Powered by Deep Web Technologies
Note: This page contains sample records for the topic "vehicle phev integrated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Plug-in Hybrid Electric Vehicles (PHEVs) Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Program, Advanced Vehicle Testing Activity (AVTA) Plug-in Hybrid Electric Vehicles (PHEVs) Overview Jim Francfort AVTA Principle Investigator Local Climate Leadership Summit May...

2

Electric Vehicles (PHEV and BEV) in the German Electricity System  

NLE Websites -- All DOE Office Websites (Extended Search)

generation) or to use storage devices. Furthermore, it will be discussed whether the load profile of plug-in hybrid vehicles (PHEVs) can be controlled by an indirect energy...

3

Plug-In Hybrid Electric Vehicles - PHEV and HEV Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne is a major player in the Department of Energy's (DOE's) plug-in hybrid electric vehicle (PHEV) energy storage research and development (R&D) program. DOE has...

4

Plug-In Hybrid Electric Vehicles - PHEV Modeling - Control Strategy  

NLE Websites -- All DOE Office Websites (Extended Search)

Control Strategy Assessment of PHEVs Control Strategy Assessment of PHEVs A generic global optimization algorithm for plug-in hybrid electric vehicle (PHEV) powertrain flows has been developed based on the Bellman optimality principle. Optimization results are used to isolate control patterns, both dependent and independent of the cycle characteristics, in order to develop real-time control strategies in Simulink/Stateflow. These controllers are then implemented in PSAT to validate their performances. Heuristic optimization algorithms (such as DIRECT or genetic algorithms) are then used to tune the parameters of the real-time controller implemented in PSAT. The control strategy development process is described below. PHEV control strategy development process diagram Control Strategy Development Process

5

Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicle (PHEV) Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Hybrid Plug-In Hybrid Electric Vehicle (PHEV) Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicle (PHEV) Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicle (PHEV) Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicle (PHEV) Tax Credit on Google Bookmark Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicle (PHEV) Tax Credit on Delicious Rank Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicle (PHEV) Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicle (PHEV) Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

6

Plug-In Hybrid Electric Vehicles - PHEV Modeling - Component Requirement  

NLE Websites -- All DOE Office Websites (Extended Search)

Requirement Definition for PHEVs Requirement Definition for PHEVs One of the main objectives of the U.S. Department of Energy's (DOE's) Plug-in Hybrid Electric Vehicle R&D Plan (2.2Mb pdf) is to "determine component development requirements" through simulation analysis. PSAT has been used to design and evaluate a series of PHEVs to define the requirements of different components, focusing on the energy storage system's power and energy. Several vehicle classes (including midsize car, crossover SUV and midsize SUV) and All Electric Range (AER from 10 to 40 miles) were considered. The preliminary simulations were performed at Argonne using a pre-transmission parallel hybrid configuration with an energy storage system sized to run the Urban Dynanometer Driving Schedule (UDDS) in electric mode. Additional powertrain configurations and sizing algorithm are currently being considered. Trade-off studies are being performed as ways to achieve some level of performance while easing requirements on one area or another. As shown in the figure below, the FreedomCAR Energy Storage Technical Team selected a short term and a long term All Electric Range (AER) goals based on several vehicle simulations.

7

PHEVs are More about the grid than the vehicles  

SciTech Connect

Plug-in hybrid electric vehicles (PHEVs) could be used as an effective storage medium to absorb intermittent renewable energy when it is available. Charged vehicles can run on the stored energy when needed. A recent study by the Pacific Northwest National Laboratory concluded that some 73 percent of U.S. light vehicles can be supplied with the existing utility infrastructure in place, provided the charging was restricted to off-peak periods. That would reduce U.S. oil imports by 6.2 million barrels per day, roughly 52 percent of U.S. oil imports. The limiting factors increasingly appear to be on the utility side, for example, making sure that the vehicles are charged during off-peak hours at discounted prices.

NONE

2009-01-15T23:59:59.000Z

8

Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program  

E-Print Network (OSTI)

for plug-in hybrid electric vehicles (PHEVs): Goals and thetechnology: California's electric vehicle program. Scienceand Impacts of Hybrid Electric Vehicle Options for a Compact

Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

2009-01-01T23:59:59.000Z

9

Oregon E.V. Road Map - Electric Drive Vehicle (PHEVs) Testing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Oregon E.V. Road Map - Electric Drive Vehicle (PHEVs) Testing Activities and Results Jim Francfort E.V. Road Map - Preparing Oregon for the Introduction of Electric Vehicles...

10

Plug-In Hybrid Electric Vehicles - PHEV Modeling - Component Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Impact on Fuel Efficiency Technologies Impact on Fuel Efficiency One of the main objectives of the U.S. Department of Energy's (DOE's) Plug-in Hybrid Electric Vehicle (PHEV) R&D Plan (2.2Mb pdf) is to "determine component development requirements" through simulation analysis. Overall fuel efficiency is affected by component technologies from a component sizing and efficiency aspect. To properly define component requirements, several technologies for each of the main components (energy storage, engine and electric machines) are being compared at Argonne using PSAT. Per the R&D plan, several Li-ion battery materials are being modeled to evaluate their impacts on fuel efficiency and vehicle mass. Different Power to Energy ratios are being considered to understand the relative impact of power and energy.

11

Plug-in Hybrid Electric Vehicle (PHEV) Prototype Testing and Evaluation -- Data Collection and Analysis  

Science Conference Proceedings (OSTI)

In 2003, EPRI and DaimlerChrysler initiated a collaborative effort to develop and demonstrate a Plug-in Hybrid Electric Vehicle (PHEV) version of DaimlerChrysler's Sprinter commercial van. PHEV Sprinters were subsequently developed and used in limited fleet testing at several locations within the United States. As part of this effort, EPRI took on the responsibility of managing data acquisition and analysis. This report describes the data analysis toolkit EPRI created as part of an ongoing effort to eval...

2008-12-16T23:59:59.000Z

12

Advanced Vehicle Testing Activity - PHEV Testing Results and...  

NLE Websites -- All DOE Office Websites (Extended Search)

on cycles 7 Baseline Performance Testing Results 8 EnergyCS Prius - UDDS Fuel Use * 9 kWh Valence lithium pack - AC kWh EnergyCS PHEV Prius MPG & kWh - UDDS Testing 180 9 170...

13

Plug-In Hybrid Electric Vehicles - PHEV Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

configurations for advanced vehicles. Thus, developing fuel cells and hybrid electric vehicles (HEVs) requires accurate, flexible simulation tools. Argonne undertook a...

14

Plug-In Hybrid Electric Vehicles - PHEV Modeling - Model Validation  

NLE Websites -- All DOE Office Websites (Extended Search)

Chevy Equinox, Ford Explorer) have been validated within 1% of fuel economy. Hybrid electric vehicles (e.g., Honda Insight, Toyota Prius, Lexus RX400h) have been validated...

15

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network (OSTI)

experiences with plug-in hybrid vehicles (PHEVs). At theA.A. (2007) Plug-in Hybrid Vehicles for a SustainableAssessment of Plug-in Hybrid Vehicles on Electric Utilities

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

16

Batteries - PHEV Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE has implemented a relatively new program to develop plug-in hybrid electric vehicle (PHEV) technologies, with the goal of achieving the equivalent of a 40-mile...

17

NREL: Vehicles and Fuels Research - Electric Vehicle Grid Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Grid Integration Project Electric Vehicle Grid Integration Project Plug-in electric vehicle charging at NREL. PEV charging in the VTIF. Photo by Dennis Schroeder, NREL/PIX 19758 The Electric Vehicle Grid Integration Project supports the development and implementation of electrified transportation systems, particularly those that integrate renewable-based vehicle charging systems. Plug-in electric vehicles (PEVs)-including all-electric vehicles and plug-in hybrid electric vehicles (PHEVs)-provide a new opportunity to reduce oil consumption by drawing on power from the electric grid. To maximize the benefits of PEVs, the emerging PEV infrastructure must provide access to clean electricity generated from renewable sources, satisfy driver expectations, and ensure safety. Value creation from systems

18

Plug-In Hybrid Electric Vehicles - PHEV Modeling - Powertrain Configuration  

NLE Websites -- All DOE Office Websites (Extended Search)

Impact of Powertrain Configuration on Fuel Efficiency To evaluate the fuel efficiency potential of plug-in hybrid electric vehicles, it is necessary to compare the advantages and drawbacks of several powertrain configurations, ranging from power split to parallel and series. PSAT offers the unique ability to simulate and compare hundreds of powertrain configurations. The goal of the effort is to define the most promising configurations depending on the particular usage. Component sizes, fuel efficiency and cost will be used to make appropriate decisions. The configurations currently being considered include, but are not limited to: Pre-transmission parallel HEV Post-transmission parallel HEV Power split HEV (including THS II and GM 2 Mode) Series The figure below shows an example comparison of three powertrain configurations (parallel, series and power split).

19

Advanced Batteries for PHEVs  

Science Conference Proceedings (OSTI)

This report describes testing conducted on two different types of batteriesVARTA nickel-metal hydride and SAFT lithium ionused in the Plug-in Hybrid Electric Vehicle (PHEV) Sprinter program. EPRI and DaimlerChrysler developed a PHEV concept for the Sprinter Van to reduce the vehicle's emissions, fuel consumption, and operating costs while maintaining equivalent or superior functionality and performance. The PHEV Sprinter was designed to operate in both a pure electric mode and a charge-sustaining hybrid ...

2009-12-22T23:59:59.000Z

20

Summary of PHEV Systems Analysis  

Science Conference Proceedings (OSTI)

This report, a technical update, summarizes research on plug-in hybrid electric vehicle (PHEV) impacts on the utility system. The update also provides an analysis of the costs of PHEVs to consumers.

2009-12-18T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle phev integrated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

The challenges and policy options for integrating plug-in hybrid electric vehicle into the electric grid  

SciTech Connect

Plug-in hybrid electric vehicle may be prime candidates for the next generation of vehicles, but they offer several technological and economical challenges. This article assesses current progress in PHEV technology, market trends, research needs, challenges ahead and policy options for integrating PHEVs into the electric grid. (author)

Srivastava, Anurag K.; Annabathina, Bharath; Kamalasadan, Sukumar

2010-04-15T23:59:59.000Z

22

PHEV_Report_#1  

NLE Websites -- All DOE Office Websites (Extended Search)

(GMC) officially launched the Plug'n Go initiative to assess the opportunity that plug-in hybrid electric vehicle (PHEV) technology may represent here in Vermont. CVPS converted...

23

PHEV Technology Analysis at Argonne  

NLE Websites -- All DOE Office Websites (Extended Search)

estimate the impact of plug-in hybrid electric vehicles estimate the impact of plug-in hybrid electric vehicles (PHEVs) in the U.S., Argonne National Laboratory is analyzing typical travel behavior, new technology penetration patterns, and pathways for vehicle fuels. The analysis will lead to better understanding of: * Potential buyers of PHEVs, * Patterns of charging PHEV battery packs, * Potential for petroleum use reduction, and * Well-to-wheel energy and greenhouse gas emissions implications. Heart of the market concept Combining PHEV simulation results with evaluation of travel behavior from a national survey, Argonne researchers developed the "Heart of the Market" concept. This concept eliminates vehicles that travel less than a PHEV's electric range per day, since a PHEV is not

24

Integrated Vehicle Thermal Management for Advanced Vehicle Propulsion Technologies  

DOE Green Energy (OSTI)

A critical element to the success of new propulsion technologies that enable reductions in fuel use is the integration of component thermal management technologies within a viable vehicle package. Vehicle operation requires vehicle thermal management systems capable of balancing the needs of multiple vehicle systems that may require heat for operation, require cooling to reject heat, or require operation within specified temperature ranges. As vehicle propulsion transitions away from a single form of vehicle propulsion based solely on conventional internal combustion engines (ICEs) toward a wider array of choices including more electrically dominant systems such as plug-in hybrid electric vehicles (PHEVs), new challenges arise associated with vehicle thermal management. As the number of components that require active thermal management increase, so do the costs in terms of dollars, weight, and size. Integrated vehicle thermal management is one pathway to address the cost, weight, and size challenges. The integration of the power electronics and electric machine (PEEM) thermal management with other existing vehicle systems is one path for reducing the cost of electric drive systems. This work demonstrates techniques for evaluating and quantifying the integrated transient and continuous heat loads of combined systems incorporating electric drive systems that operate primarily under transient duty cycles, but the approach can be extended to include additional steady-state duty cycles typical for designing vehicle thermal management systems of conventional vehicles. The work compares opportunities to create an integrated low temperature coolant loop combining the power electronics and electric machine with the air conditioning system in contrast to a high temperature system integrated with the ICE cooling system.

Bennion, K.; Thornton, M.

2010-04-01T23:59:59.000Z

25

The U.S. Department of Energy's (DOE's) FreedomCAR and Vehicle Technologies (FCVT) Program is actively evaluating plug-in hybrid electric vehicle (PHEV) technology and researching the most critical technical barriers to  

E-Print Network (OSTI)

for use in hybrid vehicles as well as electric-only vehicles · Hardware-in-the-loop evaluation of advanced is actively evaluating plug-in hybrid electric vehicle (PHEV) technology and researching the most critical and capacitor scaling, thermal management, capacity, and power fade · Using hybrid electric vehicles in fleets

Kemner, Ken

26

Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program  

E-Print Network (OSTI)

1) HEV to PHEV Conversions Toyota Priuses were purchased anddisplays based on the stock Toyota Prius Energy Monitor andin the 2007 and 2008 model Toyota Priuses converted to PHEVs

Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

2009-01-01T23:59:59.000Z

27

FY12 annual Report: PHEV Engine Control and Energy Management Strategy  

DOE Green Energy (OSTI)

The objectives are: (1) Investigate novel engine control strategies targeted at rapid engine/catalyst warming for the purpose of mitigating tailpipe emissions from plug-in hybrid electric vehicles (PHEV) exposed to multiple engine cold start events; (2) Optimize integration of engine control strategies with hybrid supervisory control strategies in order to reduce cold start emissions and fuel consumption of PHEVs; and (3) Ensure that development of new vehicle technologies complies with existing emission standards.

Chambon, Paul H [ORNL

2012-05-01T23:59:59.000Z

28

Microsoft PowerPoint - EnergyCS Altair Nano Prius PHEVs Fleet...  

NLE Websites -- All DOE Office Websites (Extended Search)

North American PHEV Demonstration North American PHEV Demonstration Fleet Summary Report: EnergyCS Prius (Altairnano pack) Number of Vehicles: 2 (EnergyCS Data Loggers) Reporting...

29

TransForum v8n2 - U.S.-Sweden Joint PHEV Research  

NLE Websites -- All DOE Office Websites (Extended Search)

PHEV Research The Argonne Smart Charge System Looking to jointly develop new plug-in hybrid vehicle (PHEV) technology and accelerate its consumer acceptance and...

30

Anticipating PHEV Energy Impacts in California  

E-Print Network (OSTI)

gas emissions from plug-in hybrid vehicles: Implications forMarkel et al. , Plug-in hybrid vehicle analysis, MilestoneU.S. market, plug-in hybrid vehicles (PHEVs) are touted as

Axsen, John; Kurani, Kenneth S.

2009-01-01T23:59:59.000Z

31

Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program  

E-Print Network (OSTI)

electricity and actual electricity demand to recharge PHEVs.the Project households, electricity demand to recharge theirAs with weekday electricity demand, most actual weekend

Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

2009-01-01T23:59:59.000Z

32

PHEV and Other Electric Drive Testing Results and Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Vehicle Testing Activity PHEV and Other Electric Drive Testing Results and Resources Jim Francfort Electric Drive Session Alternative Fuels & Vehicles Las Vegas, Nevada -...

33

Argonne TTRDC - APRF - Research Activities - Benchmarking PHEVs  

NLE Websites -- All DOE Office Websites (Extended Search)

APRF Research Activities: Benchmarking of Plug-In Hybrid Electric Vehicles (PHEVs) Argonne engineer Mike Duoba Engineer Mike Duoba evaluates a vehicle in Argonne's APRF. Now that plug-in hybrid electric vehicles (PHEVs) are emerging, it is important to test, characterize and benchmark the wide variety of PHEV designs and control strategies. In the APRF, engineers benchmark PHEVs by combining testing and data analysis to characterize the vehicles' efficiency, performance, and emissions. The vehicles are evaluated over many cycles to find control strategies under a variety of operating conditions. Argonne researchers test PHEVs over cold-start and hot-start urban dynamometer driving schedule (UDDS) and highway cycles in both charge-depletion and charge-sustaining operation. Full-charge tests, as

34

A rule-based energy management strategy for plug-in hybrid electric vehicle (PHEV)  

Science Conference Proceedings (OSTI)

Hybrid Electric Vehicles (HEV) combine the power from an electric motor with that from an internal combustion engine to propel the vehicle. The HEV electric motor is typically powered by a battery pack through power electronics. The HEV battery is recharged ...

Harpreetsingh Banvait; Sohel Anwar; Yaobin Chen

2009-06-01T23:59:59.000Z

35

PHEV Utility Factors (UFs) Derived from Households' Vehicle Usage Patterns Jamie Davies, Ken Kurani  

E-Print Network (OSTI)

to calculate electrical consumption, emissions, fuel costs, and battery lifetime and degradation. Of particular of Battery Electric Vehicles (BEVs) while allowing consumers to make use of the familiar gasoline refueling, each household starts the day with a fully charged battery and does not recharge throughout the day

California at Davis, University of

36

PHEV Impacts on Regional Systems (Poster)  

DOE Green Energy (OSTI)

This poster, submitted for the CU Energy Initiative/NREL Symposium on October 3, 2006 in Boulder, Colorado, looks at the impacts, emissions, and avoided gasoline due to plug-in hybrid electric vehicles (PHEVs).

Parks, K.; Denholm, P.; Markel, T.

2006-10-03T23:59:59.000Z

37

Power System Level Impacts of PHEVs  

Science Conference Proceedings (OSTI)

This paper presents investigations into various aspects of how plug-in hybrid electric vehicles (PHEVs) could impact the electric power system. The investigation is focused on impacts on the power system infrastructure and impacts on the primary fuel ...

2009-01-01T23:59:59.000Z

38

PHEV Market Introduction Workshop Summary Report  

DOE Green Energy (OSTI)

The Plug-In Hybrid Electric Vehicle (PHEV) Market Introduction Study Workshop was attended by approximately forty representatives from various stakeholder organizations. The event took place at the Hotel Helix in Washington, D.C. on December 1-2, 2008. The purpose of this workshop was to follow-up last year s PHEV Value Proposition Study, which showed that indeed, a viable and even thriving market for these vehicles can exist by the year 2030. This workshop aimed to identify immediate action items that need to be undertaken to achieve a successful market introduction and ensuing large market share of PHEVs in the U.S. automotive fleet.

Weber, Adrienne M [ORNL; Sikes, Karen R [ORNL

2009-03-01T23:59:59.000Z

39

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

detour? Presentation at SAE 2008 Hybrid Vehicle Technologiesdrive vehicles, including plug-in hybrid vehicles. -vi-including plug-in hybrid vehicles. 7.0 References Anderman,

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

40

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

vehicles was the Hybrid and Electric Vehicle Act of 1976.for Electric and Hybrid Electric Vehicle Applications,and Impacts of Hybrid Electric Vehicle Options EPRI, Palo

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle phev integrated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Integrating plug-in electric vehicles into the electric power system.  

E-Print Network (OSTI)

??This dissertation contributes to our understanding of how plug-in hybrid electric vehicles (PHEVs) and plug-in battery-only electric vehicles (EVs)collectively termed plug-in electric vehicles (PEVs)could be (more)

Wu, Di

2012-01-01T23:59:59.000Z

42

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

rd International Electric Vehicle Symposium and Exposition (Electric and Hybrid Electric Vehicle Applications, Sandiaand Impacts of Hybrid Electric Vehicle Options EPRI, Palo

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

43

Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program  

E-Print Network (OSTI)

T. et al. (2006), Plug-in hybrid vehicle analysis, Milestonein conversions of hybrid vehicles are being made availablein Table 3: household hybrid vehicle ownership, respondents

Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

2009-01-01T23:59:59.000Z

44

Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program  

E-Print Network (OSTI)

Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Whys early market for hybrid electric vehicles. TransportationDriving Plug-In Hybrid Electric Vehicles: Reports from U.S.

Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

2009-01-01T23:59:59.000Z

45

TransForum v8n2 - Drive Cycle Impact on PHEVs  

NLE Websites -- All DOE Office Websites (Extended Search)

studied the impact of drive cycles on the component requirements of plug-in hybrid electric vehicles (PHEVs). Results showed that vehicles designed to satisy the urban...

46

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

of advanced batteries for plug-in hybrid electric vehicle (Advanced Lithium-Ion Batteries for Plug- in Hybrid-Electric Vehicles,

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

47

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network (OSTI)

District (2006) PHEV Prius Test Program by SacramentoMotor Sales (2006) Photo: Toyota Prius Interior, Electronichttp://www.toyota.com/prius/interior.html Accessed 2 April

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

48

Analysis of Integration of Plug-in Hybrid Electric Vehicles in the Distribution Grid.  

E-Print Network (OSTI)

?? The new generation of cars are so-called Plug-in Hybrid Electric Vehicles (PHEVs) which has the grid connection capability. By the introduction of these vehicles, (more)

Karnama, Ahmad

2009-01-01T23:59:59.000Z

49

Argonne TTRDC - APRF - Research Activities - Through-the-Road Parallel PHEV  

NLE Websites -- All DOE Office Websites (Extended Search)

Through-the-Road (TTR) Parallel PHEV Through-the-Road (TTR) Parallel PHEV ttr on dyno Argonne engineers developed the TTR to be the Lab's own PHEV development platform. As the demand for affordable and efficient PHEVs grows, so does the need to develop cost-effective PHEV technologies and components that are optimized for efficiency and performance. Argonne researchers needed a test platform for evaluating PHEV components, so they created the Through-the-Road (TTR) parallel hybrid electric vehicle. Argonne engineers accomplished this by transforming a Saturn Vue into an in-house PHEV development platform. The TTR allows researchers to run performance tests on a wide variety of PHEV technologies. The TTR is used to test PHEV components and to develop test procedures for competitive evaluation of those technologies. The Argonne-developed control

50

A Bidirectional High-Power-Quality Grid Interface With a Novel Bidirectional Noninverted Buck Boost Converter for PHEVs  

Science Conference Proceedings (OSTI)

Plug-in hybrid electric vehicles (PHEVs) will play a vital role in future sustainable transportation systems due to their potential in terms of energy security, decreased environmental impact, improved fuel economy, and better performance. Moreover, new regulations have been established to improve the collective gas mileage, cut greenhouse gas emissions, and reduce dependence on foreign oil. This paper primarily focuses on two major thrust areas of PHEVs. First, it introduces a grid-friendly bidirectional alternating current/direct current ac/dc dc/ac rectifier/inverter for facilitating vehicle-to-grid (V2G) integration of PHEVs. Second, it presents an integrated bidirectional noninverted buck boost converter that interfaces the energy storage device of the PHEV to the dc link in both grid-connected and driving modes. The proposed bidirectional converter has minimal grid-level disruptions in terms of power factor and total harmonic distortion, with less switching noise. The integrated bidirectional dc/dc converter assists the grid interface converter to track the charge/discharge power of the PHEV battery. In addition, while driving, the dc/dc converter provides a regulated dc link voltage to the motor drive and captures the braking energy during regenerative braking.

Onar, Omer C [ORNL

2012-01-01T23:59:59.000Z

51

PH&EV Research Center Dr. Tom Turrentine Director  

E-Print Network (OSTI)

Introduction of Toyota Aqua Introduction of 3rd Toyota Prius #12;G eneration 3 HEVs 2014 Early core market: 6, Prius top selling vehicle 4 years : 2 million registered California: 10% 3rd quarter of 2013, Prius best by Model Accord PHEV Fusion PHEV C-MAX Energi Prius Plug-In Volt #12;12 Sept. YTD Top 10 selling PEVs

California at Davis, University of

52

Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program  

E-Print Network (OSTI)

production of further hybrid cars. Similarly, Larry Rhodesbuying Priuses as commute carshybrids were fairly popularhybrid vehicles are being made available to (predominately new-car

Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

2009-01-01T23:59:59.000Z

53

Using GPS Travel Data to Assess the Real World Driving Energy Use of Plug-In Hybrid Electric Vehicles (PHEVs)  

DOE Green Energy (OSTI)

Highlights opportunities using GPS travel survey techniques and systems simulation tools for plug-in hybrid vehicle design improvements, which maximize the benefits of energy efficiency technologies.

Gonder, J.; Markel, T.; Simpson, A.; Thornton, M.

2007-05-01T23:59:59.000Z

54

TransForum v9n2 - PHEV Research  

NLE Websites -- All DOE Office Websites (Extended Search)

PHEVs Need Further Research for Acceptable Payback PHEVs Need Further Research for Acceptable Payback Fuel Consumption as a Function of Distance PHEV graph In order to double the fuel displacement obtained with a 4kWh battery, the battery size had to be quadrupled to 16kWh. Aymeric Rousseau and his team at Argonne studied the impact of real-world drive cycles on the fuel efficiency and costs of different plug-in hybrid electric vehicle (PHEV) configurations. They found that while different PHEV configurations all demonstrated great potential for replacing gasoline (with less gasoline consumed as more electricity was used), the benefit of adding a larger battery seemed to decrease with increasing battery pack size. "In general, the larger the battery, the more fuel saved," said Rousseau, principal investigator of the vehicle modeling and simulation

55

Electricity Grid: Impacts of Plug-In Electric Vehicle Charging  

E-Print Network (OSTI)

hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs), are among the most promising of the advanced vehicle

Yang, Christopher; McCarthy, Ryan

2009-01-01T23:59:59.000Z

56

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network (OSTI)

market, plug-in hybrid vehicles (PHEVs) are now consideredof Current Knowledge of Hybrid Vehicle Characteristics andalso called PHEV (Plug-in Hybrid Vehicle) because they are

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

57

Microsoft PowerPoint - EnergyCS Valence Prius PHEVs Fleet report...  

NLE Websites -- All DOE Office Websites (Extended Search)

Activity North American PHEV Demonstration Fleet Summary Report:- EnergyCS Prius (Valance pack) Number of Vehicles: 5 (EnergyCS Data Logger) Reporting Period: 2008 Summary *...

58

EPRI/IWC - AVTA's PHEV Testing and Demonstration Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

and 100% recharging times * Vehicle specifications 7 Hymotion Prius - UDDS Fuel Use * 5 kWh A123Systems (Li) V1 and Prius packs (AC kWh) Hymotion PHEV Prius MPG & kWh - UDDS...

59

Impact of Dynamic PHEVs Load on Renewable Sources based Distribution System  

E-Print Network (OSTI)

.Roy@student.adfa.edu.au Abstract--In this paper, charging effect of dynamic Plug in Hybrid Electric Vehicle (PHEV) is presented Plug in Hybrid Electrical Vehicles (PHEVs) can be a strong alternative to the conventional vehicle due to advances in bat- tery and hybrid-electric power technologies, coupled with the financial, energy security

Pota, Himanshu Roy

60

Locating PHEV Exchange Stations in V2G  

E-Print Network (OSTI)

Plug-in hybrid electric vehicles (PHEVs) are an environmentally friendly technology that is expected to rapidly penetrate the transportation system. Renewable energy sources such as wind and solar have received considerable attention as clean power options for future generation expansion. However, these sources are intermittent and increase the uncertainty in the ability to generate power. The deployment of PHEVs in a vehicle-to-grid (V2G) system provide a potential mechanism for reducing the variability of renewable energy sources. For example, PHEV supporting infrastructures like battery exchange stations that provide battery service to PHEV customers could be used as storage devices to stabilize the grid when renewable energy production is fluctuating. In this paper, we study how to best site these stations in terms of how they can support both the transportation system and the power grid. To model this problem we develop a two-stage stochastic program to optimally locate the stations prior to the realizat...

Pan, Feng; Berscheid, Alan; Izraelevitz, David

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle phev integrated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Vehicle Manufacturing Futures in Transportation Life-cycle Assessment  

E-Print Network (OSTI)

gasoline vehicles, hybrid electric vehicles, aircraft, high-Gasoline Vehicle (CGV), Hybrid Electric Vehicle (HEV),Plug-in Hybrid Electric Vehicle (PHEV), and Battery Electric

Chester, Mikhail; Horvath, Arpad

2011-01-01T23:59:59.000Z

62

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network (OSTI)

Early Market for Hybrid Electric Vehicles. TransportationVehicles: What Hybrid Electric Vehicles (HEVs) Mean and WhyPower Assist Hybrid Electric Vehicles, and Plug-in Hybrid

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

63

Demand response control for PHEV charging stations by dynamic price adjustments  

Science Conference Proceedings (OSTI)

Because of their economical operation and low environmental pollution, PHEVs (Plug-in Hybrid Electric Vehicles) are rapidly substituting gasoline vehicles. However, there still exist obstacles to proliferating their use, such as their relatively short ...

Daehyun Ban; George Michailidis; Michael Devetsikiotis

2012-01-01T23:59:59.000Z

64

NREL: Vehicle Ancillary Loads Reduction - Integrated Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Modeling Integrated Modeling NREL's Vehicle Ancillary Loads Reduction (VALR) team predicts the impact of advanced vehicle cooling technologies before testing by using an integrated modeling process. Evaluating the heat load on a vehicle under real world conditions is a difficult task. An accepted method to evaluate passenger compartment airflow and heat transfer is computational fluid dynamics. (CFD). Combining analytical models with CFD provides a powerful tool to assist industry both on current vehicles and on future design studies. Flow chart showing the vehicle integrated modeling process which considers solar radiation, air conditioning, and vehicles with CAD, glazing, cabin thermal/fluid, and thermal comfort modeling tools. Results are provided for fuel economy, tailpipe emissions and occupant thermal comfort.

65

The Early U.S. Market for PHEVs: Anticipating Consumer Awareness, Recharge Potential, Design Priorities and Energy Impacts  

E-Print Network (OSTI)

for plug-in hybrid electric vehicles (PHEVs): Goals and theand Impacts of Hybrid Electric Vehicle Options for a Compactof Plug-In Hybrid Electric Vehicles, Volume 1: Nationwide

Axsen, Jonn; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

66

The Early U.S. Market for PHEVs: Anticipating Consumer Awareness, Recharge Potential, Design Priorities and Energy Impacts  

E-Print Network (OSTI)

gas emissions from plug-in hybrid vehicles: Implications forU.S. market, plug-in hybrid vehicles (PHEVs) are touted asdesign your own plug-in hybrid vehicle. You will determine

Axsen, Jonn; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

67

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network (OSTI)

Assessment for Battery Electric Vehicles, PowerAssist Hybrid Electric Vehicles, and Plug-in Hybrid Electric Vehicles. EPRI: Palo Alto, CA.

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

68

An Energy Evolution: Alternative Fueled Vehicle  

E-Print Network (OSTI)

Hydrogen #12;5 What is best for society? · Hybrid electric vehicles? (HEVs) · Plug-in hybrids? (PHEVs) Gasoline HEVs Fuel Cell Hybrid Electric Vehicle (FCEV) Gasoline PHEVs Ethanol PHEVs #12;11 Fuel Cell) · Biofuels? · Fuel cell electric vehicles? (FCEVs) · Battery Electric Vehicles (BEVs) ... .or all

69

Self-Learning Controller for Plug-in Hybrid Vehicles Learns ...  

electric vehicles (PHEVs). This device improves PHEV performance and fuel efficiency by maintaining as high a state of battery charge as possible, given the ...

70

One Million PHEVs by 2015: Challenges for Advanced Battery Technology  

DOE Green Energy (OSTI)

Lithium-ion batteries for hybrid electric vehicles (HEVs) have recently reached commercialization. R&D focus remains on cost reduction and improved abuse tolerance. DOE's battery R&D program has evolved to focus on high-energy plug-in hybrid electric vehicle (PHEV) systems. Li-ion represents the most promising chemistry for PHEVs because of its high energy density, high power capability and potential longer life & lower cost. Lack of domestic battery manufacturing remains a significant challenge. The 2009 Economic Recovery Act provides significant funding to address it. Long term success of PHEV & electric vehicle (EV) Li-ion batteries depends on further cost reduction and performance/life/safety improvements. Multi-physics CAE modeling is key enabler.

Smith, K.

2009-12-02T23:59:59.000Z

71

Argonne TTRDC - APRF - Research Activities - Developing PHEV...  

NLE Websites -- All DOE Office Websites (Extended Search)

Developing PHEV Test Methods and Procedures (SAE J1711) Argonne tests a EnergyCS Prius PHEV Conversion The EnergyCS Prius PHEV Conversion is tested on the APRF's dynamometers....

72

Incorporation of plug in hybrid electric vehicle in the reactive power market  

Science Conference Proceedings (OSTI)

This paper incorporates plug in hybrid electric vehicle(PHEV) in the reactive power market. The PHEV capability curve is first extracted considering the operation limit of PHEV. In order to offer price in the reactive power market

H. Feshki Farahani; H. A. Shayanfar; M. S. Ghazizadeh

2012-01-01T23:59:59.000Z

73

An Economic Analysis of Used Electric Vehicle Batteries Integrated...  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis of Used Electric Vehicle Batteries Integrated into Commercial Building Microgrids Title An Economic Analysis of Used Electric Vehicle Batteries Integrated into...

74

Vehicle Technologies Office: Thermal Control and System Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Control and System Integration to someone by E-mail Share Vehicle Technologies Office: Thermal Control and System Integration on Facebook Tweet about Vehicle Technologies...

75

PHEV-EV Charger Technology Assessment with an Emphasis on V2G Operation  

DOE Green Energy (OSTI)

More battery powered electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) will be introduced to the market in 2011 and beyond. Since these vehicles have large batteries that need to be charged from an external power source or directly from the grid, their batteries, charging circuits, charging stations/infrastructures, and grid interconnection issues are garnering more attention. This report summarizes information regarding the batteries used in PHEVs, different types of chargers, charging standards and circuits, and compares different topologies. Furthermore, it includes a list of vehicles that are going to be in the market soon with information on their charging and energy storage equipment. A summary of different standards governing charging circuits and charging stations concludes the report. There are several battery types that are available for PHEVs; however, the most popular ones have nickel metal hydride (NiMH) and lithium-ion (Li-ion) chemistries. The former one is being used in current hybrid electric vehicles (HEVs), but the latter will be used in most of the PHEVs and EVs due to higher energy densities and higher efficiencies. The chargers can be classified based on the circuit topologies (dedicated or integrated), location of the charger (either on or off the vehicle), connection (conductive, inductive/wireless, and mechanical), electrical waveform (direct current (dc) or alternating current (ac)), and the direction of power flow (unidirectional or bidirectional). The first PHEVs typically will have dedicated, on-board, unidirectional chargers that will have conductive connections to the charging stations or wall outlets and will be charged using either dc or ac. In the near future, bidirectional chargers might also be used in these vehicles once the benefits of practical vehicle to grid applications are realized. The terms charger and charging station cause terminology confusion. To prevent misunderstandings, a more descriptive term of electric vehicle supply equipment (EVSE) is used instead of charging station. The charger is the power conversion equipment that connects the battery to the grid or another power source, while EVSE refers to external equipment between the grid or other power source and the vehicle. EVSE might include conductors, connectors, attachment plugs, microprocessors, energy measurement devices, transformers, etc. Presently, there are more than 40 companies that are producing EVSEs. There are several standards and codes regarding conductive and inductive chargers and EVSEs from the Society of Automotive Engineers (SAE), the Underwriter Laboratories (UL), the International Electrotechnical Commission (IEC), and the National Electric Code (NEC). The two main standards from SAE describe the requirements for conductive and inductive coupled chargers and the charging levels. For inductive coupled charging, three levels are specified: Level 1 (120 V and 12 A, single-phase), Level 2 (208 V-240 V and 32 A, single-phase), and Level 3 (208-600 V and 400 A, three-phase) . The standard for the conductive-coupled charger also has similar charging ratings for Levels 1 and 2, but it allows higher current ratings for Level 2 charging up to 80 A. Level 3 charging for this standard is still under development and considers dc charging instead of three-phase ac. More details in these areas and related references can be found in this Oak Ridge National Laboratory (ORNL) report on PHEV-EV charger technology assessment.

