 71 and 95 km, respectively. The net DC energy consumption during these cycles was measured at 199 and 154 W-h/km, respectively. During the constant-current-discharge test, the vehicle was driven 150 km at an average steady speed of 43 km/h. Energy consumption at various steady-state speeds, averaged over two tests, was approximately 108 W-h/km at 40 km/hr and 175 W-h/km at 96 km/h at 80T state-of-charge (SOC). Gradeability-at-speed tests indicated that the vehicle can be driven at 80 km/h up a simulated 5% grade for periods up to 15 minutes beginning at an initial 100% SOC, and 3 minutes beginning at 80% battery depth-of-discharge (DOD). Maximum-effort vehicle acceleration times were determined at five different battery DODs and speeds from 24 to 104 km/h. The acceleration is approximately linear up to 48 km/h, with no DOD effect; at higher speeds the curve becomes non-linear, and the effect of DOD becomes increasingly evident. Gradeability at each of these speeds was also determined, showing a decrease from the initial 26% at 24 km/h to 4% at 104 km/h.

Richardson, R.A.; Yarger, E.J.; Cole, G.H.

1996-04-01T23:59:59.000Z

147

Testing Electric Vehicle Demand in "Hybrid Households" Using a Reflexive Survey  

E-Print Network [OSTI]

In contrast to a hybrid vehicle whichcombines multipleor 180 mile hybrid electric vehicle. Natural gas vehicles (1994) "Demand Electric Vehicles in Hybrid for Households:

Kurani, Kenneth S.; Turrentine, Thomas; Sperling, Daniel

2001-01-01T23:59:59.000Z

148

H2-Assisted NOx Traps: Test Cell Results Vehicle Installations  

Broader source: Energy.gov (indexed) [DOE]

* New Power Supply * Under 250W consumption * Minimal heat rejected * Compact transformer * High-temperature flange seals * Reduced leakage 4 H2-Assisted NOx Trap: Test...

149

Co-Simulation of Building Energy and Control Systems with the Building Controls Virtual Test Bed  

SciTech Connect (OSTI)

This article describes the implementation of the Building Controls Virtual Test Bed (BCVTB). The BCVTB is a software environment that allows connecting different simulation programs to exchange data during the time integration, and that allows conducting hardware in the loop simulation. The software architecture is a modular design based on Ptolemy II, a software environment for design and analysis of heterogeneous systems. Ptolemy II provides a graphical model building environment, synchronizes the exchanged data and visualizes the system evolution during run-time. The BCVTB provides additions to Ptolemy II that allow the run-time coupling of different simulation programs for data exchange, including EnergyPlus, MATLAB, Simulink and the Modelica modelling and simulation environment Dymola. The additions also allow executing system commands, such as a script that executes a Radiance simulation. In this article, the software architecture is presented and the mathematical model used to implement the co-simulation is discussed. The simulation program interface that the BCVTB provides is explained. The article concludes by presenting applications in which different state of the art simulation programs are linked for run-time data exchange. This link allows the use of the simulation program that is best suited for the particular problem to model building heat transfer, HVAC system dynamics and control algorithms, and to compute a solution to the coupled problem using co-simulation.

Wetter, Michael

2010-08-22T23:59:59.000Z

150

Electric Vehicle Supply Equipment (EVSE) Test Report: Blink  

Broader source: Energy.gov (indexed) [DOE]

EVSE Specifications Grid connection Plug and cord NEMA 6-50 Connector type J1772 Test lab certifications UL listed Approximate size (H x W x D inches) 18 x 22 x 6 Charge...

151

Electric Vehicle Supply Equipment (EVSE) Test Report: Schneider...  

Broader source: Energy.gov (indexed) [DOE]

EVSE Specifications Grid connection Plug and cord NEMA 6-50 Connector type J1772 Test lab certifications UL Listed Approximate size (H x W x D inches) 10 x 13 x 4 Charge...

152

Electric Vehicle Supply Equipment (EVSE) Test Report: Siemens...  

Broader source: Energy.gov (indexed) [DOE]

EVSE Specifications Grid connection Plug and cord NEMA 6-50 Connector type J1772 Test lab certifications UL Listed Approximate size (H x W x D inches) 16.5 x 16.5 x 6.5...

153

Electric Vehicle Supply Equipment (EVSE) Test Report: SPX  

Broader source: Energy.gov (indexed) [DOE]

EVSE Specifications Grid connection Plug and cord NEMA 6-30 Connector type J1772 Test lab certifications ETL listed Approximate size (H x W x D inches) 5 x 14 x 4 Charge...

154

Electric Vehicle Supply Equipment (EVSE) Test Report: Eaton  

Broader source: Energy.gov (indexed) [DOE]

EVSE Specifications Grid connection Plug and cord NEMA 14-30 Connector type J1772 Test lab certifications ETL listed Approximate size (H x W x D inches) 10 x 15 x 5 Charge...

155

Electric Vehicle Supply Equipment (EVSE) Test Report: GE Energy...  

Broader source: Energy.gov (indexed) [DOE]

EVSE Specifications Grid connection Plug and cord NEMA 6-50 Connector type J1772 Test lab certifications ETL Listed Approximate size (H x W x D inches) 16 x 24 x 6 Charge...

156

HEVAmerica U.S. Department of Energy Advanced Vehicle Testing...  

Broader source: Energy.gov (indexed) [DOE]

42.3 % TEST NOTES: 1. Energy transfer display 2. Total battery discharge over SAE J1634 drive cycle 3. Value calculated based on fuel economy and fuel tank size 4. Air...

157

HEVAmerica U.S. Department of Energy Advanced Vehicle Testing...  

Broader source: Energy.gov (indexed) [DOE]

37.5 % TEST NOTES: 1. Energy transfer display 2. Total battery discharge over SAE J1634 drive cycle 3. Value calculated based on fuel economy and fuel tank size 4. Air...

158

HEVAmerica U.S. Department of Energy Advanced Vehicle Testing...  

Broader source: Energy.gov (indexed) [DOE]

44.4 % TEST NOTES: 1. Energy transfer display 2. Total battery discharge over SAE J1634 drive cycle 3. Value calculated based on fuel economy and fuel tank size 4. Air...

159

Building America Webinar: Field Test Best Practices Tool  

Broader source: Energy.gov [DOE]

This presentation was delivered at the U.S. Department of Energy Building America webinar, Building America Research Tools, on March 18, 2015.

160

Development and Testing of an Information Monitoring and Diagnostics System for Large Commercial Buildings  

E-Print Network [OSTI]

A commercial office #12;buildings. Class A buildings are the most prestigious buildings in a particular marketDevelopment and Testing of an Information Monitoring and Diagnostics System for Large Commercial Buildings Mary Ann Piette , Lisa Gartland, Satkartar Khalsa, Lawrence Berkeley National Laboratory, Berkeley

Note: This page contains sample records for the topic "vehicle testing building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Vehicle to Grid Communication Standards Development, Testing and Validation - Status Report  

SciTech Connect (OSTI)

In the US, more than 10,000 electric vehicles (EV) have been delivered to consumers during the first three quarters of 2011. A large majority of these vehicles are battery electric, often requiring 220 volt charging. Though the vehicle manufacturers and charging station manufacturers have provided consumers options for charging preferences, there are no existing communications between consumers and the utilities to manage the charging demand. There is also wide variation between manufacturers in their approach to support vehicle charging. There are in-vehicle networks, charging station networks, utility networks each using either cellular, Wi-Fi, ZigBee or other proprietary communication technology with no standards currently available for interoperability. The current situation of ad-hoc solutions is a major barrier to the wide adoption of electric vehicles. SAE, the International Standards Organization/International Electrotechnical Commission (ISO/IEC), ANSI, National Institute of Standards and Technology (NIST) and several industrial organizations are working towards the development of interoperability standards. PNNL has participated in the development and testing of these standards in an effort to accelerate the adoption and development of communication modules.

Gowri, Krishnan; Pratt, Richard M.; Tuffner, Francis K.; Kintner-Meyer, Michael CW

2011-09-01T23:59:59.000Z

162

Plug-in Electric Vehicle Interactions with a Small Office Building: An Economic Analysis using DER-CAM  

E-Print Network [OSTI]

Environmental Benefits of Electric Vehicles Integration onusing plug-in hybrid electric vehicle battery packs for gridwith Connection of Electric Vehicles TABLE IV D ECISION V

Momber, Ilan

2010-01-01T23:59:59.000Z

163

Plug-in Electric Vehicle Interactions with a Small Office Building: An Economic Analysis using DER-CAM  

E-Print Network [OSTI]

Environmental Benefits of Electric Vehicles Integration onof using plug-in hybrid electric vehicle battery packs forN ATIONAL L ABORATORY Plug-in Electric Vehicle Interactions

Momber, Ilan

2010-01-01T23:59:59.000Z

164

NREL Vehicle Testing and Integration Facility (VTIF): Rotating Shadowband Radiometer (RSR); Golden, Colorado (Data)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This measurement station at NREL's Vehicle Testing and Integration Facility (VTIF) monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment.

Lustbader, J.; Andreas, A.

165

Testing and Validation of Vehicle to Grid Communication Standards |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOffice -TemplateDavid L.Testing2009Department

166

NREL: Transportation Research - Hybrid Electric Fleet Vehicle Testing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet Test and Evaluation Photo of

167

NREL: Transportation Research - Hydraulic Hybrid Fleet Vehicle Testing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet Test and Evaluation Photo ofHydraulic Hybrid Fleet

168

Electric Vehicle Communications Standards Testing and Validation - Phase II: SAE J2931/1  

SciTech Connect (OSTI)

Vehicle to grid communication standards enable interoperability among vehicles, charging stations and utility providers and provide the capability to implement charge management. Several standards initiatives by the Society of Automobile Engineers (SAE), International Standards Organization and International Electrotechnical Commission (ISO/IEC), and ZigBee/HomePlug Alliance are developing requirements for communication messages and protocols. Recent work by the Electric Power Research Institute (EPRI) in collaboration with SAE and automobile manufacturers has identified vehicle to grid communication performance requirements and developed a test plan as part of SAE J2931/1 committee work. This laboratory test plan was approved by the SAE J2931/1 committee and included test configurations, test methods, and performance requirements to verify reliability, robustness, repeatability, maximum communication distance, and authentication features of power line carrier (PLC) communication modules at the internet protocol layer level. The goal of the testing effort was to select a communication technology that would enable automobile manufacturers to begin the development and implementation process. The EPRI/Argonne National Laboratory (ANL)/Pacific Northwest National Laboratory (PNNL) testing teams divided the testing so that results for each test could be presented by two teams, performing the tests independently. The PNNL team performed narrowband PLC testing including the Texas Instruments (TI) Concerto, Ariane Controls AC-CPM1, and the MAXIM Tahoe 2 evaluation boards. The scope of testing was limited to measuring the vendor systems communication performance between Electric Vehicle Support Equipment (EVSE) and plug-in electric vehicles (PEV). The testing scope did not address PEV’s CAN bus to PLC or PLC to EVSE (Wi-Fi, cellular, PLC Mains, etc.) communication integration. In particular, no evaluation was performed to delineate the effort needed to translate the IPv6/SEP2.0 messages to PEV’s CAN bus. The J2931/1 laboratory test results were presented to the SAE membership on March 20-22, 2012. The SAE committee decided to select HomePlug GreenPHY (HPGP) as the communication technology to use between the PEV and EVSE. No technology completely met all performance requirements. Both the MAXIM Tahoe 2 and TI Concerto met the 100Kbps throughput requirement, are estimated to meet the latency measurement performance, and met the control pilot impairment requirements. But HPGP demonstrated the potential to provide a data throughput rate of 10x of the requirement and either met or showed the potential to meet the other requirements with further development.

Pratt, Richard M.; Gowri, Krishnan

2013-01-15T23:59:59.000Z

169

Baseline and verification tests of the electric vehicle associates' current fare station wagon. Final test report, March 27, 1980-November 6, 1981  

SciTech Connect (OSTI)

The EVA Current Fare Wagon was manufactured by Electric Vehicle Associates, Incorporated (EVA) of Cleveland, Ohio. It is now available from Lectra Motors Corp. of Las Vegas, Nevada. The vehicle was tested under the direction of MERADCOM from 27 March 1980 to 6 November 1981. The tests are part of a Department of Energy project to assess advances in electric vehicle design. This report presents the performance test results on the EVA Current Fare Wagon. The EVA Current Fare Wagon is a 1980 Ford Fairmont station wagon which has been converted to an electric vehicle. The propulsion system is made up of a Cableform controller, a series-wound 30-hp Reliance Electric Motor, and 22 6-V lead-acid batteries. The Current Fare Wagon is also equipped with regenerative braking. Further details of the vehicle are given in the Vehicle Summary Data Sheet, Appendix A. The results of this testing are given in Table 1.

Dowgiallo, E.J. Jr.; Chapman, R.D.

1983-01-01T23:59:59.000Z

170

Correlating Dynamometer Testing to In-Use Fleet Results of Plug-In Hybrid Electric Vehicles  

SciTech Connect (OSTI)

Standard dynamometer test procedures are currently being developed to determine fuel and electrical energy consumption of plug-in hybrid vehicles (PHEV). To define a repeatable test procedure, assumptions were made about how PHEVs will be driven and charged. This study evaluates these assumptions by comparing results of PHEV dynamometer testing following proposed procedures to actual performance of PHEVs operating in the US Department of Energy’s (DOE) North American PHEV Demonstration fleet. Results show PHEVs in the fleet exhibit a wide range of energy consumption, which is not demonstrated in dynamometer testing. Sources of variation in performance are identified and examined.

John G. Smart; Sera White; Michael Duoba

2009-05-01T23:59:59.000Z

171

Co-Simulation of Building Energy and Control Systems with the Building Controls Virtual Test Bed  

E-Print Network [OSTI]

and a core zone. The envelope thermal properties meet ASHRAEis the thermal zone and the building envelope model that was

Wetter, Michael

2012-01-01T23:59:59.000Z

172

Electric Vehicle Communication Standards Testing and Validation Phase I: SAE J2847/1  

SciTech Connect (OSTI)

Executive Summary Vehicle to grid communication standards are critical to the charge management and interoperability among vehicles, charging stations and utility providers. Several standards initiatives by the Society of Automobile Engineers (SAE), International Standards Organization and International Electrotechnical Commission (ISO/IEC), and ZigBee / HomePlug Alliance are developing requirements for communication messages and protocols. While the standard development is in progress for more than two years, no definitive guidelines are available for the automobile manufacturers, charging station manufacturers and utility backhaul network systems. At present, there is a wide range of proprietary communication options developed and supported in the industry. Recent work by the Electric Power Research Institute (EPRI) in collaboration with SAE and automobile manufacturers has identified performance requirements and test plan based on possible communication pathways using power line communication over the control pilot and mains. Though the communication pathways and power line communication technology options are identified, much work needs to be done in developing application software and testing of communication modules before these can be deployed in production vehicles. This report presents a test plan and results from initial testing of two power line communication modules developed to meet the requirements of SAE J2847/1 standard.

Pratt, Richard M.; Tuffner, Francis K.; Gowri, Krishnan

2011-09-21T23:59:59.000Z

173

Preliminary Results in Virtual Testing for Smart Buildings Julien Bruneau1  

E-Print Network [OSTI]

POSTER Preliminary Results in Virtual Testing for Smart Buildings Julien Bruneau1 , Charles Consel1, Walid.Taha@hh.se 4 HVAC Consultant, Cairo, Egypt, wail_hannourah@yahoo.com Abstract. Smart buildings have significant impact on the quality and cost of these services. However, a smart building and any

Boyer, Edmond

174

Energy Efficiency Pilot Projects in Jaipur: Testing the Energy Conservation Building Code  

SciTech Connect (OSTI)

The Malaviya National Institute of Technology (MNIT) in Jaipur, India is constructing two new buildings on its campus that allow it to test implementation of the Energy Conservation Building Code (ECBC), which Rajasthan made mandatory in 2011. PNNL has been working with MNIT to document progress on ECBC implementation in these buildings.

Evans, Meredydd; Mathur, Jyotirmay; Yu, Sha

2014-03-26T23:59:59.000Z

175

Hybrid Electric Vehicle End-Of-Life Testing On Honda Insights, Gen I Civics And Toyota Gen I Priuses  

SciTech Connect (OSTI)

This technical report details the end-of-life fuel efficiency and battery testing on two model year 2001 Honda Insight hybrid electric vehicles (HEVs), two model year 2003 Honda Civic HEVs, and two model year 2002 Toyota Prius HEVs. The end-of-life testing was conducted after each vehicle has been operated for approximately 160,000 miles. This testing was conducted by the U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA). The AVTA is part of DOE’s FreedomCAR and Vehicle Technologies Program. SAE J1634 fuel efficiency testing was performed on the six HEVs with the air conditioning (AC) on and off. The AC on and off test results are compared to new vehicle AC on and off fuel efficiencies for each HEV model. The six HEVs were all end-of-life tested using new-vehicle coast down coefficients. In addition, one of each HEV model was also subjected to fuel efficiency testing using coast down coefficients obtained when the vehicles completed 160,000 miles of fleet testing. Traction battery pack capacity and power tests were also performed on all six HEVs during the end-of-life testing in accordance with the FreedomCAR Battery Test Manual For Power-Assist Hybrid Electric Vehicles procedures. When using the new-vehicle coast down coefficients (Phase I testing), 11 of 12 HEV tests (each HEV was tested once with the AC on and once with the AC off) had increases in fuel efficiencies compared to the new vehicle test results. The end-of-life fuel efficiency tests using the end-of-life coast down coefficients (Phase II testing) show decreases in fuel economies in five of six tests (three with the AC on and three with it off). All six HEVs experienced decreases in battery capacities, with the two Insights having the highest remaining capacities and the two Priuses having the lowest remaining capacities. The AVTA’s end-of-life testing activities discussed in this report were conducted by the Idaho National Laboratory; the AVTA testing partner Electric Transportation Applications, and by Exponent Failure Analysis Associates.

James Francfort; Donald Karner; Ryan Harkins; Joseph Tardiolo

2006-02-01T23:59:59.000Z

176

Seismic design, testing and analysis of reinforced concrete wall buildings  

E-Print Network [OSTI]

of Slender Reinforced Concrete Walls”. Structural Journal,T. (1975). “Reinforced Concrete Structures”. John Wiley &Design of Reinforced Concrete and Masonry Buildings”. John

Panagiotou, Marios

2008-01-01T23:59:59.000Z

177

Building America Case Study: Field Testing of Compartmentalization...  

Energy Savers [EERE]

BUILDING AMERICA CASE STUDY: TECHNOLOGY SOLUTIONS FOR NEW AND EXISTING HOMES Garage Mechanical Room Mechanical rooms are located in the rear-facing garage and house the furnace...

178

Hybrid Vehicle Comparison Testing Using Ultracapacitor vs. Battery Energy Storage (Presentation)  

SciTech Connect (OSTI)

With support from General Motors, NREL researchers converted and tested a hybrid electric vehicle (HEV) with three energy storage configurations: a nickel metal-hydride battery and two ultracapacitor (Ucap) modules. They found that the HEV equipped with one Ucap module performed as well as or better than the HEV with a stock NiMH battery configuration. Thus, Ucaps could increase the market penetration and fuel savings of HEVs.

Gonder, J.; Pesaran, A.; Lustbader, J.; Tataria, H.

2010-02-01T23:59:59.000Z

179

Smart buildings with electric vehicle interconnection as buffer for local renewables?  

SciTech Connect (OSTI)

Some conclusions from this presentation are: (1) EV Charging/discharging pattern mainly depends on the objective of the building (cost versus CO{sub 2}); (2) performed optimization runs show that stationary batteries are more attractive than mobile storage when putting more focus on CO{sub 2} emissions because stationary storage is available 24 hours a day for energy management - it's more effective; (3) stationary storage will be charged by PV, mobile only marginally; and (4) results will depend on the considered region and tariff. Final research work will show the results for 138 different buildings in nine different climate zones and three major utility service territories.

Stadler, Michael; Cardoso, Goncalo; DeForest, Nicholas; Donadee, Jon; Gomez, Tomaz; Lai, Judy; Marnay, Chris; Megel, Olivier; Mendes, Goncalo; Siddiqui, Afzal

2011-05-01T23:59:59.000Z

180

Short-Term Energy Tests of a Credit Union Building in Idaho (Draft)  

SciTech Connect (OSTI)

This report describes tests and results of the energy performance of a credit union building in Idaho. The building is in the Energy Edge Program administered by the Bonneville Power Administration (BPA). BPA provided incentives to incorporate innovative features designed to conserve energy use by the building. It is of interest to determine the actual performance of these features. The objective of this project was to evaluate the applicability of the SERI short-term energy monitoring (STEM) method to nonresidential buildings.

Subbarao, K.; Balcomb, J. D.

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle testing building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Heavy and Overweight Vehicle Brake Testing: Five-Axle Combination Tractor-Flatbed Final Report  

SciTech Connect (OSTI)

The Federal Motor Carrier Safety Administration, in coordination with the Federal Highway Administration, sponsored the Heavy and Overweight Vehicle Brake Testing (HOVBT) program in order to provide information about the effect of gross vehicle weight (GVW) on braking performance. Because the Federal Motor Carrier Safety Regulations limit the number of braking system defects that may exist for a vehicle to be allowed to operate on the roadways, the examination of the effect of brake defects on brake performance for increased loads is also relevant. The HOVBT program seeks to provide relevant information to policy makers responsible for establishing load limits, beginning with providing test data for a combination tractor/trailer. This testing was conducted on a five-axle combination vehicle with tractor brakes meeting the Reduced Stopping Distance requirement rulemaking. This report provides a summary of the testing activities, the results of various analyses of the data, and recommendations for future research. Following a complete brake rebuild, instrumentation, and brake burnish, stopping tests were performed from 20 and 40 mph with various brake application pressures (15 psi, 25 psi, 35 psi, 45 psi, 55 psi, and full system pressure). These tests were conducted for various brake conditions at the following GVWs: 60,000, 80,000, 91,000, 97,000, 106,000, and 116,000 lb. The 80,000-lb GVWs included both balanced and unbalanced loads. The condition of the braking system was also varied. To introduce these defects, brakes (none, forward drive axle, or rear trailer axle) were made inoperative. In addition to the stopping tests, performance-based brake tests were conducted for the various loading and brake conditions. Analysis of the stopping test data showed the stopping distance to increase with load (as expected) and also showed that more braking force was generated by the drive axle brakes than the trailer axle brakes. The constant-pressure stopping test data revealed a linear relationship between brake application pressure and was used to develop an algorithm to normalize stopping data for weight and initial speed.

Lascurain, Mary Beth [ORNL; Capps, Gary J [ORNL; Franzese, Oscar [ORNL

2013-10-01T23:59:59.000Z

182

Building Energy Simulation Test for Existing Homes (BESTEST-EX): Instructions for Implementing the Test Procedure, Calibration Test Reference Results, and Example Acceptance-Range Criteria  

SciTech Connect (OSTI)

This publication summarizes building energy simulation test for existing homes (BESTEST-EX): instructions for implementing the test procedure, calibration tests reference results, and example acceptance-range criteria.

Judkoff, R.; Polly, B.; Bianchi, M.; Neymark, J.; Kennedy, M.

2011-08-01T23:59:59.000Z

183

Results from the Operational Testing of the General Electric Smart Grid Capable Electric Vehicle Supply Equipment (EVSE)  

SciTech Connect (OSTI)

The Idaho National Laboratory conducted testing and analysis of the General Electric (GE) smart grid capable electric vehicle supply equipment (EVSE), which was a deliverable from GE for the U.S. Department of Energy FOA-554. The Idaho National Laboratory has extensive knowledge and experience in testing advanced conductive and wireless charging systems though INL’s support of the U.S. Department of Energy’s Advanced Vehicle Testing Activity. This document details the findings from the EVSE operational testing conducted at the Idaho National Laboratory on the GE smart grid capable EVSE. The testing conducted on the EVSE included energy efficiency testing, SAE J1772 functionality testing, abnormal conditions testing, and charging of a plug-in vehicle.

