National Library of Energy BETA

Sample records for vehicle supply equipment

  1. Minimization of Impact from Electric Vehicle Supply Equipment to the

    Office of Scientific and Technical Information (OSTI)

    Electric Grid Using a Dynamically Controlled Battery Bank for Peak Load Shaving (Conference) | SciTech Connect Minimization of Impact from Electric Vehicle Supply Equipment to the Electric Grid Using a Dynamically Controlled Battery Bank for Peak Load Shaving Citation Details In-Document Search Title: Minimization of Impact from Electric Vehicle Supply Equipment to the Electric Grid Using a Dynamically Controlled Battery Bank for Peak Load Shaving This research presents a comparison of two

  2. Costs Associated With Non-Residential Electric Vehicle Supply Equipment

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Costs Associated With Non-Residential Electric Vehicle Supply Equipment Factors to consider in the implementation of electric vehicle charging stations November 2015 Prepared by New West Technologies, LLC for the U.S. Department of Energy Vehicle Technologies Office 2 Acknowledgments Acknowledgments This report was produced with funding from The U.S. Department of Energy's (DOE) Clean Cities program. DOE's Clean Cities Co-director Linda Bluestein and Workplace Charging Challenge Coordinator

  3. Permit for Charging Equipment Installation: Electric Vehicle Supply Equipment (EVSE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Compliance with the following permit will allow the installation and operation of electric vehicle charging equipment at a residence in the City, State jurisdiction. This permit addresses one of the following situations: Only an additional branch circuit would be added at the residence A hard-wired charging station would be installed at the residence. The attached requirements for wiring the charging station are taken directly out of the 2011 edition of the National Electrical Code (NEC) NFPA

  4. Electric Vehicle Supply Equipment (EVSE) Test Report: Voltec 240V

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    VEhICLE TEChNOLOgIES pROgRAm Electric Vehicle Supply Equipment (EVSE) Test Report: Voltec 240V EVSE Features Integrated Flashlight 25ft of coiled cable Auto-reset EVSE Specifcations Grid connection Hardwired Connector type J1772 Test lab certifcations ETL Listed Approximate size (H x W x D inches) 10 x 15 x 5 Charge level AC Level 2 Input voltage 208 / 240 VAC Maximum input current 15 Amp Circuit breaker rating 20 Amp Test Conditions 1 Test date 3/29/2012 Nominal supply voltage (Vrms) 243.11

  5. Vehicle to Electric Vehicle Supply Equipment Smart Grid Communications Interface Research and Testing Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INL/EXT-11-23221 Vehicle to Electric Vehicle Supply Equipment Smart Grid Communications Interface Research and Testing Report Final Report Kevin Morrow Dimitri Hochard Jeff Wishart James Francfort September 2011 The Idaho National Laboratory is a U.S. Department of Energy National Laboratory Operated by Battelle Energy Alliance ii INL/EXT-11-23221 Vehicle to Electric Vehicle Supply Equipment Smart Grid Communications Interface Research and Testing Report Kevin Morrow Dimitri Hochard Jeffrey

  6. Electric Vehicle Supply Equipment (EVSE) Test Report: AeroVironment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    pROGRAM Electric Vehicle Supply Equipment (EVSE) Test Report: AeroVironment EVSE Features LED status light EVSE Specifcations Grid connection Hardwired Connector type J1772 Test lab certifcations UL, cUL, CE, CTick listed Approximate size (H x W x D inches) 12 x 12 x 8 Charge level AC Level 2 Input voltage 208VAC to 240 VAC Maximum input current 30 Amp Circuit breaker rating 40 Amp Test Conditions 1 Test date 1/31/2012 Nominal supply voltage (Vrms) 235.68 Supply frequency (Hz) 60.00 Initial

  7. Electric Vehicle Supply Equipment (EVSE) Test Report: ClipperCreek

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ClipperCreek EVSE Features LED status light EVSE Specifcations Grid connection Hardwired Connector type J1772 Test lab certifcations UL listed Approximate size (H x W x D inches) 17 x 14 x 6 Charge level AC Level 2 Input voltage 208VAC to 240 VAC Maximum input current 32 Amp Circuit breaker rating 40 Amp Test Conditions 1 Test date 2/1/2012 Nominal supply voltage (Vrms) 208.89 Supply frequency (Hz) 60.00 Initial ambient temperature (°F) 52 Test Vehicle 1,3 Make and model 2011 Chevrolet Volt

  8. Electric Vehicle Supply Equipment (EVSE) Test Report: Eaton

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    status lights EVSE Specifcations Grid connection Plug and cord NEMA 14-30 Connector type J1772 Test lab certifcations ETL listed Approximate size (H x W x D inches) 10 x 15 x 5 Charge level AC Level 2 Input voltage 208 VAC to 240 VAC Maximum input current 30 Amp Circuit breaker rating 40 Amp Test Conditions 1 Test date 10/24/2011 Nominal supply voltage (Vrms) 240.37 Supply frequency (Hz) 60.00 Initial ambient temperature (°F) 58 Test Vehicle 1,3 Make and model 2011 Chevrolet Volt Battery type

  9. Electric Vehicle Supply Equipment (EVSE) Test Report: Leviton

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Leviton EVSE Features One-button interface LED status lights EVSE Specifcations Grid connection Plug and cord NEMA 6-20 Connector type J1772 Test lab certifcations UL listed Approximate size (H x W x D inches) 11 x 9 x 4 Charge level AC Level 2 Input voltage 240 VAC Maximum input current 16 Amp Circuit breaker rating 20 Amp Test Conditions 1 Test date 10/25/2011 Nominal supply voltage (Vrms) 239.69 Supply frequency (Hz) 59.99 Initial ambient temperature (°F) 58 Test Vehicle 1,3 Make and model

  10. Electric Vehicle Supply Equipment (EVSE) Test Report: SPX

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LED status lights UART interface EVSE Specifcations Grid connection Plug and cord NEMA 6-30 Connector type J1772 Test lab certifcations ETL listed Approximate size (H x W x D inches) 5 x 14 x 4 Charge level AC Level 2 Input voltage 95VAC to 264 VAC Maximum input current 24 Amp Circuit breaker rating 40 Amp Test Conditions 1 Test date 10/25/2011 Nominal supply voltage (Vrms) 239.93 Supply frequency (Hz) 60.00 Initial ambient temperature (°F) 52 Test Vehicle 1,3 Make and model 2011 Chevrolet Volt

  11. Vehicle to Electric Vehicle Supply Equipment Smart Grid Communications Interface Research and Testing Report

    SciTech Connect (OSTI)

    Kevin Morrow; Dimitri Hochard; Jeff Wishart

    2011-09-01

    Plug-in electric vehicles (PEVs), including battery electric, plug-in hybrid electric, and extended range electric vehicles, are under evaluation by the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) and other various stakeholders to better understand their capability and potential petroleum reduction benefits. PEVs could allow users to significantly improve fuel economy over a standard hybrid electric vehicles, and in some cases, depending on daily driving requirements and vehicle design, PEVs may have the ability to eliminate petroleum consumption entirely for daily vehicle trips. The AVTA is working jointly with the Society of Automotive Engineers (SAE) to assist in the further development of standards necessary for the advancement of PEVs. This report analyzes different methods and available hardware for advanced communications between the electric vehicle supply equipment (EVSE) and the PEV; particularly Power Line Devices and their physical layer. Results of this study are not conclusive, but add to the collective knowledge base in this area to help define further testing that will be necessary for the development of the final recommended SAE communications standard. The Idaho National Laboratory and the Electric Transportation Applications conduct the AVTA for the United States Department of Energy's Vehicle Technologies Program.

  12. Electric Vehicle Supply Equipment (EVSE) Test Report: Schneider Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Schneider Electric EVSE Features Charge Delay Option Power Light Indicator Eight-segment Progress Indicator Auto-restart EVSE Specifcations Grid connection Plug and cord NEMA 6-50 Connector type J1772 Test lab certifcations UL Listed Approximate size (H x W x D inches) 10 x 13 x 4 Charge level AC Level 2 Input voltage 240 VAC Maximum input current 30 Amp Circuit breaker rating 40 Amp Test Conditions 1 Test date 10/30/2012 Nominal supply voltage (Vrms) 209.04 Supply frequency (Hz) 59.99 Initial

  13. Results from the Operational Testing of the Eaton Smart Grid Capable Electric Vehicle Supply Equipment

    SciTech Connect (OSTI)

    Bennett, Brion

    2014-10-01

    The Idaho National Laboratory conducted testing and analysis of the Eaton smart grid capable electric vehicle supply equipment (EVSE), which was a deliverable from Eaton for the U.S. Department of Energy FOA-554. The Idaho National Laboratory has extensive knowledge and experience in testing advanced conductive and wireless charging systems though INL’s support of the U.S. Department of Energy’s Advanced Vehicle Testing Activity. This document details the findings from the EVSE operational testing conducted at the Idaho National Laboratory on the Eaton smart grid capable EVSE. The testing conducted on the EVSE included energy efficiency testing, SAE J1772 functionality testing, abnormal conditions testing, and charging of a plug-in vehicle.

  14. Results from Operational Testing of the Siemens Smart Grid-Capable Electric Vehicle Supply Equipment

    SciTech Connect (OSTI)

    Bennett, Brion

    2015-05-01

    The Idaho National Laboratory conducted testing and analysis of the Siemens smart grid capable electric vehicle supply equipment (EVSE), which was a deliverable from Siemens for the U.S. Department of Energy FOA-554. The Idaho National Laboratory has extensive knowledge and experience in testing advanced conductive and wireless charging systems though INL’s support of the U.S. Department of Energy’s Advanced Vehicle Testing Activity. This document details the findings from the EVSE operational testing conducted at the Idaho National Laboratory on the Siemens smart grid capable EVSE. The testing conducted on the EVSE included energy efficiency testing, SAE J1772 functionality testing, abnormal conditions testing, and charging of a plug-in vehicle.

  15. Usage of Electric Vehicle Supply Equipment Along the Corridors between the EV Project Major Cities

    SciTech Connect (OSTI)

    Mindy Kirkpatrick

    2012-05-01

    The report explains how the EVSE are being used along the corridors between the EV Project cities. The EV Project consists of a nationwide collaboration between Idaho National Laboratory (INL), ECOtality North America, Nissan, General Motors, and more than 40 other city, regional and state governments, and electric utilities. The purpose of the EV Project is to demonstrate the deployment and use of approximately 14,000 Level II (208-240V) electric vehicle supply equipment (EVSE) and 300 fast chargers in 16 major cities. This research investigates the usage of all currently installed EV Project commercial EVSE along major interstate corridors. ESRI ArcMap software products are utilized to create geographic EVSE data layers for analysis and visualization of commercial EVSE usage. This research locates the crucial interstate corridors lacking sufficient commercial EVSE and targets locations for future commercial EVSE placement. The results and methods introduced in this research will be used by INL for the duration of the EV Project.

  16. Electric Vehicle Supply Equipment (EVSE) Test Report: Siemens-VersiCharge

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Limiter Switch LED Power Indicator LED Charge Indicator EVSE Specifcations Grid connection Plug and cord NEMA 6-50 Connector type J1772 Test lab certifcations UL Listed Approximate size (H x W x D inches) 16.5 x 16.5 x 6.5 Charge level AC Level 2 Input voltage 208-240 VAC Maximum input current 30 Amp Circuit breaker rating 40 Amp Test Conditions 1 Test date 11/5/2012 Nominal supply voltage (Vrms) 208.81 Supply frequency (Hz) 60.01 Initial ambient temperature (°F) 55 Test Vehicle 1,3 Make

  17. Results from the Operational Testing of the General Electric Smart Grid Capable Electric Vehicle Supply Equipment (EVSE)

    SciTech Connect (OSTI)

    Richard Barney Carlson; Don Scoffield; Brion Bennett

    2013-12-01

    The Idaho National Laboratory conducted testing and analysis of the General Electric (GE) smart grid capable electric vehicle supply equipment (EVSE), which was a deliverable from GE for the U.S. Department of Energy FOA-554. The Idaho National Laboratory has extensive knowledge and experience in testing advanced conductive and wireless charging systems though INL’s support of the U.S. Department of Energy’s Advanced Vehicle Testing Activity. This document details the findings from the EVSE operational testing conducted at the Idaho National Laboratory on the GE smart grid capable EVSE. The testing conducted on the EVSE included energy efficiency testing, SAE J1772 functionality testing, abnormal conditions testing, and charging of a plug-in vehicle.

  18. VersiCharge-SG - Smart Grid Capable Electric Vehicle Supply Equipment (EVSE) for Residential Applications

    SciTech Connect (OSTI)

    Wei, Dong; Haas, Harry; Terricciano, Paul

    2015-09-30

    some real life experimentation and sporadic deployment of these technologies [14]. By many accounts, the second decade of the 21st Century is expected to be the time when mass volume production and popular usage of these AFV technologies, especially EV, will materialize. The current DOE request for proposals recognizes the need for major technological changes to ensure that the above national goal is realizable. Two major challenges have been identified: (1) major reduction in the cost of ownership of EVSEs, and (2) managing additional EV loads in the power grid while maintaining power quality, reliability, and affordability. We note that the two challenges are closely linked – A holistic approach to true lifecycle cost of EVSE ownership will certainly include any taxes and surcharges that can be put in place for major potential investments in the grid, and higher electricity charges in case of more frequent and longer peak periods. From a societal perspective, this cost could also include the lost GDP (computed on a local basis) and revenue for businesses at local and regional levels when the grid is no longer capable of meeting the demand and unexpected outages occur. A typical end-point electrical distribution system delivers power to a residential EVSE from the neighborhood distribution pole, as shown in Fig.1. This pole has a transformer (neighboring step-down transformer) that steps down the utility medium voltage to dual 120VAC single phase (also called 240VAC split phase). This voltage is fed through a meter into the residential load control center. The load control center consists of branch circuit breakers and distributes the power supply within various areas of the residential unit. One of the branch circuits from the load control center feeds EV charging station for the unit. An electric vehicle charger is plugged into the socket of the EV charging station and other end of this charger is connected to the vehicle during charging. Figure 1 illustrates a

  19. Vehicle Technologies Office: AVTA - Electric Vehicle Charging Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (EVSE) Testing Data | Department of Energy Charging Equipment (EVSE) Testing Data Vehicle Technologies Office: AVTA - Electric Vehicle Charging Equipment (EVSE) Testing Data Electric vehicle chargers (otherwise known as Electric Vehicle Supply Equipment - EVSE) are a fundamental part of the plug-in electric vehicle system. Currently, there are three major types of EVSE: AC Level 1, AC Level 2, and DC Fast Charging. For an overview of the types of EVSE, see the Alternative Fuel Data Center's

  20. Electric Vehicle Supply Equipment (EVSE) Test Report: GE Energy WattStation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GE Energy WattStation EVSE Features Power Button for Zero Consumption Auto-restart Multi Colored Charge Indicator Led Power Indicator EVSE Specifcations Grid connection Plug and cord NEMA 6-50 Connector type J1772 Test lab certifcations ETL Listed Approximate size (H x W x D inches) 16 x 24 x 6 Charge level AC Level 2 Input voltage 208-240 VAC Maximum input current 30 Amp Circuit breaker rating 40 Amp Test Conditions 1 Test date 10/29/2012 Nominal supply voltage (Vrms) 208.38 Supply frequency

  1. Electric Vehicle Supply Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    will constitute the conditions of the contract with the successful supplier after the award. Additionally, some organizations request that the supplier include certification that...

  2. Electric Vehicle Supply Equipment

    Broader source: Energy.gov (indexed) [DOE]

    Explain why your organization wants to install charging stations, as this may shape the proposals. Summary You may include a summary of the types of EVSE for which your ...

  3. Minimization of Impact from Electric Vehicle Supply Equipment to the Electric Grid Using a Dynamically Controlled Battery Bank for Peak Load Shaving

    SciTech Connect (OSTI)

    Castello, Charles C

    2013-01-01

    This research presents a comparison of two control systems for peak load shaving using local solar power generation (i.e., photovoltaic array) and local energy storage (i.e., battery bank). The purpose is to minimize load demand of electric vehicle supply equipment (EVSE) on the electric grid. A static and dynamic control system is compared to decrease demand from EVSE. Static control of the battery bank is based on charging and discharging to the electric grid at fixed times. Dynamic control, with 15-minute resolution, forecasts EVSE load based on data analysis of collected data. In the proposed dynamic control system, the sigmoid function is used to shave peak loads while limiting scenarios that can quickly drain the battery bank. These control systems are applied to Oak Ridge National Laboratory s (ORNL) solar-assisted electric vehicle (EV) charging stations. This installation is composed of three independently grid-tied sub-systems: (1) 25 EVSE; (2) 47 kW photovoltaic (PV) array; and (3) 60 kWh battery bank. The dynamic control system achieved the greatest peak load shaving, up to 34% on a cloudy day and 38% on a sunny day. The static control system was not ideal; peak load shaving was 14.6% on a cloudy day and 12.7% on a sunny day. Simulations based on ORNL data shows solar-assisted EV charging stations combined with the proposed dynamic battery control system can negate up to 89% of EVSE load demand on sunny days.

  4. Specialty Vehicles and Material Handling Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Power Efficient Simple Clean Today Industrial Power Efficient Simple Clean Today Specialty Vehicles and Material Handling Equipment Specialty Vehicles and Material Handling Equipment Specialty Vehicles and Material Handling Equipment Specialty Vehicles and Material Handling Equipment Matching Federal Government Energy Needs with Energy Efficient F Matching Federal Government Energy Needs with Energy Efficient F Matching Federal Government Energy Needs with Energy Efficient F Matching

  5. Laboratory Equipment & Supplies | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Equipment & Supplies John Bargar, SSRL Scientist Equipment is available to serve disciplines from biology to material science. All laboratories contain the following standard laboratory equipment: pH meters with standard buffers, analytical balances, microcentrifuges, vortex mixers, ultrasonic cleaning baths, magnetic stirrers, hot plates, and glassware. Most laboratories offer ice machines and cold rooms. Specialty storage areas for samples include a -80 freezer, argon and nitrogen glove

  6. WPN 13-7: Vehicle and Equipment Purchases

    Broader source: Energy.gov [DOE]

    To provide Grantee with guidance on purchasing vehicles and equipment for use in the Weatherization Assistance Program (WAP).

  7. Identify Petroleum Reduction Strategies for Vehicles and Mobile Equipment

    Broader source: Energy.gov [DOE]

    As defined by the Federal Energy Management Program (FEMP), greenhouse gas (GHG) emission reduction strategies for Federal vehicles and equipment are based on the three driving principles of petroleum reduction: Reduce vehicle miles traveled Improve fuel efficiency Use alternative fuels.

  8. Cold-Start Emissions Control in Hybrid Vehicles Equipped with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Adsorber for Hydrocarbons and NOx Cold-Start Emissions Control in Hybrid Vehicles Equipped with a Passive Adsorber for Hydrocarbons and NOx Reports results from study of ...

  9. Permit for Charging Equipment Installation: Electric Vehicle Supply Equipment (EVSE)

    Broader source: Energy.gov [DOE]

    Jurisdiction's can use this template to develop a standard permit for residential charging stations that allows for quick, safe installation of EVSE.

  10. Requisition for Supplies, Equipment, or Service DOE Form 4250.2 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Requisition for Supplies, Equipment, or Service DOE Form 4250.2 Requisition for Supplies, Equipment, or Service DOE Form 4250.2 Use this form to request various supplies, equipment or service such as: Engraving This form is fillable and may be saved with the Acrobat Reader. Requisition for Supplies, Equipment, or Service DOE Form 4250.2 (53.39 KB) More Documents & Publications DOE F 4250.2 DOE Form 4250.2, Request for Supplies, Equipment or Services DOE G 242.1-

  11. Minimization of Impact from Electric Vehicle Supply Equipment...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: ORNL work for others Country of Publication: United States Language: English Subject: Battery Management Systems; Control System; Scheduling Algorithm; Electric Veh

  12. Electric Vehicle Supply Equipment (EVSE) Test Report: Blink

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PRoGRAM EVSE Features Touch screen PLC, WiFi, cellular, LAN communications Backlit screen Web-based bi-directional data fow User charge scheduling via PDA, internet, and touchpad ...

  13. Materials used in new generation vehicles: supplies, shifts, and supporting infrastructure

    SciTech Connect (OSTI)

    Das, S.; Curlee, T.R.; Schexnayder, S.M.

    1997-08-01

    -reinforced composites, 379 lbs.; aluminum, 926 lbs.; and magnesium, 216 lbs. The substitutions (and the steel and iron they replace) are multiplied by the number of new generation vehicles produced on an annual basis out to 2030 to determine the total quantity of material used in new generation vehicles and the quantity of steel that would be displaced. We identified six stages in the life cycle of materials--mining or extraction of resources; smelting or other processing to produce the material from the resource; producing components from the material; assembling the components into vehicles, using, maintaining, and repairing vehicles; and disposing of the vehicle, including any recycling of materials for automotive or other use--and identified what might be required to supply and use the substitute materials at different life cycle stages. The variables considered are the mineral or material supply, the capital and equipment (including necessary capacity, technical changes, cost, and location), labor and employment, energy, material complements, and environmental emissions and impacts. The analysis shows that raw materials to produce each of the replacement materials are sufficiently available, and adequate mining or extraction capacity exists for each. However, challenges are possible at the material production stage for three of the four materials. For aluminum and magnesium the difficulties are associated with requirements for significant new production capacity, necessary for aluminum because new production equipment will be needed to produce the material in a cost-effective manner and for magnesium because current production capacity is inadequate. The required capacity investment for magnesium to meet demand in 2030 is $13.1 billion. Both materials also would sharply increase energy requirements, and both industries would likely develop mostly--if not entirely--outside the United States. To produce the carbon-based fiber to meet PNGV demand in 2015, an entire new industry must

  14. Alternative Fuels Data Center: Vehicle Parts and Equipment to...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ... By reducing the speed limit of their vehicles from 70 to 65 miles per hour, Braun's vehicles are now saving 0.5 miles per gallon of fuel for each vehicle. Synthetic Oil Synthetic ...

  15. VP 100: Charlotte Sees Next-Gen Vehicle Supply Expansion | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Charlotte Sees Next-Gen Vehicle Supply Expansion VP 100: Charlotte Sees Next-Gen Vehicle Supply Expansion March 12, 2010 - 2:47pm Addthis Charlotte sees next-gen vehicle supply expansion: U.S. Energy Secretary Steve Chu speaks at Celgard LLC in Charlotte, N.C. as Mitch Pulwer, Celgard’s vice president and general manager, looks on. | Photo courtesy of Celgard | Charlotte sees next-gen vehicle supply expansion: U.S. Energy Secretary Steve Chu speaks at Celgard LLC in Charlotte,

  16. DOE Form 4250.2, Request for Supplies, Equipment or Services

    Broader source: Energy.gov [DOE]

    Use this form to request various Supplies, Equipment and Services.  The form is fillable and can be saved with the Acrobat Reader.  This is used to request services such as:

  17. Cold-Start Emissions Control in Hybrid Vehicles Equipped with a Passive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Adsorber for Hydrocarbons and NOx | Department of Energy Emissions Control in Hybrid Vehicles Equipped with a Passive Adsorber for Hydrocarbons and NOx Cold-Start Emissions Control in Hybrid Vehicles Equipped with a Passive Adsorber for Hydrocarbons and NOx Reports results from study of potential for using chemisorbing materials to temporally trap HC and NOx emissions during cold-start of HEVs and PHEVs over transient driving cycles p-13_gao.pdf (1.35 MB) More Documents & Publications

  18. CRC program for quantifying performance of knock-sensor-equipped vehicles with varying octane level

    SciTech Connect (OSTI)

    Not Available

    1990-08-01

    A pilot study was conducted under the auspices of the Coordinating Research Council, Inc. (CRC) to assess the potential effects of gasoline octane quality on acceleration performance, fuel economy and driveability in vehicles equipped with electronic spark control systems (knock sensors). Fourteen vehicles were tested by five participating laboratories on CRC unleaded reference fuels of varying octane quality (78 to 104 RON). The test vehicles included nine naturally-aspirated and five turbocharged models. The results showed that acceleration performance was the parameter most sensitive to octane quality changes, particularly in the turbocharged models.

  19. Assessment of methane-related fuels for automotive fleet vehicles: technical, supply, and economic assessments

    SciTech Connect (OSTI)

    Not Available

    1982-02-01

    The use of methane-related fuels, derived from a variety of sources, in highway vehicles is assessed. Methane, as used here, includes natural gas (NG) as well as synthetic natural gas (SNG). Methanol is included because it can be produced from NG or the same resources as SNG, and because it is a liquid fuel at normal ambient conditions. Technological, operational, efficiency, petroleum displacement, supply, safety, and economic issues are analyzed. In principle, both NG and methanol allow more efficient engine operation than gasoline. In practice, engines are at present rarely optimized for NG and methanol. On the basis of energy expended from resource extraction to end use, only optimized LNG vehicles are more efficient than their gasoline counterparts. By 1985, up to 16% of total petroleum-based highway vehicle fuel could be displaced by large fleets with central NG fueling depots. Excluding diesel vehicles, which need technology advances to use NG, savings of 8% are projected. Methanol use by large fleets could displace up to 8% of petroleum-based highway vehicle fuel from spark-ignition vehicles and another 9% from diesel vehicles with technology advances. The US NG supply appears adequate to accommodate fleet use. Supply projections, future price differential versus gasoline, and user economics are uncertain. In many cases, attractive paybacks can occur. Compressed NG now costs on average about $0.65 less than gasoline, per energy-equivalent gallon. Methanol supply projections, future prices, and user economics are even more uncertain. Current and projected near-term methanol supplies are far from adequate to support fleet use. Methanol presently costs more than gasoline on an equal-energy basis, but is projected to cost less if produced from coal instead of NG or petroleum.

  20. Electric vehicle system for charging and supplying electrical power

    DOE Patents [OSTI]

    Su, Gui Jia

    2010-06-08

    A power system that provides power between an energy storage device, an external charging-source/load, an onboard electrical power generator, and a vehicle drive shaft. The power system has at least one energy storage device electrically connected across a dc bus, at least one filter capacitor leg having at least one filter capacitor electrically connected across the dc bus, at least one power inverter/converter electrically connected across the dc bus, and at least one multiphase motor/generator having stator windings electrically connected at one end to form a neutral point and electrically connected on the other end to one of the power inverter/converters. A charging-sourcing selection socket is electrically connected to the neutral points and the external charging-source/load. At least one electronics controller is electrically connected to the charging-sourcing selection socket and at least one power inverter/converter. The switch legs in each of the inverter/converters selected by the charging-source/load socket collectively function as a single switch leg. The motor/generators function as an inductor.

  1. Exposure Evaluation for Benzene, Lead and Noise in Vehicle and Equipment Repair Shops

    SciTech Connect (OSTI)

    Sweeney, Lynn C.