Kisacikoglu, Mithat C [ORNL; Bedir, Abdulkadir [ORNL; Ozpineci, Burak [ORNL; Tolbert, Leon M [ORNL

2012-03-01T23:59:59.000Z

76

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network (OSTI)

for Flex-Fuel Vehicles Including E85, Plug-in Hybrids Peakfor-flex-fuel-vehicles-including-e85-plug-in- hybrids-peak-

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

77

Semiotics and Advanced Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Why it Matters to Consumers  

E-Print Network (OSTI)

In Early Markets For Hybrid Electric Vehicles. Institute ofon Plug-in Hybrid Electric Vehicle (PHEV) Technology,and Impacts of Hybrid Electric Vehicle Options. Electric

Heffner, Reid R.

2007-01-01T23:59:59.000Z

78

VEHICLE TECHNOLOGIES PROGRAM Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing Activity North American PHEV Demonstration Monthly Summary Report - Hymotion Prius (V2Green data logger) Total Number Vehicles - 169 (May 2010) Total Cumulative Test...

79

Description of a Basic Vehicle Control Strategy for a Plug-In Hybrid Vehicle  

Science Conference Proceedings (OSTI)

This report describes development of a basic powertrain control strategy for a plug-in hybrid electric vehicle (PHEV).

2007-03-28T23:59:59.000Z

80

Living Labs of Electric Vehicle Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Living Labs of Electric Vehicle Integration Living Labs of Electric Vehicle Integration Speaker(s): Johan Driesen Date: May 11, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Chris Marnay Electric vehicles and plug-in hybrid vehicles are key to making transportation sustainable and climate change neutral. This talk will focus on the electricity grid integration aspects of wide-scale charging infrastructure: the impact on generation capacity, transmission and distribution are dealt with through measurements, modeling and scenario simulations. The advantages and problems of the possible business models to pay for the charging are discussed. Alternative charging and grid-coupling technology (e.g. wireless inductive charging) is considered. The relationship with the transition towards "smart cities" is discussed. In

Note: This page contains sample records for the topic "vehicle phev integrated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Deriving In-Use PHEV Fuel Economy Predictions from Standardized Test Cycle Results: Preprint  

DOE Green Energy (OSTI)

Explores the issue of how to apply an adjustment method to raw plug-in hybrid vehicle dynamometer test results to better estimate PHEVs' in-use fuel and electricity consumption.

Gonder, J.; Brooker, A.; Carlson, R.; Smart, J.

2009-08-01T23:59:59.000Z

82

Wenatchee PHEV Conversions Workshop - AVTA's PHEV Testing and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Economy Driving Schedule) dynamometer test cycles 7 Hymotion Prius - UDDS Fuel Use * 5 kWh A123Systems (Li) V1 and Prius packs (AC kWh) Hymotion PHEV Prius MPG & kWh - UDDS...

83

Interactions between Electric-drive Vehicles and the Power Sector in California  

E-Print Network (OSTI)

of Plug-In Hybrid Electric Vehicles, Volume 1: NationwideBEVs or plug-in hybrid electric vehicles (PHEVs) requirescell vehicle; HEV = Hybrid electric vehicle; ICE = Internal

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2009-01-01T23:59:59.000Z

84

Vehicle Technologies Office: Fact #798: September 23, 2013Plug...  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Driving Range For the 2013 model year (MY) there are four plug-in hybrid electric vehicles (PHEVs) available to consumers. PHEVs offer a limited amount of all-electric...

85

DOD/NREL Model Integrates Vehicles, Renewables & Microgrid (Fact...  

NLE Websites -- All DOE Office Websites (Extended Search)

locations for systems connecting electric vehicles with solar energy sources and microgrids. A microgrid that integrates renewable generation and vehicle energy storage offers...

86

Feature - U.S.-Sweden Joint PHEV Research  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S.-Sweden Joint PHEV Research U.S.-Sweden Joint PHEV Research How the Smart Charge System Works How the Smart Charge System Works Looking to jointly develop new plug-in hybrid vehicle (PHEV) technology and accelerate its consumer acceptance and commercialization, the U.S. Department of Energy (DOE) and Sweden signed a Memorandum of Understanding (MOU) in July for a one year, $1 million cost-sharing agreement to be equally funded by DOE and the Swedish Energy Agency. Through contacts developed over many years conducting international technology assessment for the Department of Energy, Argonne National Laboratory initiated the MOU, which was signed by DOE Assistant Secretary Alexander Karsner and Director General of the Swedish Energy Agency Tomas Kåberger, on the Swedish island of Gotland. The ceremony included comments

87

Multi-information integrated trip specific optimal power management for plug-in hybrid electric vehicles  

Science Conference Proceedings (OSTI)

Plug-in hybrid electric vehicles (PHEV) are widely received as a promising means of green mobility by utilizing more battery power. Recently, we have proposed a scheme of two-scale spatial-domain dynamic programming (DP) as a nearly global optimization ...

Yang Bin; Yaoyu Li; Qiuming Gong; Zhong-Ren Peng

2009-06-01T23:59:59.000Z

88

Integrated test vehicle program plan: revision C  

DOE Green Energy (OSTI)

This edition dated August 26, 1977, is Revision C of the Integrated Test Vehicle, Program Plan, Phase II - Deliverable Item 2-7-1. The original edition was issued on May 27, 1977. Corrections were made and issued as Proposed Modifications for Integrated Test Vehicle, Program Plan, dated July 8, 1977. For the purpose of documenting changes, the July 8, 1977, version is caled Revision A. The edition dated August 5, 1977, is called Revision B. Each paragraph in this edition is marked to indicate technical changes from previous editions.

Not Available

1977-08-26T23:59:59.000Z

89

A Multi Agent-Based Framework for Simulating Household PHEV Distribution and Electric Distribution Network Impact  

DOE Green Energy (OSTI)

The variation of household attributes such as income, travel distance, age, household member, and education for different residential areas may generate different market penetration rates for plug-in hybrid electric vehicle (PHEV). Residential areas with higher PHEV ownership could increase peak electric demand locally and require utilities to upgrade the electric distribution infrastructure even though the capacity of the regional power grid is under-utilized. Estimating the future PHEV ownership distribution at the residential household level can help us understand the impact of PHEV fleet on power line congestion, transformer overload and other unforeseen problems at the local residential distribution network level. It can also help utilities manage the timing of recharging demand to maximize load factors and utilization of existing distribution resources. This paper presents a multi agent-based simulation framework for 1) modeling spatial distribution of PHEV ownership at local residential household level, 2) discovering PHEV hot zones where PHEV ownership may quickly increase in the near future, and 3) estimating the impacts of the increasing PHEV ownership on the local electric distribution network with different charging strategies. In this paper, we use Knox County, TN as a case study to show the simulation results of the agent-based model (ABM) framework. However, the framework can be easily applied to other local areas in the US.

Cui, Xiaohui [ORNL; Liu, Cheng [ORNL; Kim, Hoe Kyoung [ORNL; Kao, Shih-Chieh [ORNL; Tuttle, Mark A [ORNL; Bhaduri, Budhendra L [ORNL

2011-01-01T23:59:59.000Z

90

Vehicle Battery Basics | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

22, 2013 - 1:58pm Addthis Batteries are essential for electric drive technologies such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and...

91

Plug-In Hybrid Electric Vehicles - Prototypes  

NLE Websites -- All DOE Office Websites (Extended Search)

Prototypes Prototypes A PHEV prototype being prepared for testing. A plug-in electric vehicle (PHEV) prototype is prepared for testing at Argonne National Laboratory. What is a PHEV? A plug-in hybrid electric vehicle, or PHEV, is similar to today's hybrid electric vehicles on the market today, but with a larger battery that is charged both by the vehicle's gasoline engine and from plugging into a standard 110 V electrical outlet for a few hours each day. PHEVs and HEVs both use battery-powered motors and gasoline-powered engines for high fuel efficiency, but PHEVs can further reduce fuel usage by employing electrical energy captured through daily charging. Prototype as Rolling Test Bed As part of Argonne's multifaceted PHEV research program, Argonne researchers have constructed a PHEV prototype that serves as a rolling test

92

Interpersonal Influence within Car Buyers Social Networks: Five Perspectives on Plug-in Hybrid Electric Vehicle Demonstration Participants  

E-Print Network (OSTI)

Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Whyearly market for hybrid electric vehicles." TransportationPlug-in Hybrid Electric Vehicle (PHEV) Demonstration and

Axsen, Jonn; Kurani, Kenneth S.

2009-01-01T23:59:59.000Z

93

PHEV/EV Li-Ion Battery Second-Use Project, NREL (National Renewable Energy Laboratory) (Poster)  

SciTech Connect

Plug-in hybrid electric vehicles (PHEVs) and full electric vehicles (Evs) have great potential to reduce U.S. dependence on foreign oil and emissions. Battery costs need to be reduced by ~50% to make PHEVs cost competitive with conventional vehicles. One option to reduce initial costs is to reuse the battery in a second application following its retirement from automotive service and offer a cost credit for its residual value.

Newbauer, J.; Pesaran, A.

2010-05-01T23:59:59.000Z

94

Who Will More Likely Buy PHEV: A Detailed Market Segmentation Analysis  

DOE Green Energy (OSTI)

Understanding the diverse PHEV purchase behaviors among prospective new car buyers is key for designing efficient and effective policies for promoting new energy vehicle technologies. The ORNL MA3T model developed for the U.S. Department of Energy is described and used to project PHEV purchase probabilities by different consumers. MA3T disaggregates the U.S. household vehicle market into 1458 consumer segments based on region, residential area, driver type, technology attitude, home charging availability and work charging availability and is calibrated to the EIA s Annual Energy Outlook. Simulation results from MA3T are used to identify the more likely PHEV buyers and provide explanations. It is observed that consumers who have home charging, drive more frequently and live in urban area are more likely to buy a PHEV. Early adopters are projected to be more likely PHEV buyers in the early market, but the PHEV purchase probability by the late majority consumer can increase over time when PHEV gradually becomes a familiar product. Copyright Form of EVS25.

Lin, Zhenhong [ORNL; Greene, David L [ORNL

2010-01-01T23:59:59.000Z

95

Design Optimization of PHEV and EREV Powertrain Architectures - Performance and Efficiency  

Science Conference Proceedings (OSTI)

This project investigates design optimization of plug-in hybrid electric vehicle (PHEV) and extended range electric vehicle (EREV) powertrain architectures in terms of performance and efficiency. The motivation behind this initial effort is to develop a comparative method for assessing design choices for a given vehicle class that can be used to test those design choices through sensitivity analysis in later investigations.

2008-12-16T23:59:59.000Z

96

North American PHEV Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

Fleet Summary Report - Hymotion Escape (Kvaser data logger) Date range of data received: Number of Vehicles: 122008 to 11182008 Reporting period: Number of days when the...

97

DOD/NREL Model Integrates Vehicles, Renewables & Microgrid (Fact Sheet)  

DOE Green Energy (OSTI)

Fact sheet on microgrid model created by the Electric Vehicle Grid Integration program at the Fort Carson Army facility.

Not Available

2011-02-01T23:59:59.000Z

98

A Fully Directional Universal Power Electronic Interface for EV, HEV, and PHEV Applications  

SciTech Connect

This study focuses on a universal power electronic interface that can be utilized in any type of the electric vehicles, hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs). Basically, the proposed converter interfaces the energy storage device of the vehicle with the motor drive and the external charger, in case of PHEVs. The proposed converter is capable of operating in all directions in buck or boost modes with a noninverted output voltage (positive output voltage with respect to the input) and bidirectional power flow.

Onar, Omer C [ORNL

2012-01-01T23:59:59.000Z

99

Advanced Vehicle Testing Activity - Plug-in Hybrid ElectricVehicles...  

NLE Websites -- All DOE Office Websites (Extended Search)

INL and testing partner Electric Transportation Engineering Corporation conduct Plug-in Hybrid Electric Vehicle (PHEV) and Extended Range Electric Vehicle (EREV) testing as part...

100

Electricity Demand of PHEVs Operated by Private Households and Commercial Fleets: Effects of Driving and Charging Behavior  

SciTech Connect

Automotive and energy researchers have made considerable efforts to predict the impact of plug-in hybrid vehicle (PHEV) charging on the electrical grid. This work has been done primarily through computer modeling and simulation. The US Department of Energys (DOE) Advanced Vehicle Testing Activity (AVTA), in partnership with the University of California at Daviss Institute for Transportation Stuides, have been collecting data from a diverse fleet of PHEVs. The AVTA is conducted by the Idaho National Laboratory for DOEs Vehicle Technologies Program. This work provides the opportunity to quantify the petroleum displacement potential of early PHEV models, and also observe, rather than simulate, the charging behavior of vehicle users. This paper presents actual charging behavior and the resulting electricity demand from these PHEVs operating in undirected, real-world conditions. Charging patterns are examined for both commercial-use and personal-use vehicles. Underlying reasons for charging behavior in both groups are also presented.

John Smart; Matthew Shirk; Ken Kurani; Casey Quinn; Jamie Davies

2010-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle phev integrated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Financial Vehicles within an Integrated Energy Efficiency Program...  

NLE Websites -- All DOE Office Websites (Extended Search)

Financial Vehicles within an Integrated Energy Efficiency Program Slide 1 Financial mechanisms within Integrated Energy Efficiency Programs Every successful energy efficiency...

102

Nonlinear and linear models for losses of plug in hybrid electric vehicle: A computation approach  

Science Conference Proceedings (OSTI)

This paper presents nonlinear and linear models for the losses of Plug in Hybrid Electric Vehicle (PHEV). An accurate model to calculate the PHEV losses for just one vehicle is not remarkable. However

2013-01-01T23:59:59.000Z

103

The California Zero-Emission Vehicle Mandate: A Study of the Policy Process, 1990-2004  

E-Print Network (OSTI)

inclusion of hybrid electric vehicles, neighborhood electriccertain plug-in hybrid electric vehicles (PHEVs) to the ZEVprovisions pertaining hybrid electric vehicles (that fell in

Collantes, Gustavo O

2006-01-01T23:59:59.000Z

104

Microsoft Word - EVS25_Primary Factors Impact Fuel Consumption of PHEV_FINAL.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

EVS-25 Shenzhen, China, Nov. 5-9, 2010 EVS-25 Shenzhen, China, Nov. 5-9, 2010 The 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition Factors Affecting the Fuel Consumption of Plug-In Hybrid Electric Vehicles Richard 'Barney' Carlson, Matthew G. Shirk, and Benjamin M. Geller Energy Storage and Transportation Systems Department, Idaho National Laboratory 2525 N. Fremont Ave., Idaho Falls, ID 83401, USA E-mail: richard.carlson@inl.gov Abstract- Plug-in hybrid electric vehicles (PHEVs) have proven to significantly reduce petroleum consumption when compared to conventional internal combustion engine vehicles by utilizing onboard electrical energy storage for propulsion. Through extensive testing of PHEVs, analysis has shown that fuel consumption of PHEVs is more

105

U.S.-Sweden Joint PHEV Research  

NLE Websites -- All DOE Office Websites (Extended Search)

to jointly develop new plug-in to jointly develop new plug-in hybrid vehicle (PHEV) technology and accelerate its consumer acceptance and commercialization, the U.S. Department of Energy (DOE) and Sweden signed a Memorandum of Understanding (MOU) in July for a one year, $1 million cost-sharing agreement to be equally funded by DOE and the Swedish Energy Agency. Through contacts developed over many years conducting international technology assessment for the Department of Energy, Argonne National Laboratory initiated the MOU, which was signed by DOE Assistant Secretary Alexander Karsner and Director General of the Swedish Energy Agency Tomas Kåberger, on the Swedish island of Gotland. The ceremony included comments by Swedish Deputy Prime Minister Maud Olofsson and U.S. Ambassador to Sweden Michael

106

PHEV Energy Use Estimation: Validating the Gamma Distribution for Representing the Random Daily Driving Distance  

SciTech Connect

The petroleum and electricity consumptions of plug-in hybrid electric vehicles (PHEVs) are sensitive to the variation of daily vehicle miles traveled (DVMT). Some studies assume DVMT to follow a Gamma distribution, but such a Gamma assumption is yet to be validated. This study finds the Gamma assumption valid in the context of PHEV energy analysis, based on continuous GPS travel data of 382 vehicles, each tracked for at least 183 days. The validity conclusion is based on the found small prediction errors, resulting from the Gamma assumption, in PHEV petroleum use, electricity use, and energy cost. The finding that the Gamma distribution is valid and reliable is important. It paves the way for the Gamma distribution to be assumed for analyzing energy uses of PHEVs in the real world. The Gamma distribution can be easily specified with very few pieces of driver information and is relatively easy for mathematical manipulation. Given the validation in this study, the Gamma distribution can now be used with better confidence in a variety of applications, such as improving vehicle consumer choice models, quantifying range anxiety for battery electric vehicles, investigating roles of charging infrastructure, and constructing online calculators that provide personal estimates of PHEV energy use.

Lin, Zhenhong [ORNL; Dong, Jing [ORNL; Liu, Changzheng [ORNL; Greene, David L [ORNL

2012-01-01T23:59:59.000Z

107

Technology Improvement Pathways to Cost-Effective Vehicle Electrification: Preprint  

DOE Green Energy (OSTI)

This paper evaluates several approaches aimed at making plug-in electric vehicles (EV) and plug-in hybrid electric vehicles (PHEVs) cost-effective.

Brooker, A.; Thornton, M.; Rugh, J.

2010-02-01T23:59:59.000Z

108

Optimization of a plug-in hybrid electric vehicle .  

E-Print Network (OSTI)

??A plug-in hybrid electric vehicle (PHEV) is a vehicle powered by a combination of an internal combustion engine and an electric motor with a battery (more)

Golbuff, Sam

2006-01-01T23:59:59.000Z

109

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 of 6 VEHICLE DETAILS AND BATTERY SPECIFICATIONS 1 Vehicle Details Base Vehicle: 2013 Chevrolet Volt VIN: 1G1RA6E40DU103929 Propulsion System: Multi-Mode PHEV (EV, Series,...

110

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 VEHICLE DETAILS AND BATTERY SPECIFICATIONS 1 Vehicle Details Base Vehicle: 2011 Chevrolet Volt VIN: 1G1RD6E48BU100815 Propulsion System: Multi-Mode PHEV (EV, Series, and...

111

Towards Optimal Energy Store-Carry-and-Deliver for PHEVs via V2G System  

E-Print Network (OSTI)

electric vehicle (PHEV) with a realistic battery model, which is general for both battery electric cars, Weihua Zhuang, and Xuemin (Sherman) Shen Department of Electrical and Computer Engineering, University to enable bidirectional energy delivery between the power grid and plug- in electric vehicles. Communication

Zhuang, Weihua

112

An Optimal Fuzzy Logic Power Sharing Strategy for Parallel Hybrid Electric Vehicles  

E-Print Network (OSTI)

An Optimal Fuzzy Logic Power Sharing Strategy for Parallel Hybrid Electric Vehicles F. Khoucha1 presents a fuzzy logic controller for a Parallel Hybrid Electric Vehicle (PHEV). The PHEV required driving economy, and emissions. Index Terms--Parallel Hybrid Electric Vehicle (PHEV), Internal Combustion Engine

Paris-Sud XI, Université de

113

Integrated Vehicle Thermal Management - Combining Fluid Loops in Electric Drive Vehicles (Presentation)  

SciTech Connect

Plug-in hybrid electric vehicles and electric vehicles have increased vehicle thermal management complexity, using separate coolant loop for advanced power electronics and electric motors. Additional thermal components result in higher costs. Multiple cooling loops lead to reduced range due to increased weight. Energy is required to meet thermal requirements. This presentation for the 2013 Annual Merit Review discusses integrated vehicle thermal management by combining fluid loops in electric drive vehicles.

Rugh, J. P.

2013-07-01T23:59:59.000Z

114

Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles  

E-Print Network (OSTI)

and Batteries for Hybrid Vehicle Applications, 23 rdSimulations of Plug-in Hybrid Vehicles using Advancedultracapacitors in plug-in hybrid vehicles (PHEVs) with high

Burke, Andy; Zhao, Hengbing

2010-01-01T23:59:59.000Z

115

Electric Vehicle Grid Integration for Sustainable Military Installations (Presentation)  

DOE Green Energy (OSTI)

This presentation discusses electric vehicle grid integration for sustainable military installations. Fort Carson Military Reservation in Colorado Springs is used as a case study.

Simpson, M.

2011-05-05T23:59:59.000Z

116

Secondary Use of PHEV and EV Batteries: Opportunities & Challenges (Presentation)  

SciTech Connect

NREL and partners will investigate the reuse of retired lithium ion batteries for plug-in hybrid, hybrid, and electric vehicles in order to reduce vehicle costs and emissions and curb our dependence on foreign oil. A workshop to solicit industry feedback on the process is planned. Analyses will be conducted, and aged batteries will be tested in two or three suitable second-use applications. The project is considering whether retired PHEV/EV batteries have value for other applications; if so, what are the barriers and how can they be overcome?

Neubauer, J.; Pesaran, A.; Howell, D.

2010-05-01T23:59:59.000Z

117

Bi-Directional DC-DC Converter for PHEV Applications  

DOE Green Energy (OSTI)

Plug-In Hybrid Electric Vehicles (PHEV) require high power density energy storage system (ESS) for hybrid operation and high energy density ESS for Electric Vehicle (EV) mode range. However, ESS technologies to maximize power density and energy density simultaneously are not commercially feasible. The use of bi-directional DC-DC converter allows use of multiple energy storage, and the flexible DC-link voltages can enhance the system efficiency and reduce component sizing. This will improve fuel consumption, increase the EV mode range, reduce the total weight, reduce battery initial and life cycle cost, and provide flexibility in system design.

Abas Goodarzi

2011-01-31T23:59:59.000Z

118

High Power SiC Modules for HEVs and PHEVs Abstract--With efforts to reduce the cost, size, and thermal  

E-Print Network (OSTI)

and electric machinery (APEEM) activity is to develop technology towards achieving overall electric propulsion of these components. Plug-in hybrid electric vehicle (PHEV) cost targets for the APEEM as established by DOE for PHEVs. Research in eliminating the low temperature loop and using the engine coolant for the APEEM shows

Tolbert, Leon M.

119

Anticipating PHEV Energy Impacts in California  

E-Print Network (OSTI)

contribute to peak electricity demand (depending on a givenadditions to daytime electricity demand from PHEVs. However,Their higher peak electricity demand estimate is due to

Axsen, John; Kurani, Kenneth S.

2009-01-01T23:59:59.000Z

120

Deriving In-Use PHEV Fuel Economy Predictions from Standardized Test Cycle Results  

DOE Green Energy (OSTI)

Plug-in hybrid electric vehicles (PHEVs) have potential to reduce or eliminate the U.S. dependence on foreign oil. Quantifying the amount of petroleum each uses, however, is challenging. To estimate in-use fuel economy for conventional vehicles the Environmental Protection Agency (EPA) conducts chassis dynamometer tests on standard historic drive cycles and then adjusts the resulting raw fuel economy measurements downward. Various publications, such as the forthcoming update to the SAE J1711 recommended practice for PHEV fuel economy testing, address the challenges of applying standard test procedures to PHEVs. This paper explores the issue of how to apply an adjustment method to such raw PHEV dynamometer test results in order to more closely estimate the in-use fuel and electricity consumption characteristics of these vehicles. The paper discusses two possible adjustment methods, and evaluates one method by applying it to dynamometer data and comparing the result to in-use fleet data (on an aftermarket conversion PHEV). The paper will also present the methodologies used to collect the data needed for this comparison.

John Smart; Richard "Barney" Carlson; Jeff Gonder; Aaron Brooker

2009-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle phev integrated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Tacomo Power/AVTA PHEV Demand and Energy Cost Demonstration ...  

NLE Websites -- All DOE Office Websites (Extended Search)

facility. This report provides results from charging of several PHEVs at the Tacoma Power facility as a preliminary assessment of how PHEVs will impact the electricity grid....

122

Optimal Charging of Plug-in Hybrid Electric Vehicles in Smart Grids Somayeh Sojoudi Steven H. Low  

E-Print Network (OSTI)

1 Optimal Charging of Plug-in Hybrid Electric Vehicles in Smart Grids Somayeh Sojoudi Steven H. Low Abstract-- Plug-in hybrid electric vehicles (PHEVs) play an important role in making a greener future-in hybrid electric vehicles (PHEVs) are becoming more popular as we move toward a greener future. PHEVs

Low, Steven H.

123

Argonne TTRDC - TransForum v10n1 - Taking PHEVs Farther on a Single Battery  

NLE Websites -- All DOE Office Websites (Extended Search)

Charging Ahead: Taking PHEVs Farther on a Single Battery Charge Charging Ahead: Taking PHEVs Farther on a Single Battery Charge Ultracapacitors Ultracapacitors will dramatically boost the power of lithium-ion batteries, enabling plug-in vehicles to travel much further on a single charge. Every six months, we're reminded to change the batteries in our household appliances: smoke alarms, flashlights and radios. But what if you had to change the battery in your plugin hybrid electric vehicle (PHEV) just as often? Fortunately, researchers at Argonne may have found a way to exponentially increase the calendar and cycle lifetimes of lithium-ion batteries. Electric double-layer capacitors- typically referred to as ultracapacitors-have an energy density thousands of times greater than conventional capacitors and a power density hundreds of times greater than

124

Examination of a PHEV Bi-Directional Charger System for V2G Reactive Power Compensation  

SciTech Connect

Plug-in hybrid electric vehicles (PHEVs) potentially have the capability to fulfill the energy storage needs of the electric grid by supplying ancillary services such as reactive power compensation. However, in order to allow bidirectional power transfer, the PHEV battery charger should be designed to manage such capability. While many different battery chargers have been available since the inception of the first electric vehicles (EVs), an on-board, conductive charger with bidirectional power transferring capability have recently drawn attention due to their inherent advantages in charging accessibility, ease of use and efficiency. In this study, a reactive power compensation case study using the inverter dc-link capacitor is given when a PHEV battery is under charging operation. Finally, the impact of providing these services on the batteries is also explained.

Kisacikoglu, Mithat C [ORNL; Ozpineci, Burak [ORNL; Tolbert, Leon M [ORNL

2010-01-01T23:59:59.000Z

125

Hybrid energy storage system integration for vehicles  

Science Conference Proceedings (OSTI)

Energy consumption and the associated environmental impact are a pressing challenge faced by the transportation sector. Emerging electric-drive vehicles have shown promises for substantial reductions in petroleum use and vehicle emissions. Their success, ... Keywords: analysis, electric-drive vehicles, energy storage systems

Jia Wang; Kun Li; Qin Lv; Hai Zhou; Li Shang

2010-08-01T23:59:59.000Z

126

An agent-based model to study market penetration of plug-in hybrid electric vehicles  

E-Print Network (OSTI)

of fuel costs, to agent willingness to adopt the PHEV technology, to PHEV purchase price and rebates, to PHEV battery range, and to heuristic values related to gasoline usage. Our simulations indicate of expected lifetime fuel costs associated with different vehicles (e.g., on vehicle stickers

Vermont, University of

127

Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption of a PHEV School Bus: Preprint  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory (NREL) collected and analyzed real-world school bus drive cycle data and selected similar standard drive cycles for testing on a chassis dynamometer. NREL tested a first-generation plug-in hybrid electric vehicle (PHEV) school bus equipped with a 6.4L engine and an Enova PHEV drive system comprising a 25-kW/80 kW (continuous/peak) motor and a 370-volt lithium ion battery pack. A Bluebird 7.2L conventional school bus was also tested. Both vehicles were tested over three different drive cycles to capture a range of driving activity. PHEV fuel savings in charge-depleting (CD) mode ranged from slightly more than 30% to a little over 50%. However, the larger fuel savings lasted over a shorter driving distance, as the fully charged PHEV school bus would initially operate in CD mode for some distance, then in a transitional mode, and finally in a charge-sustaining (CS) mode for continued driving. The test results indicate that a PHEV school bus can achieve significant fuel savings during CD operation relative to a conventional bus. In CS mode, the tested bus showed small fuel savings and somewhat higher nitrogen oxide (NOx) emissions than the baseline comparison bus.

Barnitt, R.; Gonder, J.

2011-04-01T23:59:59.000Z

128

EIAs AEO2012 includes analysis of breakthroughs in vehicle ...  

U.S. Energy Information Administration (EIA)

Plug-in hybrid electric (PHEV): Vehicles with larger batteries to provide power to drive the vehicle for some distance in charge-depleting mode ...

129

Field Testing Plug-in Hybrid Electric Vehicles with Charge Control...  

NLE Websites -- All DOE Office Websites (Extended Search)

over future resource availability and the environmental impacts of continued fossil-fuel consumption. Plug-in hybrid electric vehicles (PHEVs), electric vehicles, and fuel cell...

130

he electrification of passenger vehicles has the potential to address three of the most critical  

E-Print Network (OSTI)

exist for helping to achieve these goals. Hybrid electric vehicles (HEVs), such as the Toyota Prius. Larger PHEV batteries enable longer electric travel between charges. The PHEV version of the Prius has

McGaughey, Alan

131

Fault-Delayed Voltage Recovery Control with Plug-In Hybrid Electric Vehicles  

Science Conference Proceedings (OSTI)

This paper presents an investigation into the impact that plug-in hybrid electric vehicles (PHEVs) could have to mitigate the effects of fault-delayed voltage recovery. The energy storage and conversion system in PHEVs, given potentially high levels ...

Curtis Roe; Yousef M. Al-Abdullah; Dhwanil Desai; George K. Stefopoulos; George J. Cokkinides; A. P. Meliopoulos

2010-01-01T23:59:59.000Z

132

Integration of electric vehicles into distribution networks.  

E-Print Network (OSTI)

??The objectives of this research were to investigate the impact of electric vehicle battery charging on grid demand at a national level and on the (more)

Papadopoulos, Panagiotis

2012-01-01T23:59:59.000Z

133

Design of a Lithium-ion Battery Pack for PHEV Using a Hybrid Optimization Method  

E-Print Network (OSTI)

Design of a Lithium-ion Battery Pack for PHEV Using a Hybrid Optimization Method Nansi Xue1 Abstract This paper outlines a method for optimizing the design of a lithium-ion battery pack for hy- brid, volume or material cost. Keywords: Lithium-ion, Optimization, Hybrid vehicle, Battery pack design

Papalambros, Panos

134

U.S. Department of Energy Vehicle Technologies Program -- Advanced Vehicle Testing Activity -- Plug-in Hybrid Electric Vehicle Charging Infrastructure Review  

DOE Green Energy (OSTI)

Plug-in hybrid electric vehicles (PHEVs) are under evaluation by various stake holders to better understand their capability and potential benefits. PHEVs could allow users to significantly improve fuel economy over a standard HEV and in some cases, depending on daily driving requirements and vehicle design, have the ability to eliminate fuel consumption entirely for daily vehicle trips. The cost associated with providing charge infrastructure for PHEVs, along with the additional costs for the on-board power electronics and added battery requirements associated with PHEV technology will be a key factor in the success of PHEVs. This report analyzes the infrastructure requirements for PHEVs in single family residential, multi-family residential and commercial situations. Costs associated with this infrastructure are tabulated, providing an estimate of the infrastructure costs associated with PHEV deployment.

Kevin Morrow; Donald Darner; James Francfort

2008-11-01T23:59:59.000Z

135

Integrated Vehicle Thermal Management for Advanced Vehicle Propulsion Technologies: Preprint  

DOE Green Energy (OSTI)

Techniques for evaluating and quantifying integrated transient and continuous heat loads of combined systems incorporating electric drive systems operating primarily under transient duty cycles.

Bennion, K.; Thornton, M.

2010-02-01T23:59:59.000Z

136

Plug-In Hybrid Electric Vehicle Penetration Scenarios  

DOE Green Energy (OSTI)

This report examines the economic drivers, technology constraints, and market potential for plug-in hybrid electric vehicles (PHEVs) in the U.S. A PHEV is a hybrid vehicle with batteries that can be recharged by connecting to the grid and an internal combustion engine that can be activated when batteries need recharging. The report presents and examines a series of PHEV market penetration scenarios. Based on input received from technical experts and industry representative contacted for this report and data obtained through a literature review, annual market penetration rates for PHEVs are presented from 2013 through 2045 for three scenarios. Each scenario is examined and implications for PHEV development are explored.

Balducci, Patrick J.

2008-04-03T23:59:59.000Z

137

Environmental Impacts of Plug-in Hybrid Electric Vehicles.  

E-Print Network (OSTI)

??The environmental and electric utility system impacts from plug?in hybrid electric vehicle (PHEV) infiltration in Michigan were examined from years 2010 to 2030 as part (more)

Camere, Aaron; Schafer, Allison; de Monasterio, Caroline

2010-01-01T23:59:59.000Z

138

NREL Evaluates Secondary Uses for Lithium Ion Vehicle Batteries  

NREL Evaluates Secondary Uses for Lithium Ion Vehicle Batteries ... of PHEVs and EVs is limited by the current high cost of Li-ion batteries.

139

Correlating Dynamometer Testing to In-Use Fleet Results of Plug-In Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

Standard dynamometer test procedures are currently being developed to determine fuel and electrical energy consumption of plug-in hybrid vehicles (PHEV). To define a repeatable test procedure, assumptions were made about how PHEVs will be driven and charged. This study evaluates these assumptions by comparing results of PHEV dynamometer testing following proposed procedures to actual performance of PHEVs operating in the US Department of Energys (DOE) North American PHEV Demonstration fleet. Results show PHEVs in the fleet exhibit a wide range of energy consumption, which is not demonstrated in dynamometer testing. Sources of variation in performance are identified and examined.

John G. Smart; Sera White; Michael Duoba

2009-05-01T23:59:59.000Z

140

High Power SiC Modules for HEVs and PHEVs  

DOE Green Energy (OSTI)

With efforts to reduce the cost, size, and thermal management systems for the power electronics drivetrain in hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs), wide band gap semiconductors including silicon carbide (SiC) have been identified as possibly being a partial solution. Research on SiC power electronics has shown their higher efficiency compared to Si power electronics due to significantly lower conduction and switching losses. This paper focuses on the development of a high power module based on SiC JFETs and Schottky diodes. Characterization of a single device, a module developed using the same device, and finally an inverter built using the modules is presented. When tested at moderate load levels compared to the inverter rating, an efficiency of 98.2% was achieved by the initial prototype.