Richard Barney Carlson; Don Scoffield; Brion Bennett

2013-12-01T23:59:59.000Z

184

FreedomCAR :electrical energy storage system abuse test manual for electric and hybrid electric vehicle applications.  

SciTech Connect (OSTI)

This manual defines a complete body of abuse tests intended to simulate actual use and abuse conditions that may be beyond the normal safe operating limits experienced by electrical energy storage systems used in electric and hybrid electric vehicles. The tests are designed to provide a common framework for abuse testing various electrical energy storage systems used in both electric and hybrid electric vehicle applications. The manual incorporates improvements and refinements to test descriptions presented in the Society of Automotive Engineers Recommended Practice SAE J2464 ''Electric Vehicle Battery Abuse Testing'' including adaptations to abuse tests to address hybrid electric vehicle applications and other energy storage technologies (i.e., capacitors). These (possibly destructive) tests may be used as needed to determine the response of a given electrical energy storage system design under specifically defined abuse conditions. This manual does not provide acceptance criteria as a result of the testing, but rather provides results that are accurate and fair and, consequently, comparable to results from abuse tests on other similar systems. The tests described are intended for abuse testing any electrical energy storage system designed for use in electric or hybrid electric vehicle applications whether it is composed of batteries, capacitors, or a combination of the two.

Doughty, Daniel Harvey; Crafts, Chris C.

2006-08-01T23:59:59.000Z

185

Building a Better Battery for Vehicles and the Grid | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles » AlternativeUp Home Energy-Efficiency Building Up Homea Better

186

Seismic design, testing and analysis of reinforced concrete wall buildings  

E-Print Network [OSTI]

based on the material testing data of concrete cylinders inDESIGN, TESTING AND ANALYSIS OF REINFORCED CONCRETE WALLDESIGN, TESTING AND ANALYSIS OF REINFORCED CONCRETE WALL

Panagiotou, Marios

2008-01-01T23:59:59.000Z

187

Vehicle Technologies Office Merit Review 2014: Post-Test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about post-test...

188

Vehicle Technologies Office Merit Review 2014: Overview and Progress of the Battery Testing, Design and Analysis Activity  

Broader source: Energy.gov [DOE]

Presentation given by the Department of Energy's Energy Storage area at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the battery testing, design, and analysis activity.

189

Evaluation of the adequacy of the 2000P test vehicle as a surrogate for light truck subclasses  

E-Print Network [OSTI]

This study evaluated the adequacy of the 2000P test vehicle as a surrogate for light truck subclasses. The National Cooperative Highway Research Program (NCHRP) Report 350 recommended the use of a 3/4-ton (approximately 2000 kg) pickup...

Titus-Glover, Cyril James

1996-01-01T23:59:59.000Z

190

Enhancing Building Operations Through Automated Diagnostics: Field Test Results  

E-Print Network [OSTI]

According to the Annual Energy Outlook 2003 (EIA 2003), in 2001, 17.4 quadrillion Btu (1 quad = 1015 Btu) of primary energy was consumed by commercial buildings in the United States at a cost of about 127 billion dollars (in 2001 dollars). Many... maintenance is clearly insufficient to address this issue. Manually commissioning buildings is valuable in terms of both finding problems and developing the techniques for doing so, but it is expensive. With only 1 to 2% of total construction costs...

Katipamula, S.; Brambley, M. R.; Bauman, N.; Pratt, R. G.

2003-01-01T23:59:59.000Z

191

Testing Electric Vehicle Demand in `Hybrid Households' Using a Reflexive Survey  

E-Print Network [OSTI]

travel by electric and hybrid vehicles. SAE Technical PapersIn contrast to a hybrid vehicle which combines multipleElectric, Hybrid and Other Alternative Vehicles. A r t h u r

Kurani, Kenneth; Turrentine, Thomas; Sperling, Daniel

1996-01-01T23:59:59.000Z

192

Advanced Vehicle Testing Activity Benchmark Testing of the Chevrolet Volt Onboard Charger  

SciTech Connect (OSTI)

This is a report for public consumption, for the AVTA website, detailing the testing and analysis of the benchmark testing conducted on the Chevrolet Volt on-board charger.

Richard Carlson

2012-04-01T23:59:59.000Z

193

Real-Time Building Energy Simulation Using EnergyPlus and the Building Controls Test Bed  

E-Print Network [OSTI]

Controls Test Bed Xiufeng Pang, Prajesh Bhattachayra, ZhengVIRTUAL TEST BED Xiufeng Pang 1 , Prajesh Bhattacharya 1 ,

Pang, Xiufeng

2013-01-01T23:59:59.000Z

194

Argonne National Laboratory puts alternative-fuel vehicles to the test  

SciTech Connect (OSTI)

This paper describes the participation in the alternative-fueled vehicles (AFV) program at Argonne National Laboratory. Argonne maintains a fleet of 300 vehicles, including AFV`s.

NONE

1997-07-01T23:59:59.000Z

195

Home energy rating system building energy simulation test (HERS BESTEST). Volume 2, Tier 1 and Tier 2 tests reference results  

SciTech Connect (OSTI)

The Home Energy Rating System (HERS) Building Energy Simulation Test (BESTEST) is a method for evaluating the credibility of software used by HERS to model energy use in buildings. The method provides the technical foundation for ''certification of the technical accuracy of building energy analysis tools used to determine energy efficiency ratings,'' as called for in the Energy Policy Act of 1992 (Title I, Subtitle A, Section 102, Title II, Part 6, Section 271). Certification is accomplished with a uniform set of test cases that Facilitate the comparison of a software tool with several of the best public-domain, state-of-the-art building energy simulation programs available in the United States. The HERS BESTEST work is divided into two volumes. Volume 1 contains the test case specifications and is a user's manual for anyone wishing to test a computer program. Volume 2 contains the reference results and suggestions for accrediting agencies on how to use and interpret the results.

Judkoff, R.; Neymark, J.

1995-11-01T23:59:59.000Z

196

NREL Develops Diagnostic Test Cases to Improve Building Energy Simulation Programs (Fact Sheet)  

SciTech Connect (OSTI)

This technical highlight describes NREL research to develop a set of diagnostic test cases for building energy simulations in order to achieve more accurate energy use and savings predictions. The National Renewable Energy Laboratory (NREL) Residential and Commercial Buildings research groups developed a set of diagnostic test cases for building energy simulations. Eight test cases were developed to test surface conduction heat transfer algorithms of building envelopes in building energy simulation programs. These algorithms are used to predict energy flow through external opaque surfaces such as walls, ceilings, and floors. The test cases consist of analytical and vetted numerical heat transfer solutions that have been available for decades, which increases confidence in test results. NREL researchers adapted these solutions for comparisons with building energy simulation results. Testing the new cases with EnergyPlus identified issues with the conduction finite difference (CondFD) heat transfer algorithm in versions 5 and 6. NREL researchers resolved these issues for EnergyPlus version 7. The new test cases will help users and developers of EnergyPlus and other building energy tools to identify and fix problems associated with solid conduction heat transfer algorithms of building envelopes and their boundary conditions. In the long term, improvements to software algorithms will result in more accurate energy use and savings predictions. NREL researchers plan to document the set of test cases and make them available for future consideration by validation standards such as ASHRAE Standard 140: Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs. EnergyPlus users will also have access to the improved CondFD model in version 7 after its next scheduled release.

Not Available

2011-12-01T23:59:59.000Z

197

The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis -- A Reflexively Designed Survey of New-Car-Buying Multi-Vehicle California Households  

E-Print Network [OSTI]

by electric and hybrid vehicles", SAETechmcal Papers No.$ not Q 4. If you chose the Hybrid Vehicle - can you specifymay response to hybrid vehicles Finally, we suggest that

Turrentine, Thomas; Kurani, Kenneth S.

2001-01-01T23:59:59.000Z

198

The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis--A Reflively Designed Survey of New-car-buying, Multi-vehicle California Households  

E-Print Network [OSTI]

by electric and hybrid vehicles", SAE Technical Papers No.household response to hybrid vehicles. Finally, we suggestas electric or hybrid vehicles. Transitions in choices of

Turrentine, Thomas; Kurani, Kenneth

1995-01-01T23:59:59.000Z

199

IEEE DESIGN AND TEST, SPECIAL ISSUE ON GREEN BUILDINGS 1 From Buildings to Smart Buildings Sensing and  

E-Print Network [OSTI]

such as coal and natural gas, both of which have significant environmental impacts. While renewable energy ­ Sensing and Actuation to Improve Energy Efficiency Thomas Weng, Student Member, IEEE Yuvraj Agarwal fuels in the near term. Therefore, improving the energy efficiency in commercial buildings is critical

Simunic, Tajana

200

Identification of powered parafoil-vehicle dynamics from modelling and flight test data  

E-Print Network [OSTI]

S consisting of N particles P1,...,PN, suppose that n -m gen- eralized speeds have been introduced, and let vPir denote the rth partial velocity of Pi. Then, if Ri is the resultant of all contact and body forces acting on Pi, then the n -m quantities F1,...,Fn-m...IDENTIFICATION OF POWERED PARAFOIL-VEHICLE DYNAMICS FROM MODELLING AND FLIGHT TEST DATA A Dissertation by GI-BONG HUR Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree...

Hur, Gi-Bong

2006-08-16T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle testing building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

U.S. Department of Energy Vehicle Technologies Program -- Advanced Vehicle Testing Activity -- Plug-in Hybrid Electric Vehicle Charging Infrastructure Review  

SciTech Connect (OSTI)

Plug-in hybrid electric vehicles (PHEVs) are under evaluation by various stake holders to better understand their capability and potential benefits. PHEVs could allow users to significantly improve fuel economy over a standard HEV and in some cases, depending on daily driving requirements and vehicle design, have the ability to eliminate fuel consumption entirely for daily vehicle trips. The cost associated with providing charge infrastructure for PHEVs, along with the additional costs for the on-board power electronics and added battery requirements associated with PHEV technology will be a key factor in the success of PHEVs. This report analyzes the infrastructure requirements for PHEVs in single family residential, multi-family residential and commercial situations. Costs associated with this infrastructure are tabulated, providing an estimate of the infrastructure costs associated with PHEV deployment.

Kevin Morrow; Donald Darner; James Francfort

2008-11-01T23:59:59.000Z

202

NREL: Vehicles and Fuels Research - Hybrid Electric Fleet Vehicle...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hybrid Electric Fleet Vehicle Testing How Hybrid Electric Vehicles Work Hybrid electric vehicles combine a primary power source, an energy storage system, and an electric motor to...

203

Testing Low-Energy, High-Power Energy Storage Alternatives in a Full-Hybrid Vehicle (Presentation)  

SciTech Connect (OSTI)

Automakers have been mass producing hybrid electric vehicles (HEVs) for well over a decade, and the technology has proven to be very effective at reducing per-vehicle gasoline use. However, the battery cost in HEVs contribute to higher incremental cost of HEVs (a few thousand dollars) than the cost of comparable conventional vehicles, which has limited HEV market penetration. Significant cost reductions/performance improvements to the energy storage system (ESS) can improve the vehicle-level cost vs. benefit relationship for HEVs. Such an improvement could lead to larger HEV market penetration and greater aggregate gasoline savings. After significant analysis by the National Renewable Energy Laboratory (NREL), the United States Advanced Battery Consortium (USABC) and Department of Energy (DOE) Energy Storage program suggested a new set of requirements for ESS for power-assist HEVs for cost reduction without impacting performance and fuel economy significantly. With support from DOE, NREL has developed an HEV test platform for in-vehicle performance and fuel economy validation testing of the hybrid system using such LEESS devices. This poster will describe development of the LEESS HEV test platform, and LEESS laboratory as well as in-vehicle evaluation results. The first LEESS technology tested was lithium-ion capacitors (LICs) - i.e., asymmetric electrochemical energy storage devices possessing one electrode with battery-type characteristics (lithiated graphite) and one with ultracapacitor-type characteristics (carbon). We will discuss the performance and fuel saving results with LIC with comparison with original NiMH battery.

Cosgrove, J.; Gonger, J.

2014-01-01T23:59:59.000Z

204

The Case for Electric Vehicles  

E-Print Network [OSTI]

land Press, 1995 TESTING ELECTRIC VEHICLE DEMAND IN " HYBRIDThe Case for Electric Vehicles DanieI Sperlmg Reprint UCTCor The Case for Electric Vehicles Darnel Sperling Institute

Sperling, Daniel

2001-01-01T23:59:59.000Z

205

Building Performance Services: Guidelines and Program Test Progress Report  

E-Print Network [OSTI]

Alliance Northwest Energy Efficiency Alliance Schick Consulting Portland, OR Portland, OR Portland, OR ABSTRACT This paper presents the progress of the Building Performance Services (BPS) program begun in July 2002 as a partnership... year by 2010. REFERENCES Retro-commissioning Handbook for Facility Managers, Prepared for the Oregon Office of Energy by Portland Energy Conservation Inc. (PECI), March 2001. Energy Smart Operations?Low- and No-Cost Ways to Save Energy...

Anderson, K. J.; Tuffo, M.; Schick, S.

2003-01-01T23:59:59.000Z

206

Building Better Test Functions D. Whitley, K. Mathias, S. Rana and J. Dzubera  

E-Print Network [OSTI]

commonly used test problems fail to satisfy these crite­ ria. We use these guidelines to construct newBuilding Better Test Functions D. Whitley, K. Mathias, S. Rana and J. Dzubera Department,mathiask,rana,zube@cs.colostate.edu Abstract We introduce basic guidelines for developing test suites for evolutionary algorithms and examine

Whitley, Darrell

207

HVAC Cabinet Air Leakage Test Method - Building America Top Innovation...  

Energy Savers [EERE]

their air sealing practices to reduce the amount of air leaking at ducts and duct boots, testing showed that distribution systems still leaked at air handlers and furnace...

208

NREL Improves Building Energy Simulation Programs Through Diagnostic Testing (Fact Sheet)  

SciTech Connect (OSTI)

This technical highlight describes NREL research to develop Building Energy Simulation Test for Existing Homes (BESTEST-EX) to increase the quality and accuracy of energy analysis tools for the building retrofit market. Researchers at the National Renewable Energy Laboratory (NREL) have developed a new test procedure to increase the quality and accuracy of energy analysis tools for the building retrofit market. The Building Energy Simulation Test for Existing Homes (BESTEST-EX) is a test procedure that enables software developers to evaluate the performance of their audit tools in modeling energy use and savings in existing homes when utility bills are available for model calibration. Similar to NREL's previous energy analysis tests, such as HERS BESTEST and other BESTEST suites included in ANSI/ASHRAE Standard 140, BESTEST-EX compares software simulation findings to reference results generated with state-of-the-art simulation tools such as EnergyPlus, SUNREL, and DOE-2.1E. The BESTEST-EX methodology: (1) Tests software predictions of retrofit energy savings in existing homes; (2) Ensures building physics calculations and utility bill calibration procedures perform to a minimum standard; and (3) Quantifies impacts of uncertainties in input audit data and occupant behavior. BESTEST-EX includes building physics and utility bill calibration test cases. The diagram illustrates the utility bill calibration test cases. Participants are given input ranges and synthetic utility bills. Software tools use the utility bills to calibrate key model inputs and predict energy savings for the retrofit cases. Participant energy savings predictions using calibrated models are compared to NREL predictions using state-of-the-art building energy simulation programs.

Not Available

2012-01-01T23:59:59.000Z

209

Building Energy Simulation Test for Existing Homes (BESTEST-EX) Methodology: Preprint  

SciTech Connect (OSTI)

The test suite represents a set of cases applying the new Building Energy Simulation Test for Existing Homes (BESTEST-EX) Methodology developed by NREL. (Judkoff et al. 2010a). The NREL team developed the test cases in consultation with the home retrofit industry (BESTEST-EX Working Group 2009), and adjusted the test specifications in accordance with information supplied by a participant with access to large utility bill datasets (Blasnik 2009).

Judkoff, R.; Polly, B.; Bianchi, M.; Neymark, J.

2011-11-01T23:59:59.000Z

210

Home energy rating system building energy simulation test (HERS BESTEST): Volume 1, Tier 1 and Tier 2 tests user's manual  

SciTech Connect (OSTI)

The Home Energy Rating System (HERS) Building Energy Simulation Test (BESTEST) is a method for evaluating the credibility of software used by HERS to model energy use in buildings. The method provides the technical foundation for ''certification of the technical accuracy of building energy analysis tools used to determine energy efficiency ratings,'' as called for in the Energy Policy Act of 1992 (Title I, subtitle A,l Section 102, Title II, Part 6, Section 271). Certification is accomplished with a uniform set of test cases that facilitate the comparison of a software tool with several of the best public-domain, state-of-the-art building energy simulation programs available in the United States. This set of test cases represents the Tier 1 and Tier 2 Tests for Certification of Rating Tools as described in DOE 10 CFR Part 437 and the HERS Council Guidelines for Uniformity (HERS Council). A third Tier of tests not included in this document is also planned.

Judkoff, R.; Neymark, J.

1995-11-01T23:59:59.000Z

211

Test Procedures for Building Energy Simulation Tools | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof theRestoration atStandardsAnalysisof Energy OfficeTest Procedures

212

A Test of Vehicle-to-Grid (V2G) for Energy Storage and Frequency Regulation in the PJM  

E-Print Network [OSTI]

A Test of Vehicle-to-Grid (V2G) for Energy Storage and Frequency Regulation in the PJM System energy storage for intermittent but renewable resources such as wind and solar. The results of the study frequent dispatch. The primary revenue in both of these markets is for capacity rather than energy

Firestone, Jeremy

213

Overview of Vehicle Test and Analysis Results from NREL's A/C Fuel Use Reduction Research  

SciTech Connect (OSTI)

This paper summarizes results of air-conditioning fuel use reduction technologies and techniques for light-duty vehicles evaluated over the last 10 years.

Bharathan, D.; Chaney, L.; Farrington, R. B.; Lustbader, J.; Keyser, M.; Rugh, J. P.

2007-06-01T23:59:59.000Z

214

Testing Electric Vehicle Demand in `Hybrid Households' Using a Reflexive Survey  

E-Print Network [OSTI]

EV market studies In the absence of data on actual sales,EV, then we expect that 16-18%) of annual light-duty vehicle sales

Kurani, Kenneth; Turrentine, Thomas; Sperling, Daniel

1996-01-01T23:59:59.000Z

215

Overview of Advanced Technology Transportation, 2005 Update. Advanced Vehicle Testing Activity  

SciTech Connect (OSTI)

Document provides an overview of the transportation market in 2005. Areas covered include hybrid, fuel cell, hydrogen, and alternative fuel vehicles.

Barnitt, R.; Eudy, L.

2005-08-01T23:59:59.000Z

216

Testing Electric Vehicle Demand in "Hybrid Households" Using a Reflexive Survey  

E-Print Network [OSTI]

EV market studies In the absenceof data on actual sales,EV, then we expect 16 to 18% annual of of light-duty vehicle salesEV experiments indicate there is still more than adequatepotential marketsfor electric vehicles to have , exceededthe former 1998CARB mandatefor sales

Kurani, Kenneth S.; Turrentine, Thomas; Sperling, Daniel

2001-01-01T23:59:59.000Z

217

Text-Alternative Version of Building America Webinar: Field Test Best Practices, BEopt, and the National Residential Efficiency Measures Database  

Broader source: Energy.gov [DOE]

This is the transcript of the Building America webinar, Field Test Best Practices, BEopt, and the National Residential Efficiency Measures Database, held on March 18, 2015.

218

Powertrain & Vehicle Research Centre  

E-Print Network [OSTI]

Simulation Basic Engine Test Vehicle Test Cost & Complexity Towards Final Product Lean Powertrain Development Viewing Trade-Offs and Finding Optima Realism Advanced Engine Test Vehicle Test Rolling Road Powertrain powertrain development tasks to reduce costs and time to market The vehicle powertrain is the system

Burton, Geoffrey R.

219

Load test of the 277W Building high bay roof deck and support structure  

SciTech Connect (OSTI)

The 277W Building high bay roof area was load tested according to the approved load-test procedure, WHC-SD-GN-TP-30015, Revision 1. The 277W Building is located in the 200 West Area of the Hanford Site and has the following characteristics: roof deck -- wood decking supported by 4 x 14 timber purlins; roof membrane -- tar and gravel; roof slope -- flat (<10 deg); and roof elevation -- maximum height of about 63 ft. The 227W Building was visited in March 1994 for a visual inspection. During this inspection, cracked areas were visible in the decking, but it was not possible to determine whether these cracks extended completely through the decking, which is 2-in. thick. The building was revisited in March 1994 for the purpose of writing this test report. Because the roof requires personnel access, a test was determined to be the best way to qualify the roof. The conclusions are that the roof has been qualified for 500-lb total roof load and that the ``No Roof Access`` signs can be changed to ``Roof Access Restricted`` signs.

McCoy, R.M.

1994-12-02T23:59:59.000Z

220

Building America Case Study: Field Testing of Compartmentalization Methods for Multifamily Construction (Fact Sheet)  

SciTech Connect (OSTI)

The 2012 IECC has an airtightness requirement of 3 air changes per hour at 50 Pascals test pressure for both single family and multifamily construction in Climate Zones 3-8. Other programs (LEED, ASHRAE 189, ASHRAE 62.2) have similar or tighter compartmentalization requirements, thus driving the need for easier and more effective methods of compartmentalization in multifamily buildings.

Not Available

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle testing building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Automated Vehicle-to-Vehicle Collision Avoidance at Intersections  

E-Print Network [OSTI]

Automated Vehicle-to-Vehicle Collision Avoidance at Intersections M. R. Hafner1 , D. Cunningham2 on modified Lexus IS250 test vehicles. The system utilizes vehicle-to-vehicle (V2V) Dedicated Short the velocities of both vehicles with automatic brake and throttle commands. Automatic commands can never cause

Del Vecchio, Domitilla

222

Twenty Years On!: Updating the IEA BESTEST Building Thermal Fabric Test Cases for ASHRAE Standard 140: Preprint  

SciTech Connect (OSTI)

ANSI/ASHRAE Standard 140, Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs applies the IEA BESTEST building thermal fabric test cases and example simulation results originally published in 1995. These software accuracy test cases and their example simulation results, which comprise the first test suite adapted for the initial 2001 version of Standard 140, are approaching their 20th anniversary. In response to the evolution of the state of the art in building thermal fabric modeling since the test cases and example simulation results were developed, work is commencing to update the normative test specification and the informative example results.

Judkoff, R.; Neymark, J.

2013-07-01T23:59:59.000Z

223

Plug-in Electric Vehicle Interactions with a Small Office Building: An Economic Analysis using DER-CAM  

E-Print Network [OSTI]

workdays. Index Terms-- battery storage, building managementvehicle battery packs for grid storage,” J. of Powerstorage but not to consume any net energy from the battery.

Momber, Ilan

2010-01-01T23:59:59.000Z

224

Proposal for a Vehicle Level Test Procedure to Measure Air Conditioning Fuel Use: Preprint  

SciTech Connect (OSTI)

A procedure is described to measure approximate real-world air conditioning fuel use and assess the impact of thermal load reduction strategies in plug-in hybrid electric vehicles.

Rugh, J.

2010-02-01T23:59:59.000Z

225

Fuel Economy and Performance of Mild Hybrids with Ultracapacitors: Simulations and Vehicle Test Results (Presentation)  

SciTech Connect (OSTI)

NREL worked with GM and demonstrated equivalent performance in the Saturn Vue Belt Alternator Starter (BAS) hybrid vehicle whether running with its stock batteries or a retrofit ultracapacitor system.