    2013-04-01

    An exposure assessment was performed at the equipment and vehicle maintenance repair shops operating at the U. S. Department of Energy Hanford site, in Richland, Washington. The maintenance shops repair and maintain vehicles and equipment used in support of the Hanford cleanup mission. There are three general mechanic shops and one auto body repair shop. The mechanics work on heavy equipment used in construction, cranes, commercial motor vehicles, passenger-type vehicles in addition to air compressors, generators, and farm equipment. Services include part fabrication, installation of equipment, repair and maintenance work in the engine compartment, and tire and brake services. Work performed at the auto body shop includes painting and surface preparation which involves applying body filler and sanding. 8-hour time-weighted-average samples were collected for benzene and noise exposure and task-based samples were collected for lead dust work activities involving painted metal surfaces. Benzene samples were obtained using 3M™ 3520 sampling badges and were analyzed for additional volatile organic compounds. These compounds were selected based on material safety data sheet information for the aerosol products used by the mechanics for each day of sampling. The compounds included acetone, ethyl ether, toluene, xylene, VM&P naphtha, methyl ethyl ketone, and trichloroethylene. Laboratory data for benzene, VM&P naphtha, methyl ethyl ketone and trichloroethylene were all below the reporting detection limit. Airborne concentrations for acetone, ethyl ether, toluene and xylene were all less than 10% of their occupational exposure limit. The task-based samples obtained for lead dusts were submitted for a metal scan analysis to identify other metals that might be present. Laboratory results for lead dusts were all below the reporting detection limit and airborne concentration for the other metals observed in the samples were less than 10% of the occupational exposure limit

  2. Latest techniques and equipment for the conversion of motor vehicles to LPG/petroleum use

    SciTech Connect (OSTI)

    Armstrong, R.

    1980-01-01

    Liquified petroleum gases (LPG) has been used for transportation in Europe, the United States, Japan and to a much lesser extent in Australia for many years. In most cases, the vehicles have been powered by engines designed for petrol operation and subsequently converted to use LPG. The application of LPG as an automotive fuel in different countries depends heavily on the availability of the fuel and the tax policy of the government. The demand for dual fuel equipment is increasing. Some of the problems facing Australia to convert vehicles to LPG use emphasize the institutional and hardware obstacles. Before LPG can be considered to be a safe, viable alternative fuel to petrol, improvements will have to be made in safety standards, in reduced exhaust emissions, in increased fuel efficiency, and in the involvement of car manufacturers. (SAC)

  3. Fuel Economy and Emissions of a Vehicle Equipped with an Aftermarket Flexible-Fuel Conversion Kit

    SciTech Connect (OSTI)

    Thomas, John F; Huff, Shean P; West, Brian H

    2012-04-01

    The U.S. Environmental Protection Agency (EPA) grants Certificates of Conformity for alternative fuel conversion systems and also offers other forms of premarket registration of conversion kits for use in vehicles more than two model years old. Use of alternative fuels such as ethanol, natural gas, and propane are encouraged by the Energy Policy Act of 1992. Several original equipment manufacturers (OEMs) produce emissions-certified vehicles capable of using alternative fuels, and several alternative fuel conversion system manufacturers produce EPA-approved conversion systems for a variety of alternative fuels and vehicle types. To date, only one manufacturer (Flex Fuel U.S.) has received EPA certifications for ethanol fuel (E85) conversion kits. This report details an independent evaluation of a vehicle with a legal installation of a Flex Fuel U.S. conversion kit. A 2006 Dodge Charger was baseline tested with ethanol-free certification gasoline (E0) and E20 (gasoline with 20 vol % ethanol), converted to flex-fuel operation via installation of a Flex Box Smart Kit from Flex Fuel U.S., and retested with E0, E20, E50, and E81. Test cycles included the Federal Test Procedure (FTP or city cycle), the highway fuel economy test (HFET), and the US06 test (aggressive driving test). Averaged test results show that the vehicle was emissions compliant on E0 in the OEM condition (before conversion) and compliant on all test fuels after conversion. Average nitrogen oxide (NOx) emissions exceeded the Tier 2/Bin 5 intermediate life NO{sub X} standard with E20 fuel in the OEM condition due to two of three test results exceeding this standard [note that E20 is not a legal fuel for non-flexible-fuel vehicles (non-FFVs)]. In addition, one E0 test result before conversion and one E20 test result after conversion exceeded the NOX standard, although the average result in these two cases was below the standard. Emissions of ethanol and acetaldehyde increased with increasing ethanol

  4. Vehicle Technologies Office Merit Review 2014: Modular Process Equipment for Low Cost Manufacturing of High Capacity Prismatic Li-Ion Cell Alloy Anodes

    Broader source: Energy.gov [DOE]

    Presentation given by Applied Materials at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about modular process equipment...

  5. Mining machinery/equipment/parts/services. Oil and gas field equipment/machinery/parts/supplies (Ecuador). Refinery equipment, parts, and accessories, March 1991. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1991-03-01

    The petroleum sector in Ecuador brings in about 65 percent of the country's revenue. Three of the refineries are located in the coastal region. The other two, plus the Liquified Petroleum Gas Plant (LPG), are located in the Oriente region (Amazon jungle). The refineries operate at about 85% of their installation capacity. The Petroindustrial and Petropeninsula investment plan for 1991 comtemplates the expansion of the Esmeraldas refinery to 110,000 barrels a day, and the up-grading of the Shushufindi and Libertad refineries located near the city of Guayaquil. The United States is by far the largest supplier of refinery equipment, parts and accessories, controlling about 90% of the total market.

  6. Wireless power transfer electric vehicle supply equipment installation and validation tool

    SciTech Connect (OSTI)

    Jones, Perry T.; Miller, John M.

    2015-05-19

    A transmit pad inspection device includes a magnetic coupling device, which includes an inductive circuit that is configured to magnetically couple to a primary circuit of a charging device in a transmit pad through an alternating current (AC) magnetic field. The inductive circuit functions as a secondary circuit for a set of magnetically coupled coils. The magnetic coupling device further includes a rectification circuit, and includes a controllable load bank or is configured to be connected to an external controllable load back. The transmit pad inspection device is configured to determine the efficiency of power transfer under various coupling conditions. In addition, the transmit pad inspection device can be configured to measure residual magnetic field and the frequency of the input current, and to determine whether the charging device has been installed properly.

  7. Challenges and Opportunities for Transactive Control of Electric Vehicle Supply Equipment. A Reference Guide

    SciTech Connect (OSTI)

    Jin, Xin; Meintz, Andrew

    2015-07-29

    This report seeks to characterize the opportunities and challenges that arise in developing a transactive control strategy for grid-EVSE integration in various use-case scenarios in a way that provides end-user, energy market, grid, and societal benefits. A detailed review provides information about EVSE integration market trends and stakeholder activities. This is followed by an exploration of value proposition for transactive control of EVSE at both the home scale and the building/campus scale. This report will serve as a reference guide for stakeholders in the grid-EVSE integration area, illustrate potential implementations, and identify a high-value research project for overcoming the barriers and unlocking the benefits of transactive controls of EVSE. While it is not intended to specify the technical details of the transactive control solution, the report contains a list of use cases describing potential applications of transactive control of EVSE, barriers to implementing these applications, and research and development (R&D) opportunities to overcome the barriers. The use cases of transactive control of EVSE are listed in Table ES1.

  8. Technology demonstration of dedicated compressed natural gas (CNG) original equipment manufacturer (OEM) vehicles at Ft. Bliss, Texas. Interim report

    SciTech Connect (OSTI)

    Alvarez, R.A.; Yost, D.M.

    1995-11-01

    A technology demonstration program of dedicated compressed natural gas (CNG) original equipment manufacturer (OEM) vehicles was conducted at FL Bliss, Texas to demonstrate the use of CNG as an alternative fuel. The demonstration program at FL Bliss was the first Army initiative with CNG-fueled vehicles under the legislated Alternative Motor Fuels Act. This Department of Energy (DOE)-supported fleet demonstration consisted of 48 General Services Administration (GSA)-owned, Army-leased 1992 dedicated CNG General Motors (GM) 3/4-ton pickup trucks and four 1993 gasoline-powered Chevrolet 3/4-ton pickup trucks.

  9. Mining machinery/equipment/parts/services. Oil and Gas field equipment/machinery/parts/supplies (Argentina, Brazil, Colombia, Ecuador, Peru and Trinidad and Tobago)

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    This 7-part set includes separate reports on market possibilities for field production equipment, drilling equipment, refinery equipment, and auxiliary equipment in the following countries: Argentina, Brazil (2 reports), Colombia, Ecuador, Peru, and Trinidad and Tobago. Each report has been processed separately for inclusion on the data base.

  10. Vehicle Technologies Office Merit Review 2014: North American Power Electronics Supply Chain Analysis

    Broader source: Energy.gov [DOE]

    Presentation given by Synthesis Partners at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about North American power...

  11. Vehicle Technologies Office Merit Review 2016: North American Supply Chain for Traction Motors and PE

    Broader source: Energy.gov [DOE]

    Presentation given by Synthesis Partners at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Electric Drive Systems

  12. California Statewide Plug-In Electric Vehicle Infrastructure Assessment

    SciTech Connect (OSTI)

    Melaina, Marc; Helwig, Michael

    2014-05-01

    The California Statewide Plug-In Electric Vehicle Infrastructure Assessment conveys to interested parties the Energy Commission’s conclusions, recommendations, and intentions with respect to plug-in electric vehicle (PEV) infrastructure development. There are several relatively low-risk and high-priority electric vehicle supply equipment (EVSE) deployment options that will encourage PEV sales and

  13. Vehicles

    Broader source: Energy.gov [DOE]

    Vehicles, and the fuel it takes to power them, are an essential part of our American infrastructure and economy. The Energy Department works to develop transportation technologies that will reduce our dependence on foreign oil.

  14. Vehicle Technologies Office Merit Review 2015: North American Electric Traction Drive Supply Chain Analysis: Focus on Motors

    Broader source: Energy.gov [DOE]

    Presentation given by Synthesis Partners at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about North American electric...

  15. Compressed natural gas vehicles motoring towards a green Beijing

    SciTech Connect (OSTI)

    Yang, Ming; Kraft-Oliver, T.; Guo Xiao Yan

    1996-12-31

    This paper first describes the state-of-the-art of compressed natural gas (CNG) technologies and evaluates the market prospects for CNG vehicles in Beijing. An analysis of the natural gas resource supply for fleet vehicles follows. The costs and benefits of establishing natural gas filling stations and promoting the development of vehicle technology are evaluated. The quantity of GHG reduction is calculated. The objective of the paper is to provide information of transfer niche of CNG vehicle and equipment production in Beijing. This paper argues that the development of CNG vehicles is a cost-effective strategy for mitigating both air pollution and GHG.

  16. Vehicle Aerodynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle Aerodynamics Background Tougher emissions standards, as well as industry demands for more powerful engines and new vehicle equipment, continue to increase the heat rejection requirements of heavy-duty vehicles. However, changes in the physical configuration and weight of these vehicles can affect how they handle wind resistance and energy loss due to aerodynamic drag. Role of High-Performance Computing The field of computational fluid dynamics (CFD) offers researchers the ability to

  17. Electric vehicles

    SciTech Connect (OSTI)

    Not Available

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

  18. Transportation Fuel Supply | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Equipment (2010 MECS) Transportation Equipment (2010 MECS) Manufacturing Energy and Carbon Footprint for Transportation Equipment Sector (NAICS 336) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint Transportation Equipment (125.57 KB) More Documents & Publications MECS 2006 - Transportation Equipment

    SheetsTransportation Fuel Supply content top

  19. Laboratory Equipment Donation Program - Guidelines/FAQ

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    eligible to participate in the Laboratory Equipment Donation Program (LEDP) program. ... physically attached to an energy-related laboratory equipment system); General supplies. ...

  20. New Emergency Equipment Notifications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Notifications Addition of New Emergency Equipment, Hazardous Waste Facility Permit Number: NM4890139088-TSDF Todd A. Shrader/CBFO and Philip J. Breidenbach/NWP dated October 20, 2015 Underground Fire Suppression Vehicles (2) Addition of New Emergency Equipment, Hazardous Waste Facility Permit Number: NM4890139088-TSDF Dana C. Bryson/CBFO and Philip J. Breidenbach/NWP dated September 30, 2015 Underground Ambulance #3 Addition of New Emergency Equipment, Hazardous Waste Facility Permit Number:

  1. Lng vehicle technology, economics, and safety assessment. Final report, April 1991-June 1993

    SciTech Connect (OSTI)

    Powars, C.A.; Moyer, C.B.; Lowell, D.D.

    1994-02-01

    Liquid natural gas (LNG) is an attractive transportation fuel because of its high heating value and energy density (i.e. Btu/lb and Btu/gal), clean burning characteristics, relatively low cost ($/Btu), and domestic availability. This research evaluated LNG vehicle and refueling system technology, economics, and safety. Prior and current LNG vehicle projects were studied to identify needed technology improvements. Life-cycle cost analyses considered various LNG vehicle and fuel supply options. Safety records, standards, and analysis methods were reviewed. The LNG market niche is centrally fueled heavy-duty fleet vehicles with high fuel consumption. For these applications, fuel cost savings can amortize equipment capital costs.

  2. NEV America: Neighborhood Electric Vehicle Technical Specification

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology to provide for independent assessment of Neighborhood Electric Vehicles (NEVs). ... (35) Vehicles using HIGH VOLTAGE traction systems shall be equipped with a key ...

  3. New Emergency Equipment Notifications 2016

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Notifications 2016 Addition of New Emergency Equipment, Hazardous Waste Facility Permit Number: NM4890139088-TSDF Todd A. Shrader/CBFO and Philip J. Breidenbach/NWP dated January 8, 2016 Underground Fire Suppression Vehicles

  4. VEHICLE FOR SLAVE ROBOT

    DOE Patents [OSTI]

    Goertz, R.C.; Lindberg, J.F.

    1962-01-30

    A reeling device is designed for an electrical cable supplying power to the slave slde of a remote control manipulator mounted on a movable vehicle. As the vehicle carries the slave side about in a closed room, the device reels the cable in and out to maintain a variable length of the cable between the vehicle and a cable inlet in the wall of the room. The device also handles a fixed length of cable between the slave side and the vehicle, in spite of angular movement of the slave side with respect to the vehicle. (AEC)

  5. Advanced Technology Vehicle Testing

    SciTech Connect (OSTI)

    James Francfort

    2003-11-01

    The light-duty vehicle transportation sector in the United States depends heavily on imported petroleum as a transportation fuel. The Department of Energy’s Advanced Vehicle Testing Activity (AVTA) is testing advanced technology vehicles to help reduce this dependency, which would contribute to the economic stability and homeland security of the United States. These advanced technology test vehicles include internal combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban electric vehicles, and electric ground support vehicles. The AVTA tests and evaluates these vehicles with closed track and dynamometer testing methods (baseline performance testing) and accelerated reliability testing methods (accumulating lifecycle vehicle miles and operational knowledge within 1 to 1.5 years), and in normal fleet environments. The Arizona Public Service Alternative Fuel Pilot Plant and H2-fueled vehicles are demonstrating the feasibility of using H2 as a transportation fuel. Hybrid, neighborhood, and urban electric test vehicles are demonstrating successful applications of electric drive vehicles in various fleet missions. The AVTA is also developing electric ground support equipment (GSE) test procedures, and GSE testing will start during the fall of 2003. All of these activities are intended to support U.S. energy independence. The Idaho National Engineering and Environmental Laboratory manages these activities for the AVTA.

  6. Equips Nucleares SA | Open Energy Information

    Open Energy Info (EERE)

    SA Place: Madrid, Spain Zip: 28006 Sector: Services Product: ENSA is a Spanish nuclear components and nuclear services supply company. References: Equips Nucleares, SA1...

  7. Enforcement Policy Statement: Commercial HVAC Equipment Issued...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Liquid desiccant system, desiccant wheels. Indoor or Outdoor Fan Motor with Variable Frequency Drive (VFD). A device connected electrically between the equipment's power supply ...

  8. Vehicle fuel system

    DOE Patents [OSTI]

    Risse, John T.; Taggart, James C.

    1976-01-01

    A vehicle fuel system comprising a plurality of tanks, each tank having a feed and a return conduit extending into a lower portion thereof, the several feed conduits joined to form one supply conduit feeding fuel to a supply pump and using means, unused fuel being returned via a return conduit which branches off to the several return conduits.

  9. Plug-In Electric Vehicle Handbook for Electrical Contractors (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, charging equipment installation, and training for electrical contractors.

  10. Electric vehicle test report, Cutler-Hammer Corvette

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    The work described was part of the effort to characterize vehicles for the state-of-the-art assessment of electric vehicles. The vehicle evaluated was a Chevrolet Corvette converted to electric operation. The vehicle was based on a standard production 1967 chassis and body. The original internal combustion engine was replaced by an electric traction motor. Eighteen batteries supplied the electrical energy. A controller, an onboard battery charger, and several dashboard instruments completed the conversion. The remainder of the vehicle, and in particular the remainder of the drive-train (clutch, driveshaft, and differential), was stock, except for the transmission. The overall objective of the tests was to develop performance data at the system and subsystem level. The emphasis was on the electrical portion of the drive train, although some analysis and discussion of the mechanical elements are included. There was no evaluation of other aspects of the vehicle such as braking, ride, handling, passenger accomodations, etc. Included are a description of the vehicle, the tests performed and a discussion of the results. Tests were conducted both on the road (actually a mile long runway) and in a chassis dynamometer equipped laboratory. The majority of the tests performed were according to SAE Procedure J227a and included maximum effort accelerations, constant-speed range, and cyclic range. Some tests that are not a part of the SAE Procedure J227a are described and the analysis of the data from all tests is discussed. (LCL)

  11. Executive Fleet Vehicles Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    fleets are required to achieve maximum fuel efficiency; be limited in motor vehicle body size, engine size, and optional equipment to what is essential to meet agency mission; ...

  12. Retail Infrastructure Costs Comparison for Hydrogen and Electricity for Light-Duty Vehicles: Preprint

    SciTech Connect (OSTI)

    Melaina, M.; Sun, Y.; Bush, B.

    2014-08-01

    Both hydrogen and plug-in electric vehicles offer significant social benefits to enhance energy security and reduce criteria and greenhouse gas emissions from the transportation sector. However, the rollout of electric vehicle supply equipment (EVSE) and hydrogen retail stations (HRS) requires substantial investments with high risks due to many uncertainties. We compare retail infrastructure costs on a common basis - cost per mile, assuming fueling service to 10% of all light-duty vehicles in a typical 1.5 million person city in 2025. Our analysis considers three HRS sizes, four distinct types of EVSE and two distinct EVSE scenarios. EVSE station costs, including equipment and installation, are assumed to be 15% less than today's costs. We find that levelized retail capital costs per mile are essentially indistinguishable given the uncertainty and variability around input assumptions. Total fuel costs per mile for battery electric vehicle (BEV) and plug-in hybrid vehicle (PHEV) are, respectively, 21% lower and 13% lower than that for hydrogen fuel cell electric vehicle (FCEV) under the home-dominant scenario. Including fuel economies and vehicle costs makes FCEVs and BEVs comparable in terms of costs per mile, and PHEVs are about 10% less than FCEVs and BEVs. To account for geographic variability in energy prices and hydrogen delivery costs, we use the Scenario Evaluation, Regionalization and Analysis (SERA) model and confirm the aforementioned estimate of cost per mile, nationally averaged, but see a 15% variability in regional costs of FCEVs and a 5% variability in regional costs for BEVs.

  13. Alternative Fuels Data Center (Fact Sheet), Clean Cities, Vehicle Technologies Office (VTO)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Workplace Electric Vehicle Supply Equipment (EVSE) Program - PSE&G Public Service Electric & Gas (PSE&G) provides free EVSE to companies in their service territory for the purpose of workplace charging. EVSE is available on a first-come, first-served basis to companies that secure a commitment from at least five employees who will use a plug-in electric vehicle for their commute. PSE&G will own the EVSE and collect usage data. For more information, see the PSE&G website

  14. Plug-in Electric Vehicle Interactions with a Small Office Building: An Economic Analysis using DER-CAM

    SciTech Connect (OSTI)

    Momber, Ilan; Gomez, Tomás; Venkataramanan, Giri; Stadler, Michael; Beer, Sebastian; Lai, Judy; Marnay, Chris; Battaglia, Vincent

    2010-06-01

    It is generally believed that plug-in electric vehicles (PEVs) offer environmental and energy security advantages compared to conventional vehicles. Policies are stimulating electric transportation deployment, and PEV adoption may grow significantly. New technology and business models are being developed to organize the PEV interface and their interaction with the wider grid. This paper analyzes the PEVs' integration into a building's Energy Management System (EMS), differentiating between vehicle to macrogrid (V2M) and vehicle to microgrid (V2m) applications. This relationship is modeled by the Distributed Energy Resources Customer Adoption Model (DER-CAM), which finds optimal equipment combinations to meet microgrid requirements at minimum cost, carbon footprint, or other criteria. Results derive battery value to the building and the possibility of a contractual affiliation sharing the benefit. Under simple annual fixed payments and energy exchange agreements, vehicles are primarily used to avoid peak demand charges supplying cheaper off-peak electricity to the building during workdays.

  15. Specialty Vehicles and Material Handling Equipment

    Broader source: Energy.gov [DOE]

    This presentation by William Mitchell of Nuvera Fuel Cells was given at the Fuel Cell Meeting in April 2007.

  16. Models Move Vehicle Design Forward

    Broader source: Energy.gov [DOE]

    These days, modeling software is as important to building a car as welding equipment. The Energy Department’s Vehicle Technologies Office is working to make these models as useful and accurate as possible so that manufacturers can build the next-generation of fuel efficient and advanced technology vehicles.

  17. Subsea equipment marriage is top ROV priority

    SciTech Connect (OSTI)

    Redden, J.

    1985-04-01

    Interfacing subsea equipment with remotely operated vehicles (ROV's) and the further development of arctic-class units are the primary challenges facing manufacturers. Worldwide use of the ROV for drilling support has exploded during this decade as oil companies continue their search in deeper waters. If the unmanned vehicles are to become an even more integral tool of the oilman, experts say they must be able to perform more complex tasks. The evolution of more multi-purpose ROVs, however, hinges on the redesigning of subsea equipment. The severe limitations on subsea support (by ROVs) is the obsolete design associated with the subsea equipment itself. These limitations are discussed.

  18. Nanjing Sunec Wind Generator Equipment Factory | Open Energy...

    Open Energy Info (EERE)

    211100 Sector: Wind energy Product: A Chinese manufacturer for power supply, grid automation equipment and small-to-medium wind turbines, as well as a wind project developer....

  19. Project Fever - Fostering Electric Vehicle Expansion in the Rockies

    SciTech Connect (OSTI)

    Swalnick, Natalia

    2013-06-30

    Project FEVER (Fostering Electric Vehicle Expansion in the Rockies) is a part of the Clean Cities Community Readiness and Planning for Plug-in Electric Vehicles and Charging Infrastructure Funding Opportunity funded by the U.S. Department of Energy (DOE) for the state of Colorado. Tasks undertaken in this project include: Electric Vehicle Grid Impact Assessment; Assessment of Electrical Permitting and Inspection for EV/EVSE (electric vehicle/electric vehicle supply equipment); Assessment of Local Ordinances Pertaining to Installation of Publicly Available EVSE;Assessment of Building Codes for EVSE; EV Demand and Energy/Air Quality Impacts Assessment; State and Local Policy Assessment; EV Grid Impact Minimization Efforts; Unification and Streamlining of Electrical Permitting and Inspection for EV/EVSE; Development of BMP for Local EVSE Ordinances; Development of BMP for Building Codes Pertaining to EVSE; Development of Colorado-Specific Assessment for EV/EVSE Energy/Air Quality Impacts; Development of State and Local Policy Best Practices; Create Final EV/EVSE Readiness Plan; Develop Project Marketing and Communications Elements; Plan and Schedule In-person Education and Outreach Opportunities.

  20. A First Preliminary Look: Are Corridor Charging Stations Used to Extend the Range of Electric Vehicles in The EV Project?

    SciTech Connect (OSTI)

    John Smart

    2013-01-01

    A preliminary analysis of data from The EV Project was performed to begin answering the question: are corridor charging stations used to extend the range of electric vehicles? Data analyzed were collected from Blink brand electric vehicle supply equipment (EVSE) units based in California, Washington, and Oregon. Analysis was performed on data logged between October 1, 2012 and January 1, 2013. It should be noted that as additional AC Level 2 EVSE and DC fast chargers are deployed, and as drivers become more familiar with the use of public charging infrastructure, future analysis may have dissimilar conclusions.

  1. TRANSISTOR HIGH VOLTAGE POWER SUPPLY

    DOE Patents [OSTI]

    Driver, G.E.

    1958-07-15

    High voltage, direct current power supplies are described for use with battery powered nuclear detection equipment. The particular advantages of the power supply described, are increased efficiency and reduced size and welght brought about by the use of transistors in the circuit. An important feature resides tn the employment of a pair of transistors in an alternatefiring oscillator circuit having a coupling transformer and other circuit components which are used for interconnecting the various electrodes of the transistors.

  2. Clean Cities Plug-In Electric Vehicle Handbook for Electrical Contractors

    SciTech Connect (OSTI)

    2012-04-01

    This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, charging equipment installation, and training for electrical contractors.

  3. Alternative Fuels Data Center: Installing B20 Equipment

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels & Vehicles » Biodiesel Printable Version Share this resource Send a link to Alternative Fuels Data Center: Installing B20 Equipment to someone by E-mail Share Alternative Fuels Data Center: Installing B20 Equipment on Facebook Tweet about Alternative Fuels Data Center: Installing B20 Equipment on Twitter Bookmark Alternative Fuels Data Center: Installing B20 Equipment on Google Bookmark Alternative Fuels Data Center: Installing B20 Equipment on Delicious Rank Alternative Fuels Data

  4. Hybrid Vehicle Program. Final report

    SciTech Connect (OSTI)

    1984-06-01

    This report summarizes the activities on the Hybrid Vehicle Program. The program objectives and the vehicle specifications are reviewed. The Hybrid Vehicle has been designed so that maximum use can be made of existing production components with a minimum compromise to program goals. The program status as of the February 9-10 Hardware Test Review is presented, and discussions of the vehicle subsystem, the hybrid propulsion subsystem, the battery subsystem, and the test mule programs are included. Other program aspects included are quality assurance and support equipment. 16 references, 132 figures, 47 tables.

  5. Vehicle Crashworthiness

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Battery Basics Vehicle Battery Basics November 22, 2013 - 1:58pm Addthis Vehicle Battery Basics Batteries are essential for electric drive technologies such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (AEVs). WHAT IS A BATTERY? A battery is a device that stores chemical energy and converts it on demand into electrical energy. It carries out this process through an electrochemical reaction, which is a chemical reaction involving the

  6. Laboratory Equipment Donation Program - Equipment Applications

    Office of Scientific and Technical Information (OSTI)

    Select the "Search Equipment" menu link. Enter the type of equipment desired into the search box or choose the "Equipment List" link, which will allow you see a complete list of ...

