Powered by Deep Web Technologies
Note: This page contains sample records for the topic "vehicle project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Clean Cities: Electric Vehicle Community Readiness Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Financial Opportunities Financial Opportunities Printable Version Share this resource Send a link to Clean Cities: Electric Vehicle Community Readiness Projects to someone by E-mail Share Clean Cities: Electric Vehicle Community Readiness Projects on Facebook Tweet about Clean Cities: Electric Vehicle Community Readiness Projects on Twitter Bookmark Clean Cities: Electric Vehicle Community Readiness Projects on Google Bookmark Clean Cities: Electric Vehicle Community Readiness Projects on Delicious Rank Clean Cities: Electric Vehicle Community Readiness Projects on Digg Find More places to share Clean Cities: Electric Vehicle Community Readiness Projects on AddThis.com... Current Opportunities Related Opportunities Funded Projects Recovery Act Projects Community Readiness Projects Alternative Fuel Market Projects

2

NREL: Vehicles and Fuels Research - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects Projects NREL's vehicles and fuels projects focus on developing, evaluating, and demonstrating innovative technologies that reduce the nation's dependence on imported petroleum and improve air quality. We work in partnership with vehicle manufacturers, equipment suppliers, fuel providers, and others to develop and commercialize vehicle and fuel technologies that meet our nation's energy and environmental goals. Advanced Combustion and Fuels Biofuels Electric Vehicle Grid Integration Energy Storage Fleet Test and Evaluation Power Electronics ReFUEL Laboratory Secure Transportation Data Vehicle Ancillary Loads Reduction Vehicle Systems Analysis Printable Version Vehicles & Fuels Research Home Projects Advanced Combustion & Fuels Biofuels Electric Vehicle Grid Integration

3

Vehicle to Grid Demonstration Project  

SciTech Connect

This report summarizes the activities and accomplishments of a two-year DOE-funded project on Grid-Integrated Vehicles (GIV) with vehicle to grid power (V2G). The project included several research and development components: an analysis of US driving patterns; an analysis of the market for EVs and V2G-capable EVs; development and testing of GIV components (in-car and in-EVSE); interconnect law and policy; and development and filing of patents. In addition, development activities included GIV manufacturing and licensing of technologies developed under this grant. Also, five vehicles were built and deployed, four for the fleet of the State of Delaware, plus one for the University of Delaware fleet.

Willett Kempton; Meryl Gardner; Michael Hidrue; Fouad Kamilev; Sachin Kamboj; Jon Lilley; Rodney McGee; George Parsons; Nat Pearre; Keith Trnka

2010-12-31T23:59:59.000Z

4

EV Project Nissan Leaf Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

EV Project Nissan Leaf Vehicle Summary Report Region: All Number of vehicles: 35 Reporting period: January 2011 through March 2011 Vehicle Usage Number of trips 3,364 Total...

5

EV Project Chevrolet Volt Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

events (mi) 25.8 Avg number of charging events per day when the vehicle was driven 1.4 EV Project Chevrolet Volt Vehicle Summary Report Region: Phoenix, AZ Metropolitan Area...

6

EV Project Chevrolet Volt Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

GPS data anomalies. 2012 ECOtality 532012 5:28:32 PM INLMIS-11-24041 Page 1 of 8 EV Project Chevrolet Volt Vehicle Summary Report Region: Oregon Number of vehicles: 23...

7

Argonne's Pilot Electric Vehicle Charging Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne's Pilot Electric Vehicle Charging Project solar array and charging station Solar array and charging station. View larger image. As part of Argonne's continuing efforts to...

8

EV Project Chevrolet Volt Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

events 72% 10% 18% 2011 ECOtality 2132012 2:44:55 PM INLMIS-11-24041 Page 1 of 3 EV Project Chevrolet Volt Vehicle Summary Report Region: Houston, TX Metropolitan Area...

9

EV Project Nissan Leaf Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

data anomalies. 2012 ECOtality 10232012 9:52:44 AM INLMIS-11-21904 Page 1 of 12 EV Project Nissan Leaf Vehicle Summary Report Region: Phoenix, AZ Metropolitan Area Number...

10

EV Project NIssan Leaf Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

GPS data anomalies. 2012 ECOtality 532012 5:30:52 PM INLMIS-11-21904 Page 1 of 12 EV Project Nissan Leaf Vehicle Summary Report Region: Phoenix, AZ Metropolitan Area Number...

11

EV Project NIssan Leaf Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

events 78% 21% 1% 2011 ECOtality 8102011 1:34:23 PM INLMIS-11-21904 Page 1 of 10 EV Project Nissan Leaf Vehicle Summary Report Region: Phoenix, AZ Metropolitan Area Number...

12

EV Project Nissan Leaf Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

GPS data anomalies. 2012 ECOtality 212013 8:31:28 AM INLMIS-11-21904 Page 1 of 15 EV Project Nissan Leaf Vehicle Summary Report Region: Phoenix, AZ Metropolitan Area Number...

13

EV Project Nissan Leaf Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

data anomalies. 2013 ECOtality 4232013 11:20:12 AM INLMIS-11-21904 Page 1 of 17 EV Project Nissan Leaf Vehicle Summary Report Region: Phoenix, AZ Metropolitan Area Number...

14

EV Project NIssan Leaf Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

events 78% 17% 5% 2011 ECOtality 1262012 2:19:55 PM INLMIS-11-21904 Page 1 of 12 EV Project Nissan Leaf Vehicle Summary Report Region: Phoenix, AZ Metropolitan Area Number...

15

EV Project Chevrolet Volt Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

data anomalies. 2012 ECOtality 10232012 2:02:15 PM INLMIS-11-24041 Page 1 of 12 EV Project Chevrolet Volt Vehicle Summary Report Region: Phoenix, AZ Metropolitan Area...

16

EV Project Nissan Leaf Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

GPS data anomalies. 2012 ECOtality 7312012 6:48:45 PM INLMIS-11-21904 Page 1 of 12 EV Project Nissan Leaf Vehicle Summary Report Region: Phoenix, AZ Metropolitan Area Number...

17

NREL: Vehicles and Fuels Research - Biofuels Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Biofuels Projects Biofuels Projects NREL biofuels projects help overcome technical barriers and expand markets for renewable, biodegradable vehicle fuels. These new liquid fuels include higher-level ethanol blends, butanol, biodiesel, renewable diesel, and other biomass-derived fuels. NREL's biofuels research and development helps improve engine efficiency, reduce polluting emissions, and improve U.S. energy security by reducing petroleum dependency. Biofuels for Diesel Engines NREL's diesel biofuels research and development focuses on developing fuel quality standards and demonstrating compatibility with engines and emission control systems. Highly efficient heavy-duty diesel truck engines are the primary power source for global transportation of freight. Light-duty diesel-fueled passenger vehicles have much higher fuel economy than

18

DOE Project on Heavy Vehicle Aerodynamic Drag  

SciTech Connect

Class 8 tractor-trailers consume 11-12% of the total US petroleum use. At highway speeds, 65% of the energy expenditure for a Class 8 truck is in overcoming aerodynamic drag. The project objective is to improve fuel economy of Class 8 tractor-trailers by providing guidance on methods of reducing drag by at least 25%. A 25% reduction in drag would present a 12% improvement in fuel economy at highway speeds, equivalent to about 130 midsize tanker ships per year. Specific goals include: (1) Provide guidance to industry in the reduction of aerodynamic drag of heavy truck vehicles; (2) Develop innovative drag reducing concepts that are operationally and economically sound; and (3) Establish a database of experimental, computational, and conceptual design information, and demonstrate the potential of new drag-reduction devices. The studies described herein provide a demonstration of the applicability of the experience developed in the analysis of the standard configuration of the Generic Conventional Model. The modeling practices and procedures developed in prior efforts have been applied directly to the assessment of new configurations including a variety of geometric modifications and add-on devices. Application to the low-drag 'GTS' configuration of the GCM has confirmed that the error in predicted drag coefficients increases as the relative contribution of the base drag resulting from the vehicle wake to the total drag increases and it is recommended that more advanced turbulence modeling strategies be applied under those circumstances. Application to a commercially-developed boat tail device has confirmed that this restriction does not apply to geometries where the relative contribution of the base drag to the total drag is reduced by modifying the geometry in that region. Application to a modified GCM geometry with an open grille and radiator has confirmed that the underbody flow, while important for underhood cooling, has little impact on the drag coefficient of the vehicle. Furthermore, the evaluation of the impact of small changes in radiator or grille dimensions has revealed that the total drag is not particularly sensitive to those changes. This observation leads to two significant conclusions. First, a small increase in radiator size to accommodate heat rejection needs related to new emissions restrictions may be tolerated without significant increases in drag losses. Second, efforts to reduce drag on the tractor requires that the design of the entire tractor be treated in an integrated fashion. Simply reducing the size of the grille will not provide the desired result, but the additional contouring of the vehicle as a whole which may be enabled by the smaller radiator could have a more significant effect.

McCallen, R; Salari, K; Ortega, J; Castellucci, P; Pointer, D; Browand, F; Ross, J; Storms, B

2007-01-04T23:59:59.000Z

19

DOE Announces 12 Projects To Increase Vehicle Efficiency | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announces 12 Projects To Increase Vehicle Efficiency Announces 12 Projects To Increase Vehicle Efficiency DOE Announces 12 Projects To Increase Vehicle Efficiency February 16, 2005 - 10:16am Addthis Industry Partners to Cost-Share Funding on $175 Million in Research Projects WASHINGTON, DC -- Secretary of Energy Samuel Bodman today announced the selection of projects that will increase the energy efficiency of passenger and commercial vehicles while maintaining low emissions. Twelve projects, with a total value of $175 million (50 percent, or $87.5 million contributed by the private sector) will focus on development of advanced combustion engine and waste heat recovery technologies. "Together with our private sector partners, the Department of Energy is pursuing innovative new technologies to improve vehicle fuel efficiency and

20

EV Project Chevrolet Volt Vehicle Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

124,954 21,973 7,718 Percent of all charging events 81% 14% 5% Electric Vehicle Mode (EV) Operation Gasoline fuel economy (mpg) No Fuel Used AC electrical energy consumption (AC...

Note: This page contains sample records for the topic "vehicle project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Three Argonne projects win DOE funding to improve vehicle technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

Three Argonne projects win DOE funding to improve vehicle technologies By Louise Lerner * September 12, 2013 Tweet EmailPrint The U.S. Department of Energy's (DOE) Argonne National...

22

Think City Electric Vehicle Democstration Program Final Project...  

NLE Websites -- All DOE Office Websites (Extended Search)

7182005 AWARD DE-FG26-O1ID14048 THNK city ELECTRIC VEHICLE DEMONSTRATION PROGRAM FINAL PROJECT REPORT June 2005 Ford Motor Company Sustainable Mobility Technologies 2 7182005...

23

An analysis of battery electric vehicle production projections  

E-Print Network (OSTI)

In mid 2008 and early 2009 Deutsche Bank and The Boston Consulting Group each released separate reports detailing projected Battery Electric Vehicle production through 2020. These reports both outlined scenarios in which ...

Cunningham, John Shamus

2009-01-01T23:59:59.000Z

24

EV Project NIssan Leaf Vehicle Summary Report-Reporting period...  

NLE Websites -- All DOE Office Websites (Extended Search)

events 80% 16% 4% 2011 ECOtality 1182011 11:44:44 AM INLMIS-11-21904 Page 1 of 11 EV Project Nissan Leaf Vehicle Summary Report Region: Phoenix, AZ Metropolitan Area Number...

25

U.S. Fuel Cell Electric Vehicle Demonstration Project 2010 Status Update (Presentation)  

DOE Green Energy (OSTI)

This presentation summarizes U.S. Fuel Cell Electric Vehicle Demonstration Project 2010 Status Update.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

2010-10-21T23:59:59.000Z

26

Charging Infrastructure for Electric Vehicles (Smart Grid Project) | Open  

Open Energy Info (EERE)

Charging Infrastructure for Electric Vehicles (Smart Grid Project) Charging Infrastructure for Electric Vehicles (Smart Grid Project) Jump to: navigation, search Project Name Charging Infrastructure for Electric Vehicles Country Sweden Headquarters Location Gothenburg, Sweden Coordinates 57.696995°, 11.9865° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":57.696995,"lon":11.9865,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

27

Project Fever - Fostering Electric Vehicle Expansion in the Rockies  

DOE Green Energy (OSTI)

Project FEVER (Fostering Electric Vehicle Expansion in the Rockies) is a part of the Clean Cities Community Readiness and Planning for Plug-in Electric Vehicles and Charging Infrastructure Funding Opportunity funded by the U.S. Department of Energy (DOE) for the state of Colorado. Tasks undertaken in this project include: Electric Vehicle Grid Impact Assessment; Assessment of Electrical Permitting and Inspection for EV/EVSE (electric vehicle/electric vehicle supply equipment); Assessment of Local Ordinances Pertaining to Installation of Publicly Available EVSE;Assessment of Building Codes for EVSE; EV Demand and Energy/Air Quality Impacts Assessment; State and Local Policy Assessment; EV Grid Impact Minimization Efforts; Unification and Streamlining of Electrical Permitting and Inspection for EV/EVSE; Development of BMP for Local EVSE Ordinances; Development of BMP for Building Codes Pertaining to EVSE; Development of Colorado-Specific Assessment for EV/EVSE Energy/Air Quality Impacts; Development of State and Local Policy Best Practices; Create Final EV/EVSE Readiness Plan; Develop Project Marketing and Communications Elements; Plan and Schedule In-person Education and Outreach Opportunities.

Swalnick, Natalia

2013-06-30T23:59:59.000Z

28

Natural Gas Vehicle Cylinder Safety, Training and Inspection Project  

DOE Green Energy (OSTI)

Under the auspices of the National Energy Technology Laboratory and the US Department of Energy, the Clean Vehicle Education Foundation conducted a three-year program to increase the understanding of the safe and proper use and maintenance of vehicular compressed natural gas (CNG) fuel systems. High-pressure fuel systems require periodic inspection and maintenance to insure safe and proper operation. The project addressed the needs of CNG fuel containers (cylinders) and associated high-pressure fuel system components related to existing law, codes and standards (C&S), available training and inspection programs, and assured coordination among vehicle users, public safety officials, fueling station operators and training providers. The program included a public and industry awareness campaign, establishment and administration of a cylinder inspector certification training scholarship program, evaluation of current safety training and testing practices, monitoring and investigation of CNG vehicle incidents, evaluation of a cylinder recertification program and the migration of CNG vehicle safety knowledge to the nascent hydrogen vehicle community.

Hank Seiff

2008-12-31T23:59:59.000Z

29

NREL: Vehicle Ancillary Loads Reduction - Air Conditioner Reduction Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Conditioner Reduction Project to Reduce Vehicle Fuel Use by 30% Conditioner Reduction Project to Reduce Vehicle Fuel Use by 30% United States map depicting number of millions of gallons of cooling and dehumidification by state: Alabama 167, Alaska 1, Arizona 43, Arkansas 86, California 730, Colorado 76, Connecticut 61, Delaware 19, Florida 753, Georgia 251, Hawaii 68, Idaho 26, Illinois 242, Indiana 142, Iowa 68, Kansas 75, Kentucky 95, Louisiana 176, Maine 21, Maryland 118, Massachusetts 86, Michigan 186, Minnesota 86, Mississippi 85, Missouri 144, Montana 12, Nebraska 40, Nevada 61, New Hampshire 90, New Jersey 167, New Mexico 52, New York 273, North Carolina 187, North Dakota 12, Ohio 229, Oklahoma 109, Oregon 66, Pennsylvania 238, Rhode Island 15, South Carolina 127, South Dakota 17, Tennessee 179, Texas 735, Utah 43, Vermont 9, Virginia 187, Washington 64, West Virginia 37, Wisconsin 167, and Wyoming 7

30

Low Floor Americans with Disabilities Compliant Alternate Fuel Vehicle Project  

SciTech Connect

This project developed a low emission, cost effective, fuel efficient, medium-duty community/transit shuttle bus that meets American's with Disabilities Act (ADA) requirements and meets National Energy Policy Act requirements (uses alternative fuel). The Low Profile chassis, which is the basis of this vehicle is configured to be fuel neutral to accommodate various alternative fuels. Demonstration of the vehicle in Yellowstone Park in summer (wheeled operation) and winter (track operation) demonstrated the feasibility and flexibility for this vehicle to provide year around operation throughout the Parks system as well as normal transit operation. The unique configuration of the chassis which provides ADA access with a simple ramp and a flat floor throughout the passenger compartment, provides maximum access for all passengers as well as maximum flexibility to configure the vehicle for each application. Because this product is derived from an existing medium duty truck chassis, the completed bus is 40-50% less expensive than existing low floor transit buses, with the reliability and durability of OEM a medium duty truck.

James Bartel

2004-11-26T23:59:59.000Z

31

Categorical Exclusion Determinations: Advanced Technology Vehicles  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Vehicles Technology Vehicles Manufacturing Loan Program Categorical Exclusion Determinations: Advanced Technology Vehicles Manufacturing Loan Program Categorical Exclusion Determinations issued by Advanced Technology Vehicles Manufacturing Loan Program. DOCUMENTS AVAILABLE FOR DOWNLOAD May 29, 2012 CX-008810: Categorical Exclusion Determination One Nevada Optimization of Microwave Telecommunication System CX(s) Applied: B1.19, B4.6 Date: 05/29/2012 Location(s): Nevada, Nevada Offices(s): Advanced Technology Vehicles Manufacturing Loan Program January 24, 2012 CX-007677: Categorical Exclusion Determination Project Eagle Phase 1 Direct Wafer/Cell Solar Facility CX(s) Applied: B1.31 Date: 01/24/2012 Location(s): Massachusetts Offices(s): Advanced Technology Vehicles Manufacturing Loan Program

32

EIA projects rapid growth in unconventional vehicle sales - Today ...  

U.S. Energy Information Administration (EIA)

Unconventional vehicles - vehicles using diesel, ... Manufacturers receive credits towards meeting CAFE standards by selling FFVs for all model years through 2016.

33

Final report for the Advanced Natural Gas Vehicle Project  

DOE Green Energy (OSTI)

The project objective was to develop the technologies necessary to prototype a dedicated compressed natural gas (CNG) powered, mid-size automobile with operational capabilities comparable to gasoline automobiles. A system approach was used to design and develop the engine, gas storage system and vehicle packaging. The 2.4-liter DOHC engine was optimized for natural gas operation with high-compression pistons, hardened exhaust valves, a methane-specific catalytic converter and multi-point gaseous injection. The chassis was repackaging to increase space for fuel storage with a custom-designed, cast-aluminum, semi-trailing arm rear suspension system, a revised flat trunk sheet-metal floorpan and by equipping the car with run-flat tires. An Integrated Storage system (ISS) was developed using all-composite, small-diameter cylinders encapsulated within a high-strength fiberglass shell with impact-absorbing foam. The prototypes achieved the target goals of a city/highway driving range of 300 miles, ample trunk capacity, gasoline vehicle performance and ultra low exhaust emissions.

John Wozniak

1999-02-16T23:59:59.000Z

34

DOE Announces $30 Million for Plug-in Hybrid Electric Vehicle Projects |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 Million for Plug-in Hybrid Electric Vehicle 0 Million for Plug-in Hybrid Electric Vehicle Projects DOE Announces $30 Million for Plug-in Hybrid Electric Vehicle Projects June 12, 2008 - 1:30pm Addthis Adds Plug-in Hybrid Vehicle to Department's Fleet WASHINGTON - U.S. Department of Energy (DOE) Assistant Secretary of Energy Efficiency and Renewable Energy Andy Karsner today announced up to $30 million in funding over three years for three cost-shared Plug-in Hybrid Electric Vehicles (PHEVs) demonstration and development projects. The selected projects will accelerate the development of PHEVs capable of traveling up to 40 miles without recharging, which includes most daily roundtrip commutes and satisfies 70 percent of the average daily travel in the U. S. The projects will also address critical barriers to achieving

35

EV Project Electric Vehicle Charging Infrastructure Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Range of Percent of Charging Units with a Vehicle Connected versus Time of Day Max percentage of charging units connected across all days Min percentage of charging units...

36

Demo Projects Introduce New Class of Natural Gas Vehicles (Fact...  

NLE Websites -- All DOE Office Websites (Extended Search)

address technical and marketplace barriers. With the United States' wealth of natural gas reserves, vehicles powered using this plentiful domestic resource are important...

37

Electric and Hybrid Vehicle System Research and Development Project: Hybrid Vehicle Potential Assessment. Volume VIII. Scenario generation  

SciTech Connect

Scenarios are described which have been generated in support of the Hybrid Vehicle Potential Assessment Task under the JPL Electric and Hybrid Vehicle Systems Research and Development Project. The primary function of the scenario generation is to develop a set of consistent and credible forecasts required to estimate the potential impact of hybrid vehicles on future petroleum consumption in the USA, given a set of specific electric, hybrid and conventional vehicle designs. The forecasts are limited to the next 32 years (1978 to 2010. The four major areas of concern are: population and vehicle fleet size; travel patterns and vehicle fleet mix; conventional vehicle technology (Otto baseline); battery technology; and prices. The forecasts have been generated to reflect two baseline scenarios, a Petroleum Conservation Scenario (Scenario A) and an Energy Conservation Scenario (Scenario B). The primary assumption in Scenario A is higher gasoline prices than in Scenario B. This should result in less travel per car and an increased demand for smaller and more fuel efficient cars (compared to Scenario B). In Scenario B the primary assumption is higher prices on cars (new as well as used) than in Scenario A. This should lead to less cars (compared to Scenario A) and a shift to other modes of transportation.

Leschly, K.O.

1979-09-30T23:59:59.000Z

38

Entering a New Stage of Learning from the U.S. Fuel Cell Electric Vehicle Demonstration Project (Presentation)  

DOE Green Energy (OSTI)

This presentation summarizes Entering a New Stage of Learning from the U.S. Fuel Cell Electric Vehicle Demonstration Project.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Garbak, J.

2010-11-08T23:59:59.000Z

39

Electric and Hybrid Vehicle System Research and Development Project: Hybrid Vehicle Potential Assessment. Volume 1. Summary  

DOE Green Energy (OSTI)

The results of investigations conducted under Ce Hybrid Vehicle Potential Assessment Task are reported in 10 volumes. This volume contains an overview of the study and its results. The purpose of the overall study was to determine if the petroleum fuel savings achievable through the use of hybrid electric vehicles is worth the R and D expenditures needed to develop the hybrid vehicles and to determine R and D priorities. It was concluded that by the year 2010 hybrid vehicles could replace 80% of the automotive power that would otherwise be produced from petroleum fuels; the public should not suffer any mobility loss through the use of hybrid vehicles; high initial and life-cycle costs are a limiting factor; and R and D funds should be spent for systems design and the development of low-cost batteries and controllers. (LCL)

Surber, F.T.

1979-09-30T23:59:59.000Z

40

Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) supports the development and deployment of advanced vehicle technologies, including advances in electric vehicles, engine efficiency, and lightweight materials....

Note: This page contains sample records for the topic "vehicle project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

EV Project Electric Vehicle Charging Infrastructure Summary Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

Percent of time with a vehicle drawing power from charging unit 6% 0% 1% 0% 6% Max percentage of charging units connected across all days Min percentage of charging units...

42

Results from the Vehicle/Infrastructure Learning Demonstration Project (Presentation)  

DOE Green Energy (OSTI)

The objectives of this report are to: (1) validate H{sub 2} FC vehicles and infrastructure in parallel; (2) identify current status of technology and its evolution; (3) re-focus H{sub 2} research and development; and (4) support technology readiness milestone by 2015.

Wipke, K.; Welch, C.; Thomas, H.; Sprik, S.

2006-05-18T23:59:59.000Z

43

EV Project Electric Vehicle Charging Infrastructure Summary Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

per charging event (hr) 2.3 1.9 2.2 Average electricity consumed per charging event (AC kWh) 8.3 6.9 7.9 Residential Level 2 Electric Vehicle Supply Equipment (EVSE) Region: ALL...

44

EV Project Electric Vehicle Charging Infrastructure Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

per charging event (hr) 2.4 2.1 2.3 Average electricity consumed per charging event (AC kWh) 8.4 7.2 8.1 Residential Level 2 Electric Vehicle Supply Equipment (EVSE) Region: ALL...

45

EV Project Electric Vehicle Charging Infrastructure Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

per charging event (hr) 2.5 2.1 2.4 Average electricity consumed per charging event (AC kWh) 8.7 7.5 8.4 Residential Level 2 Electric Vehicle Supply Equipment (EVSE) Region: ALL...

46

EV Project Electric Vehicle Charging Infrastructure Summary Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

per charging event (hr) 2.4 2.0 2.3 Average electricity consumed per charging event (AC kWh) 8.7 7.3 8.3 Residential Level 2 Electric Vehicle Supply Equipment (EVSE) Region: ALL...

47

EV Project Electric Vehicle Charging Infrastructure Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

per charging event (hr) 2.4 2.1 2.4 Average electricity consumed per charging event (AC kWh) 8.6 7.4 8.3 Residential Level 2 Electric Vehicle Supply Equipment (EVSE) Region: ALL...

48

Advanced Vehicle Testing Activity: Neighborhood Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects to someone by E-mail Share Advanced Vehicle Testing Activity: Neighborhood Electric Vehicle Special Projects on Facebook Tweet about Advanced Vehicle Testing...

49

Fuel Cell Vehicle World Survey 2003-Government sponsored projects  

NLE Websites -- All DOE Office Websites (Extended Search)

by Path Transit. BP is supplying the hydrogen fuel for the trial, produced from its oil refinery at Kwinana. The project hopes to determine the critical technical,...

50

Global Grid-Connected Hybrid-Electric Vehicle Project: Year-End Summary Report, November 2000  

Science Conference Proceedings (OSTI)

This interim report summarizes research conducted under the auspices of the Global Grid-Connected Hybrid Electric Vehicle Project, an EPRI initiative to promote the use of grid-connected electric technologies in heavy-duty applications. One study in the program evaluated the potential of converting a Ford E-350 or E-450 Super Duty chassis into a grid-connected hybrid electric vehicle airport shuttle bus and a Ford Explorer chassis into a dedicated electric vehicle delivery van. A second study analyzed ad...

2000-12-13T23:59:59.000Z

51

G4V Grid for Vehicles (Smart Grid Project) | Open Energy Information  

Open Energy Info (EERE)

Vehicles (Smart Grid Project) Vehicles (Smart Grid Project) Jump to: navigation, search Project Name G4V Grid for Vehicles Country Spain Coordinates 40.069664°, -4.284668° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.069664,"lon":-4.284668,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

52

Electrical vehicles impacts on the grids (Smart Grid Project) | Open Energy  

Open Energy Info (EERE)

vehicles impacts on the grids (Smart Grid Project) vehicles impacts on the grids (Smart Grid Project) Jump to: navigation, search Project Name Electrical vehicles impacts on the grids Country Belgium Coordinates 50.471493°, 3.988037° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":50.471493,"lon":3.988037,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

53

Projection of Chinese motor vehicle growth, oil demand, and CO{sub 2}emissions through 2050.  

SciTech Connect

As the vehicle population in China increases, oil consumption and carbon dioxide (CO{sub 2}) emissions associated with on-road transportation are rising dramatically. During this study, we developed a methodology to project trends in the growth of the vehicle population, oil demand, and CO{sub 2} emissions associated with on-road transportation in China. By using this methodology, we projected--separately--the number of highway vehicles, motorcycles, and rural vehicles in China through 2050. We used three scenarios of highway vehicle growth (high-, mid-, and low-growth) to reflect patterns of motor vehicle growth that have occurred in different parts of the world (i.e., Europe and Asia). All are essentially business-as-usual scenarios in that almost none of the countries we examined has made concerted efforts to manage vehicle growth or to offer serious alternative transportation means to satisfy people's mobility needs. With this caveat, our projections showed that by 2030, China could have more highway vehicles than the United States has today, and by 2035, it could have the largest number of highway vehicles in the world. By 2050, China could have 486-662 million highway vehicles, 44 million motorcycles, and 28 million rural vehicles. These numbers, which assume essentially unmanaged vehicle growth, would result in potentially disastrous effects on the urban infrastructure, resources, and other social and ecological aspects of life in China. We designed three fuel economy scenarios, from conservative to aggressive, on the basis of current policy efforts and expectations of near-future policies in China and in developed countries. It should be noted that these current and near-future policies have not taken into consideration the significant potential for further fuel economy improvements offered by advanced technologies such as electric drive technologies (e.g., hybrid electric vehicles and fuel-cell vehicles). By using vehicle growth projections and potential vehicle fuel economy, we projected that China's on-road vehicles could consume approximately 614-1016 million metric tons of oil per year (12.4-20.6 million barrels per day) and could emit 1.9-3.2 billion metric tons of CO{sub 2} per year in 2050, which will put tremendous pressure on the balance of the Chinese and world oil supply and demand and could have significant implications on climate change. Our analysis shows that, while improvements in vehicle fuel economy are crucial for reducing transportation energy use, containing the growth of the vehicle population could have an even more profound effect on oil use and CO{sub 2} emissions. This benefit is in addition to other societal and environmental benefits--such as reduced congestion, land use, and urban air pollution--that will result from containing vehicle population growth. Developing public transportation systems for personal travel and rail and other modes for freight transportation will be important for containing the growth of motor vehicles in China. Although the population of passenger cars will far exceed that of all truck types in China in the future, our analysis shows that oil use by and CO{sub 2} emissions from the Chinese truck fleet will be far larger than those related to Chinese passenger cars because trucks are very use intensive (more vehicle miles traveled per year) and energy intensive (lower fuel economy). Unfortunately, the potential for improving fuel economy and reducing air pollutant emissions for trucks has not been fully explored; such efforts are needed. Considering the rapid depletion of the world's oil reserve, the heightened global interest in addressing greenhouse gas emissions, and the geopolitical complications of global oil supply and demand, the study results suggest that unmanaged vehicle growth and limited improvements in vehicle fuel efficiency will lead to an unsustainable and unstable transportation system in China. In other words, while our projections do not definitively indicate what will happen in the Chinese transportation sector by 2050, they do demonstrate

Wang, M.; Huo, H.; Johnson, L.; He, D.

2006-12-20T23:59:59.000Z

54

Projection of Chinese motor vehicle growth, oil demand, and CO{sub 2}emissions through 2050.  