Gonder, J.; Pesaran, A.; Lustbader, J.; Tataria, H.

2009-06-01T23:59:59.000Z

226

Partial order techniques for vehicle collision avoidance: application to an autonomous roundabout test-bed  

E-Print Network [OSTI]

In this paper, we employ partial order techniques to develop linear complexity algorithms for guaranteed collision avoidance between vehicles at highway and roundabout mergings. These techniques can be employed by virtue ...

Desaraju, Vishnu Rajeswar

227

Building Energy Simulation Test for Existing Homes (BESTEST-EX) (Presentation)  

SciTech Connect (OSTI)

This presentation discusses the goals of NREL Analysis Accuracy R&D; BESTEST-EX goals; what BESTEST-EX is; how it works; 'Building Physics' cases; 'Building Physics' reference results; 'utility bill calibration' cases; limitations and potential future work. Goals of NREL Analysis Accuracy R&D are: (1) Provide industry with the tools and technical information needed to improve the accuracy and consistency of analysis methods; (2) Reduce the risks associated with purchasing, financing, and selling energy efficiency upgrades; and (3) Enhance software and input collection methods considering impacts on accuracy, cost, and time of energy assessments. BESTEST-EX Goals are: (1) Test software predictions of retrofit energy savings in existing homes; (2) Ensure building physics calculations and utility bill calibration procedures perform up to a minimum standard; and (3) Quantify impact of uncertainties in input audit data and occupant behavior. BESTEST-EX is a repeatable procedure that tests how well audit software predictions compare to the current state of the art in building energy simulation. There is no direct truth standard. However, reference software have been subjected to validation testing, including comparisons with empirical data.

Judkoff, R.; Neymark, J.; Polly, B.

2011-12-01T23:59:59.000Z

228

The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis -- A Reflexively Designed Survey of New-Car-Buying Multi-Vehicle California Households  

E-Print Network [OSTI]

EV,then we expect 13.3 to 15.2% of all light-duty vehicle sales,EV marketpotential for smaller and shorter range velucles represented by our sampleis about 7%of annual, newhght duty vehicle sales.EV body styles" EVs ICEVs Total PAGE 66 THE HOUSEHOLD MA RKET FOR ELECTRIC VEHICLES percent mandatein the year 2003will dependon sales

Turrentine, Thomas; Kurani, Kenneth S.

2001-01-01T23:59:59.000Z

229

A Modular Building Controls Virtual Test Bed for the Integrations of Heterogeneous Systems  

SciTech Connect (OSTI)

This paper describes the Building Controls Virtual Test Bed (BCVTB) that is currently under development at Lawrence Berkeley National Laboratory. An earlier prototype linked EnergyPlus with controls hardware through embedded SPARK models and demonstrated its value in more cost-effective envelope design and improved controls sequences for the San Francisco Federal Building. The BCVTB presented here is a more modular design based on a middleware that we built using Ptolemy II, a modular software environment for design and analysis of heterogeneous systems. Ptolemy II provides a graphical model building environment, synchronizes the exchanged data and visualizes the system evolution during run-time. Our additions to Ptolemy II allow users to couple to Ptolemy II a prototype version of EnergyPlus,MATLAB/Simulink or other simulation programs for data exchange during run-time. In future work we will also implement a BACnet interface that allows coupling BACnet compliant building automation systems to Ptolemy II. We will present the architecture of the BCVTB and explain how users can add their own simulation programs to the BCVTB. We will then present an example application in which the building envelope and the HVAC system was simulated in EnergyPlus, the supervisory control logic was simulated in MATLAB/Simulink and Ptolemy II was used to exchange data during run-time and to provide realtime visualization as the simulation progresses.

Wetter, Michael; Wetter, Michael; Haves, Philip

2008-06-30T23:59:59.000Z

230

Powertrain & Vehicle Research Centre  

E-Print Network [OSTI]

complexity ·More efficient Vehicles, quicker to market, reduced cost to consumer The Optimisation Task and virtual environments Vehicle baseline testing on rolling road Calibration Control Engine VehiclePowertrain & Vehicle Research Centre Low Carbon Powertrain Development S. Akehurst, EPSRC Advanced

Burton, Geoffrey R.

231

Product and Process Modeling for Functional Performance Testing in Low-Energy Building Embedded Commissioning Cases  

E-Print Network [OSTI]

PRODUCT AND PROCESS MODELING FOR FUNCTIONAL PERFORMANCE TESTING IN LOW- ENERGY BUILDING EMBEDDED COMMISSIONING CASES Omer Akin, Kwang Jun Lee, Asli Akcamete, Burcu Akinci, and James Garrett, Jr. School of Architecture and Department... south zone and north zone indoor temperature ((T south + T north ) / 2)) is below the pump set point (60 o F) or if the schedule calls for it (Gong and Claridge, 2006). We discovered that some of the wiring connecting the sensors to the control...

Akcamete, A.; Garrett, J.; Akinci, B.; Akin, O.; Lee, K. J.

2007-01-01T23:59:59.000Z

232

NREL: Vehicles and Fuels Research - Hydraulic Hybrid Fleet Vehicle...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydraulic Hybrid Fleet Vehicle Testing How Hydraulic Hybrid Vehicles Work Hydraulic hybrid systems can capture up to 70% of the kinetic energy that would otherwise be lost during...

233

Experiment-Based Computational Investigation of Thermomechanical Stresses in Flip Chip BGA Using the ATC4.2 Test Vehicle  

SciTech Connect (OSTI)

Stress measurement test chips were flip chip assembled to organic BGA substrates containing micro-vias and epoxy build-up interconnect layers. Mechanical degradation observed during temperature cycling was correlated to a damage theory developed based on 3D finite element method analysis. Degradation included die cracking, edge delamination and radial fillet cracking.

Burchett, Steven N.; Nguyen, Luu; Peterson, David W.; Sweet, James N.

1999-08-02T23:59:59.000Z

234

SEISMIC RESPONSE PREDICTION OF NUPEC'S FIELD MODEL TESTS OF NPP STRUCTURES WITH ADJACENT BUILDING EFFECT.  

SciTech Connect (OSTI)

As part of a verification test program for seismic analysis computer codes for Nuclear Power Plant (NPP) structures, the Nuclear Power Engineering Corporation (NUPEC) of Japan has conducted a series of field model tests to address the dynamic cross interaction (DCI) effect on the seismic response of NPP structures built in close proximity to each other. The program provided field data to study the methodologies commonly associated with seismic analyses considering the DCI effect. As part of a collaborative program between the United States and Japan on seismic issues related to NPP applications, the U.S. Nuclear Regulatory Commission sponsored a program at Brookhaven National Laboratory (BNL) to perform independent seismic analyses which applied common analysis procedures to predict the building response to recorded earthquake events for the test models with DCI effect. In this study, two large-scale DCI test model configurations were analyzed: (1) twin reactor buildings in close proximity and (2) adjacent reactor and turbine buildings. This paper describes the NUPEC DCI test models, the BNL analysis using the SASSI 2000 program, and comparisons between the BNL analysis results and recorded field responses. To account for large variability in the soil properties, the conventional approach of computing seismic responses with the mean, mean plus and minus one-standard deviation soil profiles is adopted in the BNL analysis and the three sets of analysis results were used in the comparisons with the test data. A discussion is also provided in the paper to address (1) the capability of the analysis methods to capture the DCI effect, and (2) the conservatism of the practice for considering soil variability in seismic response analysis for adjacent NPP structures.

XU,J.COSTANTINO,C.HOFMAYER,C.ALI,S.

2004-03-04T23:59:59.000Z

235

The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis--A Reflively Designed Survey of New-car-buying, Multi-vehicle California Households  

E-Print Network [OSTI]

duty vehicle sales. Additional EV sales to commercial andfor limited range, projected EV sales are very low. Marketinclude any potential EV sales to commercial or government

Turrentine, Thomas; Kurani, Kenneth

1995-01-01T23:59:59.000Z

236

LoanSTAR Monitoring and Analysis Program: Presentation Summary of the State Capitol Complex Building Operation and Maintenance Field Test  

E-Print Network [OSTI]

requests, only 58% to 95% of AHUs identified in earlier report were shut off S. F. Austin Whole Building Electricity & Chilled Water Consumption Over 600 kW reduction when AHUs and lights turned off L.B. Johnson Whole Building Electricity & Chilled Water...LoanSTAR Monitoring and Analysis Program Presentation Summary of the State Capitol Complex Building Operation and Maintenance Field Test Presented to the State Purchasing and General Services Commission By the Monitoring Analysis Task E Dr. W. D...

Turner, W. D.; Houcek, J. K.; Liu, M.; Claridge, D. E.

1993-01-01T23:59:59.000Z

237

PASSIVE DETECTION OF VEHICLE LOADING  

SciTech Connect (OSTI)

The Digital Imaging and Remote Sensing Laboratory (DIRS) at the Rochester Institute of Technology, along with the Savannah River National Laboratory is investigating passive methods to quantify vehicle loading. The research described in this paper investigates multiple vehicle indicators including brake temperature, tire temperature, engine temperature, acceleration and deceleration rates, engine acoustics, suspension response, tire deformation and vibrational response. Our investigation into these variables includes building and implementing a sensing system for data collection as well as multiple full-scale vehicle tests. The sensing system includes; infrared video cameras, triaxial accelerometers, microphones, video cameras and thermocouples. The full scale testing includes both a medium size dump truck and a tractor-trailer truck on closed courses with loads spanning the full range of the vehicle's capacity. Statistical analysis of the collected data is used to determine the effectiveness of each of the indicators for characterizing the weight of a vehicle. The final sensing system will monitor multiple load indicators and combine the results to achieve a more accurate measurement than any of the indicators could provide alone.

Garrett, A.

2012-01-03T23:59:59.000Z

238

Poster: Building a test-bed for wireless sensor networking for under-water oil and gas installations  

E-Print Network [OSTI]

. Initially we are building a laboratory in a large water tank. Later we will cooperate with an oil and gasPoster: Building a test-bed for wireless sensor networking for under-water oil and gas@ifi.uio.no 1 Introduction and background When the oil and gas industry moves its production facilities

Zhou, Shengli

239

‘Boundary’ an expression of the dynamic unity between man and environment Building a paradigm to unravel the mind’s fundamental kinship with the cosmos and its role as the vehicle of the universe’s unfolding meaning   

E-Print Network [OSTI]

The aim of this thesis is to build a paradigm to unravel the human mind’s fundamental kinship with the cosmos and its role as the vehicle of the universe’s unfolded meaning. The concept of ‘boundary’ is presented as a ...

Saridaki, Maria

2012-11-28T23:59:59.000Z

240

Medium and Heavy Duty Vehicle and Engine Testing | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopmentTechnologies | Department ofMeasuringofHeavy Duty Vehicle

Note: This page contains sample records for the topic "vehicle testing building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Sampling Point Compliance Tests for 325 Building at Set-Back Flow Conditions  

SciTech Connect (OSTI)

The stack sampling system at the 325 Building (Radiochemical Processing Laboratory [RPL]) was constructed to comply with the American National Standards Institute’s (ANSI’s) Guide to Sampling Airborne Radioactive Materials in Nuclear Facilities (ANSI N13.1-1969). This standard provided prescriptive criteria for the location of radionuclide air-sampling systems. In 1999, the standard was revised (Sampling and Monitoring Releases of Airborne Radioactive Substances From the Stacks and Ducts of Nuclear Facilities [ANSI/Health Physics Society [HPS] 13.1-1999]) to provide performance-based criteria for the location of sampling systems. Testing was conducted for the 325 Building stack to determine whether the sampling system would meet the updated criteria for uniform air velocity and contaminant concentration in the revised ANSI/HPS 13.1-1999 standard under normal operating conditions (Smith et al. 2010). Measurement results were within criteria for all tests. Additional testing and modeling was performed to determine whether the sampling system would meet criteria under set-back flow conditions. This included measurements taken from a scale model with one-third of the exhaust flow and computer modeling of the system with two-thirds of the exhaust flow. This report documents the results of the set-back flow condition measurements and modeling. Tests performed included flow angularity, uniformity of velocity, gas concentration, and particle concentration across the duct at the sampling location. Results are within ANSI/HPS 13.1-1999 criteria for all tests. These tests are applicable for the 325 Building stack under set-back exhaust flow operating conditions (980 - 45,400 cubic feet per minute [cfm]) with one fan running. The modeling results show that criteria are met for all tests using a two-fan configuration exhaust (flow modeled at 104,000 cfm). Combined with the results from the earlier normal operating conditions, the ANSI/HPS 13.1-1999 criteria for all tests are met for all configurations: one, two, or three fans (normal).

Ballinger, Marcel Y.; Glissmeyer, John A.; Barnett, J. M.; Recknagle, Kurtis P.; Yokuda, Satoru T.

2011-05-31T23:59:59.000Z

242

Recommendations for energy conservation standards for new residential buildings: Volume 4, Description of the testing process  

SciTech Connect (OSTI)

This report documents the development and testing of recommendations, from the American Society of Heating, Refrigeration and Air Conditioning Engineers, Inc. (ASHRAE) Special Projects Committee No. 53, designed to provide the technical foundation for the Congressionally-mandated energy standard for new residential buildings. The recommendations were developed over a 25-month period by a multidisciplinary project team, under the management of the US Department of Energy and its prime contractor, Pacific Northwest Laboratory. The report has been issued in four volumes, VOLUME IV - Description of the Testing Process details how the Standard was tested and provides case studies of the possible impact of the Standard in select locations throughout the country. It is supported by a description of the assumptions and input data, and an analysis of the results.

Not Available

1989-05-01T23:59:59.000Z

243

The Role of Test Expectancy in the Build-Up of Proactive Interference in Long-Term Memory  

E-Print Network [OSTI]

The Role of Test Expectancy in the Build-Up of Proactive Interference in Long-Term Memory Yana the hypothesis that interpolated testing in a multiple list paradigm protects against proactive interference by sustaining test expectancy during encoding. In both experiments, recall on the last of 5 word lists

Szpunar, Karl K.

244

Field Test Results of Automated Demand Response in a Large Office Building  

E-Print Network [OSTI]

Building Control Strategies and Techniques for Demand Response,Automated Demand Response in a Large Office Building JunqiaoDemand Response Load Impacts: Evaluation of Baseline Load Models for Non-Residential Building

Han, Junqiao

2008-01-01T23:59:59.000Z

245

Demand Shifting With Thermal Mass in Large Commercial Buildings: Field Tests, Simulation and Audits  

E-Print Network [OSTI]

implement demand response programs involving buildingbased demand response (DR) technologies in real buildings.BUILDING AUDITS Introduction Customers’ attitudes to prospective utility demand response

Xu, Peng; Haves, Philip; Piette, Mary Ann; Zagreus, Leah

2005-01-01T23:59:59.000Z

246

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Broader source: Energy.gov (indexed) [DOE]

Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation 2010 DOE Vehicle Technologies...

247

Smith Newton Vehicle Performance Evaluation - Cumulative (Brochure)  

SciTech Connect (OSTI)

The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

Not Available

2014-08-01T23:59:59.000Z

248

Assessment of the Greenhouse Gas Emission Reduction Potential of Ultra-Clean Hybrid-Electric Vehicles  

E-Print Network [OSTI]

Table ES-3: Summaryof Hybrid Vehicle Fuel Economy Results onmal ICE and Series Hybrid Vehicles (t) Vehicle Test Weight (I) Conventional and Series Hybrid Vehicles had same weight,

Burke, A.F.; Miller, M.

1997-01-01T23:59:59.000Z

249

Vehicle Technologies Office's Research Recognized by R&D 100...  

Office of Environmental Management (EM)

Vehicles Home About Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions Alternative Fuels Modeling, Testing, Data & Results Education...

250

Functional and operational requirements document : building 1012, Battery and Energy Storage Device Test Facility, Sandia National Laboratories, New Mexico.  

SciTech Connect (OSTI)

This report provides an overview of information, prior studies, and analyses relevant to the development of functional and operational requirements for electrochemical testing of batteries and energy storage devices carried out by Sandia Organization 2546, Advanced Power Sources R&D. Electrochemical operations for this group are scheduled to transition from Sandia Building 894 to a new Building located in Sandia TA-II referred to as Building 1012. This report also provides background on select design considerations and identifies the Safety Goals, Stakeholder Objectives, and Design Objectives required by the Sandia Design Team to develop the Performance Criteria necessary to the design of Building 1012. This document recognizes the Architecture-Engineering (A-E) Team as the primary design entity. Where safety considerations are identified, suggestions are provided to provide context for the corresponding operational requirement(s).

Johns, William H.

2013-11-01T23:59:59.000Z

251

Hotbox Test R-value Database and the Building Envelopes Program (BEP)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Building Envelopes Program at Oak Ridge National Laboratory (ORNL) is a program within the Buildings Technology Center (BTC), the premier U.S. research facility devoted to developing technologies that improve the energy efficiency and environmental compatibility of residential and commercial buildings. Our program is divided into two parts: building envelope research, which focuses on the structural elements that enclose a building (walls, roofs and foundations), and materials research, which concentrates on the materials within the envelope systems (such as insulation). The building envelope provides the thermal barrier between the indoor and outdoor environment, and its elements are the key determinants of a building's energy requirements that result from the climate where it is located. [copied from http://www.ornl.gov/sci/roofs+walls/

252

DOE to Build Hydrogen Fuel Test Facility at West Virginia Airport  

Broader source: Energy.gov [DOE]

The Office of Fossil Energy's National Energy Technology Laboratory today announced plans to construct and operate a hydrogen fuel production plant and vehicle fueling station at the Yeager Airport in Charleston, W.Va.

253

Test and evaluation of the Chloride Spegel S1P108/30 electric vehicle battery charger  

SciTech Connect (OSTI)

The Chloride Spegel Model S1P108/30 electric vehicle battery charger was tested by the Tennessee Valley Authority (TVA) as an account of work sponsored by the Electric Power Research Institute (EPRI). Charger input/output voltage, current, and power characteristics and input waveform distortion were measured; and induced electromagnetic interference was evaluated as the charger recharged a lead-acid battery pack. Electrical quantities were measured with precision volt-ampere-watt meters, frequency counters, a digital-storage oscilloscope, and a spectrum analyzer. THe Chloride charger required 8.5 hours to recharge a 216V tubular plate lead-acid battery from 100 percent depth of discharge (DOD). Energy efficiency was 83 percent, specific power was 37.4 W/kg (17.0 W/lb), input current distortion varied from 22.4 to 34.1 percent, and electromagnetic interference was observed on AM radio. Tests were conducted with the battery at initial DOD of 100, 75, 50, and 25 percent. Charge factor was 1.14 from 100-percent DOD, increasing to 1.39 from 25-percent DOD.

Driggans, R.L.; Keller, A.S.

1985-09-01T23:59:59.000Z

254

Commercial Building Energy Baseline Modeling Software: Performance Metrics and Method Testing with Open Source Models and Implications for Proprietary Software Testing  

SciTech Connect (OSTI)

The overarching goal of this work is to advance the capabilities of technology evaluators in evaluating the building-level baseline modeling capabilities of Energy Management and Information System (EMIS) software. Through their customer engagement platforms and products, EMIS software products have the potential to produce whole-building energy savings through multiple strategies: building system operation improvements, equipment efficiency upgrades and replacements, and inducement of behavioral change among the occupants and operations personnel. Some offerings may also automate the quantification of whole-building energy savings, relative to a baseline period, using empirical models that relate energy consumption to key influencing parameters, such as ambient weather conditions and building operation schedule. These automated baseline models can be used to streamline the whole-building measurement and verification (M&V) process, and therefore are of critical importance in the context of multi-measure whole-building focused utility efficiency programs. This report documents the findings of a study that was conducted to begin answering critical questions regarding quantification of savings at the whole-building level, and the use of automated and commercial software tools. To evaluate the modeling capabilities of EMIS software particular to the use case of whole-building savings estimation, four research questions were addressed: 1. What is a general methodology that can be used to evaluate baseline model performance, both in terms of a) overall robustness, and b) relative to other models? 2. How can that general methodology be applied to evaluate proprietary models that are embedded in commercial EMIS tools? How might one handle practical issues associated with data security, intellectual property, appropriate testing ‘blinds’, and large data sets? 3. How can buildings be pre-screened to identify those that are the most model-predictable, and therefore those whose savings can be calculated with least error? 4. What is the state of public domain models, that is, how well do they perform, and what are the associated implications for whole-building measurement and verification (M&V)? Additional project objectives that were addressed as part of this study include: (1) clarification of the use cases and conditions for baseline modeling performance metrics, benchmarks and evaluation criteria, (2) providing guidance for determining customer suitability for baseline modeling, (3) describing the portfolio level effects of baseline model estimation errors, (4) informing PG&E’s development of EMIS technology product specifications, and (5) providing the analytical foundation for future studies about baseline modeling and saving effects of EMIS technologies. A final objective of this project was to demonstrate the application of the methodology, performance metrics, and test protocols with participating EMIS product vendors.

Price, Phillip N.; Granderson, Jessica; Sohn, Michael; Addy, Nathan; Jump, David

2013-09-01T23:59:59.000Z

255

Testing Synthetic Fuels for Use in U.S. Army Ground Vehicles | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOffice -TemplateDavid L.Testing Subgroupof

256

Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...  

Broader source: Energy.gov (indexed) [DOE]

Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector...

257

New test procedure evaluates quality and accuracy of energy analysis tools for the residential building retrofit market.  

E-Print Network [OSTI]

New test procedure evaluates quality and accuracy of energy analysis tools for the residential that calculate optimal packages of efficiency measures. To improve the accuracy of energy analysis building retrofit market. Reducing the energy use of existing homes in the United States offers significant

258

Test and evaluation of the Philips Model PE 1701 and Lester Model 9865 electric vehicle battery chargers  

SciTech Connect (OSTI)

The Philips Model PE 1701 and the Lester Model 9865 electric vehicle battery chargers have been tested by the Tennessee Valley Authority. Charger input/output voltage, current, power characteristics, and input waveform distortion were measured and induced electromagnetic interference was evaluated while the chargers recharged a fully discharged lead-acid battery pack. Electrical quantities were measured with precision volt-ampere-watt meters, frequency counters, a digital storage oscilloscope, and a spectrum analyzer. The Philips charger required 12.2 hours to recharge a 144-V battery; it had an energy efficiency of 86.0 percent and a specific power of 87.4 W/kg (39.7 W/lb). Input current distortion was between 6.9 and 23.0 percent, and electromagnetic interference was observed on AM radio. The Lester charger required 8.2 hours to recharge a 106-V battery; it had an energy efficiency of 83.0 percent and a specific power of 117.3 W/kg (53.3 W/lb). Current distortion was between 52.7 and 97.4 percent, and electromagnetic interference was observed on AM radio.

Reese, R.W.; Driggans, R.L.; Keller, A.S.

1984-04-01T23:59:59.000Z

259

Corrective Action Investigation Plan for Corrective Action Unit 240: Area 25 Vehicle Washdown Nevada Test Site, Nevada  

SciTech Connect (OSTI)

This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense (FFACO, 1996). The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUs) or Corrective Action Sites (CASs). According to the FFACO, CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites (FFACO, 1996). Corrective Action Units consist of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and the criteria for conducting site investigation activities at CAU 240, Area 25 Vehicle Washdown, which is located on the Nevada Test Site (NTS).

DOE/NV

1999-01-25T23:59:59.000Z

260

Blog Feed: Vehicles | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Building cost-effective EVs just got a little easier. August 11, 2010 Electric vehicles are powered by electricity that comes in the form of electrically charged molecules...

Note: This page contains sample records for the topic "vehicle testing building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Dynamic Soil-Structure Interaction of Instrumented Buildings and Test Structures  

E-Print Network [OSTI]

large rectangular concrete slab during testing. The adjacentforced vibration testing of a steel and reinforced concreteForced vibration testing of a steel and reinforced concrete

Givens, Michael James

2013-01-01T23:59:59.000Z

262

Vehicle Technologies Office Merit Review 2014: DC Fast Charging Effects on Battery Life and EVSE Efficiency and Security Testing  

Broader source: Energy.gov [DOE]

Presentation given by Idaho National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about DC fast charging...