  7. Laboratory Equipment Donation Program - Equipment List

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Equipment List Already know the item control number? Submit Reset Item Control Number Equipment Name Date Entered Condition Picture 89022961820152 75164 VACUUM CONDENSER 07272016 ...

  8. Laboratory Equipment Donation Program - Equipment Information

    Office of Scientific and Technical Information (OSTI)

    Before you Apply, please Print This Page for your records Equipment Details No Package found. Item Control Number: Equipment Type: Condition: Date Entered: (you have 30 days from ...

  9. supply chain | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    supply chain

  10. Power supply

    DOE Patents [OSTI]

    Yakymyshyn, Christopher Paul; Hamilton, Pamela Jane; Brubaker, Michael Allen

    2007-12-04

    A modular, low weight impedance dropping power supply with battery backup is disclosed that can be connected to a high voltage AC source and provide electrical power at a lower voltage. The design can be scaled over a wide range of input voltages and over a wide range of output voltages and delivered power.

  11. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Broader source: Energy.gov (indexed) [DOE]

    Confidential, 4222013 2013 DOE VEHICLE TECHNOLOGIES PROGRAM REVIEW PRESENTATION Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification...

  12. ETA-NTP011 Vehicle Verification - Revision 4

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    testing of electric vehicles, provided in the NEV America Technical Specifications. ... 5.1 7.3 Vehicles using HIGH VOLTAGE traction systems shall be equipped with a key ...

  13. Laboratory Equipment Donation Program - Equipment Information

    Office of Scientific and Technical Information (OSTI)

    Before you Apply, please Print This Page for your records Equipment Details No Package found. Item Control Number: Equipment Type: Condition: Date Entered: (you have 30 days from this date to acquire equipment) Manufacturer: Make: Model: FSC Number: Detailed Description: Location of Equipment: Address Line 2: Address Line 3: City: State: Zip: Contact: Phone: Fax: Email address: Quantity: Original Acquisition Cost: $0.00

  14. Reliability Estimates for Power Supplies

    SciTech Connect (OSTI)

    Lee C. Cadwallader; Peter I. Petersen

    2005-09-01

    Failure rates for large power supplies at a fusion facility are critical knowledge needed to estimate availability of the facility or to set priorties for repairs and spare components. A study of the "failure to operate on demand" and "failure to continue to operate" failure rates has been performed for the large power supplies at DIII-D, which provide power to the magnet coils, the neutral beam injectors, the electron cyclotron heating systems, and the fast wave systems. When one of the power supplies fails to operate, the research program has to be either temporarily changed or halted. If one of the power supplies for the toroidal or ohmic heating coils fails, the operations have to be suspended or the research is continued at de-rated parameters until a repair is completed. If one of the power supplies used in the auxiliary plasma heating systems fails the research is often temporarily changed until a repair is completed. The power supplies are operated remotely and repairs are only performed when the power supplies are off line, so that failure of a power supply does not cause any risk to personnel. The DIII-D Trouble Report database was used to determine the number of power supply faults (over 1,700 reports), and tokamak annual operations data supplied the number of shots, operating times, and power supply usage for the DIII-D operating campaigns between mid-1987 and 2004. Where possible, these power supply failure rates from DIII-D will be compared to similar work that has been performed for the Joint European Torus equipment. These independent data sets support validation of the fusion-specific failure rate values.

  15. Electric Vehicles

    Broader source: Energy.gov [DOE]

    This album contains a variety of all-electric, plug-in hybrid electric and fuel cell electric vehicles. For a full list of all electric vehicles visit the EV Everywhere website.

  16. A new bipolar Qtrim power supply system

    SciTech Connect (OSTI)

    Mi, C.; Bruno, D.; Drozd, J.; Nolan, T.; Orsatti, F.; Heppener, G.; Di Lieto, A.; Schultheiss, C.; Samms, T.; Zapasek, R.; Sandberg, J.

    2015-05-03

    This year marks the 15th run of RHIC (Relativistic Heavy Ion Collider) operations. The reliability of superconducting magnet power supplies is one of the essential factors in the entire accelerator complex. Besides maintaining existing power supplies and their associated equipment, newly designed systems are also required based on the physicist’s latest requirements. A bipolar power supply was required for this year’s main quadruple trim power supply. This paper will explain the design, prototype, testing, installation and operation of this recently installed power supply system.

  17. Power supply

    DOE Patents [OSTI]

    Hart, Edward J.; Leeman, James E.; MacDougall, Hugh R.; Marron, John J.; Smith, Calvin C.

    1976-01-01

    An electric power supply employs a striking means to initiate ferroelectric elements which provide electrical energy output which subsequently initiates an explosive charge which initiates a second ferroelectric current generator to deliver current to the coil of a magnetic field current generator, creating a magnetic field around the coil. Continued detonation effects compression of the magnetic field and subsequent generation and delivery of a large output current to appropriate output loads.

  18. Experimental Equipment | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Equipment SSRL plans the distribution of its limited equipment on the basis of the information supplied on the Beam Time Request Form and the User Support Requirements Form. Please make sure to state all of your needs. Standard X-Ray Station Equipment Standard equipment to be found on an x-ray station includes: (1 ea.) Small and large ionization chambers (1) Exit slits (1) X-Y sample positioner (3) Keithly 427 current-to-voltage amplifier TEK 2215 60 MHZ 2 channel scope Voltage-to-frequency

  19. DOE Hybrid and Electric Vehicle Test Platform

    SciTech Connect (OSTI)

    Gao, Yimin

    2012-03-31

    , and then generates motor torque command (traction or braking) to the motor controller based on the control algorithm software embedded in the vehicle controller ECU. The vehicle controller ECU is a re-programmable electronic control unit. Any control algorithm software developed can be easily downloaded to vehicle controller ECU to test any newly developed control strategy. The flexibility of the control system significantly enhances the practical applicability of the LabRAT. A new test methodology has been developed for the LabRAT simulating any vehicles running on road with different weights from compact passenger car to light duty truck on an AC or eddy current dynamometers without much effort for modification of the system. LabRAT is equipped with a fully functional data acquisition system supplied by CyberMetrix. The measurement points along the drive train are DC electric power between battery pack and motor controller input, AC electric power between motor controller and electric motor, mechanical power between motor and rear axle. The data acquisition system is designed with more capability than current requirements in order to meet the requirements for phase II.

  20. The EURATOM Supply Agency

    SciTech Connect (OSTI)

    Lightner, J.

    1989-11-01

    With the coming liberalization of trade and industry within the European Community (EC) and a more centrally-coordinated EC external trade policy, it is timely to ask if in the 1990s there will be any significant changes in the commercial relations between the EC and non-EC companies trading in nuclear fuel. The key vehicle for implementing any change of policy would probably be the European Atomic Energy Community (EURATOM) Supply Agency in Brussels, which is charged under the EURATOM Treaty with overseeing the equitable supply of nuclear fuel to and among EC companies. The EURATOM Supply Agency (the Agency) is a signatory to almost all EC-company contracts for transactions that occur on the territory of the Community, which includes Belgium, Denmark, France, the Federal Republic of Germany (FRG), Great Britain, Greece, Ireland, Italy, Luxembourg, the Netherlands, Portugal, and Spain. During the 1980s, the Supply Agency has rarely tried to influence the commercial decisions of EC member companies. The nuclear fuel industry has largely perceived the Agency as an administrative office that registers contracts and maintains relations with some outside governments, particularly Australia, Canada, and the USA. However, in 1988 the Agency began to have a more direct commercial impact when it reviewed the practice-previously conducted routinely by the EURATOM Safeguards Directorate in Luxembourg at the request of EC-member companies-of swapping safeguards obligations on equivalent quantities of uranium at different locations (flag swapping). The Agency`s actions inhibiting flag swaps, as well as a related de facto policy restricting material swaps of Southern African uranium, caused it to be viewed as obstructive by some EC companies. During 1989 the discussion about flag swaps and swaps involving South African and Namibian uranium has subsided, and a far-reaching discussion has arisen about EC trade policy in general.

  1. Hydrogen Storage and Supply for Vehicular Fuel Systems - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Vehicles and Fuels Vehicles and Fuels Find More Like This Return to Search Hydrogen Storage and Supply for Vehicular Fuel Systems Lawrence Livermore National Laboratory Contact LLNL About This Technology Publications: PDF Document Publication Cryotank for storage of hydrogen as a vehicle fuel by J. Raymond Smith - Accelerating Innovation Webinar Presentation (11,941 KB) Technology Marketing Summary Various alternative-fuel systems have been proposed for passenger vehicles and

  2. Costs Associated With Propane Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-08-01

    This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

  3. Costs Associated With Propane Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-08-05

    This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

  4. Propane Vehicle Demonstration Grant Program

    SciTech Connect (OSTI)

    Jack Mallinger

    2004-08-27

    Project Description: Propane Vehicle Demonstration Grants The Propane Vehicle Demonstration Grants was established to demonstrate the benefits of new propane equipment. The US Department of Energy, the Propane Education & Research Council (PERC) and the Propane Vehicle Council (PVC) partnered in this program. The project impacted ten different states, 179 vehicles, and 15 new propane fueling facilities. Based on estimates provided, this project generated a minimum of 1,441,000 new gallons of propane sold for the vehicle market annually. Additionally, two new off-road engines were brought to the market. Projects originally funded under this project were the City of Portland, Colorado, Kansas City, Impco Technologies, Jasper Engines, Maricopa County, New Jersey State, Port of Houston, Salt Lake City Newspaper, Suburban Propane, Mutual Liquid Propane and Ted Johnson.

  5. 2012 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary

    2013-03-01

    The Oak Ridge National Laboratory s Center for Transportation Analysis developed and published the first Vehicle Technologies Market Report in 2008. Three editions of the report have been published since that time. This 2012 report details the major trends in U.S. light vehicle and medium/heavy truck markets as well as the underlying trends that caused them. The opening section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national scale. The following section examines light-duty vehicle use, markets, manufacture, and supply chains. The discussion of medium and heavy trucks offers information on truck sales and fuel use. The technology section offers information on alternative fuel vehicles and infrastructure, and the policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standards.

  6. Dispensing Hydrogen Fuel to Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Delivery » Dispensing Hydrogen Fuel to Vehicles Dispensing Hydrogen Fuel to Vehicles Photo of a person dispensing hydrogen into a vehicle fuel tank The technology used for storing hydrogen onboard vehicles directly affects the design and selection of the delivery system and infrastructure. In the near term, 700 bar gaseous onboard storage has been chosen by the original equipment manufacturers for the first vehicles to be released commercially, and 350 bar is the chosen pressure for

  7. Electric Vehicles

    ScienceCinema (OSTI)

    Ozpineci, Burak

    2014-07-23

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  8. Electric Vehicles

    SciTech Connect (OSTI)

    Ozpineci, Burak

    2014-05-02

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  9. Bulk Hauling Equipment for CHG

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BULK HAULING EQUIPMENT FOR CHG Don Baldwin Director of Product Development - Hexagon Lincoln HEXAGON LINCOLN TITAN(tm) Module System Compressed Hydrogen Gas * Capacity 250 bar - 616 kg 350 bar - 809 kg 540 bar - 1155 kg * Gross Vehicle Weight (with prime mover) 250 bar - 28 450 kg 350 bar - 30 820 kg 540 bar - 39 440 kg * Purchase Cost 250 bar - $510,000 350 bar - $633,750 540 bar - $1,100,000 Compressed Natural Gas * Capacity (250 bar at 15 C) - 7412 kg * GVW (With prime mover) - 35 250 kg *

  10. 1992 Conversion Resources Supply Document

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    In recent years conservation of electric power has become an integral part of utility planning. The 1980 Pacific Northwest Electric Power Planning and Conservation Act (Northwest Power Act) requires that the region consider conservation potential in planning acquisitions of resources to meet load growth. The Bonneville Power Administration (BPA) developed its first estimates of conservation potential in 1982. Since that time BPA has updated its conservation supply analyses as a part of its Resource Program and other planning efforts. Major updates were published in 1985 and in January 1990. This 1992 document presents updated supply curves, which are estimates of the savings potential over time (cumulative savings) at different cost levels of energy conservation measures (ECMs). ECMs are devices, pieces of equipment, or actions that increase the efficiency of electricity use and reduce the amount of electricity used by end-use equipment.

  11. Line Equipment Operator

    Broader source: Energy.gov [DOE]

    There are several Line Equipment Operator positions located in Washington and Oregon. A successful candidate in this position will perform Line Equipment Operator work operating trucks and all...

  12. Vehicle Technologies Office: 2009 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Vehicle Technologies Office: 2008 Advanced Vehicle Technology Analysis and ...

  13. Vehicle Technologies Office: AVTA - Electric Vehicle Community...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: AVTA - Electric Vehicle Community and Fleet Readiness Data and Reports Making plug-in electric vehicles (PEVs, also known as electric cars) as ...

  14. Equipment | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zeiss Axiovert 200 Optical Microscope Spark Cutter Fully Equipped Metallographic Laboratory Electropolisher Dimpler

  15. Validation of International Atomic Energy Agency Equipment Performance Requirements

    SciTech Connect (OSTI)

    Chiaro, PJ

    2004-02-17

    Performance requirements and testing protocols are needed to ensure that equipment used by the International Atomic Energy Agency (IAEA) is reliable. Oak Ridge National Laboratory (ORNL), through the US Support Program, tested equipment to validate performance requirements protocols used by the IAEA for the subject equipment categories. Performance protocol validation tests were performed in the Environmental Effects Laboratory in the categories for battery, DC power supply, and uninterruptible power supply (UPS). Specific test results for each piece of equipment used in the validation process are included in this report.

  16. University of Delaware | CCEI Equipment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CCEI Equipment Click column headings to sort Type Equipment Details Institution Professor Type Equipment Details Institution Lab BACK TO TOP

  17. Vehicle Technologies Office: Intermediate Ethanol Blends Research and Testing

    Broader source: Energy.gov [DOE]

    DOE's Vehicle Technologies Office supported work to examine the impact of intermediate ethanol blends on passenger vehicles, outdoor equipment and generator sets. Based on this research, the EPA issued waivers allowing vehicles from model year 2001 and beyond to use E15.

  18. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1997-02-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  19. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1998-08-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendible appendages, each of which is radially extendible relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendible members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  20. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald

    1997-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  1. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald

    1998-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  2. MECS 2006- Transportation Equipment

    Office of Energy Efficiency and Renewable Energy (EERE)

    Manufacturing Energy and Carbon Footprint for Transportation Equipment (NAICS 336) Sector with Total Energy Input, October 2012 (MECS 2006)

  3. Autonomous vehicles

    SciTech Connect (OSTI)

    Meyrowitz, A.L.; Blidberg, D.R.; Michelson, R.C. |

    1996-08-01

    There are various kinds of autonomous vehicles (AV`s) which can operate with varying levels of autonomy. This paper is concerned with underwater, ground, and aerial vehicles operating in a fully autonomous (nonteleoperated) mode. Further, this paper deals with AV`s as a special kind of device, rather than full-scale manned vehicles operating unmanned. The distinction is one in which the AV is likely to be designed for autonomous operation rather than being adapted for it as would be the case for manned vehicles. The authors provide a survey of the technological progress that has been made in AV`s, the current research issues and approaches that are continuing that progress, and the applications which motivate this work. It should be noted that issues of control are pervasive regardless of the kind of AV being considered, but that there are special considerations in the design and operation of AV`s depending on whether the focus is on vehicles underwater, on the ground, or in the air. The authors have separated the discussion into sections treating each of these categories.

  4. Clean Cities Guide to Alternative Fuel Commercial Lawn Equipment (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    particularly helpful for organizations that are already using alternative fuels in their vehicles and have an alternative fuel supply or electric charging in place (e.g., golf cart charging stations at most golf courses). On the flip side, experiencing the benefits of using alternative fuels in mowing equipment may encourage organizations to try them in on-road vehicles as well. Whatever the case, alternative fuel commercial lawnmowers are a powerful and cost-effective way to reduce U.S. petroleum dependence and help protect the environment.

  5. ENERGY SUPPLY SECURITY 2014

    Broader source: Energy.gov (indexed) [DOE]

    Sustainable Together ENERGY SUPPLY SECURITY 2014 Emergency Response of IEA Countries Secure Sustainable Together ENERGY SUPPLY SECURITY 2014 Emergency Response of IEA Countries ...

  6. School Supply Drive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    backpacks filled with school supplies. September 16, 2013 Del Norte Credit Union's Baxter Bear takes a moment to pose with some of the backpacks filled with school supplies...

  7. Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE has also pioneered better combustion engines that have saved billions of gallons of petroleum fuel, while making diesel vehicles as clean as gasoline-fueled vehicles. Vehicle ...

  8. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1994-03-15

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 11 figures.

  9. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald

    1994-01-01

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  10. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald

    1996-01-01

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  11. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1996-03-12

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 14 figs.

  12. 2014 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary; Moore, Sheila A

    2015-03-01

    This is the sixth edition of this report, which details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Office (VTO), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. The first section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. The discussion of Medium and Heavy Trucks offers information on truck sales and technologies specific to heavy trucks. The Technology section offers information on alternative fuel vehicles and infrastructure, and the Policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standards. In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible tables and figures.

  13. Vehicle Technologies Office: 2008 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and Testing R&D Annual Progress Report

  14. Thermoelectric Power Generation System with Loop Thermosyphon in Future High Efficiency Hybrid Vehicles

    Broader source: Energy.gov [DOE]

    This project discusses preliminary experimental results to find how thermoelectrics can be applied ot future hybrid vehicles and the optimum design of such equipment using heat pipes

  15. Plug-In Electric Vehicle Handbook for Public Charging Station Hosts

    SciTech Connect (OSTI)

    2012-04-01

    This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, and considerations for station owners, property owners, and station hosts.

  16. Plug-In Electric Vehicle Handbook for Public Charging Station Hosts (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, and considerations for station owners, property owners, and station hosts.

  17. Laboratory Equipment Donation Program - Equipment List

    Office of Scientific and Technical Information (OSTI)

    Equipment List Already know the item control number? Submit Reset Item Control Number Equipment Name Date Entered Condition Picture 89022962080110 216969 LEPS HIGH PURITY GERMANIUM 08/16/2016 Repairable N/A 89022962080111 220131 DETECTOR GAMMA RAY 08/16/2016 Repairable N/A 89022962240034 220131 DETECTOR GAMMA RAY 08/31/2016 Repairable N/A 89022962170049 73415 CHROMATOGRAPHY SYSTEMS 08/24/2016 Repairable N/A 89022962170057 74147 THERMAL GAS CHROMATOGRAPH 08/24/2016 Repairable N/A 89022962170061

  18. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Broader source: Energy.gov (indexed) [DOE]

    Peer Evaluation Meeting arravt072vssmackie2013o.pdf More Documents & Publications Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector...

  19. Heavy Mobile Equipment Mechanic

    Broader source: Energy.gov [DOE]

    Join the Bonneville Power Administration (BPA) for a challenging and rewarding career, while working, living, and playing in the Pacific Northwest. The Heavy Mobile Equipment Mechanic (HMEM)...

  20. 2013 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Williams, Susan E; Boundy, Robert Gary; Moore, Sheila A

    2014-03-01

    This is the fifth edition of this report, which details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Office (VTO), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. The first section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. For example, Figures 12 through 14 discuss the connections between global oil prices and U.S. GDP, and Figures 21 and 22 show U.S. employment in the automotive sector. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. Figures 24 through 51 offer snapshots of major light-duty vehicle brands in the U.S. and Figures 56 through 64 examine the performance and efficiency characteristics of vehicles sold. The discussion of Medium and Heavy Trucks offers information on truck sales (Figures 73 through 75) and fuel use (Figures 78 through 81). The Technology section offers information on alternative fuel vehicles and infrastructure (Figures 84 through 95), and the Policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standard (Figures 106 through 110). In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible nuggets.

  1. EV Everywhere: Vehicle Charging | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere: Vehicle Charging EV Everywhere: Vehicle Charging The standard J1772 electric power receptacle (right) can receive power from Level 1 or Level 2 charging equipment. The CHAdeMO DC fast charge receptacle (left) uses a different type of connector. The standard J1772 electric power receptacle (right) can receive power from Level 1 or Level 2 charging equipment. The CHAdeMO DC fast charge receptacle (left) uses a different type of connector. To get the most out of your plug-in electric

  2. 2011 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Boundy, Robert Gary; Diegel, Susan W

    2012-02-01

    This report details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Program (VTP), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. This third edition since this report was started in 2008 offers several marked improvements relative to its predecessors. Most significantly, where earlier editions of this report focused on supplying information through an examination of market drivers, new vehicle trends, and supplier data, this edition uses a different structure. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. In addition to making this sectional re-alignment, this year s edition of the report also takes a different approach to communicating information. While previous editions relied heavily on text accompanied by auxiliary figures, this third edition relies primarily on charts and graphs to communicate trends. Any accompanying text serves to introduce the trends communication by the graphic and highlight any particularly salient observations. The opening section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. For example, Figures 11 through 13 discuss the connections between global oil prices and U.S. GDP, and Figures 20 and 21 show U.S. employment in the automotive sector. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. Figures 26 through 33 offer snapshots of major light-duty vehicle brands in the U.S. and Figures 38 through 43 examine the performance and efficiency characteristics of vehicles sold. The discussion of Medium and

  3. Troubleshooting rotating equipment

    SciTech Connect (OSTI)

    Wong, R.F. )

    1992-10-01

    This paper reports that equipment problems in a Peruvian refinery illustrate the process engineer's role as a troubleshooter. Examples show that rotating equipment problems can stem from mechanical or process factors and involve both inspection/maintenance specialists and process engineers.

  4. Transatlantic Workshop on Electric Vehicles and Grid Connectivity

    Broader source: Energy.gov [DOE]

    The U.S.-EU Energy Council convened equipment suppliers and manufacturers, utilities, policymakers, standards organizations, and government agencies to discuss mutually beneficial near-term actions to accelerate the introduction of electric vehicles to the market.

  5. Feedstock Supply System Logistics

    SciTech Connect (OSTI)

    2006-06-01

    Feedstock supply is a significant cost component in the production of biobased fuels, products, and power. The uncertainty of the biomass feedstock supply chain and associated risks are major barriers to procuring capital funding for start-up biorefineries.

  6. Advanced Wireless Power Transfer Vehicle and Infrastructure Analysis (Presentation)

    SciTech Connect (OSTI)

    Gonder, J.; Brooker, A.; Burton, E.; Wang, J.; Konan, A.

    2014-06-01

    This presentation discusses current research at NREL on advanced wireless power transfer vehicle and infrastructure analysis. The potential benefits of E-roadway include more electrified driving miles from battery electric vehicles, plug-in hybrid electric vehicles, or even properly equipped hybrid electric vehicles (i.e., more electrified miles could be obtained from a given battery size, or electrified driving miles could be maintained while using smaller and less expensive batteries, thereby increasing cost competitiveness and potential market penetration). The system optimization aspect is key given the potential impact of this technology on the vehicles, the power grid and the road infrastructure.

  7. Advanced Accessory Power Supply Topologies

    SciTech Connect (OSTI)

    Marlino, L.D.

    2010-06-15

    This Cooperative Research and Development Agreement (CRADA) began December 8, 2000 and ended September 30, 2009. The total funding provided by the Participant (General Motors Advanced Technology Vehicles [GM]) during the course of the CRADA totaled $1.2M enabling the Contractor (UT-Battelle, LLC [Oak Ridge National Laboratory, a.k.a. ORNL]) to contribute significantly to the joint project. The initial task was to work with GM on the feasibility of developing their conceptual approach of modifying major components of the existing traction inverter/drive to develop low cost, robust, accessory power. Two alternate methods for implementation were suggested by ORNL and both were proven successful through simulations and then extensive testing of prototypes designed and fabricated during the project. This validated the GM overall concept. Moreover, three joint U.S. patents were issued and subsequently licensed by GM. After successfully fulfilling the initial objective, the direction and duration of the CRADA was modified and GM provided funding for two additional tasks. The first new task was to provide the basic development for implementing a cascaded inverter technology into hybrid vehicles (including plug-in hybrid, fuel cell, and electric). The second new task was to continue the basic development for implementing inverter and converter topologies and new technology assessments for hybrid vehicle applications. Additionally, this task was to address the use of high temperature components in drive systems. Under this CRADA, ORNL conducted further research based on GM’s idea of using the motor magnetic core and windings to produce bidirectional accessory power supply that is nongalvanically coupled to the terminals of the high voltage dc-link battery of hybrid vehicles. In order not to interfere with the motor’s torque, ORNL suggested to use the zero-sequence, highfrequency harmonics carried by the main fundamental motor current for producing the accessory power

  8. Vehicle barrier

    DOE Patents [OSTI]

    Hirsh, Robert A. (Bethel Park, PA)

    1991-01-01

    A vehicle security barrier which can be conveniently placed across a gate opening as well as readily removed from the gate opening to allow for easy passage. The security barrier includes a barrier gate in the form of a cable/gate member in combination with laterally attached pipe sections fixed by way of the cable to the gate member and lateral, security fixed vertical pipe posts. The security barrier of the present invention provides for the use of cable restraints across gate openings to provide necessary security while at the same time allowing for quick opening and closing of the gate areas without compromising security.

  9. Feedstock Supply & Logistics Feedstock Supply System Integration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... LOGTOF 36.95 60.22 Urban and mill wood wastes MRESUU 4.56 7.79 Potential feedstock supply (Totals) 164.4 267.67 Resource Agricultural Residues Energy Crops Forest Resources ...

  10. Optics Supply Planning System

    SciTech Connect (OSTI)

    Gaylord, J

    2009-04-30

    The purpose of this study is to specify the design for an initial optics supply planning system for NIF, and to present quality assurance and test plans for the construction of the system as specified. The National Ignition Facility (NIF) is a large laser facility that is just starting operations. Thousands of specialized optics are required to operate the laser, and must be exchanged over time based on the laser shot plan and predictions of damage. Careful planning and tracking of optic exchanges is necessary because of the tight inventory of spare optics, and the long lead times for optics procurements and production changes. Automated inventory forecasting and production planning tools are required to replace existing manual processes. The optics groups members who are expected to use the supply planning system are the stakeholders for this project, and are divided into three groups. Each of these groups participated in a requirements specification that was used to develop this design. (1) Optics Management--These are the top level stakeholdersk, and the final decision makers. This group is the interface to shot operations, is ultimately responsible for optics supply, and decides which exchanges will be made. (2) Work Center Managers--This group manages the on site optics processing work centers. They schedule the daily work center operations, and are responsible for developing long term processing, equipment, and staffing plans. (3) Component Engineers--This group manages the vendor contracts for the manufacture of new optics and the off site rework of existing optics. They are responsible for sourcing vendors, negotiating contracts, and managing vendor processes. The scope of this analysis is to describe the structure and design details of a system that will meet all requirements that were described by stakeholders and documented in the analysis model for this project. The design specifies the architecture, components, interfaces, and data stores of the system

  11. Vehicle Technologies Office Merit Review 2014: Vehicle & Systems...

    Energy Savers [EERE]

    Vehicle Technologies Office: 2013 Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office Merit Review 2014: Wireless Charging Vehicle ...