Chinthavali, Madhu Sudhan [ORNL; Tolbert, Leon M [ORNL; Zhang, Hui [ORNL; Han, Jung H [ORNL; Barlow, Fred D. [University of Idaho; Ozpineci, Burak [ORNL

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle phev integrated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

PHEV/EV Li-Ion Battery Second-Use Project (Presentation)  

SciTech Connect

Accelerated development and market penetration of plug-in hybrid electric vehicles (PHEVs) and electric vehicles (Evs) are restricted at present by the high cost of lithium-ion (Li-ion) batteries. One way to address this problem is to recover a fraction of the battery cost via reuse in other applications after the battery is retired from service in the vehicle, if the battery can still meet the performance requirements of other energy storage applications. In several current and emerging applications, the secondary use of PHEV and EV batteries may be beneficial; these applications range from utility peak load reduction to home energy storage appliances. However, neither the full scope of possible opportunities nor the feasibility or profitability of secondary use battery opportunities have been quantified. Therefore, with support from the Energy Storage activity of the U.S. Department of Energy's Vehicle Technologies Program, the National Renewable Energy Laboratory (NREL) is addressing this issue. NREL will bring to bear its expertise and capabilities in energy storage for transportation and in distributed grids, advanced vehicles, utilities, solar energy, wind energy, and grid interfaces as well as its understanding of stakeholder dynamics. This presentation introduces NREL's PHEV/EV Li-ion Battery Secondary-Use project.

Neubauer, J.; Pesaran, A.

2010-04-01T23:59:59.000Z

142

Hybrid & electric vehicle technology and its market feasibility  

E-Print Network (OSTI)

In this thesis, Hybrid Electric Vehicles (HEV), Plug-In Hybrid Electric Vehicle (PHEV) and Electric Vehicle (EV) technology and their sales forecasts are discussed. First, the current limitations and the future potential ...

Jeon, Sang Yeob

2010-01-01T23:59:59.000Z

143

Cooperative Regulation of Emissions Using Plug-in Hybrid Vehicles  

Science Conference Proceedings (OSTI)

We exploit new types of vehicles, such as Plug-in Hybrid Electric Vehicles (PHEVs), to control transport related emissions in urban environments. By appropriately choosing whether single power-split hybrid vehicles should be operated in fully electric ...

A. Schlote, F. Hausler, T. Hecker, A. Bergmann, E. Crisostomi, I. Radusch, R. Shorten

2012-12-01T23:59:59.000Z

144

Electricity Grid: Impacts of Plug-In Electric Vehicle Charging  

E-Print Network (OSTI)

Impacts of Plug-In Hybrid Electric Vehicles on Regionalsuch as plug-in hybrid electric vehicles (PHEVs) and batteryof Plug-In Hybrid Vehicles on Electric Utilities and

Yang, Christopher; McCarthy, Ryan

2009-01-01T23:59:59.000Z

145

Plug-in Hybrid Electric Vehicles and Petroleum Displacement: A Regional Economic Impact Assessment  

Science Conference Proceedings (OSTI)

Interest in alternatives to conventional vehicles such as plug-in hybrid electric vehicles (PHEVs) has risen because of the environmental and energy security concerns associated with petroleum dependence, but what would be the economic impact of the widespread use of such vehicles? This study quantified the regional economic impacts associated with an increased market penetration of PHEVs in the household vehicle market.

2007-11-27T23:59:59.000Z

146

Building a business case for corporate fleets to adopt vehicle-to-grid technology (V2G) and participate in the regulation service market  

E-Print Network (OSTI)

Electric (EV) and Plug-in Hybrid Electric vehicles (PHEV) continue to gain attention and market share, not only as options for consumers but also for corporate fleets. EVs and PHEVs can contribute to lower operating costs ...

De los Ros Vergara, Andrs

2011-01-01T23:59:59.000Z

147

Plug-in Hybrid Electric Vehicle Fuel Use Reporting Methods and Results  

DOE Green Energy (OSTI)

The Plug-in Hybrid Electric Vehicle (PHEV) Fuel Use Reporting Methods and Results report provides real world test results from PHEV operations and testing in 20 United States and Canada. Examples are given that demonstrate the significant variations operational parameters can have on PHEV petroleum use. In addition to other influences, PHEV mpg results are significantly impacted by driver aggressiveness, cold temperatures, and whether or not the vehicle operator has charged the PHEV battery pack. The U.S. Department of Energys (DOEs) Advanced Vehicle Testing Activity (AVTA) has been testing plug-in hybrid electric vehicles (PHEVs) for several years. The AVTA http://avt.inl.gov/), which is part of DOEs Vehicle Technology Program, also tests other advanced technology vehicles, with 12 million miles of total test vehicle and data collection experience. The Idaho National Laboratory is responsible for conducting the light-duty vehicle testing of PHEVs. Electric Transportation Engineering Corporation also supports the AVTA by conducting PHEV and other types of testing. To date, 12 different PHEV models have been tested, with more than 600,000 miles of PHEV operations data collected.

James E. Francfort

2009-07-01T23:59:59.000Z

148

Performance Analysis of Photovoltaic Cell with Dynamic PHEV Loads  

E-Print Network (OSTI)

Performance Analysis of Photovoltaic Cell with Dynamic PHEV Loads F. R. Islam, H. R. Pota, M. S. Rahman and M. S. Ali Abstract--This paper presents the dynamics of photovoltaic (PV) cell with Plug for charging PHEVs with PV cell where PHEVs load are modelled based on third order battery model. System

Pota, Himanshu Roy

149

Residential Customer Rate Options for Electric Vehicles and Plug-In Hybrid Electric Vehicles  

Science Conference Proceedings (OSTI)

This paper summarizes results of a survey conducted in the summer of 2006 that examined residential electric rates available to Californias electric vehicle EV and plug-in hybrid electric vehicle PHEV customers.

2008-03-31T23:59:59.000Z

150

NREL's PHEV/EV Li-Ion Battery Secondary-Use Project  

SciTech Connect

Accelerated development and market penetration of plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs) is restricted at present by the high cost of lithium-ion (Li-ion) batteries. One way to address this problem is to recover a fraction of the Li-ion battery's cost via reuse in other applications after it is retired from service in the vehicle, when the battery may still have sufficient performance to meet the requirements of other energy storage applications.

Newbauer, J.; Pesaran, A.

2010-06-01T23:59:59.000Z

151

Deploying power grid-integrated electric vehicles as a multi-agent system  

Science Conference Proceedings (OSTI)

Grid-Integrated Vehicles (GIVs) are plug-in Electric Drive Vehicles (EDVs) with power-management and other controls that allow them to respond to external commands sent by power-grid operators, or their affiliates, when parked and plugged-in to the grid. ... Keywords: coalition formation, grid-integrated-vehicle, power regulation, vehicle-to-grid

Sachin Kamboj; Willett Kempton; Keith S. Decker

2011-05-01T23:59:59.000Z

152

Energy efficient navigation management for hybrid electric vehicles on highways  

Science Conference Proceedings (OSTI)

Plug-in Hybrid Electric Vehicles (PHEVs) are gaining popularity due to their economical efficiency as well as their contribution to environmental preservation. PHEVs allow the driver to use exclusively electric power for 30-50 miles of driving, and switch ... Keywords: formal model, navigation plan, plug-in hybrid vehicle

Mohammad Ashiqur Rahman, Qi Duan, Ehab Al-Shaer

2013-04-01T23:59:59.000Z

153

Investigation of Enabling Wind Generations Employing Plug-in Hybrid Electric Vehicles  

E-Print Network (OSTI)

1 Investigation of Enabling Wind Generations Employing Plug-in Hybrid Electric Vehicles Mahdi challenges such as mitigating variability. Plug-in hybrid Electric Vehicles (PHEVs) have been considered the variability in wind generation could be to use a fleet of Plug-in Hybrid Electric Vehicles (PHEVs

154

A STOCHASTIC OPTIMAL CONTROL APPROACH FOR POWER MANAGEMENT IN PLUG-IN HYBRID ELECTRIC VEHICLES  

E-Print Network (OSTI)

A STOCHASTIC OPTIMAL CONTROL APPROACH FOR POWER MANAGEMENT IN PLUG-IN HYBRID ELECTRIC VEHICLES.e., the engine and electric machines) in a plug-in hybrid electric vehicle (PHEV). Existing studies focus mostly. INTRODUCTION This paper examines plug-in hybrid electric vehicles (PHEVs), i.e., automobiles that can extract

Krstic, Miroslav

155

FY11 annual Report: PHEV Engine Control and Energy Management Strategy  

DOE Green Energy (OSTI)

Objectives are to: (1) Investigate novel engine control strategies targeted at rapid engine/catalyst warming for the purpose of mitigating tailpipe emissions from plug-in hybrid electric vehicles (PHEV) exposed to multiple engine cold start events; and (2) Validate and optimize hybrid supervisory control techniques developed during previous and on-going research projects by integrating them into the vehicle level control system and complementing them with the modified engine control strategies in order to further reduce emissions during both cold start and engine re-starts. Approach used are: (1) Perform a literature search of engine control strategies used in conventional powertrains to reduce cold start emissions; (2) Develop an open source engine controller providing full access to engine control strategies in order to implement new engine/catalyst warm-up behaviors; (3) Modify engine cold start control algorithms and characterize impact on cold start behavior; and (4) Develop an experimental Engine-In-the-Loop test stand in order to validate control methodologies and verify transient thermal behavior and emissions of the real engine when combined with a virtual hybrid powertrain. Some major accomplishments are: (1) Commissioned a prototype engine controller on a GM Ecotec 2.4l direct injected gasoline engine on an engine test cell at the University of Tennessee. (2) Obtained from Bosch (with GM's approval) an open calibration engine controller for a GM Ecotec LNF 2.0l Gasoline Turbocharged Direct Injection engine. Bosch will support the bypass of cold start strategies if calibration access proves insufficient. The LNF engine and its open controller were commissioned on an engine test cell at ORNL. (3) Completed a literature search to identify key engine cold start control parameters and characterized their impact on the real engine using the Bosch engine controller to calibrate them. (4) Ported virtual hybrid vehicle model from offline simulation environment to real-time Hardware-In-the-Loop platform.

Chambon, Paul H [ORNL

2011-10-01T23:59:59.000Z

156

The Efficacy of Electric Vehicle Time-of-Use Rates in Guiding Plug-in Hybrid Electric Vehicle Charging Behavior  

Science Conference Proceedings (OSTI)

This paper presents a series of analyses that seek to enhance understanding of the extent to which time-of-use (TOU) rates can economically incentivize off-peak charging of plug-in hybrid electric vehicles (PHEV). The total cost of fueling a PHEV under modeled and real-world TOU rates is compared to the total cost of fueling a PHEV under constant rates. Time-resolved vehicle energy consumption and fueling costs for a variety of PHEV designs are derived from travel survey data and charging behavior models...

2011-12-20T23:59:59.000Z

157

Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles  

E-Print Network (OSTI)

for Plug-in Hybrid Electric Vehicles (PHEVs): Goals andE. , Plug-in Hybrid-Electric Vehicle Powertrain Design andLithium Batteries for Plug-in Electric Vehicles Andrew Burke

Burke, Andrew

2009-01-01T23:59:59.000Z

158

The future of electric two-wheelers and electric vehicles in China  

E-Print Network (OSTI)

SAE Hybrid Vehicle Symposium, San Diego CA, 1314 February.emissions from a plug-in hybrid vehicle (PHEV) in China has2008. Nissans Electric and Hybrid Electric Vehicle Program.

Weinert, Jonathan X.; Ogden, Joan M.; Sperling, Dan; Burke, Andy

2008-01-01T23:59:59.000Z

159

Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles  

E-Print Network (OSTI)

for Plug-in Hybrid Electric Vehicles (PHEVs): Goals andE. , Plug-in Hybrid-Electric Vehicle Powertrain Design andUC Davis Plug-in Hybrid Electric Vehicle Research Center and

Burke, Andrew

2009-01-01T23:59:59.000Z

160

Optimal Planning and Operation of Smart Grids with Electric Vehicle Interconnection  

E-Print Network (OSTI)

of Plug-In Hybrid Electric Vehicles as Grid Resources, Theutilizing plug-in hybrid electric vehicles (PHEVs). Wang etof Recharging Plug-in Hybrid Electric Vehicles on Locational

Stadler, Michael

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle phev integrated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Smart Frequency-Sensing Charge Controller for Electric Vehicles  

As plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs) become more popular, they create additional demand for electricity. Their emergence also raises a host of issues regarding how, where and when car batteries should be ...

162

Personalized driving behavior monitoring and analysis for emerging hybrid vehicles  

Science Conference Proceedings (OSTI)

Emerging electric-drive vehicles, such as hybrid electric vehicles (HEVs) and plug-in HEVs (PHEVs), hold the potential for substantial reduction of fuel consumption and greenhouse gas emissions. User driving behavior, which varies from person ...

Kun Li; Man Lu; Fenglong Lu; Qin Lv; Li Shang; Dragan Maksimovic

2012-06-01T23:59:59.000Z

163

The Effect of Driving Intensity and Incomplete Charging on the Fuel Economy of a Hymotion Prius PHEV  

SciTech Connect

On-road testing was conducted on a Hymotion Prius plug-in hybrid electric vehicle (PHEV) at the Electric Transportation Engineering Corporation in Phoenix, Arizona. The tests were comprised of on-road urban and highway driving during charge-depleting and charge-sustaining operation. Determining real-world effectiveness of PHEVs at reducing petroleum consumption in real world driving was the main focus of the study. Throughout testing, several factors that affect fuel consumption of PHEVs were identified. This report discusses two of these factors: driving intensity (i.e., driving aggressiveness) and battery charging completeness. These two factors are unrelated, yet both significantly impact the vehicles fuel economy. Driving intensity was shown to decrease fuel economy by up to half. Charging completeness, which was affected by human factors and ambient temperature conditions, also showed to have great impact on fuel economy for the Hymotion Prius. These tests were performed for the U.S. Department of Energys Advanced Vehicle Testing Activity. The Advanced Vehicle Testing Activity, part of the U.S. Department of Energys Vehicle Technology Program, is conducted by the Idaho National Laboratory and the Electric Transportation Engineering Corporation.

Richard Barney Carlson

2009-10-01T23:59:59.000Z

164

Using Electric Vehicles to Meet Balancing Requirements Associated with Wind Power  

DOE Green Energy (OSTI)

Many states are deploying renewable generation sources at a significant rate to meet renewable portfolio standards. As part of this drive to meet renewable generation levels, significant additions of wind generation are planned. Due to the highly variable nature of wind generation, significant energy imbalances on the power system can be created and need to be handled. This report examines the impact on the Northwest Power Pool (NWPP) region for a 2019 expected wind scenario. One method for mitigating these imbalances is to utilize plug-in hybrid electric vehicles (PHEVs) or battery electric vehicles (BEVs) as assets to the grid. PHEVs and BEVs have the potential to meet this demand through both charging and discharging strategies. This report explores the usage of two different charging schemes: V2GHalf and V2GFull. In V2GHalf, PHEV/BEV charging is varied to absorb the additional imbalance from the wind generation, but never feeds power back into the grid. This scenario is highly desirable to automotive manufacturers, who harbor great concerns about battery warranty if vehicle-to-grid discharging is allowed. The second strategy, V2GFull, varies not only the charging of the vehicle battery, but also can vary the discharging of the battery back into the power grid. This scenario is currently less desirable to automotive manufacturers, but provides an additional resource benefit to PHEV/BEVs in meeting the additional imbalance imposed by wind. Key findings in the report relate to the PHEV/BEV population required to meet the additional imbalance when comparing V2GHalf to V2GFull populations, and when comparing home-only-charging and work-and-home-charging scenarios. Utilizing V2GFull strategies over V2GHalf resulted in a nearly 33% reduction in the number of vehicles required. This reduction indicates fewer vehicles are needed to meet the unhandled energy, but they would utilize discharging of the vehicle battery into the grid. This practice currently results in the voiding of automotive manufacturer's battery warranty, and is not feasible for many customers. The second key finding is the change in the required population when PHEV/BEV charging is available at both home and work. Allowing 10% of the vehicle population access to work charging resulted in nearly 80% of the grid benefit. Home-only charging requires, at best, 94% of the current NWPP light duty vehicle fleet to be a PHEV or BEV. With the introduction of full work charging availability, only 8% of the NWPP light duty vehicle fleet is required. Work charging has primarily been associated with mitigating range anxiety in new electric vehicle owners, but these studies indicate they have significant potential for improving grid reliability. The V2GHalf and V2GFull charging strategies of the report utilize grid frequency as an indication of the imbalance requirements. The introduction of public charging stations, as well as the potential for PHEV/BEVs to be used as a resource for renewable generation integration, creates conditions for additional products into the ancillary services market. In the United Kingdom, such a capability would be bid as a frequency product in the ancillary services market. Such a market could create the need for larger, third-party aggregators or services to manage the use of electric vehicles as a grid resource. Ultimately, customer adoption, usage patterns and habits, and feedback from the power and automotive industries will drive the need.

Tuffner, Francis K.; Kintner-Meyer, Michael CW

2011-07-31T23:59:59.000Z

165

Virginia EV Road Show - PHEV Operations and Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

- Virginia EV Road Show - PHEV Operations and Performance Jim Francfort Virginia Clean Cities and Hampton Roads Clean Cities Coalition - Virginia Electric Drive Road Show Poquoson,...

166

OR Forum---Modeling the Impacts of Electricity Tariffs on Plug-In Hybrid Electric Vehicle Charging, Costs, and Emissions  

Science Conference Proceedings (OSTI)

Plug-in hybrid electric vehicles (PHEVs) have been touted as a transportation technology with lower fuel costs and emissions impacts than other vehicle types. Most analyses of PHEVs assume that the power system operator can either directly or indirectly ... Keywords: environment, plug-in hybrid electric vehicles, pricing

Ramteen Sioshansi

2012-05-01T23:59:59.000Z

167

Vehicle Technologies Office: Plug-in Electric Vehicle Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics Basics Plug-in electric vehicles (PEVs), which include both plug-in hybrid electric vehicles and all-electric vehicles, use electricity as either their primary fuel or to improve efficiency. Commonly Used PEV Terms All-electric vehicle (AEV) - A vehicle with plug-in capability; driving energy comes entirely from its battery. Plug-in hybrid electric vehicle (PHEV) - A vehicle with plug-in capability; driving energy can come from either its battery or a liquid fuel like gasoline, diesel, or biofuels. Plug-in electric vehicle (PEV) - Any vehicle with plug-in capability. This includes AEVs and PHEVs. Hybrid electric vehicle (HEV) - A vehicle that has an electric drive system and battery but does not have plug-in capability; driving energy comes only from liquid fuel.

168

Microsoft Word - PHEV Charge Demand - Tacomo Power INL_EXT-10...  

NLE Websites -- All DOE Office Websites (Extended Search)

facility. This report provides results from charging of several PHEVs at the Tacoma Power facility as a preliminary assessment of how PHEVs will impact the electricity grid....

169

Anticipating PHEV Energy Impacts in California  

E-Print Network (OSTI)

Plug-in hybrid electric vehicles: How does one determinerd International Electric Vehicle Symposium and Exposition (of Plug-In Hybrid Electric Vehicles, Volume 1: Nationwide

Axsen, John; Kurani, Kenneth S.

2009-01-01T23:59:59.000Z

170

Project Title: Compare Costs and Benefits of HESA B2G and V2G The PH&EV Research Center is funded through the California Energy Commission's Public  

E-Print Network (OSTI)

Project Title: Compare Costs and Benefits of HESA B2G and V2G Systems The PH&EV Research Center AGC-Automatic Generation Control BEV-Battery Electric Vehicle B2G-Battery-to-Grid CAISO Operator V2G-Vehicle-to-Grid ZEV-Zero Emissions Vehicle #12;Table of Contents Project Title: Compare Costs

California at Davis, University of

171

Prospects for Plug-in Hybrid Electric Vehicles in the United States and Japan: A General Equilibrium Analysis  

E-Print Network (OSTI)

The plug-in hybrid electric vehicle (PHEV) may offer a potential near term, low carbon alternative to today's gasoline- and diesel-powered vehicles. A representative vehicle technology that runs on electricity in addition ...

Reilly, John M.

172

Real-time highway traffic condition assessment framework using vehicle-infrastructure integration (VII) with artificial intelligence (AI)  

Science Conference Proceedings (OSTI)

This paper presents a framework for real-time highway traffic condition assessment using vehicle kinetic information, which is likely to be made available from vehicle-infrastructure integration (VII) systems, in which vehicle and infrastructure agents ... Keywords: artificial intelligence (AI), incident detection, vehicle kinetics, vehicle-infrastructure integration (VII)

Yongchang Ma; Mashrur Chowdhury; Adel Sadek; Mansoureh Jeihani

2009-12-01T23:59:59.000Z

173

Argonne Has Lead Role in DOE's PHEV Technology Evaluation Effort  

E-Print Network (OSTI)

) · Economic Analysis · Energy & Emissions Lifecycle Analysis (GREET) Developing SAE PHEV Fuel Economy Test aftermarket retrofit battery module based upon its lithium-ion batteries. PHEV Market Potential Analysis of Energy laboratory managed by UChicago Argonne, LLC For more information: Argonne National Laboratory

Kemner, Ken

174

BEEST: Electric Vehicle Batteries  

SciTech Connect

BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-Es BEEST Project, short for Batteries for Electrical Energy Storage in Transportation, could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

None

2010-07-01T23:59:59.000Z

175

Idle Stop Vehicle Testing Downloadable Dynamometer Database  

E-Print Network (OSTI)

Battery Electric Vehicle (BEV) PHEV EREV Charge Sustaining (CS) Hybrid Electric Vehicle (HEV) Fuel Cell vehicle terminology map for SAE J1715 Increased electric power and energy Increasedelectricpowerandenergy #12;Note: Manual Transmission Vehicle Shift schedules for Dynamometers Most cars in the US use

Kemner, Ken

176

Mechanical and Regenerative Braking Integration for a Hybrid Electric Vehicle.  

E-Print Network (OSTI)

??Hybrid electric vehicle technology has become a preferred method for the automotive industry to reduce environmental impact and fuel consumption of their vehicles. Hybrid electric (more)

DeMers, Steven Michael

2008-01-01T23:59:59.000Z

177

Investigating Plug-in Electric Vehicle Charging Stations in Microgrid  

Science Conference Proceedings (OSTI)

PHEVs/PEVs have received increasing attention because of their low pollution emissions, low energy dependence, and high fuel economy. In the near future, most PHEV/PEV enabled parking decks are expected to be powered by small-scale and onsite distributed ... Keywords: Plug-in Electric Vehicle, Microgrid, Smart Grid

Mengqi Wang; Tao Jin

2012-10-01T23:59:59.000Z

178

Vehicle Technologies Office: Thermal Control and System Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Control and System Integration Thermal Control and System Integration The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the development of advanced thermal control technologies. Thermal control is a critical element to enable power density, cost, and reliability of Power Electronics and Electric Machines (PEEM). Current hybrid electric vehicle systems typically use a dedicated 65°C coolant loop to cool the electronics and electric machines. A primary research focus is to develop cooling technologies that will enable the use of coolant temperatures of up to 105°C. Enabling the higher-temperature coolant would reduce system cost by using a single loop to cool the PEEM, internal combustion engine or fuel cell. Several candidate cooling technologies are being investigated along with the potential to reduce material and component costs through the use of more aggressive cooling. Advanced component modeling, fabrication, and manufacturing techniques are also being investigated.

179

Batteries for Electric Drive Vehicles - Status 2005  

Science Conference Proceedings (OSTI)

Commercial availability of advanced battery systems that meet the cost, performance, and durability requirements of electric drive vehicles (EDVs) is a crucial challenge to the growth of markets for these vehicles. Hybrid electric vehicles (HEVs) are a subset of the family of EDVs, which include battery electric vehicles (BEVs), power assist hybrid electric vehicles, plug-in hybrid electric vehicles (PHEVs), and fuel cell vehicles. This study evaluates the state of advanced battery technology, presents u...

2005-11-29T23:59:59.000Z

180

2001-01-1334 Integrated, Feed-Forward Hybrid Electric Vehicle  

E-Print Network (OSTI)

1 2001-01-1334 Integrated, Feed-Forward Hybrid Electric Vehicle Simulation in SIMULINK and its Use of Automotive Engineers, Inc. ABSTRACT A hybrid electric vehicle simulation tool (HE-VESIM) has been developed global crude oil supplies stimulate research aimed at new, fuel-efficient vehicle technologies. Hybrid-electric

Peng, Huei

Note: This page contains sample records for the topic "vehicle phev integrated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

U.S. Department of Energy -- Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle Testing and Demonstration Activities  

DOE Green Energy (OSTI)

The U.S. Department of Energys (DOE) Advanced Vehicle Testing Activity (AVTA) tests plug-in hybrid electric vehicles (PHEV) in closed track, dynamometer and onroad testing environments. The onroad testing includes the use of dedicated drivers on repeated urban and highway driving cycles that range from 10 to 200 miles, with recharging between each loop. Fleet demonstrations with onboard data collectors are also ongoing with PHEVs operating in several dozen states and Canadian Provinces, during which trips- and miles-per-charge, charging demand and energy profiles, and miles-per-gallon and miles-per-kilowatt-hour fuel use results are all documented, allowing an understanding of fuel use when vehicles are operated in charge depleting, charge sustaining, and mixed charge modes. The intent of the PHEV testing includes documenting the petroleum reduction potential of the PHEV concept, the infrastructure requirements, and operator recharging influences and profiles. As of May 2008, the AVTA has conducted track and dynamometer testing on six PHEV conversion models and fleet testing on 70 PHEVs representing nine PHEV conversion models. A total of 150 PHEVs will be in fleet testing by the end of 2008, all with onboard data loggers. The onroad testing to date has demonstrated 100+ miles per gallon results in mostly urban applications for approximately the first 40 miles of PHEV operations. The primary goal of the AVTA is to provide advanced technology vehicle performance benchmark data for technology modelers, research and development programs, and technology goal setters. The AVTA testing results also assist fleet managers in making informed vehicle purchase, deployment and operating decisions. The AVTA is part of DOEs Vehicle Technologies Program. These AVTA testing activities are conducted by the Idaho National Laboratory and Electric Transportation Engineering Corporation, with Argonne National Laboratory providing dynamometer testing support. The proposed paper and presentation will discuss PHEV testing activities and results. INL/CON-08-14333

James E. Francfort; Donald Karner; John G. Smart

2009-05-01T23:59:59.000Z

182

Plug-In Hybrid Vehicle Analysis (Milestone Report)  

DOE Green Energy (OSTI)

NREL's plug-in hybrid electric vehicle (PHEV) analysis activities made great strides in FY06 to objectively assess PHEV technology, support the larger U.S. Department of Energy PHEV assessment effort, and share technical knowledge with the vehicle research community and vehicle manufacturers. This report provides research papers and presentations developed in FY06 to support these efforts. The report focuses on the areas of fuel economy reporting methods, cost and consumption benefit analysis, real-world performance expectations, and energy management strategies.

Markel, T.; Brooker, A.; Gonder, J.; O'Keefe, M.; Simpson, A.; Thornton, M.

2006-11-01T23:59:59.000Z

183

Anticipating PHEV Energy Impacts in California  

E-Print Network (OSTI)

Vyas et al. , Plug-in hybrid electric vehicles: How does oneof Plug-In Hybrid Electric Vehicles, Volume 1: Nationwideuse of plug-in hybrid electric vehicles, Transportation

Axsen, John; Kurani, Kenneth S.

2009-01-01T23:59:59.000Z

184

A Multi-Level Grid Interactive Bi-directional AC/DC-DC/AC Converter and a Hybrid Battery/Ultra-capacitor Energy Storage System with Integrated Magnetics for Plug-in Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

This study presents a bi-directional multi-level power electronic interface for the grid interactions of plug-in hybrid electric vehicles (PHEVs) as well as a novel bi-directional power electronic converter for the combined operation of battery/ultracapacitor hybrid energy storage systems (ESS). The grid interface converter enables beneficial vehicle-to-grid (V2G) interactions in a high power quality and grid friendly manner; i.e, the grid interface converter ensures that all power delivered to/from grid has unity power factor and almost zero current harmonics. The power electronic converter that provides the combined operation of battery/ultra-capacitor system reduces the size and cost of the conventional ESS hybridization topologies while reducing the stress on the battery, prolonging the battery lifetime, and increasing the overall vehicle performance and efficiency. The combination of hybrid ESS is provided through an integrated magnetic structure that reduces the size and cost of the inductors of the ESS converters. Simulation and experimental results are included as prove of the concept presenting the different operation modes of the proposed converters.

Onar, Omer C [ORNL

2011-01-01T23:59:59.000Z

185

Argonne Transportation - Plug-in Hybrid Electric Vehicle Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-in Hybrid Electric Vehicle Research Capabilities at Argonne National Laboratory and Idaho National Laboratory Plug-in Hybrid Electric Vehicle Research Capabilities at Argonne National Laboratory and Idaho National Laboratory Prius testing by Argonne researchers. The U.S. Department of Energy's (DOE's) FreedomCAR and Vehicle Technologies (FCVT) Program is actively evaluating plug-in hybrid electric vehicle (PHEV) technology and researching the most critical technical barriers to commercializing PHEVs. Argonne National Laboratory, working together with Idaho National Laboratory, leads DOE's efforts to evaluate PHEVs and PHEV technology with the nation’s best vehicle technology evaluation tools and expertise. These two national laboratories are Centers for Excellence that combine state-of-the-art facilities; world-class expertise; long-term collaborative relationships with other DOE national laboratories, industry, and academia;

186

A simulation-based assessment of plug-in hybrid electric vehicle architectures  

E-Print Network (OSTI)

Plug-in hybrid electric vehicles (PHEVs) are vehicles that utilize power from both an internal combustion engine and an electric battery that can be recharged from the grid. Simulations of series, parallel, and split-architecture ...

Sotingco, Daniel (Daniel S.)

2012-01-01T23:59:59.000Z

187

Prospects for plug-in hybrid electric vehicles in the United States : a general equilibrium analysis  

E-Print Network (OSTI)

The plug-in hybrid electric vehicle (PHEV) could significantly contribute to reductions in carbon dioxide emissions from personal vehicle transportation in the United States over the next century, depending on the ...

Karplus, Valerie Jean

2008-01-01T23:59:59.000Z

188

Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles  

E-Print Network (OSTI)

Analyzed distribution of vehicles by last trip ending time for each region Generated PHEVs load profiles PSAT were adjusted to on-road values for this analysis PHEV miles driven by grid electricity and onWell-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Amgad

189

Argonne TTRDC - TransForum v10n1 - Six Myths about PHEVs  

NLE Websites -- All DOE Office Websites (Extended Search)

Six Myths about Plug-in Hybrid Electric Vehicles Six Myths about Plug-in Hybrid Electric Vehicles Forrest Jehlik Forrest Jehlik Plug-in hybrid electric vehicles (PHEVs) hold great promise as the key to weaning America from its dependence on imported oil, which represents nearly two-thirds of all the petroleum burned in the United States today. The U.S. Department of Energy’s Argonne National Laboratory has taken a lead role in developing and testing plug-in hybrid technologies. At the Lab’s Center for Transportation Research (CTR), principal mechanical engineer Forrest Jehlik and his colleagues work to bring these cars to market quickly and cheaply. Here, Jehlik dispels some commonly held myths about plug-in hybrids. Myth #1: A significant number of plug-in hybrids are currently for sale. Although several major auto manufacturers—including General Motors,

190

Plug-In Hybrid Electric Vehicle Environmental Analysis--Electric Sector Modeling of CO2 Emissions  

Science Conference Proceedings (OSTI)

This Electric Power Research Institute has initiated a comprehensive collaborative study to quantify the environmental impacts of electric transportation, specifically with respect to plug-in hybrid electric vehicles (PHEVs). This technical update describes the adaptation of the EPRI electric sector model for the analysis of CO2 emissions from the charging on PHEVs on the electrical grid. A "PHEV Base Case" was developed using baseline assumptions from the "EPRI Base Case," a nominal set of key assumptio...

2006-11-29T23:59:59.000Z

191

Integrated PEV Charging Solutions and Reduced Energy for Occupant Comfort (Brochure), Vehicle Testing and Integration Facility (VTIF)  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Testing and Integration Facility Vehicle Testing and Integration Facility Integrated PEV Charging Solutions and Reduced Energy for Occupant Comfort Plug-in electric vehicles (PEVs) offer the opportunity to shift transportation energy demands from petroleum to electricity, but broad adoption will require integration with other systems. While automotive experts work to reduce the cost of PEVs, fossil- fueled cars and trucks continue to burn hundreds of billions of gallons of petroleum each year-not only to get from point A to point B, but also to keep passengers comfortable with air condi- tioning and heat. At the National Renewable Energy Laboratory (NREL), three instal- lations form a research laboratory known as the Vehicle Testing and Integration Facility (VTIF). At the VTIF, engineers are develop-

192

U.S. Hybrid and Lithium Technology Corporation GAIA Battery: Initial System Characterization for the Plug-In Hybrid Electric Vehicle Yard Tractor  

Science Conference Proceedings (OSTI)

Diesel-powered tractors, called yard tractors, are used to shuttle cargo trailers from point to point within the confines of a port facility, terminal, or yard. A plug-in hybrid electric vehicle (PHEV) yard tractor design was proposed as a way to reduce operation emissions and diesel fuel use. The Electric Power Research Institute (EPRI) has designed and constructed a first-of-a-kind PHEV yard tractor. Southern California Edison's (SCE's) Electric Vehicle Technical Center performed PHEV yard tractor bat...