263

Vehicle Technologies Office Merit Review 2014: CoolCab Test and Evaluation and CoolCalc HVAC Tool Development  

Broader source: Energy.gov [DOE]

Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about CoolCab...

264

Testing of peak demand limiting using thermal mass at a small commercial building  

E-Print Network [OSTI]

Figure 1. Building Picture / Satellite Photo Demand ResponseDemand Response Research Center, July 2007 https://escholarship.org/uc/item/19p737k1 The buildingbuilding in Palm Desert, California. The precooling Demand Response

Lee, Kyoung-Ho; Braun, James E; Fredrickson, Steve; Konis, Kyle; Arens, Edward

2007-01-01T23:59:59.000Z

265

Building a business case for corporate fleets to adopt vehicle-to-grid technology (V2G) and participate in the regulation service market  

E-Print Network [OSTI]

Electric (EV) and Plug-in Hybrid Electric vehicles (PHEV) continue to gain attention and market share, not only as options for consumers but also for corporate fleets. EVs and PHEVs can contribute to lower operating costs ...

De los Ríos Vergara, Andrés

2011-01-01T23:59:59.000Z

266

Advanced Vehicle Testing & Evaluation  

Broader source: Energy.gov (indexed) [DOE]

Volt PHEV (MY11) 2 Nissan Leaf BEV (MY11) 4 Honda Civic CNG 4 VW Jetta Turbo Diesel 4 Chevrolet Volt PHEV (MY13) 4 Chevrolet Malibu ECO 4 Honda Civic...

267

Advanced Vehicle Testing & Evaluation  

Broader source: Energy.gov (indexed) [DOE]

Requirements Total Project; 33,088,218 EZ Messenger DOE Share; 26,400,000 Total Transit Cost Share; 6,688,218 Idaho National Laboratory Current Auth; 6,351,700 Argonne...

268

Advanced Vehicle Testing & Evaluation  

Broader source: Energy.gov (indexed) [DOE]

Total Project; 33,088,218 EZ Messenger DOE Share; 26,400,000 Idaho National Laboratory Cost Share; 6,688,218 Argonne National Laboratory BP1 Authorization; 3,000,000 Oak Ridge...

269

Unmanned airborne vehicle (UAV): Flight testing and evaluation of two-channel E-field very low frequency (VLF) instrument  

SciTech Connect (OSTI)

Using VLF frequencies, transmitted by the Navy`s network, for airborne remote sensing of the earth`s electrical, magnetic characteristics was first considered by the United States Geological Survey (USGS) around the mid 1970s. The first VLF system was designed and developed by the USGS for installation and operation on a single engine, fixed wing aircraft used by the Branch of Geophysics for geophysical surveying. The system consisted of five channels. Two E-field channels with sensors consisting of a fixed vertical loaded dipole antenna with pre-amp mounted on top of the fuselage and a gyro stabilized horizontal loaded dipole antenna with pre-amp mounted on a tail boom. The three channel magnetic sensor consisted of three orthogonal coils mounted on the same gyro stabilized platform as the horizontal E-field antenna. The main features of the VLF receiver were: narrow band-width frequency selection using crystal filters, phase shifters for zeroing out system phase variances, phase-lock loops for generating real and quadrature gates, and synchronous detectors for generating real and quadrature outputs. In the mid 1990s the Branch of Geophysics designed and developed a two-channel E-field ground portable VLF system. The system was built using state-of-the-art circuit components and new concepts in circuit architecture. Small size, light weight, low power, durability, and reliability were key considerations in the design of the instrument. The primary purpose of the instrument was for collecting VLF data during ground surveys over small grid areas. Later the system was modified for installation on a Unmanned Airborne Vehicle (UAV). A series of three field trips were made to Easton, Maryland for testing and evaluating the system performance.

NONE

1998-12-01T23:59:59.000Z

270

Building Curiosity Landing System Drop Test [00:00:06]Hi, I'm Savannah McCoy and I'm the rover verification and validation lead.  

E-Print Network [OSTI]

Building Curiosity ­ Landing System Drop Test [00:00:06]Hi, I'm Savannah McCoy and I'm the rover verification and validation lead. [00:00:11]My job is to run system-level tests on the rover's structure build two rovers in parallel. One's the flight rover [00:00:22]and one's the test rover, or DTM

Waliser, Duane E.

271

Deep in Data: Empirical Data Based Software Accuracy Testing Using the Building America Field Data Repository: Preprint  

SciTech Connect (OSTI)

An opportunity is available for using home energy consumption and building description data to develop a standardized accuracy test for residential energy analysis tools. That is, to test the ability of uncalibrated simulations to match real utility bills. Empirical data collected from around the United States have been translated into a uniform Home Performance Extensible Markup Language format that may enable software developers to create translators to their input schemes for efficient access to the data. This may facilitate the possibility of modeling many homes expediently, and thus implementing software accuracy test cases by applying the translated data. This paper describes progress toward, and issues related to, developing a usable, standardized, empirical data-based software accuracy test suite.

Neymark, J.; Roberts, D.

2013-06-01T23:59:59.000Z

272

Smith Newton Vehicle Performance Evaluation - 1st Quarter 2014 (Brochure)  

SciTech Connect (OSTI)

The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

Not Available

2014-04-01T23:59:59.000Z

273

Smith Newton Vehicle Performance Evaluation - Gen2 - 2013 (Brochure)  

SciTech Connect (OSTI)

The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

Not Available

2014-04-01T23:59:59.000Z

274

Smith Newton Vehicle Performance Evaluation - Gen 2 - Cumulative (Brochure)  

SciTech Connect (OSTI)

The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

Not Available

2014-08-01T23:59:59.000Z

275

Final Report on Retrospective Testing and Application of an Automated Building Commissioning Analysis Tool (ABCAT)  

E-Print Network [OSTI]

simulation model used was calibrated to the building energy consumption data in a baseline period. Then, the model was used to predict the optimal cooling and heating consumption in the following days. A cumulative energy difference plot is the primary fault...

Bynum, John; Lin, Guanjing; Claridge, David

276

Byggmeister Test Home: Cold Climate Multifamily Masonry Building Condition Assessment and Retrofit Analysis  

SciTech Connect (OSTI)

This report describes a retrofit project undertaken by Building Science Corporation and partner Byggmeister on a multifamily brick row house located in Jamaica Plain, MA. This project studied the row house to determine the right combination of energy efficiency measures that are feasible, affordable, and suitable for this type of construction and acceptable to homeowners.

Wytrykowska, H.; Ueno, K.; Van Straaten, R.

2012-09-01T23:59:59.000Z

277

Vehicle Technologies Office Merit Review 2014: Vehicle & Systems...  

Energy Savers [EERE]

& Testing Presentation given by U.S. Department of Energy at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

278

Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle...  

Energy Savers [EERE]

Maximizing Alternative Fuel Vehicle Efficiency Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency Besides their energy security and environmental benefits,...

279

Vehicle Technologies Office: 2009 Advanced Vehicle Technology...  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2009 Advanced Vehicle...

280

Vehicle Technologies Office: 2008 Advanced Vehicle Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2008 Advanced Vehicle...

Note: This page contains sample records for the topic "vehicle testing building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Building America Expert Meeting: Energy Savings You Can Bank...  

Broader source: Energy.gov (indexed) [DOE]

On October 12, 2011, Building America team Alliance for Residential Building Innovation conducted an Expert Meeting on the topic of performance guarantees and financing vehicles...

282

Comparison of Two Statistical Approaches to Detect Abnormal Building Energy Consumption with Simulation Test  

E-Print Network [OSTI]

?or? Emea?Esim Eller?Building ? HVAC?system:?DDVAV ? Baseline?period:?March?August,1997 Simulation?Data?Sets 8 0...?ID Eller 1 Outside?airflow?ratio??increase?of??3.1% 2 Outside?airflow?ratio??decrease?of??3.1% 3 Cold?deck?leaving?temperature??increase?of?4?F 4 Cold?deck?leaving?temperature??decrease?of?4.5?F 5 Hot?deck?leaving?temperature??increase?of?10?F 6 Hot...

Lin, G.; Claridge, D.

2012-01-01T23:59:59.000Z

283

Smith Newton Vehicle Performance Evaluation - 3rd Quarter 2012 (Brochure)  

SciTech Connect (OSTI)

The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. Through this project, Smith Electric Vehicles will build and deploy 500 all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country.

Not Available

2013-03-01T23:59:59.000Z

284

Building State-of-the-Art Wind Technology Testing Facilities (Fact Sheet)  

SciTech Connect (OSTI)

The new Wind Technology Test Center is the only facility in the nation capable of testing wind turbine blades up to 90 meters in length. A critical factor to wind turbine design and development is the ability to test new designs, components, and materials. In addition, wind turbine blade manufacturers are required to test their blades as part of the turbine certification process. The National Renewable Energy Laboratory (NREL) partnered with the U.S. Department of Energy (DOE) Wind Program and the Massachusetts Clean Energy Center (MassCEC) to design, construct, and operate the Wind Technology Center (WTTC) in Boston, Massachusetts. The WTTC offers a full suite of certification tests for turbine blades up to 90 meters in length. NREL worked closely with MTS Systems Corporation to develop the novel large-scale test systems needed to conduct the static and fatigue tests required for certification. Static tests pull wind turbine blades horizontally and vertically to measure blade deflection and strains. Fatigue tests cycle the blades millions of times to simulate what a blade goes through in its lifetime on a wind turbine. For static testing, the WTTC is equipped with servo-hydraulic winches and cylinders that are connected to the blade through cables to apply up to an 84-mega Newton meter maximum static bending moment. For fatigue testing, MTS developed a commercial version of NREL's patented resonant excitation system with hydraulic cylinders that actuate linear moving masses on the blade at one or more locations. This system applies up to a 21-meter tip-to-tip fatigue test tip displacement to generate 20-plus years of cyclic field loads in a matter of months. NREL also developed and supplied the WTTC with an advanced data acquisition system capable of measuring and recording hundreds of data channels at very fast sampling rates while communicating with test control systems.

Not Available

2012-03-01T23:59:59.000Z

285

Electrochemical Capacitors as Energy Storage in Hybrid-Electric Vehicles: Present Status and Future Prospects  

E-Print Network [OSTI]

ultracapacitors, fuel cells and hybrid vehicle design. Dr.on electric and hybrid vehicle technology and applicationssupervises testing in the Hybrid Vehicle Propulsion Systems

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

286

Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles  

E-Print Network [OSTI]

supervises testing in the Hybrid Vehicle Propulsion Systemsbattery for plug-in hybrid vehicle is complicated processstorage for Plug-in Hybrid vehicles EVS24 International

Burke, Andrew; Miller, Marshall

2009-01-01T23:59:59.000Z

287

Building America Top Innovations 2014 Profile: HVAC Cabinet Air Leakage Test Method  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 < prev next > SunBuilding America-funded

288

Vehicle System Dynamics Vol. 00, No. 00, April 2008, 129  

E-Print Network [OSTI]

Vehicle System Dynamics Vol. 00, No. 00, April 2008, 1­29 Fidelity of using scaled vehicles (April 2008) There are many situations where physical testing of a vehicle or vehicle controller is necessary, yet use of a full-size vehicle is not practical. Some situations include implementation testing

Brennan, Sean

289

Wind effects on large-scale buildings and structures : field measurements, wind tunnel tests and numerical prediction.  

E-Print Network [OSTI]

??Modern large-scale buildings and structures, such as super tall buildings and large roof structures, are usually constructed with innovative structural systems and high strength materials;… (more)

Fu, Jiyang (???)

2007-01-01T23:59:59.000Z

290

Safety assessment document for the environmental test complex (Building 834) at Site 300  

SciTech Connect (OSTI)

A safety assessment was performed to determine if accidents occurring at the 834 Complex at Site 300 could present undue hazards to the general public, personnel at Site 300, or have an adverse effect on the environment. The credible accidents that might have an effect on these facilities or have off-site consequences were considered. These were earthquake, extreme wind (including missiles), lightning, flood, criticality, high explosive (HE) detonation that disperses uranium and beryllium, spontaneous oxidation of plutonium, explosions due to finely divided particles, and a fire. Seismic and extreme wind (including missiles) analyses indicate that the buildings are basically sound. (However, there are a few recommendations to further enhance the structural integrity of these facilities). Additional lightning protection for these facilities is being installed. These buildings are located high above the dry creek bed so that a flood is improbable. A criticality or a high explosive detonation involving plutonium is very remote since the radioactive materials are encased and plutonium and HE are not permitted concurrently in the same area at Site 300. (The exceptions to this policy are that explosive actuating devices are sometimes located in assemblies containing fissile materials. However, a planned or accidental actuation will not effect the safe containment of the fissile material within the assembly). Even though the possibility of an HE explosion involving uranium and beryllium is remote, the off-site lung doses were calculated and found to be below the accepted standards. It was determined that a fire was unlikely due to the low fire loading and the absence of ignition sources. It was also determined that the consequences of any accidents were reduced by the remote location of these facilities, their design, and by administrative controls.

Odell, B.N.; Pfeifer, H.E.

1981-03-03T23:59:59.000Z

291

Design, build and test of an axial flow hydrokinetic turbine with fatigue analysis  

E-Print Network [OSTI]

OpenProp is an open source propeller and turbine design and analysis code that has been in development since 2007 by MIT graduate students under the supervision of Professor Richard Kimball. In order to test the performance ...

Ketcham, Jerod W

2010-01-01T23:59:59.000Z

292

Electric vehicles  

SciTech Connect (OSTI)

Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

Not Available

1990-03-01T23:59:59.000Z

293

Modeling of Plug-in Electric Vehicles Interactions with a Sustainable Community Grid in the Azores  

E-Print Network [OSTI]

Distributed Generation, Plug-in Electric Vehicles (PEVs), Energy Management, Multi-Building Modeling and Simulation Introduction The Green Islands

Mendes, Goncalo

2013-01-01T23:59:59.000Z

294

AVTA: Hybrid-Electric Tractor Vehicles  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following set of reports describes data collected from hybrid-electric tractor vehicles in the Coca-Cola fleet. This research was conducted by the National Renewable Energy Laboratory (NREL).

295

automated guided vehicle: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ioannou A, utomatic is todesign and test avehicle control system in order toachieve full vehicle automation in the longitudinal vehicle following isan important feature of a fully...

296

AGU Chapman Conference Hydrogeologic Processes: Building and Testing Atomistic- to Basin-Scale Models  

SciTech Connect (OSTI)

This report presents details of the Chapman Conference given on June 6--9, 1994 in Lincoln, New Hampshire. This conference covered the scale of processes involved in coupled hydrogeologic mass transport and a concept of modeling and testing from the atomistic- to the basin- scale. Other topics include; the testing of fundamental atomic level parameterizations in the laboratory and field studies of fluid flow and mass transport and the next generation of hydrogeologic models. Individual papers from this conference are processed separately for the database.

Weaver, B. [American Geophysical Union, Washington, DC (United States)

1994-12-31T23:59:59.000Z

297

Pressure Build-Up During the Fire Test in Type B(U) Packages Containing Water - 13280  

SciTech Connect (OSTI)

The safety assessment of packages for the transport of radioactive materials with content containing liquids requires special consideration. The main focus is on water as supplementary liquid content in Type B(U) packages. A typical content of a Type B(U) package is ion exchange resin, waste of a nuclear power plant, which is not dried, normally only drained. Besides the saturated ion exchange resin, a small amount of free water can be included in these contents. Compared to the safety assessment of packages with dry content, attention must be paid to some more specific issues. An overview of these issues is provided. The physical and chemical compatibility of the content itself and the content compatibility with the packages materials must be demonstrated for the assessment. Regarding the mechanical resistance the package has to withstand the forces resulting from the freezing liquid. The most interesting point, however, is the pressure build-up inside the package due to vaporization. This could for example be caused by radiolysis of the liquid and must be taken into account for the storage period. If the package is stressed by the total inner pressure, this pressure leads to mechanical loads to the package body, the lid and the lid bolts. Thus, the pressure is the driving force on the gasket system regarding the activity release and a possible loss of tightness. The total pressure in any calculation is the sum of partial pressures of different gases which can be caused by different effects. The pressure build-up inside the package caused by the regulatory thermal test (30 min at 800 deg. C), as part of the cumulative test scenario under accident conditions of transport is discussed primarily. To determine the pressure, the temperature distribution in the content must be calculated for the whole period from beginning of the thermal test until cooling-down. In this case, while calculating the temperature distribution, conduction and radiation as well as evaporation and condensation during the associated process of transport have to be considered. This paper discusses limiting amounts of water inside the cask which could lead to unacceptable pressure and takes into account saturated steam as well as overheated steam. However, the difficulties of assessing casks containing wet content will be discussed. From the authority assessment point of view, drying of the content could be an effective way to avoid the above described pressure build-up and the associated difficulties for the safety assessment. (authors)

Feldkamp, Martin; Nehrig, Marko; Bletzer, Claus; Wille, Frank [BAM Federal Institute for Materials Research and Testing, Unter den Eichen 44, 12205 Berlin (Germany)] [BAM Federal Institute for Materials Research and Testing, Unter den Eichen 44, 12205 Berlin (Germany)

2013-07-01T23:59:59.000Z

298

Hybrid Vehicle Program. Final report  

SciTech Connect (OSTI)

This report summarizes the activities on the Hybrid Vehicle Program. The program objectives and the vehicle specifications are reviewed. The Hybrid Vehicle has been designed so that maximum use can be made of existing production components with a minimum compromise to program goals. The program status as of the February 9-10 Hardware Test Review is presented, and discussions of the vehicle subsystem, the hybrid propulsion subsystem, the battery subsystem, and the test mule programs are included. Other program aspects included are quality assurance and support equipment. 16 references, 132 figures, 47 tables.

None

1984-06-01T23:59:59.000Z

299

Electric Vehicles  

ScienceCinema (OSTI)

Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

Ozpineci, Burak

2014-07-23T23:59:59.000Z

300

Electric Vehicles  

SciTech Connect (OSTI)

Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

Ozpineci, Burak

2014-05-02T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle testing building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Sandia National Laboratories proof-of-concept robotic security vehicle  

SciTech Connect (OSTI)

Several years ago Sandia National Laboratories developed a prototype interior robot that could navigate autonomously inside a large complex building to air and test interior intrusion detection systems. Recently the Department of Energy Office of Safeguards and Security has supported the development of a vehicle that will perform limited security functions autonomously in a structured exterior environment. The goal of the first phase of this project was to demonstrate the feasibility of an exterior robotic vehicle for security applications by using converted interior robot technology, if applicable. An existing teleoperational test bed vehicle with remote driving controls was modified and integrated with a newly developed command driving station and navigation system hardware and software to form the Robotic Security Vehicle (RSV) system. The RSV, also called the Sandia Mobile Autonomous Navigator (SANDMAN), has been successfully used to demonstrate that teleoperated security vehicles which can perform limited autonomous functions are viable and have the potential to decrease security manpower requirements and improve system capabilities. 2 refs., 3 figs.

Harrington, J.J.; Jones, D.P.; Klarer, P.R.; Morrow, J.D.; Workhoven, R.M.; Wunderlin, F.

1989-01-01T23:59:59.000Z

302

Commercial Vehicle Classification using Vehicle Signature Data  

E-Print Network [OSTI]

Traffic Measurement and Vehicle Classification with SingleG. Ritchie. Real-time Vehicle Classification using InductiveReijmers, J.J. , "On-line vehicle classification," Vehicular

Liu, Hang; Jeng, Shin-Ting; Andre Tok, Yeow Chern; Ritchie, Stephen G.

2008-01-01T23:59:59.000Z

303

Overview of the Capstone Depleted Uranium Study of Aerosols from Impact with Armored Vehicles: Test Setup and Aerosol Generation, Characterization, and Application in Assessing Dose and Risk  

SciTech Connect (OSTI)

The Capstone Depleted Uranium (DU) Aerosol Characterization and Risk Assessment Study was conducted to generate data about DU aerosols generated during the perforation of armored combat vehicles with large-caliber DU penetrators, and to apply the data in assessments of human health risks to personnel exposed to these aerosols, primarily through inhalation, during the 1991 Gulf War or in future military operations. The Capstone study consisted of two components: 1) generating, sampling and characterizing DU aerosols by firing at and perforating combat vehicles and 2) applying the source-term quantities and characteristics of the aerosols to the evaluation of doses and risks. This paper reviews the background of the study including the bases for the study, previous reviews of DU particles and health assessments from DU used by the U.S. military, the objectives of the study components, the participants and oversight teams, and the types of exposures it was intended to evaluate. It then discusses exposure scenarios used in the dose and risk assessment and provides an overview of how the field tests and dose and risk assessments were conducted.

Parkhurst, MaryAnn; Guilmette, Raymond A.

2009-03-01T23:59:59.000Z

304

University Buildings Landmark Buildings  

E-Print Network [OSTI]

KEY University Buildings Landmark Buildings The Lanyon Building Roads Footpath Cafe Grass Queen's University Belfast Campus Map The Lanyon Building The Students' Union The David Keir Building School Offices and Sonic Arts Q Nursing and Midwifery R Pharmacy S Planning, Architecture and Civil Engineering T Politics

Paxton, Anthony T.

305

University Buildings Landmark Buildings  

E-Print Network [OSTI]

KEY University Buildings Landmark Buildings The Lanyon Building Roads Footpath Cafe University Accommodation Queen's University Belfast Campus Map The Lanyon Building The Students' Union The David Keir Building School Offices A Biological Sciences B Chemistry and Chemical Engineering C Education D

MĂĽller, Jens-Dominik

306

University Buildings Landmark Buildings  

E-Print Network [OSTI]

KEY University Buildings Landmark Buildings The Lanyon Building Roads Footpath Cafe University Engineering N Medicine, Dentistry and Biomedical Sciences P Music and Sonic Arts Q Nursing and Midwifery R and Student Affairs 3 Administration Building 32 Ashby Building 27 Belfast City Hospital 28 Bernard Crossland

Paxton, Anthony T.

307

Development of a Simple Field Test for Vehicle Exhaust to Detect Illicit Use of Dyed Diesel Fuel  

SciTech Connect (OSTI)

The use of tax-free dyed fuel on public highways in the United States provides a convenient way of evading taxes. Current enforcement involves visual inspection for the red azo dye added to the fuel to designate its tax-free status. This approach has shortcomings such as the invasive nature of the tests and/or various deceptive tactics applied by tax evaders. A test designed to detect dyed fuel use by analyzing the exhaust would circumvent these shortcomings. This paper describes the development of a simple color spot test designed to detect the use of tax-free (dyed) diesel fuel by analyzing the engine exhaust. Development first investigated the combustion products of C.I. Solvent Red 164 (the azo dye formulation used in the United States to tag tax-free fuel). A variety of aryl amines were identified as characteristic molecular remnants that appear to survive combustion. A number of microanalytical color tests specific for aryl amines were then investigated. One test based on the use of 4-(dimethylamino)benzaldehyde seemed particularly applicable and was used in a proof-of-principle experiment. The 4-(dimethylamino)benzaldehyde color spot test was able to clearly distinguish between engines burning regular and dyed diesel fuel. Further development will refine this color spot test to provide an easy-to-use field test for Internal Revenue Service Field Compliance specialists.

Harvey, Scott D.; Wright, Bob W.