  12. Vehicle Technologies Office: Natural Gas Vehicle Research and...

    Office of Environmental Management (EM)

    Alternative Fuels Vehicle Technologies Office: Natural Gas Vehicle Research and Development (R&D) Vehicle Technologies Office: Natural Gas Vehicle Research and Development (R&D) ...

  13. Vehicle Technologies Office: 2015 Vehicle Systems Annual Progress...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: 2015 Vehicle Systems Annual Progress Report The Vehicle Systems research and development (R&D) subprogram within the DOE Vehicle Technologies Office ...

  14. Vehicle Technologies Office: National Idling Reduction Network News

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Archives | Department of Energy National Idling Reduction Network News Archives Vehicle Technologies Office: National Idling Reduction Network News Archives The National Idling Reduction Network brings together trucking and transit companies; railroads; ports; equipment manufacturers; Federal, state, and local government agencies (including regulators); nonprofit organizations; and national research laboratories to identify consistent, workable solutions to heavy-vehicle idling for the

  15. Vehicle Technologies Office: National Idling Reduction Network News |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Idling Reduction Network News Vehicle Technologies Office: National Idling Reduction Network News The National Idling Reduction Network brings together trucking and transit companies; railroads; ports; equipment manufacturers; Federal, state, and local government agencies (including regulators); nonprofit organizations; and national research laboratories to identify consistent, workable solutions to vehicle idling for the entire United States. Below is the most recent

  16. Solar Equipment Certification

    Broader source: Energy.gov [DOE]

    Under the Solar Energy Standards Act of 1976, the Florida Solar Energy Center (FSEC) is responsible for certifying all solar equipment sold in Florida. A manufacturer who wishes to have their solar...

  17. Appliance and Equipment Standards

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Standards April 22, 2014 John Cymbalsky Program Manager 1 | Energy Efficiency and Renewable Energy eere.energy.gov 2 Appliance & Equipment Standards Mission The Appliance and Equipment Standards Program's Mission to Fulfill its Statutory Obligation to: * Develop and amend energy conservation standards that achieve the maximum energy efficiency that is technologically feasible and economically justified. * Develop and amend test procedures that are repeatable, reproducible, representative,

  18. Hydrogen Equipment Certification Guide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Equipment Certification Guide U.S. Department of Energy Fuel Cell Technologies Office December 10 th , 2015 Presenter: Nick Barilo Pacific Northwest National Laboratory (PNNL) Hydrogen Safety Program Manager DOE Host: Will James - DOE Fuel Cell Technologies Office 2 | Fuel Cell Technologies Office eere.energy.gov Question and Answer * Please type your questions into the question box 2 / / Hydrogen Equipment Certification Guide: Introduction and Kickoff for the Stakeholder Review Nick Barilo PNNL

  19. Thermoelectric Waste Heat Recovery Program for Passenger Vehicles |

    Broader source: Energy.gov (indexed) [DOE]

    High Efficiency Hybrid Vehicles | Department of Energy This project discusses preliminary experimental results to find how thermoelectrics can be applied ot future hybrid vehicles and the optimum design of such equipment using heat pipes deer09_kim.pdf (628.26 KB) More Documents & Publications Low and high Temperature Dual Thermoelectric Generation Waste Heat Recovery System for Light-Duty Vehicles A Thermoelectric Generator with an Intermediate Heat Exchanger for Automotive Waste Heat

  20. Electric drive mechanism for vehicles

    SciTech Connect (OSTI)

    Bader, C.

    1983-06-21

    An electric drive mechanism is disclosed for vehicles, especially buses with overhead trolley routes, which routes are provided with relatively short interruptions in the overhead trolley. The drive mechanism includes a flywheel two externally excited electric motors which are adapted to be switched over from prime mover operation to generator operation, and which motors are effective as a ward-leonard drive during flywheel operation. The first electric motor is constructed for half of a maximum drive power and the second electric motor is likewise constructed for half or for square root 2/2 times the maximum drive power. Both electric motors are connected electrically in parallel during operation from the main electrical supply. The first and second motors are electrically connected in parallel during operation of the vehicle from the main electrical supply when a change-speed transmission is provided for connecting a drive shaft of one of the motors with driven vehicle wheels. A planetary gear transmission and a further transmission are provided for mechanically connecting the drive shaft of one of the motors with the second motor and with the flywheel.

  1. CBTL Design Case Summary Conventional Feedstock Supply System - Herbaceous

    SciTech Connect (OSTI)

    Christopher T. Wright; Erin M. Searcy

    2012-02-01

    A conventional bale feedstock design has been established that represents supply system technologies, costs, and logistics that are achievable today for supplying herbaceous feedstocks as a blendstock with coal for energy production. Efforts are made to identify bottlenecks and optimize the efficiency and capacities of this supply system, within the constraints of existing local feedstock supplies, equipment, and permitting requirements. The feedstock supply system logistics operations encompass all of the activities necessary to move herbaceous biomass feedstock from the production location to the conversion reactor ready for blending and insertion. This supply system includes operations that are currently available such that costs and logistics are reasonable and reliable. The system modeled for this research project includes the uses of field-dried corn stover or switchgrass as a feedstock to annually supply an 800,000 DM ton conversion facility.

  2. Analysis of Off-Board Powered Thermal Preconditioning in Electric Drive Vehicles: Preprint

    SciTech Connect (OSTI)

    Barnitt, R. A.; Brooker, A. D.; Ramroth, L.; Rugh , J.; Smith, K. A.

    2010-12-01

    Following a hot or cold thermal soak, vehicle climate control systems (air conditioning or heat) are required to quickly attain a cabin temperature comfortable to the vehicle occupants. In a plug-in hybrid electric or electric vehicle (PEV) equipped with electric climate control systems, the traction battery is the sole on-board power source. Depleting the battery for immediate climate control results in reduced charge-depleting (CD) range and additional battery wear. PEV cabin and battery thermal preconditioning using off-board power supplied by the grid or a building can mitigate the impacts of climate control. This analysis shows that climate control loads can reduce CD range up to 35%. However, cabin thermal preconditioning can increase CD range up to 19% when compared to no thermal preconditioning. In addition, this analysis shows that while battery capacity loss over time is driven by ambient temperature rather than climate control loads, concurrent battery thermal preconditioning can reduce capacity loss up to 7% by reducing pack temperature in a high ambient temperature scenario.

  3. Vehicles | Open Energy Information

    Open Energy Info (EERE)

    our nation's growing reliance on imported oil by running our vehicles on renewable and alternative fuels. Advanced vehicles and fuels can also put the brakes on air pollution...

  4. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 1. U.S. Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2014 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 248,959 - - - - 235,269 8,443 10,330 474,643 7,698 0

  5. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    0.PDF Table 10. PAD District 4 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 2014 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 573 - - - - 309

  6. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    1.PDF Table 11. PAD District 5 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2014 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 35,538 -

  7. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    2.PDF Table 12. PAD District 5 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 2014 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 1,146 - - - -

  8. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    .PDF Table 2. U.S. Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 2014 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 8,031 - - - - 7,589 272 333 15,311 248 0 Natural Gas Plant

  9. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    .PDF Table 3. PAD District 1 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2014 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 1,408 - -

  10. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    TABLE4.PDF Table 4. PAD District 1 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 2014 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 45 - - - -

  11. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    TABLE5.PDF Table 5. PAD District 2 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2014 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil .............................................................

  12. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    TABLE6.PDF Table 6. PAD District 2 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 2014 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 1,529 - - -

  13. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    TABLE7.PDF Table 7. PAD District 3 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2014 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6 ............................................................

  14. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    TABLE8.PDF Table 8. PAD District 3 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 2014 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6 ............................................................ 4,737 - - -

  15. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    TABLE9.PDF Table 9. PAD District 4 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2014 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil .............................................................

  16. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    June 2016 Table 1. U.S. Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, June 2016 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 261,028 - - - - 228,320 3,220 -11,881 492,960

  17. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    5 June 2016 Table 10. PAD District 2 - Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-June 2016 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil

  18. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    6 June 2016 Table 11. PAD District 2 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, June 2016 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 1,673 - - - -

  19. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    7 June 2016 Table 12. PAD District 2 - Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-June 2016 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil

  20. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    8 June 2016 Table 13. PAD District 3 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, June 2016 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6 ............................................................

  1. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    9 June 2016 Table 14. PAD District 3 - Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-June 2016 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6

  2. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    0 June 2016 Table 15. PAD District 3 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, June 2016 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6 ............................................................ 5,357 - - -

  3. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    1 June 2016 Table 16. PAD District 3 - Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-June 2016 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6

  4. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    2 June 2016 Table 17. PAD District 4 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, June 2016 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6 ............................................................

  5. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    3 June 2016 Table 18. PAD District 4 - Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-June 2016 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6

  6. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    4 June 2016 Table 19. PAD District 4 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, June 2016 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 643 - - - -

  7. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    June 2016 Table 2. U.S. Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-June 2016 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 1,639,778 - - - - 1,420,355

  8. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    5 June 2016 Table 20. PAD District 4 - Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-June 2016 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil

  9. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    6 June 2016 Table 21. PAD District 5 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, June 2016 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil .............................................................

  10. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    7 June 2016 Table 22. PAD District 5 - Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-June 2016 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil

  11. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    8 June 2016 Table 23. PAD District 5 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, June 2016 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 983 - - - -

  12. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    9 June 2016 Table 24. PAD District 5 - Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-June 2016 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil

  13. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    June 2016 Table 3. U.S. Daily Average Supply and Disposition of Crude Oil and Petroleum Products, June 2016 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 8,701 - - - - 7,611 107 -396 16,432 383 0 Natural Gas Plant

  14. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    June 2016 Table 4. U.S. Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-June 2016 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 9,010 - - - - 7,804 34 259 16,107 481

  15. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    June 2016 Table 5. PAD District 1 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, June 2016 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 1,348 -

  16. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    June 2016 Table 6. PAD District 1 - Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-June 2016 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil

  17. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    June 2016 Table 7. PAD District 1 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, June 2016 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 45 - - - - 900

  18. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    3 June 2016 Table 8. PAD District 1 - Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-June 2016 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil

  19. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    4 June 2016 Table 9. PAD District 2 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, June 2016 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 50,177

  20. Laboratory Equipment Donation Program - Guidelines

    Office of Scientific and Technical Information (OSTI)

    ... What equipment is available under the LEDP program? Examples of typical items of educational training apparatus or equipment that may be requested are listed below. It should be ...

  1. Health Care Buildings: Equipment Table

    U.S. Energy Information Administration (EIA) Indexed Site

    Equipment Table Buildings, Size and Age Data by Equipment Types for Health Care Buildings Number of Buildings (thousand) Percent of Buildings Floorspace (million square feet)...

  2. Self Supplied Balancing Reserves

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Self-Supplied-Balancing-Reserves Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects &...

  3. Supply Management Specialist

    Broader source: Energy.gov [DOE]

    This position is located in the Logistics Management organization (NSL), Supply Chain Services (NS), Chief Administrative Office (N). NSL manages the warehousing of materials; the investment...

  4. Petroleum Supply Monthly

    Gasoline and Diesel Fuel Update (EIA)

    Table 1. U.S. Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, September 2005 (Thousand Barrels) Field Production Refinery and Blender Net Production...

  5. Supervisory Supply Systems Analyst

    Office of Energy Efficiency and Renewable Energy (EERE)

    This position is located in Materials Management Group, which is part of the Logistics Management operations of Supply Chain Services. The Logistics Management organization manages the warehousing...

  6. Advanced Feedstock Supply System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Feedstock Logistics Energy Efficiency & Renewable Energy eere.energy.gov 2 * Technologies exist to supply biomass for energy production, but they have limits * Cost, quantity, ...

  7. S/EV 91: Solar and electric vehicle symposium, car and trade show. Proceedings

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    These proceedings cover the fundamentals of electric vehicles. Papers on the design, testing and performance of the power supplies, drive trains, and bodies of solar and non-solar powered electric vehicles are presented. Results from demonstrations and races are described. Public policy on the economics and environmental impacts of using electric powered vehicles is also presented.

  8. S/EV 91: Solar and electric vehicle symposium, car and trade show

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    These proceedings cover the fundamentals of electric vehicles. Papers on the design, testing and performance of the power supplies, drive trains, and bodies of solar and non-solar powered electric vehicles are presented. Results from demonstrations and races are described. Public policy on the economics and environmental impacts of using electric powered vehicles is also presented.

  9. Equipment Operational Requirements

    SciTech Connect (OSTI)

    Greenwalt, B; Henderer, B; Hibbard, W; Mercer, M

    2009-06-11

    The Iraq Department of Border Enforcement is rich in personnel, but poor in equipment. An effective border control system must include detection, discrimination, decision, tracking and interdiction, capture, identification, and disposition. An equipment solution that addresses only a part of this will not succeed, likewise equipment by itself is not the answer without considering the personnel and how they would employ the equipment. The solution should take advantage of the existing in-place system and address all of the critical functions. The solutions are envisioned as being implemented in a phased manner, where Solution 1 is followed by Solution 2 and eventually by Solution 3. This allows adequate time for training and gaining operational experience for successively more complex equipment. Detailed descriptions of the components follow the solution descriptions. Solution 1 - This solution is based on changes to CONOPs, and does not have a technology component. It consists of observers at the forts and annexes, forward patrols along the swamp edge, in depth patrols approximately 10 kilometers inland from the swamp, and checkpoints on major roads. Solution 2 - This solution adds a ground sensor array to the Solution 1 system. Solution 3 - This solution is based around installing a radar/video camera system on each fort. It employs the CONOPS from Solution 1, but uses minimal ground sensors deployed only in areas with poor radar/video camera coverage (such as canals and streams shielded by vegetation), or by roads covered by radar but outside the range of the radar associated cameras. This document provides broad operational requirements for major equipment components along with sufficient operational details to allow the technical community to identify potential hardware candidates. Continuing analysis will develop quantities required and more detailed tactics, techniques, and procedures.

  10. Accuracy of Petroleum Supply Data

    Reports and Publications (EIA)

    2009-01-01

    Accuracy of published data in the Weekly Petroleum Status Report, the Petroleum Supply Monthly, and the Petroleum Supply Annual.

  11. Hydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping Analysis.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 22, 2002-July 22, 2002 | Department of Energy Supply: Cost Estimate for Hydrogen Pathways-Scoping Analysis. January 22, 2002-July 22, 2002 Hydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping Analysis. January 22, 2002-July 22, 2002 A report showing a comparative scooping economic analysis of 19 pathways for producing, handling, distributing, and dispensing hydrogen for fuel cell vehicle applications. 32525.pdf (1.48 MB) More Documents & Publications Analysis of a Cluster

  12. Power Charging and Supply System for Electric Vehicles - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DescriptionThe technology integrates the battery-charging function into the electrical motor drive system. By using only the onboard inverter and motor without adding any inductors ...

  13. Medium Duty Electric Vehicle Demonstration Project

    SciTech Connect (OSTI)

    Mackie, Robin J. D.

    2015-05-31

    The Smith Electric Vehicle Demonstration Project (SDP) was integral to the Smith business plan to establish a manufacturing base in the United States (US) and produce a portfolio of All Electric Vehicles (AEV’s) for the medium duty commercial truck market. Smith focused on the commercial depot based logistics market, as it represented the market that was most ready for the early adoption of AEV technology. The SDP enabled Smith to accelerate its introduction of vehicles and increase the size of its US supply chain to support early market adoption of AEV’s that were cost competitive, fully met the needs of a diverse set of end users and were compliant with Federal safety and emissions requirements. The SDP accelerated the development and production of various electric drive vehicle systems to substantially reduce petroleum consumption, reduce vehicular emissions of greenhouse gases (GHG), and increase US jobs.

  14. Emergency Facilities and Equipment

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21

    This volume clarifies requirements of DOE O 151.1 to ensure that emergency facilities and equipment are considered as part of emergency management program and that activities conducted at these emergency facilities are fully integrated. Canceled by DOE G 151.1-4.

  15. Heavy Vehicle Simulator

    SciTech Connect (OSTI)

    2015-03-09

    Idaho National Laboratory Heavy Vehicle Simulator located at the Center for Advanced Energy Studies.

  16. Propane Vehicle Basics

    Broader source: Energy.gov [DOE]

    There are more than 147,000 on-road propane vehicles in the United States. Many are used in fleets, including light- and heavy-duty trucks, buses, taxicabs, police cars, and rental and delivery vehicles. Compared with vehicles fueled with conventional diesel and gasoline, propane vehicles can produce fewer harmful emissions.

  17. Sandia National Laboratories: Supported Equipment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supported Equipment Alt text This list of PSL supported equipment identifies the electrical Measuring and Test Equipment (M&TE) for which the Primary Standards Laboratory has either developed a calibration procedure or identified a commercial calibration source. Calibration of equipment that is not listed may take additional time and resources. Please contact the PSL at 845-8855 for additional information.

  18. Hydrogen-Enhanced Natural Gas Vehicle Program

    SciTech Connect (OSTI)

    Hyde, Dan; Collier, Kirk

    2009-01-22

    The project objective is to demonstrate the viability of HCNG fuel (30 to 50% hydrogen by volume and the remainder natural gas) to reduce emissions from light-duty on-road vehicles with no loss in performance or efficiency. The City of Las Vegas has an interest in alternative fuels and already has an existing hydrogen refueling station. Collier Technologies Inc (CT) supplied the latest design retrofit kits capable of converting nine compressed natural gas (CNG) fueled, light-duty vehicles powered by the Ford 5.4L Triton engine. CT installed the kits on the first two vehicles in Las Vegas, trained personnel at the City of Las Vegas (the City) to perform the additional seven retrofits, and developed materials for allowing other entities to perform these retrofits as well. These vehicles were used in normal service by the City while driver impressions, reliability, fuel efficiency and emissions were documented for a minimum of one year after conversion. This project has shown the efficacy of operating vehicles originally designed to operate on compressed natural gas with HCNG fuel incorporating large quantities of exhaust gas recirculation (EGR). There were no safety issues experienced with these vehicles. The only maintenance issue in the project was some rough idling due to problems with the EGR valve and piping parts. Once the rough idling was corrected no further maintenance issues with these vehicles were experienced. Fuel economy data showed no significant changes after conversion even with the added power provided by the superchargers that were part of the conversions. Driver feedback for the conversions was very favorable. The additional power provided by the HCNG vehicles was greatly appreciated, especially in traffic. The drivability of the HCNG vehicles was considered to be superior by the drivers. Most of the converted vehicles showed zero oxides of nitrogen throughout the life of the project using the State of Nevada emissions station.

  19. Yeager Airport Hydrogen Vehicle Test Project

    SciTech Connect (OSTI)

    Davis, Williams

    2015-10-01

    The scope of this project was changed during the course of the project. Phase I of the project was designed to have the National Alternative Fuels Training Consortium (NAFTC), together with its partners, manage the Hydrogen Vehicle Test Project at the Yeager Airport in conjunction with the Central West Virginia Regional Airport Authority (CWVRAA) in coordination with the United States Department of Energy National Energy Technology Laboratory (U.S. DOE NETL). This program would allow testing and evaluation of the use of hydrogen vehicles in the state of West Virginia utilizing the hydrogen fueling station at Yeager Airport. The NAFTC and CWVRAA to raise awareness and foster a greater understanding of hydrogen fuel and hydrogen-powered vehicles through a targeted utilization and outreach and education effort. After initial implementation of the project, the project added, determine the source(s) of supply for hydrogen powered vehicles that could be used for the testing. After completion of this, testing was begun at Yeager Airport. During the course of the project, the station at Yeager Airport was closed and moved to Morgantown and the West Virginia University Research Corporation. The vehicles were then moved to Morgantown and a vehicle owned by the CWVRAA was purchased to complete the project at the new location. Because of a number of issues detailed in the report for DE-FE0002994 and in this report, this project did not get to evaluate the effectiveness of the vehicles as planned.

  20. CBTL Design Case Summary Conventional Feedstock Supply System - Woody

    SciTech Connect (OSTI)

    Christopher T. Wright; Erin M. Searcy

    2012-02-01

    A conventional woody feedstock design has been developed that represents supply system technologies, costs, and logistics that are achievable today for supplying woody biomass as a blendstock with coal for energy production. Efforts are made to identify bottlenecks and optimize the efficiency and capacities of this supply system, within the constraints and consideration of existing local feedstock supplies, equipment, and permitting requirements. The feedstock supply system logistics operations encompass all of the activities necessary to move woody biomass from the production location to the conversion reactor ready for blending and insertion. This supply system includes operations that are currently available such that costs and logistics are reasonable and reliable. The system modeled for this research project includes the use of the slash stream since it is a more conservative analysis and represents the material actually used in the experimental part of the project.

  1. Transition to Ultra-Low-Sulfur Diesel Fuel: Effects on Prices and Supply, The

    Reports and Publications (EIA)

    2001-01-01

    This report discusses the implications of the new regulations for vehicle fuel efficiency and examines the technology, production, distribution, and cost implications of supplying diesel fuel to meet the new standards.

  2. Automating power supply checkout

    SciTech Connect (OSTI)

    Laster, J.; Bruno, D.; D'Ottavio, T.; Drozd, J.; Marr, G.; Mi, C.

    2011-03-28

    Power Supply checkout is a necessary, pre-beam, time-critical function. At odds are the desire to decrease the amount of time to perform the checkout while at the same time maximizing the number and types of checks that can be performed and analyzing the results quickly (in case any problems exist that must be addressed). Controls and Power Supply Group personnel have worked together to develop tools to accomplish these goals. Power Supply checkouts are now accomplished in a time-frame of hours rather than days, reducing the number of person-hours needed to accomplish the checkout and making the system available more quickly for beam development. The goal of the Collider-Accelerator Department (CAD) at Brookhaven National Laboratory is to provide experimenters with collisions of heavy-ions and polarized protons. The Relativistic Heavy-Ion Collider (RHIC) magnets are controlled by 100's of varying types of power supplies. There is a concentrated effort to perform routine maintenance on the supplies during shutdown periods. There is an effort at RHIC to streamline the time needed for system checkout in order to quickly arrive at a period of beam operations for RHIC. This time-critical period is when the checkout of the power supplies is performed as the RHIC ring becomes cold and the supplies are connected to their physical magnets. The checkout process is used to identify problems in voltage and current regulation by examining data signals related to each for problems in settling and regulation (ripple).

  3. Maintaining gas cooling equipment

    SciTech Connect (OSTI)

    Rector, J.D.

    1997-05-01

    An often overlooked key to satisfactory operation and longevity of any mechanical device is proper operation and maintenance in accordance with the manufacturer`s written instructions. Absorption chillers, although they use a different technology than the more familiar vapor compression cycle to produce chilled water, operate successfully in a variety of applications if operated and maintained properly. Maintenance procedures may be more frequent than those required for vapor compression chillers, but they are also typically less complex. The goal of this article is to describe the basic operation of an absorption chiller to provide an understanding of the relatively simple tasks required to keep the machine operating at maximum efficiency for its design life and beyond. A good starting point is definitions. Gas cooling equipment is generally defined as alternative energy, non-electric cooling products. This includes absorption chillers, engine-drive chillers and packaged desiccant units, among others. Natural gas combustion drives the equipment.

  4. Sources for Office Supplies

    Broader source: Energy.gov [DOE]

    Consistent with the Office of Management and Budget's savings mandates and the Acting Director of the Office of Procurement and Assistance Management's memorandum entitled "Sources for Office Supplies," dated September 9, 2011, the Department of Energy (DOE) supports utilization of: (1) the General Service Administration's (GSA) Blanket Purchase Agreements (BPA) under the Federal Strategic Sourcing Initiative for Office Supplies Second Generation (FSSI OS2); and/or (2) the DOE's AbilityOne Supply Stores, Paperclips, Etc., (Forrestal Building and Germantown). More information on the FSSI can be found at http://www.gsa.gov/fssi.

  5. Lifting BLS Power Supplies

    SciTech Connect (OSTI)

    Sarychev, Michael

    2007-08-01

    This note describes BLS power supplies lifting techniques and provides stress calculations for lifting plate and handles bolts. BLS power supply weight is about 120 Lbs, with the center of gravity shifted toward the right front side. A lifting plate is used to attach a power supply to a crane or a hoist. Stress calculations show that safety factors for lifting plate are 12.9 (vs. 5 required) for ultimate stress and 5.7 (vs. 3 required) for yield stress. Safety factor for shackle bolt thread shear load is 37, and safety factor for bolts that attach handles is 12.8.

  6. Secure authenticated video equipment

    SciTech Connect (OSTI)

    Doren, N.E.

    1993-07-01

    In the verification technology arena, there is a pressing need for surveillance and monitoring equipment that produces authentic, verifiable records of observed activities. Such a record provides the inspecting party with confidence that observed activities occurred as recorded, without undetected tampering or spoofing having taken place. The secure authenticated video equipment (SAVE) system provides an authenticated series of video images of an observed activity. Being self-contained and portable, it can be installed as a stand-alone surveillance system or used in conjunction with existing monitoring equipment in a non-invasive manner. Security is provided by a tamper-proof camera enclosure containing a private, electronic authentication key. Video data is transferred communication link consisting of a coaxial cable, fiber-optic link or other similar media. A video review station, located remotely from the camera, receives, validates, displays and stores the incoming data. Video data is validated within the review station using a public key, a copy of which is held by authorized panics. This scheme allows the holder of the public key to verify the authenticity of the recorded video data but precludes undetectable modification of the data generated by the tamper-protected private authentication key.

  7. Vehicle Technologies Office: Advanced Vehicle Testing Activity...

    Energy Savers [EERE]

    The Vehicle Technologies Office (VTO) supports work to develop test procedures and carry ... The standard procedures and test specifications are used to test and collect data from ...

  8. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt066vsskarner2011

  9. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt066vsskarner2012

  10. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt072vssmackie2011o.pdf (335.31 KB

  11. Vehicle Technologies Office Merit Review 2015: Vehicle Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Overview Vehicle Technologies Office Merit Review 2015: Vehicle Technologies Office Overview Presentation given by U.S. Department of Energy at 2015 DOE ...