2012-03-01T23:59:59.000Z

193

Alternative Fuels Data Center: Vermont Laws and Incentives for HEVs / PHEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vermont Laws and Incentives for HEVs / PHEVs The list below contains summaries of all Vermont laws and incentives

194

Alternative Fuels Data Center: Georgia Laws and Incentives for HEVs / PHEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Georgia Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Georgia Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Georgia Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Georgia Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Georgia Laws and Incentives for HEVs / PHEVs The list below contains summaries of all Georgia laws and incentives

195

Alternative Fuels Data Center: Indiana Laws and Incentives for HEVs / PHEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Indiana Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Indiana Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Indiana Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Indiana Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Indiana Laws and Incentives for HEVs / PHEVs The list below contains summaries of all Indiana laws and incentives

196

Alternative Fuels Data Center: Nevada Laws and Incentives for HEVs / PHEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Nevada Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Nevada Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Nevada Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Nevada Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Nevada Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Nevada Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Nevada Laws and Incentives for HEVs / PHEVs The list below contains summaries of all Nevada laws and incentives related

197

Alternative Fuels Data Center: Maine Laws and Incentives for HEVs / PHEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for HEVs / PHEVs The list below contains summaries of all Maine laws and incentives related

198

Alternative Fuels Data Center: Federal Laws and Incentives for HEVs / PHEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Federal Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Federal Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Federal Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Federal Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Federal Laws and Incentives for HEVs / PHEVs The list below contains summaries of all Federal laws and incentives

199

Alternative Fuels Data Center: Idaho Laws and Incentives for HEVs / PHEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Idaho Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Idaho Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Idaho Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Idaho Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Idaho Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Idaho Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idaho Laws and Incentives for HEVs / PHEVs The list below contains summaries of all Idaho laws and incentives related

200

Alternative Fuels Data Center: Utah Laws and Incentives for HEVs / PHEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Utah Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Utah Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Utah Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Utah Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Utah Laws and Incentives for HEVs / PHEVs The list below contains summaries of all Utah laws and incentives related

Note: This page contains sample records for the topic "vehicle phev integrated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Alternative Fuels Data Center: Oregon Laws and Incentives for HEVs / PHEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Oregon Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Oregon Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Oregon Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Oregon Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Oregon Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Oregon Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Oregon Laws and Incentives for HEVs / PHEVs The list below contains summaries of all Oregon laws and incentives related

202

Alternative Fuels Data Center: Alabama Laws and Incentives for HEVs / PHEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Alabama Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Alabama Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Alabama Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Alabama Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alabama Laws and Incentives for HEVs / PHEVs The list below contains summaries of all Alabama laws and incentives

203

Alternative Fuels Data Center: Arizona Laws and Incentives for HEVs / PHEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Arizona Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Arizona Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Arizona Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Arizona Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Arizona Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Arizona Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Arizona Laws and Incentives for HEVs / PHEVs The list below contains summaries of all Arizona laws and incentives

204

Alternative Fuels Data Center: Florida Laws and Incentives for HEVs / PHEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Florida Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Florida Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Florida Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Florida Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Florida Laws and Incentives for HEVs / PHEVs The list below contains summaries of all Florida laws and incentives

205

Autopia: A Game on Long Term Vehicle and Fuel Transitions  

E-Print Network (OSTI)

groups with a single budget for vehicle and fuel. Consumers have two goals: firstly, to keep their cars for electricity from PHEVs and BEVs. Sample fuel data charts. #12;Autopia Status and Goals Autopia is a policy

California at Davis, University of

206

Integrative Power Supply Solution for Future Generation Vehicles.  

E-Print Network (OSTI)

?? Abstract: How to secure the power supply for future generation vehicles is an open question. This thesis uses Web-HIPRE as a tool of Decision (more)

Zhou, Qinsheng

2012-01-01T23:59:59.000Z

207

Implementations of electric vehicle system based on solar energy in Singapore assessment of lithium ion batteries for automobiles  

E-Print Network (OSTI)

In this thesis report, both quantitative and qualitative approaches are used to provide a comprehensive analysis of lithium ion (Li-ion) batteries for plug-in hybrid electric vehicle (PHEV) and battery electric vehicle ...

Fu, Haitao

2009-01-01T23:59:59.000Z

208

Effect of plug-in hybrid electric vehicles charging/discharging management on planning of smart microgrid  

Science Conference Proceedings (OSTI)

Plug-in hybrid electric vehicles(PHEVs) are recently being widely touted as a viable alternative to conventional vehicles due to their environment friendly and energy-wise features. Assuming that moving into the future

S. M. Hakimi; S. M. Moghaddas-Tafreshi

2012-01-01T23:59:59.000Z

209

2010 Plug-In Hybrid and Electric Vehicle Research  

E-Print Network (OSTI)

2010 Plug-In Hybrid and Electric Vehicle Research Center TRANSPORTATION ENERGY RESEARCH PIER The PlugIn and Hybrid Electric Vehicle Researc Center conducts research in: · Battery second life applications. Plugin hybrid electric vehicles (PHEVs) and electric vehicles (EVs) are promising

210

Effects of different PHEV control strategies on vehicle performance  

Science Conference Proceedings (OSTI)

Foreign oil dependence, increased cost of fuel, pollution, global warming are buzz words of today's era. Automobiles have a large impact on increasing energy demand, pollution and related issues. As a consequence, many efforts are being concentrated ...

P. Tulpule; V. Marano; G. Rizzoni

2009-06-01T23:59:59.000Z

211

Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) supports the development and deployment of advanced vehicle technologies, including advances in electric vehicles, engine efficiency, and lightweight materials....

212

Advanced Battery Testing for Plug-in Hybrid Electric Vehicles  

Science Conference Proceedings (OSTI)

The Sprinter van is a Plug-in Hybrid-Electric Vehicle (PHEV) developed by EPRI and Daimler for use in delivering cargo, carrying passengers, or fulfilling a variety of specialty applications. This report provides details of testing conducted on two different types of batteries used in these vehicles: VARTA nickel-metal hydride batteries and SAFT lithium ion batteries. Testing focused on long-term battery durability, using a test profile developed to simulate the battery duty cycle of a PHEV Sprinter

2008-12-18T23:59:59.000Z

213

Plug-In Electric Vehicle Evaluation and Test Data Analysis  

Science Conference Proceedings (OSTI)

The goal of this analysis was to investigate the different impacts that driver behavior and environment can have on fuel economy and battery energy consumption in plug-in hybrid electric vehicles (PHEVs). Specifically, the PHEVs studied were part of the Ford Escape Advanced Research Fleet, which is composed of over 20 vehicles used by utilities and government agencies during a multi-year project. Results of this analysis can be used to educate drivers with more optimal driving practices to maximize ...

2012-12-20T23:59:59.000Z

214

Plug-in Hybrid Electric Vehicle Powertrain Requirements  

Science Conference Proceedings (OSTI)

This study examines the prospects for near-term commercialization of plug-in hybrid electric vehicles (PHEVs) assuming that current commercial hybrid electric vehicle powertrains are scaled up to allow increased electric range. Based on the strict performance requirements of the automotive industry and the requirements for minimizing emissions, these near-term PHEVs will require the engine to be used, even during grid-powered operation. The reasons for this are explained by comparing the acceleration cap...

2006-11-21T23:59:59.000Z

215

Electric Vehicle Grid Integration for Sustainable Military Installations (Presentation), National Renewable Energy Laboratory (NREL)  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Grid Integration for Electric Vehicle Grid Integration for Sustainable Military Installations NDIA Joint Service Power Expo Mike Simpson Mike.Simpson@NREL.gov 5 May 2011 NREL/PR-5400-51519 NATIONAL RENEWABLE ENERGY LABORATORY Agenda 2 1. NREL Transportation Research 2. Net Zero Energy Installations (NZEI) 3. Fort Carson as a Case Study - Vehicles On-Site - Utility Operations - Vehicle Charge Management 4. Full Fleet Simulation 5. Continuing Work NATIONAL RENEWABLE ENERGY LABORATORY NREL is the only national laboratory solely dedicated to advancing renewable energy and energy efficiency. Our employees are committed to building a cleaner, sustainable world. Photo Credits: NREL 3 NATIONAL RENEWABLE ENERGY LABORATORY What is Electric Vehicle Grid Integration (EVGI)? 4 Cross Cutting Enablers Grid / Renewables

216

Vehicle Technologies Office: Thermal Control and System Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Control and System Integration The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the...

217

TTRDC - Light Duty E-Drive Vehicles Monthly Sales Updates  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Duty Electric Drive Vehicles Monthly Sales Updates Currently available electric-drive vehicles (EDV) in the U.S market include hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and all electric vehicles (AEV). Plug-in Vehicles (PEV) include both PHEV and AEV. HEVs debuted in the U.S. market in December 1999 with 17 sales of the first-generation Honda Insight, while the first PHEV (Chevrolet Volt) and AEV (Nissan Leaf) most recently debuted in December 2010. Electric drive vehicles are offered in several car and SUV models, and a few pickup and van models. Historical sales of HEV, PHEV, and AEV are compiled by Argonne's Center for Transportation Research and reported to the U.S. Department of Energy's Vehicle Technology Program Office each month. These sales are shown in Figures 1, 2 and 3. Figure 1 shows monthly new PHEV and AEV sales by model. Figure 2 shows yearly new HEV sales by model. Figure 3 shows electric drive vehicles sales share of total light-duty vehicle (LDV) sales since 1999. Figure 4 shows HEV and PEV sales change with gasoline price..

218

Research Experience with a Plug-In Hybrid Electric Vehicle: Preprint  

DOE Green Energy (OSTI)

This technical document reports on the exploratory research conducted by NREL on PHEV technology using a Toyota Prius that has been converted to a plug-in hybrid electric vehicle. The data includes both controlled dynamometer and on-road test results, particularly for hilly driving. The results highlight the petroleum savings and benefits of PHEV technology.

Markel, T.; Pesaran, A.; Kelly, K.; Thornton, M.; Nortman, P.

2007-12-01T23:59:59.000Z

219

Stavanger, Norway, May 13-16, 2009 Plug-In Hybrid Electric Vehicles  

E-Print Network (OSTI)

for the charging of PHEV batteries. Keywords: Plug-in hybrid electric vehicles, lithium battery, battery cost by examining the main technical, cost and infrastructure issues faced by PHEVs, and shows that these issues are yielding to progress. The paper concludes that this progress, in combination with the rising costs

California at Davis, University of

220

Vietnam-Integrated Action Plan to Reduce Vehicle Emissions | Open Energy  

Open Energy Info (EERE)

Vietnam-Integrated Action Plan to Reduce Vehicle Emissions Vietnam-Integrated Action Plan to Reduce Vehicle Emissions Jump to: navigation, search Name Vietnam-Integrated Action Plan to Reduce Vehicle Emissions Agency/Company /Organization Asian Development Bank Focus Area Transportation Topics Implementation, Policies/deployment programs, Background analysis Resource Type Guide/manual Website http://www.adb.org/documents/o Program Start 2002 Country Vietnam UN Region South-Eastern Asia References Vietnam-Integrated Action Plan to Reduce Vehicle Emissions[1] Background "A major goal of this strategy is to reduce mobile sources of air pollution in Viet Nam's largest cities. According to this strategy, industry, business units, management agencies and the transport sector must carefully control pollutant emissions such as carbon monoxide (CO), carbon dioxide

Note: This page contains sample records for the topic "vehicle phev integrated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

PHEV Energy Storage Performance/Life/Cost Trade-Off Analysis (Presentation)  

DOE Green Energy (OSTI)

Developed linked parametric modeling tools to mathematically evaluate battery designs to satisfy challenging operational requirements for a PHEV.

Markel, T.; Smith, K.; Pesaran, A.

2008-05-15T23:59:59.000Z

222

An innovation and policy agenda for commercially competitive plug-in hybrid electric vehicles This article has been downloaded from IOPscience. Please scroll down to see the full text article.  

E-Print Network (OSTI)

on-peak charging uneconomical and off-peak charging very attractive. However, unless battery prices is smaller than the marginal vehicle costs, likely slowing PHEV market penetration in California. We also if PHEV adoption becomes mainstream. Keywords: plug-in, hybrid, electric vehicle, battery, charging

Kammen, Daniel M.

223

VEHICLE SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

VEHICLE SPECIFICATIONS 1 Vehicle Features Base Vehicle: 2011 Chevrolet Volt VIN: 1G1RD6E48BUI00815 Class: Compact Seatbelt Positions: 4 Type 2 : Multi-Mode PHEV (EV, Series, and Power-split) Motor Type: 12-pole permanent magnet AC synchronous Max. Power/Torque: 111 kW/370 Nm Max. Motor Speed: 9500 rpm Cooling: Active - Liquid cooled Generator Type: 16-pole permanent magnet AC synchronous Max. Power/Torque: 55 kW/200 Nm Max. Generator Speed: 6000 rpm Cooling: Active - Liquid cooled Battery Manufacturer: LG Chem Type: Lithium-ion Cathode/Anode Material: LiMn 2 O 4 /Hard Carbon Number of Cells: 288 Cell Config.: 3 parallel, 96 series Nominal Cell Voltage: 3.7 V Nominal System Voltage: 355.2 V Rated Pack Capacity: 45 Ah Rated Pack Energy: 16 kWh Weight of Pack: 435 lb

224

Determining PHEV Performance Potential User and Environmental Influences on A123 Systems Hymotion Plug-In Conversion Module for the Toyota Prius  

DOE Green Energy (OSTI)

A123Systemss HymotionTM L5 Plug-in Conversion Module (PCM) is a supplemental battery system that converts the Toyota Prius hybrid electric vehicle (HEV) into a plug-in hybrid electric vehicle (PHEV). The Hymotion system uses a lithium ion battery pack with 4.5 kWh of useable energy capacity and recharges by plugging into a standard 110/120V outlet. The system is designed to more than double the Prius fuel efficiency for 30-50km of charge depleting range. This paper will cover efforts by A123 Systems and the Idaho National Laboratory in studying the on-road performance of this PHEV fleet. The performance potentials of various fleets will be compared in order to determine the major influences on overall performance.

John G. Smart; Huang Iu

2009-05-01T23:59:59.000Z

225

Integration Issues of Cells into Battery Packs for Plug-in and Hybrid Electric Vehicles: Preprint  

DOE Green Energy (OSTI)

The main barriers to increased market share of hybrid electric vehicles (HEVs) and commercialization of plug-in HEVs are the cost, safety, and life of lithium ion batteries. Significant effort is being directed to address these issues for lithium ion cells. However, even the best cells may not perform as well when integrated into packs for vehicles because of the environment in which vehicles operate. This paper discusses mechanical, electrical, and thermal integration issues and vehicle interface issues that could impact the cost, life, and safety of the system. It also compares the advantages and disadvantages of using many small cells versus a few large cells and using prismatic cells versus cylindrical cells.

Pesaran, A. A.; Kim, G. H.; Keyser, M.

2009-05-01T23:59:59.000Z

226

Plug-In Electric Vehicle Handbook for Fleet Managers  

E-Print Network (OSTI)

in to electric vehicle supply equipment (EVSE). EVs must be charged regu- larly, and charging PHEVs regularly&E's Electric Vehicle Supply Equipment Installation Manual (http:// evtransportal.org/evmanual.pdf) and e. They consume no petroleum-based fuel while driving and produce no tailpipe emissions. EVSE (electric vehicle

227

Test Profile Development for the Evaluation of Battery Cycle Life for Plug-In Hybrid Electric Vehicles  

Science Conference Proceedings (OSTI)

EPRI and DaimlerChrysler have developed a plug-in hybrid electric vehicle (PHEV) concept for the DaimlerChrysler Sprinter Van in an effort to reduce the emissions, fuel consumption, and operating costs of the vehicle while maintaining equivalent or superior functionality and performance. This report describes the development of a test profile to evaluate the life cycle of the batteries for the PHEV vehicle.

2004-03-29T23:59:59.000Z

228

Improving Petroleum Displacement Potential of PHEVs Using Enhanced Charging Scenarios: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

5730 5730 May 2009 Improving Petroleum Displacement Potential of PHEVs Using Enhanced Charging Scenarios Preprint T. Markel, K. Smith, and A.A. Pesaran Presented at EVS-24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium Stavanger, Norway May 13-16, 2009 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (ASE), a contractor of the US Government under Contract No. DE-AC36-08-GO28308. Accordingly, the US Government and ASE retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

229

Factors Affecting the Fuel Consumption of Plug-In Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

Primary Factors that Impact the Fuel Consumption of Plug-In Hybrid Electric Vehicles RICHARD BARNEY CARLSON, MATTHEW G. SHIRK Idaho National Laboratory 2525 N. Fremont Ave., Idaho Falls, ID 83415, USA richard.carlson@inl.gov Abstract Plug-in Hybrid Electric Vehicles (PHEV) have proven to significantly reduce petroleum consumption as compared to conventional internal combustion engine vehicles (ICE) by utilizing electrical energy for propulsion. Through extensive testing of PHEVs, analysis has shown that the fuel consumption of PHEVs is more significantly affected than conventional vehicles by either the drivers input or by the environmental inputs around the vehicle. Six primary factors have been identified that significantly affect the fuel consumption of PHEVs. In this paper, these primary factors are analyzed from on-road driving and charging data from over 200 PHEVs throughout North America that include Hymotion Prius conversions and Hybrids Plus Escape conversions. The Idaho National Laboratory (INL) tests plug-in hybrid electric (PHEV) vehicles as part of its conduct of DOEs Advanced Vehicle Testing Activity (AVTA). In collaboration with its 75 testing partners located in 23 states and Canada, INL has collected data on 191 PHEVs, comprised of 12 different PHEV models (by battery manufacturer). With more than 1 million PHEV test miles accumulated to date, the PHEVs are fleet, track, and dynamometer tested. Six Primary Factors The six primary factors that significantly impact PHEV fuel consumption are listed below. Some of the factors are unique to plug-in vehicles while others are common for all types of vehicles. 1. Usable Electrical Energy is dictated by battery capacity, rate of depletion as well as when the vehicle was last plugged-in. With less electrical energy available the powertrain must use more petroleum to generate the required power output. 2. Driver Aggressiveness impacts the fuel consumption of nearly all vehicles but this impact is greater for high efficiency powertrains. 3. Accessory Utilization like air conditioner systems or defroster systems can use a significant amount of additional energy that is not contributing to the propulsion of the vehicle. 4. Route Type such as city, highway or mountainous driving can affect the fuel consumption since it can involve stop and go driving or ascending a step grade. 5. Cold Start / Key On includes control strategies to improve cold start emissions as well as control routines to quickly supply cabin heat. These control strategies are necessary for consumer acceptance even though fuel consumption is negatively impacted. 6. Ambient Temperature can reduce the efficiency of many powertrain components by significantly increasing fluid viscosity. For vehicles that utilize battery energy storage systems, the temperature of the battery system can greatly affect the power output capability therefore reducing its system effectiveness. The analysis of the six primary factors that impact fuel economy of PHEVs helped to identify areas of potential further development as well as may assist in informing drivers of these effects in an effort to modify driving behavior to reduce petroleum consumption.

Richard "Barney" Carlson; Matthew G. Shirk; Benjamin M. Geller

2001-11-01T23:59:59.000Z

230

Plug-in Hybrid Electric Vehicle Evaluation and Test Data Analysis  

Science Conference Proceedings (OSTI)

In 2003, EPRI and DaimlerChrysler initiated a three-part collaborative effort to 1) develop and demonstrate a plug-in hybrid electric vehicle (PHEV) based on the Sprinter vehicle platform, 2) deliver prototype Sprinter PHEVs to fleets within the United States, and 3) explore these benefits in the context of commercial fleet use. As part of this effort, EPRI assumed the responsibility of managing data acquisition and analysis. This report focuses on evaluation of the PHEV Sprinter tested by the South Coas...

2009-12-07T23:59:59.000Z

231

Plug-in Hybrid Electric Vehicle Yard Tractor: Field Demonstration Results  

Science Conference Proceedings (OSTI)

The fuel economy results for US Hybrid's plug-in hybrid electric vehicle (PHEV) yard tractor, like all PHEVs, is sensitive to the manner in which the operator uses the vehicle and also to different duty cycles, terrain, temperature, and the frequency of charging. At three of the ports, the PHEV operated with a fuel consumption of 1.0 to 1.2 gallons per hour (gph) and 2.3 to 5.7 miles per gallon (mpg) in various duty modes. At the Port of Savannah, where it was solidly operated for only a week, it obtaine...

2011-12-29T23:59:59.000Z

232

Electric Energy and Power Consumption by Light-Duty Plug-in Electric Vehicles  

E-Print Network (OSTI)

.S. roads alone by 2015. PEVs-- either plug-in hybrid electric vehicles (PHEVs) or pure electric vehicles (EVs)--adopt similar drivetrain configurations as hybrid electric vehicles (HEVs) [21 Electric Energy and Power Consumption by Light-Duty Plug-in Electric Vehicles Di Wu, Student

Tesfatsion, Leigh

233

Well-to-wheels analysis of energy use and greenhouse gas emissions of plug-in hybrid electric vehicles.  

SciTech Connect

Plug-in hybrid electric vehicles (PHEVs) are being developed for mass production by the automotive industry. PHEVs have been touted for their potential to reduce the US transportation sector's dependence on petroleum and cut greenhouse gas (GHG) emissions by (1) using off-peak excess electric generation capacity and (2) increasing vehicles energy efficiency. A well-to-wheels (WTW) analysis - which examines energy use and emissions from primary energy source through vehicle operation - can help researchers better understand the impact of the upstream mix of electricity generation technologies for PHEV recharging, as well as the powertrain technology and fuel sources for PHEVs. For the WTW analysis, Argonne National Laboratory researchers used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed by Argonne to compare the WTW energy use and GHG emissions associated with various transportation technologies to those associated with PHEVs. Argonne researchers estimated the fuel economy and electricity use of PHEVs and alternative fuel/vehicle systems by using the Powertrain System Analysis Toolkit (PSAT) model. They examined two PHEV designs: the power-split configuration and the series configuration. The first is a parallel hybrid configuration in which the engine and the electric motor are connected to a single mechanical transmission that incorporates a power-split device that allows for parallel power paths - mechanical and electrical - from the engine to the wheels, allowing the engine and the electric motor to share the power during acceleration. In the second configuration, the engine powers a generator, which charges a battery that is used by the electric motor to propel the vehicle; thus, the engine never directly powers the vehicle's transmission. The power-split configuration was adopted for PHEVs with a 10- and 20-mile electric range because they require frequent use of the engine for acceleration and to provide energy when the battery is depleted, while the series configuration was adopted for PHEVs with a 30- and 40-mile electric range because they rely mostly on electrical power for propulsion. Argonne researchers calculated the equivalent on-road (real-world) fuel economy on the basis of U.S. Environmental Protection Agency miles per gallon (mpg)-based formulas. The reduction in fuel economy attributable to the on-road adjustment formula was capped at 30% for advanced vehicle systems (e.g., PHEVs, fuel cell vehicles [FCVs], hybrid electric vehicles [HEVs], and battery-powered electric vehicles [BEVs]). Simulations for calendar year 2020 with model year 2015 mid-size vehicles were chosen for this analysis to address the implications of PHEVs within a reasonable timeframe after their likely introduction over the next few years. For the WTW analysis, Argonne assumed a PHEV market penetration of 10% by 2020 in order to examine the impact of significant PHEV loading on the utility power sector. Technological improvement with medium uncertainty for each vehicle was also assumed for the analysis. Argonne employed detailed dispatch models to simulate the electric power systems in four major regions of the US: the New England Independent System Operator, the New York Independent System Operator, the State of Illinois, and the Western Electric Coordinating Council. Argonne also evaluated the US average generation mix and renewable generation of electricity for PHEV and BEV recharging scenarios to show the effects of these generation mixes on PHEV WTW results. Argonne's GREET model was designed to examine the WTW energy use and GHG emissions for PHEVs and BEVs, as well as FCVs, regular HEVs, and conventional gasoline internal combustion engine vehicles (ICEVs). WTW results are reported for charge-depleting (CD) operation of PHEVs under different recharging scenarios. The combined WTW results of CD and charge-sustaining (CS) PHEV operations (using the utility factor method) were also examined and reported. According to the utility factor method, the share of veh

Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

2010-06-14T23:59:59.000Z

234

Within-Day Recharge of Plug-In Hybrid Electric Vehicles: Energy Impact of Public Charging Infrastructure  

Science Conference Proceedings (OSTI)

This paper studies the role of public charging infrastructure in increasing PHEV s share of driving on electricity and the resulting petroleum use reduction. Using vehicle activity data obtained from the GPS-tracking household travel survey in Austin, Texas, gasoline and electricity consumptions of PHEVs in real world driving context are estimated. Driver s within-day recharging behavior, constrained by travel activities and public charger network, is modeled as a boundedly rational decision and incorporated in the energy use estimation. The key findings from the Austin dataset include: (1) public charging infrastructure makes PHEV a competitive vehicle choice for consumers without a home charger; (2) providing sufficient public charging service is expected to significantly reduce petroleum consumption of PHEVs; and (3) public charging opportunities offer greater benefits for PHEVs with a smaller battery pack, as within-day recharges compensate battery capacity.

Dong, Jing [ORNL; Lin, Zhenhong [ORNL

2012-01-01T23:59:59.000Z

235

Advanced Batteries for Electric-Drive Vehicles: A Technology and Cost-Effectiveness Assessment for Battery Electric Vehicles, Power Assist Hybrid Electric Vehicles, and Plug-In Hybrid Electric Vehicles  

Science Conference Proceedings (OSTI)

Availability of affordable advanced battery technology is a crucial challenge to the growth of the electric-drive vehicle (EDV) market. This study assesses the state of advanced battery technology for EDVs, which include battery electric vehicles (BEVs), power assist hybrid electric vehicles (HEV 0s -- hybrids without electric driving range), plug-in hybrid electric vehicles (PHEVs), and fuel cell vehicles. The first part of this study presents assessments of current battery performance and cycle life ca...

2004-05-31T23:59:59.000Z

236

NREL Vehicle Testing and Integration Facility (VTIF): Rotating Shadowband Radiometer (RSR); Golden, Colorado (Data)  

DOE Data Explorer (OSTI)

This measurement station at NREL's Vehicle Testing and Integration Facility (VTIF) monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment.

Lustbader, J.; Andreas, A.

237

NREL Vehicle Testing and Integration Facility (VTIF): Rotating Shadowband Radiometer (RSR); Golden, Colorado (Data)  

DOE Green Energy (OSTI)

This measurement station at NREL's Vehicle Testing and Integration Facility (VTIF) monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment.

Lustbader, J.; Andreas, A.

2012-04-01T23:59:59.000Z

238

Vehicle Technologies Office: Hybrid and Vehicle Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid and Vehicle Hybrid and Vehicle Systems to someone by E-mail Share Vehicle Technologies Office: Hybrid and Vehicle Systems on Facebook Tweet about Vehicle Technologies Office: Hybrid and Vehicle Systems on Twitter Bookmark Vehicle Technologies Office: Hybrid and Vehicle Systems on Google Bookmark Vehicle Technologies Office: Hybrid and Vehicle Systems on Delicious Rank Vehicle Technologies Office: Hybrid and Vehicle Systems on Digg Find More places to share Vehicle Technologies Office: Hybrid and Vehicle Systems on AddThis.com... Just the Basics Hybrid & Vehicle Systems Modeling & Simulation Integration & Validation Benchmarking Parasitic Loss Reduction Propulsion Systems Advanced Vehicle Evaluations Energy Storage Advanced Power Electronics & Electrical Machines

239

Assessing Energy Impact of Plug-In Hybrid Electric Vehicles: Significance of Daily Distance Variation over Time and Among Drivers  

Science Conference Proceedings (OSTI)

Accurate assessment of the impact of plug-in hybrid electric vehicles (PHEVs) on petroleum and electricity consumption is a necessary step toward effective policies. Variations in daily vehicle miles traveled (VMT) over time and among drivers affect PHEV energy impact, but the significance is not well understood. This paper uses a graphical illustration, a mathematical derivation, and an empirical study to examine the cause and significance of such an effect. The first two methods reveal that ignoring daily variation in VMT always causes underestimation of petroleum consumption and overestimation of electricity consumption by PHEVs; both biases increase as the assumed PHEV charge-depleting (CD) range moves closer to the average daily VMT. The empirical analysis based on national travel survey data shows that the assumption of uniform daily VMT over time and among drivers causes nearly 68% underestimation of expected petroleum use and nearly 48% overestimation of expected electricity use by PHEVs with a 40-mi CD range (PHEV40s). Also for PHEV40s, consideration of daily variation in VMT over time but not among drivers similar to the way the utility factor curve is derived in SAE Standard SAE J2841 causes underestimation of expected petroleum use by more than 24% and overestimation of expected electricity use by about 17%. Underestimation of petroleum use and overestimation of electricity use increase with larger-battery PHEVs.

Lin, Zhenhong [ORNL; Greene, David L [ORNL

2012-01-01T23:59:59.000Z

240

PON08010 American Recovery and Reinvestment Act of 2009 (ARRA) Cost Share: Alternative and Renewable Fuel and Vehicle Technology Program  

E-Print Network (OSTI)

PON08010 American Recovery and Reinvestment Act of 2009 (ARRA) Cost Share: Alternative Plug-In Hybrid Electric Vehicles (PHEVs) and Battery Electric Vehicles (BEVs). 15) A public entity and implementation of those vehicles. Will the budget breakdown include vehicle manufacturer costs involved? If so

Note: This page contains sample records for the topic "vehicle phev integrated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

246 Int. J. Electric and Hybrid Vehicles, Vol. 3, No. 3, 2011 Copyright 2011 Inderscience Enterprises Ltd.  

E-Print Network (OSTI)

246 Int. J. Electric and Hybrid Vehicles, Vol. 3, No. 3, 2011 Copyright © 2011 Inderscience@ieee.org *Corresponding author Abstract: This paper studies the power management of a plug-in hybrid electric vehicle-based strategy; quadratic programming; QP; plug-in hybrid electric vehicle; PHEV; electric and hybrid vehicles

Mi, Chunting "Chris"

242

Consumer Ready Plug-in Hybrid Electric Vehicle Andrew Shabashevich, Douglas Saucedo, Terrence Williams, Christian Reif, Cuyler Lattoraca,  

E-Print Network (OSTI)

1 Year 3 Consumer Ready Plug-in Hybrid Electric Vehicle Andrew Shabashevich, Douglas Saucedo as an all-electric vehicle, and a as a charge-sustaining, or a conventional Hybrid Electric Vehicle (HEV) is developing a Plug-in Hybrid Electric Vehicle (PHEV) to participate in the 2007 Challenge X competition

California at Davis, University of

243

Influence of driving patterns on life cycle cost and emissions of hybrid and plug-in electric vehicle powertrains  

E-Print Network (OSTI)

assessment Plug-in hybrid electric vehicles a b s t r a c t We compare the potential of hybrid, extended-range plug-in hybrid, and battery electric vehicles to reduce lifetime cost and life cycle greenhouse gas, 2009­04­11). Plug-in vehicles, including plug-in hybrid electric vehicles (PHEVs) and battery electric

Michalek, Jeremy J.

244

Plug-in Fuel Cell Vehicle Technology and Value Analysis Phase 1: Preliminary Findings and Plan for Detailed Study  

Science Conference Proceedings (OSTI)

This report summarizes the results and conclusions of a first study of the technical, cost, and environmental characteristics of representative plug-in fuel cell vehicle configurations and their comparison with similar-sized fuel cell vehicles, battery electric vehicles (BEVs), and plug-in electric vehicles (PHEVs).

2010-07-29T23:59:59.000Z

245

Choices and Requirements of Batteries for EVs, HEVs, PHEVs (Presentation)  

DOE Green Energy (OSTI)

This presentation describes the choices available and requirements for batteries for electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles.

Pesaran, A. A.

2011-04-01T23:59:59.000Z

246

Plug-In Electric Vehicle Infrastructure Installation Guidelines  

Science Conference Proceedings (OSTI)

In the next five years, major automobile manufacturers are poised to deliver over a dozen electric vehicle (EV) and plug-in hybrid electric (PHEV) models. The cost savings to consumers and the positive impact on the environment will be significant. One of the chief remaining obstacles to widespread adoption of electric vehicles, however, is the scarcity of recharging facilities for PEVs.

2009-09-25T23:59:59.000Z

247

Plug-in-hybrid electric vehicles park as virtual DVR  

E-Print Network (OSTI)

Plug-in-hybrid electric vehicles park as virtual DVR F.R. Islam and H.R. Pota Dynamic voltage in a real-life low voltage power system. Hybrid-electric power technologies and advances in batteries make electric vehicle (PHEV) batteries and their bidirectional charger in a charging station as virtual dynamic

Pota, Himanshu Roy

248

Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory  

DOE Green Energy (OSTI)

The combination of high oil costs, concerns about oil security and availability, and air quality issues related to vehicle emissions are driving interest in plug-in hybrid electric vehicles (PHEVs). PHEVs are similar to conventional hybrid electric vehicles, but feature a larger battery and plug-in charger that allows electricity from the grid to replace a portion of the petroleum-fueled drive energy. PHEVs may derive a substantial fraction of their miles from grid-derived electricity, but without the range restrictions of pure battery electric vehicles. As of early 2007, production of PHEVs is essentially limited to demonstration vehicles and prototypes. However, the technology has received considerable attention from the media, national security interests, environmental organizations, and the electric power industry. The use of PHEVs would represent a significant potential shift in the use of electricity and the operation of electric power systems. Electrification of the transportation sector could increase generation capacity and transmission and distribution (T&D) requirements, especially if vehicles are charged during periods of high demand. This study is designed to evaluate several of these PHEV-charging impacts on utility system operations within the Xcel Energy Colorado service territory.

Parks, K.; Denholm, P.; Markel, T.

2007-05-01T23:59:59.000Z

249

Interim Test Procedures for Evaluating Electrical Performance and Grid Integration of Vehicle-to-Grid Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

Interim Test Procedures for Interim Test Procedures for Evaluating Electrical Performance and Grid Integration of Vehicle-to-Grid Applications S. Chakraborty, W. Kramer, B. Kroposki, G. Martin, P. McNutt, M. Kuss, T. Markel, and A. Hoke Technical Report NREL/TP-5500-51001 June 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Interim Test Procedures for Evaluating Electrical Performance and Grid Integration of Vehicle-to-Grid Applications S. Chakraborty, W. Kramer, B. Kroposki, G. Martin, P. McNutt, M. Kuss, T. Markel,

250

Probabilistic Modelling of Plug-in Hybrid Electric Vehicle Impacts on Distribution Networks in  

E-Print Network (OSTI)

Probabilistic Modelling of Plug-in Hybrid Electric Vehicle Impacts on Distribution Networks Committee Probabilistic Modelling of Plug-in Hybrid Electric Vehicle Impacts on Distribution Networks) Departmental Member Plug-in hybrid electric vehicles (PHEVs) represent a promising future direction

Victoria, University of

251

A mean field game analysis of electric vehicles in the smart grid  

E-Print Network (OSTI)

1 A mean field game analysis of electric vehicles in the smart grid Romain Couillet1, Samir Medina electrical vehicles (EV) or electrical hybrid oil-electricity vehicles (PHEV) in the smart grid energy market to the smart grid and sell their energy surpluses, when needed. It is therefore an important economical

Paris-Sud XI, Université de

252

An Integrated Onboard Charger and Accessary Power Converter for Plug-in Electric Vehicles  

SciTech Connect

Abstract: In this paper, an integrated onboard battery charger and accessary dc-dc converter for plug-in electric vehicles (PEVs) is presented. The idea is to utilize the already available traction drive inverters and motors of a PEV as the frond converter of the charger circuit and the transformer of the 14 V accessary dc-dc converter to provide galvanic isolation. The topology was verified by modeling and experimental results on a 5 kW charger prototype

Su, Gui-Jia [ORNL; Tang, Lixin [ORNL

2013-01-01T23:59:59.000Z

253

Battery Test Manual For Plug-In Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEVs. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

Not Available

2008-03-01T23:59:59.000Z

254

Battery Test Manual For Plug-In Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEVs. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

Jeffrey R. Belt

2010-09-01T23:59:59.000Z

255

Battery Test Manual For Plug-In Hybrid Electric Vehicles  

SciTech Connect

This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEVs. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

Jeffrey R. Belt

2010-12-01T23:59:59.000Z

256

Plug-In Hybrid Electric Vehicle Value Proposition Study: Interim Report: Phase I Scenario Evaluation  

DOE Green Energy (OSTI)

Plug-in hybrid electric vehicles (PHEVs) offer significant improvements in fuel economy, convenient low-cost recharging capabilities, potential environmental benefits, and decreased reliance on imported petroleum. However, the cost associated with new components (e.g., advanced batteries) to be introduced in these vehicles will likely result in a price premium to the consumer. This study aims to overcome this market barrier by identifying and evaluating value propositions that will increase the qualitative value and/or decrease the overall cost of ownership relative to the competing conventional vehicles and hybrid electric vehicles (HEVs) of 2030 During this initial phase of this study, business scenarios were developed based on economic advantages that either increase the consumer value or reduce the consumer cost of PHEVs to assure a sustainable market that can thrive without the aid of state and Federal incentives or subsidies. Once the characteristics of a thriving PHEV market have been defined for this timeframe, market introduction steps, such as supportive policies, regulations and temporary incentives, needed to reach this level of sustainability will be determined. PHEVs have gained interest over the past decade for several reasons, including their high fuel economy, convenient low-cost recharging capabilities, potential environmental benefits and reduced use of imported petroleum, potentially contributing to President Bush's goal of a 20% reduction in gasoline use in ten years, or 'Twenty in Ten'. PHEVs and energy storage from advanced batteries have also been suggested as enabling technologies to improve the reliability and efficiency of the electric power grid. However, PHEVs will likely cost significantly more to purchase than conventional or other hybrid electric vehicles (HEVs), in large part because of the cost of batteries. Despite the potential long-term savings to consumers and value to stakeholders, the initial cost of PHEVs presents a major market barrier to their widespread commercialization. The purpose of this project is to identify and evaluate value-added propositions for PHEVs that will help overcome this market barrier. Candidate value propositions for the initial case study were chosen to enhance consumer acceptance of PHEVs and/or compatibility with the grid. Potential benefits of such grid-connected vehicles include the ability to supply peak load or emergency power requirements of the grid, enabling utilities to size their generation capacity and contingency resources at levels below peak. Different models for vehicle/battery ownership, leasing, financing and operation, as well as the grid, communications, and vehicle infrastructure needed to support the proposed value-added functions were explored during Phase 1. Rigorous power system, vehicle, financial and emissions modeling were utilized to help identify the most promising value propositions and market niches to focus PHEV deployment initiatives.