2011-10-30T23:59:59.000Z

308

Integrated Testing, Simulation and Analysis of Electric Drive Options for Medium-Duty Parcel Delivery Vehicles: Preprint  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory verified diesel-conventional and diesel-hybrid parcel delivery vehicle models to evaluate petroleum reduction and cost implications of plug-in hybrid gasoline and diesel variants. These variants are run on a field-data-derived design matrix to analyze the effects of drive cycle, distance, battery replacements, battery capacity, and motor power on fuel consumption and lifetime cost. Two cost scenarios using fuel prices corresponding to forecasted highs for 2011 and 2030 and battery costs per kilowatt-hour representing current and long-term targets compare plug-in hybrid lifetime costs with diesel conventional lifetime costs. Under a future cost scenario of $100/kWh battery energy and $5/gal fuel, plug-in hybrids are cost effective. Assuming a current cost of $700/kWh and $3/gal fuel, they rarely recoup the additional motor and battery cost. The results highlight the importance of understanding the application's drive cycle, daily driving distance, and kinetic intensity. For instances in the current-cost scenario where the additional plug-in hybrid cost is regained in fuel savings, the combination of kinetic intensity and daily distance travelled does not coincide with the usage patterns observed in the field data. If the usage patterns were adjusted, the hybrids could become cost effective.

Ramroth, L. A.; Gonder, J.; Brooker, A.

2012-09-01T23:59:59.000Z

309

Vehicle Technologies Office: Integration and Validation  

Broader source: Energy.gov [DOE]

Once vehicle components and subsystems prove out in the initial modeling and simulation research phases, it is time to build, integrate, and validate prototypes of those components and subsystems....

310

Design of a minimalist autonomous robotic vehicle  

E-Print Network [OSTI]

The purpose of this thesis is to investigate design alternatives for the creation of a minimalist autonomous robotic vehicle, based on the Ford Escape. The work builds on prior work performed by the MIT DARPA Urban Challenge ...

Spadafora, Mark (Mark A.)

2008-01-01T23:59:59.000Z

311

2013 Chevrolet Malibu ECO Hybrid ? VIN 6605, Advanced Vehicle...  

Broader source: Energy.gov (indexed) [DOE]

2 : 3.00 V Thermal Management: Active - Forced air Pack Weight: 65 lb BEGINNING-OF-TEST: BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle...

312

Onboard Hydrogen/Helium Sensors in Support of the Global Technical Regulation: An Assessment of Performance in Fuel Cell Electric Vehicle Crash Tests  

SciTech Connect (OSTI)

Automobile manufacturers in North America, Europe, and Asia project a 2015 release of commercial hydrogen fuel cell powered light-duty road vehicles. These vehicles will be for general consumer applications, albeit initially in select markets but with much broader market penetration expected by 2025. To assure international harmony, North American, European, and Asian regulatory representatives are striving to base respective national regulations on an international safety standard, the Global Technical Regulation (GTR), Hydrogen Fueled Vehicle, which is part of an international agreement pertaining to wheeled vehicles and equipment for wheeled vehicles.

Post, M. B.; Burgess, R.; Rivkin, C.; Buttner, W.; O'Malley, K.; Ruiz, A.

2012-09-01T23:59:59.000Z

313

Corrective action investigation plan for Corrective Action Unit Number 423: Building 03-60 Underground Discharge Point, Tonopah Test Range, Nevada  

SciTech Connect (OSTI)

This Corrective Action Investigation Plan (CAIP) contains the environmental sample collection objectives and the criteria for conducting site investigation activities at Corrective Action Unit (CAU) Number 423, the Building 03-60 Underground Discharge Point (UDP), which is located in Area 3 at the Tonopah Test Range (TTR). The TTR, part of the Nellis Air Force Range, is approximately 225 kilometers (140 miles) northwest of Las Vegas, Nevada. CAU Number 423 is comprised of only one Corrective Action Site (CAS) which includes the Building 03-60 UDP and an associated discharge line extending from Building 03-60 to a point approximately 73 meters (240 feet) northwest. The UDP was used between approximately 1965 and 1990 to dispose of waste fluids from the Building 03-60 automotive maintenance shop. It is likely that soils surrounding the UDP have been impacted by oil, grease, cleaning supplies and solvents as well as waste motor oil and other automotive fluids released from the UDP.

NONE

1997-10-27T23:59:59.000Z

314

Electric vehicle repairs and modifications  

SciTech Connect (OSTI)

This informal report describes the electric vehicle (EV) inspection and the necessary maintenance and repairs required to improve reliable operation of five Volkswagen (VW) Electrotransporter vans and five VW EV buses. The recommendations of TVA, EPRI, GES, Volkswagen, Siemens, and Hoppecke have been carried out in this effort. These modifications were necessary before entering the EPRI/TVA phase II and III continuing program. As new energy storage systems are explored using the VW test-bed vehicles in the battery field testing program, additional modifications may be required. All modifications will be submitted to the vehicle and component manufacturer for general assessment and recommendations. At present three different types of battery systems are being evaluated in six VW vehicles. The two Hoppecke and Exide utilize the modified Hoppecke charging systems. The other batteries being tested require off-board chargers specified by their manufacturer and are separate from the vehicle system.

Buffett, R.K.

1982-11-01T23:59:59.000Z

315

AVTA: Hybrid-Electric Delivery Vehicles  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following set of reports describes data collected from testing on FedEx Express and UPS hybrid-electric delivery trucks. This research was conducted by the National Renewable Energy Laboratory (NREL).

316

Building 32 35 Building 36  

E-Print Network [OSTI]

Building 10 Building 13 Building 7 LinHall Drive Lot R10 Lot R12 Lot 207 Lot 209 LotR9 Lot 205 Lot 203 LotBuilding30 Richland Avenue 39 44 Building 32 35 Building 36 34 Building 18 Building 19 11 12 45 29 15 Building 5 8 9 17 Building 16 6 Building 31 Building 2 Ridges Auditorium Building 24 Building 4

Botte, Gerardine G.

317

Robotic vehicle  

DOE Patents [OSTI]

A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

Box, W. Donald (Oak Ridge, TN)

1997-01-01T23:59:59.000Z

318

Robotic vehicle  

DOE Patents [OSTI]

A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

Box, W. Donald (Oak Ridge, TN)

1998-01-01T23:59:59.000Z

319

Alternative Fuel Evaluation Program: Alternative Fuel Light Duty Vehicle Project - Data collection responsibilities, techniques, and test procedures  

SciTech Connect (OSTI)

This report describes the data gathering and analysis procedures that support the US Department of Energy`s implementation of the Alternative Motor Fuels Act (AMFA) of 1988. Specifically, test procedures, analytical methods, and data protocols are covered. The aim of these collection and analysis efforts, as mandated by AMFA, is to demonstrate the environmental, economic, and performance characteristics of alternative transportation fuels.

none,

1992-07-01T23:59:59.000Z

320

Fuel Cell Vehicles and Hydrogen in Preparing for market launch  

E-Print Network [OSTI]

Fuel Cell Vehicles and Hydrogen in California Preparing for market launch Catherine Dunwoody June 27, 2012 #12;2 A fuel cell vehicle is electric! 2 · 300-400 mile range · Zero-tailpipe emissions · To launch market and build capacity #12;12 H2 stations and vehicle growth #12;13 California Fuel Cell

California at Davis, University of

Note: This page contains sample records for the topic "vehicle testing building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Smith Newton Vehicle Performance Evaluation - Gen2 - 1Q2014 (Brochure)  

SciTech Connect (OSTI)

The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

Not Available

2014-04-01T23:59:59.000Z

322

Autonomous vehicles  

SciTech Connect (OSTI)

There are various kinds of autonomous vehicles (AV`s) which can operate with varying levels of autonomy. This paper is concerned with underwater, ground, and aerial vehicles operating in a fully autonomous (nonteleoperated) mode. Further, this paper deals with AV`s as a special kind of device, rather than full-scale manned vehicles operating unmanned. The distinction is one in which the AV is likely to be designed for autonomous operation rather than being adapted for it as would be the case for manned vehicles. The authors provide a survey of the technological progress that has been made in AV`s, the current research issues and approaches that are continuing that progress, and the applications which motivate this work. It should be noted that issues of control are pervasive regardless of the kind of AV being considered, but that there are special considerations in the design and operation of AV`s depending on whether the focus is on vehicles underwater, on the ground, or in the air. The authors have separated the discussion into sections treating each of these categories.

Meyrowitz, A.L. [Navy Center for Applied Research in Artificial Intelligence, Washington, DC (United States)] [Navy Center for Applied Research in Artificial Intelligence, Washington, DC (United States); Blidberg, D.R. [Autonomous Undersea Systems Inst., Lee, NH (United States)] [Autonomous Undersea Systems Inst., Lee, NH (United States); Michelson, R.C. [Georgia Tech Research Inst., Smyrna, GA (United States)] [Georgia Tech Research Inst., Smyrna, GA (United States); [International Association for Unmanned Vehicle Systems, Smyrna, GA (United States)

1996-08-01T23:59:59.000Z

323

Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles  

E-Print Network [OSTI]

of Vehicle Image in Gasoline-Hybrid Electric Vehicles Reidof Vehicle Image in Gasoline-Hybrid Electric Vehicles Reidhigh demand for gasoline-hybrid electric vehicles (HEVs)?

Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

2005-01-01T23:59:59.000Z

324

Vehicle Technologies Office: Hybrid and Vehicle Systems | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hybrid and Vehicle Systems Vehicle Technologies Office: Hybrid and Vehicle Systems Hybrid and vehicle systems research provides an overarching vehicle systems perspective to the...

325

Chevrolet Volt Vehicle Demonstration  

Broader source: Energy.gov (indexed) [DOE]

Chevrolet Volt Vehicle Demonstration Fleet Summary Report Reporting period: October 2011 through December 2011 Number of vehicles: 135 Number of vehicle days driven: 4,746 All...

326

Vehicle Technologies Office: Workforce Development and Professional...  

Energy Savers [EERE]

drive vehicles. These documents describe the results of the full-scale testing of lithium-ion batteries and best practices. Hydrogen Education: DOE's Hydrogen Fuel Cell and...

327

Codes and Standards Support Vehicle Electrification  

Broader source: Energy.gov (indexed) [DOE]

chair) Scope: Test method and conditions for rating performance of electric propulsion motors as used in hybrid electric and battery electric vehicles. Rationale: Promote...

328

Advanced Technology Vehicle Lab Benchmarking - Level 1  

Broader source: Energy.gov (indexed) [DOE]

HEV (PHEV) * Battery Electric (BEV or EV) * Fuel Cell Vehicle Alternative fuels * Hydrogen, Natural Gas * Ethanol, Butanol * Diesel (Bio, Fisher-Tropsch) APRF Test Process:...

329

2011 DOE Hydrogen Program and Vehicle Technologies Office Annual...  

Broader source: Energy.gov (indexed) [DOE]

Office Plenary Session Program Analysis Ward Analyst Technology Integration Smith and Bezanson Vehicle & Systems Simulation & Testing Slezak Materials Schutte Materials...

330

Navistar eStar Vehicle Performance Evaluation - Cumulative (Brochure)  

SciTech Connect (OSTI)

The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Navistar will build and deploy all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country.

Not Available

2014-08-01T23:59:59.000Z

331

Vehicle Technologies Office: AVTA - Electric Vehicle Community...  

Broader source: Energy.gov (indexed) [DOE]

Making plug-in electric vehicles (PEVs, also known as electric cars) as affordable and convenient as conventional vehicles, as described in the EV Everywhere Grand Challenge,...

332

Advanced Vehicle Testing Activity (AVTA) - Vehicle Testing and...  

Broader source: Energy.gov (indexed) [DOE]

- cont'd * University of California Davis, with 13 Hymotion Prius being used by 70 public drives * Oregon State Government fleets, 3 Hymotion PHEVs * National Rural Electric...

333

Advanced Vehicle Testing Activity (AVTA) - Vehicle Testing and  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2| DepartmentEnergy 2Waste|0 DOE2

334

Impact of Vehicle Air-Conditioning on Fuel Economy, Tailpipe Emissions, and Electric Vehicle Range: Preprint  

SciTech Connect (OSTI)

Vehicle air-conditioning can significantly impact fuel economy and tailpipe emissions of conventional and hybrid electric vehicles and reduce electric vehicle range. In addition, a new US emissions procedure, called the Supplemental Federal Test Procedure, has provided the motivation for reducing the size of vehicle air-conditioning systems in the US. The SFTP will measure tailpipe emissions with the air-conditioning system operating. Current air-conditioning systems can reduce the fuel economy of high fuel-economy vehicles by about 50% and reduce the fuel economy of today's mid-sized vehicles by more than 20% while increasing NOx by nearly 80% and CO by 70%.

Farrington, R.; Rugh, J.

2000-09-22T23:59:59.000Z

335

AVTA: ARRA EV Project Vehicle Placement Maps  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following maps describe where the EV Project deployed 5,700 all-electric Nissan Leafs and 2,600 plug-in hybrid electric Chevrolet Volts.

336

Comparison of the Fire Consequences of an Electric Vehicle and an Internal Combustion Engine Vehicle.  

E-Print Network [OSTI]

Comparison of the Fire Consequences of an Electric Vehicle and an Internal Combustion Engine key new technologies in the development of electric vehicles (EV), risks pertaining to them have at presenting the main results of these fire tests. KEYWORDS: electric vehicles, battery, fire, safety

Paris-Sud XI, Université de

337

Passive solar buildings  

SciTech Connect (OSTI)

Developments in passive solar buildings that took place from the early 1970`s through 1989 are described. Much of the work covered was federally sponsored during the period 1975 through 1986. About half the volume is devoted to quantitative methods for modeling, simulation, and design analysis of passive buildings; the other half summarizes the quantitative results of testing and monitoring of models and buildings. The following are covered: building solar gain modeling, simulation analysis, simplified methods, materials and components, analytical results for specific systems, test modules, building integration, performance monitoring and results, and design tools. (MHR)

Balcomb, J.D. [ed.] [Solar Energy Research Inst., Golden, CO (United States)

1992-10-01T23:59:59.000Z

338

Passive solar buildings  

SciTech Connect (OSTI)

Developments in passive solar buildings that took place from the early 1970's through 1989 are described. Much of the work covered was federally sponsored during the period 1975 through 1986. About half the volume is devoted to quantitative methods for modeling, simulation, and design analysis of passive buildings; the other half summarizes the quantitative results of testing and monitoring of models and buildings. The following are covered: building solar gain modeling, simulation analysis, simplified methods, materials and components, analytical results for specific systems, test modules, building integration, performance monitoring and results, and design tools. (MHR)

Balcomb, J.D. (ed.) (Solar Energy Research Inst., Golden, CO (United States))

1992-01-01T23:59:59.000Z

339

Fuel Property, Emission Test, and Operability Results from a Fleet of Class 6 Vehicles Operating on Gas-to-Liquid Fuel and Catalyzed Diesel Particle Filters  

SciTech Connect (OSTI)

A fleet of six 2001 International Class 6 trucks operating in southern California was selected for an operability and emissions study using gas-to-liquid (GTL) fuel and catalyzed diesel particle filters (CDPF). Three vehicles were fueled with CARB specification diesel fuel and no emission control devices (current technology), and three vehicles were fueled with GTL fuel and retrofit with Johnson Matthey's CCRT diesel particulate filter. No engine modifications were made.

Alleman, T. L.; Eudy, L.; Miyasato, M.; Oshinuga, A.; Allison, S.; Corcoran, T.; Chatterjee, S.; Jacobs, T.; Cherrillo, R. A.; Clark, R.; Virrels, I.; Nine, R.; Wayne, S.; Lansing, R.

2005-11-01T23:59:59.000Z

340

At the new General Motors, we are passionate about designing, building and selling the world's best vehicles. This vision unites us as a team each and every day and is the hallmark  

E-Print Network [OSTI]

electrification with advancements in batteries, electric motors and power controls. The GM team is also working vehicles. This vision unites us as a team each and every day and is the hallmark of our customer-driven culture. Making the world's best vehicles can only happen with the world's greatest employees. We take

Ghosh, Joydeep

Note: This page contains sample records for the topic "vehicle testing building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Heavy Duty Vehicle Futures Analysis.  

SciTech Connect (OSTI)

This report describes work performed for an Early Career Research and Development project. This project developed a heavy-duty vehicle (HDV) sector model to assess the factors influencing alternative fuel and efficiency technology adoption. This model builds on a Sandia light duty vehicle sector model and provides a platform for assessing potential impacts of technological advancements developed at the Combustion Research Facility. Alternative fuel and technology adoption modeling is typically developed around a small set of scenarios. This HDV sector model segments the HDV sector and parameterizes input values, such as fuel prices, efficiencies, and vehicle costs. This parameterization enables sensitivity and trade space analyses to identify the inputs that are most associated with outputs of interest, such as diesel consumption and greenhouse gas emissions. Thus this analysis tool enables identification of the most significant HDV sector drivers that can be used to support energy security and climate change goals.

Askin, Amanda Christine; Barter, Garrett; West, Todd H.; Manley, Dawn Kataoka

2014-05-01T23:59:59.000Z

342

Building Stones  

E-Print Network [OSTI]

3). Photographs by the author. Building Stones, Harrell, UEEOxford Short Citation: Harrell, 2012, Building Stones. UEE.Harrell, James A. , 2012, Building Stones. In Willeke

2012-01-01T23:59:59.000Z

343

AVTA: 2010 Volkswagon Golf Diesel Start-Stop Testing Results...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Volkswagon Golf Diesel Start-Stop Testing Results AVTA: 2010 Volkswagon Golf Diesel Start-Stop Testing Results The Vehicle Technologies Office's Advanced Vehicle Testing Activity...

344

EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery and Component Manufacturing Initiative  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of a proposal to provide a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (ARRA) to Delphi Automotive Systems, Limited Liability Corporation (LLC) (Delphi). Delphi proposes to construct a laboratory referred to as the “Delphi Kokomo, IN Corporate Technology Center” (Delphi CTC Project) and retrofit a manufacturing facility. The project would advance DOE’s Vehicle Technology Program through manufacturing and testing of electric-drive vehicle components as well as assist in the nation’s economic recovery by creating manufacturing jobs in the United States. The Delphi CTC Project would involve the construction and operation of a 10,700 square foot (ft2) utilities building containing boilers and heaters and a 70,000 ft2 engineering laboratory, as well as site improvements (roads, parking, buildings, landscaping,and lighting).

345

Explosives screening on a vehicle surface  

DOE Patents [OSTI]

A system for detecting particles on the outer surface of a vehicle has a housing capable of being placed in a test position adjacent to, but not in contact with, a portion of the outer surface of the vehicle. An elongate sealing member is fastened to the housing along a perimeter surrounding the wall, and the elongate sealing member has a contact surface facing away from the wall to contact the outer surface of the vehicle to define a test volume when the wall is in the test position. A gas flow system has at least one gas inlet extending through the wall for providing a gas stream against the surface of the vehicle within the test volume. This gas stream, which preferably is air, dislodges particles from the surface of the vehicle covered by the housing. The gas stream exits the test volume through a gas outlet and particles in the stream are detected.

Parmeter, John E.; Brusseau, Charles A.; Davis, Jerry D.; Linker, Kevin L.; Hannum, David W.

2005-02-01T23:59:59.000Z

346

Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

347

Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies...  

Broader source: Energy.gov (indexed) [DOE]

Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Describes...

348

Forced Vibration Testing of a Four-Story Reinforced Concrete Building Utilizing the nees@UCLA Mobile Field Laboratory  

E-Print Network [OSTI]

Testing and Analytical Modeling of a Four-Story Reinforced ConcreteForced Vibration Testing of a Four-Story Reinforced Concretetesting capabilities of the nees@UCLA Site were deployed on a four-story reinforced concrete

Yu, Eunjong; Skolnik, Derek; Whang, Daniel H.; Wallace, John W.

2008-01-01T23:59:59.000Z

349

Control of Multiple Robotic Sentry Vehicles  

SciTech Connect (OSTI)

As part of a project for the Defense Advanced Research Projects Agency, Sandia National Laboratories is developing and testing the feasibility of using of a cooperative team of robotic sentry vehicles to guard a perimeter and to perform surround and diversion tasks. This paper describes on-going activities in the development of these robotic sentry vehicles. To date, we have developed a robotic perimeter detection system which consists of eight ''Roving All Terrain Lunar Explorer Rover'' (RATLER{trademark}) vehicles, a laptop-based base-station, and several Miniature Intrusion Detection Sensors (MIDS). A radio frequency receiver on each of the RATLER vehicles alerts the sentry vehicles of alarms from the hidden MIDS. When an alarm is received, each vehicle decides whether it should investigate the alarm based on the proximity of itself and the other vehicles to the alarm. As one vehicle attends an alarm, the other vehicles adjust their position around the perimeter to better prepare for another alarm. We have also demonstrated the ability to drive multiple vehicles in formation via tele-operation or by waypoint GPS navigation. This is currently being extended to include mission planning capabilities. At the base-station, the operator can draw on an aerial map the goal regions to be surrounded and the repulsive regions to be avoided. A potential field path planner automatically generates a path from the vehicles' current position to the goal regions while avoiding the repulsive regions and the other vehicles. This path is previewed to the operator before the regions are downloaded to the vehicles. The same potential field path planner resides on the vehicle, except additional repulsive forces from on-board proximity sensors guide the vehicle away from unplanned obstacles.

Feddema, J.; Klarer, P.; Lewis, C.

1999-04-01T23:59:59.000Z

350

Particulate Measurements and Emissions Characterization of Alternative Fuel Vehicle Exhaust  

SciTech Connect (OSTI)

The objective of this project was to measure and characterize particulate emissions from light-duty alternative fuel vehicles (AFVs) and equivalent gasoline-fueled vehicles. The project included emission testing of a fleet of 129 gasoline-fueled vehicles and 19 diesel vehicles. Particulate measurements were obtained over Federal Test Procedure and US06 cycles. Chemical characterization of the exhaust particulate was also performed. Overall, the particulate emissions from modern technology compressed natural gas and methanol vehicles were low, but were still comparable to those of similar technology gasoline vehicles.

Durbin, T. D.; Truex, T. J.; Norbeck, J. M. (Center for Environmental Research and Technology College of Engineering, University of California - Riverside, California)

1998-11-19T23:59:59.000Z

351

FORESTRY BUILDING: BUILDING EMERGENCY PLAN  

E-Print Network [OSTI]

FORESTRY BUILDING: BUILDING EMERGENCY PLAN Date Adopted: August 18, 2009 Date Revised June 17, 2013 Prepared By: Diana Evans and Jennifer Meyer #12;PURDUE UNIVERSITY BUILDING EMERGENCY PLAN VERSION 3 2 Table Suspension or Campus Closure SECTION 3: BUILDING INFORMATION 3.1 Building Deputy/Alternate Building Deputy

352

Infrastructure, Components and System Level Testing and Analysis of Electric Vehicles: Cooperative Research and Development Final Report, CRADA Number CRD-09-353  

SciTech Connect (OSTI)

Battery technology is critical for the development of innovative electric vehicle networks, which can enhance transportation sustainability and reduce dependence on petroleum. This cooperative research proposed by Better Place and NREL will focus on predicting the life-cycle economics of batteries, characterizing battery technologies under various operating and usage conditions, and designing optimal usage profiles for battery recharging and use.

Neubauer, J.

2013-05-01T23:59:59.000Z

353

192 Int. J. Vehicle Systems Modelling and Testing, Vol. 1, Nos. 1/2/3, 2005 Copyright 2005 Inderscience Enterprises Ltd.  

E-Print Network [OSTI]

Development Research Lab, General Motors Research and Development Center, Warren, MI USA E-mail: joe in the Vehicle Development Research Laboratory at the General Motors Research and Development Center in Warren, Michigan. His ten years of experience with General Motors and the Ford Motor Company have broadly spanned

Lewis, Kemper E.

354

Chevrolet Volt Vehicle Demonstration  

Broader source: Energy.gov (indexed) [DOE]

Volt Vehicle Demonstration Fleet Summary Report Reporting period: January 2013 through March 2013 Number of vehicles: 146 Number of vehicle days driven: 6,680 4292013 2:38:13 PM...