Science Conference Proceedings (OSTI)

As the vehicle population in China increases, oil consumption and carbon dioxide (CO{sub 2}) emissions associated with on-road transportation are rising dramatically. During this study, we developed a methodology to project trends in the growth of the vehicle population, oil demand, and CO{sub 2} emissions associated with on-road transportation in China. By using this methodology, we projected--separately--the number of highway vehicles, motorcycles, and rural vehicles in China through 2050. We used three scenarios of highway vehicle growth (high-, mid-, and low-growth) to reflect patterns of motor vehicle growth that have occurred in different parts of the world (i.e., Europe and Asia). All are essentially business-as-usual scenarios in that almost none of the countries we examined has made concerted efforts to manage vehicle growth or to offer serious alternative transportation means to satisfy people's mobility needs. With this caveat, our projections showed that by 2030, China could have more highway vehicles than the United States has today, and by 2035, it could have the largest number of highway vehicles in the world. By 2050, China could have 486-662 million highway vehicles, 44 million motorcycles, and 28 million rural vehicles. These numbers, which assume essentially unmanaged vehicle growth, would result in potentially disastrous effects on the urban infrastructure, resources, and other social and ecological aspects of life in China. We designed three fuel economy scenarios, from conservative to aggressive, on the basis of current policy efforts and expectations of near-future policies in China and in developed countries. It should be noted that these current and near-future policies have not taken into consideration the significant potential for further fuel economy improvements offered by advanced technologies such as electric drive technologies (e.g., hybrid electric vehicles and fuel-cell vehicles). By using vehicle growth projections and potential vehicle fuel economy, we projected that China's on-road vehicles could consume approximately 614-1016 million metric tons of oil per year (12.4-20.6 million barrels per day) and could emit 1.9-3.2 billion metric tons of CO{sub 2} per year in 2050, which will put tremendous pressure on the balance of the Chinese and world oil supply and demand and could have significant implications on climate change. Our analysis shows that, while improvements in vehicle fuel economy are crucial for reducing transportation energy use, containing the growth of the vehicle population could have an even more profound effect on oil use and CO{sub 2} emissions. This benefit is in addition to other societal and environmental benefits--such as reduced congestion, land use, and urban air pollution--that will result from containing vehicle population growth. Developing public transportation systems for personal travel and rail and other modes for freight transportation will be important for containing the growth of motor vehicles in China. Although the population of passenger cars will far exceed that of all truck types in China in the future, our analysis shows that oil use by and CO{sub 2} emissions from the Chinese truck fleet will be far larger than those related to Chinese passenger cars because trucks are very use intensive (more vehicle miles traveled per year) and energy intensive (lower fuel economy). Unfortunately, the potential for improving fuel economy and reducing air pollutant emissions for trucks has not been fully explored; such efforts are needed. Considering the rapid depletion of the world's oil reserve, the heightened global interest in addressing greenhouse gas emissions, and the geopolitical complications of global oil supply and demand, the study results suggest that unmanaged vehicle growth and limited improvements in vehicle fuel efficiency will lead to an unsustainable and unstable transportation system in China. In other words, while our projections do not definitively indicate what will happen in the Chinese transportation sector by 2050, they do demonstrate

Wang, M.; Huo, H.; Johnson, L.; He, D.

2006-12-20T23:59:59.000Z

55

The DICO project: A Multimodal Menubased In-vehicle Dialogue System  

E-Print Network (OSTI)

Dico is a multimodal in-car dialogue system application 1. An obvious advantage of spoken dialogue in the vehicle environment is thath the driver does not have to take the eyes- and the attention- off the road. DICO (with capital letters) is also a recently started research project, with funding from

Staffan Larsson; Jessica Villing

2007-01-01T23:59:59.000Z

56

Battery Electric Vehicle Driving and Charging Behavior Observed Early in The EV Project  

DOE Green Energy (OSTI)

As concern about society's dependence on petroleum-based transportation fuels increases, many see plug-in electric vehicles (PEV) as enablers to diversifying transportation energy sources. These vehicles, which include plug-in hybrid electric vehicles (PHEV), range-extended electric vehicles (EREV), and battery electric vehicles (BEV), draw some or all of their power from electricity stored in batteries, which are charged by the electric grid. In order for PEVs to be accepted by the mass market, electric charging infrastructure must also be deployed. Charging infrastructure must be safe, convenient, and financially sustainable. Additionally, electric utilities must be able to manage PEV charging demand on the electric grid. In the Fall of 2009, a large scale PEV infrastructure demonstration was launched to deploy an unprecedented number of PEVs and charging infrastructure. This demonstration, called The EV Project, is led by Electric Transportation Engineering Corporation (eTec) and funded by the U.S. Department of Energy. eTec is partnering with Nissan North America to deploy up to 4,700 Nissan Leaf BEVs and 11,210 charging units in five market areas in Arizona, California, Oregon, Tennessee, and Washington. With the assistance of the Idaho National Laboratory, eTec will collect and analyze data to characterize vehicle consumer driving and charging behavior, evaluate the effectiveness of charging infrastructure, and understand the impact of PEV charging on the electric grid. Trials of various revenue systems for commercial and public charging infrastructure will also be conducted. The ultimate goal of The EV Project is to capture lessons learned to enable the mass deployment of PEVs. This paper is the first in a series of papers documenting the progress and findings of The EV Project. This paper describes key research objectives of The EV Project and establishes the project background, including lessons learned from previous infrastructure deployment and PEV demonstrations. One such previous study was a PHEV demonstration conducted by the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA), led by the Idaho National Laboratory (INL). AVTA's PHEV demonstration involved over 250 vehicles in the United States, Canada, and Finland. This paper summarizes driving and charging behavior observed in that demonstration, including the distribution of distance driven between charging events, charging frequency, and resulting proportion of operation charge depleting mode. Charging demand relative to time of day and day of the week will also be shown. Conclusions from the PHEV demonstration will be given which highlight the need for expanded analysis in The EV Project. For example, the AVTA PHEV demonstration showed that in the absence of controlled charging by the vehicle owner or electric utility, the majority of vehicles were charged in the evening hours, coincident with typical utility peak demand. Given this baseline, The EV Project will demonstrate the effects of consumer charge control and grid-side charge management on electricity demand. This paper will outline further analyses which will be performed by eTec and INL to documenting driving and charging behavior of vehicles operated in a infrastructure-rich environment.

John Smart; Stephen Schey

2012-04-01T23:59:59.000Z

57

Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource for Project Development  

SciTech Connect

The transportation sector accounts for a large and growing share of global greenhouse gas (GHG) emissions. Worldwide, motor vehicles emit well over 900 million metric tons of carbon dioxide (CO2) each year, accounting for more than 15 percent of global fossil fuel-derived CO2 emissions.1 In the industrialized world alone, 20-25 percent of GHG emissions come from the transportation sector. The share of transport-related emissions is growing rapidly due to the continued increase in transportation activity.2 In 1950, there were only 70 million cars, trucks, and buses on the worlds roads. By 1994, there were about nine times that number, or 630 million vehicles. Since the early 1970s, the global fleet has been growing at a rate of 16 million vehicles per year. This expansion has been accompanied by a similar growth in fuel consumption.3 If this kind of linear growth continues, by the year 2025 there will be well over one billion vehicles on the worlds roads.4 In a response to the significant growth in transportation-related GHG emissions, governments and policy makers worldwide are considering methods to reverse this trend. However, due to the particular make-up of the transportation sector, regulating and reducing emissions from this sector poses a significant challenge. Unlike stationary fuel combustion, transportation-related emissions come from dispersed sources. Only a few point-source emitters, such as oil/natural gas wells, refineries, or compressor stations, contribute to emissions from the transportation sector. The majority of transport-related emissions come from the millions of vehicles traveling the worlds roads. As a result, successful GHG mitigation policies must find ways to target all of these small, non-point source emitters, either through regulatory means or through various incentive programs. To increase their effectiveness, policies to control emissions from the transportation sector often utilize indirect means to reduce emissions, such as requiring specific technology improvements or an increase in fuel efficiency. Site-specific project activities can also be undertaken to help decrease GHG emissions, although the use of such measures is less common. Sample activities include switching to less GHG-intensive vehicle options, such as electric vehicles (EVs) or hybrid electric vehicles (HEVs). As emissions from transportation activities continue to rise, it will be necessary to promote both types of abatement activities in order to reverse the current emissions path. This Resource Guide focuses on site- and project-specific transportation activities. .

National Energy Technology Laboratory

2002-07-31T23:59:59.000Z

58

Entering a New Stage of Learning from the U.S. Fuel Cell Electric Vehicle Demonstration Project: Preprint  

DOE Green Energy (OSTI)

The National Fuel Cell Electric Vehicle Learning Demonstration is a U.S. Department of Energy (DOE) project that started in 2004. The purpose of this project is to conduct an integrated field validation that simultaneously examines the performance of fuel cell vehicles and the supporting hydrogen infrastructure. The DOE's National Renewable Energy Laboratory (NREL) has now analyzed data from over five years of the seven-year project. During this time, over 144 fuel cell electric vehicles have been deployed, and 23 project refueling stations were placed in use.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Garbak, J.

2010-10-01T23:59:59.000Z

59

Advanced Turbine Technology Applications Project (ATTAP) and Hybrid Vehicle Turbine Engine Technology Support project (HVTE-TS): Final summary report  

DOE Green Energy (OSTI)

This final technical report was prepared by Rolls-Royce Allison summarizing the multiyear activities of the Advanced Turbine Technology Applications Project (ATTAP) and the Hybrid Vehicle Turbine Engine Technology Support (HVTE-TS) project. The ATTAP program was initiated in October 1987 and continued through 1993 under sponsorship of the US Department of Energy (DOE), Energy Conservation and Renewable Energy, Office of Transportation Technologies, Propulsion Systems, Advanced Propulsion Division. ATTAP was intended to advance the technological readiness of the automotive ceramic gas turbine engine. The target application was the prime power unit coupled to conventional transmissions and powertrains. During the early 1990s, hybrid electric powered automotive propulsion systems became the focus of development and demonstration efforts by the US auto industry and the Department of energy. Thus in 1994, the original ATTAP technology focus was redirected to meet the needs of advanced gas turbine electric generator sets. As a result, the program was restructured to provide the required hybrid vehicle turbine engine technology support and the project renamed HVTE-TS. The overall objective of the combined ATTAP and HVTE-TS projects was to develop and demonstrate structural ceramic components that have the potential for competitive automotive engine life cycle cost and for operating 3,500 hr in an advanced high temperature turbine engine environment. This report describes materials characterization and ceramic component development, ceramic components, hot gasifier rig testing, test-bed engine testing, combustion development, insulation development, and regenerator system development. 130 figs., 12 tabs.

NONE

1998-12-01T23:59:59.000Z

60

Financing U.S. Renewable Energy Projects Through Public Capital Vehicles: Qualitative and Quantitative Benefits  

NLE Websites -- All DOE Office Websites (Extended Search)

Financing U.S. Renewable Financing U.S. Renewable Energy Projects Through Public Capital Vehicles: Qualitative and Quantitative Benefits Michael Mendelsohn and David Feldman Technical Report NREL/TP-6A20-58315 April 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Financing U.S. Renewable Energy Projects Through Public Capital Vehicles: Qualitative and Quantitative Benefits Michael Mendelsohn and David Feldman Prepared under Task No. SM13.1030

Note: This page contains sample records for the topic "vehicle project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Revised projections of fuel economy and technology for highway vehicles. Task 22. Final report  

SciTech Connect

Both the methodology used to forecast fuel economy and the technological and tooling plan data central to the derivation of the forecast for all those vehicle classes are updated here. Forecasts were prepared for a scenario where oil prices stay flat through 1985 (in current real dollars) and increase at the rate of one percent per year in the 1985 to 1995 period. Estimates of the mix of vehicles sold and projections for diesel penetration are documented. Revised forecasts for cars and light duty truck analysis are detailed. Heavy-duty truck fuel economy forecast revisions are described. The DOE automotive R and D programs are examined in the context of the newly revised projections. (MHR)

1983-06-15T23:59:59.000Z

62

Greenhouse Emission Reductions and Natural Gas Vehicles: A Resource Guide on Technology Options and Project Development  

Science Conference Proceedings (OSTI)

Accurate and verifiable emission reductions are a function of the degree of transparency and stringency of the protocols employed in documenting project- or program-associated emissions reductions. The purpose of this guide is to provide a background for law and policy makers, urban planners, and project developers working with the many Greenhouse Gas (GHG) emission reduction programs throughout the world to quantify and/or evaluate the GHG impacts of Natural Gas Vehicle (NGVs). In order to evaluate the GHG benefits and/or penalties of NGV projects, it is necessary to first gain a fundamental understanding of the technology employed and the operating characteristics of these vehicles, especially with regard to the manner in which they compare to similar conventional gasoline or diesel vehicles. Therefore, the first two sections of this paper explain the basic technology and functionality of NGVs, but focus on evaluating the models that are currently on the market with their similar conventional counterparts, including characteristics such as cost, performance, efficiency, environmental attributes, and range. Since the increased use of NGVs, along with Alternative Fuel Vehicle (AFVs) in general, represents a public good with many social benefits at the local, national, and global levels, NGVs often receive significant attention in the form of legislative and programmatic support. Some states mandate the use of NGVs, while others provide financial incentives to promote their procurement and use. Furthermore, Federal legislation in the form of tax incentives or procurement requirements can have a significant impact on the NGV market. In order to implement effective legislation or programs, it is vital to have an understanding of the different programs and activities that already exist so that a new project focusing on GHG emission reduction can successfully interact with and build on the experience and lessons learned of those that preceded it. Finally, most programs that deal with passenger vehicles--and with transportation in general--do not address the climate change component explicitly, and thus there are few GHG reduction goals that are included in these programs. Furthermore, there are relatively few protocols that exist for accounting for the GHG emissions reductions that arise from transportation and, specifically, passenger vehicle projects and programs. These accounting procedures and principles gain increased importance when a project developer wishes to document in a credible manner, the GHG reductions that are achieved by a given project or program. Section four of this paper outlined the GHG emissions associated with NGVs, both upstream and downstream, and section five illustrated the methodology, via hypothetical case studies, for measuring these reductions using different types of baselines. Unlike stationary energy combustion, GHG emissions from transportation activities, including NGV projects, come from dispersed sources creating a need for different methodologies for assessing GHG impacts. This resource guide has outlined the necessary context and background for those parties wishing to evaluate projects and develop programs, policies, projects, and legislation aimed at the promotion of NGVs for GHG emission reduction.

Orestes Anastasia; NAncy Checklick; Vivianne Couts; Julie Doherty; Jette Findsen; Laura Gehlin; Josh Radoff

2002-09-01T23:59:59.000Z

63

Electric and Hybrid Vehicle System Research and Development Project: Hybrid Vehicle Potential Assessment. Volume VI. Cost analysis  

DOE Green Energy (OSTI)

The purpose of the cost analysis is to determine the economic feasibility of a variety of hybrid vehicles with respect to conventional vehicles specifically designed for the same duty cycle defined by the mission analysis. Several different hybrid configurations including parallel, parallel-flywheel, and series vehicles were evaluated. The ramifications of incorporating examples of advanced batteries, these being the advanced lead-acid, nickel-zinc, and sodium sulfur were also investigated. Vehicles were specifically designed with these batteries and for the driving cycles specified by the mission. Simulated operation on the missions yielded the energy consumption (petroleum and/or electricity) over the driving cycles. It was concluded that: in the event that gasoline prices reach $2.50 to $3.00/gal, hybrid vehicles in many applications will become economically competitive with conventional vehicles without subsidization; in some commercial applications hybrid vehicles could be economically competitive, when the gasoline price ranges from $1.20 to $1.50/gal. The cost per kWh per cycle of the advanced batteries is much more important economically than the specific energy; the series hybrid vehicles were found to be more expensive in comparison to the parallel or parallel-flywheel hybrids when designed as passenger vehicles; and hybrid vehicles designed for private use could become economically competitive and displace up to 50% of the fuel normally used on that mission if subsidies of $500 to $2000 were supplied to the owner/operator. (LCL)

Hardy, K.S.

1979-09-30T23:59:59.000Z

64

Advanced Vehicle Testing Activity: Full-Size Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects to someone by E-mail Share Advanced Vehicle Testing Activity: Full-Size Electric Vehicle Special Projects on Facebook Tweet about Advanced Vehicle Testing Activity:...

65

Advanced Vehicle Testing Activity: Urban Electric Vehicle Special...  

NLE Websites -- All DOE Office Websites (Extended Search)

Special Projects to someone by E-mail Share Advanced Vehicle Testing Activity: Urban Electric Vehicle Special Projects on Facebook Tweet about Advanced Vehicle Testing Activity:...

66

Hybrid vehicle turbine engine technology support (HVTE-TS) project. 1995--1996 annual report  

DOE Green Energy (OSTI)

This report presents a summary of technical work accomplished on the Hybrid Vehicle Turbine Engine--Technology Support (HVTE-TS) Project during calendar years 1995 and 1996. Work was performed under an initial National Aeronautics and Space Administration (NASA) contract DEN3-336. As of September 1996 the contract administration was transferred to the US Department of Energy (DoE) Chicago Operations Office, and renumbered as DE-AC02-96EE50553. The purpose of the HVTE-TS program is to develop gas turbine engine technology in support of DoE and automotive industry programs exploring the use of gas turbine generator sets in hybrid-electric automotive propulsion systems. The program focus is directed to the development of four key technologies to be applied to advanced turbogenerators for hybrid vehicles: Structural ceramic materials and processes; Low emissions combustion systems; Regenerators and seals systems; and Insulation systems and processes. 60 figs., 9 tabs.

NONE

1996-12-31T23:59:59.000Z

67

Projections of highway vehicle population, energy demand, and CO{sub 2} emissions in India through 2040.  

Science Conference Proceedings (OSTI)

This paper presents projections of motor vehicles, oil demand, and carbon dioxide (CO{sub 2}) emissions for India through the year 2040. The populations of highway vehicles and two-wheelers are projected under three different scenarios on the basis of economic growth and average household size in India. The results show that by 2040, the number of highway vehicles in India would be 206-309 million. The oil demand projections for the Indian transportation sector are based on a set of nine scenarios arising out of three vehicle-growth and three fuel-economy scenarios. The combined effects of vehicle-growth and fuel-economy scenarios, together with the change in annual vehicle usage, result in a projected demand in 2040 by the transportation sector in India of 404-719 million metric tons (8.5-15.1 million barrels per day). The corresponding annual CO{sub 2} emissions are projected to be 1.2-2.2 billion metric tons.

Arora, S.; Vyas, A.; Johnson, L.; Energy Systems

2011-02-22T23:59:59.000Z

68

Usage of Electric Vehicle Supply Equipment Along the Corridors between the EV Project Major Cities  

DOE Green Energy (OSTI)

The report explains how the EVSE are being used along the corridors between the EV Project cities. The EV Project consists of a nationwide collaboration between Idaho National Laboratory (INL), ECOtality North America, Nissan, General Motors, and more than 40 other city, regional and state governments, and electric utilities. The purpose of the EV Project is to demonstrate the deployment and use of approximately 14,000 Level II (208-240V) electric vehicle supply equipment (EVSE) and 300 fast chargers in 16 major cities. This research investigates the usage of all currently installed EV Project commercial EVSE along major interstate corridors. ESRI ArcMap software products are utilized to create geographic EVSE data layers for analysis and visualization of commercial EVSE usage. This research locates the crucial interstate corridors lacking sufficient commercial EVSE and targets locations for future commercial EVSE placement. The results and methods introduced in this research will be used by INL for the duration of the EV Project.

Mindy Kirkpatrick

2012-05-01T23:59:59.000Z

69

Project Integration Office for the electric and hybrid vehicle R and D program. Eighth progress report, March 1982  

DOE Green Energy (OSTI)

The Project Integration Office (PIO) was established to assist the US DOE with the direction and coordination of its multiple electric vehicle and hybrid electric vehicle research programs in order to get the maximum payoff from these research efforts. In addition, the PIO performs objective independent technical and economic studies, analyses and modeling, and maintains a technical information liaison service to facilitate information exchange between the program participants and industry. Progress in each of these activities is reported. (LCL)

Not Available

1982-04-19T23:59:59.000Z

70

Personal vehicles preferred by urban Americans: household automobile holdings and new car purchases projected to the year 2000  

DOE Green Energy (OSTI)

A procedure is described for modeling the choices made in urban American households among personal vehicles on the bases of cost, passenger capacity, and engine technology, and it projects those preferences to the year 1990 and 2000. The results of this disaggregate technique are used by the other predictive research tasks undertaken by Argonne National Laboratory in a project entitled Technology Assessment of Productive Conservation in Urban Transportation (TAPCUT). The vehicle preferences reported here furnish data for the overall TAPCUT objective of forecasting the probable effects of energy conservation policies in transportation. In our projections, vehicles with standard spark-ignition (Otto-cycle) engines continue to dominate automobile holdings and new car purchases in either of two socioeconomic scenarios under any of three settings (an existing policy set and two alternative conservation strategies). From 1990, small cars (seating four or fewer passengers) dominate urban holdings and sales in two of the three TAPCUT energy strategies - the exception being the strategy that emphasizes individual travel - and this holds true with only a minor variation for both socioeconomic scenarios (an optimistic one and a slightly pessimistic one). Advanced-technology vehicles are most successful under the Individual Travel Strategy. It appears that vehicle charateristics are far more significant than demographic descriptors in estimating household vehicle choice using this modeling approach.

Saricks, C.L.; Vyas, A.D.; Bunch, J.A.

1982-01-01T23:59:59.000Z

71

Projected Cost, Energy Use, and Emissions of Hydrogen Technologies for Fuel Cell Vehicles  

SciTech Connect

Each combination of technologies necessary to produce, deliver, and distribute hydrogen for transportation use has a corresponding levelized cost, energy requirement, and greenhouse gas emission profile depending upon the technologies' efficiencies and costs. Understanding the technical status, potential, and tradeoffs is necessary to properly allocate research and development (R&D) funding. In this paper, levelized delivered hydrogen costs, pathway energy use, and well-to-wheels (WTW) energy use and emissions are reported for multiple hydrogen production, delivery, and distribution pathways. Technologies analyzed include both central and distributed reforming of natural gas and electrolysis of water, and central hydrogen production from biomass and coal. Delivery options analyzed include trucks carrying liquid hydrogen and pipelines carrying gaseous hydrogen. Projected costs, energy use, and emissions for current technologies (technology that has been developed to at least the bench-scale, extrapolated to commercial-scale) are reported. Results compare favorably with those for gasoline, diesel, and E85 used in current internal combustion engine (ICE) vehicles, gasoline hybrid electric vehicles (HEVs), and flexible fuel vehicles. Sensitivities of pathway cost, pathway energy use, WTW energy use, and WTW emissions to important primary parameters were examined as an aid in understanding the benefits of various options. Sensitivity studies on production process energy efficiency, total production process capital investment, feed stock cost, production facility operating capacity, electricity grid mix, hydrogen vehicle market penetration, distance from the hydrogen production facility to city gate, and other parameters are reported. The Hydrogen Macro-System Model (MSM) was used for this analysis. The MSM estimates the cost, energy use, and emissions trade offs of various hydrogen production, delivery, and distribution pathways under consideration. The MSM links the H2A Production Model, the Hydrogen Delivery Scenario Analysis Model (HDSAM), and the Greenhouse Gas, Regulated Emission, and Energy for Transportation (GREET) Model. The MSM utilizes the capabilities of each component model and ensures the use of consistent parameters between the models to enable analysis of full hydrogen production, delivery, and distribution pathways. To better understand spatial aspects of hydrogen pathways, the MSM is linked to the Hydrogen Demand and Resource Analysis Tool (HyDRA). The MSM is available to the public and enables users to analyze the pathways and complete sensitivity analyses.

Ruth, M. F.; Diakov, V.; Laffen, M. J.; Timbario, T. A.

2010-01-01T23:59:59.000Z

72

Examples of past vehicle-related projects at the University of Alabama: Diesel Exhaust Treatment Using Catalyst/Zeolite-II-collaborative UAB/UA project funded by  

E-Print Network (OSTI)

to natural gas operation, and to supervise #12;conversion and operation of a 20-vehicle natural gas strategies in DI engines. Characterization of Low-Btu Gas Combustion in a Spark Ignited Engine- project funded by Cummins Engine Co. to investigate impact of fuel composition of low-Btu gases (e.g., landfill

Carver, Jeffrey C.

73

Plug-in Electric Vehicle Real-World Data from DOE's AVTA (Project...  

NLE Websites -- All DOE Office Websites (Extended Search)

Experience 24 illi il l d 5 500 l i d i * 24 million test miles accumulated on 5,500 electric drive vehicles representing 111 models * Plug-in hybrid electric vehicles: 14 models,...

74

Advanced Vehicle Technologies Awards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Vehicle Technologies Awards Advanced Vehicle Technologies Awards Microsoft Word - VTP 175 Advanced Vehicle Tech project descriptions draft v5 8-2-11 AdvancedVehiclesTechn...

75

Electric and hybrid vehicle project. Quarterly report of private-sector operations, first quarter 1982  

DOE Green Energy (OSTI)

As of January 1, 1982 sixteen private-sector site operators at 30 sites in the US were involved in electric and hybrid electric-powered vehicle demonstration programs. Data for 1981 and the first quarter of 1982 are presented on vehicle selection, miles accumulated, energy usage, maintenance requirements, reliability and operating performance for demonstration vehicles at each site. (LCL)

None

1982-06-01T23:59:59.000Z

76

A First Preliminary Look: Are Corridor Charging Stations Used to Extend the Range of Electric Vehicles in The EV Project?  

Science Conference Proceedings (OSTI)

A preliminary analysis of data from The EV Project was performed to begin answering the question: are corridor charging stations used to extend the range of electric vehicles? Data analyzed were collected from Blink brand electric vehicle supply equipment (EVSE) units based in California, Washington, and Oregon. Analysis was performed on data logged between October 1, 2012 and January 1, 2013. It should be noted that as additional AC Level 2 EVSE and DC fast chargers are deployed, and as drivers become more familiar with the use of public charging infrastructure, future analysis may have dissimilar conclusions.

John Smart

2013-01-01T23:59:59.000Z

77

Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

Volt Vehicle Summary Report: April - June 2013 (PDF 1.3MB) EV Project Electric Vehicle Charging Infrastructure Summary Report: April - June 2013 (PDF 11MB) Residential...

78

A First Look at the Impact of Electric Vehicle Charging on the Electric Grid in the EV Project  

DOE Green Energy (OSTI)

ECOtality was awarded a grant from the U.S. Department of Energy to lead a large-scale electric vehicle charging infrastructure demonstration, called The EV Project. ECOtality has partnered with Nissan North America, General Motors, the Idaho National Laboratory, and others to deploy and collect data from over 5,000 Nissan LEAFsTM and Chevrolet Volts and over 10,000 charging systems in 18 regions across the United States. This paper summarizes usage of residential charging units in The EV Project, based on data collected through the end of 2011. This information is provided to help analysts assess the impact on the electric grid of early adopter charging of grid-connected electric drive vehicles. A method of data aggregation was developed to summarize charging unit usage by the means of two metrics: charging availability and charging demand. Charging availability is plotted to show the percentage of charging units connected to a vehicle over time. Charging demand is plotted to show charging demand on the electric gird over time. Charging availability for residential charging units is similar in each EV Project region. It is low during the day, steadily increases in evening, and remains high at night. Charging demand, however, varies by region. Two EV Project regions were examined to identify regional differences. In Nashville, where EV Project participants do not have time-of-use electricity rates, demand increases each evening as charging availability increases, starting at about 16:00. Demand peaks in the 20:00 hour on weekdays. In San Francisco, where the majority of EV Project participants have the option of choosing a time-of-use rate plan from their electric utility, demand spikes at 00:00. This coincides with the beginning of the off-peak electricity rate period. Demand peaks at 01:00.

Stephen L. Schey; John G. Smart; Don R. Scoffield

2012-05-01T23:59:59.000Z

79

Advanced Vehicle Testing Activity: Light-Duty Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Light-Duty Light-Duty Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Light-Duty Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Light-Duty Vehicles on Twitter Bookmark Advanced Vehicle Testing Activity: Light-Duty Vehicles on Google Bookmark Advanced Vehicle Testing Activity: Light-Duty Vehicles on Delicious Rank Advanced Vehicle Testing Activity: Light-Duty Vehicles on Digg Find More places to share Advanced Vehicle Testing Activity: Light-Duty Vehicles on AddThis.com... Home Overview Light-Duty Vehicles Alternative Fuel Vehicles Plug-in Hybrid Electric Vehicles Hybrid Electric Vehicles Micro Hybrid Vehicles ARRA Vehicle and Infrastructure Projects EVSE Testing Energy Storage Testing Hydrogen Internal Combustion Engine Vehicles Other ICE

80

Experimental investigation of the ground transportation systems (GTS) project for heavy vehicle drag reduction  

DOE Green Energy (OSTI)

A wind tunnel experimental research program was conducted on a heavily instrumented Ground Transportation System (GTS) vehicle. The GTS baseline model represented a generic 1:8 scale Class-8 van-type tractor trailer geometry. Five base drag reduction add-on devices, instrumented with surface pressure ports, were also tested. These add-on devices included two ogive boattail shapes and three slant geometry devices. Six component force and moment data, surface pressure contours, and wake velocity surveys are presented for each configuration along with qualitative insights gained from flow visualization. This wind tunnel program was designed to complement a parallel research effort in computational fluid dynamics (CFD) which modeled many of these same vehicle geometries. The wind tunnel data are documented and archived in ASCII format on floppy discs and available to researchers interested in further analysis or comparison to other CFD solutions.

Croll, R.H.; Gutierrez, W.T.; Hassan, B.; Suazo, J.E.; Riggins, A.J.

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Strategy for the Integration of Hydrogen as a Vehicle Fuel into the Existing Natural Gas Vehicle Fueling Infrastructure of the Interstate Clean Transportation Corridor Project: 22 April 2004--31 August 2005  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

national laboratory of the U.S. Department of Energy national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy National Renewable Energy Laboratory Innovation for Our Energy Future Subcontract Report Strategy for the Integration of NREL/SR-540-38720� Hydrogen as a Vehicle Fuel into September 2005 � the Existing Natural Gas Vehicle � Fueling Infrastructure of the � Interstate Clean Transportation � Corridor Project � April 22, 2004 - August 31, 2005 Gladstein, Neandross & Associates � Santa Monica, California � NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Strategy for the Integration of Hydrogen as a Vehicle Fuel into the Existing Natural Gas Vehicle Fueling Infrastructure of the Interstate Clean Transportation

82

Financing U.S. Renewable Energy Projects Through Public Capital Vehicles: Qualitative and Quantitative Benefits  

DOE Green Energy (OSTI)

This paper explores the possibility of financing renewable energy projects through raising capital in the public markets. It gives an overview of the size, structure, and benefits of public capital markets, as well as showing how renewable energy projects might take advantage of this source of new funds to lower the cost of electricity.

Mendelsohn, M.; Feldman, D.

2013-04-01T23:59:59.000Z

83

Plug-In Electric Vehicle Charging Load Profile Forecasts for the Salt River Project Service Area  

Science Conference Proceedings (OSTI)

As plug-in electric vehicles (PEVs) enter the marketplace, it is important to understand the impacts of the potentially significant new load caused by PEV charging. Time-of-use (TOU) electricity pricing will help shift PEV charging loads to off-peak hours, mitigating the potential problem of raising the system peak load. However, there is a potential for a secondary peak to develop if the TOU plan causes a large PEV load to appear on the grid at a specific time in the evening. So-called smart chargingbid...

2011-06-30T23:59:59.000Z

84

Final report on the National Conference of State Legislatures project 'Assistance to State Legislatures on Alternative Fuel Vehicle Issues'  

DOE Green Energy (OSTI)

This report assesses the effectiveness of state alternative fuel vehicle incentives and suggests incentives that might encourage new vehicle technologies. It does not assess whether a state should promote alternative fuel vehicles or whether such vehicles are the most effective means to reduce air pollution.