  12. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    3.PDF Table 13. Crude Oil Supply, Disposition, and Ending Stocks by PAD District, January 2014 (Thousand Barrels, Except Where Noted) Process PAD Districts U.S. Total 1 2 3 4 5 Total Daily Average Supply Field Production .................................................... 1,408 47,406 146,833 17,773 35,538 248,959 8,031 Alaskan ............................................................. - - - - - - - - - 16,799 542 Lower 48 States ................................................ - - - - -

  13. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    8 June 2016 Appendix D Northeast Reserves Reserves inventories are not considered to be in the commercial sector and are excluded from EIA's commercial motor gasoline and distillate fuel oil supply and disposition statistics, such as those reported in the Weekly Petroleum Status Report, Petroleum Supply Monthly, and This Week In Petroleum. Northeast Home Heating Oil Reserve classifed as ultra-low sulfur distillate (15 parts per million) Terminal Operator Location Thousand Barrels Buckeye

  14. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    0 June 2016 Table 25. Crude Oil Supply, Disposition, and Ending Stocks by PAD District, June 2016 (Thousand Barrels, Except Where Noted) Process PAD Districts U.S. Total 1 2 3 4 5 Total Daily Average Supply Field Production .................................................... 1,348 50,177 160,724 19,300 29,479 261,028 8,701 Alaskan ............................................................. - - - - - - - - - 14,103 470 Lower 48 States ................................................ - - - - -

  15. Supply Chain | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NISACSupply Chain content top National Transportation Fuels Model Posted by tmanzan on Oct 3, 2012 in | Comments 0 comments National Transportation Fuels Model This model informs analyses of the availability of transportation fuel in the event the fuel supply chain is disrupted. The portion of the fuel supply system represented by the network model (see figure) spans from oil fields to fuel distribution terminals. Different components of this system (e.g., crude oil import terminals, refineries,

  16. Fact #646: October 25, 2010 Prices for Used Vehicles Rise Sharply from 2008

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to 2010 | Department of Energy 6: October 25, 2010 Prices for Used Vehicles Rise Sharply from 2008 to 2010 Fact #646: October 25, 2010 Prices for Used Vehicles Rise Sharply from 2008 to 2010 The collapse of new vehicle sales in 2008 has led to lower sales volumes of new vehicles. Also, consumers and business are holding on to their vehicles longer. Both of these factors have resulted in a shorter supply of used vehicles, driving up the price. The graph below illustrates this effect, showing

  17. Voltage Vehicles | Open Energy Information

    Open Energy Info (EERE)

    distributor specializing in the full spectrum of electric vehicles (EV) and full-performance alternative fuel vehicles (AFV). References: Voltage Vehicles1 This article is a...

  18. Fleet Vehicles | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fleet Vehicles General Information: The Materials and Transportation Fleet Vehicle section provides acquisition, utilization and maintenance records, and disposal of vehicles used...

  19. Selecting a static uninterruptible power supply

    SciTech Connect (OSTI)

    Palko, E.

    1996-10-01

    In the not-so-distant past, quality electric power received from the utility company could be properly defined as a power supply with reasonably good voltage regulation accompanied by relatively few and brief outages. This simple but adequate definition lost all validity with the launching of the solid-state electronic revolution--and most notably, with the proliferation of digital electronics. There are numerous types of power conditioners that eliminate or minimize power quality problems on an individual basis. Such equipment includes surge suppressors that effectively arrest transient spikes, voltage regulators that cope with problems of voltage deviation, and shielded isolation transformers that effectively screen out electrical noise. There are also hybrid conditioners that combine two or more of these individual functions. But when problems are severe, and supplied systems and equipment have a low tolerance level for even occasional and minor power quality aberrations--and where operations must be maintained on total loss of power--only a uninterruptible power supply (UPS) suffices. Static UPSs are offered in three basic versions--online, line interactive, and offline. Each is described.

  20. Agricultural Equipment Technology Conference

    Broader source: Energy.gov [DOE]

    The 20th Agricultural Equipment Technology Conference will be held Feb. 8–10, 2016, in Louisville, Kentucky. The conference will bring together professionals and experts in the agricultural and biological engineering fields. Bioenergy Technologies Office (BETO) Terrestrial Feedstocks Technology Manager Sam Tagore will be in attendance. Mr. Tagore will moderate a technical session titled “Ash Reduction Strategies for Improving Biomass Feedstock Quality.” The session will include presentations by researchers from Idaho National Laboratory and Oak Ridge National Laboratory supporting BETO, as well as from university and industry.

  1. Equipment Specialist | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Equipment Specialist Equipment Specialist Submitted by admin on Sat, 2016-01-16 00:16 Job Summary Organization Name Department Of Energy Agency SubElement Bonneville Power...

  2. Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Choose a vehicle to compare fuel cost and emissions with a conventional vehicle. Select FuelTechnology Electric Hybrid Electric Plug-in Hybrid Electric Natural Gas (CNG) Flex Fuel ...

  3. Petroleum Supply Monthly

    SciTech Connect (OSTI)

    1996-02-01

    The Petroleum Supply Monthly (PSM) is one of a family of four publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other publications are the Weekly Petroleum Status Report (WPSR), the Winter Fuels Report, and the Petroleum Supply Annual (PSA). Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major U.S. geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections: Summary Statistics and Detailed Statistics.

  4. Petroleum supply monthly

    SciTech Connect (OSTI)

    1995-10-01

    The Petroleum Supply Monthly (PSM) is one of a family of four publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other publications are the Weekly Petroleum Status Report (WPSR), the Winter Fuels Report, and the Petroleum Supply Annual (PSA). Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blends, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States.

  5. Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  6. Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  7. Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  8. Advanced Electric Drive Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  9. Advanced Vehicle Electrification

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  10. Advanced Vehicle Electrification

    Office of Energy Efficiency and Renewable Energy (EERE)

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. Consumer Vehicle Technology Data

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  12. Advanced Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  13. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program (VTP) | Department of Energy Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options. 52723.pdf (1.06 MB) More Documents & Publications Sample Employee Newsletter Articles for Plug-In Electric

  14. Advanced Vehicles Manufacturing Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects DOE-LPO_ATVM-Economic-Growth_Thumbnail.png DRIVING ECONOMIC GROWTH: ADVANCED TECHNOLOGY VEHICLES

  15. Hydrogen Vehicles and Fueling Infrastructure in China

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Vehicles and Fueling Infrastructure in China Prof. Jinyang Zheng Director of IPE, Zhejiang University Director of Engineering Research Center for High Pressure Process Equipment and Safety, Ministry of Education Vice Director of China National Safety Committee of Pressure Vessels Vice President of CMES-P.R. China China Representative of ISO/TC197 and ISO/TC58 U.S. Department of Transportation and U. S. Department of Energy Workshop: Compressed Natural Gas and Hydrogen Fuels: Lessons

  16. 2015 Annual Merit Review, Vehicle Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Policy Act of 1992 VTO administers programs in support of the Energy Policy Act of 1992 (EPAct), which was passed to reduce our nation's reliance on foreign petroleum and improve air quality. Officially known as Public Law 102-486, EPAct includes provisions that address all aspects of energy supply and demand. EPAct's regulatory fleet programs require federal, state, and alternative fuel provider fleets to annually acquire a certain percentage of alternative fuel vehicles (AFVs), which are

  17. Automotive vehicle sensors

    SciTech Connect (OSTI)

    Sheen, S.H.; Raptis, A.C.; Moscynski, M.J.

    1995-09-01

    This report is an introduction to the field of automotive vehicle sensors. It contains a prototype data base for companies working in automotive vehicle sensors, as well as a prototype data base for automotive vehicle sensors. A market analysis is also included.

  18. Energy 101: Electric Vehicles

    ScienceCinema (OSTI)

    None

    2013-05-29

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

  19. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    Supply Monthly with data for June 2016 August 2016 www.eia.gov U.S. Department of Energy Washington, DC 20585 Energy Information Administration/Petroleum Supply Monthly, ii June 2016 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report

  20. Equipment Pool | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pool What is the Equipment Pool? Property that is no longer required or being used by a research group or administrative office is sent to the Ames Laboratory's warehouse Equipment Pool area for reuitilization within the Laboratory. What property is in the Equipment Pool? 1. Visit the Equipment Pool Listing page, or 2. Visit our Ames Laboratory warehouse between the hours of 7:30-4 p.m. to view the items in the equipment pool. How do I request property from the Pool? Contact Brian Aspengren,

  1. Development of natural gas vehicles in China

    SciTech Connect (OSTI)

    Zongmin, Cheng

    1996-12-31

    Past decade and current status of development of natural gas vehicles (NGVs) in China is described. By the end of 1995, 35 CNG refueling stations and 9 LPG refueling stations had been constructed in 12 regions, and 33,100 vehicles had been converted to run on CNG or LPG. China`s automobile industry, a mainstay of the national economy, is slated for accelerated development over next few years. NGVs will help to solve the problems of environment protection, GHGs mitigation, and shortage of oil supply. The Chinese government has started to promote the development of NGVs. Projects, investment demand, GHG mitigation potential, and development barriers are discussed. China needs to import advanced foreign technologies of CNGs. China`s companies expect to cooperate with foreign partners for import of CNG vehicle refueling compressors, conversions, and light cylinders, etc.

  2. Choosing an uninterruptible power supply for a hydro plant

    SciTech Connect (OSTI)

    Clemen, D.M.

    1994-06-01

    Uninterruptible power systems maintain electric power to the plant computer and other essential equipment in hydropower plants when the main power supplies fail. Project owners and engineers can ensure they obtain a reliable system by carefully analyzing plant needs and writing precise specifications.

  3. Fact #887: August 24, 2015 The United States Supplies 15% of World

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Petroleum - Dataset | Department of Energy 7: August 24, 2015 The United States Supplies 15% of World Petroleum - Dataset Fact #887: August 24, 2015 The United States Supplies 15% of World Petroleum - Dataset Excel file and dataset for The United States Supplies 15% of World Petroleum fotw#887_web.xlsx (32.08 KB) More Documents & Publications Fact #833: August 11, 2014 Fuel Economy Rated Second Most Important Vehicle Attribute - Dataset Community Solar Public Opinion Research Results

  4. Vehicle Technologies Office: Modeling, Testing, Data and Results |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Modeling, Testing, Data and Results Vehicle Technologies Office: Modeling, Testing, Data and Results Along with work in individual technologies, the Vehicle Technologies Office (VTO) funds research that explores how to connect these components and systems together in the most effective, efficient way possible. Much of this work uses specialized equipment and software that VTO developed in partnership with the national laboratories, including the industry-leading modeling

  5. Supply Chain Management Center | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Supply Chain Management Center

  6. Vehicle Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    David Howell Acting Director, Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting VEHICLE TECHNOLOGIES OFFICE June 8, 2015 2  Transportation is responsible for 69% of U.S. petroleum usage  28% of GHG emissions  On-Road vehicles responsible for 85% of transportation petroleum usage Oil Dependency is Dominated by Vehicles  16.4M LDVs sold in 2014  240 million light-duty vehicles on the road in the U.S.  10-15 years for annual sales penetration  10-15

  7. Petroleum supply monthly

    SciTech Connect (OSTI)

    Not Available

    1983-05-01

    Information on the supply and distribution of petroleum and petroleum products in the US as of March 1983 is presented. Data include statistics on crude oil, motor gasoline, distillate fuel oil, residual fuel oil, liquefied petroleum gases, imports, exports, stocks, and transport. This issue also features 2 articles entitled: Summer Gasoline Overview and Principal Factors Influencing Motor Gasoline Demand. (DMC)

  8. Supply Stores | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supply Stores Supply Stores DOE Self Service Supply Stores at Headquarters Operated by: Base Supply Center and the Winston-Salem Industries for the Blind DOE Self-Service Supply Stores Hours of Operation: 9:00 a.m. through 4:00 p.m. Monday through Friday DOE Supply Stores Locations Location Phone Fax Forrestal Room GA-171 (202) 554-1451 (202) 554-1452 (202) 554-7074 Germantown Room R-008 (301) 515-9109 (301) 515-9206 (301) 515-8751 The stores provide an Office Supply Product inventory that is

  9. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon vssarravt066karner2010p...

  10. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Broader source: Energy.gov (indexed) [DOE]

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt072vssmackie2012o.pdf (1.42 MB

  11. Proton driver power supply system

    SciTech Connect (OSTI)

    C. Jach and D. Wolff

    2002-06-03

    This paper describes magnet power supply system for a proposed Proton Driver at Fermilab. The magnet power supply system consists of resonant dipole/quadrupole power supply system, quadrupole tracking, dipole correction (horizontal and vertical) and sextupole power supply systems. This paper also describes preliminary design of the power distribution system supplying 13.8 kV power to all proton Driver electrical systems.

  12. Puerto Rico - Renewable Energy Equipment Certification | Department...

    Broader source: Energy.gov (indexed) [DOE]

    State Puerto Rico Program Type Equipment Certification Summary Certification of Photovoltaic Equipment EAA specifies that PV equipment must meet UL 1703 requirements, and...

  13. 10 Things I Love About My Electric Vehicle | Department of Energy

    Office of Environmental Management (EM)

    My employer opened a new employee parking garage equipped with 36 plug-in electric vehicle (EV) charging stations, and I was ready to park my pickup for a more fuel-efficient daily ...

  14. DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Vehicle Systems DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle Systems Merit review of DOE Vehicle Technologies Program research efforts 2009_merit_review_1.pdf (888.1 KB) More Documents & Publications DOE Vehicle Technologies Program 2009 Merit Review Report DOE Vehicle Technologies Program 2009 Merit Review Report - Energy Storage DOE Vehicle Technologies Program 2009 Merit Review Report - Propulsion Materials

  15. Vehicle Technologies Office: AVTA - Medium and Heavy Duty Vehicle Data

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Results | Department of Energy Medium and Heavy Duty Vehicle Data and Results Vehicle Technologies Office: AVTA - Medium and Heavy Duty Vehicle Data and Results The Vehicle Technologies Office supports work to collect extensive data on light-duty, medium-duty and heavy-duty vehicles through the Advanced Vehicle Testing Activity (AVTA). Idaho National Laboratory and the National Renewable Energy Laboratory (NREL) test and evaluate medium and heavy-duty fleet vehicles that use hybrid

  16. 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Simulation and Testing | Department of Energy 0 DOE EERE Vehicle Technologies Program Merit Review - Vehicle Systems Simulation and Testing 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle Systems Simulation and Testing Vehicle systems research and development merit review results 2010_amr_01.pdf (1.46 MB) More Documents & Publications 2010 Annual Merit Review Results Summary 2011 Annual Merit Review Results Report - Hybrid and Vehicle Systems Technologies DOE Vehicle

  17. Safety equipment list

    SciTech Connect (OSTI)

    Lavender, J.C.; Roe, N.A.

    1995-04-13

    This analysis assigns preliminary safety class (SC) designations to major systems and structures associated with the Multi-Function Waste Tank Facility (MWTF) project in accordance with the Multi-Function QAPP, W-236A (Hall 1994). Also included are SC assignments for those subsystems and major components of the major systems discussed in this document (see Appendices A and B). Component safety classifications have been completed through inspection (using engineering judgement) for simple systems, and through use of logic models (i.e., fault trees) for complicated systems. This analysis is intended to augment the SC systems list supplied in Chapter 9 of the MWTF Preliminary Safety Analysis Report (WHC 1994). Whereas WHC (1994) only addresses select systems, this analysis addresses the SC ramifications of all MWTF systems and structures as identified in the Title 1 design media. This document provides additional analyses of the system safety classifications assignments, and classifies systems not addressed in WHC (1994). This analysis specifically describes the safety functions) that must be performed by each MWTF system.

  18. Equipment Loans | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Loans Requirements to Loan Property: Ames Laboratory may loan Government Property provided the equipment is not excess to the Laboratory's needs. In order to loan equipment, the following criteria must be met: 1) Equipment shall be used in performing research, studies, and other efforts that result in benefits to both the U.S. Government, the borrower, and provided that the DOE mission is not affected. 2) Used by another DOE organization, contractor, Government agency, or organization that has a

  19. LANSCE | Lujan Center | Ancillary Equipment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ancillary Equipment For general questions, please contact the Lujan Center Sample Environments responsible: Victor Fanelli | vfanelli@lanl.gov | 505.667.8755 Sample and Equipment Shipping Instructions For questions regarding shipping procedures, contact the Lujan Center Experiment Coordinator: TBA Low Temperature Equipment Specifications Flight Path/Instrument Compatibility Responsible Displex closed-cycle refrigerators Tmin= 4 K to 12 K Tmax= 300 K to 340 K 11 - Asterix 04 - HIPPO 03 - HIPD 10

  20. AVTA: Vehicle to Grid Power Flow Regulations and Building Codes Review

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report is a review of Vehicle-to-Grid power flow regulations and building codes, as informed by the AVTA's testing on plug-in electric vehicle charging equipment. This research was conducted by Idaho National Laboratory.

  1. AVTA: Reports on Plug-in Electric Vehicle Readiness at 3 DOD Facilities

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports analyze data and survey results on readiness for the use of plug-in electric vehicles on the Naval Air Station Jacksonville, Naval Station Mayport, and Joint Base Lewis McChord, as informed by the AVTA's testing on plug-in electric vehicle charging equipment. This research was conducted by Idaho National Laboratory.

  2. Equipment Certification | Open Energy Information

    Open Energy Info (EERE)

    Fuel Cells Geothermal Electric Hydroelectric energy Hydroelectric (Small) Natural Gas Nuclear Solar Photovoltaics Tidal Energy Wave Energy Wind energy Yes Madison - Equipment...

  3. Information technology equipment cooling system

    DOE Patents [OSTI]

    Schultz, Mark D.

    2014-06-10

    According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools warm air generated by the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat from the rack of information technology equipment.

  4. Commercial Kitchen Equipment Rebate Program

    Broader source: Energy.gov [DOE]

    Efficiency Vermont offers rebates for ENERGY STAR certified fryers, griddles, convection ovens, and steam cookers. Custom rebates for other types of commercial cooking equipment may be available...

  5. Webinar: Hydrogen Equipment Certification Guide

    Broader source: Energy.gov [DOE]

    The Fuel Cell Technologies Office will present a live webinar titled "Hydrogen Equipment Certification Guide" on Thursday, December 10, from 1 to 2 p.m. EST.

  6. INL '@work' heavy equipment mechanic

    SciTech Connect (OSTI)

    Christensen, Cad

    2008-01-01

    INL's Cad Christensen is a heavy equipment mechanic. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

  7. INL '@work' heavy equipment mechanic

    ScienceCinema (OSTI)

    Christensen, Cad

    2013-05-28

    INL's Cad Christensen is a heavy equipment mechanic. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

  8. Energy Supply Transformation Needed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supply Transformation Needed - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  9. Fact #732: June 18, 2012 Days to Turn Trend by Vehicle Class | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 2: June 18, 2012 Days to Turn Trend by Vehicle Class Fact #732: June 18, 2012 Days to Turn Trend by Vehicle Class "Days to turn" is an automotive industry term that refers to the number of days that vehicles stay in dealer inventories before they are sold (i.e., the time a vehicle stays on the dealer's lot). There are many factors that influence this number including fuel prices, the economy, and supply disruptions. The figure below shows that the days to turn by vehicle

  10. Advanced Technology Vehicle Testing

    SciTech Connect (OSTI)

    James Francfort

    2004-06-01

    The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

  11. Vehicle underbody fairing

    DOE Patents [OSTI]

    Ortega, Jason M.; Salari, Kambiz; McCallen, Rose

    2010-11-09

    A vehicle underbody fairing apparatus for reducing aerodynamic drag caused by a vehicle wheel assembly, by reducing the size of a recirculation zone formed under the vehicle body immediately downstream of the vehicle wheel assembly. The fairing body has a tapered aerodynamic surface that extends from a front end to a rear end of the fairing body with a substantially U-shaped cross-section that tapers in both height and width. Fasteners or other mounting devices secure the fairing body to an underside surface of the vehicle body, so that the front end is immediately downstream of the vehicle wheel assembly and a bottom section of the tapered aerodynamic surface rises towards the underside surface as it extends in a downstream direction.

  12. Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Choose a vehicle to compare fuel cost and emissions with a conventional vehicle. Select Fuel/Technology Electric Hybrid Electric Plug-in Hybrid Electric Natural Gas (CNG) Flex Fuel (E85) Biodiesel (B20) Next Vehicle Cost Calculator Update Your Widget Code This widget version will stop working on March 31. Update your widget code. × Widget Code Select All Close U.S. Department of Energy Energy Efficiency and Renewable Energy

  13. Vehicle Lightweighting: 40% and 45% Weight Savings Analysis: Technical Cost Modeling for Vehicle Lightweighting

    SciTech Connect (OSTI)

    Mascarin, Anthony; Hannibal, Ted; Raghunathan, Anand; Ivanic, Ziga; Francfort, James

    2015-04-01

    The U.S. Department of Energy’s Vehicle Technologies Office, Materials area commissioned a study to model and assess manufacturing economics of alternative design and production strategies for a series of lightweight vehicle concepts. The strategic targets were a 40% and a 45% mass reduction relative to a standard North American midsize passenger sedan at an effective cost of $3.42 per pound (lb) saved. The baseline vehicle was an average of several available vehicles in this class. Mass and cost breakdowns from several sources were used, including original equipment manufacturers’ (OEMs’) input through U.S. Department of Energy’s Vehicle Technologies Office programs and public presentations, A2Mac1 LLC’s teardown information, Lotus Engineering Limited and FEV, Inc. breakdowns in their respective lightweighting studies, and IBIS Associates, Inc.’s decades of experience in automotive lightweighting and materials substitution analyses. Information on lightweighting strategies in this analysis came from these same sources and the ongoing U.S. Department of Energy-funded Vehma International of America, Inc. /Ford Motor Company Multi-Material Lightweight Prototype Vehicle Demonstration Project, the Aluminum Association Transportation Group, and many United States Council for Automotive Research’s/United States Automotive Materials Partnership LLC lightweight materials programs.

  14. Energy 101: Electric Vehicles

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs.

  15. Vehicle Technologies Office: Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    To support DOE's goal to provide clean and secure energy, the Vehicle Technologies Office (VTO) invests in research and development that:

  16. Ford's CNG vehicle research

    SciTech Connect (OSTI)

    Nichols, R.J.

    1983-06-01

    Several natural gas vehicles have been built as part of Ford's Alternative Fuel Demonstration Fleet. Two basic methods, compressed gas (CNG), and liquified gas (LNG) were used. Heat transfer danger and the expense and special training needed for LNG refueling are cited. CNG in a dual-fuel engine was demonstrated first. The overall results were unsatisfactory. A single fuel LNG vehicle was then demonstrated. Four other demonstrations, testing different tank weights and engine sizes, lead to the conclusion that single fuel vehicles optimized for CNG use provide better fuel efficiency than dual-fuel vehicles. Lack of public refueling stations confines use to fleet operations.

  17. Railway vehicle body structures

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    The strength and durability of railway vehicle structures is a major topic of engineering research and design. To reflect this importance the Railway Division of the Institution of Mechanical Engineers organised a conference to discuss all matters relating to railway vehicle design. This book presents the papers discussed in that conference. The contents include: Vehicle body design and the UIC's international contribution; LUL prototype 1986 stock - body structure; vehicle structure for the intermediate capacity transmit system vehicles; car body technology of advanced light rapid transit vehicles; concepts, techniques and experience in the idealization of car body structures for finite element analysis; Calcutta metropolitan railway; design for a lightweight diesel multiple unit body; the design of lightweight inter-city coal structures; the BREL international coach body shell structure; new concepts and design techniques versus material standards; structures of BR diesel electric freight locomotives; structural design philosophy for electric locomotives; suspension design for a locomotive with low structural frequencies; freight wagon structures; a finite element study of coal bodyside panels including the effects of joint flexibility; a fresh approach to the problem of car body design strength; energy absorption in automatic couplings and draw gear; passenger vehicle design loads and structural crashworthiness; design of the front part of railway vehicles (in case of frontal impact); the development of a theoretical technique for rail vehicle structural crashworthiness.

  18. Integrated Vehicle Thermal Management

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  19. Advanced Vehicle Electrification

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  20. Advanced Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  1. Proceedings: Substation equipment diagnostics conference

    SciTech Connect (OSTI)

    Lyons, K.L.

    1994-07-01

    This Substation Equipment Diagnostics Conference held November 3--5, 1993, in New Orleans, Louisiana, reviewed the status of EPRI research on transmission substation diagnostics as well as that of universities, manufacturers, testing organizations, and other researchers. The papers presented were organized under four categories of diagnostics: Transformers, Circuit Breakers, Other Substation Equipment, and Diagnostic Systems.

  2. Advanced Vehicle Electrification and Transportation Sector Electrifica...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity Advanced Vehicle...

  3. Information technology equipment cooling method

    DOE Patents [OSTI]

    Schultz, Mark D.

    2015-10-20

    According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools air utilized by the rack of information technology equipment to cool the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat generated by the rack of information technology equipment.

  4. Diversifying Supply | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Diversifying Supply diagram for focus area 1 diversifying supply (A click on the org chart image will lead to a pdf version that includes hotlinks for the e-mail addresses of the leaders.)

  5. Direct Liquid Cooling for Electronic Equipment

    SciTech Connect (OSTI)

    Coles, Henry; Greenberg, Steve

    2014-03-01

    This report documents a demonstration of an electronic--equipment cooling system in the engineering prototype development stage that can be applied in data centers. The technology provides cooling by bringing a water--based cooling fluid into direct contact with high--heat--generating electronic components. This direct cooling system improves overall data center energy efficiency in three ways: High--heat--generating electronic components are more efficiently cooled directly using water, capturing a large portion of the total electronic equipment heat generated. This captured heat reduces the load on the less--efficient air--based data center room cooling systems. The combination contributes to the overall savings. The power consumption of the electronic equipment internal fans is significantly reduced when equipped with this cooling system. The temperature of the cooling water supplied to the direct cooling system can be much higher than that commonly provided by facility chilled water loops, and therefore can be produced with lower cooling infrastructure energy consumption and possibly compressor-free cooling. Providing opportunities for heat reuse is an additional benefit of this technology. The cooling system can be controlled to produce high return water temperatures while providing adequate component cooling. The demonstration was conducted in a data center located at Lawrence Berkeley National Laboratory in Berkeley, California. Thirty--eight servers equipped with the liquid cooling system and instrumented for energy measurements were placed in a single rack. Two unmodified servers of the same configuration, located in an adjacent rack, were used to provide a baseline. The demonstration characterized the fraction of heat removed by the direct cooling technology, quantified the energy savings for a number of cooling infrastructure scenarios, and provided information that could be used to investigate heat reuse opportunities. Thermal measurement data were used

  6. Feedstock Supply | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supply Feedstock Supply The development of efficient, sustainable biomass feedstock supply systems supports a diversified energy portfolio and increased U.S. competitiveness in the global quest for clean energy technologies. This page provides information directly related to feedstock supply: Feedstock Types Feedstock Production Sustainability. Feedstock Types A variety of biomass feedstocks can be used to produce energy (including transportation fuels) and bio-based products. The Bioenergy

  7. Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle...

    Energy Savers [EERE]

    Plug-in Electric Vehicle On-Road Demonstration Data Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle On-Road Demonstration Data Through the American Recovery and ...

  8. Fact #842: October 13, 2014 Vehicles and Vehicle Travel Trends...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    As the U.S. population has doubled from 1950 to 2012, the number of vehicles has grown ... Population and Vehicle Growth Comparison, 1950-2012 Graph showing population and vehicle ...