Sikes, Karen R [ORNL; Markel, Lawrence C [ORNL; Hadley, Stanton W [ORNL; Hinds, Shaun [Sentech, Inc.; DeVault, Robert C [ORNL

2009-01-01T23:59:59.000Z

257

Plug-In Hybrid Electric Vehicle Yard Tractor: Performance Characterization Report  

Science Conference Proceedings (OSTI)

Diesel-powered tractors, called yard tractors, are used to shuttle cargo trailers from point to point within the confines of a port facility, terminal, or yard. A plug-in hybrid electric vehicle (PHEV) yard tractor design was proposed as a way to reduce operation emissions and diesel fuel use. In 2007, the Electric Power Research Institute (EPRI) began work on the design and construction of a first-of-a-kind PHEV yard tractor. In 2009, Southern California Edison (SCE) tested the completed PHEV yard trac...

2012-02-20T23:59:59.000Z

258

E85, Flex-Fuel Vehicles, and AB 1493 Integrating biofuels into California's vehicular greenhouse gas regulations  

E-Print Network (OSTI)

E85, Flex-Fuel Vehicles, and AB 1493 Integrating biofuels into California's vehicular greenhouse: BIOFUEL USE RATE............................................................................................................................ 17 2.2 USE OF THE BIOFUELS USE RATE (BUR

Kammen, Daniel M.

259

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network (OSTI)

2005). Considering the energy markets shift in demand toPHEV impact on wind energy market (Short et al. , 2006) andVehicles in California Energy Markets, Transportation

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

260

2011 Chevrolet Volt VIN 0815 Plug-In Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy (DOE) Advanced Vehicle Testing Activity (AVTA) program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on plug-in hybrid electric vehicles (PHEVs), including testing the PHEV batteries when both the vehicles and batteries are new and at the conclusion of 12,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Chevrolet Volt PHEV (VIN 1G1RD6E48BU100815). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec) dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

Tyler Gray; Matthew Shirk; Jeffrey Wishart

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle phev integrated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Plug-In Hybrid Electric Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plug-In Hybrid Electric Vehicles Plug-In Hybrid Electric Vehicles Plug-In Hybrid Electric Vehicles A new study released on Plug-in Hybrid Electric Vehicles (PHEVs) found there is enough electric capacity to power plug-in vehicles across much of the nation. The Office of Electricity Delivery and Energy Reliability supported researchers at the Pacific Northwest National Laboratory to develop this study that found "off-peak" electricity production and transmission capacity could fuel 84 percent of the 198 million cars, pickup trucks, and sport utility vehicles (SUVs) in the nation if they were plug-in hybrid electrics. This is the first review of what the impacts would be of very high market penetrations of PHEVs. Plug-In Hybrid Electric Vehicles More Documents & Publications

262

Do You Drive a Hybrid Electric Vehicle? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Do You Drive a Hybrid Electric Vehicle? Do You Drive a Hybrid Electric Vehicle? Do You Drive a Hybrid Electric Vehicle? July 9, 2009 - 1:34am Addthis In Tuesday's entry, Francis X. Vogel from the Wisconsin Clean Cities coalition told us about his plug-in hybrid electric vehicle (PHEV). He's one of the lucky few in the United States to drive one of these vehicles because factory-made PHEV's are not yet available to the public. Regular hybrid electric vehicles, however, are widely available and seem to be more and more common on the roads. Do you drive a hybrid electric vehicle? Please share your experience with it in the comments. Each Thursday, you have the chance to share your thoughts on a topic related to energy efficiency or renewable energy for consumers. Please comment with your answers, and also feel free to respond to other comments.

263

Predicting the Market Potential of Plug-In Electric Vehicles Using Multiday GPS Data  

E-Print Network (OSTI)

GPS data for a years worth of travel by 255 Seattle households illuminate how plug-in electric vehicles can match household needs. The results suggest that a battery-electric vehicle (BEV) with 100 miles of range should meet the needs of 50 % of one-vehicle households and 80 % of multiple-vehicle households, when charging once a day and relying on another vehicle or mode just 4 days a year. Moreover, the average one-vehicle Seattle household uses each vehicle 23 miles per day and should be able to electrify close to 80 % of its miles using a plug-in hybrid electric vehicle (PHEV) with 40-mile all-electric-range. Households owning two or more vehicles can electrify 50 to 70 % of their miles using a PHEV40, depending on how they assign the vehicle across drivers each day. Cost comparisons between the average single-vehicle household owning a Chevrolet Cruze versus a Volt PHEV suggest that when gas prices are $3.50 per gallon and electricity rates at 11.2 ct per kWh, the Volt will save the household $535 per year in operating costs. Similarly, the Toyota Prius PHEV will provide an annual savings of $538 per year over the Corolla.

Mobashwir Khan; Kara M. Kockelman; William J. Murray Jr. Fellow

2011-01-01T23:59:59.000Z

264

Evaluation of Emerging Battery Technologies for Plug-in Hybrid Vehicles  

Science Conference Proceedings (OSTI)

The performance, cycle life, and cost of available batteries are key issues in determining the marketability of plug-in hybrid-electric vehicles (PHEVs). The California Air Resources Board (CARB) initiated a project to evaluate emerging lithiumion battery technologies for PHEV applications. Work initially focused on the determination of the characteristics of one of the most interesting of the emerging lithium-ion batteries, the lithium titanate battery in commercial development by Altairnano, but other ...

2009-08-24T23:59:59.000Z

265

Environmental Assessment of Plug-In Hybrid Electric Vehicles, Volume 3: California Assessment Report  

Science Conference Proceedings (OSTI)

National interest in electric transportation, particularly plug-in hybrid electric vehicles (PHEVs), has increased dramatically in recent years. Much of this interest is based on the potential of PHEVs to reduce petroleum consumption, reduce greenhouse gases, and improve air quality. The Electric Power Research Institute (EPRI) previously conducted a detailed assessment of the impacts on air quality and greenhouse gas emissions if significant numbers of Americans drove cars that were fueled by the power ...

2009-09-30T23:59:59.000Z

266

Economics of Plug-In Hybrid Electric Vehicles (released in AEO2009)  

Reports and Publications (EIA)

PHEVs have gained significant attention in recent years, as concerns about energy, environmental, and economic securityincluding rising gasoline prices have prompted efforts to improve vehicle fuel economy and reduce petroleum consumption in the transportation sector. PHEVs are particularly well suited to meet these objectives, because they have the potential to reduce petroleum consumption both through fuel economy gains and by substituting electric power for gasoline use.

Information Center

2009-03-31T23:59:59.000Z

267

Preliminary Assessment of Plug-In Hybrid and Electric Vehicle Value Elements  

Science Conference Proceedings (OSTI)

Plug-in Hybrid Electric Vehicles (PHEVs) are expected to start production in late 2010. Their batteries are a potential energy storage resource that could supply power to the grid in peak hours or provide ancillary services by providing emergency reserves and helping regulate voltage and frequency during short-term variations in the power balance. This report estimates what the value of PHEV-supplied ancillary services and electric power would have been in the California Independent System Operator (ISO)...

2008-09-30T23:59:59.000Z

268

Optimizing and Diversifying the Electric Range of Plug-in Hybrid Electric Vehicles for U.S. Drivers  

Science Conference Proceedings (OSTI)

To provide useful information for automakers to design successful plug-in hybrid electric vehicle (PHEV) products and for energy and environmental analysts to understand the social impact of PHEVs, this paper addresses the question of how many of the U.S. consumers, if buying a PHEV, would prefer what electric ranges. The Market-oriented Optimal Range for PHEV (MOR-PHEV) model is developed to optimize the PHEV electric range for each of 36,664 sampled individuals representing U.S. new vehicle drivers. The optimization objective is the minimization of the sum of costs on battery, gasoline, electricity and refueling hassle. Assuming no battery subsidy, the empirical results suggest that: 1) the optimal PHEV electric range approximates two thirds of one s typical daily driving distance in the near term, defined as $450/kWh battery delivered price and $4/gallon gasoline price. 2) PHEVs are not ready to directly compete with HEVs at today s situation, defined by the $600/kWh battery delivered price and the $3-$4/gallon gasoline price, but can do so in the near term. 3) PHEV10s will be favored by the market over longer-range PHEVs in the near term, but longer-range PHEVs can dominate the PHEV market if gasoline prices reach as high as $5-$6 per gallon and/or battery delivered prices reach as low as $150-$300/kWh. 4) PHEVs can become much more attractive against HEVs in the near term if the electric range can be extended by only 10% with multiple charges per day, possible with improved charging infrastructure or adapted charging behavior. 5) the impact of a $100/kWh decrease in battery delivered prices on the competiveness of PHEVs against HEVs can be offset by about $1.25/gallon decrease in gasoline prices, or about 7/kWh increase in electricity prices. This also means that the impact of a $1/gallon decrease in gasoline prices can be offset by about 5/kWh decrease in electricity prices.

Lin, Zhenhong [ORNL

2012-01-01T23:59:59.000Z

269

NREL: Vehicle Systems Analysis - Plug-In Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-In Hybrid Electric Vehicles Plug-In Hybrid Electric Vehicles NREL's vehicle systems analysts work to advance the technology of plug-in hybrid electric vehicles (PHEVs), also known as grid-connected or grid-charged hybrids. Technology Targets and Metrics Analysis We use our Technical Targets Tool to determine pathways for maximizing the potential national impact of plug-in hybrid electric vehicles. This assessment includes consideration of how consumers will value the new vehicle technology based on attributes such as: Acceleration Fuel economy and consumption Cargo capacity Cost. We use the resulting competitiveness index to predict the vehicle's market penetration rate. Then, we can create a total national benefits picture after adding in other factors such as: Existing fleet turnover

270

Plug-In 2009: PHEV Testing and Demonstration Activities Conducted...  

NLE Websites -- All DOE Office Websites (Extended Search)

ICE (internal combustion engine) vehicles - 7 models, 400,000 test miles * Full-size battery electric vehicles (BEVs) - 40 BEV models, 5+ million test miles * Urban electric...

271

Investigation of Path Dependence in Commercial Li-ion Cells Chosen for PHEV Duty Cycle Protocols (paper)  

Science Conference Proceedings (OSTI)

Path dependence is emerging as a premier issue of how electrochemical cells age in conditions that are diverse and variable in the time domain. For example, lithium-ion cells in a vehicle configuration will experience a variable combination of usage and rest periods over a range of temperature and state of charge (SOC). This is complicated by the fact that some aging can actually become worse (or better) when a lithium-ion cell is idle for extended periods under calendar-life (calL) aging, as opposed to cycle-life (cycL) conditions where the cell is used within a predictable schedule. The purpose of this study is to bridge the gap between highly idealized and controlled laboratory test conditions and actual field conditions regarding PHEV applications, so that field-type aging mechanisms can be mimicked and quantified in a repeatable laboratory setting. The main parameters are the magnitude and frequency of the thermal cycling, looking at isothermal, mild, and severe scenarios. To date, little is known about Li-ion aging effects caused by thermal cycling superimposed onto electrochemical cycling, and related path dependence. This scenario is representative of what Li-ion batteries will experience in vehicle service, where upon the typical start of a HEV/PHEV, the batteries will be cool or cold, will gradually warm up to normal temperature and operate there for a time, then will cool down after the vehicle is turned off. Such thermal cycling will occur thousands of times during the projected life of a HEV/PHEV battery pack. We propose to quantify the effects of thermal cycling on Li-ion batteries using a representative chemistry that is commercially available. The secondary Li-ion cells used in this study are of the 18650 configuration, have a nominal capacity rating of 1.9 Ah, and consist of a {LiMn2O4 + LiMn(1/3)Ni(1/3)Co(1/3)O2} cathode and a graphite anode. Electrochemical cycling is based on PHEV-relevant cycle-life protocols that are a combination of charge depleting (CD) and charge sustaining (CS) modes discussed in the Battery Test Manual for Plug-in Hybrid Electric Vehicles (INL, March 2008, rev0). A realistic duty cycle will involve both CD and CS modes, the proportion of each defined by the severity of the power demands. We assume that the cells will start each cycling day at 90% SOC, and that they will not be allowed to go below 35% SOC, with operation around 70% SOC being a nominal condition. The 35, 70, and 90% SOC conditions are also being used to define critical aspects of the related reference performance test (RPT) for this investigation. There are three primary components to the RPT, all assessed at room temperature: (A) static and residual capacity (SRC) over a matrix of current, (B) kinetics and pulse performance testing (PPT) over current for SOCs of interest, and (C) EIS for SOCs of interest. The RPT is performed on all cells every 30 day test interval, as well as a pulse-per-day to provide a quick diagnostic snapshot. Where feasible, we utilize various elements of Diagnostic Testing (DT) to characterize performance of the cells and to gain mechanistic-level knowledge regarding both performance features and limitations. We will present the rationale behind the experimental design, early data, and discuss the fundamental tools used to elucidate performance degradation mechanisms.

Kevin L. Gering

2011-04-01T23:59:59.000Z

272

EV/PHEV Bidirectional Charger Assessment for V2G Reactive Power Operation  

SciTech Connect

This paper presents a summary of the available single-phase ac-dc topologies used for EV/PHEV, level-1 and -2 on-board charging and for providing reactive power support to the utility grid. It presents the design motives of single-phase on-board chargers in detail and makes a classification of the chargers based on their future vehicle-to-grid usage. The pros and cons of each different ac-dc topology are discussed to shed light on their suitability for reactive power support. This paper also presents and analyzes the differences between charging-only operation and capacitive reactive power operation that results in increased demand from the dc-link capacitor (more charge/discharge cycles and increased second harmonic ripple current). Moreover, battery state of charge is spared from losses during reactive power operation, but converter output power must be limited below its rated power rating to have the same stress on the dc-link capacitor.

Kisacikoglu, Mithat C [ORNL; Ozpineci, Burak [ORNL; Tolbert, Leon M [ORNL

2013-01-01T23:59:59.000Z

273

Plug-In Electric Vehicle Fast Charge Station Operational Analysis with Integrated Renewables: Preprint  

SciTech Connect

The growing, though still nascent, plug-in electric vehicle (PEV) market currently operates primarily via level 1 and level 2 charging in the United States. Fast chargers are still a rarity, but offer a confidence boost to oppose 'range anxiety' in consumers making the transition from conventional vehicles to PEVs. Because relatively no real-world usage of fast chargers at scale exists yet, the National Renewable Energy Laboratory developed a simulation to help assess fast charging needs based on real-world travel data. This study documents the data, methods, and results of the simulation run for multiple scenarios, varying fleet sizes, and the number of charger ports. The grid impact of this usage is further quantified to assess the opportunity for integration of renewables; specifically, a high frequency of fast charging is found to be in demand during the late afternoons and evenings coinciding with grid peak periods. Proper integration of a solar array and stationary battery thus helps ease the load and reduces the need for new generator construction to meet the demand of a future PEV market.

Simpson, M.; Markel, T.

2012-08-01T23:59:59.000Z

274

An SCR inverter with an integral battery charger for electric vehicles  

SciTech Connect

A thyristor-based inverter/charger for use in electric passenger vehicles is described, and prototype charger test results are presented. A battery charger is included integral to the inverter by using a subset of the inverter power circuit components. The integral charger employs the inverter commutation components as a resonant ac/dc converter rated at 3.6 kW. The resulting charger provides electrical isolation between the vehicle propulsion battery and ac line and is capable of charging a 25kWh propulsion battery in 8 h from a 220-V ac line. Charger efficiency and power factor at an output power of 3.6 kW are 86 and 95 percent, respectively. The inverter, when operated with a matching polyphase ac induction motor and nominal 132-V propulsion battery, can provide a peak shaft power of 34 kW (45 hp) during motoring operation and 45 kW (60 hp) during regeneration. Thyristors are employed for the inverter power switching devices and are arranged in an input-commutated topology. This configuration requires only two thyristors to commutate the six main inverter thyristors. The combined ac inverter/charger package weighs 47 kg (103 lb).

Thimmesch, D.

1985-07-01T23:59:59.000Z

275

Project Integration Office for the electric and hybrid vehicle R and D program. Eighth progress report, March 1982  

DOE Green Energy (OSTI)

The Project Integration Office (PIO) was established to assist the US DOE with the direction and coordination of its multiple electric vehicle and hybrid electric vehicle research programs in order to get the maximum payoff from these research efforts. In addition, the PIO performs objective independent technical and economic studies, analyses and modeling, and maintains a technical information liaison service to facilitate information exchange between the program participants and industry. Progress in each of these activities is reported. (LCL)

Not Available

1982-04-19T23:59:59.000Z

276

Austin Energy AltCar Expo - AVTA's PHEV Testing and Demonstration...  

NLE Websites -- All DOE Office Websites (Extended Search)

Economy Driving Schedule) dynamometer test cycles 6 Hymotion Prius - UDDS Fuel Use * 5 kWh A123Systems (Li) V1 and Prius packs (AC kWh) Hymotion PHEV Prius MPG & kWh - UDDS...

277

Vehicle Smart  

E-Print Network (OSTI)

Abstract: This article explores criteria necessary for reliable communication between electric vehicles (EVs) and electric vehicle service equipment (EVSE). Data will demonstrate that a G3-PLC system has already met the criteria established by the automotive and utility industries. Multiple international tests prove that a G3-PLC implementation is the optimal low-frequency solution. A similar version of this article appeared in the August 2011 issue of Power Systems Design magazine. For the first time, electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) are building a viable market of mobile electrical energy consumers. Not surprisingly, new relationships between electricity providers (the utility companies) and automobile owners are emerging. Many utilities already offer, or are planning to offer, special tariffs, including fixed monthly rates, to EV owners. EVs impose new dynamics and demands on the electrical supply itself. There is, in fact, a symbiotic relationship developing between the EV and energy provider. Because of their large storage capacity, often 10kVH, EVs draw currents of 80A or greater over a period of hours. This strains electrical grid components, especially low-voltage transformers which can overheat and fail while serving consumers ' homes. Meanwhile, the EVs ' electrical storage capacity can also reverse the current flow. It can then supply power back to the grid, thereby helping the utilities to meet demand peaks without starting up high-carbon-output diesel generators. To enable this new dynamic relationship, the EV and the energy provider must communicate. The utility must be able to authenticate the individual vehicle, and bidirectional communications is needed to support negotiation of power flow rates and direction. To

Jim Leclare; Principal Member; Technical Staff

2012-01-01T23:59:59.000Z

278

Benefits and Challenges of Achieving a Mainstream Market for Electric Vehicles  

SciTech Connect

The Plug-in Hybrid electric Vehicle (PHEV) Market Introduction Study Final Report identified a range of policies, incentives and regulations designed to enhance the probability of success in commercializing PHEVs as they enter the automotive marketplace starting in 2010. The objective of the comprehensive PHEV Value Proposition study, which encompasses the PHEV Market Introduction Study, is to better understand the value proposition that PHEVs (as well as other plug-in electric vehicle platforms - PEVs) provide to the auto companies themselves, to the consumer and to the public at large as represented by the government and its public policies. In this report we use the more inclusive term PEVs, to include PHEVs, BEVs (battery electric vehicles that operate only on battery) and EREVs (extended range electric vehicles that combine battery electric vehicles with an internal combustion engine that charges the battery as needed). The objective of Taratec's contribution to Phase 2 of the PHEV Value Proposition Study is to develop a clear understanding of the benefits of PEVs to three stakeholders - auto original equipment manufacturers (OEMs), utilities, and the government - and of the technical and commercial challenges and risks to be overcome in order to achieve commercial success for these vehicles. The goal is to understand the technical and commercial challenges in moving from the 'early adopters' at the point of market introduction of these vehicles to a 'sustainable' mainstream market in which PEVs and other PEVs represent a normal, commercially available and attractive vehicle to the mainstream consumer. For the purpose of this study, that sustainable market is assumed to be in place in the 2030 timeframe. The principal focus of the study is to better understand the technical and commercial challenges in the transition from early adopters to a sustainable mainstream consumer market. Effectively, that translates to understanding the challenges to be overcome during the transition period - basically the middle years as the second and third generation of these vehicles are developed and come to market. The concern is to understand those things that in the near term would delay that transition. The study looked at identifying and then quantifying these technical and commercial risks and benefits from three perspectives: (1) The auto industry original equipment manufacturers (OEMs) themselves; (2) The utilities who will provide the electric 'fuel' that will fully or partially power the vehicles; and (3) The government, representing public policy interest in PEV success. By clarifying and quantifying these benefits and the technical and commercial risks that could delay the transition to a sustainable mainstream market, the study provides the basis for developing recommendations for government policies and support for PHEV and PEV development.

Ungar, Edward [Taratec Corporation; Mueller, Howard [Taratec Corporation; Smith, Brett [Center for Automotive Research

2010-08-01T23:59:59.000Z

279

PHEV Energy Storage and Drive Cycle Impacts (Presentation)  

DOE Green Energy (OSTI)

Plug-in Hybrid vehicles energy storage and drive cycle impacts, presented at the 7th Advanced Automotive Battery Conference.

Markel, T.; Pesaran, A.

2007-05-17T23:59:59.000Z

280

BetterBuildings Webinar Transcription - Financial Vehicles within an Integrated Energy Efficiency Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Webinar Better Buildings Webinar Financial Vehicles within an Integrated Energy Efficiency Program July 29, 2010 2pm EST Danielle Byrnett : Hi folks. Welcome to the first Better Buildings webcast. We're going to be having a series of these. It looks like we've got more than thirty grantees on the phone and hopefully also up online. If you're having any trouble, feel free to use the box on the right-hand side of your screen to let us know, and we'll see what we can do to help you out. Erin Jackson is going to describe how the webcast is going to be run and moderated and then we will get started very shortly thereafter with our presenters: Chris Lohmann, Stockton Williams, Julie Bennett, and Brandon Belford. This is Danielle Byrnett if I didn't say that, Program Manager for Better Buildings. I

Note: This page contains sample records for the topic "vehicle phev integrated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid and plug-in electric vehicles Hybrid and plug-in electric vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. This new generation of vehicles, often called electric drive vehicles, can be divided into three cat- egories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (EVs). Together, they have great potential to reduce U.S. petroleum use. Hybrid Electric Vehicles HEVs are powered by an internal combus- tion engine or other propulsion source that runs on conventional or alternative fuel and an electric motor that uses energy stored in a battery. The extra power provided by the electric motor allows for a smaller engine, resulting in better fuel

282

The potential of plug-in hybrid electric vehicles to reduce petroleum use issues involved in developing reliable estimates.  

DOE Green Energy (OSTI)

This paper delineates the various issues involved in developing reliable estimates of the petroleum use reduction that would result from the wide-spread introduction of plug-in hybrid electric vehicles (PHEVs). Travel day data from the 2001 National Household Travel Survey (NHTS) were analyzed to identify the share of vehicle miles of travel (VMT) that could be transferred to grid electricity. Various PHEV charge-depleting (CD) ranges were evaluated, and 100% CD mode and potential blended modes were analyzed. The NHTS data were also examined to evaluate the potential for PHEV battery charging multiple times a day. Data from the 2005 American Housing Survey (AHS) were analyzed to evaluate the availability of garages and carports for at-home charging of the PHEV battery. The AHS data were also reviewed by census region and household location within or outside metropolitan statistical areas. To illustrate the lag times involved, the historical new vehicle market share increases for the diesel power train in France (a highly successful case) and the emerging hybrid electric vehicles in the United States were examined. A new vehicle technology substitution model is applied to illustrate a historically plausible successful new PHEV market share expansion. The trends in U.S. light-duty vehicle sales and light-duty vehicle stock were evaluated to estimate the time required for hypothetical successful new PHEVs to achieve the ultimately attainable share of the existing vehicle stock. Only when such steps have been accomplished will the full oil savings potential for the nation be achieved.

Vyas, A. D.; Santini, D. J.; Johnson, L. R.; Energy Systems

2009-01-01T23:59:59.000Z

283

Technology Improvement Pathways to Cost-Effective Vehicle Electrification  

DOE Green Energy (OSTI)

Electrifying transportation can reduce or eliminate dependence on foreign fuels, emission of green house gases, and emission of pollutants. One challenge is finding a pathway for vehicles that gains wide market acceptance to achieve a meaningful benefit. This paper evaluates several approaches aimed at making plug-in electric vehicles (EV) and plug-in hybrid electric vehicles (PHEVs) cost-effective including opportunity charging, replacing the battery over the vehicle life, improving battery life, reducing battery cost, and providing electric power directly to the vehicle during a portion of its travel. Many combinations of PHEV electric range and battery power are included. For each case, the model accounts for battery cycle life and the national distribution of driving distances to size the battery optimally. Using the current estimates of battery life and cost, only the dynamically plugged-in pathway was cost-effective to the consumer. Significant improvements in battery life and battery cost also made PHEVs more cost-effective than today's hybrid electric vehicles (HEVs) and conventional internal combustion engine vehicles (CVs).

Brooker, A.; Thornton, M.; Rugh, J. P.

2010-04-01T23:59:59.000Z

284

Integral inverter/battery charger for use in electric vehicles. Final report  

SciTech Connect

The design and test results of a thyristor based inverter/charger are discussed. A battery charger is included integral to the inverter by using a subset of the inverter power circuit components. The resulting charger provides electrical isolation between the vehicle propulsion battery and ac line and is capable of charging a 25 kWh propulsion battery in 8 hours from a 220 volt ac line. The integral charger employs the inverter commutation components as a resonant ac/dc isolated converter rated at 3.6 kW. Charger efficiency and power factor at an output power of 3.6 kW are 86% and 95%, respectively. The inverter, when operated with a matching polyphase ac induction motor and nominal 132 volt propulsion battery, can provide a peak shaft power of 34 kW (45 hp) during motoring operation and 45 kW (60 hp) during regeneration. Thyristors are employed for the inverter power switching devices and are arranged in an input-commutated topology. This configuration requires only two thyristors to commutate the six main inverter thyristors. Inverter efficiency during motoring operation at motor shaft speeds above 450 rad/sec (4300 rpm) is 92 to 94% for output power levels above 11 KW (15 hp). The combined ac inverter/charger package weighs 47 kg (103 lbs).

Thimmesch, D.

1983-09-01T23:59:59.000Z

285

Methodology for combined Integration of electric vehicles and distributed resources into the electric grid  

E-Print Network (OSTI)

Plug-in electric vehicles and distributed generation are expected to appear in growing numbers over the next few decades. Large scale unregulated penetration of plug-in electric vehicles and distributed generation can each ...

Gunter, Samantha Joellyn

2011-01-01T23:59:59.000Z

286

PLUG-IN HYBRID ELECTRIC VEHICLE AND HYBRID ELECTRIC VEHICLE EMISSIONS UNDER FTP AND US06 CYCLES AT HIGH, AMBIENT, AND LOW TEMPERATURES  

Science Conference Proceedings (OSTI)

The concept of a Plug-in Hybrid Electric Vehicle (PHEV) is to displace consumption of gasoline by using electricity from the vehicles large battery pack to power the vehicle as much as possible with minimal engine operation. This paper assesses the PHEV emissions and operation. Currently, testing of vehicle emissions is done using the federal standard FTP4 cycle on a dynamometer at ambient (75F) temperatures. Research was also completed using the US06 cycle. Furthermore, research was completed at high (95F) and low (20F) temperatures. Initial dynamometer testing was performed on a stock Toyota Prius under the standard FTP4 cycle, and the more demanding US06 cycle. Each cycle was run at 95F, 75F, and 20F. The testing was repeated with the same Prius retrofi tted with an EnergyCS Plug-in Hybrid Electric system. The results of the testing confi rm that the stock Prius meets Super-Ultra Low Emission Vehicle requirements under current testing procedures, while the PHEV Prius under current testing procedures were greater than Super-Ultra Low Emission Vehicle requirements, but still met Ultra Low Emission Vehicle requirements. Research points to the catalyst temperature being a critical factor in meeting emission requirements. Initial engine emissions pass through with minimal conversion until the catalyst is heated to typical operating temperatures of 300400C. PHEVs also have trouble maintaining the minimum catalyst temperature throughout the entire test because the engine is turned off when the battery can support the load. It has been observed in both HEVs and PHEVs that the catalyst is intermittently unable to reduce nitrogen oxide emissions, which causes further emission releases. Research needs to be done to combat the initial emission spikes caused by a cold catalyst. Research also needs to be done to improve the reduction of nitrogen oxides by the catalyst system.

Seidman, M.R.; Markel, T.

2008-01-01T23:59:59.000Z

287

Environmental Assessment of Plug-In Hybrid Electric Vehicles, Volume 1: Nationwide Greenhouse Gas Emissions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions 1015325 Final Report, July 2007 Each of the ... scenarios showed significant Greenhouse Gas reductions due to PHEV fleet penetration ... ... PHEVs adoption results in significant reduction in the consumption of petroleum fuels. ' ' DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES THIS DOCUMENT WAS PREPARED BY THE ORGANIZATION(S) NAMED BELOW AS AN ACCOUNT OF WORK SPONSORED OR COSPONSORED BY THE ELECTRIC POWER RESEARCH INSTITUTE, INC. (EPRI). NEITHER EPRI, ANY MEMBER OF EPRI, ANY COSPONSOR, THE ORGANIZATION(S) BELOW, NOR ANY PERSON ACTING

288

Monthly Summary Results for the Chrysler RAM PHEV Fleet  

NLE Websites -- All DOE Office Websites (Extended Search)

Reporting period: May 2012 Number of vehicle days driven: 1839 All Trips Combined Overall gasoline fuel economy (mpg) 21 Overall AC electrical energy consumption (AC Whmi) 93...

289

Monthly Summary Results for the Chrysler RAM PHEV Fleet  

NLE Websites -- All DOE Office Websites (Extended Search)

VEHICLE TECHNOLOGIES PROGRAM Trips in Charge Depleting (CD) mode City Highway Gasoline fuel economy (mpg) DC electrical energy consumption (DC Whmi) Percent of miles...

290

Plug-In Hybrid Electric Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

* Batteries * Batteries * Downloadable Dynanometer Database (D3) * Modeling * Prototypes * Testing * Assessment PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Argonne Leads DOE's Effort to Evaluate Plug-in Hybrid Technology aprf testing Argonne's Advanced Powertrain Research Facility (APRF) enables researchers to conduct vehicle benchmarking and testing activities that provide data critical to the development and commercialization of next-generation vehicles such as PHEVs. Argonne's Research Argonne National Laboratory is the U.S. Department of Energy's lead national laboratory for the simulation, validation and laboratory evaluation of plug-in hybrid electric vehicles and the advanced

291

Impact of Component Sizing in Plug-In Hybrid Electric Vehicles for Energy Resource and Greenhouse Emissions Reduction  

Science Conference Proceedings (OSTI)

Widespread use of alternative hybrid powertrains currently appears inevitable and many opportunities for substantial progress remain. The necessity for environmentally friendly vehicles, in conjunction with increasing concerns regarding U.S. dependency on foreign oil and climate change, has led to significant investment in enhancing the propulsion portfolio with new technologies. Recently, plug-in hybrid electric vehicles (PHEVs) have attracted considerable attention due to their potential to reduce petroleum consumption and greenhouse gas (GHG) emissions in the transportation sector. PHEVs are especially appealing for short daily commutes with excessive stop-and-go driving. However, the high costs associated with their components, and in particular, with their energy storage systems have been significant barriers to extensive market penetration of PEVs. In the research reported here, we investigated the implications of motor/generator and battery size on fuel economy and GHG emissions in a medium duty PHEV. An optimization framework is proposed and applied to two different parallel powertrain configurations, pre-transmission and post-transmission, to derive the Pareto frontier with respect to motor/generator and battery size. The optimization and modeling approach adopted here facilitates better understanding of the potential benefits from proper selection of motor/generator and battery size on fuel economy and GHG emissions. This understanding can help us identify the appropriate sizing of these components and thus reducing the PHEV cost. Addressing optimal sizing of PHEV components could aim at an extensive market penetration of PHEVs.

Malikopoulos, Andreas [ORNL

2013-01-01T23:59:59.000Z

292

Impact of plug-in hybrid electric vehicles on power systems with demand response and wind power.  

Science Conference Proceedings (OSTI)

This paper uses a new unit commitment model which can simulate the interactions among plug-in hybrid electric vehicles (PHEVs), wind power, and demand response (DR). Four PHEV charging scenarios are simulated for the Illinois power system: (1) unconstrained charging, (2) 3-hour delayed constrained charging, (3) smart charging, and (4) smart charging with DR. The PHEV charging is assumed to be optimally controlled by the system operator in the latter two scenarios, along with load shifting and shaving enabled by DR programs. The simulation results show that optimally dispatching the PHEV charging load can significantly reduce the total operating cost of the system. With DR programs in place, the operating cost can be further reduced.

Wang, J.; Liu, C.; Ton, D.; Zhou, Y.; Kim, J.; Vyas, A. (Decision and Information Sciences); ( ES); (ED); (Kyungwon Univ.)