Brown, Matthew; Sundeen, Matt

2000-07-24T23:59:59.000Z

85

FCV Learning Demonstration: Project Midpoint Status and First-Generation Vehicle Results; Preprint  

DOE Green Energy (OSTI)

This paper covers the progress accomplished by the U.S. DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project since inception, including results from analysis of six months of new data.

Wipke, K.; Sprik, S.; Kurtz, J.; Thomas, H.; Garbak, J.

2007-12-01T23:59:59.000Z

86

Visualizing Electric Vehicle Sales | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Projects and State Memos DOE Recovery Field Projects and State Memos Advanced Vehicle Technologies Awardees Advanced Vehicle Technologies Awardees Department of Energy...

87

V2X communication in Europe - From research projects towards standardization and field testing of vehicle communication technology  

Science Conference Proceedings (OSTI)

Following the success story of passive and autonomous active safety systems, cooperative Intelligent Transportation Systems based on vehicular communication are the next important step to the vision of accident-free driving. In recent years, various ... Keywords: Cooperative systems, Field operational test (FOT), Intelligent Transportation Systems (ITS), Safe intelligent mobility - test field Germany (simTD), Vehicle-to-infrastructure (V2I), Vehicle-to-vehicle (V2V)

Christian Wei

2011-10-01T23:59:59.000Z

88

Categorical Exclusion Determinations: Advanced Technology Vehicles...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2012 CX-007677: Categorical Exclusion Determination Project Eagle Phase 1 Direct WaferCell Solar Facility CX(s) Applied: B1.31 Date: 01242012 Location(s): Massachusetts...

89

advanced vehicle technologies awards table | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

advanced vehicle technologies awards table advanced vehicle technologies awards table Microsoft Word - VTP 175 Advanced Vehicle Tech project descriptions draft v5 8-2-11 More...

90

Vehicle Technologies Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

News News Site Map Printable Version Share this resource Send a link to Vehicle Technologies Office: News to someone by E-mail Share Vehicle Technologies Office: News on Facebook Tweet about Vehicle Technologies Office: News on Twitter Bookmark Vehicle Technologies Office: News on Google Bookmark Vehicle Technologies Office: News on Delicious Rank Vehicle Technologies Office: News on Digg Find More places to share Vehicle Technologies Office: News on AddThis.com... Vehicle Technologies News Blog Newsletters Information for Media Subscribe to News Updates News December 18, 2013 USDA Offers $118 Million for Renewable Energy, Smart Grid Projects The U.S. Department of Agriculture (USDA) announced $73 million in funding for renewable energy projects and $45 million for smart grid technology as

91

EV Project Overview Report  

NLE Websites -- All DOE Office Websites (Extended Search)

June 2012 Note: EV Project charging units may be used by vehicles that are not part of the EV Project. Likewise, EV Project vehicles may connect to non-EV Project charging units....

92

Methodology for Calculating Cost-per-Mile for Current and Future Vehicle Powertrain Technologies, with Projections to 2024: Preprint  

DOE Green Energy (OSTI)

Currently, several cost-per-mile calculators exist that can provide estimates of acquisition and operating costs for consumers and fleets. However, these calculators are limited in their ability to determine the difference in cost per mile for consumer versus fleet ownership, to calculate the costs beyond one ownership period, to show the sensitivity of the cost per mile to the annual vehicle miles traveled (VMT), and to estimate future increases in operating and ownership costs. Oftentimes, these tools apply a constant percentage increase over the time period of vehicle operation, or in some cases, no increase in direct costs at all over time. A more accurate cost-per-mile calculator has been developed that allows the user to analyze these costs for both consumers and fleets. The calculator was developed to allow simultaneous comparisons of conventional light-duty internal combustion engine (ICE) vehicles, mild and full hybrid electric vehicles (HEVs), and fuel cell vehicles (FCVs). This paper is a summary of the development by the authors of a more accurate cost-per-mile calculator that allows the user to analyze vehicle acquisition and operating costs for both consumer and fleets. Cost-per-mile results are reported for consumer-operated vehicles travelling 15,000 miles per year and for fleets travelling 25,000 miles per year.

Ruth, M.; Timbario, T. A.; Timbario, T. J.; Laffen, M.

2011-01-01T23:59:59.000Z

93

About the EV Project Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

About the EV Project Reports The EV Project fact sheets and reports are based on data from several different sources (vehicle and electric vehicle supply equipment EVSE...

94

Alternative Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

There are a number of alternative and advanced vehiclesor vehicles that run on alternative fuels. Learn more about the following types of vehicles:

95

DOE/EA-1678: Final Environmental Assessment for Department of Energy Loan To Nissan North America, Inc., for Advanced Technology Electric Vehicle Manufacturing Project in Smyrna, Tennessee (November 2009)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 8 ENVIRONMENTAL ASSESSMENT FOR DEPARTMENT OF ENERGY LOAN TO NISSAN NORTH AMERICA, INC., FOR ADVANCED TECHNOLOGY ELECTRIC VEHICLE MANUFACTURING PROJECT IN SMYRNA, TENNESSEE U.S. Department of Energy Advanced Technology Vehicles Manufacturing Loan Program Washington, DC 20585 November 2009 FINAL ENVIRONMENTAL ASSESSMENT i SUMMARY Introduction The U.S. Department of Energy (DOE) is proposing to issue a loan to Nissan North America, Inc., (Nissan) for the production of advanced technology electric vehicles (EVs). Nissan's Electric Vehicle Production Project (EV Project) would include the expansion of the Smyrna, Tennessee Manufacturing Plant through the construction of an approximately 1.3 million square foot lithium-ion (Li-ion) battery plant (EV Battery

96

NREL: Vehicles and Fuels Research - Electric Vehicle Grid Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Grid Integration Project Electric Vehicle Grid Integration Project Plug-in electric vehicle charging at NREL. PEV charging in the VTIF. Photo by Dennis Schroeder, NREL/PIX 19758 The Electric Vehicle Grid Integration Project supports the development and implementation of electrified transportation systems, particularly those that integrate renewable-based vehicle charging systems. Plug-in electric vehicles (PEVs)-including all-electric vehicles and plug-in hybrid electric vehicles (PHEVs)-provide a new opportunity to reduce oil consumption by drawing on power from the electric grid. To maximize the benefits of PEVs, the emerging PEV infrastructure must provide access to clean electricity generated from renewable sources, satisfy driver expectations, and ensure safety. Value creation from systems

97

NREL: Vehicles and Fuels Research - Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Publications NREL researchers document their findings in technical reports, conference papers, journal articles, and fact sheets. Visit the following online resources to find publications about alternative and advanced transportation technologies and systems. NREL Publications Database This database features a wide variety of publications produced by NREL from 1977 to the present. Search the database or find publications according to these popular key words: Advanced vehicles and systems | Alternative fuels | Batteries | Electric vehicles | Energy storage | Fuel cell vehicles | Hybrid electric vehicles | Plug-in electric vehicles | Vehicle analysis | Vehicle modeling | Vehicle emissions Selected Publications Read selected publications related to our vehicles and fuels projects:

98

Energy Basics: Electric Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

99

Energy Basics: Propane Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

100

Energy Basics: Alternative Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

Note: This page contains sample records for the topic "vehicle project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Energy Basics: Alternative Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

fuels. Learn more about the following types of vehicles: Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

102

EERE: Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies Office and initiatives, using efficient vehicles, and access vehicle and fuel information. Photo of a ethanol and biodiesel fueling station Photo of three big-rig...

103

Federal loan guaranty programs management report, Task III, Item 005. Tab I. Electric and hybrid vehicle research, development, and demonstration project. Tab II. Geothermal loan guaranty program  

DOE Green Energy (OSTI)

The guaranty program on electric and hybrid vehicle research, development, and demonstration considers two aspects of loan guaranties: (1) how is the loan guaranty, as an incentive device, best integrated into an overall project strategy, and (2) to what extent can cost-effectiveness measurements be introduced to the loan guaranty review and approval process. The report on the geothermal loan guaranty program is an overview of a large number of existing program elements which, in the opinion of the financial community or the historical record of predecessor loan guaranty programs, can be seen to be (or have potential to become) troublesome. Included are relevant administrative, regulatory, and managerial guidelines, commentary, and ideas. (MCW)

Not Available

1977-04-01T23:59:59.000Z

104

Mobility chains analysis of technologies for passenger cars and light duty vehicles fueled with biofuels : application of the Greet model to project the role of biomass in America's energy future (RBAEF) project.  

DOE Green Energy (OSTI)

The Role of Biomass in America's Energy Future (RBAEF) is a multi-institution, multiple-sponsor research project. The primary focus of the project is to analyze and assess the potential of transportation fuels derived from cellulosic biomass in the years 2015 to 2030. For this project, researchers at Dartmouth College and Princeton University designed and simulated an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity using the ASPEN Plus{trademark} model. With support from the U.S. Department of Energy (DOE), Argonne National Laboratory (ANL) conducted, for the RBAEF project, a mobility chains or well-to-wheels (WTW) analysis using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed at ANL. The mobility chains analysis was intended to estimate the energy consumption and emissions associated with the use of different production biofuels in light-duty vehicle technologies.

Wu, M.; Wu, Y.; Wang, M; Energy Systems

2008-01-31T23:59:59.000Z

105

Mobility chains analysis of technologies for passenger cars and light duty vehicles fueled with biofuels : application of the Greet model to project the role of biomass in America's energy future (RBAEF) project.  

SciTech Connect

The Role of Biomass in America's Energy Future (RBAEF) is a multi-institution, multiple-sponsor research project. The primary focus of the project is to analyze and assess the potential of transportation fuels derived from cellulosic biomass in the years 2015 to 2030. For this project, researchers at Dartmouth College and Princeton University designed and simulated an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity using the ASPEN Plus{trademark} model. With support from the U.S. Department of Energy (DOE), Argonne National Laboratory (ANL) conducted, for the RBAEF project, a mobility chains or well-to-wheels (WTW) analysis using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed at ANL. The mobility chains analysis was intended to estimate the energy consumption and emissions associated with the use of different production biofuels in light-duty vehicle technologies.

Wu, M.; Wu, Y.; Wang, M; Energy Systems

2008-01-31T23:59:59.000Z

106

Vehicle Technologies Office: Fact #387: August 29, 2005 Light...  

NLE Websites -- All DOE Office Websites (Extended Search)

details. Note: Market share is based on model year sales projections submitted to EPA by vehicle manufacturers. Supporting Information New Light Vehicle Market Shares by EPA Size...

107

Advanced Vehicle Testing Activity: U.S. Postal Service  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Testing Hydrogen Internal Combustion Engine Vehicles Full-Size Electric Vehicles Basics Specifications & Test Procedures Testing Reports Special Projects Neighborhood...

108

Propane Vehicle Demonstration Grant Program  

Science Conference Proceedings (OSTI)

Project Description: Propane Vehicle Demonstration Grants The Propane Vehicle Demonstration Grants was established to demonstrate the benefits of new propane equipment. The US Department of Energy, the Propane Education & Research Council (PERC) and the Propane Vehicle Council (PVC) partnered in this program. The project impacted ten different states, 179 vehicles, and 15 new propane fueling facilities. Based on estimates provided, this project generated a minimum of 1,441,000 new gallons of propane sold for the vehicle market annually. Additionally, two new off-road engines were brought to the market. Projects originally funded under this project were the City of Portland, Colorado, Kansas City, Impco Technologies, Jasper Engines, Maricopa County, New Jersey State, Port of Houston, Salt Lake City Newspaper, Suburban Propane, Mutual Liquid Propane and Ted Johnson.

Jack Mallinger

2004-08-27T23:59:59.000Z

109

BEEST: Electric Vehicle Batteries  

SciTech Connect

BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-Es BEEST Project, short for Batteries for Electrical Energy Storage in Transportation, could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

None

2010-07-01T23:59:59.000Z

110

Vehicles News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 14, 2010 July 14, 2010 Department of Energy Releases New Report on Economic Impact of Recovery Act Advanced Vehicle Investments Report Finds Recovery Act Advanced Vehicle Projects Are Creating Jobs, Spurring Private Capital Investment and Cutting Electric Vehicle Cost May 26, 2010 Deputy Secretary Poneman Attends Ground Breaking at Tennessee Advanced Vehicle Battery Plant Smyrna Electric Vehicle Project Expected to provide up to 1,500 Jobs in Tennessee March 31, 2010 GSA Doubles the Federal Hybrid Fleet, DOE Takes the Lead in Updating to Hybrids Agencies Move to Increase Energy Security and Fuel Efficiency January 11, 2010 Secretary Chu Announces $187 Million to Improve Vehicle Efficiency for Heavy-Duty Trucks and Passenger Vehicles October 15, 2009 2010 Annual Fuel Economy Guide Now Available

111

Vehicle Technologies Office: Hybrid and Vehicle Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid and Vehicle Hybrid and Vehicle Systems to someone by E-mail Share Vehicle Technologies Office: Hybrid and Vehicle Systems on Facebook Tweet about Vehicle Technologies Office: Hybrid and Vehicle Systems on Twitter Bookmark Vehicle Technologies Office: Hybrid and Vehicle Systems on Google Bookmark Vehicle Technologies Office: Hybrid and Vehicle Systems on Delicious Rank Vehicle Technologies Office: Hybrid and Vehicle Systems on Digg Find More places to share Vehicle Technologies Office: Hybrid and Vehicle Systems on AddThis.com... Just the Basics Hybrid & Vehicle Systems Modeling & Simulation Integration & Validation Benchmarking Parasitic Loss Reduction Propulsion Systems Advanced Vehicle Evaluations Energy Storage Advanced Power Electronics & Electrical Machines

112

Advanced Vehicle Testing Activity: Urban Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Urban Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Urban Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Urban...

113

Advanced Vehicle Testing Activity: Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Hybrid Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Hybrid...

114

Advanced Vehicle Testing Activity: Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Neighborhood Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing...

115

Advanced Vehicle Testing Activity: Urban Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Urban Electric Vehicles Toyota Urban Electric Vehicle Urban electric vehicles (UEVs) are regular passenger vehicles with top speeds of about 60 miles per hour (mph) and a...

116

DOE Hydrogen Analysis Repository: Advanced Vehicle Simulator (ADVISOR)  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Vehicle Simulator (ADVISOR) Advanced Vehicle Simulator (ADVISOR) Project Summary Full Title: Advanced Vehicle Simulator (ADVISOR) Project ID: 108 Principal Investigator: Matthew Thornton Brief Description: ADVISOR is used to simulate and analyze conventional, advanced, light, and heavy vehicles, including hybrid electric and fuel cell vehicles. Keywords: Hybrid electric vehicles (HEV); vehicle characteristics; vehicle performance; fuel consumption Purpose ADVISOR was designed as an analysis tool to assist the DOE in developing and understanding hybrid electric vehicles through the Hybrid Vehice Propulsion Systems contracts with Ford, GM, and DaimlerChrysler. Performer Principal Investigator: Matthew Thornton Organization: National Renewable Energy Laboratory (NREL) Address: 1617 Cole Blvd.

117

Vehicle Technologies Office: Vehicle Technologies Office Recognizes  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Technologies Vehicle Technologies Office Recognizes Outstanding Researchers to someone by E-mail Share Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Facebook Tweet about Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Twitter Bookmark Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Google Bookmark Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Delicious Rank Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Digg Find More places to share Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on AddThis.com...

118

Electric vehicles  

SciTech Connect

Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

Not Available

1990-03-01T23:59:59.000Z

119

Commercial Vehicle Safety Alliance Commercial Vehicle Safety Alliance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alliance Alliance Commercial Vehicle Safety Alliance North American Standard Level VI Inspection Program Update: Ensuring Safe Transportation of Radioactive Material Carlisle Smith Director, Hazardous Materials Programs Commercial Vehicle Safety Alliance Email: carlisles@cvsa.org Phone: 301-830-6147 CVSA Levels of Inspections Level I Full inspection Level II Walk Around - Driver - Vehicle Level III Driver - Paperwork Level IV Special Project - Generally focus on one item CVSA Levels of Inspections Level V Vehicle Only Level VI Enhanced RAM Level VII Jurisdictional Mandated * 8 basic classes/year held in various states * Prerequisites: CVSA Level I and HAZMAT certified * Industry attends course * To date 135 classes/2268 attendees * Currently 702 certified Level VI

120

Propane Vehicle and Infrastructure Codes and Standards Citations (Brochure)  

Science Conference Proceedings (OSTI)

This document lists codes and standards typically used for U.S. propane vehicle and infrastructure projects.

Not Available

2010-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Natural Gas Vehicle and Infrastructure Codes and Standards Citations (Brochure)  

Science Conference Proceedings (OSTI)

This document lists codes and standards typically used for U.S. natural gas vehicle and infrastructure projects.

Not Available

2010-07-01T23:59:59.000Z

122

Ethanol Vehicle and Infrastructure Codes and Standards Citations (Brochure)  

SciTech Connect

This document lists codes and standards typically used for U.S. ethanol vehicle and infrastructure projects.

Not Available

2010-07-01T23:59:59.000Z

123

Biodiesel Vehicle and Infrastructure Codes and Standards Citations (Brochure)  

SciTech Connect

This document lists codes and standards typically used for U.S. biodiesel vehicle and infrastructure projects.

Not Available

2010-07-01T23:59:59.000Z

124

Electric Vehicle and Infrastructure Codes and Standards Citations (Brochure)  

SciTech Connect

This document lists codes and standards typically used for U.S. electric vehicle and infrastructure projects.

Not Available

2010-07-01T23:59:59.000Z

125

Hydrogen Vehicle and Infrastructure Codes and Standards Citations (Brochure)  

SciTech Connect

This document lists codes and standards typically used for U.S. hydrogen vehicle and infrastructure projects.

Not Available

2010-07-01T23:59:59.000Z

126

Design of an autonomous underwater vehicle : vehicle tracking and position control.  

E-Print Network (OSTI)

??This project proposes the development of an autonomous underwater vehicle that can be used to perform underwater research missions..The vehicle can be pre-programmed to complete (more)

Holtzhausen, Servaas.

2010-01-01T23:59:59.000Z

127

Electric Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Electricity can be used as a transportation fuel to power battery electric vehicles (EVs). EVs store electricity in an energy storage device, such as a battery.

128

Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Electric Vehicles A neighborhood electric vehicle (NEV) is 4-wheeled vehicle, larger than a golf cart but smaller than most light-duty passenger vehicles. NEVs are...

129

Energy Basics: Propane Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

gasoline vehicles. Dedicated propane vehicles are designed to run only on propane; bi-fuel propane vehicles have two separate fueling systems that enable the vehicle to use...

130

Flex-fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles Stations that Sell E85 (Alternative Fuels and Advanced Vehicles Data Center AFDC) Flexible Fuel Vehicle (FFV) Cost Calculator (compare costs for operating your vehicle...

131

Battery Electric Vehicle Driving and Charging Behavior Observed...  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Electric Vehicle Driving and Charging Behavior Observed Early in The EV Project The EV Project John Smart, Idaho National Laboratory Stephen Schey, ECOtality North America...

132

NREL: Vehicles and Fuels Research - Advanced Combustion and Fuels...  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Combustion and Fuels Projects NREL's advanced combustion and fuels projects bridge fundamental chemical kinetics and engine research to investigate how new vehicle fuels...

133

Present Status and Marketing Prospects of the Emerging Hybrid-Electric and Diesel Technologies to Reduce CO2 Emissions of New Light-Duty Vehicles in California  

E-Print Network (OSTI)

of Conventional vs. Hybrid Vehicles, paper to be presented15 Table 10 Hybrid Vehicle Sales to Date - North America &Power Projections of Hybrid Vehicle Characteristics (1999-

Burke, Andy

2004-01-01T23:59:59.000Z

134

Vehicles News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

News News Vehicles News RSS September 4, 2013 Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies Thirty-eight projects will accelerate the research and development of technologies to improve vehicle fuel efficiency, lower transportation costs, and cut carbon pollution. Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies Building on President Obama's Climate Action Plan to build a 21st century transportation sector and reduce greenhouse gas emissions, the Energy Department announced today more than $45 million for thirty-eight new projects that accelerate the research and development of vehicle technologies to improve fuel efficiency, lower transportation costs, and protect the environment in communities nationwide.

135

Advanced Vehicle Testing Activity: Neighborhood Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Procedures to someone by E-mail Share Advanced Vehicle Testing Activity: Neighborhood Electric Vehicle Specifications and Test Procedures on Facebook Tweet about Advanced Vehicle...

136

Advanced Vehicle Testing Activity - Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Electric Vehicles What's New 2013 BRP Commander Electric (PDF 195KB) A Neighborhood Electric Vehicle (NEV) is technically defined as a Low Speed Vehicle (LSV)...

137

Advanced Vehicle Testing Activity: Alternative Fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative Fuel Vehicles SuperShuttle CNG Van Alternative fuel vehicles (AFVs) are vehicles designed to operate on alternative fuels such as compressed and liquefied natural gas,...

138

Advanced Vehicle Testing Activity - Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

NEVAmerica Baseline Performance Testing 2010 Electric Vehicles International Neighborhood Electric Vehicle 2010 Electric Vehicles International E-Mega 2009 NEVAmerica Baseline...

139

Vehicle Technologies Office: Hybrid and Vehicle Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid and Vehicle Systems Hybrid and vehicle systems research provides an overarching vehicle systems perspective to the technology research and development (R&D) activities of...

140

Vehicle Technologies Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

December 18, 2013 December 18, 2013 USDA Offers $118 Million for Renewable Energy, Smart Grid Projects The U.S. Department of Agriculture (USDA) announced $73 million in funding for renewable energy projects and $45 million for smart grid technology as part of more than $1.8 billion in funding for electric utility infrastructure projects in 25 states and one territory. More December 18, 2013 2012 Fuel Economy of New Vehicles Sets Record High: EPA The U.S. Environmental Protection Agency (EPA) reported that model year 2012 vehicles achieved an all-time high fuel economy average of 23.6 miles per gallon. More December 18, 2013 Energy Department Releases Grid Energy Storage Report The Energy Department released its Grid Energy Storage report to the members of the U.S. Senate Energy and Natural Resources Committee, identifying the benefits and challenges of grid energy storage that must be addressed to enable broader use. More

Note: This page contains sample records for the topic "vehicle project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Advanced Vehicle Testing and Evaluation  

SciTech Connect

The objective of the United States (U.S.) Department of Energy?s (DOEs) Advanced Vehicle Testing and Evaluation (AVTE) project was to provide test and evaluation services for advanced technology vehicles, to establish a performance baseline, to determine vehicle reliability, and to evaluate vehicle operating costs in fleet operations. Vehicles tested include light and medium-duty vehicles in conventional, hybrid, and all-electric configurations using conventional and alternative fuels, including hydrogen in internal combustion engines. Vehicles were tested on closed tracks and chassis dynamometers, as well as operated on public roads, in fleet operations, and over prescribed routes. All testing was controlled by procedures developed specifically to support such testing. Testing and evaluations were conducted in the following phases: ? Development of test procedures, which established testing procedures; ? Baseline performance testing, which established a performance baseline; ? Accelerated reliability testing, which determined vehicle reliability; ? Fleet testing, used to evaluate vehicle economics in fleet operation, and ? End of test performance evaluation. Test results are reported by two means and posted by Idaho National Laboratory (INL) to their website: quarterly progress reports, used to document work in progress; and final test reports. This final report documents work conducted for the entirety of the contract by the Clarity Group, Inc., doing business as ECOtality North America (ECOtality). The contract was performed from 1 October 2005 through 31 March 2013. There were 113 light-duty on-road (95), off-road (3) and low speed (15) vehicles tested.

Garetson, Thomas

2013-03-31T23:59:59.000Z

142

Diesel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles Vehicles Audi A3 Diesel vehicles may be making a comeback. Diesel engines are more powerful and fuel-efficient than similar-sized gasoline engines (about 30-35% more fuel efficient). Plus, today's diesel vehicles are much improved over diesels of the past. Better Performance Improved fuel injection and electronic engine control technologies have Increased power Improved acceleration Increased efficiency New engine designs, along with noise- and vibration-damping technologies, have made them quieter and smoother. Cold-weather starting has been improved also. Cleaner Mercedes ML320 BlueTEC Today's diesels must meet the same emissions standards as gasoline vehicles. Advances in engine technologies, ultra-low sulfur diesel fuel, and improved exhaust treatment have made this possible.

143

Energy Basics: Fuel Cell Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

144

Energy Basics: Flexible Fuel Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

145

Energy Basics: Hybrid Electric Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

146

Energy Basics: Natural Gas Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

147

Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Exploring the Standard Model Exploring the Standard Model       You've heard a lot about the Standard Model and the pieces are hopefully beginning to fall into place. However, even a thorough understanding of the Standard Model is not the end of the story but the beginning. By exploring the structure and details of the Standard Model we encounter new questions. Why do the most fundamental particles have the particular masses we observe? Why aren't they all symmetric? How is the mass of a particle related to the masses of its constituents? Is there any other way of organizing the Standard Model? The activities in this project will elucidate but not answer our questions. The Standard Model tells us how particles behave but not necessarily why they do so. The conversation is only beginning. . . .

148

Ramping-up Investments in Advanced Vehicle Technologies | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ramping-up Investments in Advanced Vehicle Technologies Ramping-up Investments in Advanced Vehicle Technologies Ramping-up Investments in Advanced Vehicle Technologies August 10, 2011 - 5:06pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs What does this project do? Accelerates the development and deployment of next-generation vehicle technologies. Helps improve vehicle fuel efficiency and create quality jobs. Today, Secretary Chu announced the selection of 40 projects across 15 states to receive more than $175 million to accelerate the development and deployment of next-generation vehicle technologies. From state-of-the-art electric drive batteries to light-weight vehicles, these projects will help improve vehicle fuel efficiency and create quality jobs. The selected projects focus on eight key approaches to improving vehicle

149

Ramping-up Investments in Advanced Vehicle Technologies | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ramping-up Investments in Advanced Vehicle Technologies Ramping-up Investments in Advanced Vehicle Technologies Ramping-up Investments in Advanced Vehicle Technologies August 10, 2011 - 5:06pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs What does this project do? Accelerates the development and deployment of next-generation vehicle technologies. Helps improve vehicle fuel efficiency and create quality jobs. Today, Secretary Chu announced the selection of 40 projects across 15 states to receive more than $175 million to accelerate the development and deployment of next-generation vehicle technologies. From state-of-the-art electric drive batteries to light-weight vehicles, these projects will help improve vehicle fuel efficiency and create quality jobs. The selected projects focus on eight key approaches to improving vehicle

150

Vehicle Technologies Office: Key Activities in Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Key Activities in Key Activities in Vehicles to someone by E-mail Share Vehicle Technologies Office: Key Activities in Vehicles on Facebook Tweet about Vehicle Technologies Office: Key Activities in Vehicles on Twitter Bookmark Vehicle Technologies Office: Key Activities in Vehicles on Google Bookmark Vehicle Technologies Office: Key Activities in Vehicles on Delicious Rank Vehicle Technologies Office: Key Activities in Vehicles on Digg Find More places to share Vehicle Technologies Office: Key Activities in Vehicles on AddThis.com... Key Activities Mission, Vision, & Goals Plans, Implementation, & Results Organization & Contacts National Laboratories Budget Partnerships Key Activities in Vehicles We conduct work in four key areas to develop and deploy vehicle technologies that reduce the use of petroleum while maintaining or

151

VEHICLE SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 of 5 Page 1 of 5 VEHICLE SPECIFICATIONS 1 Vehicle Features Base Vehicle: 2011 Nissan Leaf VIN: JN1AZ0CP5BT000356 Class: Mid-size Seatbelt Positions: 5 Type: EV Motor Type: Three-Phase, Four-Pole Permanent Magnet AC Synchronous Max. Power/Torque: 80 kW/280 Nm Max. Motor Speed: 10,390 rpm Cooling: Active - Liquid cooled Battery Manufacturer: Automotive Energy Supply Corporation Type: Lithium-ion - Laminate type Cathode/Anode Material: LiMn 2 O 4 with LiNiO 2 /Graphite Pack Location: Under center of vehicle Number of Cells: 192 Cell Configuration: 2 parallel, 96 series Nominal Cell Voltage: 3.8 V Nominal System Voltage: 364.8 V Rated Pack Capacity: 66.2 Ah Rated Pack Energy: 24 kWh Max. Cell Charge Voltage 2 : 4.2 V Min. Cell Discharge Voltage 2 : 2.5 V

152

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

E27C177982 Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 105 kW Battery: NiMH Seatbelt Positions: Five Payload: 981 lbs Features: Regenerative braking Traction...

153

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

E87C172351 Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 105 kW Battery: NiMH Seatbelt Positions: Five Payload: 981 lbs Features: Regenerative braking Traction...

154

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

Z07S838122 Vehicle Specifications Engine: 2.4 L 4 cylinder Electric Motor: 14.5 kW Battery: NiMH Seatbelt Positions: Five Payload: 1,244 lbs Features: Regenerative braking wABS 4...

155

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

2AR194699 Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 60 kW Battery: NiMH Seatbelt Positions: Five Payload: 850 lbs Features: Regenerative braking Traction...

156

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

2WD VIN 1FMYU95H75KC45881 Vehicle Specifications Engine: 2.3 L 4-cylinder Electric Motor: 70 kW Battery: NiMH Seatbelt Positions: Five Features: Four wheel drive Regenerative...

157

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

4AR144757 Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 60 kW Battery: NiMH Seatbelt Positions: Five Payload: 850 lbs Features: Regenerative braking Traction...

158

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

Z37S813344 Vehicle Specifications Engine: 2.4 L 4 cylinder Electric Motor: 14.5 kW Battery: NiMH Seatbelt Positions: Five Payload: 1,244 lbs Features: Regenerative braking wABS 4...

159

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

4WD VIN 1FMCU96H15KE18237 Vehicle Specifications Engine: 2.4 L 4-cylinder Electric Motor: 70 kW Battery: NiMH Seatbelt Positions: Five Features: Four wheel drive Regenerative...

160

Robotic vehicle  

DOE Patents (OSTI)

A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

Box, W.D.

1997-02-11T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

VEHICLE SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

SPECIFICATIONS 1 Vehicle VIN:19XFB5F57CE002590 Class: Compact Seatbelt Positions: 5 Type: Sedan CARB 2 : AT-PZEV EPA CityHwyCombined 3 : 273832 MPGe Tires Manufacturer:...

162

Vehicle Ancillary Load Reduction Project Close-Out Report: An Overview of the Task and a Compilation of the Research Results  

DOE Green Energy (OSTI)

The amount of fuel used for climate control in U.S. vehicles reduces the fuel economy of more than 200 million light-duty conventional vehicles and thus affects U.S. energy security. Researchers at the DOE National Renewable Energy Laboratory estimated that the United States consumes about 7 billion gallons of fuel per year for air-conditioning (A/C) light-duty vehicles. Using a variety of tools, NREL researchers developed innovative techniques and technologies to reduce the amount of fuel needed for these vehicles' ancillary loads. For example, they found that the A/C cooling capacity of 5.7 kW in a Cadillac STS could be reduced by 30% while maintaining a cooldown performance of 30 minutes. A simulation showed that reducing the A/C load by 30% decreased A/C fuel consumption by 26%. Other simulations supported the great potential for improving fuel economy by using new technologies and techniques developed to reduce ancillary loads.