  9. Laboratory to change vehicle traffic-screening regimen at vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Changes to vehicle traffic-screening Laboratory to change vehicle traffic-screening regimen at vehicle inspection station Lanes two through five will be open 24 hours a day and...

  10. Field power measurements of imaging equipment

    SciTech Connect (OSTI)

    McWhinney, Marla; Homan, Gregory; Brown, Richard; Roberson, Judy; Nordman, Bruce; Busch, John

    2004-05-14

    According to the U.S. Department of Energy, electricity use by non-PC commercial office equipment is growing at an annual rate of nearly 5 percent (AEO 2003). To help address this growth in consumption, U.S. EPA periodically updates its ENERGY STAR specifications as products and markets change. This report presents background research conducted to help EPA update the ENERGY STAR specification for imaging equipment, which covers printers, fax machines, copiers, scanners, and multifunction devices (MFDs). We first estimated the market impact of the current ENERGY STAR imaging specification, finding over 90 percent of the current market complies with the specification. We then analyzed a sample of typical new imaging products, including 11 faxes, 57 printers and 19 copiers/MFD. For these devices we metered power levels in the most common modes: active/ready/sleep/off, and recorded features that would most likely affect energy consumption. Our metering indicates that for many products and speed bins, current models consume substantially less power than the current specification. We also found that for all product categories, power consumption varied most considerably across technology (i.e. inkjet vs. laser). Although inkjet printers consumed less energy than laser printers in active, ready and sleep-mode, they consumed more power on average while off, mostly due to the use of external power supplies. Based on these findings, we developed strategies for the ENERGY STAR program to achieve additional energy reductions. Finally, we present an assessment of manufacturer's ENERGY STAR labeling practices.

  11. American Electric Vehicles Inc | Open Energy Information

    Open Energy Info (EERE)

    Vehicles Inc Jump to: navigation, search Name: American Electric Vehicles Inc Place: Palmer Lake, Colorado Zip: 80133 Sector: Vehicles Product: American Electric Vehicles (AEV)...

  12. Electric-Drive Vehicle Basics (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-04-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  13. Hydrogen storage and supply system - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    36,324 Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Find More Like This Return to Search Hydrogen storage and supply system United

  14. Venezuela natural gas for vehicles project

    SciTech Connect (OSTI)

    Marsicobetre, D.; Molero, T.

    1998-12-31

    The Natural Gas for Vehicles (NGV) Project in Venezuela describes the development and growth of the NGV project in the country. Venezuela is a prolific oil producer with advanced exploration, production, refining and solid marketing infrastructure. Gas production is 5.2 Bscfd. The Venezuelan Government and the oil state owned company Petroleos de Venezuela (PDVSA), pursued the opportunity of using natural gas for vehicles based on the huge amounts of gas reserves present and produced every day associated with the oil production. A nationwide gas pipeline network crosses the country from south to west reaching the most important cities and serving domestic and industrial purposes but there are no facilities to process or export liquefied natural gas. NGV has been introduced gradually in Venezuela over the last eight years by PDVSA. One hundred forty-five NGV stations have been installed and another 25 are under construction. Work done comprises displacement or relocation of existing gasoline equipment, civil work, installation and commissioning of equipment. The acceptance and usage of the NGV system is reflected in the more than 17,000 vehicles that have been converted to date using the equivalent of 2,000 bbl oil/day.

  15. Vehicle Technologies Office - AVTA: Hybrid-Electric Delivery Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Delivery Vehicles Vehicle Technologies Office - AVTA: Hybrid-Electric Delivery Vehicles The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following set of reports (part of the medium and

  16. Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Tractor Vehicles Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following set of reports (part of the medium and

  17. Vehicle Technologies Office Merit Review 2015: Vehicle Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview | Department of Energy Vehicle Technologies Office Overview Vehicle Technologies Office Merit Review 2015: Vehicle Technologies Office Overview Presentation given by U.S. Department of Energy at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation meeting about Vehicle Technologies Office overview. 02_howell_plenary_2015_amr.pdf (3.45 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2016:

  18. Vehicle Technologies Office: 2009 Advanced Vehicle Technology Analysis and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report | Department of Energy Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2009 Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report 2009_avtae_hvso.pdf (22.02 MB) More Documents & Publications Well-to-Wheels Analysis

  19. Vehicle Technologies Office: 2015 Vehicle Systems Annual Progress Report |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Vehicle Systems Annual Progress Report Vehicle Technologies Office: 2015 Vehicle Systems Annual Progress Report The Vehicle Systems research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to advancing light-, medium-, and heavy-duty vehicle systems to help maximize the number of electric

  20. Vehicle Technologies Office: Key Activities in Vehicles | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy About the Vehicle Technologies Office » Vehicle Technologies Office: Key Activities in Vehicles Vehicle Technologies Office: Key Activities in Vehicles We conduct work in four key areas to develop and deploy vehicle technologies that reduce the use of petroleum while maintaining or improving performance, power, and comfort. Research and development (R&D); testing and analysis; government and community stakeholder support; and education help people access and use efficient, clean

  1. Vehicle Technologies Office: Natural Gas Vehicle Research and Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (R&D) | Department of Energy Alternative Fuels » Vehicle Technologies Office: Natural Gas Vehicle Research and Development (R&D) Vehicle Technologies Office: Natural Gas Vehicle Research and Development (R&D) Natural gas offers opportunities for reducing the use of petroleum in transportation, especially in medium- and heavy-duty vehicles. These fleets, which include a variety of vehicles such as transit buses, refuse haulers, delivery trucks, and long-haul trucks, currently

  2. DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid and Vehicle Systems Technologies Introduction Hybrid and vehicle systems research provides an overarching vehicle systems perspective to the technology research and development (R&D) activities of the U.S. Department of Energy's (DOE's) vehicle research programs, and identifies major opportunities for improving vehicle efficiencies. The effort evaluates and validates the integration of technologies, provides component and vehicle benchmarking, develops and validates heavy hybrid

  3. Vehicle Technologies Office: Advanced Vehicle Testing Activity (AVTA) Data

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Results | Department of Energy Advanced Vehicle Testing Activity (AVTA) Data and Results Vehicle Technologies Office: Advanced Vehicle Testing Activity (AVTA) Data and Results The Vehicle Technologies Office (VTO) supports work to develop test procedures and carry out testing on a wide range of advanced vehicles and technologies through the Advanced Vehicle Testing Activity (AVTA). This effort collects performance data from a wide range of light-duty alternative fuel and advanced

  4. Vehicle Technologies Office: Plug-In Electric Vehicles and Batteries |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Plug-In Electric Vehicles and Batteries Vehicle Technologies Office: Plug-In Electric Vehicles and Batteries Vehicle Technologies Office: Plug-In Electric Vehicles and Batteries With their immense potential for increasing the country's energy, economic, and environmental security, plug-in electric vehicles (PEVs, including plug-in hybrid electric and all-electric) will play a key role in the country's transportation future. In fact, transitioning to a mix of plug-in

  5. Vehicle Technologies Office Merit Review 2015: Consumer Vehicle Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data | Department of Energy Consumer Vehicle Technology Data Vehicle Technologies Office Merit Review 2015: Consumer Vehicle Technology Data Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about consumer vehicle technology data. van003_singer_2015_o.pdf (546.73 KB) More Documents & Publications Vehicle Technologies Office Merit Review 2014: Consumer

  6. Vehicle Technologies Office Merit Review 2014: Improving Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Merit Review 2014: Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight Presentation given by Cooper Tire at 2014 DOE ...

  7. Vehicle Technologies Office Merit Review 2016: Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    Presentation given by Intertek at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Vehicle Systems

  8. Vehicle Technologies Office: 2013 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle and Systems Simulation and Testing R&D Annual Progress Report ... FY 2013 annual report focuses on the following areas: ... Technologies Office: 2015 Vehicle Systems Annual ...

  9. Vehicle Technologies Office Merit Review 2015: Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    Presentation given by Intertek at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced vehicle testing and...

  10. 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Merit Review - Vehicle Systems Simulation and Testing Vehicle systems research and development merit review results PDF icon 2010amr01.pdf More Documents & ...

  11. Vehicle Technologies Office: 2012 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    areas: modeling and simulation, component and systems evaluation, laboratory and field vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. ...

  12. Vehicle Technologies Office: 2010 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    areas: modeling and simulation, component and systems evaluation, laboratory and field vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. ...

  13. Vehicle Technologies Office: 2014 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Vehicle and Systems Simulation and Testing research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many ...

  14. Vehicle Technologies Office: 2011 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    areas: modeling and simulation, component and systems evaluation, laboratory and field vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. ...

  15. Hydrogen vehicle fueling station

    SciTech Connect (OSTI)

    Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A.

    1995-09-01

    Hydrogen fueling stations are an essential element in the practical application of hydrogen as a vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology which is the link between the local storage facility and the vehicle. Because most merchant hydrogen delivered in the US today (and in the near future) is in liquid form due to the overall economics of production and delivery, we believe a practical refueling station should be designed to receive liquid. Systems studies confirm this assumption for stations fueling up to about 300 vehicles. Our fueling station, aimed at refueling fleet vehicles, will receive hydrogen as a liquid and dispense it as either liquid, high pressure gas, or low pressure gas. Thus, it can refuel any of the three types of tanks proposed for hydrogen-powered vehicles -- liquid, gaseous, or hydride. The paper discusses the fueling station design. Results of a numerical model of liquid hydrogen vehicle tank filling, with emphasis on no vent filling, are presented to illustrate the usefulness of the model as a design tool. Results of our vehicle performance model illustrate our thesis that it is too early to judge what the preferred method of on-board vehicle fuel storage will be in practice -- thus our decision to accommodate all three methods.

  16. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    16.8 17.4 18.6 18.9 1.7 2.2 0.6 1.5 Energy Information AdministrationHousehold Vehicles Energy Consumption 1991 15 Vehicle Miles Traveled per Vehicle (Thousand) . . . . . . . . ....

  17. Effect of Intake Air Filter Condition on Light-Duty Gasoline Vehicles

    SciTech Connect (OSTI)

    Thomas, John F; Huff, Shean P; West, Brian H; Norman, Kevin M

    2012-01-01

    Proper maintenance can help vehicles perform as designed, positively affecting fuel economy, emissions, and the overall drivability. This effort investigates the effect of one maintenance factor, intake air filter replacement, with primary focus on vehicle fuel economy, but also examining emissions and performance. Older studies, dealing with carbureted gasoline vehicles, have indicated that replacing a clogged or dirty air filter can improve vehicle fuel economy and conversely that a dirty air filter can be significantly detrimental to fuel economy. The effect of clogged air filters on the fuel economy, acceleration and emissions of five gasoline fueled vehicles is examined. Four of these were modern vehicles, featuring closed-loop control and ranging in model year from 2003 to 2007. Three vehicles were powered by naturally aspirated, port fuel injection (PFI) engines of differing size and cylinder configuration: an inline 4, a V6 and a V8. A turbocharged inline 4-cylinder gasoline direct injection (GDI) engine powered vehicle was the fourth modern gasoline vehicle tested. A vintage 1972 vehicle equipped with a carburetor (open-loop control) was also examined. Results reveal insignificant fuel economy and emissions sensitivity of modern vehicles to air filter condition, but measureable effects on the 1972 vehicle. All vehicles experienced a measured acceleration performance penalty with clogged intake air filters.

  18. Vehicle Technologies Office: Propulsion Systems

    Broader source: Energy.gov [DOE]

    Vehicle Technologies Office research focuses much of its effort on improving vehicle fuel economy while meeting increasingly stringent emissions standards. Achieving these goals requires a...

  19. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    were imputed as disposed vehicles. To impute vehicle stock changes in the 1991 RTECS, logistic regression equations were used to compute a predicted probability (or propensity)...

  20. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    more fuel-efficient vehicles, and the implementation of Corporate Average Fuel Economy (CAFE) 6 standards. Figure 13. Average Fuel Efficiency of All Vehicles, by Model Year 6...

  1. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    or commercial trucks (See Table 1). Energy Information AdministrationHousehold Vehicles Energy Consumption 1991 5 The 1991 RTECS count includes vehicles that were owned or used...

  2. Multi-Material Lightweight Vehicles

    Broader source: Energy.gov (indexed) [DOE]

    * Ford 2,773,175 Partners * Vehma International * Ford Motor Company This presentation ... and test the vehicle, c) demonstrate integration of the light weight material vehicle ...

  3. Compressed natural gas fueled vehicles: The Houston experience

    SciTech Connect (OSTI)

    Not Available

    1993-12-31

    The report describes the experience of the City of Houston in defining the compressed natural gas fueled vehicle research scope and issues. It details the ways in which the project met initial expectations, and how the project scope, focus, and duration were adjusted in response to unanticipated results. It provides examples of real world successes and failures in efforts to commercialize basic research in adapting a proven technology (natural gas) to a noncommercially proven application (vehicles). Phase one of the demonstration study investigates, develops, documents, and disseminates information regarding the economic, operational, and environmental implications of utilizing compressed natural gas (CNG) in various truck fueling applications. The four (4) truck classes investigated are light duty gasoline trucks, medium duty gasoline trucks, medium duty diesel trucks and heavy duty diesel trucks. The project researches aftermarket CNG conversions for the first three vehicle classes and original equipment manufactured (OEM) CNG vehicles for light duty gasoline and heavy duty diesel classes. In phase two of the demonstration project, critical issues are identified and assessed with respect to implementing use of CNG fueled vehicles in a large vehicle fleet. These issues include defining changes in local, state, and industry CNG fueled vehicle related codes and standards; addressing vehicle fuel storage limitations; using standardized vehicle emission testing procedures and results; and resolving CNG refueling infrastructure implementation issues and related cost factors. The report identifies which CNG vehicle fueling options were tried and failed and which were tried and succeeded, with and without modifications. The conclusions include a caution regarding overly optimistic assessments of CNG vehicle technology at the initiation of the project.

  4. Appliance and Equipment Efficiency Standards

    Broader source: Energy.gov [DOE]

    Arizona’s Appliance and Equipment Efficiency Standards (Arizona Revised Statutes, Title 44, Section 1375) set minimum energy efficiency standards for twelve products, all of which have since been...

  5. Sustainable Biomass Supply Systems

    SciTech Connect (OSTI)

    Erin Searcy; Dave Muth; Erin Wilkerson; Shahab Sokansanj; Bryan Jenkins; Peter Titman; Nathan Parker; Quinn Hart; Richard Nelson

    2009-04-01

    The U.S. Department of Energy (DOE) aims to displace 30% of the 2004 gasoline use (60 billion gal/yr) with biofuels by 2030 as outlined in the Energy Independence and Security Act of 2007, which will require 700 million tons of biomass to be sustainably delivered to biorefineries annually. Lignocellulosic biomass will make an important contribution towards meeting DOEs ethanol production goals. For the biofuels industry to be an economically viable enterprise, the feedstock supply system (i.e., moving the biomass from the field to the refinery) cannot contribute more that 30% of the total cost of the biofuel production. The Idaho National Laboratory in collaboration with Oak Ridge National Laboratory, University of California, Davis and Kansas State University are developing a set of tools for identifying economical, sustainable feedstocks on a regional basis based on biorefinery siting.

  6. NNSA TRITIUM SUPPLY CHAIN

    SciTech Connect (OSTI)

    Wyrick, Steven; Cordaro, Joseph; Founds, Nanette; Chambellan, Curtis

    2013-08-21

    Savannah River Site plays a critical role in the Tritium Production Supply Chain for the National Nuclear Security Administration (NNSA). The entire process includes: • Production of Tritium Producing Burnable Absorber Rods (TPBARs) at the Westinghouse WesDyne Nuclear Fuels Plant in Columbia, South Carolina • Production of unobligated Low Enriched Uranium (LEU) at the United States Enrichment Corporation (USEC) in Portsmouth, Ohio • Irradiation of TPBARs with the LEU at the Tennessee Valley Authority (TVA) Watts Bar Reactor • Extraction of tritium from the irradiated TPBARs at the Tritium Extraction Facility (TEF) at Savannah River Site • Processing the tritium at the Savannah River Site, which includes removal of nonhydrogen species and separation of the hydrogen isotopes of protium, deuterium and tritium.

  7. Switching power supply

    DOE Patents [OSTI]

    Mihalka, A.M.

    1984-06-05

    The invention is a repratable capacitor charging, switching power supply. A ferrite transformer steps up a dc input. The transformer primary is in a full bridge configuration utilizing power MOSFETs as the bridge switches. The transformer secondary is fed into a high voltage, full wave rectifier whose output is connected directly to the energy storage capacitor. The transformer is designed to provide adequate leakage inductance to limit capacitor current. The MOSFETs are switched to the variable frequency from 20 to 50 kHz to charge a capacitor from 0.6 kV. The peak current in a transformer primary and secondary is controlled by increasing the pulse width as the capacitor charges. A digital ripple counter counts pulses and after a preselected desired number is reached an up-counter is clocked.

  8. MPC Equipment | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MPC Equipment The MPC utilizes a wide range of equipment designed for metallurgical or materials research. With capabilities from simple arc casting techniques, single crystal preparation, and VIM casting, to plasma spraying and high-pressure gas atomization the MPC can assist research groups in many areas. We house complete metallography, analytical, and characterization resources to complement our fabrication capabilities. All of our services are provided on a cost recovery basis. MPC

  9. Water-Using Equipment: Domestic

    SciTech Connect (OSTI)

    Solana, Amy E.; Mcmordie, Katherine

    2006-01-24

    Water management is an important aspect of energy engineering. This article addresses water-using equipment primarily used for household purposes, including faucets, showers, toilets, urinals, dishwashers, and clothes washers, and focuses on how the equipment can be optimized to save both water and energy. Technology retrofits and operation and maintenance changes are the primary methods discussed for water and energy conservation. Auditing to determine current consumption rates is also described for each technology.

  10. Aggregation server for grid-integrated vehicles

    DOE Patents [OSTI]

    Kempton, Willett

    2015-05-26

    Methods, systems, and apparatus for aggregating electric power flow between an electric grid and electric vehicles are disclosed. An apparatus for aggregating power flow may include a memory and a processor coupled to the memory to receive electric vehicle equipment (EVE) attributes from a plurality of EVEs, aggregate EVE attributes, predict total available capacity based on the EVE attributes, and dispatch at least a portion of the total available capacity to the grid. Power flow may be aggregated by receiving EVE operational parameters from each EVE, aggregating the received EVE operational parameters, predicting total available capacity based on the aggregated EVE operational parameters, and dispatching at least a portion of the total available capacity to the grid.

  11. Blast resistant vehicle seat

    SciTech Connect (OSTI)

    Ripley, Edward B

    2013-02-12

    Disclosed are various seats for vehicles particularly military vehicles that are susceptible to attack by road-bed explosive devices such as land mines or improvised explosive devices. The seats often have rigid seat shells and may include rigid bracing for rigidly securing the seat to the chassis of the vehicle. Typically embodiments include channels and particulate media such as sand disposed in the channels. A gas distribution system is generally employed to pump a gas through the channels and in some embodiments the gas is provided at a pressure sufficient to fluidize the particulate media when an occupant is sitting on the seat.

  12. Rapid road repair vehicle

    DOE Patents [OSTI]

    Mara, Leo M.

    1999-01-01

    Disclosed are improvments to a rapid road repair vehicle comprising an improved cleaning device arrangement, two dispensing arrays for filling defects more rapidly and efficiently, an array of pre-heaters to heat the road way surface in order to help the repair material better bond to the repaired surface, a means for detecting, measuring, and computing the number, location and volume of each of the detected surface imperfection, and a computer means schema for controlling the operation of the plurality of vehicle subsystems. The improved vehicle is, therefore, better able to perform its intended function of filling surface imperfections while moving over those surfaces at near normal traffic speeds.

  13. Vehicle Technologies Office Merit Review 2014: Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification

    Broader source: Energy.gov [DOE]

    Presentation given by Smith Electric Vehicles at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Smith Electric...

  14. Webinar December 10: Hydrogen Equipment Certification Guide

    Broader source: Energy.gov [DOE]

    The Fuel Cell Technologies Office will present a live webinar titled "Hydrogen Equipment Certification Guide" on Thursday, December 10, from 1 to 2 p.m. EST. The webinar will introduce the Hydrogen Equipment Certification Guide, a document intended to aid in equipment approval until listed equipment are available for the entirety of equipment and components.

  15. Vehicle Technologies Office: AVTA- Neighborhood All-Electric Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the following vehicles is available in downloadable form: 2013 BRP Commander Electric, 2010 Electric Vehicles International E-Mega, 2009 Vantage Pickup EVX1000, and 2009 Vantage Van EVC1000.

  16. Systems analysis of decontamination options for civilian vehicles.

    SciTech Connect (OSTI)

    Foltz, Greg W.; Hoette, Trisha Marie

    2010-11-01

    The objective of this project, which was supported by the Department of Homeland Security (DHS) Science and Technology Directorate (S&T) Chemical and Biological Division (CBD), was to investigate options for the decontamination of the exteriors and interiors of vehicles in the civilian setting in order to restore those vehicles to normal use following the release of a highly toxic chemical. The decontamination of vehicles is especially challenging because they often contain sensitive electronic equipment, multiple materials some of which strongly adsorb chemical agents, and in the case of aircraft, have very rigid material compatibility requirements (i.e., they cannot be exposed to reagents that may cause even minor corrosion). A systems analysis approach was taken examine existing and future civilian vehicle decontamination capabilities.

  17. PHEVs are More about the grid than the vehicles

    SciTech Connect (OSTI)

    2009-01-15

    Plug-in hybrid electric vehicles (PHEVs) could be used as an effective storage medium to absorb intermittent renewable energy when it is available. Charged vehicles can run on the stored energy when needed. A recent study by the Pacific Northwest National Laboratory concluded that some 73 percent of U.S. light vehicles can be supplied with the existing utility infrastructure in place, provided the charging was restricted to off-peak periods. That would reduce U.S. oil imports by 6.2 million barrels per day, roughly 52 percent of U.S. oil imports. The limiting factors increasingly appear to be on the utility side, for example, making sure that the vehicles are charged during off-peak hours at discounted prices.

  18. Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    pump to increasing the fuel economy of gasoline-powered vehicles to encouraging the ... from how they work to the different types of systems to the future of the technology. ...

  19. Director, Vehicle Technologies Office

    Broader source: Energy.gov [DOE]

    The Office of Energy Efficiency and Renewable Energy within the U.S. Department of Energy is looking for a dynamic, innovative, and experienced executive to lead the efforts of the Vehicle...

  20. Vehicle Technologies Program Implementation

    SciTech Connect (OSTI)

    none,

    2009-06-19

    The Vehicle Technologies Program takes a systematic approach to Program implementation. Elements of this approach include the evaluation of new technologies, competitive selection of projects and partners, review of Program and project improvement, project tracking, and portfolio management and adjustment.

  1. Vehicle Technologies Program Overview

    SciTech Connect (OSTI)

    none,

    2006-09-05

    Overview of the Vehicle Technologies Program including external assessment and market view; internal assessment, program history and progress; program justification and federal role; program vision, mission, approach, strategic goals, outputs, and outcomes; and performance goals.

  2. TRACKED VEHICLE Rev 75

    SciTech Connect (OSTI)

    Raby, Eric Y.

    2007-05-08

    Revision 75 of the Tracked Vehicle software is a soft real-time simulation of a differentially steered, tracked mobile robot, which, because of the track flippers, resembles the iRobot PackBot (http://www.irobot.com/). Open source libraries are used for the physics engine (http://www.ode.org/), the display and user interface (http://www.mathies.com/cpw/), and the program command line and configuration file parameters (http://www.boost.org/). The simulation can be controlled by a USB joystick or the keyboard. The configuration file contains demonstration model parameters of no particular vehicle. This simulation can be used as a starting point for those doing tracked vehicle simulations. This simulation software is essentially a research tool which can be modified and adapted for certain types of tracked vehicle research. An open source license allows an individual researchers to tailor the code to their specific research needs.

  3. TRACKED VEHICLE Rev 75

    Energy Science and Technology Software Center (OSTI)

    2007-05-08

    Revision 75 of the Tracked Vehicle software is a soft real-time simulation of a differentially steered, tracked mobile robot, which, because of the track flippers, resembles the iRobot PackBot (http://www.irobot.com/). Open source libraries are used for the physics engine (http://www.ode.org/), the display and user interface (http://www.mathies.com/cpw/), and the program command line and configuration file parameters (http://www.boost.org/). The simulation can be controlled by a USB joystick or the keyboard. The configuration file contains demonstration model parametersmore » of no particular vehicle. This simulation can be used as a starting point for those doing tracked vehicle simulations. This simulation software is essentially a research tool which can be modified and adapted for certain types of tracked vehicle research. An open source license allows an individual researchers to tailor the code to their specific research needs.« less

  4. Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Annual Fuel Cost gal Annual GHG Emissions (lbs of CO2) Vehicle Cost Calculator See Assumptions and Methodology Back Next U.S. Department of Energy Energy Efficiency and ...

  5. Hybrid vehicle control

    SciTech Connect (OSTI)

    Shallvari, Iva; Velnati, Sashidhar; DeGroot, Kenneth P.

    2015-07-28

    A method and apparatus for heating a catalytic converter's catalyst to an efficient operating temperature in a hybrid electric vehicle when the vehicle is in a charge limited mode such as e.g., the charge depleting mode or when the vehicle's high voltage battery is otherwise charge limited. The method and apparatus determine whether a high voltage battery of the vehicle is incapable of accepting a first amount of charge associated with a first procedure to warm-up the catalyst. If it is determined that the high voltage battery is incapable of accepting the first amount of charge, a second procedure with an acceptable amount of charge is performed to warm-up the catalyst.

  6. Vehicle speed control device

    SciTech Connect (OSTI)

    Thornton-Trump, W.E.

    1987-03-10

    An apparatus is described for automatically limiting the speed of a vehicle powered by an internal combustion engine having a spark ignition system with an ignition coil, comprising: sensor means for generating a speed signal directly representative of the speed of the vehicle comprising a series of speed signal pulses having a pulse repetition frequency proportional to the speed of the vehicle; control means for converting speed signal pulses into a DC voltage proportional to the vehicle speed; means for comparing the DC voltage to a predetermined DC voltage having substantially zero AC components representative of a predetermined maximum speed and for generating a difference signal in response thereto; and means for generating a pulse-width modulated control signal responsive to the difference signal; power means responsive to the control signal for intermittently interrupting the ignition system.