2011-07-01T23:59:59.000Z

293

A Vehicle Systems Approach to Evaluate Plug-in Hybrid Battery Cold Start, Life and Cost Issues  

E-Print Network (OSTI)

The batteries used in plug-in hybrid electric vehicles (PHEVs) need to overcome significant technical challenges in order for PHEVs to become economically viable and have a large market penetration. The internship at Argonne National Laboratory (ANL) involved two experiments which looked at a vehicle systems approach to analyze two such technical challenges: Battery life and low battery power at cold (-7 ?C) temperature. The first experiment, concerning battery life and its impact on gasoline savings due to a PHEV, evaluates different vehicle control strategies over a pre-defined vehicle drive cycle, in order to identify the control strategy which yields the maximum dollar savings (operating cost) over the life of the vehicle, when compared to a charge sustaining hybrid. Battery life degradation over the life of the vehicle, and fuel economy savings on every trip (daily) are taken into account when calculating the net present value of the gasoline dollars saved. The second experiment evaluates the impact of different vehicle control strategies in heating up the PHEV battery (due to internal ohmic losses) for cold ambient conditions. The impact of low battery power (available to the vehicle powertrain) due to low battery and ambient temperatures has been well documented in literature. The trade-off between the benefits of heating up the battery versus heating up the internal combustion engine are evaluated, using different control strategies, and the control strategy, which provided optimum temperature rise of each component, is identified.

Shidore, Neeraj Shripad

2012-05-01T23:59:59.000Z

294

Vehicle Technologies Office: Recovery Act Funding Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovery Act Funding Recovery Act Funding Opportunities to someone by E-mail Share Vehicle Technologies Office: Recovery Act Funding Opportunities on Facebook Tweet about Vehicle Technologies Office: Recovery Act Funding Opportunities on Twitter Bookmark Vehicle Technologies Office: Recovery Act Funding Opportunities on Google Bookmark Vehicle Technologies Office: Recovery Act Funding Opportunities on Delicious Rank Vehicle Technologies Office: Recovery Act Funding Opportunities on Digg Find More places to share Vehicle Technologies Office: Recovery Act Funding Opportunities on AddThis.com... Recovery Act Funding Opportunities President Barack Obama announced on March 19 that the DOE is offering up to $2.4 billion in American Recovery and Reinvestment Act funds to support next-generation plug-in hybrid electric vehicles (PHEV) and their advanced

295

AvAilAble for licensing Higher-performance, more cost-effective batteries for PHEVs and HEVs.  

E-Print Network (OSTI)

AvAilAble for licensing Higher-performance, more cost-effective batteries for PHEVs and HEVs. Benefits Higher-performance, more cost-effective batteries for PHEVs and HEVs. Reduced costs by lowering cost is easier, faster, and more cost-effective. Electrode Materials for Rechargeable Li-ion Batteries

Kemner, Ken

296

Evaluation of Utility System Impacts and Benefits of Optimally Dispatched Plug-In Hybrid Electric Vehicles (Revised)  

SciTech Connect

Hybrid electric vehicles with the capability of being recharged from the grid may provide a significant decrease in oil consumption. These ''plug-in'' hybrids (PHEVs) will affect utility operations, adding additional electricity demand. Because many individual vehicles may be charged in the extended overnight period, and because the cost of wireless communication has decreased, there is a unique opportunity for utilities to directly control the charging of these vehicles at the precise times when normal electricity demand is at a minimum. This report evaluates the effects of optimal PHEV charging, under the assumption that utilities will indirectly or directly control when charging takes place, providing consumers with the absolute lowest cost of driving energy. By using low-cost off-peak electricity, PHEVs owners could purchase the drive energy equivalent to a gallon of gasoline for under 75 cents, assuming current national average residential electricity prices.

Denholm, P.; Short, W.

2006-10-01T23:59:59.000Z

297

Evaluation of Utility System Impacts and Benefits of Optimally Dispatched Plug-In Hybrid Electric Vehicles (Revised)  

DOE Green Energy (OSTI)

Hybrid electric vehicles with the capability of being recharged from the grid may provide a significant decrease in oil consumption. These ''plug-in'' hybrids (PHEVs) will affect utility operations, adding additional electricity demand. Because many individual vehicles may be charged in the extended overnight period, and because the cost of wireless communication has decreased, there is a unique opportunity for utilities to directly control the charging of these vehicles at the precise times when normal electricity demand is at a minimum. This report evaluates the effects of optimal PHEV charging, under the assumption that utilities will indirectly or directly control when charging takes place, providing consumers with the absolute lowest cost of driving energy. By using low-cost off-peak electricity, PHEVs owners could purchase the drive energy equivalent to a gallon of gasoline for under 75 cents, assuming current national average residential electricity prices.

Denholm, P.; Short, W.

2006-10-01T23:59:59.000Z

298

Regional Economic Impacts of Electric Drive Vehicles and Technologies: Case Study of the Greater Cleveland Area  

Science Conference Proceedings (OSTI)

Plug-in hybrid electric vehicles (PHEVs), which combine desirable aspects of battery electric vehicles and hybrid electric vehicles, offer owners the advantages of increased fuel efficiency and lower annual fuel bills without concern for dead batteries, long recharge time, or limited range. This study examines the potential regional economic impacts due to increasing electric transportation in the Greater Cleveland Area (GCA). By applying regional input-output (RIO) analysis, the study determines the imp...

2009-07-31T23:59:59.000Z

299

David Dallinger  

NLE Websites -- All DOE Office Websites (Extended Search)

modeling. This Speaker's Seminars Grid Integration of Intermittent Renewables Using Price Responsive Plug- in Electric Vehicles Electric Vehicles (PHEV and BEV) in the German...

300

Vehicle Battery Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Battery Basics Vehicle Battery Basics Vehicle Battery Basics November 22, 2013 - 1:58pm Addthis Batteries are essential for electric drive technologies such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (AEVs). What is a Battery? A battery is a device that stores chemical energy and converts it on demand into electrical energy. It carries out this process through an electrochemical reaction, which is a chemical reaction involving the transfer of electrons. Batteries have three main parts, each of which plays a different role in the electrochemical reaction: the anode, cathode, and electrolyte. The anode is the "fuel" electrode (or "negative" part), which gives up electrons to the external circuit to create a flow of electrons, otherwise

Note: This page contains sample records for the topic "vehicle phev integrated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Integration of electric drive vehicles with the electric power grida new value stream  

E-Print Network (OSTI)

Battery-electric vehicles and grid-connected hybrid vehicles rely on the power grid for energy-- they have to plug in to charge their batteries. With power alerts and blackouts a recent reality in California, it is easy to conclude that the energy requirements of grid-connected electric vehicles will make the energy crisis worse. Actually, quite the opposite may be true. With a bi-directional grid power interface, virtually any vehicle that can plug into the grid can potentially provide beneficial support to the grid. Battery electric vehicles can support the grid exceptionally well by providing any of a number of functions known collectively as ancillary services. These services are vital to the smooth and efficient operation of the power grid. A hybrid vehicle can provide ancillary services, and can also generate power. Fuel cells are already being commercialized for small stationary power sources, so a vehiclemounted fuel cell could also serve as a vehicle-to-grid power source. Sharing power assets between transportation and power generation functions can create a compelling new economics for electrically-propelled vehicles.

Alec Brooks; Tom Gage; Ac Propulsion

2001-01-01T23:59:59.000Z

302

Interim Test Procedures for Evaluating Electrical Performance and Grid Integration of Vehicle-to-Grid Applications  

DOE Green Energy (OSTI)

The objective of this report is to provide a test plan for V2G testing. The test plan is designed to test and evaluate the vehicle's power electronics capability to provide power to the grid, and to evaluate the vehicle's ability to connect and disconnect from the utility according to a subset of the IEEE Std. 1547 tests.

Chakraborty, S.; Kramer, W.; Kroposki, B.; Martin, G.; McNutt, P.; Kuss, M.; Markel, T.; Hoke, A.

2011-06-01T23:59:59.000Z

303

Promoting the Market for Plug-in Hybrid and Battery Electric Vehicles: Role of Recharge Availability  

Science Conference Proceedings (OSTI)

Much recent attention has been drawn to providing adequate recharge availability as a means to promote the battery electric vehicle (BEV) and plug-in hybrid electric vehicle (PHEV) market. The possible role of improved recharge availability in developing the BEV-PHEV market and the priorities that different charging options should receive from the government require better understanding. This study reviews the charging issue and conceptualizes it into three interactions between the charge network and the travel network. With travel data from 3,755 drivers in the National Household Travel Survey, this paper estimates the distribution among U.S. consumers of (a) PHEV fuel-saving benefits by different recharge availability improvements, (b) range anxiety by different BEV ranges, and (c) willingness to pay for workplace and public charging in addition to home recharging. With the Oak Ridge National Laboratory MA3T model, the impact of three recharge improvements is quantified by the resulting increase in BEV-PHEV sales. Compared with workplace and public recharging improvements, home recharging improvement appears to have a greater impact on BEV-PHEV sales. The impact of improved recharging availability is shown to be amplified by a faster reduction in battery cost.

Lin, Zhenhong [ORNL; Greene, David L [ORNL

2012-01-01T23:59:59.000Z

304

An Optimization Model for Plug-In Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

The necessity for environmentally conscious vehicle designs in conjunction with increasing concerns regarding U.S. dependency on foreign oil and climate change have induced significant investment towards enhancing the propulsion portfolio with new technologies. More recently, plug-in hybrid electric vehicles (PHEVs) have held great intuitive appeal and have attracted considerable attention. PHEVs have the potential to reduce petroleum consumption and greenhouse gas (GHG) emissions in the commercial transportation sector. They are especially appealing in situations where daily commuting is within a small amount of miles with excessive stop-and-go driving. The research effort outlined in this paper aims to investigate the implications of motor/generator and battery size on fuel economy and GHG emissions in a medium-duty PHEV. An optimization framework is developed and applied to two different parallel powertrain configurations, e.g., pre-transmission and post-transmission, to derive the optimal design with respect to motor/generator and battery size. A comparison between the conventional and PHEV configurations with equivalent size and performance under the same driving conditions is conducted, thus allowing an assessment of the fuel economy and GHG emissions potential improvement. The post-transmission parallel configuration yields higher fuel economy and less GHG emissions compared to pre-transmission configuration partly attributable to the enhanced regenerative braking efficiency.

Malikopoulos, Andreas [ORNL; Smith, David E [ORNL

2011-01-01T23:59:59.000Z

305

Impact of Sungate EP on PHEV Performance: Results of a Simulated Solar Reflective Glass PHEV Dynamometer Test  

DOE Green Energy (OSTI)

Composite fuel economy of a plug-in hybrid electric test vehicle increased 8% to 41.6 mpg because of the reduction in thermal loads from Sungate EP glazings installed in the windshield and backlite.

Rugh, J.

2009-06-01T23:59:59.000Z

306

A Novel Integration of an Ultraviolet Nitrate Sensor On Board a Towed Vehicle for Mapping Open-Ocean Submesoscale Nitrate Variability  

Science Conference Proceedings (OSTI)

Initial results from a deployment of the SUV-6 ultraviolet spectrophotometer, integrated with the SeaSoar towed vehicle, are presented. The innovative, combined system measures nitrate concentration at high spatial resolution (4 m vertically, 5 ...

Rosalind Pidcock; Meric Srokosz; John Allen; Mark Hartman; Stuart Painter; Matt Mowlem; David Hydes; Adrian Martin

2010-08-01T23:59:59.000Z

307

DOE Announces $30 Million for Plug-in Hybrid Electric Vehicle Projects |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 Million for Plug-in Hybrid Electric Vehicle 0 Million for Plug-in Hybrid Electric Vehicle Projects DOE Announces $30 Million for Plug-in Hybrid Electric Vehicle Projects June 12, 2008 - 1:30pm Addthis Adds Plug-in Hybrid Vehicle to Department's Fleet WASHINGTON - U.S. Department of Energy (DOE) Assistant Secretary of Energy Efficiency and Renewable Energy Andy Karsner today announced up to $30 million in funding over three years for three cost-shared Plug-in Hybrid Electric Vehicles (PHEVs) demonstration and development projects. The selected projects will accelerate the development of PHEVs capable of traveling up to 40 miles without recharging, which includes most daily roundtrip commutes and satisfies 70 percent of the average daily travel in the U. S. The projects will also address critical barriers to achieving

308

Impact of SiC Devices on Hybrid Electric and Plug-in Hybrid Electric Vehicles  

E-Print Network (OSTI)

is the 2004 Toyota Prius HEV, the other is a plug-in HEV (PHEV), whose powertrain architecture is the same as that of the 2004 Toyota Prius HEV. The vehicle-level benefits from the introduction of the SiC devices is the 2004 Toyota Prius HEV, which has a split powertrain architecture shown in Fig. 1. The other is a plug

Tolbert, Leon M.

309

Power management of plug-in hybrid electric vehicles using neural network based trip modeling  

Science Conference Proceedings (OSTI)

The plug-in hybrid electric vehicles (PHEV), utilizing more battery power, has become a next-generation HEV with great promise of higher fuel economy. Global optimization charge-depletion power management would be desirable. This has so far been hampered ...

Qiuming Gong; Yaoyu Li; Zhongren Peng

2009-06-01T23:59:59.000Z

310

Electrical Vehicles in the Smart Grid: A Mean Field Game Analysis  

E-Print Network (OSTI)

1 Electrical Vehicles in the Smart Grid: A Mean Field Game Analysis Romain Couillet, Samir M that a way to improve reliability is to allow EV and PHEV to buy and sell energy to or from the smart grid) have been recognized as natural components of future electricity distribution networks, known as smart

Paris-Sud XI, Université de

311

Interim Test Procedures for Evaluating Electrical Performance and Grid Integration of Vehicle-to-Grid Applications  

SciTech Connect

The objective of this report is to provide a test plan for V2G testing. The test plan is designed to test and evaluate the vehicle's power electronics capability to provide power to the grid, and to evaluate the vehicle's ability to connect and disconnect from the utility according to a subset of the IEEE Std. 1547 tests.

Chakraborty, S.; Kramer, W.; Kroposki, B.; Martin, G.; McNutt, P.; Kuss, M.; Markel, T.; Hoke, A.

2011-06-01T23:59:59.000Z

312

Strategy for the Integration of Hydrogen as a Vehicle Fuel into the Existing Natural Gas Vehicle Fueling Infrastructure of the Interstate Clean Transportation Corridor Project: 22 April 2004--31 August 2005  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

national laboratory of the U.S. Department of Energy national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy National Renewable Energy Laboratory Innovation for Our Energy Future Subcontract Report Strategy for the Integration of NREL/SR-540-38720� Hydrogen as a Vehicle Fuel into September 2005 � the Existing Natural Gas Vehicle � Fueling Infrastructure of the � Interstate Clean Transportation � Corridor Project � April 22, 2004 - August 31, 2005 Gladstein, Neandross & Associates � Santa Monica, California � NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Strategy for the Integration of Hydrogen as a Vehicle Fuel into the Existing Natural Gas Vehicle Fueling Infrastructure of the Interstate Clean Transportation

313

Middleware for Cooperative Vehicle-Infrastructure Systems  

E-Print Network (OSTI)

Cooperative vehicle-infrastructure systems." COM Safety:of Transportation. Vehicle-Infrastructure Integration (VII).for Cooperative Vehicle-Infrastructure Systems Christian

Manasseh, Christian; Sengupta, Raja

2008-01-01T23:59:59.000Z

314

Improving Rangeland Monitoring and Assessment: Integrating Remote Sensing, GIS, and Unmanned Aerial Vehicle Systems  

SciTech Connect

Creeping environmental changes are impacting some of the largest remaining intact parcels of sagebrush steppe ecosystems in the western United States, creating major problems for land managers. The Idaho National Laboratory (INL), located in southeastern Idaho, is part of the sagebrush steppe ecosystem, one of the largest ecosystems on the continent. Scientists at the INL and the University of Idaho have integrated existing field and remotely sensed data with geographic information systems technology to analyze how recent fires on the INL have influenced the current distribution of terrestrial vegetation. Three vegetation mapping and classification systems were used to evaluate the changes in vegetation caused by fires between 1994 and 2003. Approximately 24% of the sagebrush steppe community on the INL was altered by fire, mostly over a 5-year period. There were notable differences between methods, especially for juniper woodland and grasslands. The Anderson system (Anderson et al. 1996) was superior for representing the landscape because it includes playa/bare ground/disturbed area and sagebrush steppe on lava as vegetation categories. This study found that assessing existing data sets is useful for quantifying fire impacts and should be helpful in future fire and land use planning. The evaluation identified that data from remote sensing technologies is not currently of sufficient quality to assess the percentage of cover. To fill this need, an approach was designed using both helicopter and fixed wing unmanned aerial vehicles (UAVs) and image processing software to evaluate six cover types on field plots located on the INL. The helicopter UAV provided the best system compared against field sampling, but is more dangerous and has spatial coverage limitations. It was reasonably accurate for dead shrubs and was very good in assessing percentage of bare ground, litter and grasses; accuracy for litter and shrubs is questionable. The fixed wing system proved to be feasible and can collect imagery for very large areas in a short period of time. It was accurate for bare ground and grasses. Both UAV systems have limitations, but these will be reduced as the technology advances. In both cases, the UAV systems collected data at a much faster rate than possible on the ground. The study concluded that improvements in automating the image processing efforts would greatly improve use of the technology. In the near future, UAV technology may revolutionize rangeland monitoring in the same way Global Positioning Systems have affected navigation while conducting field activities.

Robert Paul Breckenridge

2007-05-01T23:59:59.000Z

315

Battery Requirements for Plug-In Hybrid Electric Vehicles: Analysis and Rationale (Presentation)  

DOE Green Energy (OSTI)

Slide presentation to EVS-23 conference describing NREL work to help identify appropriate requirements for batteries to be useful for plug-in hybrid-electric vehicles (PHEVs). Suggested requirements were submitted to the U.S. Advanced Battery Consortium, which used them for a 2007 request for proposals. Requirements were provided both for charge-depleting mode and charge-sustaining mode and for high power/energy ratio and hige energy/power ration batteries for each (different modes of PHEV operation), along with battery and system level requirements.

Pesaran, A.

2007-12-01T23:59:59.000Z

316

Proposal for a Vehicle Level Test Procedure to Measure Air Conditioning Fuel Use  

SciTech Connect

The air-conditioning (A/C) compressor load significantly impacts the fuel economy of conventional vehicles and the fuel use/range of plug-in hybrid electric vehicles (PHEV). A National Renewable Energy Laboratory (NREL) vehicle performance analysis shows the operation of the air conditioner reduces the charge depletion range of a 40-mile range PHEV from 18% to 30% in a worst case hot environment. Designing for air conditioning electrical loads impacts PHEV and electric vehicle (EV) energy storage system size and cost. While automobile manufacturers have climate control procedures to assess A/C performance, and the U.S. EPA has the SCO3 drive cycle to measure indirect A/C emissions, there is no automotive industry consensus on a vehicle level A/C fuel use test procedure. With increasing attention on A/C fuel use due to increased regulatory activities and the development of PHEVs and EVs, a test procedure is needed to accurately assess the impact of climate control loads. A vehicle thermal soak period is recommended, with solar lamps that meet the SCO3 requirements or an alternative heating method such as portable electric heaters. After soaking, the vehicle is operated over repeated drive cycles or at a constant speed until steady-state cabin air temperature is attained. With this method, the cooldown and steady-state A/C fuel use are measured. This method can be run at either different ambient temperatures to provide data for the GREEN-MAC-LCCP model temperature bins or at a single representative ambient temperature. Vehicles with automatic climate systems are allowed to control as designed, while vehicles with manual climate systems are adjusted to approximate expected climate control settings. An A/C off test is also run for all drive profiles. This procedure measures approximate real-world A/C fuel use and assess the impact of thermal load reduction strategies.

Rugh, J. P.

2010-04-01T23:59:59.000Z

317

Well-to-wheels energy use and greenhouse gas emissions analysis of plug-in hybrid electric vehicles.  

DOE Green Energy (OSTI)

Researchers at Argonne National Laboratory expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model and incorporated the fuel economy and electricity use of alternative fuel/vehicle systems simulated by the Powertrain System Analysis Toolkit (PSAT) to conduct a well-to-wheels (WTW) analysis of energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW results were separately calculated for the blended charge-depleting (CD) and charge-sustaining (CS) modes of PHEV operation and then combined by using a weighting factor that represented the CD vehicle-miles-traveled (VMT) share. As indicated by PSAT simulations of the CD operation, grid electricity accounted for a share of the vehicle's total energy use, ranging from 6% for a PHEV 10 to 24% for a PHEV 40, based on CD VMT shares of 23% and 63%, respectively. In addition to the PHEV's fuel economy and type of on-board fuel, the marginal electricity generation mix used to charge the vehicle impacted the WTW results, especially GHG emissions. Three North American Electric Reliability Corporation regions (4, 6, and 13) were selected for this analysis, because they encompassed large metropolitan areas (Illinois, New York, and California, respectively) and provided a significant variation of marginal generation mixes. The WTW results were also reported for the U.S. generation mix and renewable electricity to examine cases of average and clean mixes, respectively. For an all-electric range (AER) between 10 mi and 40 mi, PHEVs that employed petroleum fuels (gasoline and diesel), a blend of 85% ethanol and 15% gasoline (E85), and hydrogen were shown to offer a 40-60%, 70-90%, and more than 90% reduction in petroleum energy use and a 30-60%, 40-80%, and 10-100% reduction in GHG emissions, respectively, relative to an internal combustion engine vehicle that used gasoline. The spread of WTW GHG emissions among the different fuel production technologies and grid generation mixes was wider than the spread of petroleum energy use, mainly due to the diverse fuel production technologies and feedstock sources for the fuels considered in this analysis. The PHEVs offered reductions in petroleum energy use as compared with regular hybrid electric vehicles (HEVs). More petroleum energy savings were realized as the AER increased, except when the marginal grid mix was dominated by oil-fired power generation. Similarly, more GHG emissions reductions were realized at higher AERs, except when the marginal grid generation mix was dominated by oil or coal. Electricity from renewable sources realized the largest reductions in petroleum energy use and GHG emissions for all PHEVs as the AER increased. The PHEVs that employ biomass-based fuels (e.g., biomass-E85 and -hydrogen) may not realize GHG emissions benefits over regular HEVs if the marginal generation mix is dominated by fossil sources. Uncertainties are associated with the adopted PHEV fuel consumption and marginal generation mix simulation results, which impact the WTW results and require further research. More disaggregate marginal generation data within control areas (where the actual dispatching occurs) and an improved dispatch modeling are needed to accurately assess the impact of PHEV electrification. The market penetration of the PHEVs, their total electric load, and their role as complements rather than replacements of regular HEVs are also uncertain. The effects of the number of daily charges, the time of charging, and the charging capacity have not been evaluated in this study. A more robust analysis of the VMT share of the CD operation is also needed.

Elgowainy, A.; Burnham, A.; Wang, M.; Molburg, J.; Rousseau, A.; Energy Systems

2009-03-31T23:59:59.000Z

318

Plug-In Hybrid Electric Vehicle Value Proposition Study: Interim Report: Phase I Scenario Evaluation  

SciTech Connect

Plug-in hybrid electric vehicles (PHEVs) offer significant improvements in fuel economy, convenient low-cost recharging capabilities, potential environmental benefits, and decreased reliance on imported petroleum. However, the cost associated with new components (e.g., advanced batteries) to be introduced in these vehicles will likely result in a price premium to the consumer. This study aims to overcome this market barrier by identifying and evaluating value propositions that will increase the qualitative value and/or decrease the overall cost of ownership relative to the competing conventional vehicles and hybrid electric vehicles (HEVs) of 2030 During this initial phase of this study, business scenarios were developed based on economic advantages that either increase the consumer value or reduce the consumer cost of PHEVs to assure a sustainable market that can thrive without the aid of state and Federal incentives or subsidies. Once the characteristics of a thriving PHEV market have been defined for this timeframe, market introduction steps, such as supportive policies, regulations and temporary incentives, needed to reach this level of sustainability will be determined. PHEVs have gained interest over the past decade for several reasons, including their high fuel economy, convenient low-cost recharging capabilities, potential environmental benefits and reduced use of imported petroleum, potentially contributing to President Bush's goal of a 20% reduction in gasoline use in ten years, or 'Twenty in Ten'. PHEVs and energy storage from advanced batteries have also been suggested as enabling technologies to improve the reliability and efficiency of the electric power grid. However, PHEVs will likely cost significantly more to purchase than conventional or other hybrid electric vehicles (HEVs), in large part because of the cost of batteries. Despite the potential long-term savings to consumers and value to stakeholders, the initial cost of PHEVs presents a major market barrier to their widespread commercialization. The purpose of this project is to identify and evaluate value-added propositions for PHEVs that will help overcome this market barrier. Candidate value propositions for the initial case study were chosen to enhance consumer acceptance of PHEVs and/or compatibility with the grid. Potential benefits of such grid-connected vehicles include the ability to supply peak load or emergency power requirements of the grid, enabling utilities to size their generation capacity and contingency resources at levels below peak. Different models for vehicle/battery ownership, leasing, financing and operation, as well as the grid, communications, and vehicle infrastructure needed to support the proposed value-added functions were explored during Phase 1. Rigorous power system, vehicle, financial and emissions modeling were utilized to help identify the most promising value propositions and market niches to focus PHEV deployment initiatives.

Sikes, Karen R [ORNL; Markel, Lawrence C [ORNL; Hadley, Stanton W [ORNL; Hinds, Shaun [Sentech, Inc.; DeVault, Robert C [ORNL

2009-01-01T23:59:59.000Z

319

Plug-In Hybrid Electric Vehicle Value Proposition Study: Phase 1, Task 3: Technical Requirements and Procedure for Evaluation of One Scenario  

DOE Green Energy (OSTI)

In Task 2, the project team designed the Phase 1 case study to represent the 'baseline' plug-in hybrid electric vehicle (PHEV) fleet of 2030 that investigates the effects of seventeen (17) value propositions (see Table 1 for complete list). By creating a 'baseline' scenario, a consistent set of assumptions and model parameters can be established for use in more elaborate Phase 2 case studies. The project team chose southern California as the Phase 1 case study location because the economic, environmental, social, and regulatory conditions are conducive to the advantages of PHEVs. Assuming steady growth of PHEV sales over the next two decades, PHEVs are postulated to comprise approximately 10% of the area's private vehicles (about 1,000,000 vehicles) in 2030. New PHEV models introduced in 2030 are anticipated to contain lithium-ion batteries and be classified by a blended mileage description (e.g., 100 mpg, 150 mpg) that demonstrates a battery size equivalence of a PHEV-30. Task 3 includes the determination of data, models, and analysis procedures required to evaluate the Phase 1 case study scenario. Some existing models have been adapted to accommodate the analysis of the business model and establish relationships between costs and value to the respective consumers. Other data, such as the anticipated California generation mix and southern California drive cycles, have also been gathered for use as inputs. The collection of models that encompasses the technical, economic, and financial aspects of Phase 1 analysis has been chosen and is described in this deliverable. The role of PHEV owners, utilities (distribution systems, generators, independent system operators (ISO), aggregators, or regional transmission operators (RTO)), facility owners, financing institutions, and other third parties are also defined.

Sikes, Karen R [ORNL; Hinds, Shaun [Sentech, Inc.; Hadley, Stanton W [ORNL; McGill, Ralph N [ORNL; Markel, Lawrence C [ORNL; Ziegler, Richard E [ORNL; Smith, David E [ORNL; Smith, Richard L [ORNL; Greene, David L [ORNL; Brooks, Daniel L [ORNL; Wiegman, Herman [GE Global Research; Miller, Nicholas [GE; Marano, Dr. Vincenzo [Ohio State University

2008-07-01T23:59:59.000Z

320

Maglev vehicles and superconductor technology: Integration of high-speed ground transportation into the air travel system  

SciTech Connect

This study was undertaken to (1) evaluate the potential contribution of high-temperature superconductors (HTSCs) to the technical and economic feasibility of magnetically levitated (maglev) vehicles, (2) determine the status of maglev transportation research in the United States and abroad, (3) identify the likelihood of a significant transportation market for high-speed maglev vehicles, and (4) provide a preliminary assessment of the potential energy and economic benefits of maglev systems. HTSCs should be considered as an enhancing, rather than an enabling, development for maglev transportation because they should improve reliability and reduce energy and maintenance costs. Superconducting maglev transportation technologies were developed in the United States in the late 1960s and early 1970s. Federal support was withdrawn in 1975, but major maglev transportation programs were continued in Japan and West Germany, where full-scale prototypes now carry passengers at speeds of 250 mi/h in demonstration runs. Maglev systems are generally viewed as very-high-speed train systems, but this study shows that the potential market for maglev technology as a train system, e.g., from one downtown to another, is limited. Rather, aircraft and maglev vehicles should be seen as complementing rather than competing transportation systems. If maglev systems were integrated into major hub airport operations, they could become economical in many relatively high-density US corridors. Air traffic congestion and associated noise and pollutant emissions around airports would also be reduced. 68 refs., 26 figs., 16 tabs.

Johnson, L.R.; Rote, D.M.; Hull, J.R.; Coffey, H.T.; Daley, J.G.; Giese, R.F.

1989-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle phev integrated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Preliminary Assessment of Plug-in Hybrid Electric Vehicles on Wind Energy Markets  

DOE Green Energy (OSTI)

This report examines a measure that may potentially reduce oil use and also more than proportionately reduce carbon emissions from vehicles. The authors present a very preliminary analysis of plug-in hybrid electric vehicles (PHEVs) that can be charged from or discharged to the grid. These vehicles have the potential to reduce gasoline consumption and carbon emissions from vehicles, as well as improve the viability of renewable energy technologies with variable resource availability. This paper is an assessment of the synergisms between plug-in hybrid electric vehicles and wind energy. The authors examine two bounding cases that illuminate this potential synergism.

Short, W.; Denholm, P.

2006-04-01T23:59:59.000Z

322

Technology Roadmap - Electric and Plug-in Hybrid Electric Vehicles | Open  

Open Energy Info (EERE)

Technology Roadmap - Electric and Plug-in Hybrid Electric Vehicles Technology Roadmap - Electric and Plug-in Hybrid Electric Vehicles Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technology Roadmap - Electric and Plug-in Hybrid Electric Vehicles Agency/Company /Organization: International Energy Agency Focus Area: Vehicles Topics: Potentials & Scenarios Resource Type: Reports, Journal Articles, & Tools Website: www.iea.org/papers/2011/EV_PHEV_Roadmap.pdf The primary role of this EV/PHEV Roadmap is to help establish a vision for technology deployment; set approximate, feasible targets; and identify steps required to get there. It also outlines the role for different stakeholders and how they can work together to reach common objectives, and the role for government policy to support the process. References

323

Impact of Plug-in Hybrid Vehicles on the Electric Grid  

SciTech Connect

Plug-in hybrid vehicles (PHEVs) are being developed around the world; much work is going on to optimize engine and battery operations for efficient operation, both during discharge and when grid electricity is available for recharging. However, there has generally been the expectation that the grid will not be greatly affected by the use of the vehicles, because the recharging would only occur during offpeak hours, or the number of vehicles will grow slowly enough that capacity planning will respond adequately. But this expectation does not incorporate that endusers will have control of the time of recharging and the inclination for people will be to plug in when convenient for them, rather than when utilities would prefer. It is important to understand the ramifications of introducing a number of plug-in hybrid vehicles onto the grid. Depending on when and where the vehicles are plugged in, they could cause local or regional constraints on the grid. They could require both the addition of new electric capacity along with an increase in the utilization of existing capacity. Local distribution grids will see a change in their utilization pattern, and some lines or substations may become overloaded sooner than expected. Furthermore, the type of generation used to recharge the vehicles will be different depending on the region of the country and timing when the PHEVs recharge. We conducted an analysis of what the grid impact may be in 2018 with one million PHEVs added to the VACAR sub-region of the Southeast Electric Reliability Council, a region that includes South Carolina, North Carolina, and much of Virginia. To do this, we used the Oak Ridge Competitive Electricity Dispatch model, which simulates the hourly dispatch of power generators to meet demand for a region over a given year. Depending on the vehicle, its battery, the charger voltage level, amperage, and duration, the impact on regional electricity demand varied from 1,400 to 6,000 MW. If recharging occurred in the early evening, then peak loads were raised and demands were met largely by combustion turbines and combined cycle plants. Nighttime recharging had less impact on peak loads and generation adequacy, but the increased use of coal-fired generation changed the relative amounts of air emissions. Costs of generation also fluctuated greatly depending on the timing. However, initial analysis shows that even charging at peak times may be less costly than using gasoline to operate the vehicles. Even if the overall region may have sufficient generating power, the region's transmission system or distribution lines to different areas may not be large enough to handle this new type of load. A largely residential feeder circuit may not be sized to have a significant proportion of its customers adding 1.4 to 6 kW loads that would operate continuously for two to six hours beginning in the early evening. On a broader scale, the transmission lines feeding the local substations may be similarly constrained if they are not sized to respond to this extra growth in demand. This initial analysis identifies some of the complexities in analyzing the integrated system of PHEVs and the grid. Depending on the power level, timing, and duration of the PHEV connection to the grid, there could be a wide variety of impacts on grid constraints, capacity needs, fuel types used, and emissions generated. This paper provides a brief description of plug-in hybrid vehicle characteristics in Chapter 2. Various charging strategies for vehicles are discussed, with a consequent impact on the grid. In Chapter 3 we describe the future electrical demand for a region of the country and the impact on this demand with a number of plug-in hybrids. We apply that demand to an inventory of power plants for the region using the Oak Ridge Competitive Electricity Dispatch (ORCED) model to evaluate the change in power production and emissions. In Chapter 4 we discuss the impact of demand increases on local distribution systems. In Chapter 5 we conclude and provide insights into the impacts of plug-ins. Future

Hadley, Stanton W [ORNL

2006-11-01T23:59:59.000Z

324

Impact of Plug-in Hybrid Vehicles on the Electric Grid  

Science Conference Proceedings (OSTI)

Plug-in hybrid vehicles (PHEVs) are being developed around the world; much work is going on to optimize engine and battery operations for efficient operation, both during discharge and when grid electricity is available for recharging. However, there has generally been the expectation that the grid will not be greatly affected by the use of the vehicles, because the recharging would only occur during offpeak hours, or the number of vehicles will grow slowly enough that capacity planning will respond adequately. But this expectation does not incorporate that endusers will have control of the time of recharging and the inclination for people will be to plug in when convenient for them, rather than when utilities would prefer. It is important to understand the ramifications of introducing a number of plug-in hybrid vehicles onto the grid. Depending on when and where the vehicles are plugged in, they could cause local or regional constraints on the grid. They could require both the addition of new electric capacity along with an increase in the utilization of existing capacity. Local distribution grids will see a change in their utilization pattern, and some lines or substations may become overloaded sooner than expected. Furthermore, the type of generation used to recharge the vehicles will be different depending on the region of the country and timing when the PHEVs recharge. We conducted an analysis of what the grid impact may be in 2018 with one million PHEVs added to the VACAR sub-region of the Southeast Electric Reliability Council, a region that includes South Carolina, North Carolina, and much of Virginia. To do this, we used the Oak Ridge Competitive Electricity Dispatch model, which simulates the hourly dispatch of power generators to meet demand for a region over a given year. Depending on the vehicle, its battery, the charger voltage level, amperage, and duration, the impact on regional electricity demand varied from 1,400 to 6,000 MW. If recharging occurred in the early evening, then peak loads were raised and demands were met largely by combustion turbines and combined cycle plants. Nighttime recharging had less impact on peak loads and generation adequacy, but the increased use of coal-fired generation changed the relative amounts of air emissions. Costs of generation also fluctuated greatly depending on the timing. However, initial analysis shows that even charging at peak times may be less costly than using gasoline to operate the vehicles. Even if the overall region may have sufficient generating power, the region's transmission system or distribution lines to different areas may not be large enough to handle this new type of load. A largely residential feeder circuit may not be sized to have a significant proportion of its customers adding 1.4 to 6 kW loads that would operate continuously for two to six hours beginning in the early evening. On a broader scale, the transmission lines feeding the local substations may be similarly constrained if they are not sized to respond to this extra growth in demand. This initial analysis identifies some of the complexities in analyzing the integrated system of PHEVs and the grid. Depending on the power level, timing, and duration of the PHEV connection to the grid, there could be a wide variety of impacts on grid constraints, capacity needs, fuel types used, and emissions generated. This paper provides a brief description of plug-in hybrid vehicle characteristics in Chapter 2. Various charging strategies for vehicles are discussed, with a consequent impact on the grid. In Chapter 3 we describe the future electrical demand for a region of the country and the impact on this demand with a number of plug-in hybrids. We apply that demand to an inventory of power plants for the region using the Oak Ridge Competitive Electricity Dispatch (ORCED) model to evaluate the change in power production and emissions. In Chapter 4 we discuss the impact of demand increases on local distribution systems. In Chapter 5 we conclude and provide insights into the impacts of plug-ins. Future

Hadley, Stanton W [ORNL

2006-11-01T23:59:59.000Z

325

Integration of plug-in electric vehicle charging and wind energy scheduling on electricity grid  

Science Conference Proceedings (OSTI)

Plug-in electric vehicles (PEVs) and wind energy are both key new energy technologies. However, they also bring challenges to the operation of the electricity grid. Charging a large number of PEVs requires a lot of grid energy, and scheduling wind energy ...