Rugh, J.; Farrington, R.

2008-01-01T23:59:59.000Z

163

Hybrid or electric vehicles? A real options perspective  

Science Conference Proceedings (OSTI)

This paper investigates the decision of an automaker concerning the alternative promotion of a hybrid vehicle (HV) and a full electric vehicle (EV). We evaluate the HV project by considering the option to change promotion from the HV to the EV in the ... Keywords: Alternative projects, American options on multiple assets, Exercise region, Hybrid and electric vehicles, Real options

Michi Nishihara

2010-03-01T23:59:59.000Z

164

VEHICLE SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

VEHICLE SPECIFICATIONS 1 Vehicle Features Base Vehicle: 2011 Chevrolet Volt VIN: 1G1RD6E48BUI00815 Class: Compact Seatbelt Positions: 4 Type 2 : Multi-Mode PHEV (EV, Series, and Power-split) Motor Type: 12-pole permanent magnet AC synchronous Max. Power/Torque: 111 kW/370 Nm Max. Motor Speed: 9500 rpm Cooling: Active - Liquid cooled Generator Type: 16-pole permanent magnet AC synchronous Max. Power/Torque: 55 kW/200 Nm Max. Generator Speed: 6000 rpm Cooling: Active - Liquid cooled Battery Manufacturer: LG Chem Type: Lithium-ion Cathode/Anode Material: LiMn 2 O 4 /Hard Carbon Number of Cells: 288 Cell Config.: 3 parallel, 96 series Nominal Cell Voltage: 3.7 V Nominal System Voltage: 355.2 V Rated Pack Capacity: 45 Ah Rated Pack Energy: 16 kWh Weight of Pack: 435 lb

165

Alternative Vehicle Basics  

Energy.gov (U.S. Department of Energy (DOE))

There are a number of alternative and advanced vehiclesor vehicles that run on alternative fuels. Learn more about the following types of vehicles:

166

Advanced Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban...

167

Vehicles | Open Energy Information  

Open Energy Info (EERE)

Vehicles Jump to: navigation, search TODO: Add description Related Links List of Companies in Vehicles Sector List of Vehicles Incentives Retrieved from "http:en.openei.orgw...

168

Vehicles News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

news Office of Energy Efficiency & news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies http://energy.gov/eere/articles/energy-department-announces-45-million-advance-next-generation Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies

169

Acronyms and Abbreviations for Advanced Technology Vehicle Testing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Project LDV Light-duty vehicle LEV Low emission vehicle LF Low-floor Li Lithium LNG Liquid natural gas LPG Liquid petroleum gas LSR Low storage requirement MCI Motor Coach...

170

Energy Department Announces New ARPA-E Projects to Advance Innovative...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ARPA-E Projects to Advance Innovative Natural Gas Vehicle Technologies Energy Department Announces New ARPA-E Projects to Advance Innovative Natural Gas Vehicle Technologies July...

171

Advanced Vehicle Testing Activity: Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Electric Vehicles Ford Think Neighbor A neighborhood electric vehicle (NEV) is a four-wheeled vehicle that has a top speed of 20-25 miles per hour (mph). It is larger...

172

VEHICLE DETAILS, BATTERY DESCRIPTION AND SPECIFICATIONS Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 VEHICLE DETAILS, BATTERY DESCRIPTION AND SPECIFICATIONS Vehicle Details Base Vehicle: 2011 Nissan Leaf VIN: JN1AZ0CP5BT000356 Propulsion System: BEV Electric Machine: 80 kW...

173

Robotic vehicle  

DOE Patents (OSTI)

A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 11 figures.

Box, W.D.

1994-03-15T23:59:59.000Z

174

Robotic vehicle  

DOE Patents (OSTI)

A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 14 figs.

Box, W.D.

1996-03-12T23:59:59.000Z

175

Particulate Measurements and Emissions Characterization of Alternative Fuel Vehicle Exhaust  

DOE Green Energy (OSTI)

The objective of this project was to measure and characterize particulate emissions from light-duty alternative fuel vehicles (AFVs) and equivalent gasoline-fueled vehicles. The project included emission testing of a fleet of 129 gasoline-fueled vehicles and 19 diesel vehicles. Particulate measurements were obtained over Federal Test Procedure and US06 cycles. Chemical characterization of the exhaust particulate was also performed. Overall, the particulate emissions from modern technology compressed natural gas and methanol vehicles were low, but were still comparable to those of similar technology gasoline vehicles.

Durbin, T. D.; Truex, T. J.; Norbeck, J. M. (Center for Environmental Research and Technology College of Engineering, University of California - Riverside, California)

1998-11-19T23:59:59.000Z

176

Vehicle Smart  

E-Print Network (OSTI)

Abstract: This article explores criteria necessary for reliable communication between electric vehicles (EVs) and electric vehicle service equipment (EVSE). Data will demonstrate that a G3-PLC system has already met the criteria established by the automotive and utility industries. Multiple international tests prove that a G3-PLC implementation is the optimal low-frequency solution. A similar version of this article appeared in the August 2011 issue of Power Systems Design magazine. For the first time, electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) are building a viable market of mobile electrical energy consumers. Not surprisingly, new relationships between electricity providers (the utility companies) and automobile owners are emerging. Many utilities already offer, or are planning to offer, special tariffs, including fixed monthly rates, to EV owners. EVs impose new dynamics and demands on the electrical supply itself. There is, in fact, a symbiotic relationship developing between the EV and energy provider. Because of their large storage capacity, often 10kVH, EVs draw currents of 80A or greater over a period of hours. This strains electrical grid components, especially low-voltage transformers which can overheat and fail while serving consumers ' homes. Meanwhile, the EVs ' electrical storage capacity can also reverse the current flow. It can then supply power back to the grid, thereby helping the utilities to meet demand peaks without starting up high-carbon-output diesel generators. To enable this new dynamic relationship, the EV and the energy provider must communicate. The utility must be able to authenticate the individual vehicle, and bidirectional communications is needed to support negotiation of power flow rates and direction. To

Jim Leclare; Principal Member; Technical Staff

2012-01-01T23:59:59.000Z

177

Advanced Vehicle Testing Activity - Urban Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

are designed to carry two or four passengers. Click here for more information About Urban Electric Vehicles (PDF 128KB) Vehicle Testing Reports Ford THINK City Ford Thnk...

178

Vehicle Technologies Office: Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

that feature one or more advanced technologies, including: Plug-in hybrid electric vehicle technologies Extended range electric vehicle technologies Hybrid electric, pure...

179

NREL: Vehicles and Fuels Research - Vehicle Ancillary Loads Reduction  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Research Search More Search Options Site Map Photo of Advanced Automotive Manikin Reducing fuel consumption by air conditioning systems is the focus of Vehicle Ancillary Loads Reduction (VALR) activities at NREL. About 7 billion gallons of fuel-about 5.5% of total national light-duty vehicle fuel use-are used annually just to cool light-duty vehicles in the United States. That's why our VALR team works with industry to help increase fuel economy and reduce tailpipe emissions by reducing the ancillary loads requirements in vehicles while maintaining the thermal comfort of the passengers. Approaches include improved cabin insulation, advanced window systems, advanced cooling and venting systems, and heat generated cooling. Another focus of the VALR project is ADAM, the ADvanced Automotive Manikin

180

Analysis & Projections - U.S. Energy Information Administration ...  

U.S. Energy Information Administration (EIA)

Vehicle Choice & Markets ... leaders to assure that EIAs future projections and policy analyses that examine the potential impacts of electric powertrain vehicles ...

Note: This page contains sample records for the topic "vehicle project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

EERE News: New Energy Department Projects to Accelerate Advanced...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

New Energy Department Projects to Accelerate Advanced Vehicles and Diversify the U.S. Fuel Economy November 28, 2012 Photo of hybrid car being charged with electric vehicle...

182

Alternative Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

following types of vehicles: Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane Vehicles Addthis Related Articles...

183

Advanced Vehicle Technologies Awards Table | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Technologies Awards Table Vehicle Technologies Awards Table Advanced Vehicle Technologies Awards Table The table contains a listing of the applicants, their locations, the amounts of the awards, and description of each project. The sub-categories of the table include: Advanced fuels and lubricants Light-weighting materials Demonstration Project for a Multi-Material Light-Weight Prototype Vehicle Advanced cells and design technology for electric drive batteries Advanced power electronics and electric motor technology Solid State Thermoelectric Energy Conversion Devices Fleet Efficiency Advanced Vehicle Testing and Evaluation Microsoft Word - VTP $175 Advanced Vehicle Tech project descriptions draft v5 8-2-11 More Documents & Publications Advanced Vehicle Technologies Awards advanced vehicle technologies awards table

184

DOE Hydrogen Analysis Repository: Impact of Plug-in Hybrid Vehicles...  

NLE Websites -- All DOE Office Websites (Extended Search)

Impact of Plug-in Hybrid Vehicles on the Electric Grid Project Summary Full Title: Impact of Plug-in Hybrid Vehicles on the Electric Grid Project ID: 228 Principal Investigator:...

185

Categorical Exclusion Determinations: Advanced Research Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 14, 2010 August 14, 2010 CX-004957: Categorical Exclusion Determination General Compression, Inc. -Fuel-Free, Ubiquitous, Compressed Air Energy Storage CX(s) Applied: B3.6 Date: 08/14/2010 Location(s): Watertown, Massachusetts Office(s): Advanced Research Projects Agency - Energy August 14, 2010 CX-004953: Categorical Exclusion Determination Fluidic Inc. -Enhanced Metal-Air Energy Storage System CX(s) Applied: B3.6 Date: 08/14/2010 Location(s): Scottsdale, Arizona Office(s): Advanced Research Projects Agency - Energy August 14, 2010 CX-004941: Categorical Exclusion Determination Makani Power, Inc. - Advanced Wind Turbine CX(s) Applied: B3.6 Date: 08/14/2010 Location(s): Alameda, California Office(s): Advanced Research Projects Agency - Energy August 13, 2010 CX-004925: Categorical Exclusion Determination

186

Categorical Exclusion Determinations: Advanced Research Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 18, 2012 October 18, 2012 CX-009518: Categorical Exclusion Determination (0674-1585) Xilectric, Inc. - Low Cost Transportation Batteries CX(s) Applied: B3.6 Date: 10/18/2012 Location(s): Rhode Island, New York Offices(s): Advanced Research Projects Agency-Energy September 27, 2012 CX-010530: Categorical Exclusion Determination Electro-Autotrophic Synthesis of Higher Alcohols CX(s) Applied: B3.6 Date: 09/27/2012 Location(s): California, North Carolina, North Carolina Offices(s): Advanced Research Projects Agency-Energy September 19, 2012 CX-009902: Categorical Exclusion Determination Agrivida - Conditionally Activated Enzymes Expressed in Cellulosic Energy Crops CX(s) Applied: B3.6 Date: 09/19/2012 Location(s): Massachusetts, Connecticut Offices(s): Advanced Research Projects Agency-Energy

187

Categorical Exclusion Determinations: Advanced Research Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 18, 2009 December 18, 2009 CX-000850: Categorical Exclusion Determination 25A4274 - Energy Efficient Capture of Carbon Dioxide from Coal Flue Gas CX(s) Applied: B3.6 Date: 12/18/2009 Location(s): Illinois Office(s): Advanced Research Projects Agency - Energy December 18, 2009 CX-000841: Categorical Exclusion Determination 25A1381 - Affordable Energy from Water and Sunlight CX(s) Applied: B3.6 Date: 12/18/2009 Location(s): Massachusetts Office(s): Advanced Research Projects Agency - Energy December 18, 2009 CX-000585: Categorical Exclusion Determination 25A1152 - 1366 Direct Wafer: Enabling Terawatt Photovoltaics CX(s) Applied: B3.6 Date: 12/18/2009 Location(s): Massachusetts Office(s): Advanced Research Projects Agency - Energy December 18, 2009 CX-009901: Categorical Exclusion Determination

188

Apps for Vehicles Challenge Finalists Announced | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Apps for Vehicles Challenge Finalists Announced Apps for Vehicles Challenge Finalists Announced Apps for Vehicles Challenge Finalists Announced February 5, 2013 - 12:14pm Addthis Apps for Vehicles Finalists Apps for Vehicles Finalists Ian Kalin Director of the Energy Data Initiative What does this project do? The Apps for Vehicles competition challenges entrepreneurs to use vehicle open data to make cars and drivers safer and more efficient. American innovators have once again responded to a national call to action. Nearly 40 teams submitted ideas in response to a $50,000 Apps for Vehicles Challenge that seeks to improve safety and fuel efficiency through data innovation. Entrepreneurs were given the task to demonstrate what new products or services could help vehicle owners take advantage of largely untapped data from their own vehicles. Eight finalists have been selected

189

Fuel Cell Vehicle and Infrastructure Learning Demonstration Status and Results (Presentation)  

DOE Green Energy (OSTI)

Presentation on the Fuel Cell Vehicle and Infrastructure Learning Demonstration project prepared for the 215th Electrochemical Society Meeting.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Garbak, J.

2008-10-13T23:59:59.000Z

190

Optimal charging scheduling for battery electric vehicles under smart grid.  

E-Print Network (OSTI)

??M.S. A projected high penetration of battery electric vehicles (BEV s) in the market will introduce an additional load in the electricity grid. Furthermore, uncontrolled (more)

Abd Rahman, Nur Dayana

2011-01-01T23:59:59.000Z

191

ChargePoint America Vehicle Charging Infrastructure Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

ChargePoint America Vehicle Charging Infrastructure Summary Report Project Status to Date through: March 2012 Number of Charging Units Charging Electricity Charging Unit -...

192

NREL: Fleet Test and Evaluation - Fleet DNA: Vehicle Drive Cycle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fleet DNA Project graphic depicting a trail of data emerging from trucks. Fleet DNA helps vehicle manufacturers and fleet managers understand the broad operational range for many...

193

Mack LNG vehicle development  

DOE Green Energy (OSTI)

The goal of this project was to install a production-ready, state-of-the-art engine control system on the Mack E7G natural gas engine to improve efficiency and lower exhaust emissions. In addition, the power rating was increased from 300 brake horsepower (bhp) to 325 bhp. The emissions targets were oxides of nitrogen plus nonmethane hydrocarbons of less than 2.5 g/bhp-hr and particulate matter of less than 0.05 g/bhp-hr on 99% methane. Vehicle durability and field testing were also conducted. Further development of this engine should include efficiency improvements and oxides of nitrogen reductions.

Southwest Research Institute

2000-01-05T23:59:59.000Z

194

Think City Electric Vehicle Demonstration Program  

DOE Green Energy (OSTI)

The THINK city Electric Vehicle (EV) Demonstration Program Project, initiated late 2001, has been successfully completed as of April 2005. US. Partners include Federal, State and Municipal agencies as well as commercial partners. Phase I, consisting of placement of the vehicles in demonstration programs, was completed in 2002. Phase II, the monitoring of these programs was completed in 2004. Phase III, the decommissioning and/or exporting of vehicles concluded in 2005. Phase I--the Program successfully assigned 192 EV's with customers (including Hertz) in the state of California, 109 in New York (including loaner and demo vehicles), 16 in Georgia, 7 to customers outside of the US and 52 in Ford's internal operations in Dearborn Michigan for a total of 376 vehicles. The Program was the largest operating Urban EV Demonstration Project in the United States. Phase II--the monitoring of the operational fleet was ongoing and completed in 2004, and all vehicles were returned throughout 2004 and 2005. The Department of Energy (DOE) was involved with the monitoring of the New York Power Authority/THINK Clean Commute Program units through partnership with Electric Transportation Engineering Corporation (ETEC), which filed separate reports to DOE. The remainder of the field fleet was monitored through Ford's internal operations. Vehicles were retired from lease operation throughout the program for various operator reasons. Some of the vehicles were involved in re-leasing operations. At the end of the program, 376 vehicles had been involved, 372 of which were available for customer use while 4 were engineering prototype and study vehicles. Phase III--decommissioning and/or export of vehicles. In accordance with the NHTSA requirement, City vehicles could not remain in the United States past their three-year allowed program timeframe. At the end of leases, City vehicles have been decommissioned and/or exported to KamKorp in Norway.

Ford Motor Company

2005-03-01T23:59:59.000Z

195

Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation  

NLE Websites -- All DOE Office Websites (Extended Search)

Apps for Vehicles Apps for Vehicles Challenge Spurs Innovation in Vehicle Data to someone by E-mail Share Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Facebook Tweet about Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Twitter Bookmark Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Google Bookmark Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Delicious Rank Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Digg Find More places to share Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on AddThis.com... Apps for Vehicles Challenge Spurs Innovation in Vehicle Data

196

NREL: Technology Deployment - Project Development  

NLE Websites -- All DOE Office Websites (Extended Search)

policies and making recommendations on federal fleet mandates, local electric vehicle incentives, solar permitting standards, and more. Project Financing Alternatives We can...

197

Vehicle barrier  

DOE Patents (OSTI)

A vehicle security barrier which can be conveniently placed across a gate opening as well as readily removed from the gate opening to allow for easy passage. The security barrier includes a barrier gate in the form of a cable/gate member in combination with laterally attached pipe sections fixed by way of the cable to the gate member and lateral, security fixed vertical pipe posts. The security barrier of the present invention provides for the use of cable restraints across gate openings to provide necessary security while at the same time allowing for quick opening and closing of the gate areas without compromising security.

Hirsh, Robert A. (Bethel Park, PA)

1991-01-01T23:59:59.000Z

198

Voltage Vehicles | Open Energy Information  

Open Energy Info (EERE)

Sector Vehicles Product Voltage Vehicles is a nascent, full-service alternative fuel vehicle distributor specializing in the full spectrum of electric vehicles (EV) and...

199

Hydrogen-Enhanced Natural Gas Vehicle Program  

Science Conference Proceedings (OSTI)

The project objective is to demonstrate the viability of HCNG fuel (30 to 50% hydrogen by volume and the remainder natural gas) to reduce emissions from light-duty on-road vehicles with no loss in performance or efficiency. The City of Las Vegas has an interest in alternative fuels and already has an existing hydrogen refueling station. Collier Technologies Inc (CT) supplied the latest design retrofit kits capable of converting nine compressed natural gas (CNG) fueled, light-duty vehicles powered by the Ford 5.4L Triton engine. CT installed the kits on the first two vehicles in Las Vegas, trained personnel at the City of Las Vegas (the City) to perform the additional seven retrofits, and developed materials for allowing other entities to perform these retrofits as well. These vehicles were used in normal service by the City while driver impressions, reliability, fuel efficiency and emissions were documented for a minimum of one year after conversion. This project has shown the efficacy of operating vehicles originally designed to operate on compressed natural gas with HCNG fuel incorporating large quantities of exhaust gas recirculation (EGR). There were no safety issues experienced with these vehicles. The only maintenance issue in the project was some rough idling due to problems with the EGR valve and piping parts. Once the rough idling was corrected no further maintenance issues with these vehicles were experienced. Fuel economy data showed no significant changes after conversion even with the added power provided by the superchargers that were part of the conversions. Driver feedback for the conversions was very favorable. The additional power provided by the HCNG vehicles was greatly appreciated, especially in traffic. The drivability of the HCNG vehicles was considered to be superior by the drivers. Most of the converted vehicles showed zero oxides of nitrogen throughout the life of the project using the State of Nevada emissions station.

Hyde, Dan; Collier, Kirk

2009-01-22T23:59:59.000Z

200

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

Traction Battery for the ETX-II Vehicle, EGG-EP-9688, IdahoElectric Vehicle Powertrain (ETX-II) Performance: VehicleDevelopment Program - ETX-II, Phase II Technical Report, DOE

Delucchi, Mark

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

1-5): Electric/Hybrid Vehicles: An Emerging Global Industry,1-5): Electric/Hybrid Vehicles: An Emerging Global Industry,1-5): Electric/Hybrid Vehicles: An Emerging Global Industry,

Delucchi, Mark

1992-01-01T23:59:59.000Z

202

Categorical Exclusion Determinations: Advanced Research Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 25, 2012 July 25, 2012 CX-008873: Categorical Exclusion Determination Oregon State University- Natural Gas Self-contained Home Filling Station CX(s) Applied: B3.6 Date: 07/25/2012 Location(s): Oregon, Colorado, Michigan Offices(s): Advanced Research Projects Agency-Energy April 17, 2012 CX-008671: Categorical Exclusion Determination Arizona State University - Cyanobacteria Designed for Solar-Powered Highly Efficient Production of Biofuels - Phase II CX(s) Applied: A9, B3.6 Date: 04/17/2012 Location(s): Arizona, Arizona, Arizona, Minnesota, North Carolina Offices(s): Advanced Research Projects Agency-Energy February 17, 2012 CX-007812: Categorical Exclusion Determination Smart Wire Grid, Inc. - Distributed Power Flow Control Using Smart Wires for Energy Routing CX(s) Applied: A9, B1.7, B3.6

203

Categorical Exclusion Determinations: Advanced Research Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 2, 2010 June 2, 2010 CX-003144: Categorical Exclusion Determination ATK - A High Efficiency Inertial Carbon Dioxide Extraction System CX(s) Applied: B3.6 Date: 06/02/2010 Location(s): New York Office(s): Advanced Research Projects Agency - Energy June 2, 2010 CX-003132: Categorical Exclusion Determination Georgia Institute of Technology Research Corporation - Metal Organic Frameworks in Hollow Fiber Membranes for Carbon Dioxide Capture CX(s) Applied: B3.6 Date: 06/02/2010 Location(s): Georgia Office(s): Advanced Research Projects Agency - Energy June 2, 2010 CX-003131: Categorical Exclusion Determination Lawrence Berkeley National Laboratory & Wildcat Disc. Technology - High Throughput Tools to Screen New Metal Organic Framework Materials CX(s) Applied: B3.6 Date: 06/02/2010

204

Proceedings of the Neighborhood Electric Vehicle Workshop  

E-Print Network (OSTI)

Electric Vehicle Workshop Proceedings Vehicle Safety DesignElectric Vehicle Workshop Proceedings Federal Motor Vehicle SafetyElectric Vehicle Workshop Proceedings FEDERAL MOTOR VEHICLE SAFETY

Lipman, Timothy

1994-01-01T23:59:59.000Z

205

Vehicle Technologies Office: Vehicle Technologies Office Organization...  

NLE Websites -- All DOE Office Websites (Extended Search)

Organization and Contacts Organization Chart for the Vehicle Technologies Program Fuel Technologies and Deployment, Technology Managers Advanced Combustion Engines, Technology...

206

Hybrid Electric Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Association Conference Transportation Association Conference Vancouver, Canada December 2005 Hybrid Electric Vehicle Testing Jim Francfort U.S. Department of Energy - FreedomCAR & Vehicle Technologies Program, Advanced Vehicle Testing Activity INL/CON-05-00964 Presentation Outline * Background & goals * Testing partners * Hybrid electric vehicle testing - Baseline performance testing (new HEV models) - 1.5 million miles of HEV fleet testing (160k miles per vehicle in 36 months) - End-of-life HEV testing (rerun fuel economy & conduct battery testing @ 160k miles per vehicle) - Benchmark data: vehicle & battery performance, fuel economy, maintenance & repairs, & life-cycle costs * WWW information location Background * Advanced Vehicle Testing Activity (AVTA) - part of the

207

Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NREL. National Clean Fleets partners are investing in hybrid vehicles to reduce their oil use, vehicle emissions and fuel costs. What's Your PEV Readiness Score? PEV readiness...

208

Vehicles and Fuels  

Energy.gov (U.S. Department of Energy (DOE))

Learn more about exciting technologies and ongoing research in alternative and advanced vehiclesor vehicles that run on fuels other than traditional petroleum.

209

Vehicle Technologies Office: Features  

NLE Websites -- All DOE Office Websites (Extended Search)

Event June 2013 The eGallon Tool Advances Deployment of Electric Vehicles May 2013 Vehicle Technologies Office Recognizes Outstanding Researchers December 2012 Apps for...

210

Vehicles | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

The U.S. Department of Energy (DOE) supports the development and deployment of advanced vehicle technologies, including advances in electric vehicles, engine efficiency, and...

211

Demonstration of Alternative Fuel, Light and Heavy Duty Vehicles in State and Municipal Vehicle Fleets  

Science Conference Proceedings (OSTI)

This project involved the purchase of two Compressed Natural Gas School Buses and two electric Ford Rangers to demonstrate their viability in a municipal setting. Operational and maintenance data were collected for analysis. In addition, an educational component was undertaken with middle school children. The children observed and calculated how electric vehicles could minimize pollutants through comparison to conventionally powered vehicles.

Kennedy, John H.; Polubiatko, Peter; Tucchio, Michael A.

2002-02-06T23:59:59.000Z

212

Categorical Exclusion Determinations: Portsmouth Paducah Project Office |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Portsmouth Paducah Project Portsmouth Paducah Project Office Categorical Exclusion Determinations: Portsmouth Paducah Project Office Categorical Exclusion Determinations issued by Portsmouth Paducah Project Office. DOCUMENTS AVAILABLE FOR DOWNLOAD August 9, 2012 CX-009253: Categorical Exclusion Determination Optimization of Electrical Power at the Portsmouth Gaseous Diffusion Facility CX(s) Applied: B4.6, B4.11 Date: 08/09/2012 Location(s): Ohio Offices(s): Portsmouth Paducah Project Office May 9, 2012 CX-008824: Categorical Exclusion Determination X-608 Well Field Transfer CX(s) Applied: B1.24 Date: 05/09/2012 Location(s): Ohio Offices(s): Portsmouth Paducah Project Office April 25, 2012 CX-009252: Categorical Exclusion Determination Disposition of Department of Energy Surplus or Excess Personal Property

213

Categorical Exclusion Determinations: Advanced Research Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Research Projects Advanced Research Projects Agency-Energy Categorical Exclusion Determinations: Advanced Research Projects Agency-Energy Categorical Exclusion Determinations issued by Advanced Research Projects Agency-Energy. DOCUMENTS AVAILABLE FOR DOWNLOAD June 10, 2013 CX-010529: Categorical Exclusion Determination Electroalcoholgenesis CX(s) Applied: B3.6 Date: 06/10/2013 Location(s): South Carolina, Washington Offices(s): Advanced Research Projects Agency-Energy May 23, 2013 CX-010566: Categorical Exclusion Determination Massachusetts Institute of Technology- Scalable, Self-Powered Purification Technology for Brackish and Heavy Metal Contaminated Water CX(s) Applied: B3.6 Date: 05/23/2013 Location(s): Massachusetts Offices(s): Advanced Research Projects Agency-Energy May 22, 2013

214

DOE Project: Optimization of Advanced Diesel Engine Combustion Strategies "University Research in Advanced Combustion and Emissions Control" Office of FreedomCAR and Vehicle Technologies Program  

DOE Green Energy (OSTI)

The goal of the present technology development was to increase the efficiency of internal combustion engines while minimizing the energy penalty of meeting emissions regulations. This objective was achieved through experimentation and the development of advanced combustion regimes and emission control strategies, coupled with advanced petroleum and non-petroleum fuel formulations. To meet the goals of the project, it was necessary to improve the efficiency of expansion work extraction, and this required optimized combustion phasing and minimized in-cylinder heat transfer losses. To minimize fuel used for diesel particulate filter (DPF) regeneration, soot emissions were also minimized. Because of the complex nature of optimizing production engines for real-world variations in fuels, temperatures and pressures, the project applied high-fidelity computing and high-resolution engine experiments synergistically to create and apply advanced tools (i.e., fast, accurate predictive models) developed for low-emission, fuel-efficient engine designs. The companion experiments were conducted using representative single- and multi-cylinder automotive and truck diesel engines.

Reitz, Rolf; Foster, D.; Ghandhi, J.; Rothamer, D.; Rutland, C.; Sanders, S.; Trujillo, M.

2012-10-26T23:59:59.000Z

215

Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Maximizing Alternative Maximizing Alternative Fuel Vehicle Efficiency to someone by E-mail Share Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Facebook Tweet about Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Twitter Bookmark Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Google Bookmark Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Delicious Rank Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Digg Find More places to share Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines

216

Vehicle Technologies Office: Fact #257: March 3, 2003 Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

7: March 3, 2003 Vehicle Occupancy by Type of Vehicle to someone by E-mail Share Vehicle Technologies Office: Fact 257: March 3, 2003 Vehicle Occupancy by Type of Vehicle on...

217

Vehicle Technologies Office: Fact #253: February 3, 2003 Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

3: February 3, 2003 Vehicle Age by Type of Vehicle to someone by E-mail Share Vehicle Technologies Office: Fact 253: February 3, 2003 Vehicle Age by Type of Vehicle on Facebook...

218

Vehicle Technologies Office: About the Vehicle Technologies Office: Moving  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Vehicle About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles to someone by E-mail Share Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Facebook Tweet about Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Twitter Bookmark Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Google Bookmark Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Delicious Rank Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Digg Find More places to share Vehicle Technologies Office: About the

219

Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

9: August 6, 9: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts to someone by E-mail Share Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Facebook Tweet about Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Twitter Bookmark Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Google Bookmark Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Delicious

220

DOE Hydrogen Analysis Repository: Biofuels in Light-Duty Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Biofuels in Light-Duty Vehicles Biofuels in Light-Duty Vehicles Project Summary Full Title: Mobility Chains Analysis of Technologies for Passenger Cars and Light-Duty Vehicles Fueled with Biofuels: Application of the GREET Model to the Role of Biomass in America's Energy Future (RBAEF) Project Project ID: 82 Principal Investigator: Michael Wang Brief Description: The mobility chains analysis estimated the energy consumption and emissions associated with the use of various biofuels in light-duty vehicles. Keywords: Well-to-wheels (WTW); ethanol; biofuels; Fischer Tropsch diesel; hybrid electric vehicles (HEV) Purpose The project was a multi-organization, multi-sponsor project to examine the potential of biofuels in the U.S. Argonne was responsible for the well-to-wheels analysis of biofuel production and use.

Note: This page contains sample records for the topic "vehicle project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Alternative Fuel Vehicle Data  

Reports and Publications (EIA)

This report contains data on the number of onroad alternative fuel vehicles and hybrid vehicles made available by both the original equipment manufacturers and aftermarket vehicle conversion facilities and data on the use of alternative fueled vehicles and the amount of fuel they consume.