355

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September bycost than both. Solar-hydrogen fuel- cell vehicles would becost than both. Solar-hydrogen fuel- cell vehicles would be

Delucchi, Mark

1992-01-01T23:59:59.000Z

356

BUILDING NAME HEYDON-LAURENCE BUILDING  

E-Print Network [OSTI]

BUILDING NAME HEYDON-LAURENCE BUILDING PHARMACY AND BANK BUILDING JOHN WOOLEY BUILDING OLD TEARCHER'S BUILDING PHYSICS BUILDING BAXTER'S LODGE INSTITUTE BUILDING CONSERVATION WORKS R.D.WATT BUILDING MACLEAY BUILDING THE QUARANGLE BADHAM BUILDING J.D. STEWART BUILDING BLACKBURN BUILDING MADSEN BUILDING STORE

Viglas, Anastasios

357

Development of Production-Intent Plug-In Hybrid Vehicle Using Advanced Lithium-Ion Battery Packs with Deployment to a Demonstration Fleet  

SciTech Connect (OSTI)

The primary goal of this project was to speed the development of one of the first commercially available, OEM-produced plug-in hybrid electric vehicles (PHEV). The performance of the PHEV was expected to double the fuel economy of the conventional hybrid version. This vehicle program incorporated a number of advanced technologies, including advanced lithium-ion battery packs and an E85-capable flex-fuel engine. The project developed, fully integrated, and validated plug-in specific systems and controls by using GM’s Global Vehicle Development Process (GVDP) for production vehicles. Engineering Development related activities included the build of mule vehicles and integration vehicles for Phases I & II of the project. Performance data for these vehicles was shared with the U.S. Department of Energy (DOE). The deployment of many of these vehicles was restricted to internal use at GM sites or restricted to assigned GM drivers. Phase III of the project captured the first half or Alpha phase of the Engineering tasks for the development of a new thermal management design for a second generation battery module. The project spanned five years. It included six on-site technical reviews with representatives from the DOE. One unique aspect of the GM/DOE collaborative project was the involvement of the DOE throughout the OEM vehicle development process. The DOE gained an understanding of how an OEM develops vehicle efficiency and FE performance, while balancing many other vehicle performance attributes to provide customers well balanced and fuel efficient vehicles that are exciting to drive. Many vehicle content and performance trade-offs were encountered throughout the vehicle development process to achieve product cost and performance targets for both the OEM and end customer. The project team completed two sets of PHEV development vehicles with fully integrated PHEV systems. Over 50 development vehicles were built and operated for over 180,000 development miles. The team also completed four GM engineering development Buy-Off rides/milestones. The project included numerous engineering vehicle and systems development trips including extreme hot, cold and altitude exposure. The final fuel economy performance demonstrated met the objectives of the PHEV collaborative GM/DOE project. Charge depletion fuel economy of twice that of the non-PHEV model was demonstrated. The project team also designed, developed and tested a high voltage battery module concept that appears to be feasible from a manufacturability, cost and performance standpoint. The project provided important product development and knowledge as well as technological learnings and advancements that include multiple U.S. patent applications.

No, author

2013-09-29T23:59:59.000Z

358

Mack LNG vehicle development  

SciTech Connect (OSTI)

The goal of this project was to install a production-ready, state-of-the-art engine control system on the Mack E7G natural gas engine to improve efficiency and lower exhaust emissions. In addition, the power rating was increased from 300 brake horsepower (bhp) to 325 bhp. The emissions targets were oxides of nitrogen plus nonmethane hydrocarbons of less than 2.5 g/bhp-hr and particulate matter of less than 0.05 g/bhp-hr on 99% methane. Vehicle durability and field testing were also conducted. Further development of this engine should include efficiency improvements and oxides of nitrogen reductions.

Southwest Research Institute

2000-01-05T23:59:59.000Z

359

Around Buildings  

E-Print Network [OSTI]

Around Buildings W h y startw i t h buildings and w o r k o u t wa r d ? For one, buildings are difficult t o a v o i d these

Treib, Marc

1987-01-01T23:59:59.000Z

360

Validation and Application of the Room Model of the Modelica Buildings Library  

E-Print Network [OSTI]

Digital Interfaces of the Building Controls Virtual Test5] M. Wetter, "Co-simulation of building energy and controlsystems with the Building Controls Virtual Test Bed,"

Nouidui, Thierry Stephane

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle testing building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

BUILDING INSPECTION Building, Infrastructure, Transportation  

E-Print Network [OSTI]

BUILDING INSPECTION Building, Infrastructure, Transportation City of Redwood City 1017 Middlefield Sacramento, Ca 95814-5514 Re: Green Building Ordinance and the Building Energy Efficiency Standards Per of Redwood City enforce the current Title 24 Building Energy Efficiency Standards as part

362

Massachusetts Electric Vehicle Efforts  

E-Print Network [OSTI]

Massachusetts Electric Vehicle Efforts Christine Kirby, MassDEP ZE-MAP Meeting October 24, 2014 #12 · Provide Clean Air · Grow the Clean Energy Economy · Electric vehicles are a key part of the solution #12 is promoting EVs 4 #12;TCI and Electric Vehicles · Established the Northeast Electric Vehicle Network through

California at Davis, University of

363

Alternative Fuel Vehicle Data  

Reports and Publications (EIA)

Annual data released on the number of on-road alternative fuel vehicles and hybrid vehicles made available by both the original equipment manufacturers and aftermarket vehicle conversion facilities. Data on the use of alternative fueled vehicles and the amount of fuel they consume is also available.

2013-01-01T23:59:59.000Z

364

Advanced Vehicle Technology Analysis and Evaluation Team  

E-Print Network [OSTI]

Set ­ Models · Conventional, hybrid and electric vehicles · Fuel consumption and performance Testing · Advanced Powertrain Research Facility · ReFuel Facility Fleet Testing · Industry/Government LabFuelReFuel FacilityFacility Fleet TestingFleet Testing ·· Industry/GovernmentIndustry/Government ModelModel Validation

365

Corrective Action Investigation Plan for Corrective Action Unit 266: Area 25 Building 3124 Leachfield, Nevada Test Site, Nevada, Revision 1, February 1999  

SciTech Connect (OSTI)

The Corrective Action Investigation Plan for Corrective Action Unit 266, Area 25 Building 3124 Leachfield, has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the U.S. Department of Energy, Nevada Operations Office; the State of Nevada Division of Environmental Protection; and the U.S. Department of Defense. Corrective Action Unit 266 consists of the Corrective Action Site 25-05-09 sanitary leachfield and associated collection system. This Corrective Action Investigation Plan is used in combination with the Work Plan for Leachfield Corrective Action Units: Nevada Test Site and Tonopah Test Range, Nevada (DOE/NV, 1998d). This Corrective Action Investigation Plan provides investigative details specific to Corrective Action Unit 266. Corrective Action Unit 266 is located southwest of Building 3124 which is located southwest and adjacent to Test Cell A. Test Cell A was operational during the 1960s to test nuclear rocket reactors in support of the Nuclear Rocket Development Station. Operations within Building 3124 from 1962 through the early 1990s resulted in effluent releases to the leachfield and associated collection system. The subsurface soils in the vicinity of the collection system and leachfield may have been impacted by effluent containing contaminants of potential concern generated by support activities associated with Test Cell A reactor testing operations, various laboratories including a high-level radioactivity environmental sample handling laboratory, and possibly the Treatability Test Facility. Based on site history collected to support the Data Quality Objectives process, contaminants of potential concern for the site include radionuclides, oil/diesel range total petroleum hydrocarbons, and Resource Conservation and Recovery Act characteristic volatile organic compounds, semivolatile organic compounds, and metals. Samples will also be analyzed for radionuclides and polychlorinated biphenyls not considered during the DQO process. Additional samples will be analyzed for geotechnical and hydrological properties and a bioassessment may be performed. The technical approach for investigating this Corrective Action Unit consists of the following activities: (1) Perform a radiological walkover survey. (2) Perform video and radiation surveys of the discharge and outfall lines. (3) Collect samples from within the septic tank. (4) Mark approximate locations of leachfield distribution lines on the ground surface. (5) Collect subsurface soil samples in areas of the collection system including the septic tank and outfall end of the diversion chamber. (6) Collect subsurface soil samples underlying the leachfield distribution pipes. (7) Field screen samples for volatile organic compounds and radiological activity. (8) Drill boreholes and collect subsurface soil samples if required. (9) Analyze soil samples for total volatile organic compounds, total semivolatile organic compounds, total Resource Conservation and Recovery Act metals, total petroleum hydrocarbons (oil/diesel-range organics), and polychlorinated biphenyls. (1) Analyze a minimum of 25 percent of the soil samples for gamma-emitting radionuclides, isotopic uranium, isotopic plutonium, isotopic americium, and strontium-90 if radiological field screening levels are exceeded. (2) Collect samples from native soils beneath the distribution system and analyze for geotechnical/hydrologic parameters. (3) Collect and analyze bioassessment samples at Site Supervisors discretion if volatile organic compounds exceed field-screening levels. Additional sampling and analytical details are presented.

U.S. Department Of Energy, Nevada Operations Office

1999-02-24T23:59:59.000Z

366

Hybrid options for light-duty vehicles.  

SciTech Connect (OSTI)

Hybrid electric vehicles (HEVs) offer great promise in improving fuel economy. In this paper, we analyze why, how, and by how much vehicle hybridization can reduce energy consumption and improve fuel economy. Our analysis focuses on efficiency gains associated solely with vehicle hybridization. We do not consider such other measures as vehicle weight reduction or air- and tire-resistance reduction, because such measures would also benefit conventional technology vehicles. The analysis starts with understanding the energy inefficiencies of light-duty vehicles associated with different operation modes in US and Japanese urban and highway driving cycles, with the corresponding energy-saving potentials. The potential for fuel economy gains due to vehicle hybridization can be estimated almost exclusively on the basis of three elements: the reducibility of engine idling operation, the recoverability of braking energy losses, and the capability of improving engine load profiles to gain efficiency associated with specific HEV configurations and control strategies. Specifically, we evaluate the energy efficiencies and fuel economies of a baseline MY97 Corolla-like conventional vehicle (CV), a hypothetical Corolla-based minimal hybrid vehicle (MHV), and a MY98 Prius-like full hybrid vehicle (FHV). We then estimate energy benefits of both MHVs and FHVs over CVs on a performance-equivalent basis. We conclude that the energy benefits of hybridization vary not only with test cycles, but also with performance requirements. The hybrid benefits are greater for ''Corolla (high) performance-equivalent'' vehicles than for ''Prius (low) performance-equivalent'' vehicles. An increasing acceleration requirement would result in larger fuel economy benefits from vehicle hybridization.

An, F., Stodolsky, F.; Santini, D.

1999-07-19T23:59:59.000Z

367

AGGREGATION ALGORITHMS IN A VEHICLE-TO-VEHICLE-TO-  

E-Print Network [OSTI]

-to-infrastructure (V2V2I) architecture, which is a hybrid of the vehicle-to-vehicle (V2V) and vehicle proposing is a hybrid of the V2I and V2V architectures, which is the vehicle-to-vehicle-to-infrastructure (VAGGREGATION ALGORITHMS IN A VEHICLE-TO-VEHICLE-TO- INFRASTRUCTURE (V2V2I) INTELLIGENT

Miller, Jeffrey A.

368

CREATING A LOW-COST AUTONOMOUS VEHICLE Richard W. Wall Jerry Bennett, Greg Eis,  

E-Print Network [OSTI]

CREATING A LOW-COST AUTONOMOUS VEHICLE Richard W. Wall Jerry Bennett, Greg Eis, Kevin Lichy of the project was to design and build a low cost autonomous vehicle control system for a ground vehicle, University of Idaho Electrical and Computer Engineering Dept. Moscow, ID 83844-1023 Abstract ­ Autonomous

Idaho, University of

369

Electric vehicle fleet operations in the United States  

SciTech Connect (OSTI)

The US Department of Energy (DOE) is actively supporting the development and commercialization of advanced electric vehicles, batteries, and propulsion systems. As part of this effort, the DOE Field Operations Program is performing commercial validation testing of electric vehicles and supporting the development of an electric vehicle infrastructure. These efforts include the evaluation of electric vehicles in baseline performance, accelerated reliability, and fleet operations testing. The baseline performance testing focuses on parameters such as range, acceleration, and battery charging. This testing, performed in conjunction with EV America, has included the baseline performance testing of 16 electric vehicle models from 1994 through 1997. During 1997, the Chevrolet S10 and Ford Ranger electric vehicles were tested. During 1998, several additional electric vehicles from original equipment manufacturers will also be baseline performance tested. This and additional information is made available to the public via the Program`s web page (http://ev.inel.gov/sop). In conjunction with industry and other groups, the Program also supports the Infrastructure Working Council in its development of electric vehicle communications, charging, health and safety, and power quality standards. The Field Operations Program continues to support the development of electric vehicles and infrastructure in conjunction with its qualified vehicle test partners: Electric Transportation Applications, and Southern California Edison. The Field Operations Program is managed by the Lockheed Martin Idaho Technologies Company at the Idaho National Engineering and Environmental Laboratory.

Francfort, J.E. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.; O`Hara, D. [Dept. of Energy, Washington, DC (United States)

1998-03-01T23:59:59.000Z

370

Vehicle Following Control Design for Automated Highway Systems  

E-Print Network [OSTI]

Vehicle Following Control Design for Automated Highway Systems H. Raza and P. Ioannou A, utomatic vehicle following isan important feature of a fully rpartially automated highwaysystem (AHS is todesign and test avehicle control system in order toachieve full vehicle automation in the longitudinal

Ioannou, Petros

371

IDENTIFICATION OF UNDERWATER VEHICLE HYDRODYNAMIC COEFFICIENTS USING FREE  

E-Print Network [OSTI]

been an ever increasing num- ber of applications for unmanned underwater vehicles (UUV) in variousIDENTIFICATION OF UNDERWATER VEHICLE HYDRODYNAMIC COEFFICIENTS USING FREE DECAY TESTS Andrew Ross the potential accuracy of these new methods. Copyright c 2004 IFAC. Keywords: Low-speed underwater vehicles

Johansen, Tor Arne

372

Electric Vehicle Site Operator Program  

SciTech Connect (OSTI)

Kansas State University, with funding support from federal, state, public, and private companies, is participating in the Department of Energy's Electric Vehicle Site Operator Program. Through participation is this program, Kansas State is demonstrating, testing, and evaluating electric or hybrid vehicle technology. This participation will provide organizations the opportunity to examine the latest EHV prototypes under actual operating conditions. KSU proposes to purchase one (1) electric or hybrid van and four (4) electric cars during the first two years of this five year program. KSU has purchased one G-Van built by Conceptor Industries, Toronto, Canada and has initiated a procurement order to purchase two (2) Soleq 1992 Ford EVcort stationwagons.

Not Available

1992-01-01T23:59:59.000Z

373

XAUV : modular high maneuverability autonomous underwater vehicle  

E-Print Network [OSTI]

The design and construction of a modular test bed autonomous underwater vehicle (AUV) is analyzed. Although a relatively common stacked-hull design is used, the state of the art is advanced through an aggressive power ...

Walker, Daniel G. (Daniel George)

2009-01-01T23:59:59.000Z

374

Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 113: Reactor Maintenance, Assembly, and Disassembly Building Nevada Test Site, Nevada  

SciTech Connect (OSTI)

This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the action necessary for the closure in place of Corrective Action Unit (CAU) 113 Area 25 Reactor Maintenance, Assembly, and Disassembly Facility (R-MAD). CAU 113 is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO) (NDEP, 1996). The CAU is located in Area 25 of the Nevada Test Site (NTS) and consists of Corrective Action Site (CAS) 25-04-01, R-MAD Facility (Figures 1-2). This plan provides the methodology for closure in place of CAU 113. The site contains radiologically impacted and hazardous material. Based on preassessment field work, there is sufficient process knowledge to close in place CAU 113 using the SAFER process. At a future date when funding becomes available, the R-MAD Building (25-3110) will be demolished and inaccessible radiologic waste will be properly disposed in the Area 3 Radiological Waste Management Site (RWMS).

J. L. Smith

2001-01-01T23:59:59.000Z

375

Vehicle Technologies Office: 2012 Vehicle and Systems Simulation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2012vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

376

Vehicle Technologies Office: 2011 Vehicle and Systems Simulation...  

Energy Savers [EERE]

vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2011vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

377

DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle...  

Broader source: Energy.gov (indexed) [DOE]

1.pdf More Documents & Publications DOE Vehicle Technologies Program 2009 Merit Review Report DOE Vehicle Technologies Program 2009 Merit Review Report - Energy Storage DOE Vehicle...

378

Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles  

E-Print Network [OSTI]

The Images of Hybrid Vehicles Each of the householdsbetween hybrid and non-hybrid vehicles was observed in smallowned Honda Civic Hybrids, vehicles that are virtually

Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

2005-01-01T23:59:59.000Z

379

Electric vehicles move closer to market  

SciTech Connect (OSTI)

This article reports that though battery technology is currently limiting the growth of EVs, the search for improvements is spurring innovative engineering developments. As battery makers, automakers, national laboratories, and others continue their search for a practical source of electric power that will make electric vehicles (EVs) more viable, engineers worldwide are making progress in other areas of EV development. Vector control, for example, enables better regulation of motor torque and speed; composite and aluminum parts reduce the vehicle`s weight, which in turn reduces the load on the motor and battery; and flywheel energy storage systems, supercapacitors, regenerative brake systems, and hybrid/electric drive trains increase range and acceleration. Despite efforts to develop an electric vehicle from the ground up, most of the early EVs to be sold in the United States will likely be converted from gasoline-powered vehicles. Chrysler Corp., for example, is expected to sell electric versions of its minivans and build them on the same assembly line as its gasoline-powered vehicles to reduce costs. The pace of engineering development in this field is fast and furious. Indeed, it is virtually impossible to monitor all emerging EV technology. To meet their quotas, the major automakers may even consider buying credits from smaller, innovative EV manufacturers. But whatever stopgap measures vehicle makers take, technology development will be the driving force behind long-term EV growth.

O`Connor, L.

1995-03-01T23:59:59.000Z

380

Thermoelectric Generator Performance for Passenger Vehicles  

Broader source: Energy.gov (indexed) [DOE]

modeling and architecture evaluation * Phase 2: Subsystem design, build and bench test * Phase 3: System integration. Planar configuration TEG with primary HEX and secondary...

Note: This page contains sample records for the topic "vehicle testing building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt066vsskarner2012...

382

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt066vsskarner2011...

383

Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...  

Energy Savers [EERE]

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt072vssmackie2011...

384

Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...  

Energy Savers [EERE]

2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt072vssmackie2012...

385

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Broader source: Energy.gov (indexed) [DOE]

EVSE Designed And Manufactured To Allow Power And Energy Data Collection And Demand Response Control Residential EVSE Installed For All Vehicles 1,300...

386

Vehicle to Grid Demonstration Project  

SciTech Connect (OSTI)

This report summarizes the activities and accomplishments of a two-year DOE-funded project on Grid-Integrated Vehicles (GIV) with vehicle to grid power (V2G). The project included several research and development components: an analysis of US driving patterns; an analysis of the market for EVs and V2G-capable EVs; development and testing of GIV components (in-car and in-EVSE); interconnect law and policy; and development and filing of patents. In addition, development activities included GIV manufacturing and licensing of technologies developed under this grant. Also, five vehicles were built and deployed, four for the fleet of the State of Delaware, plus one for the University of Delaware fleet.

Willett Kempton; Meryl Gardner; Michael Hidrue; Fouad Kamilev; Sachin Kamboj; Jon Lilley; Rodney McGee; George Parsons; Nat Pearre; Keith Trnka

2010-12-31T23:59:59.000Z

387

Consumer Vehicle Choice Model Documentation  

SciTech Connect (OSTI)

In response to the Fuel Economy and Greenhouse Gas (GHG) emissions standards, automobile manufacturers will need to adopt new technologies to improve the fuel economy of their vehicles and to reduce the overall GHG emissions of their fleets. The U.S. Environmental Protection Agency (EPA) has developed the Optimization Model for reducing GHGs from Automobiles (OMEGA) to estimate the costs and benefits of meeting GHG emission standards through different technology packages. However, the model does not simulate the impact that increased technology costs will have on vehicle sales or on consumer surplus. As the model documentation states, “While OMEGA incorporates functions which generally minimize the cost of meeting a specified carbon dioxide (CO2) target, it is not an economic simulation model which adjusts vehicle sales in response to the cost of the technology added to each vehicle.” Changes in the mix of vehicles sold, caused by the costs and benefits of added fuel economy technologies, could make it easier or more difficult for manufacturers to meet fuel economy and emissions standards, and impacts on consumer surplus could raise the costs or augment the benefits of the standards. Because the OMEGA model does not presently estimate such impacts, the EPA is investigating the feasibility of developing an adjunct to the OMEGA model to make such estimates. This project is an effort to develop and test a candidate model. The project statement of work spells out the key functional requirements for the new model.

Liu, Changzheng [ORNL] [ORNL; Greene, David L [ORNL] [ORNL

2012-08-01T23:59:59.000Z

388

Electric Vehicle Smart Charging Infrastructure  

E-Print Network [OSTI]

for Multiplexed Electric Vehicle Charging”, US20130154561A1,Chynoweth, ”Intelligent Electric Vehicle Charging System”,of RFID Mesh Network for Electric Vehicle Smart Charging

Chung, Ching-Yen

2014-01-01T23:59:59.000Z

389

Coordinating Automated Vehicles via Communication  

E-Print Network [OSTI]

1.1 Vehicle Automation . . . . . . . . . . . 1.1.1 Controlareas of technology in vehicle automation and communicationChapter 1 Introduction Vehicle Automation Automation is an

Bana, Soheila Vahdati

2001-01-01T23:59:59.000Z

390

Safety analysis of in-use vehicle wrapping cylinder  

Broader source: Energy.gov [DOE]

The focus of this presentation is on the security analysis for wrapped cylinders used in vehicles and analyzing safety conditions and environmental effects through testing.

391

Electric Vehicle Charging Stations, Coming Soon to a City Near...  

Broader source: Energy.gov (indexed) [DOE]

to be available throughout the Orlando area next year. File photo Orlando Plugs into Electric Vehicle Charging Stations Assistant Secretary Patricia Hoffman test drives the...

392

Vehicle Technologies Office: Alternative Fuels Research and Deployment...  

Office of Environmental Management (EM)

(mainly state and utility fleets) under the Energy Policy Act of 1992, while the Federal Energy Management Program works with federal fleets. Test alternative fuel vehicles: VTO...

393

Vehicle Technologies Office: 2012 DOE Hydrogen and Fuel Cells...  

Broader source: Energy.gov (indexed) [DOE]

Session VTO Analysis Activities: AMR Plenary Overview Ward Technology Integration Smith and Bezanson Vehicle & Systems Simulation & Testing Slezak Materials Schutte Materials...

394

Ultracapacitor Applications and Evaluation for Hybrid Electric Vehicles (Presentation)  

SciTech Connect (OSTI)

Describes the use of ultracapacitors in advanced hybrid and electric vehicles and discusses thermal and electrical testing of lithium ion capacitors for HEV applications.

Pesaran, A.; Gonder, J.; Keyser, M.

2009-04-01T23:59:59.000Z

395

Vehicle Technologies Office: AVTA - Diesel Internal Combusion...  

Energy Savers [EERE]

Vehicle Technologies Office: AVTA - Diesel Internal Combusion Engine Vehicles Vehicle Technologies Office: AVTA - Diesel Internal Combusion Engine Vehicles The Advanced Vehicle...

396

Comparison of various battery technologies for electric vehicles  

E-Print Network [OSTI]

four technologies; Lead-Acid, Nickel-Cadmium, Nickel-Metal Hydride and Zinc-Bromide. A standard set of testing procedures for electric vehicle batteries, based on industry accepted testing procedures, and any tests which were specific to individual...