  7. Petroleum Supply Annual, Volume 1

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum & Other Liquids Reports Petroleum Supply Annual, Volume 1 With Data for 2014 | Release Date: September 25, 2015 | Next Release Date: September 2016 Previous Issues Year: 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 Go Volume 1 - Final annual data for the supply and disposition of crude oil and petroleum products. Volume 1 Tables All Tables All Tables Detailed Statistics Tables National Statistics 1 U.S. Supply, Disposition, and

  8. Lab Supplies | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Supplies The Ames Laboratory Storeroom has many lab supplies available for purchase. Please see commodity numbers 01-08, 12, 15-16 in the storeroom catalog for all available products. For a more general listing of products, reference the Storeroom Services website here. Common Lab Supplies purchased from the Storeroom: Various sizes of batteries Various sizes of bottles Various sizes of beakers Various sizes of vials Various sizes of flasks Various sizes of cylinders Various sizes of jars

  9. Supply Forecast and Analysis (SFA)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Matthew Langholtz Science Team Leader Oak Ridge National Laboratory DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review Supply Forecast and Analysis (SFA) 2 | Bioenergy Technologies Office Goal Statement * Provide timely and credible estimates of feedstock supplies and prices to support - the development of a bioeconomy; feedstock demand analysis of EISA, RFS2, and RPS mandates - the data and analysis of other projects in Analysis and Sustainability, Feedstock Supply and Logistics,

  10. Vehicle Technologies Office Merit Review 2014: Vehicle & Systems Simulation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Testing | Department of Energy Vehicle & Systems Simulation & Testing Vehicle Technologies Office Merit Review 2014: Vehicle & Systems Simulation & Testing Presentation given by U.S. Department of Energy at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting providing an overview of the Vehicle & Systems Simulation & Testing Program. vsst_overview_amr_2014_061114.pdf (3.12 MB) More Documents

  11. Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing R&D Annual Progress Report | Department of Energy Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and Testing R&D Annual Progress Report 2010 annual report focusing on five main areas: modeling and simulation, component and systems evaluation, laboratory and field vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2010_vsst_report.pdf (25.23 MB)

  12. Vehicle Technologies Office: 2012 Vehicle and Systems Simulation and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing R&D Annual Progress Report | Department of Energy Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2012 Vehicle and Systems Simulation and Testing R&D Annual Progress Report FY 2012 annual report focusing on five main areas: modeling and simulation, component and systems evaluation, laboratory and field vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2012_vsst_report.pdf (32.4

  13. Vehicle Technologies Office: 2013 Vehicle and Systems Simulation and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing R&D Annual Progress Report | Department of Energy Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2013 Vehicle and Systems Simulation and Testing R&D Annual Progress Report FY 2013 annual report focuses on the following areas: vehicle modeling and simulation, component and systems evaluations, laboratory and field evaluations, codes and standards, industry projects, and vehicle systems optimization. 2013_vsst_report.pdf

  14. Vehicle Technologies Office: 2014 Vehicle and Systems Simulation and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing Annual Progress Report | Department of Energy Vehicle and Systems Simulation and Testing Annual Progress Report Vehicle Technologies Office: 2014 Vehicle and Systems Simulation and Testing Annual Progress Report The Vehicle and Systems Simulation and Testing research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical

  15. Vehicle Technologies Office: Moving America Forward with Clean Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Moving America Forward with Clean Vehicles Vehicle Technologies Office: Moving America Forward with Clean Vehicles The U.S. Department of Energy's Vehicle Technologies Office supports research, development (R&D), and deployment of efficient and sustainable highway transportation technologies that will improve fuel economy and enable America to use less petroleum. These technologies, which include plug-in electric vehicles (also known as PEVs or electric cars),

  16. P.L. 100-12, "National Appliance Energy Supply Act" (1987)

    SciTech Connect (OSTI)

    None

    2011-12-13

    Amends the Energy Policy and Conservation Act to add to the list of products covered under the Act: (1) freezers which can be operated by alternating current electricity (with specified exceptions); (2) central air conditioning heat pumps; (3) direct heating equipment; and (4) pool heaters. Deletes from specific coverage: (1) humidifiers; and (2) dehumidifiers. Excludes from such coverage consumer products designed solely for use in recreational vehicles and other mobile equipment.

  17. Advanced Vehicle Testing and Evaluation

    SciTech Connect (OSTI)

    Garetson, Thomas

    2013-03-31

    The objective of the United States (U.S.) Department of Energy's (DOEs) Advanced Vehicle Testing and Evaluation (AVTE) project was to provide test and evaluation services for advanced technology vehicles, to establish a performance baseline, to determine vehicle reliability, and to evaluate vehicle operating costs in fleet operations.Vehicles tested include light and medium-duty vehicles in conventional, hybrid, and all-electric configurations using conventional and alternative fuels, including hydrogen in internal combustion engines. Vehicles were tested on closed tracks and chassis dynamometers, as well as operated on public roads, in fleet operations, and over prescribed routes. All testing was controlled by procedures developed specifically to support such testing.

  18. Fact #722: April 9, 2012 Hybrid Vehicles Can Save Money over Time |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2: April 9, 2012 Hybrid Vehicles Can Save Money over Time Fact #722: April 9, 2012 Hybrid Vehicles Can Save Money over Time Hybrid vehicles are typically very well equipped with standard amenities comparable to those found on the upper trim levels of their non-hybrid counterparts. Many consumers do not settle for the base model but rather opt for the higher trim levels with amenities that come standard on the hybrid model. For these consumers, a hybrid vehicle can offer

  19. Alternative Fuels Data Center: Biodiesel Equipment Options

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Equipment Options to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Equipment Options on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Equipment Options on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Equipment Options on Google Bookmark Alternative Fuels Data Center: Biodiesel Equipment Options on Delicious Rank Alternative Fuels Data Center: Biodiesel Equipment Options on Digg Find More places to share Alternative Fuels Data Center: Biodiesel

  20. Attendees: John Cymbalsky, Equipment and Appliance Standards Program Manager, Building Technologies Office,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lutron ex-parte meeting at DOE Pekka Hakkarainen 11 February 2015 Page 1 of 4 Lutron Electronics Co., Inc. ex-parte meeting at the U.S. Department of Energy Subject: LED drivers are not external power supplies Meeting date: 11 February 2015 Attendees: John Cymbalsky, Equipment and Appliance Standards Program Manager, Building Technologies Office, DOE Jeremy Dommu, Project Manager, Equipment and Appliance Standards Program, Building Technologies Office, DOE Laura Barhydt, Assistant General

  1. Processing and Manufacturing Equipment | Open Energy Information

    Open Energy Info (EERE)

    Processing and Manufacturing Equipment Jump to: navigation, search TODO: Add description List of Processing and Manufacturing Equipment Incentives Retrieved from "http:...

  2. Materials Selection Considerations for Thermal Process Equipment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Selection Considerations for Thermal Process Equipment: A BestPractices Process Heating Technical Brief Materials Selection Considerations for Thermal Process Equipment: ...

  3. Cruising Equipment Company CECO | Open Energy Information

    Open Energy Info (EERE)

    Equipment Company (CECO) Place: Seattle, Washington Zip: 98107 Product: Maker of pollution control equipment - bought by Xantrex in 2000. Coordinates: 47.60356,...

  4. CVD Equipment Corp | Open Energy Information

    Open Energy Info (EERE)

    Place: Ronkonkoma, New York Zip: 11779 Sector: Solar Product: New York-based maker of chemical vapour deposition process equipment. This equipment is used in the manufacture of...

  5. Advanced Battery Manufacturing Facilities and Equipment Program...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Advanced Battery Manufacturing Facilities and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program Fact Sheet: Grid-Scale ...

  6. Advanced Battery Manufacturing Facilities and Equipment Program...

    Broader source: Energy.gov (indexed) [DOE]

    and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program AVTA: 2010 Honda Civic HEV with Experimental Ultra Lead Acid Battery Testing Results

  7. DMSE Equipment Scheduling | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scheduling Equipment ownercustodian reserves the right to override the schedule for maintenance andor other justified reasons. Abuse of the scheduling system or equipment may...

  8. Laboratory Equipment Donation Program - About Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About LEDP The Laboratory Equipment Donation Program (LEDP), formerly the Energy-Related Laboratory Equipment (ERLE) Grant Program, was established by the United States Department ...

  9. Laboratory Equipment Donation Program - Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy (DOE), in accordance with its responsibility to encourage research and development in the energy area, awards grants of used energy-related laboratory equipment. equipment

  10. Laboratory Equipment Donation Program - LEDP Widget

    Office of Scientific and Technical Information (OSTI)

    LEDP Widget You can access key features of the Laboratory Equipment Donation Program (LEDP) website by downloading the LEDP widget. Use the widget to search, view the equipment ...

  11. Personal Computing Equipment | Open Energy Information

    Open Energy Info (EERE)

    Computing Equipment Jump to: navigation, search TODO: Add description List of Personal Computing Equipment Incentives Retrieved from "http:en.openei.orgwindex.php?titlePersona...

  12. China Shandong Penglai Electric Power Equipment Manufacturing...

    Open Energy Info (EERE)

    Penglai Electric Power Equipment Manufacturing Jump to: navigation, search Name: China Shandong Penglai Electric Power Equipment Manufacturing Place: Penglai, Shandong Province,...

  13. Moncada Solar Equipment | Open Energy Information

    Open Energy Info (EERE)

    search Name: Moncada Solar Equipment Place: Italy Product: Developer and manufacturer of thin-film modules. References: Moncada Solar Equipment1 This article is a stub. You can...

  14. Hybrid Electric Vehicle Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Electric Vehicle Basics Today's hybrid electric vehicles (HEVs) range from small passenger cars to sport utility vehicles (SUVs) and large trucks. Though they often look just like conventional vehicles, HEVs usually include an electric motor as well as a small internal combustion engine (ICE). This combination provides greater fuel economy and fewer emissions than most conventional ICE vehicles do. Photo of the front and part of the side of a bus parked at the curb of a city street with

  15. Feedstock and Conversion Supply System Design and Analysis

    SciTech Connect (OSTI)

    J. Jacobson; R. Mohammad; K. Cafferty; K. Kenney; E. Searcy; J. Hansen

    2014-09-01

    The success of the earlier logistic pathway designs (Biochemical and Thermochemical) from a feedstock perspective was that it demonstrated that through proper equipment selection and best management practices, conventional supply systems (referred to in this report as “conventional designs,” or specifically the 2012 Conventional Design) can be successfully implemented to address dry matter loss, quality issues, and enable feedstock cost reductions that help to reduce feedstock risk of variable supply and quality and enable industry to commercialize biomass feedstock supply chains. The caveat of this success is that conventional designs depend on high density, low-cost biomass with no disruption from incremental weather. In this respect, the success of conventional designs is tied to specific, highly productive regions such as the southeastern U.S. which has traditionally supported numerous pulp and paper industries or the Midwest U.S for corn stover.

  16. Trends in powder processing equipment

    SciTech Connect (OSTI)

    Sheppard, L.M.

    1993-05-01

    Spray drying is the most widely used process for producing particles. It is used in industries other than ceramics including food, chemicals, and pharmaceutical. The process involves the atomization of a liquid feed stock into a spray of droplets and contacting the droplets with hot air in a drying chamber. The sprays are produced by either rotary or nozzle atomizers. Evaporation of moisture from the droplets and formation of dry particles proceed under controlled temperature and airflow conditions. Powder is then discharged continuously from the drying chamber. Spray drying equipment is being improved to handle an ever-increasing number of applications. Several developments in particle-size reduction equipment are also described.

  17. Repetitive resonant railgun power supply

    DOE Patents [OSTI]

    Honig, Emanuel M. (Los Alamos, NM); Nunnally, William C. (Los Alamos, NM)

    1988-01-01

    A repetitive resonant railgun power supply provides energy for repetitively propelling projectiles from a pair of parallel rails. The supply comprises an energy storage capacitor, a storage inductor to form a resonant circuit with the energy storage capacitor and a magnetic switch to transfer energy between the resonant circuit and the pair of parallel rails for the propelling of projectiles.

  18. Repetitive resonant railgun power supply

    DOE Patents [OSTI]

    Honig, E.M.; Nunnally, W.C.

    1985-06-19

    A repetitive resonant railgun power supply provides energy for repetitively propelling projectiles from a pair of parallel rails. The supply comprises an energy storage capacitor, a storage inductor to form a resonant circuit with the energy storage capacitor and a magnetic switch to transfer energy between the resonant circuit and the pair of parallel rails for the propelling of projectiles.

  19. Petroleum supply monthly, August 1993

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    This publication the Petroleum Supply Monthly (PSM) is one of a family of four publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other publications are the Weekly Petroleum Status Report, (WPSR), the Winter Fuels Report, and the Petroleum Supply Annual (PSA). Data presented describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. Data presented are divided into Summary Statistics and Detailed Statistics.

  20. Methylotroph cloning vehicle

    DOE Patents [OSTI]

    Hanson, Richard S.; Allen, Larry N.

    1989-04-25

    A cloning vehicle comprising: a replication determinant effective for replicating the vehicle in a non-C.sub.1 -utilizing host and in a C.sub.1 -utilizing host; DNA effective to allow the vehicle to be mobilized from the non-C.sub.1 -utilizing host to the C.sub.1 -utilizing host; DNA providing resistance to two antibiotics to which the wild-type C.sub.1 -utilizing host is susceptible, each of the antibiotic resistance markers having a recognition site for a restriction endonuclease; a cos site; and a means for preventing replication in the C.sub.1 -utilizing host. The vehicle is used for complementation mapping as follows. DNA comprising a gene from the C.sub.1 -utilizing organism is inserted at the restriction nuclease recognition site, inactivating the antibiotic resistance marker at that site. The vehicle can then be used to form a cosmid structure to infect the non-C.sub.1 -utilizing (e.g., E. coli) host, and then conjugated with a selected C.sub.1 -utilizing mutant. Resistance to the other antibiotic by the mutant is a marker of the conjugation. Other phenotypical changes in the mutant, e.g., loss of an auxotrophic trait, is attributed to the C.sub.1 gene. The vector is also used to inactivate genes whose protein products catalyze side reactions that divert compounds from a biosynthetic pathway to a desired product, thereby producing an organism that makes the desired product in higher yields.

  1. AVTA: 2010 Electric Vehicles International Neighborhood Electric Vehicle Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe testing results of the 2010 Electric Vehicles International neighborhood electric vehicle. Neighborhood electric vehicles reach speeds of no more than 35 miles per hour and are only allowed on roads with speed limits of up to 35 miles per hour. This research was conducted by Idaho National Laboratory.

  2. Vehicle Technologies Office Merit Review 2016: Advanced Technology Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lab Benchmarking (L1&L2) | Department of Energy Technology Vehicle Lab Benchmarking (L1&L2) Vehicle Technologies Office Merit Review 2016: Advanced Technology Vehicle Lab Benchmarking (L1&L2) Presentation given by Argonne National Laboratory (ANL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Vehicle Systems vs030_stutenberg_2016_o_web.pdf (3.46 MB) More Documents & Publications Vehicle

  3. Strategy Guideline. HVAC Equipment Sizing

    SciTech Connect (OSTI)

    Burdick, Arlan

    2012-02-01

    This guide describes the equipment selection of a split system air conditioner and furnace for an example house in Chicago, IL as well as a heat pump system for an example house in Orlando, FL. The required heating and cooling load information for the two example houses was developed in the Department of Energy Building America Strategy Guideline: Accurate Heating and Cooling Load Calculations.

  4. Power control apparatus and methods for electric vehicles

    DOE Patents [OSTI]

    Gadh, Rajit; Chung, Ching-Yen; Chu, Chi-Cheng; Qiu, Li

    2016-03-22

    Electric vehicle (EV) charging apparatus and methods are described which allow the sharing of charge current between multiple vehicles connected to a single source of charging energy. In addition, this charge sharing can be performed in a grid-friendly manner by lowering current supplied to EVs when necessary in order to satisfy the needs of the grid, or building operator. The apparatus and methods can be integrated into charging stations or can be implemented with a middle-man approach in which a multiple EV charging box, which includes an EV emulator and multiple pilot signal generation circuits, is coupled to a single EV charge station.

  5. Apparatus for stopping a vehicle

    DOE Patents [OSTI]

    Wattenburg, Willard H.; McCallen, David B.

    2007-03-20

    An apparatus for externally controlling one or more brakes on a vehicle having a pressurized fluid braking system. The apparatus can include a pressurizable vessel that is adapted for fluid-tight coupling to the braking system. Impact to the rear of the vehicle by a pursuit vehicle, shooting a target mounted on the vehicle or sending a signal from a remote control can all result in the fluid pressures in the braking system of the vehicle being modified so that the vehicle is stopped and rendered temporarily inoperable. A control device can also be provided in the driver's compartment of the vehicle for similarly rendering the vehicle inoperable. A driver or hijacker of the vehicle preferably cannot overcome the stopping action from the driver's compartment.

  6. Energy-related laboratory equipment (ERLE) guidelines

    SciTech Connect (OSTI)

    Not Available

    1995-01-01

    This document describes the Used Energy-Related Laboratory Equipment grants, and eligibility and procedures for participation. The document contains tables identifying typical equipment that may be requested, where to review ERLE equipment lists, and where to mail applications, a description of the eligible equipment grants access data system, and a copy of the ERLE grant application and instructions for its completion and submission.

  7. BEEST: Electric Vehicle Batteries

    SciTech Connect (OSTI)

    2010-07-01

    BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

  8. Vehicle brake testing system

    DOE Patents [OSTI]

    Stevens, Samuel S.; Hodgson, Jeffrey W.

    2002-11-19

    This invention relates to a force measuring system capable of measuring forces associated with vehicle braking and of evaluating braking performance. The disclosure concerns an invention which comprises a first row of linearly aligned plates, a force bearing surface extending beneath and beside the plates, vertically oriented links and horizontally oriented links connecting each plate to a force bearing surface, a force measuring device in each link, a transducer coupled to each force measuring device, and a computing device coupled to receive an output signal from the transducer indicative of measured force in each force measuring device. The present invention may be used for testing vehicle brake systems.

  9. Strategic supply system design - a holistic evaluation of operational and production cost for a biorefinery supply chain

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lamers, Patrick; Tan, Eric C.D.; Searcy, Erin M.; Scarlata, Christopher J.; Cafferty, Kara G.; Jacobson, Jacob J.

    2015-08-20

    Pioneer cellulosic biorefineries across the United States rely on a conventional feedstock supply system based on one-year contracts with local growers, who harvest, locally store, and deliver feed-stock in low-density format to the conversion facility. While the conventional system is designed for high biomass yield areas, pilot scale operations have experienced feedstock supply shortages and price volatilities due to reduced harvests and competition from other industries. Regional supply dependency and the inability to actively manage feedstock stability and quality, provide operational risks to the biorefinery, which translate into higher investment risk. The advanced feedstock supply system based on a networkmore » of depots can mitigate many of these risks and enable wider supply system benefits. This paper compares the two concepts from a system-level perspective beyond mere logistic costs. It shows that while processing operations at the depot increase feedstock supply costs initially, they enable wider system benefits including supply risk reduction (leading to lower interest rates on loans), industry scale-up, conversion yield improvements, and reduced handling equipment and storage costs at the biorefinery. When translating these benefits into cost reductions per liter of gasoline equivalent (LGE), we find that total cost reductions between -$0.46 to -$0.21 per LGE for biochemical and -$0.32 to -$0.12 per LGE for thermochemical conversion pathways are possible. Naturally, these system level benefits will differ between individual actors along the feedstock supply chain. Further research is required with respect to depot sizing, location, and ownership structures.« less

  10. Strategic supply system design - a holistic evaluation of operational and production cost for a biorefinery supply chain

    SciTech Connect (OSTI)

    Lamers, Patrick; Tan, Eric C.D.; Searcy, Erin M.; Scarlata, Christopher J.; Cafferty, Kara G.; Jacobson, Jacob J.

    2015-08-20

    Pioneer cellulosic biorefineries across the United States rely on a conventional feedstock supply system based on one-year contracts with local growers, who harvest, locally store, and deliver feed-stock in low-density format to the conversion facility. While the conventional system is designed for high biomass yield areas, pilot scale operations have experienced feedstock supply shortages and price volatilities due to reduced harvests and competition from other industries. Regional supply dependency and the inability to actively manage feedstock stability and quality, provide operational risks to the biorefinery, which translate into higher investment risk. The advanced feedstock supply system based on a network of depots can mitigate many of these risks and enable wider supply system benefits. This paper compares the two concepts from a system-level perspective beyond mere logistic costs. It shows that while processing operations at the depot increase feedstock supply costs initially, they enable wider system benefits including supply risk reduction (leading to lower interest rates on loans), industry scale-up, conversion yield improvements, and reduced handling equipment and storage costs at the biorefinery. When translating these benefits into cost reductions per liter of gasoline equivalent (LGE), we find that total cost reductions between -$0.46 to -$0.21 per LGE for biochemical and -$0.32 to -$0.12 per LGE for thermochemical conversion pathways are possible. Naturally, these system level benefits will differ between individual actors along the feedstock supply chain. Further research is required with respect to depot sizing, location, and ownership structures.

  11. Optimal control of a repowered vehicle: Plug-in fuel cell against plug-in hybrid electric powertrain

    SciTech Connect (OSTI)

    Tribioli, L. Cozzolino, R.; Barbieri, M.

    2015-03-10

    This paper describes two different powertrain configurations for the repowering of a conventional vehicle, equipped with an internal combustion engine (ICE). A model of a mid-sized ICE-vehicle is realized and then modified to model both a parallel plug-in hybrid electric powertrain and a proton electrolyte membrane (PEM) fuel cell (FC) hybrid powertrain. The vehicle behavior under the application of an optimal control algorithm for the energy management is analyzed for the different scenarios and results are compared.

  12. Fast Charging Electric Vehicle Research & Development Project

    SciTech Connect (OSTI)

    Heny, Michael

    2014-03-31

    Attachment A) are intended to assist future implementation of electric vehicle technology. They are based on the cited research and on the empirical data collected and presented. The report is not expected to represent the entire operating conditions of any of the equipment under consideration within this project, and tested equipment may operate differently under other conditions.

  13. Control Strategies for Electric Vehicle (EV) Charging Using Renewables and Local Storage

    SciTech Connect (OSTI)

    Castello, Charles C; LaClair, Tim J; Maxey, L Curt

    2014-01-01

    The increase of electric vehicle (EV) and plug-in hybrid-electric vehicle (PHEV) adoption creates a need for more EV supply equipment (EVSE) infrastructure (i.e., EV chargers). The impact of EVSE installations could be significant due to limitations in the electric grid and potential demand charges for residential and commercial customers. The use of renewables (e.g., solar) and local storage (e.g., battery bank) can mitigate loads caused by EVSE on the electric grid. This would eliminate costly upgrades needed by utilities and decrease demand charges for consumers. This paper aims to explore control systems that mitigate the impact of EVSE on the electric grid using solar energy and battery banks. Three control systems are investigated and compared in this study. The first control system discharges the battery bank at a constant rate during specific times of the day based on historical data. The second discharges the battery bank based on the number of EVs charging (linear) and the amount of solar energy being generated. The third discharges the battery bank based on a sigmoid function (non-linear) in response to the number of EVs charging, and also takes into consideration the amount of renewables being generated. The first and second control systems recharge the battery bank at night when demand charges are lowest. The third recharges the battery bank at night and during times of the day when there is an excess of solar. Experiments are conducted using data from a private site that has 25 solar-assisted charging stations at Oak Ridge National Laboratory (ORNL) in Oak Ridge, TN and 4 at a public site in Nashville, TN. Results indicate the third control system having better performance, negating up to 71% of EVSE load, compared with the second control system (up to 61%) and the first control system (up to 58%).

  14. Fact #859 February 9, 2015 Excess Supply is the Most Recent Event to Affect

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crude Oil Prices - Dataset | Department of Energy 859 February 9, 2015 Excess Supply is the Most Recent Event to Affect Crude Oil Prices - Dataset Fact #859 February 9, 2015 Excess Supply is the Most Recent Event to Affect Crude Oil Prices - Dataset Excel file with dataset for Excess Supply is the Most Recent Event to Affect Crude Oil Prices fotw#859_web.xlsx (49.54 KB) More Documents & Publications Fact #860 February 16, 2015 Relationship of Vehicle Miles of Travel and the Price of

  15. Multiple resonant railgun power supply

    DOE Patents [OSTI]

    Honig, Emanuel M. (Los Alamos, NM); Nunnally, William C. (Los Alamos, NM)

    1988-01-01

    A multiple repetitive resonant railgun power supply provides energy for repetitively propelling projectiles from a pair of parallel rails. A plurality of serially connected paired parallel rails are powered by similar power supplies. Each supply comprises an energy storage capacitor, a storage inductor to form a resonant circuit with the energy storage capacitor and a magnetic switch to transfer energy between the resonant circuit and the pair of parallel rails for the propelling of projectiles. The multiple serial operation permits relatively small energy components to deliver overall relatively large amounts of energy to the projectiles being propelled.

  16. Petroleum supply monthly, April 1994

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    Data presented in the Petroleum Supply Monthly (PSM) describe the supply and disposition of petroleum products in the United States and major US geographical regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the US. The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the US.

  17. Petroleum supply monthly, February 1994

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    The Petroleum Supply Monthly presents data describing the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the US. The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders; operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. Data are divided into two sections: Summary statistics and Detailed statistics.

  18. Uninterruptible power supply cogeneration system

    SciTech Connect (OSTI)

    Gottfried, C.F.

    1987-08-11

    A power system is described for providing an uninterruptible power supply comprising: a first generator means for supplying energy to a primary load; a second generator means connected to an electrical utility, the first and second generator means being connected by a common shaft, the first generator means being electrically isolated from the electrical utility; prime mover means connected to the common shaft, the prime mover means for supplying mechanical energy to the shaft; and controller means interposed electrically between the second generator means and the secondary external load, the controller means causing the second generator means to become disconnected from the secondary load upon interruptions in the secondary load.

  19. Multiple resonant railgun power supply

    DOE Patents [OSTI]

    Honig, E.M.; Nunnally, W.C.

    1985-06-19

    A multiple repetitive resonant railgun power supply provides energy for repetitively propelling projectiles from a pair of parallel rails. A plurality of serially connected paired parallel rails are powered by similar power supplies. Each supply comprises an energy storage capacitor, a storage inductor to form a resonant circuit with the energy storage capacitor and a magnetic switch to transfer energy between the resonant circuit and the pair of parallel rails for the propelling of projectiles. The multiple serial operation permits relatively small energy components to deliver overall relatively large amounts of energy to the projectiles being propelled.

  20. Environmental Evaluation of New Generation Vehicles and Vehicle Components

    SciTech Connect (OSTI)

    Schexnayder, S.M.

    2002-02-06

    This report documents assessments that address waste issues and life cycle impacts associated with the vehicle materials and vehicle technologies being developed under the Partnership for a New Generation of Vehicles (PNGV) program. We refer to these vehicles as 3XVs, referring to the PNGV goal that their fuel mileage be three times better than the baseline vehicle. To meet the program's fuel consumption goals, these vehicles substitute lightweight materials for heavier materials such as steel and iron that currently dominate the composition of vehicles, and use engineering and power system changes. Alternative power systems being developed through the PNGV program include batteries for hybrid electric vehicles and fuel cells. With respect to all these developments, it is imperative to learn what effects they will have on the environment before adopting these designs and technologies on a large-scale basis.