Information Center

2013-04-08T23:59:59.000Z

222

Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

5: November 25, 5: November 25, 2013 Vehicle Technology Penetration to someone by E-mail Share Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Facebook Tweet about Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Twitter Bookmark Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Google Bookmark Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Delicious Rank Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Digg Find More places to share Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on AddThis.com... Fact #805: November 25, 2013

223

FY 2006 Annual Progress Report for Heavy Vehicle Systems Optimization Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Heavy veHicle SyStemS Heavy veHicle SyStemS OptimizatiOn prOgram U.S. Department of Energy FreedomCAR and Vehicle Technologies Program 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2006 Annual Progress Report for Heavy Vehicle Systems Optimization Program Submitted to: U.S. Department of Energy Energy Efficiency and Renewable Energy FreedomCAR and Vehicle Technologies Program Advanced Vehicle Technology Analysis and Evaluation Lee Slezak, Technology Manager Heavy Vehicle Systems Optimization Program FY 2006 Annual Report iii CONTENTS I. Aerodynamic Drag Reduction......................................................................................................... 1 A. DOE Project on Heavy Vehicle Aerodynamic Drag .................................................................. 1

224

Vehicle Technologies Office: Ambassadors  

NLE Websites -- All DOE Office Websites (Extended Search)

Ambassadors to someone Ambassadors to someone by E-mail Share Vehicle Technologies Office: Ambassadors on Facebook Tweet about Vehicle Technologies Office: Ambassadors on Twitter Bookmark Vehicle Technologies Office: Ambassadors on Google Bookmark Vehicle Technologies Office: Ambassadors on Delicious Rank Vehicle Technologies Office: Ambassadors on Digg Find More places to share Vehicle Technologies Office: Ambassadors on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness Workforce Development Plug-in Electric Vehicle Basics Ambassadors Workplace Charging Challenge Clean Cities Coalitions Clean Cities logo. Clean Cities National: A network of nearly 100 Clean Cities coalitions, supported by the

225

Accelerating Electric Vehicle Deployment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accelerating Electric Vehicle Deployment Accelerating Electric Vehicle Deployment Accelerating Electric Vehicle Deployment Accelerating Electric Vehicle Deployment More Documents &...

226

DOE Hydrogen Analysis Repository: Advanced Vehicle Introduction...  

NLE Websites -- All DOE Office Websites (Extended Search)

Keywords: Vehicle characteristics; market penetration; advanced technology vehicles; hybrid electric vehicle (HEV) Purpose Vehicle Choice Model - Estimate market penetration...

227

Categorical Exclusion Determinations: West Valley Demonstration Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Valley Demonstration Valley Demonstration Project Categorical Exclusion Determinations: West Valley Demonstration Project Categorical Exclusion Determinations issued by West Valley Demonstration Project. DOCUMENTS AVAILABLE FOR DOWNLOAD July 11, 2013 CX-010718: Categorical Exclusion Determination Replacement Ventilation System for the Main Plant Process Building CX(s) Applied: B6.3 Date: 07/11/2013 Location(s): New York Offices(s): West Valley Demonstration Project December 20, 2012 CX-009527: Categorical Exclusion Determination WVDP-2012-02 Routine Maintenance CX(s) Applied: B1.3 Date: 12/20/2012 Location(s): New York Offices(s): West Valley Demonstration Project August 2, 2012 CX-009528: Categorical Exclusion Determination WVDP-2012-01 WVDP Reservoir Interconnecting Canal Maintenance Activities

228

Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

6: February 9, 6: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled to someone by E-mail Share Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Facebook Tweet about Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Twitter Bookmark Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Google Bookmark Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Delicious Rank Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Digg Find More places to share Vehicle Technologies Office: Fact #306:

229

Secretary Chu Announces $187 Million to Improve Vehicle Efficiency for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Chu Announces $187 Million to Improve Vehicle Efficiency Secretary Chu Announces $187 Million to Improve Vehicle Efficiency for Heavy-Duty Trucks and Passenger Vehicles Secretary Chu Announces $187 Million to Improve Vehicle Efficiency for Heavy-Duty Trucks and Passenger Vehicles January 11, 2010 - 12:00am Addthis Columbus, Ind. - At an event today in Columbus, Indiana, Secretary Chu announced the selection of nine projects totaling more than $187 million to improve fuel efficiency for heavy-duty trucks and passenger vehicles. The funding includes more than $100 million from the American Recovery and Reinvestment Act, and with a private cost share of 50 percent, will support nearly $375 million in total research, development and demonstration projects across the country. The nine winners have stated their projects

230

Secretary Chu Announces $187 Million to Improve Vehicle Efficiency for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Chu Announces $187 Million to Improve Vehicle Efficiency Secretary Chu Announces $187 Million to Improve Vehicle Efficiency for Heavy-Duty Trucks and Passenger Vehicles Secretary Chu Announces $187 Million to Improve Vehicle Efficiency for Heavy-Duty Trucks and Passenger Vehicles January 11, 2010 - 12:00am Addthis Columbus, Ind. - At an event today in Columbus, Indiana, Secretary Chu announced the selection of nine projects totaling more than $187 million to improve fuel efficiency for heavy-duty trucks and passenger vehicles. The funding includes more than $100 million from the American Recovery and Reinvestment Act, and with a private cost share of 50 percent, will support nearly $375 million in total research, development and demonstration projects across the country. The nine winners have stated their projects

231

u.s DEP,\\RThIFNT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grant Program (EECBG). Honolulu proposes to use B,ooo to install one electric vehicle charging station. The proposed project would install a level two electric vehicle charging...

232

Advanced Vehicle Testing Activity: Urban Electric Vehicle Specificatio...  

NLE Websites -- All DOE Office Websites (Extended Search)

Test Procedures to someone by E-mail Share Advanced Vehicle Testing Activity: Urban Electric Vehicle Specifications and Test Procedures on Facebook Tweet about Advanced Vehicle...

233

Advanced Vehicle Testing Activity: Hybrid Electric Vehicle Testing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing Reports to someone by E-mail Share Advanced Vehicle Testing Activity: Hybrid Electric Vehicle Testing Reports on Facebook Tweet about Advanced Vehicle Testing Activity:...

234

Advanced Vehicle Testing Activity: Hybrid Electric Vehicle Specificati...  

NLE Websites -- All DOE Office Websites (Extended Search)

Test Procedures to someone by E-mail Share Advanced Vehicle Testing Activity: Hybrid Electric Vehicle Specifications and Test Procedures on Facebook Tweet about Advanced Vehicle...

235

Advanced Vehicle Testing Activity: Full-Size Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Procedures to someone by E-mail Share Advanced Vehicle Testing Activity: Full-Size Electric Vehicle Specifications and Test Procedures on Facebook Tweet about Advanced Vehicle...

236

Advanced Vehicle Testing Activity: Electric Vehicle Supply Equipment...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Supply Equipment (EVSE) Testing to someone by E-mail Share Advanced Vehicle Testing Activity: Electric Vehicle Supply Equipment (EVSE) Testing on Facebook Tweet...

237

Advanced Vehicle Testing Activity: Full-Size Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing Reports to someone by E-mail Share Advanced Vehicle Testing Activity: Full-Size Electric Vehicle Testing Reports on Facebook Tweet about Advanced Vehicle Testing Activity:...

238

Advanced Vehicle Testing Activity: Electric Vehicle Supply Equipment...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Supply Equipment (EVSE) Testing The Advanced Vehicle Testing Activity is tasked by the U.S. Department of Energy's (DOE) Vehicle Technologies Office (VTO) to...

239

Advanced Vehicle Testing Activity: Urban Electric Vehicle Testing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing Reports to someone by E-mail Share Advanced Vehicle Testing Activity: Urban Electric Vehicle Testing Reports on Facebook Tweet about Advanced Vehicle Testing Activity:...

240

VEHICLE USAGE LOG Department ________________________________________ Vehicle Homebase ____________________________ Week Ended (Sunday) _________________  

E-Print Network (OSTI)

VEHICLE USAGE LOG Department ________________________________________ Vehicle Homebase of the owning Unit. Vehicle Homebase: Enter the City, Zip Code, Building, or other location designation. Week

Johnston, Daniel

Note: This page contains sample records for the topic "vehicle project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles  

E-Print Network (OSTI)

The Images of Hybrid Vehicles Each of the householdsbetween hybrid and non-hybrid vehicles was observed in smallowned Honda Civic Hybrids, vehicles that are virtually

Heffner, Reid R.; Kurani, Ken; Turrentine, Tom

2005-01-01T23:59:59.000Z

242

NREL: Advanced Power Electronics - About the Project  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Project About the Project The Vehicle Technologies Program supports the development of technologies that will achieve transportation energy security through a U.S. highway vehicle fleet that consists of affordable, full-function cars and trucks that are free from petroleum dependence and harmful emissions, without sacrificing mobility, safety, and vehicle choice. The electric drive system is the technology foundation for hybrid electric and fuel cell vehicles. NREL focuses on developing advanced power electronics and electric machinery technologies that improve and dramatically decrease vehicle systems costs, under DOE's Power Electronics and Electric Machines (PEEM) subactivity. NREL supports the PEEM project goals to ensure high reliability, efficiency, and ruggedness; and

243

Search for Model Year 2000 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

244

Search for Model Year 2014 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Type Model Year: 2014 Select Class... Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Plug-in Hybrid Vehicles...

245

Vehicle Technologies Office: Lubricants  

NLE Websites -- All DOE Office Websites (Extended Search)

Lubricants to someone by Lubricants to someone by E-mail Share Vehicle Technologies Office: Lubricants on Facebook Tweet about Vehicle Technologies Office: Lubricants on Twitter Bookmark Vehicle Technologies Office: Lubricants on Google Bookmark Vehicle Technologies Office: Lubricants on Delicious Rank Vehicle Technologies Office: Lubricants on Digg Find More places to share Vehicle Technologies Office: Lubricants on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Fuel Effects on Combustion Lubricants Natural Gas Research Biofuels End-Use Research Materials Technologies Lubricants As most vehicles are on the road for more than 15 years before they are retired, investigating technologies that will improve today's vehicles is

246

Chapter 2. Vehicle Characteristics  

U.S. Energy Information Administration (EIA) Indexed Site

2. Vehicle Characteristics 2. Vehicle Characteristics Chapter 2. Vehicle Characteristics U.S. households used a fleet of nearly 157 million vehicles in 1994. Despite remarkable growth in the number of minivans and sport-utility vehicles, passenger cars continued to predominate in the residential vehicle fleet. This chapter looks at changes in the composition of the residential fleet in 1994 compared with earlier years and reviews the effect of technological changes on fuel efficiency (how efficiently a vehicle engine processes motor fuel) and fuel economy (how far a vehicle travels on a given amount of fuel). Using data unique to the Residential Transportation Energy Consumption Survey, it also explores the relationship between residential vehicle use and family income.

247

The Qualified Energy Project Tax Exemption (Ohio) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Qualified Energy Project Tax Exemption (Ohio) The Qualified Energy Project Tax Exemption (Ohio) Eligibility Commercial Savings For Alternative Fuel Vehicles Hydrogen & Fuel...

248

Advanced Vehicle Testing Activity: Alternative Fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

are vehicles designed to operate on alternative fuels such as compressed and liquefied natural gas, liquefied petroleum gas (propane), ethanol, biodiesel, electricity, and...

249

Advanced Vehicle Testing Activity - Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Hyundai Sonata (4932) Battery Report 2010 Ultra-Battery Honda Civic Battery Report Some hybrid electric vehicles (HEVs) combine a conventional internal combustion engine (using...

250

VEHICLE TECHNOLOGIES PROGRAM Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing Activity North American PHEV Demonstration Monthly Summary Report - Hymotion Prius (V2Green data logger) Total Number Vehicles - 169 (May 2010) Total Cumulative Test...

251

Advanced Vehicle Testing Activity: Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

motor of an electric vehicle. Other hybrids combine a fuel cell with batteries to power electric propulsion motors. Fuel Cell Concept: Fuel passes through an anode, electrolyte,...

252

Advanced Technology Vehicle Testing  

DOE Green Energy (OSTI)

The light-duty vehicle transportation sector in the United States depends heavily on imported petroleum as a transportation fuel. The Department of Energys Advanced Vehicle Testing Activity (AVTA) is testing advanced technology vehicles to help reduce this dependency, which would contribute to the economic stability and homeland security of the United States. These advanced technology test vehicles include internal combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban electric vehicles, and electric ground support vehicles. The AVTA tests and evaluates these vehicles with closed track and dynamometer testing methods (baseline performance testing) and accelerated reliability testing methods (accumulating lifecycle vehicle miles and operational knowledge within 1 to 1.5 years), and in normal fleet environments. The Arizona Public Service Alternative Fuel Pilot Plant and H2-fueled vehicles are demonstrating the feasibility of using H2 as a transportation fuel. Hybrid, neighborhood, and urban electric test vehicles are demonstrating successful applications of electric drive vehicles in various fleet missions. The AVTA is also developing electric ground support equipment (GSE) test procedures, and GSE testing will start during the fall of 2003. All of these activities are intended to support U.S. energy independence. The Idaho National Engineering and Environmental Laboratory manages these activities for the AVTA.

James Francfort

2003-11-01T23:59:59.000Z

253

NREL: Vehicles and Fuels Research - Advanced Power Electronics  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Research Search More Search Options Site Map The electric drive system is the technology foundation for hybrid electric and fuel cell vehicles. That's why NREL's Advanced Power Electronics project supports and promotes the design, development, and demonstration of power electronic components and systems that will overcome major technical barriers to the commercialization of hybrid, advanced internal combustion, and fuel cell vehicle technologies. In support of DOE's Vehicle Technologies Office, our researchers focus on developing advanced power electronics and electric machinery technologies that improve reliability, efficiency, and ruggedness, and dramatically decrease systems costs for advanced vehicles. Key components for these vehicles include the motor controller, DC to DC converters, and inverters

254

Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Medium- and Medium- and Heavy-Duty Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Twitter Bookmark Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Google Bookmark Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Delicious Rank Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Digg Find More places to share Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on AddThis.com... Home Overview Light-Duty Vehicles Medium- and Heavy-Duty Vehicles Transit Vehicles Trucks Idle Reduction Oil Bypass Filter Airport Ground Support Equipment Medium and Heavy Duty Hybrid Electric Vehicles

255

LEAFing Through New Vehicle Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LEAFing Through New Vehicle Technology LEAFing Through New Vehicle Technology LEAFing Through New Vehicle Technology May 26, 2010 - 11:32am Addthis An artist’s rendering of a Nissan LEAF charging outside a café. | Courtesy The EV Project An artist's rendering of a Nissan LEAF charging outside a café. | Courtesy The EV Project Joshua DeLung Oil and gas price fluctuations and environmental concerns are driving innovators to find new ways to power our vehicles. That's the focus of The EV Project, a new program of ECOtality North America, which was awarded a $114.8 million Recovery Act grant from the U.S. Department of Energy. The EV Project will create a network of charging stations for participants' electric vehicles and gather data on the stations' usage. "As [Energy] Secretary [Steven] Chu rightly pointed out, the only way

256

Vehicle Research Laboratory - FEERC  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Research Laboratory Vehicle Research Laboratory Expertise The overall FEERC team has been developed to encompass the many disciplines necessary for world-class fuels, engines, and emissions-related research, with experimental, analytical, and modeling capabilities. Staff members specialize in areas including combustion and thermodynamics, emissions measurements, analytical chemistry, catalysis, sensors and diagnostics, dynamometer cell operations, engine controls and control theory. FEERC engineers have many years of experience in vehicle research, chassis laboratory development and operation, and have developed specialized systems and methods for vehicle R&D. Selected Vehicle Research Topics In-use investigation of Lean NOx Traps (LNTs). Vehicle fuel economy features such as lean operation GDI engines,

257

Emission Impacts of Electric Vehicles  

E-Print Network (OSTI)

greenhouse effect, and electric vehicles," Proceedingso/9thInternational Electric Vehicles Symposium, 1988. 14. R. M.of 9th International Electric Vehicles Sympo- sium, 1988.

Wang, Quanlu; DeLuchi, Mark A.; Sperling, Daniel

1990-01-01T23:59:59.000Z

258

The Case for Electric Vehicles  

E-Print Network (OSTI)

land Press, 1995 TESTING ELECTRIC VEHICLE DEMAND IN " HYBRIDThe Case for Electric Vehicles DanieI Sperlmg Reprint UCTCor The Case for Electric Vehicles Darnel Sperling Institute

Sperling, Daniel

2001-01-01T23:59:59.000Z

259

Avionics and control system development for mid-air rendezvous of two unmanned aerial vehicles  

E-Print Network (OSTI)

A flight control system was developed to achieve mid-air rendezvous of two unmanned aerial vehicles (UAVs) as a part of the Parent Child Unmanned Aerial Vehicle (PCUAV) project at MIT and the Draper Laboratory. A lateral ...

Park, Sanghyuk, 1973-

2004-01-01T23:59:59.000Z

260

Alternative Fuels Data Center: Flexible Fuel Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Diesel Vehicles Electricity | Hybrid & Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane |...

Note: This page contains sample records for the topic "vehicle project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Alternative Fuels Data Center: Vehicle Conversions  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Diesel Vehicles Electricity | Hybrid & Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane |...

262

Vehicle Detection by Sensor Network Nodes  

E-Print Network (OSTI)

frequency. Table 4.2: ? and ? Ground truth (# of vehicles)truth (# of vehicles) Detection result (# of vehicles) Tabletruth ( of vehicles) Detection result ( of vehicles) Table

Ding, Jiagen; Cheung, Sing-Yiu; Tan, Chin-woo; Varaiya, Pravin

2004-01-01T23:59:59.000Z

263

Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-in Hybrid Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing...

264

Advanced Vehicle Testing Activity: Full-Size Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Full-Size Electric Vehicle Basics to someone by E-mail Share Advanced Vehicle Testing Activity: Full-Size Electric Vehicle Basics on Facebook Tweet about Advanced Vehicle Testing...

265

Advanced Vehicle Testing Activity: Full-Size Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Full-Size Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Full-Size Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity:...

266

Vehicle Technologies Office: Fact #586: August 31, 2009 New Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

6: August 31, 2009 New Vehicle Fuel Economies by Vehicle Type to someone by E-mail Share Vehicle Technologies Office: Fact 586: August 31, 2009 New Vehicle Fuel Economies by...

267

Vehicle Technologies Office: Plug-in Electric Vehicle Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-in Electric Vehicle Basics to someone by E-mail Share Vehicle Technologies Office: Plug-in Electric Vehicle Basics on Facebook Tweet about Vehicle Technologies Office: Plug-in...

268

Advanced Vehicle Testing Activity - Stop-Start Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Stop-Start Vehicles Stop-start Vehicles allow the internal combustion engine to shut-down when the vehicle stops in traffic, and re-start quickly to launch the vehicle. Fuel is...

269

Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per  

NLE Websites -- All DOE Office Websites (Extended Search)

5: September 15, 5: September 15, 2003 Vehicles per Thousand People: An International Comparison to someone by E-mail Share Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Facebook Tweet about Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Twitter Bookmark Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Google Bookmark Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Delicious Rank Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Digg

270

Additional Development of a Dedicated Liquefied Petroleum Gas (LPG) Ultra Low Emissions Vehicle (ULEV)  

DOE Green Energy (OSTI)

This report describes the last in a series of three projects designed to develop a commercially competitive LPG light-duty passenger car that meets California ULEV standards and corporate average fuel economy (CAFE) energy efficiency guidelines for such a vehicle. In this project, IMPCO upgraded the vehicle's LPG vapor fuel injection system and performed emissions testing. The vehicle met the 1998 ULEV standards successfully, demonstrating the feasibility of meeting ULEV standards with a dedicated LPG vehicle.

IMPCO Technologies

1998-10-28T23:59:59.000Z

271

Additional Development of a Dedicated Liquefied Petroleum Gas (LPG) Ultra Low Emissions Vehicle (ULEV)  

SciTech Connect

This report describes the last in a series of three projects designed to develop a commercially competitive LPG light-duty passenger car that meets California ULEV standards and corporate average fuel economy (CAFE) energy efficiency guidelines for such a vehicle. In this project, IMPCO upgraded the vehicle's LPG vapor fuel injection system and performed emissions testing. The vehicle met the 1998 ULEV standards successfully, demonstrating the feasibility of meeting ULEV standards with a dedicated LPG vehicle.

IMPCO Technologies

1998-10-28T23:59:59.000Z

272

Vehicle Technologies Office: Favorites  

NLE Websites -- All DOE Office Websites (Extended Search)

Favorites to someone by Favorites to someone by E-mail Share Vehicle Technologies Office: Favorites on Facebook Tweet about Vehicle Technologies Office: Favorites on Twitter Bookmark Vehicle Technologies Office: Favorites on Google Bookmark Vehicle Technologies Office: Favorites on Delicious Rank Vehicle Technologies Office: Favorites on Digg Find More places to share Vehicle Technologies Office: Favorites on AddThis.com... Favorites #248 Top Ten Net Petroleum Importing Countries, 2000 December 23, 2002 #246 U.S. Oil Imports - Top 10 Countries of Origin December 9, 2002 #244 Sport Utility Vehicle Spotlight November 25, 2002 #243 Fuel Economy Leaders for 2003 Model Year Light Trucks November 18, 2002 #242 Fuel Economy Leaders for 2003 Model Year Cars November 11, 2002 #238 Automobile and Truck Population by Vehicle Age, 2001 October 14, 2002

273

Vehicle Technologies Office: Partners  

NLE Websites -- All DOE Office Websites (Extended Search)

Partners to someone by Partners to someone by E-mail Share Vehicle Technologies Office: Partners on Facebook Tweet about Vehicle Technologies Office: Partners on Twitter Bookmark Vehicle Technologies Office: Partners on Google Bookmark Vehicle Technologies Office: Partners on Delicious Rank Vehicle Technologies Office: Partners on Digg Find More places to share Vehicle Technologies Office: Partners on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness Workforce Development Plug-in Electric Vehicle Basics Partners The interactive map below highlights Workplace Charging Challenge Partners across the country who are installing plug-in electric vehicle charging infrastructure for their employees. Select a worksite to learn more about

274

Vehicle Technologies Office: Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

vehicles. In fact, every hybrid vehicle on the market currently uses Nickel-Metal-Hydride high-voltage batteries in its battery system. Lithium ion batteries appear to be the...

275

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 Number of vehicles: 143 Number of vehicle days driven: 6,598 All operation Overall gasoline fuel economy (mpg) 73.7 Overall AC electrical energy consumption (AC Whmi) 170...

276

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 Number of vehicles: 145 Number of vehicle days driven: 6,817 All operation Overall gasoline fuel economy (mpg) 66.6 Overall AC electrical energy consumption (AC Whmi) 171...

277

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

2011 Number of vehicles: 135 Number of vehicle days driven: 4,746 All operation Overall gasoline fuel economy (mpg) 68.6 Overall AC electrical energy consumption (AC Whmi) 175...

278

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

June 2011 Number of vehicles: 66 Number of vehicle days driven: 845 All operation Overall gasoline fuel economy (mpg) 85.0 Overall AC electrical energy consumption (AC Whmi) 181...

279

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 Number of vehicles: 143 Number of vehicle days driven: 5,795 All operation Overall gasoline fuel economy (mpg) 67.8 Overall AC electrical energy consumption (AC Whmi) 180...

280

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

2011 Number of vehicles: 110 Number of vehicle days driven: 3,227 All operation Overall gasoline fuel economy (mpg) 74.8 Overall AC electrical energy consumption (AC Whmi) 185...

Note: This page contains sample records for the topic "vehicle project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 Number of vehicles: 144 Number of vehicle days driven: 7,129 All operation Overall gasoline fuel economy (mpg) 72.5 Overall AC electrical energy consumption (AC Whmi) 166...

282

Social networking in vehicles  

E-Print Network (OSTI)

In-vehicle, location-aware, socially aware telematic systems, known as Flossers, stand to revolutionize vehicles, and how their drivers interact with their physical and social worlds. With Flossers, users can broadcast and ...

Liang, Philip Angus

2006-01-01T23:59:59.000Z

283

Hybrid Electric Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

- 1.5 million miles of HEV fleet testing (160k miles per vehicle in 36 months) - End-of-life HEV testing (rerun fuel economy & conduct battery testing @ 160k miles per vehicle) -...

284

EcoCAR Vehicles Get Put to the Test at General Motors' Proving Ground |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EcoCAR Vehicles Get Put to the Test at General Motors' Proving EcoCAR Vehicles Get Put to the Test at General Motors' Proving Ground EcoCAR Vehicles Get Put to the Test at General Motors' Proving Ground June 13, 2011 - 5:57pm Addthis Virginia Tech puts their EcoCar vehicle through the paces at General Motors' Milford Proving Grounds. | Credit Department of Energy Advanced Vehicle Technology Competitions Virginia Tech puts their EcoCar vehicle through the paces at General Motors' Milford Proving Grounds. | Credit Department of Energy Advanced Vehicle Technology Competitions Connie Bezanson Education & Outreach Manager, Vehicle Technologies Program What does this project do? EcoCar challenges students to reduce the environmental impact of vehicles by minimizing the vehicle's fuel consumption and emissions -- while retaining the vehicle's performance, safety and consumer appeal.

285

Flexible Fuel Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Flexible fuel vehicles (FFVs) are capable of operating on gasoline, E85 (85% ethanol, 15% gasoline), or a mixture of both. There are almost 8 million flexible fuel vehicles on U.S. roads today, but many FFV owners don't know their vehicle is one.

286

Realising low carbon vehicles  

E-Print Network (OSTI)

MorganMotorCompany #12;Hybrid and electric vehicle design and novel power trains Cranfield has an impressive track record in the design and integration of near-to-market solutions for hybrid, electric and fuel cell vehicles coupe body the vehicle is powered by advanced lithium-ion batteries, and also features a novel all-electric

287

EIA-DOE Vehicle Choice and Markets Technical Workshop  

U.S. Energy Information Administration (EIA) Indexed Site

DOE Vehicle Choice and Markets Technical Workshop 1 DOE Vehicle Choice and Markets Technical Workshop 1 January 2013 EIA-DOE Vehicle Choice and Markets Technical Workshop Meeting Summary The Department of Energy (DOE) and Energy Information Administration (EIA) held a workshop on January 25th, 2013 in Detroit, MI with marketing and automotive industry experts to discuss and better understand consumer acceptance of hybrid, plug-in hybrid, and battery electric vehicles. The workshop focused on recent survey analyses, market representation, state of the art modeling, and comparisons of projected model results. This event provided a rare and insightful opportunity to compare and contrast our understanding and representation of vehicle markets and vehicle choice modeling with our nation's automotive leaders to assure that EIA's future projections and policy

288

DOE Hydrogen Analysis Repository: Life Cycle Analysis of Vehicles for  

NLE Websites -- All DOE Office Websites (Extended Search)

Life Cycle Analysis of Vehicles for Canada Life Cycle Analysis of Vehicles for Canada Project Summary Full Title: Life Cycle Analysis of Vehicles Powered by a Fuel Cell and by Internal Combustion Engine for Canada Project ID: 117 Principal Investigator: Xianguo Li Purpose In this study, a full life cycle analysis of an internal combustion engine vehicle (ICEV) and a fuel cell vehicle (FCV) has been carried out. The impact of the material and fuel used in the vehicle on energy consumption and carbon dioxide emissions is analyzed for Canada. Four different methods of obtaining hydrogen were analyzed; using coal and nuclear power to produce electricity and extraction of hydrogen through electrolysis and via steam reforming of natural gas in a natural gas plant and in a hydrogen refueling station.

289

Estimating vehicle height using homographic projections  

DOE Patents (OSTI)

Multiple homography transformations corresponding to different heights are generated in the field of view. A group of salient points within a common estimated height range is identified in a time series of video images of a moving object. Inter-salient point distances are measured for the group of salient points under the multiple homography transformations corresponding to the different heights. Variations in the inter-salient point distances under the multiple homography transformations are compared. The height of the group of salient points is estimated to be the height corresponding to the homography transformation that minimizes the variations.

Cunningham, Mark F; Fabris, Lorenzo; Gee, Timothy F; Ghebretati, Jr., Frezghi H; Goddard, James S; Karnowski, Thomas P; Ziock, Klaus-peter

2013-07-16T23:59:59.000Z

290

Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

5: February 5, 5: February 5, 2007 Household Vehicle Miles to someone by E-mail Share Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Facebook Tweet about Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Twitter Bookmark Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Google Bookmark Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Delicious Rank Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Digg Find More places to share Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on AddThis.com... Fact #455: February 5, 2007 Household Vehicle Miles The graphs below show the average vehicle miles of travel (VMT) - daily

291

Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

2: October 3, 2: October 3, 2005 Household Vehicle Ownership to someone by E-mail Share Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Facebook Tweet about Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Twitter Bookmark Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Google Bookmark Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Delicious Rank Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Digg Find More places to share Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on AddThis.com... Fact #392: October 3, 2005 Household Vehicle Ownership Household vehicle ownership has changed significantly over the last 40

292

DOE Issues Guidance on Electric Vehicle Recharging Stations | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Vehicle Recharging Stations Electric Vehicle Recharging Stations DOE Issues Guidance on Electric Vehicle Recharging Stations September 6, 2011 - 4:28pm Addthis The U.S. Department of Energy recently issued guidance to its national laboratory management and operating (M&O) contractors on the installation and operation of electric vehicle recharging stations at lab facilities. The guidance explains that lab contractors wishing to install electric vehicle recharging stations or make such stations available to employees and visitors have several options. Lab contractors may install such stations and seek reimbursement from the Department for their use to the extent such installation or use is reasonably required to meet fleet vehicle or demonstration project needs. In addition, lab contractors may install electric vehicle recharging

293

Modular Energy Storage System for Hydrogen Fuel Cell Vehicles  

SciTech Connect

The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles ?? plug-in electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. The in-depth research into the complex interactions between the lower and higher voltage systems from data obtained via modeling, bench testing and instrumented vehicle data will allow an optimum system to be developed from a performance, cost, weight and size perspective. The subsystems are designed for modularity so that they may be used with different propulsion and energy delivery systems. This approach will allow expansion into new alternative energy vehicle markets.

Janice Thomas

2010-05-31T23:59:59.000Z

294

Smart Electric Vehicle Supply Equipment Demand Response Pilot  

Science Conference Proceedings (OSTI)

This report discusses a unique pilot project to evaluate electric vehicle supply equipment (EVSE) capable of demand response (DR) and its integration into the utility smart metering infrastructure.BackgroundThere is an immediate need to research grid interface compatibility of public charging apparatus and to develop requirements and reference design blueprints for the entire plug-in electric vehicle (PEV) charging infrastructurefrom the vehicle ...

2012-12-31T23:59:59.000Z

295

VEHICLE FOR SLAVE ROBOT  

DOE Patents (OSTI)

A reeling device is designed for an electrical cable supplying power to the slave slde of a remote control manipulator mounted on a movable vehicle. As the vehicle carries the slave side about in a closed room, the device reels the cable in and out to maintain a variable length of the cable between the vehicle and a cable inlet in the wall of the room. The device also handles a fixed length of cable between the slave side and the vehicle, in spite of angular movement of the slave side with respect to the vehicle. (AEC)

Goertz, R.C.; Lindberg, J.F.

1962-01-30T23:59:59.000Z

296

Compressed natural gas fueled vehicles: The Houston experience  

DOE Green Energy (OSTI)

The report describes the experience of the City of Houston in defining the compressed natural gas fueled vehicle research scope and issues. It details the ways in which the project met initial expectations, and how the project scope, focus, and duration were adjusted in response to unanticipated results. It provides examples of real world successes and failures in efforts to commercialize basic research in adapting a proven technology (natural gas) to a noncommercially proven application (vehicles). Phase one of the demonstration study investigates, develops, documents, and disseminates information regarding the economic, operational, and environmental implications of utilizing compressed natural gas (CNG) in various truck fueling applications. The four (4) truck classes investigated are light duty gasoline trucks, medium duty gasoline trucks, medium duty diesel trucks and heavy duty diesel trucks. The project researches aftermarket CNG conversions for the first three vehicle classes and original equipment manufactured (OEM) CNG vehicles for light duty gasoline and heavy duty diesel classes. In phase two of the demonstration project, critical issues are identified and assessed with respect to implementing use of CNG fueled vehicles in a large vehicle fleet. These issues include defining changes in local, state, and industry CNG fueled vehicle related codes and standards; addressing vehicle fuel storage limitations; using standardized vehicle emission testing procedures and results; and resolving CNG refueling infrastructure implementation issues and related cost factors. The report identifies which CNG vehicle fueling options were tried and failed and which were tried and succeeded, with and without modifications. The conclusions include a caution regarding overly optimistic assessments of CNG vehicle technology at the initiation of the project.