Chiao-Ting Li; Changsun Ahn; Huei Peng; Jing Sun

2012-01-01T23:59:59.000Z

326

Electric Vehicles: Characterizing Consumers' Interest and Infrastructure Expectations  

Science Conference Proceedings (OSTI)

EPRI and Southern California Edison (SCE) undertook the design and implementation of a survey to characterize consumers' perceptions of plug-in hybrid electric vehicles (PHEVs) and their expectations of their electric utility as the supplier of transportation energy and associated services. The objective was to develop and test a survey instrument and associated analytical methods that could subsequently be employed by utilities and other entities to inform local stakeholders about consumers' perspective...

2009-11-30T23:59:59.000Z

327

Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles  

DOE Patents (OSTI)

A propulsion and stabilization system are described comprising a series of coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance, and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension. 8 figures.

Rote, D.M.; He, J.; Johnson, L.R.

1994-01-04T23:59:59.000Z

328

Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles  

DOE Patents (OSTI)

This report discusses a propulsion and stabilization system comprising a series of figure 8 coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the figure 8 coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension.

Rote, D.M.; He, Jianliang; Johnson, L.R.

1992-01-01T23:59:59.000Z

329

Microsoft Word - PHEV Infrastructure Report INL-EXT-08-15058...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy Vehicle Technologies Program - Advanced Vehicle Testing Activity Plug-in Hybrid Electric Vehicle Charging Infrastructure Review Final Report Battelle Energy...

330

Hybrid Electric and Plug-in Hybrid Electric Vehicle Testing Activities  

DOE Green Energy (OSTI)

The Advanced Vehicle Testing Activity (AVTA) conducts hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV) testing in order to provide benchmark data for technology modeling and research and development programs, and to be an independent source of test data for fleet managers and other early adaptors of advanced-technology vehicles. To date, the AVTA has completed baseline performance testing on 12 HEV models and accumulated 2.7 million fleet testing miles on 35 HEVs. The HEV baseline performance testing includes dynamometer and closed-track testing to document HEV performance in a controlled environment. During fleet testing, two of each HEV model accumulate 160,000 test miles within 36 months, during which maintenance and repair events and fuel use were recorded. Three models of PHEVs, from vehicle converters Energy CS and Hymotion and the original equipment manufacturer Renault, are currently in testing. The PHEV baseline performance testing includes 5 days of dynamometer testing with a minimum of 26 test drive cycles, including the Urban Dynamometer Driving Schedule, the Highway Fuel Economy Driving Schedule, and the US06 test cycle, in charge-depleting and charge-sustaining modes. The PHEV accelerated testing is conducted with dedicated drivers for 4,240 miles, over a series of 132 driving loops that range from 10 to 200 miles over various combinations of defined 10-mile urban and 10-mile highway loops, with 984 hours of vehicle charging. The AVTA is part of the U.S. Department of Energys FreedomCAR and Vehicle Technologies Program. These AVTA testing activities were conducted by the Idaho National Laboratory and Electric Transportation Applications, with dynamometer testing conducted at Argonne National Laboratory. This paper discusses the testing methods and results.

Donald Karner

2007-12-01T23:59:59.000Z

331

Locating PHEV exchange stations in V2G  

SciTech Connect

Plug-in hybrid electric vehicle (PREV) is an environment friendly modem transportation method and has been rapidly penetrate the transportation system. Renewable energy is another contributor to clean power but the associated intermittence increases the uncertainty in power generation. As a foreseen benefit of a vchicle-to-grid (V2G) system, PREV supporting infrastructures like battery exchange stations can provide battery service to PREV customers as well as being plugged into a power grid as energy sources and stabilizer. The locations of exchange stations are important for these two objectives under constraints from both ,transportation system and power grid. To model this location problem and to understand and analyze the benefit of a V2G system, we develop a two-stage stochastic program to optimally locate the stations prior to the realizations of battery demands, loads, and generation capacity of renewable power sources. Based on this model, we use two data sets to construct the V2G systems and test the benefit and the performance of these systems.

Pan, Feng [Los Alamos National Laboratory; Bent, Russell [Los Alamos National Laboratory; Berscheid, Alan [Los Alamos National Laboratory; Izraelevitz, David [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

332

Variability of Battery Wear in Light Duty Plug-In Electric Vehicles Subject to Ambient Temperature, Battery Size, and Consumer Usage: Preprint  

DOE Green Energy (OSTI)

Battery wear in plug-in electric vehicles (PEVs) is a complex function of ambient temperature, battery size, and disparate usage. Simulations capturing varying ambient temperature profiles, battery sizes, and driving patterns are of great value to battery and vehicle manufacturers. A predictive battery wear model developed by the National Renewable Energy Laboratory captures the effects of multiple cycling and storage conditions in a representative lithium chemistry. The sensitivity of battery wear rates to ambient conditions, maximum allowable depth-of-discharge, and vehicle miles travelled is explored for two midsize vehicles: a battery electric vehicle (BEV) with a nominal range of 75 mi (121 km) and a plug-in hybrid electric vehicle (PHEV) with a nominal charge-depleting range of 40 mi (64 km). Driving distance distributions represent the variability of vehicle use, both vehicle-to-vehicle and day-to-day. Battery wear over an 8-year period was dominated by ambient conditions for the BEV with capacity fade ranging from 19% to 32% while the PHEV was most sensitive to maximum allowable depth-of-discharge with capacity fade ranging from 16% to 24%. The BEV and PHEV were comparable in terms of petroleum displacement potential after 8 years of service, due to the BEV?s limited utility for accomplishing long trips.

Wood, E.; Neubauer, J.; Brooker, A. D.; Gonder, J.; Smith, K. A.

2012-08-01T23:59:59.000Z

333

Plug-in Hybrid Electric Vehicle Value Proposition Study - Final Report  

Science Conference Proceedings (OSTI)

PHEVs have been the subject of growing interest in recent years because of their potential for reduced operating costs, oil displacement, national security, and environmental benefits. Despite the potential long-term savings to consumers and value to stakeholders, the initial cost of PHEVs presents a major market barrier to their widespread commercialization. The study Objectives are: (1) To identify and evaluate value-added propositions for PHEVs that will help overcome the initial price premium relative to comparable ICEs and HEVs and (2) to assess other non-monetary benefits and barriers associated with an emerging PHEV fleet, including environmental, societal, and grid impacts. Study results indicate that a single PHEV-30 on the road in 2030 will: (1) Consume 65% and 75% less gasoline than a comparable HEV and ICE, respectively; (2) Displace 7.25 and 4.25 barrels of imported oil each year if substituted for equivalent ICEs and HEVs, respectively, assuming 60% of the nation's oil consumed is imported; (3) Reduce net ownership cost over 10 years by 8-10% relative to a comparable ICE and be highly cost competitive with a comparable HEV; (4) Use 18-22% less total W2W energy than a comparable ICE, but 8-13% more than a comparable HEV (assuming a 70/30 split of E10 and E85 use in 2030); and (5) Emit 10% less W2W CO{sub 2} than equivalent ICEs in southern California and emits 13% more W2W CO{sub 2} than equivalent ICEs in the ECAR region. This also assumes a 70/30 split of E10 and E85 use in 2030. PHEVs and other plug-in vehicles on the road in 2030 may offer many valuable benefits to utilities, business owners, individual consumers, and society as a whole by: (1) Promoting national energy security by displacing large volumes of imported oil; (2) Supporting a secure economy through the expansion of domestic vehicle and component manufacturing; (3) Offsetting the vehicle's initial price premium with lifetime operating cost savings (e.g., lower fuel and maintenance costs); (4) Supporting the use of off-peak renewable energy through smart charging practices. However, smart grid technology is not a prerequisite for realizing the benefits of PHEVs; and (5) Potentially using its bidirectional electricity flow capability to aid in emergency situations or to help better manage a building's or entire grid's load.

Sikes, Karen [Sentech, Inc.; Hadley, Stanton W [ORNL; McGill, Ralph N [ORNL; Cleary, Timothy [Sentech, Inc.

2010-07-01T23:59:59.000Z

334

Plug-in hybrid electric vehicles : How does one determine their potential for reducing U.S. oil dependence?  

SciTech Connect

Estimation of the potential of plug-in hybrid electric vehicles (PHEV's) ability to reduce U.S. gasoline use is difficult and complex. Although techniques have been proposed to estimate the vehicle kilometers of travel (VKT) that can be electrified, these methods may be inadequate and/or inappropriate for early market introduction circumstances. Factors that must be considered with respect to the PHEV itself include (1) kWh battery storage capability; (2) kWh/km depletion rate of the vehicle (3) liters/km use of gasoline (4) average daily kilometers driven (5) annual share of trips exceeding the battery depletion distance (6) driving cycle(s) (7) charger location [i.e. on-board or off-board] (8) charging rate. Each of these factors is actually a variable, and many interact. Off the vehicle, considerations include (a) primary overnight charging spot [garage, carport, parking garage or lot, on street], (b) availability of primary and secondary charging locations [i.e. dwellings, workplaces, stores, etc] (c) time of day electric rates (d) seasonal electric rates (e) types of streets and highways typically traversed during most probable trips depleting battery charge [i.e. city, suburban, rural and high vs. low density]; (f) cumulative trips per day from charger origin (g) top speeds and peak acceleration rates required to make usual trips. Taking into account PHEV design trade-off possibilities (kW vs. kWh of battery, in particular), this paper attempts to extract useful information relating to these topics from the 2001 National Household Travel Survey (NHTS), and the 2005 American Housing Survey (AHS). Costs per kWh of PHEVs capable of charge depleting (CD) all-electric range (CDE, or AER) vs. those CD in 'blended' mode (CDB) are examined. Lifetime fuel savings of alternative PHEV operating/utilization strategies are compared to battery cost estimates.

Vyas, A.; Santini, D.; Duoba, M.; Alexander, M.; Energy Systems; EPRI

2008-09-01T23:59:59.000Z

335

Utilizing Electric Vehicles to Assist Integration of Large Penetrations of Distributed Photovoltaic Generation Capacity  

SciTech Connect

Executive Summary Introduction and Motivation This analysis provides the first insights into the leveraging potential of distributed photovoltaic (PV) technologies on rooftop and electric vehicle (EV) charging. Either of the two technologies by themselves - at some high penetrations may cause some voltage control challenges or overloading problems, respectively. But when combined, there at least intuitively could be synergistic effects, whereby one technology mitigates the negative impacts of the other. High penetration of EV charging may overload existing distribution system components, most prominently the secondary transformer. If PV technology is installed at residential premises or anywhere downstream of the secondary transformer, it will provide another electricity source thus, relieving the loading on the transformers. Another synergetic or mitigating effect could be envisioned when high PV penetration reverts the power flow upward in the distribution system (from the homes upstream into the distribution system). Protection schemes may then no longer work and voltage violation (exceeding the voltage upper limited of the ANSI voltage range) may occur. In this particular situation, EV charging could absorb the electricity from the PV, such that the reversal of power flow can be reduced or alleviated. Given these potential mutual synergistic behaviors of PV and EV technologies, this project attempted to quantify the benefits of combining the two technologies. Furthermore, of interest was how advanced EV control strategies may influence the outcome of the synergy between EV charging and distributed PV installations. Particularly, Californian utility companies with high penetration of the distributed PV technology, who have experienced voltage control problems, are interested how intelligent EV charging could support or affect the voltage control

Tuffner, Francis K.; Chassin, Forrest S.; Kintner-Meyer, Michael CW; Gowri, Krishnan

2012-11-30T23:59:59.000Z

336

Realising low carbon vehicles  

E-Print Network (OSTI)

MorganMotorCompany #12;Hybrid and electric vehicle design and novel power trains Cranfield has an impressive track record in the design and integration of near-to-market solutions for hybrid, electric and fuel cell vehicles coupe body the vehicle is powered by advanced lithium-ion batteries, and also features a novel all-electric

337

Potential Impacts of Plug-in Hybrid Electric Vehicles on Regional Power Generation  

SciTech Connect

Plug-in hybrid electric vehicles (PHEVs) are being developed around the world, with much work aiming to optimize engine and battery for efficient operation, both during discharge and when grid electricity is available for recharging. However, the general expectation has been that the grid will not be greatly affected by the use of PHEVs because the recharging will occur during off-peak hours, or the number of vehicles will grow slowly enough so that capacity planning will respond adequately. This expectation does not consider that drivers will control the timing of recharging, and their inclination will be to plug in when convenient, rather than when utilities would prefer. It is important to understand the ramifications of adding load from PHEVs onto the grid. Depending on when and where the vehicles are plugged in, they could cause local or regional constraints on the grid. They could require the addition of new electric capacity and increase the utilization of existing capacity. Usage patterns of local distribution grids will change, and some lines or substations may become overloaded sooner than expected. Furthermore, the type of generation used to meet the demand for recharging PHEVs will depend on the region of the country and the timing of recharging. This paper analyzes the potential impacts of PHEVs on electricity demand, supply, generation structure, prices, and associated emission levels in 2020 and 2030 in 13 regions specified by the North American Electric Reliability Corporation (NERC) and the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), and on which the data and analysis in EIA's Annual Energy Outlook 2007 are based (Figure ES-1). The estimates of power plant supplies and regional hourly electricity demand come from publicly available sources from EIA and the Federal Energy Regulatory Commission. Electricity requirements for PHEVs are based on analysis from the Electric Power Research Institute, with an optimistic projection of 25% market penetration by 2020, involving a mixture of sedans and sport utility vehicles. The calculations were done using the Oak Ridge Competitive Electricity Dispatch (ORCED) model, a model developed over the past 12 years to evaluate a wide variety of critical electricity sector issues. Seven scenarios were run for each region for 2020 and 2030, for a total of 182 scenarios. In addition to a base scenario of no PHEVs, the authors modeled scenarios assuming that vehicles were either plugged in starting at 5:00 p.m. (evening) or at 10:00 p.m.(night) and left until fully charged. Three charging rates were examined: 120V/15A (1.4 kW), 120V/20A (2 kW), and 220V/30A (6 kW). Most regions will need to build additional capacity or utilize demand response to meet the added demand from PHEVs in the evening charging scenarios, especially by 2030 when PHEVs have a larger share of the installed vehicle base and make a larger demand on the system. The added demands of evening charging, especially at high power levels, can impact the overall demand peaks and reduce the reserve margins for a region's system. Night recharging has little potential to influence peak loads, but will still influence the amount and type of generation.

Hadley, Stanton W [ORNL; Tsvetkova, Alexandra A [ORNL

2008-01-01T23:59:59.000Z

338

Potential Impacts of Plug-in Hybrid Electric Vehicles on Regional Power Generation  

DOE Green Energy (OSTI)

Plug-in hybrid electric vehicles (PHEVs) are being developed around the world, with much work aiming to optimize engine and battery for efficient operation, both during discharge and when grid electricity is available for recharging. However, the general expectation has been that the grid will not be greatly affected by the use of PHEVs because the recharging will occur during off-peak hours, or the number of vehicles will grow slowly enough so that capacity planning will respond adequately. This expectation does not consider that drivers will control the timing of recharging, and their inclination will be to plug in when convenient, rather than when utilities would prefer. It is important to understand the ramifications of adding load from PHEVs onto the grid. Depending on when and where the vehicles are plugged in, they could cause local or regional constraints on the grid. They could require the addition of new electric capacity and increase the utilization of existing capacity. Usage patterns of local distribution grids will change, and some lines or substations may become overloaded sooner than expected. Furthermore, the type of generation used to meet the demand for recharging PHEVs will depend on the region of the country and the timing of recharging. This paper analyzes the potential impacts of PHEVs on electricity demand, supply, generation structure, prices, and associated emission levels in 2020 and 2030 in 13 regions specified by the North American Electric Reliability Corporation (NERC) and the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), and on which the data and analysis in EIA's Annual Energy Outlook 2007 are based (Figure ES-1). The estimates of power plant supplies and regional hourly electricity demand come from publicly available sources from EIA and the Federal Energy Regulatory Commission. Electricity requirements for PHEVs are based on analysis from the Electric Power Research Institute, with an optimistic projection of 25% market penetration by 2020, involving a mixture of sedans and sport utility vehicles. The calculations were done using the Oak Ridge Competitive Electricity Dispatch (ORCED) model, a model developed over the past 12 years to evaluate a wide variety of critical electricity sector issues. Seven scenarios were run for each region for 2020 and 2030, for a total of 182 scenarios. In addition to a base scenario of no PHEVs, the authors modeled scenarios assuming that vehicles were either plugged in starting at 5:00 p.m. (evening) or at 10:00 p.m.(night) and left until fully charged. Three charging rates were examined: 120V/15A (1.4 kW), 120V/20A (2 kW), and 220V/30A (6 kW). Most regions will need to build additional capacity or utilize demand response to meet the added demand from PHEVs in the evening charging scenarios, especially by 2030 when PHEVs have a larger share of the installed vehicle base and make a larger demand on the system. The added demands of evening charging, especially at high power levels, can impact the overall demand peaks and reduce the reserve margins for a region's system. Night recharging has little potential to influence peak loads, but will still influence the amount and type of generation.

Hadley, Stanton W [ORNL; Tsvetkova, Alexandra A [ORNL

2008-01-01T23:59:59.000Z

339

ORNL Building Technologies Research & Integration Center (BTRIC) New Laboratory Facilities per  

E-Print Network (OSTI)

/or distributed energy or CHP systems, customer-side-of-meter plug-in hybrid electric vehicle (PHEV) or EV docking,000 ft2 high bay laboratory building will include four major sections: The Advanced Construction, and evaluation of advanced construction technologies. The facility addresses both em

Oak Ridge National Laboratory

340

Comparison of Plug-In Hybrid Electric Vehicle Battery Life Across Geographies and Drive-Cycles  

DOE Green Energy (OSTI)

In a laboratory environment, it is cost prohibitive to run automotive battery aging experiments across a wide range of possible ambient environment, drive cycle and charging scenarios. Since worst-case scenarios drive the conservative sizing of electric-drive vehicle batteries, it is useful to understand how and why those scenarios arise and what design or control actions might be taken to mitigate them. In an effort to explore this problem, this paper applies a semi-empirical life model of the graphite/nickel-cobalt-aluminum lithium-ion chemistry to investigate impacts of geographic environments under storage and simplified cycling conditions. The model is then applied to analyze complex cycling conditions, using battery charge/discharge profiles generated from simulations of PHEV10 and PHEV40 vehicles across 782 single-day driving cycles taken from Texas travel survey data.

Smith, K.; Warleywine, M.; Wood, E.; Neubauer, J.; Pesaran, A.

2012-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle phev integrated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Vehicle Technologies Office: Workplace Charging Challenge Partner...  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Basics Workplace Charging Challenge Partner: Hertz Hertz has embraced plug-in electric vehicles (PEVs) as an integral part of both employee commutes and business rentals....

342

Regulatory Influences That Will Likely Affect Success of Plug-in Hybrid and Battery Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Influences That Will Likely Influences That Will Likely Affect Success of Plug-in Hybrid and Battery Electric Vehicles By Dan Santini Argonne National Laboratory dsantini@anl.gov Clean Cities Coordinators' Webinar Sept. 16, 2010 Vehicle fuel use regulation/policy measures differ. Which should measure plug-in success?  Corporate average fuel economy (CAFE) ratings do not represent real world fuel use. However, the range ratings of EVs and PHEVs are based on CAFE tests.  "Window sticker" information on vehicle fuel use predicts more gasoline and electricity use than CAFE ratings. - The GREET model (basis of GHG saving estimates) is based on real world fuel use

343

Study Released on the Potential of Plug-In Hybrid Electric Vehicles |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Study Released on the Potential of Plug-In Hybrid Electric Vehicles Study Released on the Potential of Plug-In Hybrid Electric Vehicles Study Released on the Potential of Plug-In Hybrid Electric Vehicles January 19, 2007 - 10:44am Addthis Study Released on the Potential of Plug-In Hybrid Electric Vehicles A new study released on Plug-in Hybrid Electric Vehicles (PHEVs) found there is enough electric capacity to power plug-in vehicles across much of the nation. The Office of Electricity Delivery and Energy Reliability supported researchers at the Pacific Northwest National Laboratory to develop this study that found "off-peak" electricity production and transmission capacity could fuel 84 percent of the 198 million cars, pickup trucks, and sport utility vehicles (SUVs) in the nation if they were plug-in hybrid electrics. This is the first review of what the impacts

344

Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions In the most comprehensive environmental assessment of electric transportation to date, the Electric Power Research Institute (EPRI) and the Natural Resources Defense Council (NRDC) are examining the greenhouse gas emissions and air quality impacts of plug-in hybrid electric vehicles (PHEV). Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions More Documents & Publications Asia/ITS Vehicle Electrification is Key to Reducing Petroleum Dependency and Greenhouse Gas Emission Plug-In Hybrid Electric Vehicles

345

Study Released on the Potential of Plug-In Hybrid Electric Vehicles |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Study Released on the Potential of Plug-In Hybrid Electric Vehicles Study Released on the Potential of Plug-In Hybrid Electric Vehicles Study Released on the Potential of Plug-In Hybrid Electric Vehicles January 19, 2007 - 10:44am Addthis Study Released on the Potential of Plug-In Hybrid Electric Vehicles A new study released on Plug-in Hybrid Electric Vehicles (PHEVs) found there is enough electric capacity to power plug-in vehicles across much of the nation. The Office of Electricity Delivery and Energy Reliability supported researchers at the Pacific Northwest National Laboratory to develop this study that found "off-peak" electricity production and transmission capacity could fuel 84 percent of the 198 million cars, pickup trucks, and sport utility vehicles (SUVs) in the nation if they were plug-in hybrid electrics. This is the first review of what the impacts

346

Non-isolated integrated motor drive and battery charger based on the split-phase PM motor for plug-in vehicles.  

E-Print Network (OSTI)

??In electric vehicles and plug-in hybrid electric vehicles, the utility grid charges the vehicle battery through a battery charger. Different solutions have been proposed to (more)

Serrano Guilln, Isabel

2013-01-01T23:59:59.000Z

347

Integrated, Feed-Forward Hybrid Electric Vehicle Simulation in SIMULINK and its Use for Power Management Studies  

E-Print Network (OSTI)

A hybdd electric vehicle simulation tool (HE-VESIM) has been developed at the Automotive Research Center of the University of Michigan to study the fuel economy potential of hybrid military/civilian trucks. In this paper, the fundamental architecture of the feed-forward parallel hybrid-electric vehicle system is described, together with dynamic equations and basic features of sub-system modules. Two vehicle-level power management control algorithms are assessed, a rule-based algorithm, which mainly explores engine efficiency in an intuitive manner, and a dynamic-programming optimization algorithm. Simulation results over the urban driving cycle demonstrate the potential of the selected hybrid system to significantly improve vehicle fuel economy, the improvement being greater when the dynamicprogramming power management algorithm is applied.

Chan-Chiao Lin; Zoran Fillipi; Yongsheng Wang; Loucas Louca; Huel Peng; Dennis Assanis; Jeffrey Stein

2001-01-01T23:59:59.000Z

348

Design for implementation : fully integrated charging & docking infrastructure used in Mobility-on-Demand electric vehicle fleets  

E-Print Network (OSTI)

As the technology used in electric vehicles continues to advance, there is an increased demand for urban-appropriate electric charging stations emphasizing a modern user interface, robust design, and reliable functionality. ...

Martin, Jean Mario Nations

2012-01-01T23:59:59.000Z

349

Plug-In Hybrid Electric Vehicle Market Introduction Study: Final Report  

SciTech Connect

Oak Ridge National Laboratory (ORNL), Sentech, Inc., Pacific Northwest National Laboratory (PNNL)/University of Michigan Transportation Research Institute (UMTRI), and the U.S. Department of Energy (DOE) have conducted a Plug-in Hybrid Electric Vehicle (PHEV) Market Introduction Study to identify and assess the effect of potential policies, regulations, and temporary incentives as key enablers for a successful market debut. The timeframe over which market-stimulating incentives would be implemented - and the timeframe over which they would be phased out - are suggested. Possible sources of revenue to help fund these mechanisms are also presented. In addition, pinch points likely to emerge during market growth are identified and proposed solutions presented. Finally, modeling results from ORNL's Market Acceptance of Advanced Automotive Technologies (MA3T) Model and UMTRI's Virtual AutoMotive MarketPlace (VAMMP) Model were used to quantify the expected effectiveness of the proposed policies and to recommend a consensus strategy aimed at transitioning what begins as a niche industry into a thriving and sustainable market by 2030. The primary objective of the PHEV Market Introduction Study is to identify the most effective means for accelerating the commercialization of PHEVs in order to support national energy and economic goals. Ideally, these mechanisms would maximize PHEV sales while minimizing federal expenditures. To develop a robust market acceleration program, incentives and policies must be examined in light of: (1) clarity and transparency of the market signals they send to the consumer; (2) expenditures and resources needed to support them; (3) expected impacts on the market for PHEVs; (4) incentives that are compatible and/or supportive of each other; (5) complexity of institutional and regulatory coordination needed; and (6) sources of funding.

Sikes, Karen [Sentech, Inc.; Gross, Thomas [Sentech, Inc.; Lin, Zhenhong [ORNL; Sullivan, John [University of Michigan Transportation Research Institute; Cleary, Timothy [Sentech, Inc.; Ward, Jake [U.S. Department of Energy

2010-02-01T23:59:59.000Z

350

Plug-In Hybrid Electric Vehicle Market Introduction Study: Final Report  

DOE Green Energy (OSTI)

Oak Ridge National Laboratory (ORNL), Sentech, Inc., Pacific Northwest National Laboratory (PNNL)/University of Michigan Transportation Research Institute (UMTRI), and the U.S. Department of Energy (DOE) have conducted a Plug-in Hybrid Electric Vehicle (PHEV) Market Introduction Study to identify and assess the effect of potential policies, regulations, and temporary incentives as key enablers for a successful market debut. The timeframe over which market-stimulating incentives would be implemented - and the timeframe over which they would be phased out - are suggested. Possible sources of revenue to help fund these mechanisms are also presented. In addition, pinch points likely to emerge during market growth are identified and proposed solutions presented. Finally, modeling results from ORNL's Market Acceptance of Advanced Automotive Technologies (MA3T) Model and UMTRI's Virtual AutoMotive MarketPlace (VAMMP) Model were used to quantify the expected effectiveness of the proposed policies and to recommend a consensus strategy aimed at transitioning what begins as a niche industry into a thriving and sustainable market by 2030. The primary objective of the PHEV Market Introduction Study is to identify the most effective means for accelerating the commercialization of PHEVs in order to support national energy and economic goals. Ideally, these mechanisms would maximize PHEV sales while minimizing federal expenditures. To develop a robust market acceleration program, incentives and policies must be examined in light of: (1) clarity and transparency of the market signals they send to the consumer; (2) expenditures and resources needed to support them; (3) expected impacts on the market for PHEVs; (4) incentives that are compatible and/or supportive of each other; (5) complexity of institutional and regulatory coordination needed; and (6) sources of funding.

Sikes, Karen [Sentech, Inc.; Gross, Thomas [Sentech, Inc.; Lin, Zhenhong [ORNL; Sullivan, John [University of Michigan Transportation Research Institute; Cleary, Timothy [Sentech, Inc.; Ward, Jake [U.S. Department of Energy

2010-02-01T23:59:59.000Z

351

Alternative Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

There are a number of alternative and advanced vehiclesor vehicles that run on alternative fuels. Learn more about the following types of vehicles:

352

Improving Petroleum Displacement Potential of PHEVs Using Enhanced Charging Scenarios: Preprint  

DOE Green Energy (OSTI)

Describes NREL's R&D on the petroleum displacement potential of plug-in hybrid vehicles; vehicles charged during the day would save about 5% more fuel than those charged at night.

Markel, T.; Smith, K.; Pesaran, A. A.

2009-05-01T23:59:59.000Z

353

Vehicle Technologies Office: Electrical Machines  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrical Machines to Electrical Machines to someone by E-mail Share Vehicle Technologies Office: Electrical Machines on Facebook Tweet about Vehicle Technologies Office: Electrical Machines on Twitter Bookmark Vehicle Technologies Office: Electrical Machines on Google Bookmark Vehicle Technologies Office: Electrical Machines on Delicious Rank Vehicle Technologies Office: Electrical Machines on Digg Find More places to share Vehicle Technologies Office: Electrical Machines on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Power Electronics Electrical Machines Thermal Control & System Integration Advanced Combustion Engines Fuels & Lubricants Materials Technologies Electrical Machines Emphasis in the electrical machines activity is on advanced motor

354

Vehicle Technologies Office: Power Electronics  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Electronics to Power Electronics to someone by E-mail Share Vehicle Technologies Office: Power Electronics on Facebook Tweet about Vehicle Technologies Office: Power Electronics on Twitter Bookmark Vehicle Technologies Office: Power Electronics on Google Bookmark Vehicle Technologies Office: Power Electronics on Delicious Rank Vehicle Technologies Office: Power Electronics on Digg Find More places to share Vehicle Technologies Office: Power Electronics on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Power Electronics Electrical Machines Thermal Control & System Integration Advanced Combustion Engines Fuels & Lubricants Materials Technologies Power Electronics The power electronics activity focuses on research and development (R&D)

355

MD PHEV/EV ARRA Project Data Collection and Reporting (Presentation)  

DOE Green Energy (OSTI)

This presentation describes a National Renewable Energy Laboratory project to collect and analyze commercial fleet deployment data from medium-duty plug-in hybrid electric and all-electric vehicles that were deployed using funds from the American Recovery and Reinvestment Act. This work supports the Department of Energy's Vehicle Technologies Program and its Advanced Vehicle Testing Activity.

Walkowicz, K.; Ramroth, L.; Duran, A.; Rosen, B.

2012-01-01T23:59:59.000Z

356

Plug-In Hybrid Electric Vehicle Performance Analysis  

Science Conference Proceedings (OSTI)

This report describes the performance testing of two configurations of the Plug-in Hybrid-Electric Vehicle (PHEV) Sprinter van developed by EPRI and Daimler for use in delivering cargo, carrying passengers, or fulfilling a variety of specialty applications. One configuration, California 1 (CA-1) has a Nickel Metal Hydride (NiMH) battery pack. The other, California 2 (CA-2) has a Lithium Ion (Li-Ion) battery pack. California 2 showed better fuel and energy economy in all aspects of testing.

2008-03-27T23:59:59.000Z

357

Understanding the Grid Impacts of Plug-In Electric Vehicles (PEV): Phase 1 Study -- Distribution Impact Case Studies  

Science Conference Proceedings (OSTI)

A new era of plug-in electric vehicles (PEVs) has begun. Nissan and General Motors launched production PEVs in December 2010, and in 2011 and 2012, Ford, Mitsubishi, Toyota, Honda, Chrysler, Tesla, and others have introduced such vehicles to the US market which can create peak loads of up to 19.2 kW. In addition, with the rapidly approaching commercialization of plug-in hybrid (PHEVs) and battery electric vehicles (BEVs) utilities need to ensure that they can support customers use of such ...

2012-12-31T23:59:59.000Z

358

Impact Assessment of Plug-in Hybrid Vehicles on the U.S. Power Grid  

Science Conference Proceedings (OSTI)

The US electricity grid is a national infrastructure that has the potential to deliver significant amounts of the daily driving energy of the US light duty vehicle (cars, pickups, SUVs, and vans) fleet. This paper discusses a 2030 scenario with 37 million plug-in hybrid electric vehicles (PHEVs) on the road in the US demanding electricity for an average daily driving distance of about 33 miles (53 km). The paper addresses the potential grid impacts of the PHEVs fleet relative to their effects on the production cost of electricity, and the emissions from the electricity sector. The results of this analysis indicate significant regional difference on the cost impacts and the CO2 emissions. Battery charging during the day may have twice the cost impacts than charging during the night. The CO2 emissions impacts are very region-dependent. In predominantly coal regions (Midwest), the new PHEV load may reduce the CO2 emission intensity (ton/MWh), while in others regions with significant clean generation (hydro and renewable energy) the CO2 emission intensity may increase. Discussed will the potential impact of the results with the valuation of carbon emissions.

Kintner-Meyer, Michael CW; Nguyen, Tony B.; Jin, Chunlian; Balducci, Patrick J.; Secrest, Thomas J.