Dickinson, Blake Edward

1993-01-01T23:59:59.000Z

397

VEHICLE USAGE LOG Department ________________________________________ Vehicle Homebase ____________________________ Week Ended (Sunday) _________________  

E-Print Network [OSTI]

VEHICLE USAGE LOG Department ________________________________________ Vehicle Homebase ____________________________ Week Ended (Sunday) _________________ Door #____________ License Plate ____________________ Vehicle/Supplies (Enter Description such as grade sheets, artifacts, money, etc.) 6. Taking vehicle to Automotive Shop

Yang, Zong-Liang

398

Testing Center, 585 Student Academic Services Building, 281 West Lane Avenue, Columbus, OH 43210-1132 testing.osu.edu | Fax: 614-292-7199 | Email: esue-testing@osu.edu | Phone: 614-292-2241  

E-Print Network [OSTI]

. Elevators are located in the center of the building. For more parking options visit Campus Parc: http is still ongoing. Students must adhere to all policies set forth by the Code of Student Conduct, available online at: http://studentaffairs.osu.edu/pdfs/csc_12-31-07.pdf. Violations of the Code of Student

399

Intelligent pothole repair vehicle  

E-Print Network [OSTI]

This thesis presents an endeavor to design and construct a prototype of an automated road repair vehicle called the Intelligent Pothole Repair Vehicle (IPRV). The IPRV is capable of automatically detecting and filling potholes on road surfaces...

Minocher Homji, Ruzbeh Adi

2006-10-30T23:59:59.000Z

400

Social networking in vehicles  

E-Print Network [OSTI]

In-vehicle, location-aware, socially aware telematic systems, known as Flossers, stand to revolutionize vehicles, and how their drivers interact with their physical and social worlds. With Flossers, users can broadcast and ...

Liang, Philip Angus

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle testing building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Electric Vehicle Research Group  

E-Print Network [OSTI]

.................................................................................9 From diesel to electric: a new era in personnel transport for underground coal minesElectric Vehicle Research Group Annual Report 2012 #12;Table of Contents Executive Summary................................................................................8 C2-25 Electric Vehicle Drivetrain

Liley, David

402

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September byet al. , 1988,1989 HYDROGEN FUEL-CELL VEHICLES: TECHNICALIn the FCEV, the hydrogen fuel cell could supply the "net"

Delucchi, Mark

1992-01-01T23:59:59.000Z

403

Effective O&M Policy in Public Buildings | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

& Publications Preparing for the Arrival of Electric Vehicle Low-to-No Cost Strategy for Energy Efficiency in Public Buildings Energy Code Compliance and Enforcement Best...

404

A Project to Design and Build the Magnets for a New Test Beamline, the ATF2, at KEK  

SciTech Connect (OSTI)

In order to achieve the high luminosity required at the proposed International Linear Collider (ILC), it is critical to focus the beams to nanometer size with the ILC Beam Delivery System, and to maintain the beams collisions with a nanometer-scale stability. To establish the technologies associated with this ultra-high precision beam handling, a special beamline has been designed and built as an extension of the existing extraction beamline of the Accelerator Test Facility at KEK, Japan. The ATF provides an adequate ultra-low emittance electron beam that is comparable to the ILC requirements; the ATF2 mimics the ILC final focus system to create a tightly focused, stable beam. There are 37 magnets in the ATF2, 29 quadrupoles, 5 sextupoles and 3 bends. These magnets had to be acquired in a short time and at minimum cost, which led to various acquisition strategies; but nevertheless they had to meet strict requirements on integrated strength, physical dimensions, compatibility with existing magnet movers and beam position monitors, mechanical stability and field stability and quality. This paper will describe how 2 styles of quadrupoles, 2 styles of sextupoles, one dipole style and their supports were designed, fabricated, refurbished or modified, measured and aligned by a small team of engineers from 3 continents.

Spencer, Cherrill M.; /slac; Sugahara, Ryuhei; Masuzawa, Mika; /KEK, Tsukuba; Bolzon, Benoit; Jeremie, Andrea; /Annecy, LAPP

2011-02-07T23:59:59.000Z

405

Consumer Vehicle Technology Data  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

406

Motor Vehicle Record Procedure Objective  

E-Print Network [OSTI]

Motor Vehicle Record Procedure Objective Outline the procedure for obtaining motor vehicle record (MVR) through Fleet Services. Vehicle Operator Policy 3. Operators with 7 or more points on their motor vehicle record

Kirschner, Denise

407

Washington State Electric Vehicle  

E-Print Network [OSTI]

Washington State Electric Vehicle Implementation Bryan Bazard Maintenance and Alternate Fuel Technology Manager #12;Executive Order 14-04 Requires the procurement of electric vehicles where and equipment with electricity or biofuel to the "extent practicable" by June 2015 1. The vehicle is due

California at Davis, University of

408

Energy 101: Electric Vehicles  

ScienceCinema (OSTI)

This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

None

2013-05-29T23:59:59.000Z

409

Automotive vehicle sensors  

SciTech Connect (OSTI)

This report is an introduction to the field of automotive vehicle sensors. It contains a prototype data base for companies working in automotive vehicle sensors, as well as a prototype data base for automotive vehicle sensors. A market analysis is also included.

Sheen, S.H.; Raptis, A.C.; Moscynski, M.J.

1995-09-01T23:59:59.000Z

410

Building America  

SciTech Connect (OSTI)

IBACOS researched the constructability and viability issues of using high performance windows as one component of a larger approach to building houses that achieve the Building America 70% energy savings target.

Brad Oberg

2010-12-31T23:59:59.000Z

411

Building technologies  

ScienceCinema (OSTI)

After growing up on construction sites, Roderick Jackson is now helping to make buildings nationwide far more energy efficient.

Jackson, Roderick

2014-07-15T23:59:59.000Z

412

Building technologies  

SciTech Connect (OSTI)

After growing up on construction sites, Roderick Jackson is now helping to make buildings nationwide far more energy efficient.

Jackson, Roderick

2014-07-14T23:59:59.000Z

413

Beardmore Building  

High Performance Buildings Database

Priest River, ID Originally built in 1922 by Charles Beardmore, the building housed offices, mercantile shops, a ballroom and a theater. After decades of neglect under outside ownership, Brian Runberg, an architect and great-grandson of Charles Beardmore, purchased the building in 2006 and began an extensive whole building historic restoration.

414

urrent practice in the vehicle dynamics and control community is to validate detailed  

E-Print Network [OSTI]

the cost and inherent danger in testing aggressive vehicle controllers using full-sized vehicles, a scaleC urrent practice in the vehicle dynamics and control community is to validate detailed simulation results using a full-sized vehicle. For university-based research, this ap- proach is often prohibitively

Brennan, Sean

415

DSP Based Ultracapacitor System for Hybrid-Electric Vehicles Juan W. Dixon  

E-Print Network [OSTI]

DSP Based Ultracapacitor System for Hybrid-Electric Vehicles Juan W. Dixon Department of Electrical vehicles has been implemented and tested successfully. The system can work with different primary power the vehicle with minimum help of the primary power source. The vehicle uses a brushless dc motor

Catholic University of Chile (Universidad CatĂłlica de Chile)

416

AVTA: Chevrolet Volt ARRA Vehicle Demonstration Project Data  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports summarize data collected from a project General Motors conducted to deploy 150 2011 Chevrolet Volts around the country. This research was conducted by Idaho National Laboratory.

417

NREL Buildings Research Video  

ScienceCinema (OSTI)

Through research, the National Renewable Energy Laboratory (NREL) has developed many strategies and design techniques to ensure both commercial and residential buildings use as little energy as possible and also work well with the surroundings. Here you will find a video that introduces the work of NREL Buildings Research, highlights some of the facilities on the NREL campus, and demonstrates these efficient building strategies. Watch this video to see design highlights of the Science and Technology Facility on the NREL campus?the first Federal building to be LEED® Platinum certified. Additionally, the video demonstrates the energy-saving features of NRELs Thermal Test Facility. For a text version of this video visit http://www.nrel.gov/buildings/about_research_text_version.html

None

2013-05-29T23:59:59.000Z

418

The 1991 natural gas vehicle challenge: Developing dedicated natural gas vehicle technology  

SciTech Connect (OSTI)

An engineering research and design competition to develop and demonstrate dedicated natural gas-powered light-duty trucks, the Natural Gas Vehicle (NGV) Challenge, was held June 6--11, 1191, in Oklahoma. Sponsored by the US Department of Energy (DOE), Energy, Mines, and Resources -- Canada (EMR), the Society of Automative Engineers (SAE), and General Motors Corporation (GM), the competition consisted of rigorous vehicle testing of exhaust emissions, fuel economy, performance parameters, and vehicle design. Using Sierra 2500 pickup trucks donated by GM, 24 teams of college and university engineers from the US and Canada participated in the event. A gasoline-powered control testing as a reference vehicle. This paper discusses the results of the event, summarizes the technologies employed, and makes observations on the state of natural gas vehicle technology.

Larsen, R.; Rimkus, W. (Argonne National Lab., IL (United States)); Davies, J. (General Motors of Canada Ltd., Toronto, ON (Canada)); Zammit, M. (AC Rochester, NY (United States)); Patterson, P. (USDOE, Washington, DC (United States))

1992-01-01T23:59:59.000Z

419

The 1991 natural gas vehicle challenge: Developing dedicated natural gas vehicle technology  

SciTech Connect (OSTI)

An engineering research and design competition to develop and demonstrate dedicated natural gas-powered light-duty trucks, the Natural Gas Vehicle (NGV) Challenge, was held June 6--11, 1191, in Oklahoma. Sponsored by the US Department of Energy (DOE), Energy, Mines, and Resources -- Canada (EMR), the Society of Automative Engineers (SAE), and General Motors Corporation (GM), the competition consisted of rigorous vehicle testing of exhaust emissions, fuel economy, performance parameters, and vehicle design. Using Sierra 2500 pickup trucks donated by GM, 24 teams of college and university engineers from the US and Canada participated in the event. A gasoline-powered control testing as a reference vehicle. This paper discusses the results of the event, summarizes the technologies employed, and makes observations on the state of natural gas vehicle technology.

Larsen, R.; Rimkus, W. [Argonne National Lab., IL (United States); Davies, J. [General Motors of Canada Ltd., Toronto, ON (Canada); Zammit, M. [AC Rochester, NY (United States); Patterson, P. [USDOE, Washington, DC (United States)

1992-02-01T23:59:59.000Z

420

Building Name BuildingAbbr  

E-Print Network [OSTI]

Capture/InstrCam ClassroomCapture/TechAsst SkypeWebcam NOTES for R&R Only Room Detail Building Times Weekend and Evening BldgBuilding Name BuildingAbbr RoomNumber SeatCount DepartmentalPriority SpecialNeedsSeating Special Detail Building Contacts Event Scheduling Detail BI 02010 104 NR Y 52 61 81 84 85 86 87 88 89 90 91 92 94

Parker, Matthew D. Brown

Note: This page contains sample records for the topic "vehicle testing building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

William and Mary Athletics State Vehicle / Rental Vehicle / Personal Vehicle Policies  

E-Print Network [OSTI]

William and Mary Athletics State Vehicle / Rental Vehicle / Personal Vehicle Policies Last Update: 2/14/14 W&M's vehicle use policy requires that a driver authorization form be completed and approved before driving any vehicle (including a personal vehicle) for university business or a university

Swaddle, John

422

Cooperative sentry vehicles and differential GPS leapfrog  

SciTech Connect (OSTI)

As part of a project for the Defense Advanced Research Projects Agency, Sandia National Laboratories Intelligent Systems and Robotics Center is developing and testing the feasibility of using a cooperative team of robotic sentry vehicles to guard a perimeter, perform a surround task, and travel extended distances. This paper describes the authors most recent activities. In particular, this paper highlights the development of a Differential Global Positioning System (DGPS) leapfrog capability that allows two or more vehicles to alternate sending DGPS corrections. Using this leapfrog technique, this paper shows that a group of autonomous vehicles can travel 22.68 kilometers with a root mean square positioning error of only 5 meters.

FEDDEMA,JOHN T.; LEWIS,CHRISTOPHER L.; LAFARGE,ROBERT A.

2000-06-07T23:59:59.000Z

423

Vehicle Technologies Office: AVTA - Electric Vehicle Charging...  

Energy Savers [EERE]

the Alternative Fuel Data Center's page on plug-in electric vehicle infrastructure. For a map of the public EVSE available in the U.S., see the Alternative Fuels Station Locator....

424

AVTA ? PHEV Demonstrations and Testing  

Broader source: Energy.gov (indexed) [DOE]

using dedicated drivers and other methods to accumulate miles and cycles - Fleet testing, uses unstructured vehicle utilization - Different testing methods are used to balance...

425

Corrective Action Plan for CAU No. 95: Area 15 EPA Farm Laboratory Building, Decontamination and Demolition Closure Activities - Nevada Test Site. Rev. 0  

SciTech Connect (OSTI)

This Corrective Action Plan (CAP) provides the selected corrective action alternative and proposes the closure implementation methodology for the Environmental Protection Agency (EPA) Farm Laboratory Building 15-06 located in Area 15 of the Nevada Test Site (NTS), Nye County, Nevada. The facility is part of the Environmental Restoration Project managed by the U.S. Department of Energy/Nevada Operations Office (DOE/NV) under the Decontamination and Decommissioning (D&D) Subproject which serves to manage and dispose of surplus facilities at the NTS in a manner that will protect personnel, the public, and the environment. It is identified as Corrective Action Unit (CAU) 95 in Appendix III of the Federal Facilities Agreement and Consent Order (FFACO). In July 1997, the DOE/NV verbally requested approval from the Nevada Division of Environmental Protection (NDEP) for the closure schedule to be accelerated. Currently, field activities are anticipated to be completed by September 30, 1997. In order to meet this new schedule NDEP has agreed to review this document as expeditiously as possible. Comments will be addressed in the Closure Report after field activities have been completed, unless significant issues require resolution during closure activities.

Olson, A.L.; Nacht, S.J.

1997-11-01T23:59:59.000Z

426

Impact of Solar Control PVB Glass on Vehicle Interior Temperatures, Air-Conditioning Capacity, Fuel Consumption, and Vehicle Range  

SciTech Connect (OSTI)

The objective of the study was to assess the impact of Saflex1 S-series Solar Control PVB (polyvinyl butyral) configurations on conventional vehicle fuel economy and electric vehicle (EV) range. The approach included outdoor vehicle thermal soak testing, RadTherm cool-down analysis, and vehicle simulations. Thermal soak tests were conducted at the National Renewable Energy Laboratory's Vehicle Testing and Integration Facility in Golden, Colorado. The test results quantified interior temperature reductions and were used to generate initial conditions for the RadTherm cool-down analysis. The RadTherm model determined the potential reduction in air-conditioning (A/C) capacity, which was used to calculate the A/C load for the vehicle simulations. The vehicle simulation tool identified the potential reduction in fuel consumption or improvement in EV range between a baseline and modified configurations for the city and highway drive cycles. The thermal analysis determined a potential 4.0% reduction in A/C power for the Saflex Solar PVB solar control configuration. The reduction in A/C power improved the vehicle range of EVs and fuel economy of conventional vehicles and plug-in hybrid electric vehicles.

Rugh, J.; Chaney, L.; Venson, T.; Ramroth, L.; Rose, M.

2013-04-01T23:59:59.000Z

427

Clean Cities 2012 Vehicle Buyer's Guide (Brochure)  

SciTech Connect (OSTI)

The expanding availability of alternative fuels and advanced vehicles makes it easier than ever to reduce petroleum use, cut emissions, and save on fuel costs. The Clean Cities 2012 Vehicle Buyer's Guide features a comprehensive list of model year 2012 vehicles that can run on ethanol, biodiesel, electricity, propane or natural gas. Drivers and fleet managers across the country are looking for ways to reduce petroleum use, fuel costs, and vehicle emissions. As you'll find in this guide, these goals are easier to achieve than ever before, with an expanding selection of vehicles that use gasoline or diesel more efficiently, or forego them altogether. Plug-in electric vehicles made a grand entrance onto U.S. roadways in model year (MY) 2011, and their momentum in the market is poised for continued growth in 2012. Sales of the all-electric Nissan Leaf surpassed 8,000 in the fall of 2011, and the plug-in hybrid Chevy Volt is now available nationwide. Several new models from major automakers will become available throughout MY 2012, and drivers are benefiting from a rapidly growing network of charging stations, thanks to infrastructure development initiatives in many states. Hybrid electric vehicles, which first entered the market just a decade ago, are ubiquitous today. Hybrid technology now allows drivers of all vehicle classes, from SUVs to luxury sedans to subcompacts, to slash fuel use and emissions. Alternative fueling infrastructure is expanding in many regions, making natural gas, propane, ethanol, and biodiesel attractive and convenient choices for many consumers and fleets. And because fuel availability is the most important factor in choosing an alternative fuel vehicle, this growth opens up new possibilities for vehicle ownership. This guide features model-specific information about vehicle specs, manufacturer suggested retail price (MSRP), fuel economy, and emissions. You can use this information to compare vehicles and help inform your buying decisions. This guide includes city and highway fuel economy estimates from the U.S. Environmental Protection Agency (EPA). The estimates are based on laboratory tests conducted by manufacturers in accordance with federal regulations. EPA retests about 10% of vehicle models to confirm manufacturer results. Fuel economy estimates are also available on FuelEconomy.gov. For some newer vehicle models, EPA data was not available at the time of this guide's publication; in these cases, manufacturer estimates are provided, if available.

Not Available

2012-03-01T23:59:59.000Z

428

Underwater Unmanned Vehicle Boeing gave us the opportunity to compete against the Electrical Engineering Dept. The competition was  

E-Print Network [OSTI]

Underwater Unmanned Vehicle Overview Boeing gave us the opportunity to compete against Underwater Unmanned Vehicles. Basically we had to build remote controlled submarines from the ground up. Objectives To design a Underwater Unmanned Vehicle that meets the following Specs: Has an internal Ballast

Demirel, Melik C.

429

Vehicle Technologies Office: Advanced Vehicle Testing Activity (AVTA) Data  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudha Patri Mechanical Engineer Telephoneo 250and Results

430

Current Postdoctoral Researchers | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

& electric vehicles ---Hydrogen & fuel cells ---Internal combustion ---Maglev systems ---Powertrain research ---Vehicle testing --Building design ---Construction...

431

Vehicle underbody fairing  

DOE Patents [OSTI]

A vehicle underbody fairing apparatus for reducing aerodynamic drag caused by a vehicle wheel assembly, by reducing the size of a recirculation zone formed under the vehicle body immediately downstream of the vehicle wheel assembly. The fairing body has a tapered aerodynamic surface that extends from a front end to a rear end of the fairing body with a substantially U-shaped cross-section that tapers in both height and width. Fasteners or other mounting devices secure the fairing body to an underside surface of the vehicle body, so that the front end is immediately downstream of the vehicle wheel assembly and a bottom section of the tapered aerodynamic surface rises towards the underside surface as it extends in a downstream direction.

Ortega, Jason M. (Pacifica, CA); Salari, Kambiz (Livermore, CA); McCallen, Rose (Livermore, CA)

2010-11-09T23:59:59.000Z

432

Aerodynamic optimization of a solar powered race vehicle  

E-Print Network [OSTI]

Aerodynamic optimization was performed on Tesseract, the MIT Solar Electric Vehicle Team's 2003-2005 solar car using Wind Tunnel 8 at Jacobs/Sverdrup Drivability Test Facility in Allen Park, MI. These tests include angle ...

Augenbergs, Peteris K

2006-01-01T23:59:59.000Z

433

General Vehicle Performance Specifications for the UPRM AUV Vehicle Specifications  

E-Print Network [OSTI]

General Vehicle Performance Specifications for the UPRM AUV Vehicle Specifications Vehicle Characteristics Specification Maximum Depth 700m with 1.5 safety factor Vehicle power 2kWHr Li Ion Rechargeable Transducer 700m rated Paroscientific Depth Sensor will be integrated into the vehicle navigation stream

Gilbes, Fernando

434

VEHICLE USE RECORD M/Y DEPARTMENT VEHICLE LOCATION  

E-Print Network [OSTI]

VEHICLE USE RECORD M/Y DEPARTMENT VEHICLE LOCATION Date Origin/Destination Purpose Time Out Time) Accuracy of Information (b) Valid Driver's License VEHICLE # TAG # VEHICLE MAKE, MODEL, AND YEAR NOTE: Vehicle logs must be maintained for audit purposes. It is important that all of the required information

Watson, Craig A.

435

Accomodating Electric Vehicles  

E-Print Network [OSTI]

Accommodating Electric Vehicles Dave Aasheim 214-551-4014 daasheim@ecotality.com A leader in clean electric transportation and storage technologies ECOtality North America Overview Today ? Involved in vehicle electrification... ECOtality North America Overview Today ?Warehouse Material Handling ? Lift trucks ? Pallet Jacks ? Over 200 Customers ? Over 5,000 Installations ECOtality North America Overview Today ? 1990?s involved in EV1 ? EV Chargers ? Vehicle & battery...

Aasheim, D.

2011-01-01T23:59:59.000Z

436

Building Stones  

E-Print Network [OSTI]

was no good source of local building stone, rock was usuallyrock-cut shrines and especially tombs, and these are the sources

2012-01-01T23:59:59.000Z

437

Quadrennial Technology Review Vehicle Efficiency and Electrification...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Review Vehicle Efficiency and Electrification Workshop Documents Quadrennial Technology Review Vehicle Efficiency and Electrification Workshop Documents QTR Vehicle Efficiency and...

438

Alternative Fuel Vehicle Resources  

Broader source: Energy.gov [DOE]

Alternative fuel vehicles use fuel types other than petroleum and include such fuels as electricity, ethanol, biodiesel, natural gas, hydrogen, and propane. Compared to petroleum, these...

439

Vehicle Emissions Review - 2012  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Emissions Review - 2012 Tim Johnson October 16, 2012 2 Environmental Technologies Summary * Regulations - LEVIII finalized, Tier 3? RDE in Europe developing and very...

440

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

Research Institute 1990 Fuel Cell Status," Proceedings ofMiller, "Introduction: Fuel-Cell-Powered Vehicle DevelopmentPrograms," presented at Fuel Cells for Transportation,

Delucchi, Mark

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle testing building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Modular Energy Storage System for Hydrogen Fuel Cell Vehicles  

SciTech Connect (OSTI)

The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles â?? plug-in electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. The in-depth research into the complex interactions between the lower and higher voltage systems from data obtained via modeling, bench testing and instrumented vehicle data will allow an optimum system to be developed from a performance, cost, weight and size perspective. The subsystems are designed for modularity so that they may be used with different propulsion and energy delivery systems. This approach will allow expansion into new alternative energy vehicle markets.

Janice Thomas

2010-05-31T23:59:59.000Z

442

Building America Whole-House Solutions for New Homes: Meeting...  

Broader source: Energy.gov (indexed) [DOE]

Hovnanian Homes, David Weekley Homes, and Transformations, Inc.-partnered with Building America team Building Science Corporation to evaluate the certification of five test...

443

Georgia Tech Vehicle Acquisition and  

E-Print Network [OSTI]

1 2012 Georgia Tech 10/10/2012 Vehicle Acquisition and Disposition Manual #12;2 Vehicle Procedures Regardless of value, all vehicles should be included in this process. Acquisition of a Vehicle 1. Contact Fleet Coordinator to guide the departments in the purchasing process for all vehicles. 2. Fill out

444

Electric-Drive Vehicle Basics (Brochure)  

SciTech Connect (OSTI)

Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

Not Available

2011-04-01T23:59:59.000Z

445

Vehicle Technologies Office: AVTA - Evaluating Military Bases...  