Not Available

1993-12-31T23:59:59.000Z

297

Vehicle Technologies Office: Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

Deployment Deployment Site Map Printable Version Share this resource Send a link to Vehicle Technologies Office: Deployment to someone by E-mail Share Vehicle Technologies Office: Deployment on Facebook Tweet about Vehicle Technologies Office: Deployment on Twitter Bookmark Vehicle Technologies Office: Deployment on Google Bookmark Vehicle Technologies Office: Deployment on Delicious Rank Vehicle Technologies Office: Deployment on Digg Find More places to share Vehicle Technologies Office: Deployment on AddThis.com... Energy Policy Act (EPAct) Clean Cities Educational Activities Deployment Our nation's energy security depends on the efficiency of our transportation system and on which fuels we use. Transportation in the United States already consumes much more oil than we produce here at home

298

Vehicle Technologies Office: Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Batteries to someone by Batteries to someone by E-mail Share Vehicle Technologies Office: Batteries on Facebook Tweet about Vehicle Technologies Office: Batteries on Twitter Bookmark Vehicle Technologies Office: Batteries on Google Bookmark Vehicle Technologies Office: Batteries on Delicious Rank Vehicle Technologies Office: Batteries on Digg Find More places to share Vehicle Technologies Office: Batteries on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Batteries Battery Systems Applied Battery Research Long-Term Exploratory Research Ultracapacitors Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Materials Technologies Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various

299

Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicles Vehicles Vehicles EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. Image of three semi truck cabs. The one on the left is yellow, the middle is green, and the far right truck is red. The U.S. Department of Energy (DOE) supports the development and deployment of advanced vehicle technologies, including advances in electric vehicles, engine efficiency, and lightweight materials. Since 2008, the Department of

300

Hydrogen Vehicles and Fueling Infrastructure in China  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Vehicles and Fueling Infrastructure in China Hydrogen Vehicles and Fueling Infrastructure in China Prof. Jinyang Zheng Director of IPE, Zhejiang University Director of Engineering Research Center for High Pressure Process Equipment and Safety, Ministry of Education Vice Director of China National Safety Committee of Pressure Vessels Vice President of CMES-P.R. China China Representative of ISO/TC197 and ISO/TC58 U.S. Department of Transportation and U. S. Department of Energy Workshop: Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Development of Vehicles,Dec.10-11,2009, Washington Safety and Regulatory Structure for CNG,CNG-H2,H2 Vehicles and Fuels in China Content Hydrogen Production CNG Refueling Station Hydrogen Refueling Station Shanxi HCNG Project U.S. Department of Transportation and U. S. Department of Energy Workshop: Compressed Natural Gas and

Note: This page contains sample records for the topic "vehicle project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Energy Department Awards Will Promote Electric Vehicles in 24 States and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Awards Will Promote Electric Vehicles in 24 Energy Department Awards Will Promote Electric Vehicles in 24 States and Train a Workforce for Advanced Vehicle Development Energy Department Awards Will Promote Electric Vehicles in 24 States and Train a Workforce for Advanced Vehicle Development September 8, 2011 - 3:17pm Addthis Washington, D.C. - U.S. Energy Secretary Steven Chu today announced 16 projects supporting activities in 24 states and the District of Columbia to accelerate the adoption of electric vehicles (EVs) in communities across the nation, and seven additional projects in seven states to help prepare college students for careers designing and building advanced vehicle technologies. "By developing the next generation of automotive engineers and preparing communities for plug-in electric vehicles, these projects will help reduce

302

Energy Department Awards Will Promote Electric Vehicles in 24 States and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Will Promote Electric Vehicles in 24 Will Promote Electric Vehicles in 24 States and Train a Workforce for Advanced Vehicle Development Energy Department Awards Will Promote Electric Vehicles in 24 States and Train a Workforce for Advanced Vehicle Development September 8, 2011 - 3:17pm Addthis Washington, D.C. - U.S. Energy Secretary Steven Chu today announced 16 projects supporting activities in 24 states and the District of Columbia to accelerate the adoption of electric vehicles (EVs) in communities across the nation, and seven additional projects in seven states to help prepare college students for careers designing and building advanced vehicle technologies. "By developing the next generation of automotive engineers and preparing communities for plug-in electric vehicles, these projects will help reduce

303

Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

1: January 8, 1: January 8, 2007 Household Vehicle Trips to someone by E-mail Share Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Facebook Tweet about Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Twitter Bookmark Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Google Bookmark Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Delicious Rank Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Digg Find More places to share Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on AddThis.com... Fact #451: January 8, 2007 Household Vehicle Trips In a day, the average household traveled 32.7 miles in 2001 (the latest

304

Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy  

NLE Websites -- All DOE Office Websites (Extended Search)

3: March 8, 2010 3: March 8, 2010 Vehicle Occupancy Rates to someone by E-mail Share Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Facebook Tweet about Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Twitter Bookmark Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Google Bookmark Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Delicious Rank Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Digg Find More places to share Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on AddThis.com... Fact #613: March 8, 2010 Vehicle Occupancy Rates The average number of persons occupying a car is 1.59 and has not changed

305

Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual  

NLE Websites -- All DOE Office Websites (Extended Search)

FY 2008 DOE Vehicle FY 2008 DOE Vehicle Technologies Office Annual Merit Review to someone by E-mail Share Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Facebook Tweet about Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Twitter Bookmark Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Google Bookmark Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Delicious Rank Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Digg Find More places to share Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on AddThis.com... Publications

306

Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

8: February 16, 8: February 16, 2009 Transit Vehicle Age and Cost to someone by E-mail Share Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on Facebook Tweet about Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on Twitter Bookmark Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on Google Bookmark Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on Delicious Rank Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on Digg Find More places to share Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on AddThis.com... Fact #558: February 16, 2009 Transit Vehicle Age and Cost

307

Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

3: January 22, 3: January 22, 2007 Household Vehicle Ownership to someone by E-mail Share Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Facebook Tweet about Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Twitter Bookmark Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Google Bookmark Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Delicious Rank Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Digg Find More places to share Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on AddThis.com... Fact #453: January 22, 2007 Household Vehicle Ownership

308

Vehicle Technologies Office: Key Activities in Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Activities in Vehicles Activities in Vehicles We conduct work in four key areas to develop and deploy vehicle technologies that reduce the use of petroleum while maintaining or improving performance, power, and comfort. Research and development (R&D); testing and analysis; government and community stakeholder support; and education help people access and use efficient, clean vehicles that meet their transportation needs. Researcher loads a sample mount of battery cathode materials for X-ray diffraction, an analysis tool for obtaining information on the crystallographic structure and composition of materials. Research and Development of New Technologies Develop durable and affordable advanced batteries as well as other forms of energy storage. Improve the efficiency of combustion engines.

309

Vehicle Technologies Office: Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

October 1-2, 2013 2013 Natural Gas Vehicle Conference & Expo November 18-21, 2013 World LNG Fuels Conference & Expo January 21-23, 2014 More Events Contacts | Web Site Policies |...

310

Advanced Vehicle Testing Activity - Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Vehicles What's New 2012 Hyundai Sonata (4932) Battery Report (PDF 574KB) 2010 Ultra-Battery Honda Civic Battery Report (PDF 614KB) 2013 Chevrolet Malibu Baseline...

311

VEHICLE TECHNOLOGIES PROGRAM Electric Vehicle Preparedness  

NLE Websites -- All DOE Office Websites (Extended Search)

state or reflect those of the U.S. Government or any agency thereof. INLEXT-13-29359 Electric Vehicle Preparedness Task 1: Assessment of Data and Survey Results for Joint Base...

312

VEHICLE TECHNOLOGIES PROGRAM Electric Vehicle Preparedness  

NLE Websites -- All DOE Office Websites (Extended Search)

state or reflect those of the U.S. Government or any agency thereof. INLEXT-13-29360 Electric Vehicle Preparedness Task 1: Assessment of Data and Survey Results for NAS...

313

THE NUCLEAR ROCKET: NEW POWERPLANT FOR SPACE VEHICLE PROPULSION  

SciTech Connect

A fundamental and practical survey is made of nuclear rocket application to space vehicle propulsion. The engine is described and propellant and radiation effects are discussed. Project Rover is summarized and performance requirements for a space vehicle are discussed. It is concluded that nuclear rockets can provide substantial performance, reliability, and economic advantages for difficult space missions. (T.R.H.)

Schmidt, H.R.; Decker, R.S.

1960-03-01T23:59:59.000Z

314

CX-002704: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-002704: Categorical Exclusion Determination Fast Charging Electric Vehicle Demonstration Project in Charlottesville, Virginia CX(s) Applied: B3.6,...

315

CX-004298: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-004298: Categorical Exclusion Determination Interstate Electric Vehicle Infrastructure Project CX(s) Applied: A9, B5.1 Date: 10202010...

316

CX-000956: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determination CX-000956: Categorical Exclusion Determination Connecticut Clean Cities Future Fuels Project (New Vehicles) CX(s) Applied: A7, A11 Date: 03012010...

317

Search for Model Year 2001 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

(Propane) Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

318

Search for Model Year 2004 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles Bifuel (Propane) Compressed Natural Gas Vehicles Diesel Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

319

Search for Model Year 2008 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Class... Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

320

Search for Model Year 2003 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

(Propane) Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

Note: This page contains sample records for the topic "vehicle project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Search for Model Year 2002 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

(Propane) Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

322

The design of an automotive cockpit module for European urban electric vehicles for 2015.:.  

E-Print Network (OSTI)

??This graduation project focuses on identifying how the development of new electric vehicle (EV) archetypes could affect automotive engineering and design. Changes will occur throughout (more)

Buskermolen, S.P.S.

2010-01-01T23:59:59.000Z

323

A new hybrid computational intelligence algorithm for optimized vehicle routing applications in geographic information systems.  

E-Print Network (OSTI)

??This project explores the application of two developing algorithmic paradigms from the field of computational intelligence towards optimized vehicle routing applications within geographic information systems (more)

Rice, Michael Norris

2005-01-01T23:59:59.000Z

324

Testing of TEC-Based TMS for Patrol EV and Bus Fleet Vehicles  

Science Conference Proceedings (OSTI)

This project was a continuation of a study to help improve the driving range and reliability of electric vehicles (EVs) and to encourage their commercial growth

1999-12-14T23:59:59.000Z

325

The Future of Electric Vehicles and Arizona State University...  

NLE Websites -- All DOE Office Websites (Extended Search)

Metal Air Ionic Liquid (MAIL) Battery - an ARPA-E funded project out of Arizona State. Electric Vehicles (or EVs) are very different than cars as we know them. Rather than...

326

Electric Vehicle Manufacturing in Southern California: Current Developments, Future Prospects  

E-Print Network (OSTI)

developeda two-passenger hybrid car whichoperates on leadto producea hybrid gasoline- electric car (the LA301), withAngeles the 301, a hybrid electric vehicle car project that

Scott, Allen J.

1993-01-01T23:59:59.000Z

327

Energy Department Awards Will Promote Electric Vehicles in 24...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for plug-in electric vehicles, these projects will help reduce our nation's dependence on oil imports, create jobs, and help America capture the growing global market for advanced...

328

Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

9: May 10, 2004 9: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison to someone by E-mail Share Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on Facebook Tweet about Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on Twitter Bookmark Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on Google Bookmark Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on Delicious Rank Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on Digg Find More places to share Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on

329

Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

300: December 29, 300: December 29, 2003 World Vehicle Production by Country/Region to someone by E-mail Share Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on Facebook Tweet about Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on Twitter Bookmark Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on Google Bookmark Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on Delicious Rank Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on Digg Find More places to share Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on

330

Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Progress Report 3 Progress Report for Heavy Vehicle Propulsion Materials Program to someone by E-mail Share Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Facebook Tweet about Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Twitter Bookmark Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Google Bookmark Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Delicious Rank Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Digg Find More places to share Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on

331

Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

5: January 11, 5: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 to someone by E-mail Share Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Facebook Tweet about Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Twitter Bookmark Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Google Bookmark Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Delicious Rank Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Digg Find More places to share Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on AddThis.com...

332

Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

39: October 6, 39: October 6, 2008 Light Vehicle Production by State to someone by E-mail Share Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Facebook Tweet about Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Twitter Bookmark Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Google Bookmark Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Delicious Rank Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Digg Find More places to share Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on AddThis.com... Fact #539: October 6, 2008

333

Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

1: January 23, 1: January 23, 2012 Top Vehicles around the Globe, 2011 to someone by E-mail Share Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on Facebook Tweet about Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on Twitter Bookmark Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on Google Bookmark Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on Delicious Rank Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on Digg Find More places to share Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on AddThis.com...

334

Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Progress Report 4 Progress Report for Heavy Vehicle Propulsion Materials Program to someone by E-mail Share Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Facebook Tweet about Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Twitter Bookmark Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Google Bookmark Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Delicious Rank Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Digg Find More places to share Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on

335

Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

8: November 23, 8: November 23, 2009 Hybrid Vehicle Sales by Model to someone by E-mail Share Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Facebook Tweet about Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Twitter Bookmark Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Google Bookmark Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Delicious Rank Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Digg Find More places to share Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on AddThis.com... Fact #598: November 23, 2009

336

Vehicle Technologies Office: Lubricants  

NLE Websites -- All DOE Office Websites (Extended Search)

Lubricants Lubricants As most vehicles are on the road for more than 15 years before they are retired, investigating technologies that will improve today's vehicles is essential. Because 11.5 percent of fuel energy is consumed by engine friction, decreasing this friction through lubricants can lead to substantial improvements in the fuel economy of current vehicles, without needing to wait for the fleet to turn over. In fact, a 1 percent fuel savings in the existing vehicle fleet possible through lubricants could save 97 thousand barrels of oil a day or $3.5 billion a year. Because of these benefits, the Vehicle Technologies Office supports research on lubricants that can improve the efficiency of internal combustion engine vehicles, complementing our work on advanced combustion engine technology.

337

Vehicle Technologies Office: Favorites  

NLE Websites -- All DOE Office Websites (Extended Search)

Favorites Favorites #248 Top Ten Net Petroleum Importing Countries, 2000 December 23, 2002 #246 U.S. Oil Imports - Top 10 Countries of Origin December 9, 2002 #244 Sport Utility Vehicle Spotlight November 25, 2002 #243 Fuel Economy Leaders for 2003 Model Year Light Trucks November 18, 2002 #242 Fuel Economy Leaders for 2003 Model Year Cars November 11, 2002 #238 Automobile and Truck Population by Vehicle Age, 2001 October 14, 2002 #234 2003 Model Year Alternative Fuel Vehicles September 16, 2002 #233 Vehicles per Thousand People: U.S. Compared to Other Countries September 9, 2002 #230 Hybrid Electric Vehicles in the United States August 19, 2002 #229 Medium and Heavy Truck Sales August 12, 2002 #228 New Light Vehicle Sales Shares, 1976-2001 August 5, 2002

338

CMVRTC: Overweight Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

overweight vehicle data collection overweight vehicle data collection scale The Federal Motor Carrier Safety Administration requested information regarding overweight and oversized vehicle traffic entering inspection stations (ISs) in order to develop strategies for future research efforts and possibly help guide regulatory issues involving overweight commercial motor vehicles (CMVs). For a period of one month, inspection stations in Knox County and Greene County, Tennessee, recorded overweight and oversized vehicles that entered these ISs. During this period, 435 CMVs were recorded using an electronic form filled out by enforcement personnel at the IS. Of the 435 CMVs recorded, 381 had weight information documented with them. The majority (52.2%) of the vehicles recorded were five-axle combination

339

Advanced Technology Vehicle Testing  

DOE Green Energy (OSTI)

The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

James Francfort

2004-06-01T23:59:59.000Z

340

Prospects for electric vehicles  

Science Conference Proceedings (OSTI)

This paper discusses the current state-of- the-art of electric vehicles (EVs) with examples of recently developed prototype vehicles - Electric G-Van, Chrysler TEVan, Eaton DSEP and Ford/GE ETX-II. The acceleration, top speed and range of these electric vehicles are delineated to demonstrate their performance capabilities, which are comparable with conventional internal combustion engine (ICE) vehicles. The prospects for the commercialization of the Electric G-van and the TEVan and the improvements expected from the AC drive systems of the DSEP and ETX-II vehicles are discussed. The impacts of progress being made in the development of a fuel cell/battery hybrid bus and advanced EVs on the competitiveness of EVs with ICE vehicles and their potential for reduction of air pollution and utility load management are postulated.

Patil, P.G. (Research and Development, Electric and Hybrid Propulsion Div., U.S. Dept. of Energy, Washington, DC (US))

1990-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Hybrid Vehicle Technology - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

* Batteries * Batteries * Modeling * Testing Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Hybrid Vehicle Technology revolutionize transportation Argonne's Research Argonne researchers are developing and testing various hybrid electric vehicles (HEVs) and their components to identify the technologies, configurations, and engine control strategies that provide the best combination of high fuel economy and low emissions. Vehicle Validation Argonne also serves as the lead laboratory for hardware-in-the-loop (HIL) and technology validation for the U.S. Department of Energy (DOE). HIL is a

342

Vehicle Technologies Office: Ultracapacitors  

NLE Websites -- All DOE Office Websites (Extended Search)

converter, which would increase the cost of the vehicle. The use of ultracapacitors for regenerative braking can greatly improve fuel efficiency under stop-and-go urban driving...

343

VEHICLE TECHNOLOGIES PROGRAM - Energy  

75 vehicle technologies program ed wall, program manager ed.wall@ee.doe.gov (202) 586-8055 venture capital technology showcase aug 21 and 22, 2007

344

Electric Vehicle Public Charging -  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Public Charging - Time vs. Energy March, 2013 A critical factor for successful PEV adoption is the deployment and use of charging infrastructure in non-...

345

Electric Vehicle Fleet  

NLE Websites -- All DOE Office Websites (Extended Search)

A98 0577 Electric Vehicle Fleet Operations in the United States Jim Francfort Presented to: 31st International Symposium on Automotive Technology and Automation Dusseldorf, Germany...

346

MOTOR VEHICLE MANUFACTURING TECHNOLOGY  

Science Conference Proceedings (OSTI)

... about half of the value added in light vehicles ... Selected Program White Papers. ... This white paper defines a program which supports the development ...

2011-10-19T23:59:59.000Z

347

Mobile Autonomous Vehicle Obstacle Detection and ...  

Science Conference Proceedings (OSTI)

... vehicles from different manufacturers and to ... for Automated Guided Vehicle Safety Standards ... Control of Manufacturing Vehicles Research Towards ...

2013-01-11T23:59:59.000Z

348

Advanced Technology Vehicles Manufacturing Incentive Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program A fact sheet detailling the advanced technology vehicles...

349

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

. . Trends in Household Vehicle Stock The 1991 RTECS counted more than 150 million vehicles in use by U.S. households. This chapter examines recent trends in the vehicle stock, as measured by the RTECS and other reputable vehicle surveys. It also provides some details on the type and model year of the household vehicle stock, and identifies regional differences in vehicle stock. Because vehicles are continuously being bought and sold, this chapter also reports findings relating to turnover of the vehicle stock in 1991. Finally, it examines the average vehicle stock in 1991 (which takes into account the acquisition and disposal of household vehicles over the course of the year) and identifies variations in the average number of household vehicles based on differences in household characteristics. Number of Household Vehicles Over the past 8 years, the stock of household vehicles has

350

Penn State Hybrid and Hydrogen Vehicle Research Laboratory The Larson Transportation Institute (LTI)  

E-Print Network (OSTI)

and hybrid electric vehicle test platforms. Relevant HHVRL project history includes: · Combined BatteryPenn State Hybrid and Hydrogen Vehicle Research Laboratory The Larson Transportation Institute (LTI) The Hybrid and Hydrogen Vehicle Research Laboratory (HHVRL) at the Larson Transportation Institute (LTI

Lee, Dongwon

351

American Electric Vehicles Inc | Open Energy Information  

Open Energy Info (EERE)

Vehicles Inc Jump to: navigation, search Name American Electric Vehicles Inc Place Palmer Lake, Colorado Zip 80133 Sector Vehicles Product American Electric Vehicles (AEV) builds...

352

Electric-Drive Vehicle Basics (Brochure)  

DOE Green Energy (OSTI)

Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

Not Available

2011-04-01T23:59:59.000Z

353

Household Vehicles Energy Consumption 1994 - PDF Tables  

U.S. Energy Information Administration (EIA)

Table 1 U.S. Number of Vehicles, Vehicle Miles, Motor Fuel Consumption and Expenditures, 1994 Table 2 U.S. per Household Vehicle Miles Traveled, Vehicle Fuel ...

354

Vehicle Technologies Program Awards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Technologies Program Awards Vehicle Technologies Program Awards vtpnum.zip More Documents & Publications Advanced Vehicle Technologies Awards Table Advanced Vehicle...

355

Vehicle Technologies Program (EERE) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Technologies Program (EERE) Vehicle Technologies Program (EERE) information about the Vehicle Technologies Program (EERE) Vehicle Technologies Program (EERE) More Documents...

356

Next Steps for the FCEV Learning Demonstration Project (Presentation)  

DOE Green Energy (OSTI)

This presentation summarizes project goals; vehicle and H2 station deployment status, critical performance compared to targets; highlights of latest vehicle and infrastructure analysis results and progress; learning demo next steps; highlights of partner activities and summary.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C.; Saur, G.

2011-02-01T23:59:59.000Z

357

Natural gas vehicles : Status, barriers, and opportunities.  

Science Conference Proceedings (OSTI)

In the United States, recent shale gas discoveries have generated renewed interest in using natural gas as a vehicular fuel, primarily in fleet applications, while outside the United States, natural gas vehicle use has expanded significantly in the past decade. In this report for the U.S. Department of Energy's Clean Cities Program - a public-private partnership that advances the energy, economic, and environmental security of the U.S. by supporting local decisions that reduce petroleum use in the transportation sector - we have examined the state of natural gas vehicle technology, current market status, energy and environmental benefits, implications regarding advancements in European natural gas vehicle technologies, research and development efforts, and current market barriers and opportunities for greater market penetration. The authors contend that commercial intracity trucks are a prime area for advancement of this fuel. Therefore, we examined an aggressive future market penetration of natural gas heavy-duty vehicles that could be seen as a long-term goal. Under this scenario using Energy Information Administration projections and GREET life-cycle modeling of U.S. on-road heavy-duty use, natural gas vehicles would reduce petroleum consumption by approximately 1.2 million barrels of oil per day, while another 400,000 barrels of oil per day reduction could be achieved with significant use of natural gas off-road vehicles. This scenario would reduce daily oil consumption in the United States by about 8%.

Rood Werpy, M.; Santini, D.; Burnham, A.; Mintz, M.; Energy Systems

2010-11-29T23:59:59.000Z

358

Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per  

NLE Websites -- All DOE Office Websites (Extended Search)

8: April 12, 8: April 12, 2010 Vehicles per Household and Other Demographic Statistics to someone by E-mail Share Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Facebook Tweet about Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Twitter Bookmark Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Google Bookmark Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Delicious Rank Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Digg Find More places to share Vehicle Technologies Office: Fact #618:

359

Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

4: January 26, 4: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions to someone by E-mail Share Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Facebook Tweet about Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Twitter Bookmark Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Google Bookmark Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Delicious Rank Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Digg Find More places to share Vehicle Technologies Office: Fact #304:

360

Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

6: December 2, 6: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 to someone by E-mail Share Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Facebook Tweet about Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Twitter Bookmark Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Google Bookmark Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Delicious Rank Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Digg Find More places to share Vehicle Technologies Office: Fact #806:

Note: This page contains sample records for the topic "vehicle project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Advanced Vehicle Testing Activity: Full-Size Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Full-Size Electric Vehicle Fleet and Reliability Test Reports to someone by E-mail Share Advanced Vehicle Testing Activity: Full-Size Electric Vehicle Fleet and Reliability Test...

362

Vehicle Technologies Office: Plug-in Electric Vehicle Research...  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-in Electric Vehicle Research and Development to someone by E-mail Share Vehicle Technologies Office: Plug-in Electric Vehicle Research and Development on Facebook Tweet about...

363

Vehicle Technologies Office: Draft Plug-In Hybrid Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Draft Plug-In Hybrid Electric Vehicle R&D Plan to someone by E-mail Share Vehicle Technologies Office: Draft Plug-In Hybrid Electric Vehicle R&D Plan on Facebook Tweet about...

364

Vehicle Technologies Office: Fact #322: May 31, 2004 Hybrid Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

2: May 31, 2004 Hybrid Vehicle Registrations to someone by E-mail Share Vehicle Technologies Office: Fact 322: May 31, 2004 Hybrid Vehicle Registrations on Facebook Tweet about...

365

Vehicle Technologies Office: Fact #475: June 25, 2007 Light Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

5: June 25, 2007 Light Vehicle Weight on the Rise to someone by E-mail Share Vehicle Technologies Office: Fact 475: June 25, 2007 Light Vehicle Weight on the Rise on Facebook...

366

VEHICLE AND BATTERY DESCRIPTIONS AND SPECIFICATIONS Vehicle Details  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 VEHICLE AND BATTERY DESCRIPTIONS AND SPECIFICATIONS Vehicle Details Base Vehicle: 2011 Honda CR-Z VIN: JHMZF1C67BS004466 Electric Machine 1 : 10 kW (peak), permanent magnet...

367

VEHICLE AND BATTERY DESCRIPTIONS AND SPECIFICATIONS Vehicle Details  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 VEHICLE AND BATTERY DESCRIPTIONS AND SPECIFICATIONS Vehicle Details Base Vehicle: 2011 Honda CR-Z VIN: JHMZF1C64BS002982 Electric Machine 1 : 10 kW (peak), permanent magnet...

368

Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles  

E-Print Network (OSTI)

Image in Gasoline-Hybrid Electric Vehicles Reid R. HeffnerImage in Gasoline-Hybrid Electric Vehicles Reid R. Heffner,6, 2005 Abstract Hybrid electric vehicles (HEVs) have image,

Heffner, Reid R.; Kurani, Ken; Turrentine, Tom

2005-01-01T23:59:59.000Z

369

Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles  

E-Print Network (OSTI)

6, 2005 Abstract Hybrid electric vehicles (HEVs) have image,Image in Gasoline-Hybrid Electric Vehicles Reid R. HeffnerImage in Gasoline-Hybrid Electric Vehicles Reid R. Heffner,

Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

2005-01-01T23:59:59.000Z

370

EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery and Component Manufacturing Initiative EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery and Component Manufacturing Initiative Summary This EA evaluates the environmental impacts of a proposal to provide a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (ARRA) to Delphi Automotive Systems, Limited Liability Corporation (LLC) (Delphi). Delphi proposes to construct a laboratory referred to as the "Delphi Kokomo, IN Corporate Technology Center" (Delphi CTC Project) and retrofit a manufacturing facility. The project would advance DOE's Vehicle Technology Program through manufacturing and testing of electric-drive vehicle components as well as assist in the

371

Awards To Advanced Vehicle Development | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awards To Advanced Vehicle Development Awards To Advanced Vehicle Development Awards To Advanced Vehicle Development September 8, 2011 - 11:30am Addthis Awards To Advanced Vehicle Development Projects to support community planning for plug-in electric vehicles and charging infrastructure will receive $8.5 million through DOE's Clean Cities initiative to facilitate local public-private partnerships that will develop EV deployment strategies. The funding recipients range from communities with extensive EV planning experience to those that are eager to begin, but have not previously had the resources to do so. These one-year projects will help communities address their specific needs, which include updating permitting processes, revising codes, training municipal personnel, promoting public awareness, or developing incentives, and each

372

Awards To Advanced Vehicle Development | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awards To Advanced Vehicle Development Awards To Advanced Vehicle Development Awards To Advanced Vehicle Development September 8, 2011 - 11:30am Addthis Awards To Advanced Vehicle Development Projects to support community planning for plug-in electric vehicles and charging infrastructure will receive $8.5 million through DOE's Clean Cities initiative to facilitate local public-private partnerships that will develop EV deployment strategies. The funding recipients range from communities with extensive EV planning experience to those that are eager to begin, but have not previously had the resources to do so. These one-year projects will help communities address their specific needs, which include updating permitting processes, revising codes, training municipal personnel, promoting public awareness, or developing incentives, and each

373

Department of Energy Offers Vehicle Production Group Nearly $50 Million  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Production Group Nearly $50 Vehicle Production Group Nearly $50 Million Conditional Loan Commitment Department of Energy Offers Vehicle Production Group Nearly $50 Million Conditional Loan Commitment November 22, 2010 - 12:00am Addthis Washington, D.C. - U.S. Energy Secretary Steven Chu announced today an offer of a nearly $50 million conditional loan commitment to The Vehicle Production Group LLC (VPG). The conditional loan commitment will support the development of the six-passenger MV-1, a factory-built wheelchair accessible vehicle that will run on compressed natural gas. The vehicle will be produced at the Mishawaka, Indiana AM General Plant. "This project represents an investment in innovation that will create new jobs, promote the use of alternative fuels, and help our nation maintain

374

Orlando Plugs into Electric Vehicle Charging Stations | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Orlando Plugs into Electric Vehicle Charging Stations Orlando Plugs into Electric Vehicle Charging Stations Orlando Plugs into Electric Vehicle Charging Stations September 8, 2010 - 2:00pm Addthis Nearly 300 electric vehicle charging stations are scheduled to be available throughout the Orlando area next year. File photo Nearly 300 electric vehicle charging stations are scheduled to be available throughout the Orlando area next year. File photo Lindsay Gsell What are the key facts? Coulomb highlighted in the Vice President's report on 100 Recovery Act Projects That Are Changing America Orlando will receive nearly 300 electric vehicle charging systems. 1 of 9 cities receiving charging systems from Coulomb-$15 million in Recovery Act funding. This scene is closer to reality as Orlando, Fla., prepares to get nearly

375

Natural Gas Vehicle Cost Calculator | Open Energy Information  

Open Energy Info (EERE)

Natural Gas Vehicle Cost Calculator Natural Gas Vehicle Cost Calculator Jump to: navigation, search Tool Summary Name: Natural Gas Vehicle Cost Calculator Agency/Company /Organization: United States Department of Energy Phase: "Evaluate Options and Determine Feasibility" is not in the list of possible values (Bring the Right People Together, Create a Vision, Determine Baseline, Evaluate Options, Develop Goals, Prepare a Plan, Get Feedback, Develop Finance and Implement Projects, Create Early Successes, Evaluate Effectiveness and Revise as Needed) for this property. User Interface: Website Website: www.afdc.energy.gov/afdc/vehicles/natural_gas_calculator.html Determine the costs to acquire and use a Natural Gas Vehicle (Honda Civic GX) as compared to a conventional vehicle.