  1. Transportation Equipment (2010 MECS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Equipment (2010 MECS) Transportation Equipment (2010 MECS) Manufacturing Energy and Carbon Footprint for Transportation Equipment Sector (NAICS 336) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint Transportation Equipment (125.57 KB) More Documents & Publications MECS 2006 - Transportation Equipment Cement (2010 MECS) Glass and Glass Products (2010

  2. Advanced Battery Manufacturing Facilities and Equipment Program

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  3. Advanced Battery Manufacturing Facilities and Equipment Program

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  4. Vehicles Data Challenge | OpenEI Community

    Open Energy Info (EERE)

    Apps for Vehicles Challenge has begun contest data fuel efficiency launch Obama Administration OpenEI Vehicles Data Challenge **Update: Visit the Apps for Vehicles page for all...

  5. US Ethanol Vehicle Coalition | Open Energy Information

    Open Energy Info (EERE)

    Vehicle Coalition Jump to: navigation, search Name: US Ethanol Vehicle Coalition Place: Jefferson City, Missouri Zip: 65109 Product: The National Ethanol Vehicle Coalition is the...

  6. Vehicle and Fuel Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alternative-fuel-vehicle availability Balancing vehicle-type availability with the types of vehicles required to conduct LM work Our mission requires fieldwork and support at sites ...

  7. Solar Electrical Vehicles | Open Energy Information

    Open Energy Info (EERE)

    Electrical Vehicles Jump to: navigation, search Name: Solar Electrical Vehicles Place: Westlake Village, California Zip: 91361 Sector: Solar, Vehicles Product: US-based...

  8. EVI Electric Vehicles International | Open Energy Information

    Open Energy Info (EERE)

    EVI Electric Vehicles International Jump to: navigation, search Name: EVI (Electric Vehicles International) Place: Stockton, California Product: California-based Electric Vehicle...

  9. Clean Cities Recovery Act: Vehicle & Infrastructure Deployment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act: Vehicle & Infrastructure Deployment Clean Cities Recovery Act: Vehicle & Infrastructure Deployment 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit...

  10. Miles Electric Vehicles | Open Energy Information

    Open Energy Info (EERE)

    Electric Vehicles Jump to: navigation, search Name: Miles Electric Vehicles Place: Santa Monica, California Zip: 90405 Sector: Vehicles Product: California-based developer of...

  11. Vehicle Technologies Office: Parasitic Loss Reduction Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Vehicles Home About the Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions Combustion Engines Fuel Effects on Combustion Idle Reduction ...

  12. Advanced Vehicle Technologies | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an entire vehicle each time a component is changed Vehicle and Component Benchmarking Conducting vehicle benchmarking and testing activities that provide data critical...

  13. Vehicle Technologies Office Recognizes Leaders in Advanced Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research, Development and Deployment | Department of Energy Leaders in Advanced Vehicle Research, Development and Deployment Vehicle Technologies Office Recognizes Leaders in Advanced Vehicle Research, Development and Deployment June 25, 2014 - 11:33am Addthis The DOE's Vehicle Technologies Office supports a variety of research, development, and deployment efforts in partnership with our national laboratories and private partners. The success of these projects relies on the hard work and

  14. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  15. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  16. Vehicle Mass Impact on Vehicle Losses and Fuel Economy

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  17. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  18. Vehicle Technologies Office: AVTA - Electric Vehicle Community and Fleet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Readiness Data and Reports | Department of Energy Community and Fleet Readiness Data and Reports Vehicle Technologies Office: AVTA - Electric Vehicle Community and Fleet Readiness Data and Reports Making plug-in electric vehicles (PEVs, also known as electric cars) as affordable and convenient as conventional vehicles, as described in the EV Everywhere Grand Challenge, requires understanding both their technical and market barriers. Municipalities and organizations are working to overcome

  19. Vehicle Technologies Office Merit Review 2016: Commercial Vehicle Thermal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Load Reduction and VTCab -- Rapid HVAC Load Estimation Tool | Department of Energy Commercial Vehicle Thermal Load Reduction and VTCab -- Rapid HVAC Load Estimation Tool Vehicle Technologies Office Merit Review 2016: Commercial Vehicle Thermal Load Reduction and VTCab -- Rapid HVAC Load Estimation Tool Presentation given by National Renewable Energy Laboratory (NREL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation

  20. Vehicle Mass Impact on Vehicle Losses and Fuel Economy

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  1. Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  2. Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  3. Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification

    Office of Energy Efficiency and Renewable Energy (EERE)

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  4. Vehicle Technologies Office: AVTA- Diesel Internal Combusion Engine Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Downloadable data on the following vehicles is available: 2014 Chevrolet Cruze Diesel, 2013 Volkswagen Jetta TDI, and 2009 Volkswagen Jetta TDI.

  5. Vehicle Technologies Program Results

    SciTech Connect (OSTI)

    2009-06-19

    The Vehicle Technologies Program's progress is closely monitored by both internal and external organizations. The Program's results are detailed in a wide range of documents and tools that can be accessed through the PIR website. Descriptions of these materials are provided on this program results page.

  6. Heavy Vehicle Systems

    SciTech Connect (OSTI)

    Sid Diamond; Richard Wares; Jules Routbort

    2000-04-11

    Heavy Vehicle (HV) systems are a necessary component of achieving OHVT goals. Elements are in place for a far-ranging program: short, intermediate, and long-term. Solicitation will bring industrial input and support. Future funding trend is positive, outlook for HV systems is good.

  7. Vehicle Technologies Office

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office is developing more energy efficient and environmentally friendly highway transportation technologies that will enable America to use less petroleum. The long-term aim is to develop "leap frog" technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.

  8. Electric vehicle climate control

    SciTech Connect (OSTI)

    Dauvergne, J.

    1994-04-01

    EVs have insufficient energy sources for a climatic comfort system. The heat rejection of the drivetrain is dispersed in the vehicle (electric motor, batteries, electronic unit for power control). Its level is generally low (no more than 2-kW peaks) and variable according to the trip profile, with no heat rejection at rest and a maximum during regenerative braking. Nevertheless, it must be used for heating. It is not realistic to have the A/C compressor driven by the electric traction motor: the motor does not operate when the vehicle is at rest, precisely when maximum cooling power is required. The same is true for hybrid vehicles during electric operation. It is necessary to develop solutions that use stored onboard energy either from the traction batteries or specific storage source. In either case, it is necessary to design the climate control system to use the energy efficiently to maximize range and save weight. Heat loss through passenger compartment seals and the walls of the passenger compartment must be limited. Plastic body panes help to reduce heat transfer, and heat gain is minimized with insulating glazing. This article describes technical solutions to solve the problem of passenger thermal comfort. However, the heating and A/C systems of electrically operated vehicles may have marginal performance at extreme outside temperatures.

  9. Advanced Supply System Validation Workshop

    Broader source: Energy.gov [DOE]

    The Bioenergy Technologies Office (BETO) is hosting the Advanced Supply System Validation Workshop on February 3-4, 2015, in Golden, Colorado. The purpose of the workshop is to bring together a...

  10. Petroleum Supply Monthly September 2004

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Ranges in Inventory Graphs XLS HTML Entire . The entire report as a single file. PDF 1.2MB . . Front Matter . Petroleum Supply Monthly Cover Page, Preface, and Table of...

  11. Vehicle Technologies Office - AVTA: All Electric USPS Long Life...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    USPS Long Life Vehicle Conversions Vehicle Technologies Office - AVTA: All Electric USPS Long Life Vehicle Conversions The Vehicle Technologies Office's Advanced Vehicle Testing ...

  12. Equipment Listing | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Equipment Listing Crystal Preparation and Characterization Resistance Heated Bridgman Crystal Growth Systems Back-Reflection Laue X-ray System Electro-Discharge Machining High and Low speed Diamond Saws Arc Zone Melting Crystal Growth System Lapping Fixtures for Precise Orientation of Crystals (0.1°) Physical Properties Measurement Facilities - Hardness Testing Vickers and Rockwell Hardness Testing Brinell Hardness Instrument Wilson Tukon Micro Hardness Tester Forming and Characterization

  13. School supply drive winding down

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    School Supply Drive Winding Down Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: September 1, 2016 all issues All Issues » submit School supply drive winding down The drive is collecting materials for schools throughout Northern New Mexico and will be distributed by the Lab and Self Help, Inc. August 1, 2012 dummy image Read our archives Contacts Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email Notebooks,

  14. Chemical Supply Chain Analysis | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NISACCapabilitiesChemical Supply Chain Analysis content top Chemical Supply Chain Analysis NISAC has developed a range of capabilities for analyzing the consequences of disruptions to the chemical manufacturing industry. Each capability provides a different but complementary perspective on the questions of interest-questions like Given an event, will the entire chemical sector be impacted or just parts? Which chemicals, plants, and complexes could be impacted? In which regions of the country?

  15. Petroleum Supply Annual, Volume 2

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual, Volume 2 With Data for 2014 | Release Date: September 25, 2015 | Next Release Date: September 2016 Previous Issues Year: 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 Go Volume 2 - Final monthly statistics for the supply and disposition of crude oil and petroleum products. Volume 2 Tables All Tables All Tables Detailed Statistics Tables National Statistics 1 U.S. Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum

  16. Fuel Cell Vehicle Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Vehicle Basics Researchers are developing fuel cells that can be used in vehicles to provide electricity for propulsion as well as for a car's electric and electronic ...

  17. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    production vehicles in order to assess compliance with Corporate Average Fuel Economy (CAFE) standards. The EPA Composite MPG is based on the assumption of a "typical" vehicle-use...

  18. Strategy Guideline: HVAC Equipment Sizing

    SciTech Connect (OSTI)

    Burdick, A.

    2012-02-01

    The heating, ventilation, and air conditioning (HVAC) system is arguably the most complex system installed in a house and is a substantial component of the total house energy use. A right-sized HVAC system will provide the desired occupant comfort and will run efficiently. This Strategy Guideline discusses the information needed to initially select the equipment for a properly designed HVAC system. Right-sizing of an HVAC system involves the selection of equipment and the design of the air distribution system to meet the accurate predicted heating and cooling loads of the house. Right-sizing the HVAC system begins with an accurate understanding of the heating and cooling loads on a space; however, a full HVAC design involves more than just the load estimate calculation - the load calculation is the first step of the iterative HVAC design procedure. This guide describes the equipment selection of a split system air conditioner and furnace for an example house in Chicago, IL as well as a heat pump system for an example house in Orlando, Florida. The required heating and cooling load information for the two example houses was developed in the Department of Energy Building America Strategy Guideline: Accurate Heating and Cooling Load Calculations.

  19. Toward more testable security equipment

    SciTech Connect (OSTI)

    Spencer, D.D.; Murray, D.W. )

    1991-01-01

    An important functional aspect of most security related equipment is the need for periodic performance testing. Sensors, entry-control devices, and other such security equipment usually have some sort or reliability or testing requirements. Unfortunately, testing requirements are seldom considered during equipment design, and testing becomes a prohibitively expensive or inconvenient afterthought. In this paper work at Sandia National Laboratories to address this concern is presented, focusing on metal detectors as a test case. Field testing of metal detectors is usually done by passing a test object through the opening to see whether an alarm is generated or not. Such alarm/no-alarm data are poor for making reliability estimates, and thus, a large quantity of such data is required to make good reliability statements. The detector itself uses much better internal information. Experiments tapping into some of this internal data will be discussed, and conclusions will be drawn about the possibility of redesign of metal detectors for enhanced testability. Such conclusions have implications for other types of security-related devices, as well.

  20. Methylotroph cloning vehicle

    DOE Patents [OSTI]

    Hanson, R.S.; Allen, L.N.

    1989-04-25

    A cloning vehicle comprising: a replication determinant effective for replicating the vehicle in a non-C[sub 1]-utilizing host and in a C[sub 1]-utilizing host; DNA effective to allow the vehicle to be mobilized from the non-C[sub 1]-utilizing host to the C[sub 1]-utilizing host; DNA providing resistance to two antibiotics to which the wild-type C[sub 1]-utilizing host is susceptible, each of the antibiotic resistance markers having a recognition site for a restriction endonuclease; a cos site; and a means for preventing replication in the C[sub 1]-utilizing host. The vehicle is used for complementation mapping as follows. DNA comprising a gene from the C[sub 1]-utilizing organism is inserted at the restriction nuclease recognition site, inactivating the antibiotic resistance marker at that site. The vehicle can then be used to form a cosmid structure to infect the non-C[sub 1]-utilizing (e.g., E. coli) host, and then conjugated with a selected C[sub 1]-utilizing mutant. Resistance to the other antibiotic by the mutant is a marker of the conjugation. Other phenotypical changes in the mutant, e.g., loss of an auxotrophic trait, is attributed to the C[sub 1] gene. The vector is also used to inactivate genes whose protein products catalyze side reactions that divert compounds from a biosynthetic pathway to a desired product, thereby producing an organism that makes the desired product in higher yields. 3 figs.

  1. Petroleum supply monthly, April 1990

    SciTech Connect (OSTI)

    1990-06-26

    The Petroleum Supply Monthly (PSM) is one of a family of three publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other two publications are the Weekly Petroleum Status Report (WPSR) and the Petroleum Supply Annual (PSA). Data presented in the Petroleum Supply Monthly describe (PSM) the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in Primary Supply.'' Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections: (1) the Summary Statistics and (2) the Detailed Statistics.

  2. Idling Reduction for Personal Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    - Idling Reduction for Personal Vehicles Idling your vehicle-running your engine when you're not driving it-truly gets you nowhere. Idling reduces your vehicle's fuel economy, costs you money, and creates pollution. Idling for more than 10 seconds uses more fuel and produces more emissions that contribute to smog and climate change than stopping and restarting your engine does. Researchers estimate that idling from heavy-duty and light- duty vehicles combined wastes about 6 billion gallons of

  3. Gasoline Ultra Fuel Efficient Vehicle

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  4. Gasoline Ultra Fuel Efficient Vehicle

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  5. Gasoline Ultra Fuel Efficient Vehicle

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  6. ANSI Electric Vehicle Standards Roadmap

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  7. Used energy-related laboratory equipment grant program for institutions of higher learning. Eligible equipment catalog

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    This is a listing of energy related equipment available through the Energy-Related Laboratory Equipment Grant Program which grants used equipment to institutions of higher education for energy-related research. Information included is an overview of the program, how to apply for a grant of equipment, eligibility requirements, types of equipment available, and the costs for the institution.

  8. Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure Factors to consider in the implementation of fueling stations and equipment Margaret Smith, New West Technologies (DOE HQ Technical Support) John Gonzales, National Renewable Energy Laboratory This document has been peer reviewed by the natural gas industry. September 2014 2 Introduction This document is designed to help fleets understand the cost factors associated with fueling infrastructure for compressed natural gas

  9. Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-09-01

    This document is designed to help fleets understand the cost factors associated with fueling infrastructure for compressed natural gas (CNG) vehicles. It provides estimated cost ranges for various sizes and types of CNG fueling stations and an overview of factors that contribute to the total cost of an installed station. The information presented is based on input from professionals in the natural gas industry who design, sell equipment for, and/or own and operate CNG stations.

  10. Plug-In Electric Vehicle Handbook for Workplace Charging Hosts

    SciTech Connect (OSTI)

    2013-08-01

    Plug-in electric vehicles (PEVs) have immense potential for increasing the country's energy, economic, and environmental security, and they will play a key role in the future of U.S. transportation. By providing PEV charging at the workplace, employers are perfectly positioned to contribute to and benefit from the electrification of transportation. This handbook answers basic questions about PEVs and charging equipment, helps employers assess whether to offer workplace charging for employees, and outlines important steps for implementation.

  11. Overview of FreedomCAR & Vehicle Technologies Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of FreedomCAR & Vehicle Technologies Program Dr. Phyllis Yoshida, Director FreedomCAR and Fuel Partnership A prosperous future where energy is clean, abundant, reliable, and affordable. Specifically, an energy future where: ... Our cars and trucks will be more efficient and will be powered by a variety of clean domestic fuels and technologies that free us from dependence on foreign supplies of energy. The Energy Efficiency and Renewable Energy Vision EERE'S # 1 Priority Dramatically reduce

  12. Vehicle Technologies Office Merit Review 2015: Advanced Technology Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lab Benchmarking (L1&L2) | Department of Energy Technology Vehicle Lab Benchmarking (L1&L2) Vehicle Technologies Office Merit Review 2015: Advanced Technology Vehicle Lab Benchmarking (L1&L2) Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced technology vehicle lab benchmarking (L1&L2). vss030_stutenberg_2015_o.pdf (3.5 MB) More Documents

  13. Vehicle Technologies Office Merit Review 2015: Electric Vehicle Mile

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Traveled (eVMT): On-road Results and Analysis | Department of Energy Electric Vehicle Mile Traveled (eVMT): On-road Results and Analysis Vehicle Technologies Office Merit Review 2015: Electric Vehicle Mile Traveled (eVMT): On-road Results and Analysis Presentation given by Idaho National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation meeting about Electric Vehicle Mile Traveled (eVMT): on-road results and

  14. Chapter 3. Vehicle-Miles Traveled

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Vehicle-Miles Traveled Chapter 3. Vehicle-Miles Traveled Vehicle-miles traveled--the number of miles that residential vehicles are driven--is probably the most important...

  15. Appendix J - GPRA06 vehicle technologies program

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The target market for the Office of FreedomCAR and Vehicle Technologies (FCVT) program include light vehicles (cars and light trucks) and heavy vehicles (trucks more than 10,000 pounds Gross Vehicle Weight).

  16. Project Startup: Evaluating the Performance of Hydraulic Hybrid Refuse Vehicles

    SciTech Connect (OSTI)

    2015-09-01

    The Fleet Test and Evaluation Team at the National Renewable Energy Laboratory (NREL) is evaluating the in-service performance of 10 next-generation hydraulic hybrid refuse vehicles (HHVs), 8 previous-generation HHVs, and 8 comparable conventional diesel vehicles operated by Miami-Dade County's Public Works and Waste Management Department in southern Florida. The HHVs under study - Autocar E3 refuse trucks equipped with Parker Hannifin's RunWise Advanced Series Hybrid Drive systems - can recover as much as 70 percent of the energy typically lost during braking and reuse it to power the vehicle. NREL's evaluation will assess the performance of this technology in commercial operation and help Miami-Dade County determine the ideal routes for maximizing the fuel-saving potential of its HHVs.

  17. Dispensing Equipment Testing with Mid-Level Ethanol/Gasoline Test Fluid: Summary Report

    SciTech Connect (OSTI)

    Boyce, K.; Chapin, J. T.

    2010-11-01

    The National Renewable Energy Laboratory's (NREL) Nonpetroleum-Based Fuel Task addresses the hurdles to commercialization of biomass-derived fuels and fuel blends. One such hurdle is the unknown compatibility of new fuels with current infrastructure, such as the equipment used at service stations to dispense fuel into automobiles. The U.S. Department of Energy's (DOE) Vehicle Technology Program and the Biomass Program have engaged in a joint project to evaluate the potential for blending ethanol into gasoline at levels higher than nominal 10 volume percent. This project was established to help DOE and NREL better understand any potentially adverse impacts caused by a lack of knowledge about the compatibility of the dispensing equipment with ethanol blends higher than what the equipment was designed to dispense. This report provides data about the impact of introducing a gasoline with a higher volumetric ethanol content into service station dispensing equipment from a safety and a performance perspective.

  18. untitled

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... 7 4.3.1 Battery Electric VehicleElectric ... Vehicle Supply Equipment Design ......IQ EV 2016 smart ED 2014 Tesla Model S 2012 Tesla Model X ...

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric Vehicle Supply Equipment Rebate - GWP Glendale Water and Power (GWP) offers a 200 rebate to the first 100 single-family residential customers that are electric vehicle ...

  20. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plug-In Electric Vehicle (PEV) and Electric Vehicle Supply Equipment (EVSE) Grants The Colorado Energy Office (CEO) and Regional Air Quality Council (RAQC) provide grants through...

  1. Workplace Charging Challenge Partner: Ulster County | Department...

    Energy Savers [EERE]

    Ulster County installed plug-in electric vehicle (PEV) charging stations at nine County government facility parking lots (a total of 18 electric vehicle supply equipment EVSE), ...

  2. Workplace Charging: Tips to Install Charging Stations at your...

    Broader source: Energy.gov (indexed) [DOE]

    by choosing progressive facilities that offer state-of-the-art technologies such as plug-in electric vehicle (PEV) charging stations (or electric vehicle supply equipment). ...

  3. Fact #893: October 5, 2015 Incentives for the Installation of...

    Broader source: Energy.gov (indexed) [DOE]

    vehicle supply equipment (EVSE), also known as an electric vehicle charging station. ... and municipalities to install fueling stations for alternative fuels. up to 500,000 NC ...

  4. Advancing Transportation Through Vehicle Electrification - PHEV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advancing Transportation Through Vehicle Electrification - ... Office Merit Review 2014: Advancing Transportation through Vehicle Electrification - Ram ...

  5. Advanced Vehicle Electrification & Transportation Sector Electrificati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector Electrification 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies ...

  6. Vehicle Technologies Office: Graduate Automotive Technology Education...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education & Workforce Development Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) Vehicle Technologies Office: Graduate Automotive Technology ...

  7. Applied magnetism: A supply-driven materials challenge

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rios, Orlando; McCall, Scott K.

    2016-05-27

    Permanent magnets are important in many green energy technologies including wind turbine generators and hybrid-electric vehicle motors. For these applications, volume and weight are important factors driving the overall design, and therefore a high energy density, or energy product, is an important figure of merit. This quantity defines the magnetic energy contained in a given volume of material, and so higher energy density magnets enable smaller, lighter applications. Currently, the most powerful magnets suitable for commercial purposes contain rare earth elements (REE), usually neodymium and dysprosium in the neodymium-iron-boride class of magnets. However, for select applications, often requiring high temperatures,more » samarium cobalt is the alloy of choice. These magnets have energy densities several times greater than their nearest non-REE-based competitor, which for some applications is the defining factor in creating a viable device. The global supply of these REE is overwhelmingly produced in China, which in 2015 mined more than ten times as much as the next largest producer (Australia). Such market domination effectively creates a single source of supply, leaving industries which rely on REE consumption susceptible to price shocks and supply disruptions of these critical materials. Furthermore, this supply sensitivity may act as a drag on the adaptation rate of green energy technologies, particularly for large-scale users.« less

  8. Battery Electric Vehicles can reduce greenhouse has emissions and make renewable energy cheaper in India

    SciTech Connect (OSTI)

    Gopal, Anand R; Witt, Maggie; Sheppard, Colin; Harris, Andrew

    2015-07-01

    India's National Mission on Electric Mobility (NMEM) sets a countrywide goal of deploying 6 to 7 million hybrid and electric vehicles (EVs) by 2020. There are widespread concerns, both within and outside the government, that the Indian grid is not equipped to accommodate additional power demand from battery electric vehicles (BEVs). Such concerns are justified on the grounds of India's notorious power sector problems pertaining to grid instability and chronic blackouts. Studies have claimed that deploying BEVs in India will only

  9. Geo Hydro Supply | Open Energy Information

    Open Energy Info (EERE)

    Hydro Supply Jump to: navigation, search Name: Geo Hydro Supply Address: 997 State Route 93 NW Place: Sugarcreek, Ohio Zip: 44681 Sector: Geothermal energy Phone Number:...

  10. ADMINISTRATIVE RECORDS: PROCUREMENT, SUPPLY, AND GRANT RECORDS...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ADMINISTRATIVE RECORDS: PROCUREMENT, SUPPLY, AND GRANT RECORDS Procurement and supply records document the acquisition of goods and non-personal services, controlling the volume of ...

  11. Alternate Water Supply System, Riverton, WY, Site

    Office of Legacy Management (LM)

    Alternate Water Supply System Flushing Report Riverton, Wyoming, Processing Site January ... left blank DOE-LM1570-2008 Alternate Water Supply System Flushing Report Riverton, ...

  12. Airtricity Energy Supply Ltd | Open Energy Information

    Open Energy Info (EERE)

    Airtricity Energy Supply Ltd Jump to: navigation, search Name: Airtricity Energy Supply Ltd Place: Belfast, United Kingdom Zip: BT2 7AF Product: Energy supplier owned by Airtricity...

  13. Rapid road repair vehicle

    DOE Patents [OSTI]

    Mara, L.M.

    1998-05-05

    Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find at the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was not heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past. 2 figs.

  14. Rapid road repair vehicle

    DOE Patents [OSTI]

    Mara, Leo M.

    1998-01-01

    Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find an the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was was heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past.

  15. Simple Electric Vehicle Simulation

    Energy Science and Technology Software Center (OSTI)

    1993-07-29

    SIMPLEV2.0 is an electric vehicle simulation code which can be used with any IBM compatible personal computer. This general purpose simulation program is useful for performing parametric studies of electric and series hybrid electric vehicle performance on user input driving cycles.. The program is run interactively and guides the user through all of the necessary inputs. Driveline components and the traction battery are described and defined by ASCII files which may be customized by themore » user. Scaling of these components is also possible. Detailed simulation results are plotted on the PC monitor and may also be printed on a printer attached to the PC.« less

  16. Petroleum supply monthly, October 1992

    SciTech Connect (OSTI)

    Not Available

    1992-10-27

    The Petroleum Supply Monthly (PSM) is one of a family of three publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other two publications are the Weekly Petroleum Status Report (WPSR) and the Petroleum Supply Annual (PSA). Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in Primary Supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately, represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections (1) the Summary Statistics and (2) the Detailed Statistics.

  17. Petroleum supply monthly, April 1993

    SciTech Connect (OSTI)

    Not Available

    1993-05-04

    The Petroleum Supply Monthly (PSM) is one of a family of four publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other publications are the Weekly Petroleum Status Report (WPSR), the Winter Fuels Report, and the Petroleum Supply Annual (PSA). Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections: Summary Statistics and Detailed Statistics.

  18. Petroleum supply monthly, May 1994

    SciTech Connect (OSTI)

    Not Available

    1994-05-27

    The Petroleum Supply Monthly (PSM) is one of a family of four publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other publications are the Weekly Petroleum Status Report (WPSR), the Winter Fuels Report, and the Petroleum supply annual (PSA). Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections: Summary Statistics and Detailed Statistics.

  19. Petroleum supply monthly, February 1993

    SciTech Connect (OSTI)

    Not Available

    1993-03-02

    The Petroleum Supply Monthly (PSM) is one of a family of three publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other two publications are the Weekly Petroleum Status Report (WPSR) and the Petroleum Supply Annual (PSA). Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in Primary Supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections (1) the Summary Statistics and (2) the Detailed Statistics.

  20. Petroleum supply monthly, December 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-29

    The Petroleum Supply Monthly (PSM) is one of a family of three publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other two publications are the Weekly Petroleum Status Report (WPSR) and the Petroleum Supply Annual (PSA). Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in Primary Supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections (1) the Summary Statistics and (2) the Detailed Statistics.