Energy Savers [EERE]

Military Bases and Fleet Readiness for Electric Vehicles Vehicle Technologies Office: AVTA - Evaluating Military Bases and Fleet Readiness for Electric Vehicles The Vehicle...

446

2012 U.S. Vehicle Analysis  

E-Print Network [OSTI]

Electric Vehicles …………………………………………………………. Dieselperformance of electric vehicles Diesel Vehicle From Tableelectric vehicles ……………………… 3.15: Emission and fuel efficiency performance of diesel

Lam, Ho Yeung Michael

2012-01-01T23:59:59.000Z

447

GREAT MINDSTHINK ELECTRIC / WWW.EVS26.ORG Mitigation of Vehicle Fast Charge  

E-Print Network [OSTI]

GREAT MINDSTHINK ELECTRIC / WWW.EVS26.ORG Mitigation of Vehicle Fast Charge Grid Impacts-55080 #12;GREAT MINDSTHINK ELECTRIC / WWW.EVS26.ORG Electric Vehicle Grid Integration 2 Cross Cutting & TESTING DEPLOYMENT & PARTNERSHIPS Tx Tx Tx #12;GREAT MINDSTHINK ELECTRIC / WWW.EVS26.ORG3 Vehicle Test

448

Vehicle Technologies Office Merit Review 2014: In-Vehicle Evaluation...  

Broader source: Energy.gov (indexed) [DOE]

In-Vehicle Evaluation of Lower-Energy Energy Storage System (LEESS) Devices Vehicle Technologies Office Merit Review 2014: In-Vehicle Evaluation of Lower-Energy Energy Storage...

449

Laboratory to change vehicle traffic-screening regimen at vehicle...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Changes to vehicle traffic-screening Laboratory to change vehicle traffic-screening regimen at vehicle inspection station Lanes two through five will be open 24 hours a day and...

450

Passive solar buildings research  

SciTech Connect (OSTI)

This chapter covers research advances in passive solar buildings research during the time span from 1982 through 1991. These advances fall within the following categories: (1) short-term energy monitoring, (2) heat transport by natural convection within buildings, and (3) design guidelines and design tools. In short-term energy monitoring, a simulation model of the building is calibrated, based on data taken in a 3-day test. The method accurately predicts performance over an extended period. Heat transport through doorways is characterized for complex situations that arise in passive solar buildings. Simple concepts and models adequately describe the energy transport in many situations of interest. In a new approach, design guidelines are automatically generated for any specific locality. Worksheets or an accompanying computer program allow the designer to quickly and accurately evaluate performance and investigate design alternatives. 29 refs., 19 figs., 2 tabs.

Balcomb, J.D.

1992-12-31T23:59:59.000Z

451

AVTA: Honda Civic HEV 2013 Testing Results  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a 2013 Honda Civic hybrid electric vehicle. The baseline performance testing provides a point of comparison for the other test results. Taken together, these reports give an overall view of how this vehicle functions under extensive testing.

452

AVTA: Honda CRZ HEV 2011 Testing Results  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a 2011 Honda CRZ hybrid electric vehicle. The baseline performance testing provides a point of comparison for the other test results. Taken together, these reports give an overall view of how this vehicle functions under extensive testing. This research was conducted by Idaho National Laboratory.

453

AVTA: Mercedes Benz HEV 2010 Testing Results  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a 2010 Mercedes Benz hybrid-electric vehicle. The baseline performance testing provides a point of comparison for the other test results. Taken together, these reports give an overall view of how this vehicle functions under extensive testing. This research was conducted by Idaho National Laboratory.

454

AVTA: Reports on Plug-in Electric Vehicle Readiness at 3 DOD Facilities  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports analyze data and survey results on readiness for the use of plug-in electric vehicles on the Naval Air Station Jacksonville, Naval Station Mayport, and Joint Base Lewis McChord, as informed by the AVTA's testing on plug-in electric vehicle charging equipment. This research was conducted by Idaho National Laboratory.

455

> 070131-073Vehicle  

E-Print Network [OSTI]

-how developed with the design ofthe ROAZ ASV [3] [4]. Power is provided by electric batteries. The computer> 070131-073Vehicle for Network Centric Operations H. Ferreira-The design and development of the Swordfish Autonomous Surface Vehicle (ASV) system is discussed. Swordfish

Marques, Eduardo R. B.

456

Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle...  

Broader source: Energy.gov (indexed) [DOE]

nation's vehicle fleet. VTO invested 400 million in 18 projects to demonstrate plug-in electric vehicles (PEVs, also known as electric cars) and infrastructure, including 10...

457

Challenges in Electric Vehicle Adoption and Vehicle-Grid Integration.  

E-Print Network [OSTI]

??With rapid innovation in vehicle and battery technology and strong support from governmental bodies and regulators, electric vehicles (EV) sales are poised to rise. While… (more)

Xi, Xiaomin

2013-01-01T23:59:59.000Z

458

Vehicle Technologies Office: 2010 Vehicle and Systems Simulation...  

Broader source: Energy.gov (indexed) [DOE]

vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2010vsstreport.pdf More Documents & Publications AVTA PHEV Demonstrations and...

459

Vehicle Technologies Office: 2013 Vehicle and Systems Simulation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and field evaluations, codes and standards, industry projects, and vehicle systems optimization. 2013vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

460

Energy Star Concepts for Highway Vehicles  

SciTech Connect (OSTI)

The authors of this report, under the sponsorship of the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Weatherization and Intergovernmental Program, have investigated the possible application of Energy Star ratings to passenger cars and light trucks. This study establishes a framework for formulating and evaluating Energy Star rating methods that is comprised of energy- and environmental-based metrics, potential vehicle classification systems, vehicle technology factors, and vehicle selection criteria. The study tests several concepts and Energy Star rating methods using model-year 2000 vehicle data--a spreadsheet model has been developed to facilitate these analyses. This study tests two primary types of rating systems: (1) an outcome-based system that rates vehicles based on fuel economy, GHG emissions, and oil use and (2) a technology-based system that rates vehicles based on the energy-saving technologies they use. Rating methods were evaluated based on their ability to select vehicles with high fuel economy, low GHG emissions, and low oil use while preserving a full range of service (size and acceleration) and body style choice. This study concludes that an Energy Star rating for passenger cars and light trucks is feasible and that several methods could be used to achieve reasonable tradeoffs between low energy use and emissions and diversity in size, performance, and body type. It also shows that methods that consider only fuel economy, GHG emissions, or oil use will not select a diverse mix of vehicles. Finally, analyses suggest that methods that encourage the use of technology only, may result in increases in acceleration power and weight rather than reductions in oil use and GHG emissions and improvements in fuel economy.

Greene, D.L.

2003-06-24T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle testing building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

The Vehicle Technologies Market Report  

E-Print Network [OSTI]

The Vehicle Technologies Market Report Center for Transportation Analysis 2360 Cherahala Boulevard Efficiency Transportation: Energy Environment Safety Security Vehicle Technologies T he Oak Ridge National Laboratory's Center for Transportation Analysis developed and published the first Vehicle Technologies Market

462

Building Energy Optimization Analysis Method (BEopt) - Building...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Optimization Analysis Method (BEopt) - Building America Top Innovation Building Energy Optimization Analysis Method (BEopt) - Building America Top Innovation House graphic...

463

Building America Expert Meeting: Transforming Existing Buildings...  

Energy Savers [EERE]

Transforming Existing Buildings through New Media--An Idea Exchange Building America Expert Meeting: Transforming Existing Buildings through New Media--An Idea Exchange This report...

464

Building America Residential Buildings Energy Efficiency Meeting...  

Broader source: Energy.gov (indexed) [DOE]

Residential Buildings Energy Efficiency Meeting: July 2010 Building America Residential Buildings Energy Efficiency Meeting: July 2010 On this page, you may link to the summary...

465

Vehicle Technologies Office: Propulsion Systems  

Broader source: Energy.gov [DOE]

Vehicle Technologies Office research focuses much of its effort on improving vehicle fuel economy while meeting increasingly stringent emissions standards. Achieving these goals requires a...

466

Gasoline Ultra Fuel Efficient Vehicle  

Broader source: Energy.gov (indexed) [DOE]

Principal Investigator 13MY11 2011 DOE Vehicle Technologies Review Gasoline Ultra Fuel Efficient Vehicle ACE064 "This presentation does not contain any proprietary,...

467

European Lean Gasoline Direct Injection Vehicle Benchmark  

SciTech Connect (OSTI)

Lean Gasoline Direct Injection (LGDI) combustion is a promising technical path for achieving significant improvements in fuel efficiency while meeting future emissions requirements. Though Stoichiometric Gasoline Direct Injection (SGDI) technology is commercially available in a few vehicles on the American market, LGDI vehicles are not, but can be found in Europe. Oak Ridge National Laboratory (ORNL) obtained a European BMW 1-series fitted with a 2.0l LGDI engine. The vehicle was instrumented and commissioned on a chassis dynamometer. The engine and after-treatment performance and emissions were characterized over US drive cycles (Federal Test Procedure (FTP), the Highway Fuel Economy Test (HFET), and US06 Supplemental Federal Test Procedure (US06)) and steady state mappings. The vehicle micro hybrid features (engine stop-start and intelligent alternator) were benchmarked as well during the course of that study. The data was analyzed to quantify the benefits and drawbacks of the lean gasoline direct injection and micro hybrid technologies from a fuel economy and emissions perspectives with respect to the US market. Additionally that data will be formatted to develop, substantiate, and exercise vehicle simulations with conventional and advanced powertrains.

Chambon, Paul H [ORNL] [ORNL; Huff, Shean P [ORNL] [ORNL; Edwards, Kevin Dean [ORNL] [ORNL; Norman, Kevin M [ORNL] [ORNL; Prikhodko, Vitaly Y [ORNL] [ORNL; Thomas, John F [ORNL] [ORNL

2011-01-01T23:59:59.000Z

468

Advances in Electric Drive Vehicle Modeling with Subsequent Experimentation and Analysis  

E-Print Network [OSTI]

coefficients in order to build a high-level, yet accurate state of charge prediction model. Moreover, this work utilizes automotive grade lithium-based batteries for realistic outcomes in the electrified vehicle realm. The fourth chapter describes an advanced...

Hausmann, Austin Joseph

2012-08-31T23:59:59.000Z

469

A Vehicle Manufacturer’s Perspective on Higher-Octane Fuels  

Broader source: Energy.gov [DOE]

Breakout Session 1C—Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels A Vehicle Manufacturer’s Perspective on Higher-Octane Fuels Tom Leone, Technical Expert, Powertrain Evaluation and Analysis, Ford Motor Company

470

Optimal Planning and Operation of Smart Grids with Electric Vehicle Interconnection  

E-Print Network [OSTI]

Planning and Operation of Smart Grids with Electric VehiclePlanning and Operation of Smart Grids with Electric Vehicleenergy costs at the smart grid or commercial building due to

Stadler, Michael

2012-01-01T23:59:59.000Z

471

Building Stones  

E-Print Network [OSTI]

1992 Are the pyramids of Egypt built of poured concreteel-Anba’ut, Red Sea coast, Egypt. Marmora 6, pp. 45 - 56.building stones of ancient Egypt are those relatively soft,

2012-01-01T23:59:59.000Z

472

Building Science  

Broader source: Energy.gov [DOE]

This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question ŤHow do we first do no harm with high-r enclosures??

473

Building debris  

E-Print Network [OSTI]

This thesis relates architectural practices to intelligent use of resources and the reuse of derelict spaces. The initial investigation of rammed earth as a building material is followed by site-specific operations at the ...

Dahmen, Joseph (Joseph F. D.)

2006-01-01T23:59:59.000Z

474

Healthy buildings  

SciTech Connect (OSTI)

This book is covered under the following headings: Healthy building strategies/productivity, Energy and design issues, Ventilation, Contaminants, Thermal, airflow, and humidity issues, School-related issues, Sources and sinks, Filtering, Operation and maintenance.

Not Available

1991-01-01T23:59:59.000Z

475

Better Buildings  

E-Print Network [OSTI]

Challenge National leadership Initiative Better Information MOU with the Appraisal Foundation Better Tax Incentives/Credits New :179d eligibility and tool; Announced in March Better Financing With Small Business...: engaging in ESCO financing with low interest bonds) ?Tenant/Employee behaviors at odds with efficiency goals ?Split incentives ?Not enough/qualified workforce Better Buildings strategies to overcome barriers and drive action 4 Better Buildings...

Neukomm, M.

2012-01-01T23:59:59.000Z

476

Healthy buildings  

SciTech Connect (OSTI)

This proceedings is of the Indoor Air Quality (IAQ) Conference held September 4--8, 1991 in Washington, D.C. Entitled the IAQ 91, Healthy Buildings,'' the major topics of discussion included: healthy building strategies/productivity; energy and design issues; ventilation; contaminants; thermal, airflow, and humidity issues; school-related issues; sources and sinks; filtering; and operation and maintenance. For these conference proceedings, individual papers are processed separately for input into the Energy Data Base. (BN)

Geshwiler, M.; Montgomery, L.; Moran, M. (eds.)

1991-01-01T23:59:59.000Z

477

buildings in Continued on p. 5  

E-Print Network [OSTI]

for the waste heat recovery system using exhaust from the light-duty diesel engine Exhaust from diesel vehicles Laboratory No. 1 2011 ORNL is participating in two of three recently announced joint U.S.-China Clean Energy Research Centers (CERCs). ORNL was chosen because of its renowned expertise in building energy efficiency

Pennycook, Steve

478

Advanced Vehicle Electrification and Transportation Sector Electrifica...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Advanced Vehicle Electrification and Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector...

479

A Verified Hybrid Controller For Automated Vehicles  

E-Print Network [OSTI]

con- trollers for vehicle automation," in American ControlTomizuka, Vehicle lateral control for highway automation,"

Lygeros, J.; Godbole, D. N.; Sastry, S.

1997-01-01T23:59:59.000Z

480

Blast resistant vehicle seat  

DOE Patents [OSTI]

Disclosed are various seats for vehicles particularly military vehicles that are susceptible to attack by road-bed explosive devices such as land mines or improvised explosive devices. The seats often have rigid seat shells and may include rigid bracing for rigidly securing the seat to the chassis of the vehicle. Typically embodiments include channels and particulate media such as sand disposed in the channels. A gas distribution system is generally employed to pump a gas through the channels and in some embodiments the gas is provided at a pressure sufficient to fluidize the particulate media when an occupant is sitting on the seat.

Ripley, Edward B

2013-02-12T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle testing building" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Rapid road repair vehicle  

DOE Patents [OSTI]

Disclosed are improvments to a rapid road repair vehicle comprising an improved cleaning device arrangement, two dispensing arrays for filling defects more rapidly and efficiently, an array of pre-heaters to heat the road way surface in order to help the repair material better bond to the repaired surface, a means for detecting, measuring, and computing the number, location and volume of each of the detected surface imperfection, and a computer means schema for controlling the operation of the plurality of vehicle subsystems. The improved vehicle is, therefore, better able to perform its intended function of filling surface imperfections while moving over those surfaces at near normal traffic speeds.

Mara, Leo M. (Livermore, CA)

1999-01-01T23:59:59.000Z

482

Archive Reference Buildings by Building Type: Warehouse  

Broader source: Energy.gov [DOE]

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

483

Archive Reference Buildings by Building Type: Supermarket  

Broader source: Energy.gov [DOE]

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

484

ROBUST SCALABLE VEHICLE CONTROL VIA NON-DIMENSIONAL VEHICLE DYNAMICS  

E-Print Network [OSTI]

- 1 - ROBUST SCALABLE VEHICLE CONTROL VIA NON-DIMENSIONAL VEHICLE DYNAMICS S. Brennan & A. Alleyne and spatial re-parameterization of the linear vehicle Bicycle Model is presented utilizing non-dimensional ratios of vehicle parameters called -groups. Investigation of the -groups using compiled data from 44

Brennan, Sean

485

ROBUST SCALABLE VEHICLE CONTROL VIA NON-DIMENSIONAL VEHICLE DYNAMICS  

E-Print Network [OSTI]

ROBUST SCALABLE VEHICLE CONTROL VIA NON-DIMENSIONAL VEHICLE DYNAMICS S. Brennan & A. Alleyne Dept, IL 61801 ABSTRACT A temporal and spatial re-parameterization of the well- known linear vehicle Bicycle Model is presented. This parameterization utilizes non-dimensional ratios of vehicle parameters

Brennan, Sean

486

Modeling Electric Vehicle Benefits Connected to Smart Grids  

SciTech Connect (OSTI)

Connecting electric storage technologies to smartgrids will have substantial implications in building energy systems. Local storage will enable demand response. Mobile storage devices in electric vehicles (EVs) are in direct competition with conventional stationary sources at the building. EVs will change the financial as well as environmental attractiveness of on-site generation (e.g. PV, or fuel cells). In order to examine the impact of EVs on building energy costs and CO2 emissions in 2020, a distributed-energy-resources adoption problem is formulated as a mixed-integer linear program with minimization of annual building energy costs or CO2 emissions. The mixed-integer linear program is applied to a set of 139 different commercial buildings in California and example results as well as the aggregated economic and environmental benefits are reported. The research shows that considering second life of EV batteries might be very beneficial for commercial buildings.

Stadler, Michael; Marnay, Chris; Mendes, Goncalo; Kloess, Maximillian; Cardoso, Goncalo; Mégel, Olivier; Siddiqui, Afzal

2011-07-01T23:59:59.000Z

487

VEHICLE TRACKING USING MOBILE WIRELESS SENSOR NETWORKS DURING DYNAMIC LOAD  

E-Print Network [OSTI]

and put into service, engineers lack cost-effective methods for measuring the actual loads imposedVEHICLE TRACKING USING MOBILE WIRELESS SENSOR NETWORKS DURING DYNAMIC LOAD TESTING OF HIGHWAY in the understanding of vehicle-bridge interactions. Direct measurement of the complex coupling that naturally exists

Lynch, Jerome P.

488

Energy Flow: A Multimodal `Ready' Indication For Electric Vehicles  

E-Print Network [OSTI]

Energy Flow: A Multimodal `Ready' Indication For Electric Vehicles Abstract The lack of sound and vibration while starting the drive system of an electric vehicle (EV) is one of the major differences the energy level to the driver. With Energy Flow (see Figure 1), we test if there will be a benefit in terms

489

Building America Webinar: Ventilation in Multifamily Buildings...  

Energy Savers [EERE]

Residential Buildings (CARB), and discussed ventilation strategies for multifamily buildings, including how to successfully implement those strategies through smart design,...

490

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

Rechargeable Zinc-Air Battery System for Electric Vehicles,"hthium/polymer* Zinc-air battery (Electric Fuel)* NickelThe discharge rate for the zinc/air battery was 5 hours at a

Delucchi, Mark

1992-01-01T23:59:59.000Z

491

HH22 Reformer, Fuel Cell Power Plant,Reformer, Fuel Cell Power Plant, & Vehicle Refueling System& Vehicle Refueling System  

E-Print Network [OSTI]

sufficient hydrogen demand develops. #12;4 Relevant DOE Program Objectives Reduce dependence on foreign oil Promote use of diverse, domestic energy resources ­ Natural gas reformation Develop and demonstrate on test fill tank, CNG/H2 ICE vehicles and H2 Fuel Cell vehicles. Fuel dispensing integrated with City

492

Department of Mechanical Engineering Spring 2013 Active Vehicle Grille  

E-Print Network [OSTI]

was tasked by General Motors (GM) to design and build active shutters that are mounted directly to the main Motors engineers and developed five possible concepts · Reviewed existing patents and current activePENNSTATE Department of Mechanical Engineering Spring 2013 Active Vehicle Grille Overview Active

Demirel, Melik C.

493

Mobile Applications and Algorithms to Facilitate Electric Vehicle Deployment  

E-Print Network [OSTI]

side management, to make better use of volatile renewable generation, makes them an attractive that of traditional vehicles, but the possibility of integrating an electric fleet with the smart grid, using demand component in building an efficient smart grid. Various companies have introduced hybrid electric vehi- cles

de Veciana, Gustavo

494

Building Scale DC Microgrids  

E-Print Network [OSTI]

Efficiency and Renewable Energy, Building TechnologiesEfficiency and Renewable Energy, Building Technologies

Marnay, Chris

2013-01-01T23:59:59.000Z

495

Better Buildings Alliance  

Broader source: Energy.gov [DOE]

Commercial Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review

496

Recovery Act: Advanced Load Identification and Management for Buildings  

SciTech Connect (OSTI)

In response to the U.S. Department of Energy (DoE)’s goal of achieving market ready, net-zero energy residential and commercial buildings by 2020 and 2025, Eaton partnered with the Department of Energy’s National Renewable Energy Laboratory (NREL) and Georgia Institute of Technology to develop an intelligent load identification and management technology enabled by a novel “smart power strip” to provide critical intelligence and information to improve the capability and functionality of building load analysis and building power management systems. Buildings account for 41% of the energy consumption in the United States, significantly more than either transportation or industrial. Within the building sector, plug loads account for a significant portion of energy consumption. Plug load consumes 15-20% of building energy on average. As building managers implement aggressive energy conservation measures, the proportion of plug load energy can increase to as much as 50% of building energy leaving plug loads as the largest remaining single source of energy consumption. This project focused on addressing plug-in load control and management to further improve building energy efficiency accomplished through effective load identification. The execution of the project falls into the following three major aspects. 1) An intelligent load modeling, identification and prediction technology was developed to automatically determine the type, energy consumption, power quality, operation status and performance status of plug-in loads, using electric waveforms at a power outlet level. This project demonstrated the effectiveness of the developed technology through a large set of plug-in loads measurements and testing. 2) A novel “Smart Power Strip (SPS) / Receptacle” prototype was developed to act as a vehicle to demonstrate the feasibility of load identification technology as a low-cost, embedded solution. 3) Market environment for plug-in load control and management solutions, in particular, advanced power strips (APSs) was studied. The project evaluated the market potential for Smart Power Strips (SPSs) with load identification and the likely impact of a load identification feature on APS adoption and effectiveness. The project also identified other success factors required for widespread APS adoption and market acceptance. Even though the developed technology is applicable for both residential and commercial buildings, this project is focused on effective plug-in load control and management for commercial buildings, accomplished through effective load identification. The project has completed Smart Receptacle (SR) prototype development with integration of Load ID, Control/Management, WiFi communication, and Web Service. Twenty SR units were built, tested, and demonstrated in the Eaton lab; eight SR units were tested in the National Renewable Energy Lab (NREL) for one-month of field testing. Load ID algorithm testing for extended load sets was conducted within the Eaton facility and at local university campuses. This report is to summarize the major achievements, activities, and outcomes under the execution of the project.

Yang, Yi; Casey, Patrick; Du, Liang; He, Dawei

2014-02-12T23:59:59.000Z

497

Alternative Fuel Vehicles: The Case of Compressed Natural Gas (CNG) Vehicles in California Households  

E-Print Network [OSTI]

VEHICLES: THE CASE OF COMPRESSED NATURAL GAS (CNG) VEHICLESyou first learn about compressed natural gas (CNG) vehicles?VEHICLES: THE CASE OF COMPRESSED NATURAL GAS (CNG) VEHICLES

Abbanat, Brian A.

2001-01-01T23:59:59.000Z

498

Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP)  

Broader source: Energy.gov [DOE]

Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

499

Vehicle Technologies Office Merit Review 2014: Smith Electric...  

Broader source: Energy.gov (indexed) [DOE]

Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification Vehicle Technologies Office Merit Review 2014: Smith Electric Vehicles: Advanced...

500

Hyundai Sonata HEV Accelerated Testing - March 2013  

Broader source: Energy.gov (indexed) [DOE]

Hyundai Sonata HEV Accelerated Testing - March 2013 Two model year 2011 Hyundai Sonata hybrid electric vehicles (HEVs) entered Accelerated testing during June 2011 in a fleet in...