376

Vehicle Education Efforts Fuel Our Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Education Efforts Fuel Our Future Vehicle Education Efforts Fuel Our Future Vehicle Education Efforts Fuel Our Future May 4, 2012 - 3:42pm Addthis In addition to hosting the vehicles education exhibit at the White House, Energy Department employees participated in many activities as part of Take Our Daughters and Sons to Work Day - like the fitness presentation shown above. | Energy Department file photo. In addition to hosting the vehicles education exhibit at the White House, Energy Department employees participated in many activities as part of Take Our Daughters and Sons to Work Day - like the fitness presentation shown above. | Energy Department file photo. Connie Bezanson Education & Outreach Manager, Vehicle Technologies Program What does this project do? Helping students gain hands-on experience with science and

377

NREL: Vehicles and Fuels Research - News Release Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 December 13, 2011 NREL Adds Electric Vehicle to its Advanced Vehicle Fleet NREL will use the new electric vehicle for studies related to charge management and performance, bi-directional charging, and electric vehicle grid integration. December 12, 2011 Energy Department Awards More Than $7 Million for Innovative Hydrogen Storage Technologies in Fuel Cell Electric Vehicles These projects will help lower the costs and increase the performance of hydrogen storage systems by developing innovative materials and advanced tanks for efficient and safe transportation. December 7, 2011 NREL Releases Report on Testing Electric Vehicles to Optimize their Performance with Power Grids Researchers at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) have released a technical report that could help improve

378

Demonstrating Electric Vehicles in Canada | Open Energy Information  

Open Energy Info (EERE)

Demonstrating Electric Vehicles in Canada Demonstrating Electric Vehicles in Canada Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Demonstrating Electric Vehicles in Canada Agency/Company /Organization: Natural Resources Canada Focus Area: Vehicles Topics: Best Practices Website: www.emc-mec.ca/RelatedReports/DemonstratingElectricVehiclesInCanada-Pr The purpose of this demonstration study is to define the desirable characteristics of Canadian projects that demonstrate plug-in vehicles, and to determine the appropriate mechanism to collect and disseminate the monitoring data. How to Use This Tool This tool is most helpful when using these strategies: Improve - Enhance infrastructure & policies Learn more about the avoid, shift, improve framework for limiting air pollutants and greenhouse gas emissions.

379

Vehicle Education Efforts Fuel Our Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Education Efforts Fuel Our Future Vehicle Education Efforts Fuel Our Future Vehicle Education Efforts Fuel Our Future May 4, 2012 - 3:42pm Addthis In addition to hosting the vehicles education exhibit at the White House, Energy Department employees participated in many activities as part of Take Our Daughters and Sons to Work Day - like the fitness presentation shown above. | Energy Department file photo. In addition to hosting the vehicles education exhibit at the White House, Energy Department employees participated in many activities as part of Take Our Daughters and Sons to Work Day - like the fitness presentation shown above. | Energy Department file photo. Connie Bezanson Education & Outreach Manager, Vehicle Technologies Program What does this project do? Helping students gain hands-on experience with science and

380

DOE Issues Guidance on Electric Vehicle Recharging Stations | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Issues Guidance on Electric Vehicle Recharging Stations DOE Issues Guidance on Electric Vehicle Recharging Stations DOE Issues Guidance on Electric Vehicle Recharging Stations September 6, 2011 - 4:28pm Addthis The U.S. Department of Energy recently issued guidance to its national laboratory management and operating (M&O) contractors on the installation and operation of electric vehicle recharging stations at lab facilities. The guidance explains that lab contractors wishing to install electric vehicle recharging stations or make such stations available to employees and visitors have several options. Lab contractors may install such stations and seek reimbursement from the Department for their use to the extent such installation or use is reasonably required to meet fleet vehicle or demonstration project needs.

Note: This page contains sample records for the topic "vehicle project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Project information  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Information Amistad Project (Texas) Collbran Project (Colorado) Colorado River Storage Project Dolores Project (Colorado) Falcon Project (Texas) Provo River Project (Utah)...

382

DOE Hydrogen Analysis Repository: Advanced Vehicle Cost and Energy-use  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Vehicle Cost and Energy-use Model (AVCEM) Advanced Vehicle Cost and Energy-use Model (AVCEM) Project Summary Full Title: Advanced Vehicle Cost and Energy-use Model (AVCEM) Project ID: 123 Principal Investigator: Mark Delucchi Brief Description: AVCEM is an electric and gasoline vehicle energy-use and lifetime-cost model. AVCEM designs a motor vehicle to meet range and performance requirements specified by the modeler, and then calculates the initial retail cost and total private and social lifetime cost of the designed vehicle. Purpose AVCEM designs a motor vehicle to meet range and performance requirements specified by the modeler, and then calculates the initial retail cost and total private and social lifetime cost of the designed vehicle. It can be used to investigate the relationship between the lifetime cost -- the total

383

Kansas State University electric vehicle site operator program  

DOE Green Energy (OSTI)

K-State is presently working with Grumman Allied and Unique Mobility to establish a working agreement for the research and development of a pure electric postal vehicle. K-State has worked on the design of this vehicle for the past year and is working to establish the appropriate consortium to bring this vehicle to commercial realization. K-State is working to establish infrastructure support for electric vehicles. Presently, a Kansas company is working with K-State to bring its patented low-cost vehicle metering product to market. An anticipated second year DOE project would provide 100 electric metering stations to Southern California for a large scale electric vehicle infrastructure demonstration project. This project would allow a parking lot(s) to be made EV ready. K-State's Site Operator Program continues to get the word-out'' about electric vehicles. From a personal visit by Senator Bob Dole, to Corporate Board of Director Meetings, to school classrooms, to shopping mall demonstrations; K-State Employees are increasing public access and awareness about the electric vehicle industry. As has been shown in this report, K-State's G-Van has logged an average eighteen miles per day while maintaining a full schedule of public relations tours within the state of Kansas and Missouri. K-State has now been contacted by companies in Nebraska and Iowa requesting information and involvement in this program. Kansas and Kansas State will continue its work to contribute to the Site Operator Program effort. With the purchase of two additional electric vehicles and the pending request to purchase two more electric vehicles during the next contractual year, K-states's program will grow. When vehicle development plans and infrastructure requirements are solidified, K-State's program will be ready to participate and be a major contributor to the development and introduction of this technology.

Hague, J.R.; Steinert, R.A.; Nissen-Pfrang, T.

1991-01-01T23:59:59.000Z

384

Kansas State University electric vehicle site operator program  

SciTech Connect

K-State is presently working with Grumman Allied and Unique Mobility to establish a working agreement for the research and development of a pure electric postal vehicle. K-State has worked on the design of this vehicle for the past year and is working to establish the appropriate consortium to bring this vehicle to commercial realization. K-State is working to establish infrastructure support for electric vehicles. Presently, a Kansas company is working with K-State to bring its patented low-cost vehicle metering product to market. An anticipated second year DOE project would provide 100 electric metering stations to Southern California for a large scale electric vehicle infrastructure demonstration project. This project would allow a parking lot(s) to be made EV ready. K-State's Site Operator Program continues to get the word-out'' about electric vehicles. From a personal visit by Senator Bob Dole, to Corporate Board of Director Meetings, to school classrooms, to shopping mall demonstrations; K-State Employees are increasing public access and awareness about the electric vehicle industry. As has been shown in this report, K-State's G-Van has logged an average eighteen miles per day while maintaining a full schedule of public relations tours within the state of Kansas and Missouri. K-State has now been contacted by companies in Nebraska and Iowa requesting information and involvement in this program. Kansas and Kansas State will continue its work to contribute to the Site Operator Program effort. With the purchase of two additional electric vehicles and the pending request to purchase two more electric vehicles during the next contractual year, K-states's program will grow. When vehicle development plans and infrastructure requirements are solidified, K-State's program will be ready to participate and be a major contributor to the development and introduction of this technology.

Hague, J.R.; Steinert, R.A.; Nissen-Pfrang, T.

1991-01-01T23:59:59.000Z

385

Powertrain & Vehicle Research Centre  

E-Print Network (OSTI)

the engine, transmission and aftertreatment systems. Optimising such a system for ultra low fuel consumption emulating hardware in the test cell environment Engine testing becomes a combination of real world and virtual environments Vehicle baseline testing on rolling road Calibration Control Engine Vehicle

Burton, Geoffrey R.

386

Hybrid Electric Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Hybrid electric vehicles (HEVs) combine the benefits of high fuel economy and low emissions with the power, range, and convenience of conventional diesel and gasoline fueling. HEV technologies also have potential to be combined with alternative fuels and fuel cells to provide additional benefits. Future offerings might also include plug-in hybrid electric vehicles.

387

Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Procedures to someone by E-mail Share Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle Specifications and Test Procedures on Facebook Tweet about Advanced...

388

Advanced Vehicle Testing Activity - Hybrid Electric Vehicle and...  

NLE Websites -- All DOE Office Websites (Extended Search)

max speed, braking, & handling DOE - Advanced Vehicle Testing Activity Hybrid Electric Vehicle Testing * Fleet and accelerated reliability testing - 6 Honda Insights...

389

Advanced Vehicle Testing Activity - Full Size Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Full Size Electric Vehicles What's New Baseline Performance Testing for 2011 Nissan Leaf Battery Testing for 2011 Nissan Leaf - When New The Advanced Vehicle Testing Activity...

390

Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles  

E-Print Network (OSTI)

are substantially higher, particularly for the Toyota Prius.In 2004, Toyota updated the Prius, introducing a larger,vehicles, including the Toyota Prius. Vehicle 2004 Sales (11

Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

2005-01-01T23:59:59.000Z

391

NREL: Vehicles and Fuels Research - 2013 Vehicle Buyer's Guide...  

NLE Websites -- All DOE Office Websites (Extended Search)

options, including hybrids, flex-fuel vehicles, and vehicles that run on natural gas, propane, electricity, or biodiesel. In addition to a comprehensive list of this year's...

392

Categorical Exclusion Determinations: Advanced Research Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 21, 2011 November 21, 2011 CX-007697: Categorical Exclusion Determination Autogrid, Inc. - Highly Dispatchable and Distributed Demand Response for the Integration of Distributed Generation CX(s) Applied: A9, B1.7 Date: 11/21/2011 Location(s): New York, California Offices(s): Advanced Research Projects Agency-Energy November 18, 2011 CX-007689: Categorical Exclusion Determination Georgia Tech Research Corporation- Prosumer-Based Distributed Autonomous Cyber-Physical Architecture for Ultra-Reliable Green Electricity Internetworks CX(s) Applied: A9 Date: 11/18/2011 Location(s): Georgia Offices(s): Advanced Research Projects Agency-Energy November 18, 2011 CX-007684: Categorical Exclusion Determination Texas Engineering Experiment Station - Robust Adaptive Topology Control

393

Vehicle Technologies Office: Battery Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Systems A hybrid vehicle uses two or more forms of energy to propel the vehicle. Many hybrid electric vehicles (HEV) sold today are referred to as "hybrids" because it...

394

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 of 6 VEHICLE DETAILS AND BATTERY SPECIFICATIONS 1 Vehicle Details Base Vehicle: 2013 Chevrolet Volt VIN: 1G1RA6E40DU103929 Propulsion System: Multi-Mode PHEV (EV, Series,...

395

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 VEHICLE DETAILS AND BATTERY SPECIFICATIONS 1 Vehicle Details Base Vehicle: 2011 Chevrolet Volt VIN: 1G1RD6E48BU100815 Propulsion System: Multi-Mode PHEV (EV, Series, and...

396

Propane Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicles Propane Vehicles August 20, 2013 - 9:16am Addthis There are more than 270,000 on-road propane vehicles in the United States and more than 10 million worldwide. Many are...

397

CMVRTC: Overweight Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

Heavy and overweight vehicle brake testing for combination five-axle Heavy and overweight vehicle brake testing for combination five-axle tractor-flatbed scale The Federal Motor Carrier Safety Administration, in coordination with the Federal Highway Administration, sponsored the Heavy and Overweight Vehicle Brake Testing (HOVBT) program in order to provide information about the effect of gross vehicle weight (GVW) on braking performance. Because the Federal Motor Carrier Safety Regulations limit the number of braking system defects that may exist for a vehicle to be allowed to operate on the roadways, the examination of the effect of brake defects on brake performance for increased loads is also relevant. The HOVBT program seeks to provide relevant information to policy makers responsible for establishing load limits, beginning with providing test data for a

398

Which Vehicles Are Tested  

NLE Websites -- All DOE Office Websites (Extended Search)

Which Vehicles Are Tested Which Vehicles Are Tested Popular Vehicles Exempt from Federal Fuel Economy Standards Prior to 2011 Pickups SUVs Vans Manufacturer Model Chevrolet Avalanche 2500 Series ¾ Ton Silverado 2500/3500 Series Dodge RAM 2500/3500 Series Ford F-250/350 Series GMC Sierra 2500/3500 Series Manufacturer Model Chevrolet Suburban ¾ Ton* Ford Excursion§ GMC Yukon XL ¾ Ton* Hummer H1§ and H2§ Manufacturer Model Chevrolet Express 2500 Passenger* Express 3500 Cargo Ford E Series Passenger (w/ 6.8L Triton or 6.0L Diesel Engine)* E Series Cargo (w/ 6.8L Triton or 6.0L Diesel Engine) GMC Savanna 2500/3500 Passenger* Savanna 3500 Cargo Note: These vehicles are given as examples. This is not a comprehensive list. * No longer exempt as of 2011 § No longer made Manufacturers do not test every new vehicle offered for sale. They are only

399

Vehicle body cover  

SciTech Connect

This patent describes a vehicle body covered with a vehicle body cover which comprises: a front cover part, a rear cover part, a pair of side cover parts, and a roof cover part: the front cover part having portions adapted to cover only a hood, an area around a windshield and tops of front fenders of a vehicle body. The portion covering the hood is separated from the portions covering the tops of the fenders by cuts in the front cover part, the front cover part having an un-cut portion corresponding to a position at which the hood is hinged to the car body. The front cover part has a cut-out at a position corresponding to the windshield of the vehicle body and the front cover part has at least one cut-out at a position corresponding to where a rear view mirror is attached to the vehicle body; and the rear cover part having portions adapted to cover an area around a rear window, a trunk lid and a rear end of the vehicle body, the portion covering the trunk lid separated from the rest of the rear cover part by cuts corresponding to three sides of the trunk lid and an un-cut portion corresponding to a position at which the trunk lid is hinged to the vehicle body. The rear cover part has a hole at position corresponding to a trunk lid lock, a cut-out portion at a position corresponding to the rear window of the vehicle body, a cut-out at a position corresponding to a license plate of the vehicle body and cut-outs at positions corresponding to rear taillights of the vehicle body.

Hirose, T.

1987-01-13T23:59:59.000Z

400

Vehicle Technologies Office: Plug-in Electric Vehicle Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics Basics Plug-in electric vehicles (PEVs), which include both plug-in hybrid electric vehicles and all-electric vehicles, use electricity as either their primary fuel or to improve efficiency. Commonly Used PEV Terms All-electric vehicle (AEV) - A vehicle with plug-in capability; driving energy comes entirely from its battery. Plug-in hybrid electric vehicle (PHEV) - A vehicle with plug-in capability; driving energy can come from either its battery or a liquid fuel like gasoline, diesel, or biofuels. Plug-in electric vehicle (PEV) - Any vehicle with plug-in capability. This includes AEVs and PHEVs. Hybrid electric vehicle (HEV) - A vehicle that has an electric drive system and battery but does not have plug-in capability; driving energy comes only from liquid fuel.

Note: This page contains sample records for the topic "vehicle project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

1: November 29, 1: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 to someone by E-mail Share Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 on Facebook Tweet about Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 on Twitter Bookmark Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 on Google Bookmark Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 on Delicious Rank Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 on Digg

402

Vehicle Technologies Office: Battery Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Systems to someone by E-mail Share Vehicle Technologies Office: Battery Systems on Facebook Tweet about Vehicle Technologies Office: Battery Systems on Twitter Bookmark...

403

Vehicle Technologies Office: Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage to someone by E-mail Share Vehicle Technologies Office: Energy Storage on Facebook Tweet about Vehicle Technologies Office: Energy Storage on Twitter Bookmark...

404

Motor Vehicle Parts Compliance Requirements  

Science Conference Proceedings (OSTI)

... The OVSC compliance testing program is a strong incentive for manufacturers of motor vehicles and items of motor vehicle equipment to ...

2012-09-24T23:59:59.000Z

405

Vehicle Technologies Office: Propulsion Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Manufacturers use propulsion (or powertrain) materials in the components that move vehicles of every size and shape. Conventional vehicles use these materials in...

406

Electric vehicles | Open Energy Information  

Open Energy Info (EERE)

Electric vehicles Jump to: navigation, search TODO: add content Electric vehicles first came into existence in the mid-19th century, when electricity was among the preferred...

407

Energy Basics: Hybrid Electric Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

a hybrid electric vehicle. Hybrid electric vehicles (HEVs) combine the benefits of high fuel economy and low emissions with the power, range, and convenience of conventional diesel...

408

Electric Vehicle Field Operations Program  

NLE Websites -- All DOE Office Websites (Extended Search)

vehicle performance information. The final product is a report describing energy use, miles driven, maintenance requirements, and overall vehicle performance. Fleet Testing....

409

EERE: Vehicle Technologies Office - Webmaster  

NLE Websites -- All DOE Office Websites (Extended Search)

Webmaster Site Map Printable Version Share this resource Send a link to EERE: Vehicle Technologies Office - Webmaster to someone by E-mail Share EERE: Vehicle Technologies Office -...

410

Technology Analysis - Heavy Vehicle Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

the GPRA benefits estimates for EERE's Vehicle Technologies Program's heavy vehicle technology research activities. Argonne researchers develop the benefits analysis using four...

411

Vehicle Technologies Office: National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratories to someone by E-mail Share Vehicle Technologies Office: National Laboratories on Facebook Tweet about Vehicle Technologies Office: National Laboratories on...

412

Vehicle Technologies Office: Workforce Development  

NLE Websites -- All DOE Office Websites (Extended Search)

electric vehicle supply equipment (EVSE, also known as electric vehicle chargers). EVSE Residential Charging Installation introductory videos: Clean Cities provides a video...

413

Microsoft PowerPoint - Smart INL - EV Project Nissan Leaf Driving...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Driving and Charging Behavior Observed Early in The EV Project The EV Project John Smart, Idaho National Laboratory Stephen Schey, ECOtality North America 1...

414

Vehicle Technologies Office: Ambassadors  

NLE Websites -- All DOE Office Websites (Extended Search)

Ambassadors Ambassadors Workplace Charging Challenge Clean Cities Coalitions Clean Cities logo. Clean Cities National: A network of nearly 100 Clean Cities coalitions, supported by the Vehicle Technologies Office, brings together public and private stakeholders to deploy plug-in electric vehicles, alternative and renewable fuels, idle-reduction measures, fuel economy improvements, and other petroleum reduction strategies. Clean Cities coordinators are knowledgeable about local incentives and policies for workplace charging as well as other aspects of plug-in electric vehicle community readiness. Workplace Charging Challenge Ambassadors The Workplace Charging Challenge enlists stakeholder organizations as Ambassadors to promote and support workplace charging. The directory below highlights Workplace Charging Challenge Ambassadors across the country.

415

VEHICLE ACCESS PORTALS  

NLE Websites -- All DOE Office Websites (Extended Search)

East Jemez Road (Map 1) East Jemez Road (Map 1) VEHICLE ACCESS PORTALS Traffic Lane 1: Closed except for emergencies and maintenance operations. Traffic Lanes 2-7: Drivers required to stop and present LANL badges or other form of valid identification to Protective Force officers. Drivers may proceed upon direction of the officers. Note: Commercial delivery vehicle drivers must also pres- ent their inspection passes from Post 10. More Information: spp-questions@lanl.gov Non-work Hours Vehicles entering LANL at the East Jemez VAPs during non-work hours (between 7

416

Blast resistant vehicle seat  

DOE Patents (OSTI)

Disclosed are various seats for vehicles particularly military vehicles that are susceptible to attack by road-bed explosive devices such as land mines or improvised explosive devices. The seats often have rigid seat shells and may include rigid bracing for rigidly securing the seat to the chassis of the vehicle. Typically embodiments include channels and particulate media such as sand disposed in the channels. A gas distribution system is generally employed to pump a gas through the channels and in some embodiments the gas is provided at a pressure sufficient to fluidize the particulate media when an occupant is sitting on the seat.

Ripley, Edward B

2013-02-12T23:59:59.000Z

417

Unmanned submarine vehicle  

SciTech Connect

An unmanned self-propelled submarine vehicle is provided with a material exchanger-container having a vertical axis of symmetry aligned with both the vehicle's center of gravity and its center of volume. The exchanger-container has a moveable diaphragm which divides the interior into two compartments, a lower ballast compartment equipped with an unloading apparatus and an upper compartment adapted to receive collected material. Ballast is unloaded during material loading to maintain the weight of the vehicle constant during loading.

Hervieu

1984-05-15T23:59:59.000Z

418

United States National Hydrogen Fuel Cell Vehicle and Infrastructure Learning Demonstration - Status and Results (Presentation)  

DOE Green Energy (OSTI)

This presentation provides status and results for the United States National Hydrogen Fuel Cell Vehicle Learning Demonstration, including project objectives, partners, the National Renewable Energy Laboratory's role in the project and methodology, how to access complete results, and results of vehicle and infrastructure analysis.

Wipke,K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Garbak, J.

2009-03-06T23:59:59.000Z

419

Search for Model Year 2013 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Class... Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Plug-in Hybrid Vehicles Search by Make Search by Model Search...

420

Search for Model Year 2012 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Class... Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Plug-in Hybrid Vehicles Search by Make Search by Model Search...

Note: This page contains sample records for the topic "vehicle project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Search for Model Year 2011 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Class... Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Plug-in Hybrid Vehicles Search by Make Search by Model Search...

422

Vehicle Technologies Office: 2011 DOE Hydrogen Program and Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

1 DOE Hydrogen 1 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting to someone by E-mail Share Vehicle Technologies Office: 2011 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Facebook Tweet about Vehicle Technologies Office: 2011 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Twitter Bookmark Vehicle Technologies Office: 2011 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Google Bookmark Vehicle Technologies Office: 2011 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Delicious Rank Vehicle Technologies Office: 2011 DOE Hydrogen Program and

423

Vehicle Technologies Office: Fact #233: September 9, 2002 Vehicles per  

NLE Websites -- All DOE Office Websites (Extended Search)

3: September 9, 3: September 9, 2002 Vehicles per Thousand People: United States Compared with Other Countries to someone by E-mail Share Vehicle Technologies Office: Fact #233: September 9, 2002 Vehicles per Thousand People: United States Compared with Other Countries on Facebook Tweet about Vehicle Technologies Office: Fact #233: September 9, 2002 Vehicles per Thousand People: United States Compared with Other Countries on Twitter Bookmark Vehicle Technologies Office: Fact #233: September 9, 2002 Vehicles per Thousand People: United States Compared with Other Countries on Google Bookmark Vehicle Technologies Office: Fact #233: September 9, 2002 Vehicles per Thousand People: United States Compared with Other Countries on Delicious Rank Vehicle Technologies Office: Fact #233: September 9, 2002

424

Vehicle Technologies Office: 2009 DOE Hydrogen Program and Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Hydrogen DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting to someone by E-mail Share Vehicle Technologies Office: 2009 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Facebook Tweet about Vehicle Technologies Office: 2009 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Twitter Bookmark Vehicle Technologies Office: 2009 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Google Bookmark Vehicle Technologies Office: 2009 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Delicious Rank Vehicle Technologies Office: 2009 DOE Hydrogen Program and

425

Vehicle Technologies Office: 2010 DOE Hydrogen Program and Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Hydrogen DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting to someone by E-mail Share Vehicle Technologies Office: 2010 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Facebook Tweet about Vehicle Technologies Office: 2010 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Twitter Bookmark Vehicle Technologies Office: 2010 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Google Bookmark Vehicle Technologies Office: 2010 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Delicious Rank Vehicle Technologies Office: 2010 DOE Hydrogen Program and

426

Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

0: October 22, 0: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving to someone by E-mail Share Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Facebook Tweet about Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Twitter Bookmark Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Google Bookmark Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Delicious Rank Vehicle Technologies Office: Fact #750: October 22, 2012

427

Vehicle Technologies Office: Benchmarking  

NLE Websites -- All DOE Office Websites (Extended Search)

Benchmarking Benchmarking Research funded by the Vehicle Technologies Office produces a great deal of valuable data, but it is important to compare those research results with similar work done elsewhere in the world. Through laboratory testing, researchers can compare vehicles and components to validate models, support technical target-setting, and provide data to help guide technology development tasks. Benchmarking activities fall into two primary areas: Vehicle and component testing, in which researchers test and analyze emerging technologies obtained from sources throughout the world. The results are used to continually assess program efforts. Model validation, in which researchers use test data to validate the accuracy of vehicle and component computer models including: overall measures such as fuel economy, state-of-charge energy storage across the driving cycle, and transient component behavior, such as fuel rate and torque.

428

Vehicle Technologies Office: Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

in light-duty vehicles (including passe Details Bookmark & Share View Related Clean Cities Now Vol. 17, No. 2 The Fall 2013 issue of the biannual newsletter for the U.S....

429

vehicle | OpenEI  

Open Energy Info (EERE)

vehicle vehicle Dataset Summary Description Supplemental Tables 48-56 of EIA AEO 2011 Early Release Source EIA Date Released December 08th, 2010 (4 years ago) Date Updated Unknown Keywords AEO Annual Energy Outlook EIA Energy Information Administration light-duty sales TEF Transportation Energy Futures vehicle Data text/csv icon Light-Duty_Vehicle_Sales_by_Technology_Type.csv (csv, 1.1 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote

430

Materials - Vehicle Recycling  

NLE Websites -- All DOE Office Websites (Extended Search)

end-of-life vehicles are shredded, along with other metal bearing items such as home appliances, process equipment and demolition debris, and their metals content is recovered for...

431

Vehicle Cost Calculator  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Plug-in Hybrid Electric Natural Gas (CNG) Flex Fuel (E85) Biodiesel (B20) Next Vehicle Cost Calculator U.S. Department of Energy Energy Efficiency and Renewable Energy...

432

How Vehicles Are Tested  

NLE Websites -- All DOE Office Websites (Extended Search)

simulates cycling. The energy required to move the rollers can be adjusted to account for wind resistance and the vehicle's weight. Photo: Driver running car through test cycle on...

433

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

355,058 Average Ambient Temperature (deg F) 46.0 Electric Vehicle mode operation (EV) Gasoline fuel economy (mpg) No Fuel Used AC electrical energy consumption (AC Whmi) 416...

434

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

2,405,406 Average Ambient Temperature (deg F) 61.4 Electric Vehicle mode operation (EV) Gasoline fuel economy (mpg) No Fuel Used AC electrical energy consumption (AC Whmi) 355...

435

Electric Vehicle Infrastructure  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrastructure JOHN DAVIS: Nearly everyone who owns a plug-in electric vehicle has some capacity to replenish the battery at home, either with a dedicated 220-volt charger, or by...

436

Energy Basics: Electric Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Photo of an electric bus driving up a hill. Electricity can be used as a transportation fuel to power battery electric vehicles (EVs). EVs store electricity in an energy storage...

437

Natural Gas Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Natural gas vehicles (NGVs) are either fueled exclusively with compressed natural gas or liquefied natural gas (dedicated NGVs) or are capable of natural gas and gasoline fueling (bi-fuel NGVs).

438

Household Vehicles Energy Consumption  

Reports and Publications (EIA)

This report provides newly available national and regional data and analyzes the nation's energy use by light-duty vehicles. This release represents the analytical component of the report, with a data component having been released in early 2005.

Mark Schipper

2005-11-30T23:59:59.000Z

439

Light Duty Vehicle Pathways  

NLE Websites -- All DOE Office Websites (Extended Search)

in 2030 0 5 10 15 20 25 30 Million BarrelsDay IMPORTS DOMESTIC OIL SUPPLY OIL DEMAND ELECTRICITY RES. & COM. INDUSTRY MISC. TRANSPORT AIR TRUCKS LIGHT DUTY VEHICLES ETHANOL...

440

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

local gasoline taxes ($/gal) This is equal to total motorgasoline tax in cents/mi) Vehicle efficiency parameters: input data 0.89 0.89 Once-through efficiency of electric motor,

Delucchi, Mark

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Vehicle Management Driver Safety Program  

E-Print Network (OSTI)

in the city of La Rochelle [1], using fully automated electric and communicating road vehicles, better known campus was implemented using fully automated electric and communicating vehicles. The vehicles behavior. Safety Autonomous vehicles may need to stop in a progressive way in the case of obstacles in the way

Machel, Hans

442

Vehicle Technologies Office: Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

Deployment Deployment Our nation's energy security depends on the efficiency of our transportation system and on which fuels we use. Transportation in the United States already consumes much more oil than we produce here at home and the situation is getting worse. Domestic oil production has been dropping steadily for over 20 years, and experts predict that by 2025, about 70% of our oil will be imported. The U.S. Department of Energy's (DOE's) Vehicle Technologies Office supports research and development (R&D) that will lead to new technologies that reduce our nation's dependence on imported oil, further decrease vehicle emissions, and serve as a bridge from today's conventional powertrains and fuels to tomorrow's hydrogen-powered hybrid fuel cell vehicles. The Vehicle Technologies Office also supports implementation programs that help to transition alternative fuels and vehicles into the marketplace, as well as collegiate educational activities to help encourage engineering and science students to pursue careers in the transportation sector. Following are some of the activities that complement the Vehicle Technologies Office's mission.

443

Vehicle Technologies Office: Electrical Machines  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrical Machines to Electrical Machines to someone by E-mail Share Vehicle Technologies Office: Electrical Machines on Facebook Tweet about Vehicle Technologies Office: Electrical Machines on Twitter Bookmark Vehicle Technologies Office: Electrical Machines on Google Bookmark Vehicle Technologies Office: Electrical Machines on Delicious Rank Vehicle Technologies Office: Electrical Machines on Digg Find More places to share Vehicle Technologies Office: Electrical Machines on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Power Electronics Electrical Machines Thermal Control & System Integration Advanced Combustion Engines Fuels & Lubricants Materials Technologies Electrical Machines Emphasis in the electrical machines activity is on advanced motor

444

Vehicle Technologies Office: Power Electronics  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Electronics to Power Electronics to someone by E-mail Share Vehicle Technologies Office: Power Electronics on Facebook Tweet about Vehicle Technologies Office: Power Electronics on Twitter Bookmark Vehicle Technologies Office: Power Electronics on Google Bookmark Vehicle Technologies Office: Power Electronics on Delicious Rank Vehicle Technologies Office: Power Electronics on Digg Find More places to share Vehicle Technologies Office: Power Electronics on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Power Electronics Electrical Machines Thermal Control & System Integration Advanced Combustion Engines Fuels & Lubricants Materials Technologies Power Electronics The power electronics activity focuses on research and development (R&D)

445

Alternative Fuel Vehicles: The Case of Compressed Natural Gas (CNG) Vehicles in California Households  

E-Print Network (OSTI)

VEHICLES: THE CASE OF COMPRESSED NATURAL GAS (CNG) VEHICLESyou first learn about compressed natural gas (CNG) vehicles?VEHICLES: THE CASE OF COMPRESSED NATURAL GAS (CNG) VEHICLES

Abbanat, Brian A.

2001-01-01T23:59:59.000Z

446

EERE News: Energy Department Announces New Clean Cities Projects...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

19, 2012 Energy Department Announces New Clean Cities Projects to Diversify U.S. Fuel Economy, Prepare for Advanced Vehicles As part of the Obama Administration's...

447

Energy Department Announces Clean Cities Projects to Diversify...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

fuel cars and trucks, including vehicles that run on natural gas, electricity and propane. These projects build on the important steps the Obama Administration has taken to...

448

Batteries for electric drive vehicles: Evaluation of future characteristics and costs through a Delphi study  

SciTech Connect

Uncertainty about future costs and operating attributes of electric drive vehicles (EVs and HEVs) has contributed to considerable debate regarding the market viability of such vehicles. One way to deal with such uncertainty, common to most emerging technologies, is to pool the judgments of experts in the field. Data from a two-stage Delphi study are used to project the future costs and operating characteristics of electric drive vehicles. The experts projected basic vehicle characteristics for EVs and HEVs for the period 2000-2020. They projected the mean EV range at 179 km in 2000, 270 km in 2010, and 358 km in 2020. The mean HEV range on battery power was projected as 145 km in 2000, 212 km in 2010, and 244 km in 2020. Experts` opinions on 10 battery technologies are analyzed and characteristics of initial battery packs for the mean power requirements are presented. A procedure to compute the cost of replacement battery packs is described, and the resulting replacement costs are presented. Projected vehicle purchase prices and fuel and maintenance costs are also presented. The vehicle purchase price and curb weight predictions would be difficult to achieve with the mean battery characteristics. With the battery replacement costs added to the fuel and maintenance costs, the conventional ICE vehicle is projected to have a clear advantage over electric drive vehicles through the projection period.

Vyas, A.D.; Ng, H.K.; Anderson, J.L.; Santini, D.J.

1997-07-01T23:59:59.000Z

449

Vehicle Technologies Office: Information for Members of Media  

NLE Websites -- All DOE Office Websites (Extended Search)

for Members of Media for Members of Media The Vehicle Technologies Office provides press releases, photos, videos, and contact information for members of the media to cover Vehicle Technologies Office-related news. Press Releases Read official press releases and alerts about the Vehicle Technologies Office from the U.S. Department of Energy. The Vehicle Technologies Office news feed also has a variety of news items. January 31, 2013 Thirteen Major Companies Join Energy Department's Workplace Charging Challenge August 13, 2012 Energy Department Investments to Develop Lighter, Stronger Materials for Greater Vehicle Fuel Economy June 29, 2012 Expanded North Carolina Lithium Facility Opens, Boosting U.S. Production of a Key Manufacturing Material June 21, 2012 U.S. Department of Energy Projects Win 36 R&D 100 Awards for 2012

450

MODEL YEAR 2000 FUEL ECONOMY LEADERS IN POPULAR VEHICLE CLASSES  

NLE Websites -- All DOE Office Websites (Extended Search)

COMPRESSED NATURAL GAS VEHICLES ... 5 LIQUEFIED PETROLEUM GAS (PROPANE) VEHICLES ...... 5 DIESEL VEHICLES ......

451

Smith Newton Vehicle Performance Evaluation (Brochure)  

DOE Green Energy (OSTI)

The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. Through this project, Smith Electric Vehicles will build and deploy 500 all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country.

Not Available

2012-08-01T23:59:59.000Z

452

Plug-in Electric Vehicle Fleet Valuation  

Science Conference Proceedings (OSTI)

This project investigated the value of plug-in electric vehicles (PEVs) as a grid resource and has created a PEV Fleet Simulator tool and framework for analyzing and reporting on fleet performance. The report is intended for electric utility managers and engineers and automobile manufacturers interested in PEV fleet grid services and their value.Results & FindingsThe report describes the fleet driving behavior and electricity market price data, and it ...

2012-12-14T23:59:59.000Z

453

Alternative Fuels and Advanced Vehicles Data Center - Codes and Standards  

Open Energy Info (EERE)

Alternative Fuels and Advanced Vehicles Data Center - Codes and Standards Alternative Fuels and Advanced Vehicles Data Center - Codes and Standards Resources Jump to: navigation, search Tool Summary Name: Alternative Fuels and Advanced Vehicles Data Center - Codes and Standards Resources Agency/Company /Organization: National Renewable Energy Laboratory Focus Area: Fuels & Efficiency Topics: Best Practices Website: www.afdc.energy.gov/afdc/codes_standards.html This resource provides an overview of codes and standards related to alternative fuel vehicles, dispensing, storage, and infrastructure to help project developers and code officials prepare and review code-compliant projects. How to Use This Tool This tool is most helpful when using these strategies: Improve - Enhance infrastructure & policies Learn more about the avoid, shift, improve framework for limiting air

454

DOE Hydrogen Analysis Repository: MOVES (Motor Vehicle Emission Simulator)  

NLE Websites -- All DOE Office Websites (Extended Search)

MOVES (Motor Vehicle Emission Simulator) MOVES (Motor Vehicle Emission Simulator) Project Summary Full Title: MOVES (Motor Vehicle Emission Simulator) Previous Title(s): New Generation Mobile Source Emissions Model (NGM) Project ID: 179 Principal Investigator: Margo Oge Brief Description: Estimates emissions for on-road and nonroad sources, multiple pollutants, fine-scale analysis to national inventory estimation. Keywords: Vehicle; transportation; emissions Purpose Estimate emissions for on-road and nonroad sources, cover a broad range of pollutants, and allow multiple scale analysis, from fine-scale analysis to national inventory estimation. When fully implemented MOVES will serve as the replacement for MOBILE. Performer Principal Investigator: Margo Oge Organization: U.S. Environmental Protection Agency

455

NREL: Distributed Grid Integration - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects Projects Photo of two NREL engineers sitting in front of two computer monitors, discussing a project. NREL engineers work on data capture for micro-grid synchronization waveforms. Photo by Dennis Schroeder, NREL. NREL's distributed energy projects support the integration of new technologies into the electric power grid. This work involves industry, academia, other national laboratories, and various standards organizations. Learn more about our projects: Codes and standards Data collection and visualization Hawaii Clean Energy Initiative Microgrids Power systems modeling Solar Distributed Grid Integration (SunShot) Technology development Vehicle-to-Grid (V2G) Wind2Battery Printable Version Distributed Grid Integration Home Capabilities Projects Codes & Standards

456

ADVISOR (ADvanced VehIcle SimulatOR) | Open Energy Information  

Open Energy Info (EERE)

ADVISOR (ADvanced VehIcle SimulatOR) ADVISOR (ADvanced VehIcle SimulatOR) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: ADVISOR (ADvanced VehIcle SimulatOR) Focus Area: Fuel Economy Topics: System & Application Design Website: sourceforge.net/projects/adv-vehicle-sim/ Equivalent URI: cleanenergysolutions.org/content/advisor-advanced-vehicle-simulator Language: English Policies: Regulations Regulations: Fuel Efficiency Standards This tool, originally developed by the National Renewable Energy Laboratory (NREL), allows users to simulate and analyze conventional, advanced, light, and heavy vehicles, including hybrid electric and fuel cell vehicles. The tool allows users to assess the effect of changes in vehicle components (such as motors, batteries, catalytic converters, climate control systems,

457

ME Senior Practicum Projects Overview -2008-09/10  

E-Print Network (OSTI)

as manufacture and test samples. #12;ME Senior Practicum Projects Overview - 2008- 09/10 Unmanned Aerial Vehicle the analysis, design, and manufacturing and testing of a robust system ·The vehicle will be driven to e Hybrid Competition (1) P. Fitzhorn · Shape Memory Composites (2) D. Radford · Unmanned Aerial Vehicle (3

458

Comparing the Benefits and Impacts of Hybrid Electric Vehicle Options  

Science Conference Proceedings (OSTI)

Download report 1000349 for FREE. This project continues the Hybrid Electric Vehicle Working Group (WG) study, in which EPRI has brought together representatives from the utility and automotive industries, the U.S. Department of Energy (DOE), other regulatory agencies, and university research organizations. The first study, "Assessment of Current Knowledge of Hybrid Vehicle Characteristics and Impacts" (EPRI report TR-113201), defined some of the ground rules for studying HEV technology. This stu...

2001-07-19T23:59:59.000Z

459

Plug-In Electric Vehicle Evaluation and Test Data Analysis  

Science Conference Proceedings (OSTI)

The goal of this analysis was to investigate the different impacts that driver behavior and environment can have on fuel economy and battery energy consumption in plug-in hybrid electric vehicles (PHEVs). Specifically, the PHEVs studied were part of the Ford Escape Advanced Research Fleet, which is composed of over 20 vehicles used by utilities and government agencies during a multi-year project. Results of this analysis can be used to educate drivers with more optimal driving practices to maximize ...

2012-12-20T23:59:59.000Z

460

Fleet DNA Project (Fact Sheet)  

SciTech Connect

The Fleet DNA Project - designed by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) in partnership with Oak Ridge National Laboratory - aims to accelerate the evolution of advanced vehicle development and support the strategic deployment of market-ready technologies that reduce costs, fuel consumption, and emissions. At the heart of the Fleet DNA Project is a clearinghouse of medium- and heavy-duty commercial fleet transportation data for optimizing the design of advanced vehicle technologies or for selecting a given technology to invest in. An easy-to-access online database will help vehicle manufacturers and fleets understand the broad operational range for many of today's commercial vehicle vocations.

Not Available

2012-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Hybrid vehicle assessment. Phase I. Petroleum savings analysis  

DOE Green Energy (OSTI)

This report presents the results of a comprehensive analysis of near-term electric-hybrid vehicles. Its purpose was to estimate their potential to save significant amounts of petroleum on a national scale in the 1990s. Performance requirements and expected annual usage patterns of these vehicles were first modeled. The projected US fleet composition was estimated, and conceptual hybrid vehicle designs were conceived and analyzed for petroleum use when driven in the expected annual patterns. These petroleum consumption estimates were then compared to similar estimates for projected 1990 conventional vehicles having the same performance and driven in the same patterns. Results are presented in the form of three utility functions and comparisons of several conceptual designs are made. The Hybrid Vehicle (HV) design and assessment techniques are discussed and a general method is explained for selecting the optimum energy management strategy for any vehicle-mission-battery combination. A discussion of lessons learned during the construction and test of the General Electric Hybrid Test Vehicle is also presented. Conclusions and recommendations are presented, and development recommendations are identified.

Levin, R.; Liddle, S.; Deshpande, G.; Trummel, M.; Vivian, H.

1984-03-01T23:59:59.000Z

462

NREL: Vehicles and Fuels Research - Fleet Test and Evaluation  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Research Search More Search Options Site Map The Fleet Test and Evaluation Team at the National Renewable Energy Laboratory works in partnership with commercial and government fleets and industry groups to evaluate the performance of alternative fuels and advanced technologies in medium- and heavy-duty fleet vehicles. The team's project areas include: Fleet DNA: Vehicle Drive Cycle Analysis Hybrid Electric Drive Systems Electric and Plug-in Hybrid Electric Drive Systems Hydraulic Hybrid Drive Systems Truck Stop Electrification Alternative Fuels Truck Efficiency Key aspects of this work involve meeting with industry stakeholders to understand market factors and customer requirements, evaluating the performance of advanced technology vehicles versus their conventional

463

Advanced Vehicle Testing Activity: Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview to Overview to someone by E-mail Share Advanced Vehicle Testing Activity: Overview on Facebook Tweet about Advanced Vehicle Testing Activity: Overview on Twitter Bookmark Advanced Vehicle Testing Activity: Overview on Google Bookmark Advanced Vehicle Testing Activity: Overview on Delicious Rank Advanced Vehicle Testing Activity: Overview on Digg Find More places to share Advanced Vehicle Testing Activity: Overview on AddThis.com... Home Overview Light-Duty Vehicles Medium- and Heavy-Duty Vehicles Publications Overview The marketplace for advanced transportation technologies and the focus, direction, and funding of transportation programs are continually changing. The Advanced Vehicle Testing Activity's "2005 Overview of Advanced Technology Transportation" (PDF 736 KB) gives the latest information about

464

Vehicle Technologies Office: Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Energy Storage Improving the batteries for electric drive vehicles, including hybrid electric (HEV) and plug-in electric (PEV) vehicles, is key to improving vehicles' economic, social, and environmental sustainability. In fact, transitioning to a light-duty fleet of HEVs and PEVs could reduce U.S. foreign oil dependence by 30-60% and greenhouse gas emissions by 30-45%, depending on the exact mix of technologies. For a general overview of electric drive vehicles, see the DOE's Alternative Fuel Data Center's pages on Hybrid and Plug-in Electric Vehicles and Vehicle Batteries. While a number of electric drive vehicles are available on the market, further improvements in batteries could make them more affordable and convenient to consumers. In addition to light-duty vehicles, some heavy-duty manufacturers are also pursuing hybridization of medium and heavy-duty vehicles to improve fuel economy and reduce idling.

465

Vehicle Technologies Office: 2013 Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Archive to someone 3 Archive to someone by E-mail Share Vehicle Technologies Office: 2013 Archive on Facebook Tweet about Vehicle Technologies Office: 2013 Archive on Twitter Bookmark Vehicle Technologies Office: 2013 Archive on Google Bookmark Vehicle Technologies Office: 2013 Archive on Delicious Rank Vehicle Technologies Office: 2013 Archive on Digg Find More places to share Vehicle Technologies Office: 2013 Archive on AddThis.com... 2013 Archive #810 Leasing on the Rise December 30, 2013 #809 What Do We Pay for in a Gallon of Gasoline? December 23, 2013 #808 Declining Use of Six- and Eight-Cylinder Engines December 16, 2013 #807 Light Vehicle Weights Leveling Off December 9, 2013 #806 Light Vehicle Market Shares, Model Years 1975-2012 December 2, 2013 #805 Vehicle Technology Penetration November 25, 2013

466

Vehicle Technologies Office: 2009 Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

9 Archive to someone 9 Archive to someone by E-mail Share Vehicle Technologies Office: 2009 Archive on Facebook Tweet about Vehicle Technologies Office: 2009 Archive on Twitter Bookmark Vehicle Technologies Office: 2009 Archive on Google Bookmark Vehicle Technologies Office: 2009 Archive on Delicious Rank Vehicle Technologies Office: 2009 Archive on Digg Find More places to share Vehicle Technologies Office: 2009 Archive on AddThis.com... 2009 Archive #603 Where Does Lithium Come From? December 28, 2009 #602 Freight Statistics by Mode, 2007 Commodity Flow Survey December 21, 2009 #601 World Motor Vehicle Production December 14, 2009 #600 China Produced More Vehicles than the U.S. in 2008 December 7, 2009 #599 Historical Trend for Light Vehicle Sales November 30, 2009

467

Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicles Vehicles Vehicles In the first half of 2013, Americans doubled the number of PEVs they purchased compared to the same period in 2012, and this summer, PEV sales reached a new record high. More than 11,000 PEVs were sold in August 2013 -- that's a 29 percent improvement in sales over the previous monthly record. Learn now about the clean technology revolution that is here today. In the first half of 2013, Americans doubled the number of PEVs they purchased compared to the same period in 2012, and this summer, PEV sales reached a new record high. More than 11,000 PEVs were sold in August 2013 -- that's a 29 percent improvement in sales over the previous monthly record. Learn now about the clean technology revolution that is here today.

468

Radiological decontamination, survey, and statistical release method for vehicles  

SciTech Connect

Earth-moving vehicles (e.g., dump trucks, belly dumps) commonly haul radiologically contaminated materials from a site being remediated to a disposal site. Traditionally, each vehicle must be surveyed before being released. The logistical difficulties of implementing the traditional approach on a large scale demand that an alternative be devised. A statistical method for assessing product quality from a continuous process was adapted to the vehicle decontamination process. This method produced a sampling scheme that automatically compensates and accommodates fluctuating batch sizes and changing conditions without the need to modify or rectify the sampling scheme in the field. Vehicles are randomly selected (sampled) upon completion of the decontamination process to be surveyed for residual radioactive surface contamination. The frequency of sampling is based on the expected number of vehicles passing through the decontamination process in a given period and the confidence level desired. This process has been successfully used for 1 year at the former uranium millsite in Monticello, Utah (a cleanup site regulated under the Comprehensive Environmental Response, Compensation, and Liability Act). The method forces improvement in the quality of the decontamination process and results in a lower likelihood that vehicles exceeding the surface contamination standards are offered for survey. Implementation of this statistical sampling method on Monticello projects has resulted in more efficient processing of vehicles through decontamination and radiological release, saved hundreds of hours of processing time, provided a high level of confidence that release limits are met, and improved the radiological cleanliness of vehicles leaving the controlled site.

Goodwill, M.E.; Lively, J.W.; Morris, R.L.

1996-06-01T23:59:59.000Z

469

Vehicle Technologies Office: Active Solicitations  

NLE Websites -- All DOE Office Websites (Extended Search)

Active Solicitations to Active Solicitations to someone by E-mail Share Vehicle Technologies Office: Active Solicitations on Facebook Tweet about Vehicle Technologies Office: Active Solicitations on Twitter Bookmark Vehicle Technologies Office: Active Solicitations on Google Bookmark Vehicle Technologies Office: Active Solicitations on Delicious Rank Vehicle Technologies Office: Active Solicitations on Digg Find More places to share Vehicle Technologies Office: Active Solicitations on AddThis.com... Active Solicitations To explore current financial opportunity solicitations, click on the opportunity titles in the table below. To sort the list, click on the arrows in the column headings. Technology Solicitation Title Open Date Close Date Hydrogen and Fuel Cells Research and Development for Hydrogen Storage

470

CX-000780: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Categorical Exclusion Determination Smith Electric Vehicles (SEV-US) Medium Duty Electric Vehicle Demonstration Project CX(s) Applied: A1, B3.6, B5.1 Date: 02122010...

471

Miles Electric Vehicles | Open Energy Information  

Open Energy Info (EERE)

Miles Electric Vehicles Jump to: navigation, search Name Miles Electric Vehicles Place Santa Monica, California Zip 90405 Sector Vehicles Product California-based developer of...

472

Advanced Vehicle Testing Activity: Other Internal Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Other Internal Combustion Engine Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Other Internal Combustion Engine Vehicles on Facebook Tweet about Advanced...

473

Advanced Vehicle Testing Activity: Hydrogen Internal Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

to someone by E-mail Share Advanced Vehicle Testing Activity: Hydrogen Internal Combustion Engine Vehicle Basics on Facebook Tweet about Advanced Vehicle Testing Activity:...

474

Advanced Vehicle Testing Activity: Other Internal Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Other Internal Combustion Engine Vehicles The Advanced Vehicle Testing Activity (AVTA) is tasked by the U.S. Department of Energy's (DOE) Vehicle Technology Office (VTO) to conduct...

475

Quantifying the benefits of hybrid vehicles  

E-Print Network (OSTI)

century. Hybrid electric vehicles (HEVs) reduce emissionsas plug-in HEVs and full electric vehicles to market. In theon their design, hybrid electric vehicles employ electric

Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

2006-01-01T23:59:59.000Z

476

Middleware for Cooperative Vehicle-Infrastructure Systems  

E-Print Network (OSTI)

Cooperative vehicle-infrastructure systems." COM Safety:of Transportation. Vehicle-Infrastructure Integration (VII).for Cooperative Vehicle-Infrastructure Systems Christian

Manasseh, Christian; Sengupta, Raja

2008-01-01T23:59:59.000Z

477

Social Implications of Vehicle Choice and Use  

E-Print Network (OSTI)

Prices by Vehicle Type and Manufacturer Fuel Efficient andto understand how vehicle manufacturers and dealers sharePrices by Vehicle Type and Manufacturer Section 3.4. Section

Langer, Ashley Anne

2010-01-01T23:59:59.000Z

478

What's a hydrogen blended fueled vehicle?  

NLE Websites -- All DOE Office Websites (Extended Search)

available for testing. However, development of fuel cell vehicles continues in earnest by vehicle manufacturers and other groups such as DOE's FreedomCar & Vehicle Technologies...

479

Quantifying the benefits of hybrid vehicles  

E-Print Network (OSTI)

the first green vehicle, manufacturers created the first market for safety in vehicles, manufacturers were initiallymanufacturers are convinced that car buyers are interested in green vehicles and

Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

2006-01-01T23:59:59.000Z

480

Front Vehicle Setup Information Downloadable Dynamometer Database...  

NLE Websites -- All DOE Office Websites (Extended Search)

Chevrolet Volt- 20F Test cell location Front Vehicle Setup Information Downloadable Dynamometer Database (D 3 )- Test Summary Sheet Vehicle architecture EREV Vehicle dynamometer...

Note: This page contains sample records for the topic "vehicle project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

California's Zero-Emission Vehicle Mandate  

E-Print Network (OSTI)

in a Shared Electric Vehicle Program. In Transporta- tionadvanced technologies and electric vehicles i n Japan. Earlysur vey. Nearly 50 electric vehicles were used, including

Shaheen, Susan

2004-01-01T23:59:59.000Z

482

Incentive Policies for Neighborhood Electric Vehicles  

E-Print Network (OSTI)

Developmentfor Neighborhood Electric Vehicles. Institute ofPaul. "Small and Electric: Vehicles With a Future." ResearchElectric Company. Electric Vehicle Program: Exhibit III

Lipman, Timothy E.; Kurani, Kenneth S.; Sperling, Daniel

2001-01-01T23:59:59.000Z

483

Incentive Policies for Neighborhood Electric Vehicles  

E-Print Network (OSTI)

Developmentfor Neighborhood Electric Vehicles. Institute ofPaul. "Small and Electric: Vehicles With a Future." ResearchElectric Company. Electric Vehicle Program: Exhibit III

Lipman, Timothy E.; Kuranu, Kenneth S.; Sperling, Daniel

1994-01-01T23:59:59.000Z

484

Proceedings of the Neighborhood Electric Vehicle Workshop  

E-Print Network (OSTI)

Preferences for Electric Vehicles. Electric Power ResearchWilliam L. Garrison, "Electric Vehicle Potential in Hawaii,"Neighborhood Electric Vehicle Workshop Proceedings While

Lipman, Timothy

1994-01-01T23:59:59.000Z

485

Proceedings of the Neighborhood Electric Vehicle Workshop  

E-Print Network (OSTI)

Preferences for Electric Vehicles. Electric PowerResearchWilliam L. Garrison, "Electric Vehicle Potential in Hawaii,"Ro Warf Pacific Electric Vehicles Research and Development

Lipman, Timothy E.; Kurani, Kenneth S.; Sperling, Daniel

1994-01-01T23:59:59.000Z

486

Proceedings of the Neighborhood Electric Vehicle Workshop  

E-Print Network (OSTI)

to protect the electric vehicle industry and limit liabilityElectric Vehicle Workshop brought together leaders from industry,duty electric vehicles. To provide flexibility to industry

Lipman, Timothy

1994-01-01T23:59:59.000Z

487

The Evolution of Sustainable Personal Vehicles  

E-Print Network (OSTI)

Propulsion Systems for Hybrid Vehicles. The Institution ofA.B. (1996). Ultralight-Hybrid Vehicle Design: OvercomingLightweight Electric/Hybrid Vehicle Design. Reel Educational

Jungers, Bryan D

2009-01-01T23:59:59.000Z

488

Solar Electrical Vehicles | Open Energy Information  

Open Energy Info (EERE)

California Zip 91361 Sector Solar, Vehicles Product US-based manufacturer of solar battery chargers for hybrid vehicles. References Solar Electrical Vehicles1 LinkedIn...

489

Commercial Motor Vehicle Brake-Related Research  

E-Print Network (OSTI)

Commercial Motor Vehicle Brake-Related Research Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 Commercial Motor Vehicle Roadside Technology Corridor

490

Quantifying the benefits of hybrid vehicles  

E-Print Network (OSTI)

in the last century. Hybrid electric vehicles (HEVs) reduceon their design, hybrid electric vehicles employ electricof this paper, hybrid electric vehicles are a broad set of

Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

2006-01-01T23:59:59.000Z

491

US Ethanol Vehicle Coalition | Open Energy Information  

Open Energy Info (EERE)

Vehicle Coalition Jump to: navigation, search Name US Ethanol Vehicle Coalition Place Jefferson City, Missouri Zip 65109 Product The National Ethanol Vehicle Coalition is the...

492

Hybrid electric vehicles TOPTEC  

SciTech Connect

This one-day TOPTEC session began with an overview of hybrid electric vehicle technology. Updates were given on alternative types of energy storage, APU control for low emissions, simulation programs, and industry and government activities. The keynote speech was about battery technology, a key element to the success of hybrids. The TOPEC concluded with a panel discussion on the mission of hybrid electric vehicles, with a perspective from industry and government experts from United States and Canada on their view of the role of this technology.

1994-06-21T23:59:59.000Z

493

Vehicle brake testing system  

SciTech Connect

This invention relates to a force measuring system capable of measuring forces associated with vehicle braking and of evaluating braking performance. The disclosure concerns an invention which comprises a first row of linearly aligned plates, a force bearing surface extending beneath and beside the plates, vertically oriented links and horizontally oriented links connecting each plate to a force bearing surface, a force measuring device in each link, a transducer coupled to each force measuring device, and a computing device coupled to receive an output signal from the transducer indicative of measured force in each force measuring device. The present invention may be used for testing vehicle brake systems.

Stevens, Samuel S [Harriman, TN; Hodgson, Jeffrey W [Lenoir City, TN

2002-11-19T23:59:59.000Z

494

Electric Vehicles, Hybrid Vehicles, and the California Zero Emission...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicles, Hybrid Vehicles, and the California Zero Emission Mandate Speaker(s): Ron Chestnut Date: October 26, 2000 - 12:00pm Location: Bldg. 90 The California Air...

495

Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Safety...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Data Center Fuels & Vehicles Biodiesel | Diesel Vehicles Electricity | Hybrid & Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas |...

496

Vehicle Manufacturing Futures in Transportation Life-cycle Assessment  

E-Print Network (OSTI)

gasoline vehicles, hybrid electric vehicles, aircraft, high-Gasoline Vehicle (CGV), Hybrid Electric Vehicle (HEV),Plug-in Hybrid Electric Vehicle (PHEV), and Battery Electric

Chester, Mikhail; Horvath, Arpad

2011-01-01T23:59:59.000Z

497

GASOLINE VEHICLE EXHAUST PARTICLE SAMPLING STUDY  

DOE Green Energy (OSTI)

The University of Minnesota collaborated with the Paul Scherrer Institute, the University of Wisconsin (UWI) and Ricardo, Inc to physically and chemically characterize the exhaust plume from recruited gasoline spark ignition (SI) vehicles. The project objectives were: (1) Measure representative particle size distributions from a set of on-road SI vehicles and compare these data to similar data collected on a small subset of light-duty gasoline vehicles tested on a chassis dynamometer with a dilution tunnel using the Unified Drive Cycle, at both room temperature (cold start) and 0 C (cold-cold start). (2) Compare data collected from SI vehicles to similar data collected from Diesel engines during the Coordinating Research Council E-43 project. (3) Characterize on-road aerosol during mixed midweek traffic and Sunday midday periods and determine fleet-specific emission rates. (4) Characterize bulk- and size-segregated chemical composition of the particulate matter (PM) emitted in the exhaust from the gasoline vehicles. Particle number concentrations and size distributions are strongly influenced by dilution and sampling conditions. Laboratory methods were evaluated to dilute SI exhaust in a way that would produce size distributions that were similar to those measured during laboratory experiments. Size fractionated samples were collected for chemical analysis using a nano-microorifice uniform deposit impactor (nano-MOUDI). In addition, bulk samples were collected and analyzed. A mixture of low, mid and high mileage vehicles were recruited for testing during the study. Under steady highway cruise conditions a significant particle signature above background was not measured, but during hard accelerations number size distributions for the test fleet were similar to modern heavy-duty Diesel vehicles. Number emissions were much higher at high speed and during cold-cold starts. Fuel specific number emissions range from 1012 to 3 x 1016 particles/kg fuel. A simple relationship between number and mass emissions was not observed. Data were collected on-road to compare weekday with weekend air quality around the Twin Cities area. This portion of the study resulted in the development of a method to apportion the Diesel and SI contribution to on-road aerosol.

Kittelson, D; Watts, W; Johnson, J; Zarling, D Schauer,J Kasper, K; Baltensperger, U; Burtscher, H

2003-08-24T23:59:59.000Z

498

Vehicle Technologies Office: 2010 Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

0 Archive to someone 0 Archive to someone by E-mail Share Vehicle Technologies Office: 2010 Archive on Facebook Tweet about Vehicle Technologies Office: 2010 Archive on Twitter Bookmark Vehicle Technologies Office: 2010 Archive on Google Bookmark Vehicle Technologies Office: 2010 Archive on Delicious Rank Vehicle Technologies Office: 2010 Archive on Digg Find More places to share Vehicle Technologies Office: 2010 Archive on AddThis.com... 2010 Archive #655 New Freight Analysis Tool December 27, 2010 #654 New Light Vehicle Leasing is Big in 2010 December 20, 2010 #653 Import Cars and Trucks Gaining Ground December 13, 2010 #652 U.S. Crude Oil Production Rises December 6, 2010 #651 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 November 29, 2010 #650 Diesel Fuel Prices hit a Two-Year High November 22, 2010

499

Vehicle Technologies Office: 2006 Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

6 Archive to someone 6 Archive to someone by E-mail Share Vehicle Technologies Office: 2006 Archive on Facebook Tweet about Vehicle Technologies Office: 2006 Archive on Twitter Bookmark Vehicle Technologies Office: 2006 Archive on Google Bookmark Vehicle Technologies Office: 2006 Archive on Delicious Rank Vehicle Technologies Office: 2006 Archive on Digg Find More places to share Vehicle Technologies Office: 2006 Archive on AddThis.com... 2006 Archive #449 Biodiesel to Conventional Diesel: An Emissions Comparison December 25, 2006 #448 Fuel Purchasing Habits December 18, 2006 #447 World Ethanol Production December 11, 2006 #446 More Likely to Buy a Hybrid or Other More Fuel Efficient Vehicle? December 4, 2006 #445 U.S. Population Growth and Light Vehicle Sales November 27, 2006

500

Vehicle Technologies Office: 2011 Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Archive to someone 1 Archive to someone by E-mail Share Vehicle Technologies Office: 2011 Archive on Facebook Tweet about Vehicle Technologies Office: 2011 Archive on Twitter Bookmark Vehicle Technologies Office: 2011 Archive on Google Bookmark Vehicle Technologies Office: 2011 Archive on Delicious Rank Vehicle Technologies Office: 2011 Archive on Digg Find More places to share Vehicle Technologies Office: 2011 Archive on AddThis.com... 2011 Archive #707 Illustration of Truck Classes December 26, 2011 #706 Vocational Vehicle Fuel Consumption Standards December 19, 2011 #705 Fuel Consumption Standards for Combination Tractors December 12, 2011 #704 Fuel Consumption Standards for New Heavy Pickups and Vans December 5, 2011 #703 Hybrid Vehicles Lose Market Share in 2010 November 28, 2011