2010-09-30T23:59:59.000Z

359

NREL: Vehicles and Fuels Research - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects Projects NREL's vehicles and fuels projects focus on developing, evaluating, and demonstrating innovative technologies that reduce the nation's dependence on imported petroleum and improve air quality. We work in partnership with vehicle manufacturers, equipment suppliers, fuel providers, and others to develop and commercialize vehicle and fuel technologies that meet our nation's energy and environmental goals. Advanced Combustion and Fuels Biofuels Electric Vehicle Grid Integration Energy Storage Fleet Test and Evaluation Power Electronics ReFUEL Laboratory Secure Transportation Data Vehicle Ancillary Loads Reduction Vehicle Systems Analysis Printable Version Vehicles & Fuels Research Home Projects Advanced Combustion & Fuels Biofuels Electric Vehicle Grid Integration

360

Economic Assessment of Electric-Drive Vehicle Operation in California and the United States  

E-Print Network (OSTI)

The study found that battery costs below about $500US perfurther found that if PHEV battery costs could reach $200USsolution due to higher battery costs for PHEV-40 and PHEV-50

Lidicker, Jeffrey R.; Lipman, Timothy E.; Shaheen, Susan A.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle phev integrated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

Targeted battery costs are $200-$300 per kWh. We note thatbattery cost is commonly measured in dollars per total kWh (

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

362

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

cost. Third, lithium-ion (Li-Ion) battery designs are betterclass of advanced battery using lithium-ion chemistry. LMS Li-Ion battery technologies as follows: LCO: Lithium cobalt

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

363

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

and from regenerative braking, and passes energy to theor from regenerative braking and uses the energy in the

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

364

Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program  

E-Print Network (OSTI)

and turtles displaying regenerative energy both perverselythe type of energy (Gas, Electric, Electric Regenerative) by

Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

2009-01-01T23:59:59.000Z

365

Abstract--Plug-in Hybrid Electric Vehicles (PHEV) represent a promising pathway to reduce greenhouse gas emissions  

E-Print Network (OSTI)

. EPA (2007d) eGrid2006 Version 2.1, Year 2004 Summary Tables. U.S. Environmental Protection Agency. Accessed from http://www.epa.gov/cleanenergy/energy- resources/egrid/index.html on July 29, 2008. EPA (2008

Hines, Paul

366

Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program  

E-Print Network (OSTI)

dependency of the U.S. on foreign oil Figure 8: Comparingnations dependence on foreign oil, requires urgent action.impacts and dependence on foreign oil, as well as sending a

Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

2009-01-01T23:59:59.000Z

367

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

5, Shirouzu, N. (2007). Toyota Puts Off New Type of Batteryof one battery, e.g. Toyotas concerns about safety with itssuccess, typified by the Toyota Prius. Currently, interest

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

368

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

New Type of Battery for Next Prius, The Wall Street Journal,typified by the Toyota Prius. Currently, interest has turneda plug-in version of the Prius, General Motors is working

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

369

Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program  

E-Print Network (OSTI)

based on the stock Toyota Prius Energy Monitor and Fuelof the Project. Another Prius (purchased with funding fromused than in a conventional Prius and it is easier, though

Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

2009-01-01T23:59:59.000Z

370

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

of acceptability. Targeted battery costs are $200-$300 persafety will increase battery cost. Table E-1: Comparing PHEVthis report. 3.5 Costs Battery cost is thought to be one of

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

371

Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program  

E-Print Network (OSTI)

contractor who pays the electricity bill] doesnt even equalhow much their higher electricity bill was due to their ACshe would be checking her electricity bill to make sure. [It

Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

2009-01-01T23:59:59.000Z

372

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

in a battery to the batterys maximum capacity. Total Energyversion of the battery, with total energy capacity of (0.057Mass Battery Goals kW Peak Power kWh Energy Capacity years

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

373

An Analysis of Near-Term Hydrogen Vehicle Rollout Scenarios for Southern California  

E-Print Network (OSTI)

early will help vehicle manufacturers integrate systems intobased on the locations vehicle manufacturers see potentialto manufacturer, the locations of vehicle placements were

Nicholas, Michael A; Ogden, J

2010-01-01T23:59:59.000Z

374

TELKOMNIKA, Vol.10, No.8, December 2012, pp. 1701~1708 e-ISSN: 2087-278X  

E-Print Network (OSTI)

and integrated in a real-life power system. Hybrid-electric power technologies and advances in battery make PHEVs, as they are quite expensive, they are not widely used. In this paper, the potential of a plug-in hybrid electric vehicle (PHEV) in a vehicle-to-grid (V2G) mode of operation using a PHEV charging station to provide a low

Pota, Himanshu Roy

375

PHEV Battery Trade-Off Study and Standby Thermal Control (Presentation)  

DOE Green Energy (OSTI)

Describes NREL's R&D to optimize the design of batteries for plug-in hybrid electric vehicles to meet established requirements at minimum cost.

Smith, K.; Markel, T.; Pesaran, A.

2009-03-01T23:59:59.000Z

376

Microsoft PowerPoint - JF_RWC Motreal PHEV_2009 Sept.ppt [Compatibilit...  

NLE Websites -- All DOE Office Websites (Extended Search)

g - Provide benchmark data to technology modelers, research and development programs, vehicle manufacturers (via VSATT) and target and goal setters manufacturers (via VSATT),...

377

TransForum v9n1 - Temperature Effects on PHEVs  

NLE Websites -- All DOE Office Websites (Extended Search)

Real-World Temperature Effects on Plug-in Hybrid Electric Vehicles Soak cycles Engine surface temperature collected during a soak time sensitivity study using Argonne's Modular...

378

PHEV Battery Trade-Off Study and Standby Thermal Control (Presentation)  

SciTech Connect

Describes NREL's R&D to optimize the design of batteries for plug-in hybrid electric vehicles to meet established requirements at minimum cost.

Smith, K.; Markel, T.; Pesaran, A.

2009-03-01T23:59:59.000Z

379

PowerUp! Summit - AVTA North America and Washington State PHEV...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Battery Development - Energy Critical Infrastructure Protection Nuclear Geothermal Hydropower 2 AVTA Background and Goals * The Advanced Vehicle Testing Activity (AVTA) is...

380

Cost-Benefit Analysis of Plug-In Hybrid Electric Vehicle Technology | Open  

Open Energy Info (EERE)

Cost-Benefit Analysis of Plug-In Hybrid Electric Vehicle Technology Cost-Benefit Analysis of Plug-In Hybrid Electric Vehicle Technology Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Cost-Benefit Analysis of Plug-In Hybrid Electric Vehicle Technology Focus Area: Electricity Topics: Policy Impacts Website: www.nrel.gov/vehiclesandfuels/vsa/pdfs/40485.pdf Equivalent URI: cleanenergysolutions.org/content/cost-benefit-analysis-plug-hybrid-ele Language: English Policies: "Regulations,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. Regulations: Fuel Efficiency Standards This paper presents a comparison of the costs and benefits of plug-in hybrid electric vehicles (PHEVs) relative to hybrid electric and conventional vehicles. A detailed simulation model is used to predict

Note: This page contains sample records for the topic "vehicle phev integrated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Improved layered mixed transition metal oxides for Li-ion batteries  

E-Print Network (OSTI)

vehicles (EV), plug-in hybrid electric vehicles (PHEVs),or hybrid electric vehicles (HEVs). To reduce materialsapplications (plug-in hybrid electric vehicles (PHEVs) and

Doeff, Marca M.

2010-01-01T23:59:59.000Z

382

EERE's FreedomCAR and Vehicle Technologies PowerPoint Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Slezak Lee Slezak US Department of Energy US Department of Energy PHEV Stakeholders Meeting PHEV Stakeholders Meeting June 13, 2007 June 13, 2007 Topics Topics * Background *...

383

Impact of SiC Devices on Hybrid Electric and Plug-In Hybrid Electric Vehicles  

Science Conference Proceedings (OSTI)

The application of SiC devices (as battery interface, motor controller, etc.) in a hybrid electric vehicle (HEV) will benefit from their high-temperature capability, high-power density, and high efficiency. Moreover, the light weight and small volume will affect the whole power train system in a HEV, and thus performance and cost. In this work, the performance of HEVs is analyzed using PSAT (powertrain system analysis tool, vehicle simulation software). Power loss models of a SiC inverter are incorporated into PSAT powertrain models in order to study the impact of SiC devices on HEVs. Two types of HEVs are considered. One is the 2004 Toyota Prius HEV, the other is a plug-in HEV (PHEV), whose powertrain architecture is the same as that of the 2004 Toyota Prius HEV. The vehicle-level benefits from the introduction of the SiC devices are demonstrated by simulations. Not only the power loss in the motor controller but also those in other components in the vehicle powertrain are reduced. As a result, the system efficiency is improved and the vehicles consume less energy and emit less harmful gases. It also makes it possible to improve the system compactness with simplified thermal management system. For the PHEV, the benefits are more distinct. Especially, the size of battery bank can be reduced for optimum design.

Zhang, Hui [ORNL; Tolbert, Leon M [ORNL; Ozpineci, Burak [ORNL

2008-01-01T23:59:59.000Z

384

Unified Plug-in Electric Vehicle (PEV) to Smart Grid Integration Approach within Automotive and Utility Industries  

Science Conference Proceedings (OSTI)

This technical update is a status report on the OEM (Original Equipment Manufacturer) Central Server Phase 1 project through 2013. The OEM Central Server is a server-based application that enables utilities to manage charging for the entire installed base of Plug-in Electric Vehicles (PEVs) as controllable loads. The application uses a set of open, interoperable standards-based interfaces either via aggregated, indirect Demand Response (DR) programs using Open Automated Demand Response ...

2013-12-30T23:59:59.000Z

385

Advancing Next-Generation Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

the U.S. Department of Energy's (DOE's) lead laboratory for researching advanced vehicle technologies, including hy- the U.S. Department of Energy's (DOE's) lead laboratory for researching advanced vehicle technologies, including hy- brid, plug-in hybrid, battery electric, and alternative fuel vehicles, Argonne provides transportation research critical to advancing the development of next-generation vehicles. Central to this effort is the Lab's Advanced Powertrain Research Facility (APRF), an integrated four-wheel drive chassis dynamometer and component test facility.

386

Energy Basics: Electric Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

387

Energy Basics: Propane Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

388

Energy Basics: Alternative Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

389

Energy Basics: Alternative Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

fuels. Learn more about the following types of vehicles: Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

390

Electric Vehicle Supply Equipment (EVSE) Test Report: Voltec...  

NLE Websites -- All DOE Office Websites (Extended Search)

VEHICLE TECHNOLOGIES PROGRAM Electric Vehicle Supply Equipment (EVSE) Test Report: Voltec 120V EVSE Features Low and High Current Settings Integrated Flashlight Auto-restart EVSE...

391

EERE: Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies Office and initiatives, using efficient vehicles, and access vehicle and fuel information. Photo of a ethanol and biodiesel fueling station Photo of three big-rig...

392

Battery Electric Vehicle Driving and Charging Behavior Observed Early in The EV Project  

DOE Green Energy (OSTI)

As concern about society's dependence on petroleum-based transportation fuels increases, many see plug-in electric vehicles (PEV) as enablers to diversifying transportation energy sources. These vehicles, which include plug-in hybrid electric vehicles (PHEV), range-extended electric vehicles (EREV), and battery electric vehicles (BEV), draw some or all of their power from electricity stored in batteries, which are charged by the electric grid. In order for PEVs to be accepted by the mass market, electric charging infrastructure must also be deployed. Charging infrastructure must be safe, convenient, and financially sustainable. Additionally, electric utilities must be able to manage PEV charging demand on the electric grid. In the Fall of 2009, a large scale PEV infrastructure demonstration was launched to deploy an unprecedented number of PEVs and charging infrastructure. This demonstration, called The EV Project, is led by Electric Transportation Engineering Corporation (eTec) and funded by the U.S. Department of Energy. eTec is partnering with Nissan North America to deploy up to 4,700 Nissan Leaf BEVs and 11,210 charging units in five market areas in Arizona, California, Oregon, Tennessee, and Washington. With the assistance of the Idaho National Laboratory, eTec will collect and analyze data to characterize vehicle consumer driving and charging behavior, evaluate the effectiveness of charging infrastructure, and understand the impact of PEV charging on the electric grid. Trials of various revenue systems for commercial and public charging infrastructure will also be conducted. The ultimate goal of The EV Project is to capture lessons learned to enable the mass deployment of PEVs. This paper is the first in a series of papers documenting the progress and findings of The EV Project. This paper describes key research objectives of The EV Project and establishes the project background, including lessons learned from previous infrastructure deployment and PEV demonstrations. One such previous study was a PHEV demonstration conducted by the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA), led by the Idaho National Laboratory (INL). AVTA's PHEV demonstration involved over 250 vehicles in the United States, Canada, and Finland. This paper summarizes driving and charging behavior observed in that demonstration, including the distribution of distance driven between charging events, charging frequency, and resulting proportion of operation charge depleting mode. Charging demand relative to time of day and day of the week will also be shown. Conclusions from the PHEV demonstration will be given which highlight the need for expanded analysis in The EV Project. For example, the AVTA PHEV demonstration showed that in the absence of controlled charging by the vehicle owner or electric utility, the majority of vehicles were charged in the evening hours, coincident with typical utility peak demand. Given this baseline, The EV Project will demonstrate the effects of consumer charge control and grid-side charge management on electricity demand. This paper will outline further analyses which will be performed by eTec and INL to documenting driving and charging behavior of vehicles operated in a infrastructure-rich environment.

John Smart; Stephen Schey

2012-04-01T23:59:59.000Z

393

Plug-in Electric Vehicle Interactions with a Small Office Building: An Economic Analysis using DER-CAM  

E-Print Network (OSTI)

Environmental Benefits of Electric Vehicles Integration onof using plug-in hybrid electric vehicle battery packs forN ATIONAL L ABORATORY Plug-in Electric Vehicle Interactions

Momber, Ilan

2010-01-01T23:59:59.000Z

394

Plug-in Electric Vehicle Interactions with a Small Office Building: An Economic Analysis using DER-CAM  

E-Print Network (OSTI)

Environmental Benefits of Electric Vehicles Integration onusing plug-in hybrid electric vehicle battery packs for gridL ABORATORY Plug-in Electric Vehicle Interactions with a

Momber, Ilan

2010-01-01T23:59:59.000Z

395

Simulated comparisons of emissions and fuel efficiency of diesel and gasoline hybrid electric vehicles  

SciTech Connect

This paper presents details and results of hybrid and plug-in hybrid electric passenger vehicle (HEV and PHEV) simulations that account for the interaction of thermal transients from drive cycle demands and engine start/stop events with aftertreatment devices and their associated fuel penalties. The simulations were conducted using the Powertrain Systems Analysis Toolkit (PSAT) software developed by Argonne National Laboratory (ANL) combined with aftertreatment component models developed at Oak Ridge National Lab (ORNL). A three-way catalyst model is used in simulations of gasoline powered vehicles while a lean NOx trap model in used to simulated NOx reduction in diesel powered vehicles. Both cases also use a previously reported methodology for simulating the temperature and species transients associated with the intermittent engine operation and typical drive cycle transients which are a significant departure from the usual experimental steady-state engine-map based approach adopted often in vehicle system simulations. Comparative simulations indicate a higher efficiency for diesel powered vehicles but the advantage is lowered by about a third (for both HEVs and PHEVs) when the fuel penalty associated with operating a lean NOx trap is included and may be reduced even more when fuel penalty associated with a particulate filter is included in diesel vehicle simulations. Through these preliminary studies, it is clearly demonstrated how accurate engine and exhaust systems models that can account for highly intermittent and transient engine operation in hybrid vehicles can be used to account for impact of emissions in comparative vehicle systems studies. Future plans with models for other devices such as particulate filters, diesel oxidation and selective reduction catalysts are also discussed.

Gao, Zhiming [ORNL; Chakravarthy, Veerathu K [ORNL; Daw, C Stuart [ORNL

2011-01-01T23:59:59.000Z

396

Advanced Vehicle Testing Activity: Urban Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Urban Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Urban Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Urban...

397

Advanced Vehicle Testing Activity: Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Hybrid Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Hybrid...

398

Advanced Vehicle Testing Activity: Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Neighborhood Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing...

399

Advanced Vehicle Testing Activity: Urban Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Urban Electric Vehicles Toyota Urban Electric Vehicle Urban electric vehicles (UEVs) are regular passenger vehicles with top speeds of about 60 miles per hour (mph) and a...

400

Integrated Testing, Simulation and Analysis of Electric Drive Options for Medium-Duty Parcel Delivery Vehicles: Preprint  

Science Conference Proceedings (OSTI)

The National Renewable Energy Laboratory verified diesel-conventional and diesel-hybrid parcel delivery vehicle models to evaluate petroleum reduction and cost implications of plug-in hybrid gasoline and diesel variants. These variants are run on a field-data-derived design matrix to analyze the effects of drive cycle, distance, battery replacements, battery capacity, and motor power on fuel consumption and lifetime cost. Two cost scenarios using fuel prices corresponding to forecasted highs for 2011 and 2030 and battery costs per kilowatt-hour representing current and long-term targets compare plug-in hybrid lifetime costs with diesel conventional lifetime costs. Under a future cost scenario of $100/kWh battery energy and $5/gal fuel, plug-in hybrids are cost effective. Assuming a current cost of $700/kWh and $3/gal fuel, they rarely recoup the additional motor and battery cost. The results highlight the importance of understanding the application's drive cycle, daily driving distance, and kinetic intensity. For instances in the current-cost scenario where the additional plug-in hybrid cost is regained in fuel savings, the combination of kinetic intensity and daily distance travelled does not coincide with the usage patterns observed in the field data. If the usage patterns were adjusted, the hybrids could become cost effective.

Ramroth, L. A.; Gonder, J.; Brooker, A.

2012-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle phev integrated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Plug-In Hybrid Electric Vehicle Value Proposition Study: Phase 1, Task 2: Select Value Propositions/Business Model for Further Study  

DOE Green Energy (OSTI)

The Plug-In Hybrid Electric Vehicle (PHEV) Value Propositions Workshop held in Washington, D.C. in December 2007 served as the Task 1 Milestone for this study. Feedback from all five Workshop breakout sessions has been documented in a Workshop Summary Report, which can be found at www.sentech.org/phev. In this report, the project team compiled and presented a comprehensive list of potential value propositions that would later serve as a 'grab bag' of business model components in Task 2. After convening with the Guidance and Evaluation Committee and other PHEV stakeholders during the Workshop, several improvements to the technical approach were identified and incorporated into the project plan to present a more realistic and accurate case study and evaluation. The assumptions and modifications that will have the greatest impact on the case study selection process in Task 2 are described in more detail in this deliverable. The objective of Task 2 is to identify the combination of value propositions that is believed to be achievable by 2030 and collectively hold promise for a sustainable PHEV market by 2030. This deliverable outlines what the project team (with input from the Committee) has defined as its primary scenario to be tested in depth for the remainder of Phase 1. Plans for the second and third highest priority/probability business scenarios are also described in this deliverable as proposed follow up case studies in Phase 2. As part of each case study description, the proposed utility system (or subsystem), PHEV market segment, and facilities/buildings are defined.

Sikes, Karen R [ORNL; Markel, Lawrence C [ORNL; Hadley, Stanton W [ORNL; Hinds, Shaun [Sentech, Inc.

2008-04-01T23:59:59.000Z

402

Advanced Integrated Traction System  

SciTech Connect

The United States Department of Energy elaborates the compelling need for a commercialized competitively priced electric traction drive system to proliferate the acceptance of HEVs, PHEVs, and FCVs in the market. The desired end result is a technically and commercially verified integrated ETS (Electric Traction System) product design that can be manufactured and distributed through a broad network of competitive suppliers to all auto manufacturers. The objectives of this FCVT program are to develop advanced technologies for an integrated ETS capable of 55kW peak power for 18 seconds and 30kW of continuous power. Additionally, to accommodate a variety of automotive platforms the ETS design should be scalable to 120kW peak power for 18 seconds and 65kW of continuous power. The ETS (exclusive of the DC/DC Converter) is to cost no more than $660 (55kW at $12/kW) to produce in quantities of 100,000 units per year, should have a total weight less than 46kg, and have a volume less than 16 liters. The cost target for the optional Bi-Directional DC/DC Converter is $375. The goal is to achieve these targets with the use of engine coolant at a nominal temperature of 105C. The system efficiency should exceed 90% at 20% of rated torque over 10% to 100% of maximum speed. The nominal operating system voltage is to be 325V, with consideration for higher voltages. This project investigated a wide range of technologies, including ETS topologies, components, and interconnects. Each technology and its validity for automotive use were verified and then these technologies were integrated into a high temperature ETS design that would support a wide variety of applications (fuel cell, hybrids, electrics, and plug-ins). This ETS met all the DOE 2010 objectives of cost, weight, volume and efficiency, and the specific power and power density 2015 objectives. Additionally a bi-directional converter was developed that provides charging and electric power take-off which is the first step towards enabling a smart-grid application. GM under this work assessed 29 technologies; investigated 36 configurations/types power electronics and electric machines, filed 41 invention disclosures; and ensured technology compatibility with vehicle production. Besides the development of a high temperature ETS the development of industrial suppliers took place because of this project. Suppliers of industrial power electronic components are numerous, but there are few that have traction drive knowledge. This makes it difficult to achieve component reliability, durability, and cost requirements necessary of high volume automotive production. The commercialization of electric traction systems for automotive industry requires a strong diverse supplier base. Developing this supplier base is dependent on a close working relationship between the OEM and supplier so that appropriate component requirements can be developed. GM has worked closely with suppliers to develop components for electric traction systems. Components that have been the focus of this project are power modules, capacitors, heavy copper boards, current sensors, and gate drive and controller chip sets. Working with suppliers, detailed component specifications have been developed. Current, voltage, and operation environment during the vehicle drive cycle were evaluated to develop higher resolution/accurate component specifications.

Greg Smith; Charles Gough

2011-08-31T23:59:59.000Z

403

Environmental Assessment of Plug-In Hybrid Electric Vehicles, Volume 1: Nationwide Greenhouse Gas Emissions  

Science Conference Proceedings (OSTI)

How would air quality and greenhouse gas emissions be affected if significant numbers of Americans drove cars that were fueled by the power grid? A recently completed assessment conducted by the Electric Power Research Institute and the Natural Resources Defense Council made a detailed study of the question looking at a variety of scenarios involving the U.S. fleet of power generation and its fleet of light-duty and medium-duty cars and trucks.The study focused on plug-in hybrid electric vehicles (PHEVs)...

2007-07-23T23:59:59.000Z

404

Vehicle Technologies Office: Vehicle Technologies Office Recognizes  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Technologies Vehicle Technologies Office Recognizes Outstanding Researchers to someone by E-mail Share Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Facebook Tweet about Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Twitter Bookmark Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Google Bookmark Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Delicious Rank Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Digg Find More places to share Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on AddThis.com...

405

Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Amgad Elgowainy and Michael Wang Center for Transportation Research Argonne National Laboratory LDV Workshop July26, 2010 2 2 2 Team Members 2  ANL's Energy Systems (ES) Division  Michael Wang (team leader)  Dan Santini  Anant Vyas  Amgad Elgowainy  Jeongwoo Han  Aymeric Rousseau  ANL's Decision and Information Sciences (DIS) Division:  Guenter Conzelmann  Leslie Poch  Vladimir Koritarov  Matt Mahalik  Thomas Veselka  Audun Botterud  Jianhui Wang  Jason Wang 3 3 3 Scope of Argonne's PHEV WTW Analysis: Vehicle Powertrain Systems and Fuel Pathways 3  Vehicle powertrain systems:  Conventional international combustion engine vehicles (ICEVs)

406

Electric vehicles  

SciTech Connect

Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

Not Available

1990-03-01T23:59:59.000Z

407

Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Electric Vehicles A neighborhood electric vehicle (NEV) is 4-wheeled vehicle, larger than a golf cart but smaller than most light-duty passenger vehicles. NEVs are...

408

Energy Basics: Propane Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

gasoline vehicles. Dedicated propane vehicles are designed to run only on propane; bi-fuel propane vehicles have two separate fueling systems that enable the vehicle to use...

409

Flex-fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles Stations that Sell E85 (Alternative Fuels and Advanced Vehicles Data Center AFDC) Flexible Fuel Vehicle (FFV) Cost Calculator (compare costs for operating your vehicle...

410

Electric Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Electricity can be used as a transportation fuel to power battery electric vehicles (EVs). EVs store electricity in an energy storage device, such as a battery.

411

Advanced Vehicle Testing Activity: Neighborhood Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Procedures to someone by E-mail Share Advanced Vehicle Testing Activity: Neighborhood Electric Vehicle Specifications and Test Procedures on Facebook Tweet about Advanced Vehicle...

412

Advanced Vehicle Testing Activity - Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Electric Vehicles What's New 2013 BRP Commander Electric (PDF 195KB) A Neighborhood Electric Vehicle (NEV) is technically defined as a Low Speed Vehicle (LSV)...

413

Advanced Vehicle Testing Activity: Alternative Fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative Fuel Vehicles SuperShuttle CNG Van Alternative fuel vehicles (AFVs) are vehicles designed to operate on alternative fuels such as compressed and liquefied natural gas,...

414

Advanced Vehicle Testing Activity: Neighborhood Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects to someone by E-mail Share Advanced Vehicle Testing Activity: Neighborhood Electric Vehicle Special Projects on Facebook Tweet about Advanced Vehicle Testing...

415

Advanced Vehicle Testing Activity - Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

NEVAmerica Baseline Performance Testing 2010 Electric Vehicles International Neighborhood Electric Vehicle 2010 Electric Vehicles International E-Mega 2009 NEVAmerica Baseline...

416

Vehicle Technologies Office: Hybrid and Vehicle Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid and Vehicle Systems Hybrid and vehicle systems research provides an overarching vehicle systems perspective to the technology research and development (R&D) activities of...

417

Energy Basics: Fuel Cell Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

418

Energy Basics: Flexible Fuel Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

419

Energy Basics: Hybrid Electric Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

420

Energy Basics: Natural Gas Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

Note: This page contains sample records for the topic "vehicle phev integrated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Diesel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles Vehicles Audi A3 Diesel vehicles may be making a comeback. Diesel engines are more powerful and fuel-efficient than similar-sized gasoline engines (about 30-35% more fuel efficient). Plus, today's diesel vehicles are much improved over diesels of the past. Better Performance Improved fuel injection and electronic engine control technologies have Increased power Improved acceleration Increased efficiency New engine designs, along with noise- and vibration-damping technologies, have made them quieter and smoother. Cold-weather starting has been improved also. Cleaner Mercedes ML320 BlueTEC Today's diesels must meet the same emissions standards as gasoline vehicles. Advances in engine technologies, ultra-low sulfur diesel fuel, and improved exhaust treatment have made this possible.

422

DOE Announces up to $29.3 Million in Projects for Research, Developmen...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

manufacturing processes to increase performance and decrease cost of plug-in hybrid electric vehicles (PHEV) batteries. PHEVs are hybrid vehicles that can be driven in...

423

Vehicle Technologies Office: Key Activities in Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Key Activities in Key Activities in Vehicles to someone by E-mail Share Vehicle Technologies Office: Key Activities in Vehicles on Facebook Tweet about Vehicle Technologies Office: Key Activities in Vehicles on Twitter Bookmark Vehicle Technologies Office: Key Activities in Vehicles on Google Bookmark Vehicle Technologies Office: Key Activities in Vehicles on Delicious Rank Vehicle Technologies Office: Key Activities in Vehicles on Digg Find More places to share Vehicle Technologies Office: Key Activities in Vehicles on AddThis.com... Key Activities Mission, Vision, & Goals Plans, Implementation, & Results Organization & Contacts National Laboratories Budget Partnerships Key Activities in Vehicles We conduct work in four key areas to develop and deploy vehicle technologies that reduce the use of petroleum while maintaining or

424

VEHICLE SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 of 5 Page 1 of 5 VEHICLE SPECIFICATIONS 1 Vehicle Features Base Vehicle: 2011 Nissan Leaf VIN: JN1AZ0CP5BT000356 Class: Mid-size Seatbelt Positions: 5 Type: EV Motor Type: Three-Phase, Four-Pole Permanent Magnet AC Synchronous Max. Power/Torque: 80 kW/280 Nm Max. Motor Speed: 10,390 rpm Cooling: Active - Liquid cooled Battery Manufacturer: Automotive Energy Supply Corporation Type: Lithium-ion - Laminate type Cathode/Anode Material: LiMn 2 O 4 with LiNiO 2 /Graphite Pack Location: Under center of vehicle Number of Cells: 192 Cell Configuration: 2 parallel, 96 series Nominal Cell Voltage: 3.8 V Nominal System Voltage: 364.8 V Rated Pack Capacity: 66.2 Ah Rated Pack Energy: 24 kWh Max. Cell Charge Voltage 2 : 4.2 V Min. Cell Discharge Voltage 2 : 2.5 V

425

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

E27C177982 Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 105 kW Battery: NiMH Seatbelt Positions: Five Payload: 981 lbs Features: Regenerative braking Traction...

426

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

E87C172351 Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 105 kW Battery: NiMH Seatbelt Positions: Five Payload: 981 lbs Features: Regenerative braking Traction...

427

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

Z07S838122 Vehicle Specifications Engine: 2.4 L 4 cylinder Electric Motor: 14.5 kW Battery: NiMH Seatbelt Positions: Five Payload: 1,244 lbs Features: Regenerative braking wABS 4...

428

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

2AR194699 Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 60 kW Battery: NiMH Seatbelt Positions: Five Payload: 850 lbs Features: Regenerative braking Traction...

429

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

2WD VIN 1FMYU95H75KC45881 Vehicle Specifications Engine: 2.3 L 4-cylinder Electric Motor: 70 kW Battery: NiMH Seatbelt Positions: Five Features: Four wheel drive Regenerative...

430

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

4AR144757 Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 60 kW Battery: NiMH Seatbelt Positions: Five Payload: 850 lbs Features: Regenerative braking Traction...

431

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

Z37S813344 Vehicle Specifications Engine: 2.4 L 4 cylinder Electric Motor: 14.5 kW Battery: NiMH Seatbelt Positions: Five Payload: 1,244 lbs Features: Regenerative braking wABS 4...

432

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

4WD VIN 1FMCU96H15KE18237 Vehicle Specifications Engine: 2.4 L 4-cylinder Electric Motor: 70 kW Battery: NiMH Seatbelt Positions: Five Features: Four wheel drive Regenerative...

433

Robotic vehicle  

DOE Patents (OSTI)

A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

Box, W.D.

1997-02-11T23:59:59.000Z

434

VEHICLE SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

SPECIFICATIONS 1 Vehicle VIN:19XFB5F57CE002590 Class: Compact Seatbelt Positions: 5 Type: Sedan CARB 2 : AT-PZEV EPA CityHwyCombined 3 : 273832 MPGe Tires Manufacturer:...

435

Strategy for the Integration of Hydrogen as a Vehicle Fuel into the Existing Natural Gas Vehicle Fueling Infrastructure of the Interstate Clean Transportation Corridor Project: 22 April 2004--31 August 2005  

DOE Green Energy (OSTI)

Evaluates opportunities to integrate hydrogen into the fueling stations of the Interstate Clean Transportation Corridor--an existing network of LNG fueling stations in California and Nevada.

Gladstein, Neandross and Associates

2005-09-01T23:59:59.000Z

436

Electric Vehicle Supply Equipment (EVSE) Test Report: Voltec...  

NLE Websites -- All DOE Office Websites (Extended Search)

VEhICLE TEChNOLOgIES pROgRAm Electric Vehicle Supply Equipment (EVSE) Test Report: Voltec 240V EVSE Features Integrated Flashlight 25ft of coiled cable Auto-reset EVSE...

437

Modeling the Impacts of Electricity Tarrifs on PHEV Charging, Costs, and Emissions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

R&M Project 2A: R&M Project 2A: Evaluating the Effects of Managing Controllable Demand and Distributed Energy Resources Locally on System Performance and Costs Tim Mount, Eilyan Bitar and Ray Zimmerman Cornell University Alberto Lamadrid Lehigh University CERTS Review, Cornell, August 6 th - 7 th , 2013 An NSF I/UCRC PART I: Storage (Mount) PART II: Ramping* (Lamadrid) PART III: Robust Optimization* (Bitar) *(Note: This is a new part of the project that began on 3/30/13) 2 OUTLINE OF THE PRESENTATION An NSF I/UCRC PART I: Storage Wooyoung Jeon Hao Lu Jung Youn Mo 3 An NSF I/UCRC Context of the Research: An Integrated Multi-Scale Framework 4 SuperOPF  Costs PEV charger capacities  Commuting Patterns  Nodal Capabilities

438

Economic Assessment of Electric-Drive Vehicle Operation in California and the United States  

E-Print Network (OSTI)

sense but lower costs per kilowatt-hour (kWh) when expressedthat battery costs below about $500US per kWh can lead toif PHEV battery costs could reach $200US per kWh, then PHEVs

Lidicker, Jeffrey R.; Lipman, Timothy E.; Shaheen, Susan A.

2010-01-01T23:59:59.000Z

439

Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles  

E-Print Network (OSTI)

chemistries Simulations of Prius plug-in hybrids have beenSimulation results for Prius PHEVs using various lithium-ionSimulation results for Prius PHEVs using various lithium-ion

Burke, Andrew

2009-01-01T23:59:59.000Z

440

Alternative Vehicle Basics  

Energy.gov (U.S. Department of Energy (DOE))

There are a number of alternative and advanced vehiclesor vehicles that run on alternative fuels. Learn more about the following types of vehicles:

Note: This page contains sample records for the topic "vehicle phev integrated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Advanced Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban...

442

Vehicles | Open Energy Information  

Open Energy Info (EERE)

Vehicles Jump to: navigation, search TODO: Add description Related Links List of Companies in Vehicles Sector List of Vehicles Incentives Retrieved from "http:en.openei.orgw...

443

Definition: Electric Vehicle Charging Station | Open Energy Information  

Open Energy Info (EERE)

Vehicle Charging Station Vehicle Charging Station Jump to: navigation, search Dictionary.png Electric Vehicle Charging Station An electric vehicle charging station that uses communications technology to enable it to intelligently integrate two-way power flow enabling electric vehicle batteries to become a useful utility asset.[1] View on Wikipedia Wikipedia Definition An electric vehicle charging station, also called EV charging station, electric recharging point, charging point and EVSE (Electric Vehicle Supply Equipment), is an element in an infrastructure that supplies electric energy for the recharging of plug-in electric vehicles, including all-electric cars, neighborhood electric vehicles and plug-in hybrids. As plug-in hybrid electric vehicles and battery electric vehicle ownership is

444

Anticipating plug-in hybrid vehicle energy impacts in California: Constructing consumer-informed recharge profiles  

E-Print Network (OSTI)

energy impacts that can be anticipated with signi?cant PHEV market penetration if we add information

Axsen, Jonn; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

445

Vehicles News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

news Office of Energy Efficiency & news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies http://energy.gov/eere/articles/energy-department-announces-45-million-advance-next-generation Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies

446

Vehicle Technologies Office: Modeling, Testing and Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling, Testing and Analysis Modeling, Testing and Analysis The Vehicle Technologies Office's robust portfolio is supported by modeling, testing, and analysis. This work complements the research on batteries, power electronics, and materials, helping researchers integrate these components and ensure the whole vehicle meets consumer and commercial needs. Modeling allows researchers to build "virtual vehicles" that simulate fuel economy, emissions and performance of a potential vehicle. The Office has supported the development of several software-based analytic tools that researchers can use or license. Integration and Validation allows researchers to test physical component and subsystem prototypes as if they are in a real vehicle. Laboratory and Fleet Testing provides data on PEVs through both dynamometer and on-the-road testing. Researchers use the data to benchmark current vehicles, as well as validate the accuracy of software models.

447

Environmental Assessment of Plug-In Hybrid Electric Vehicles, Volume 2: United States Air Quality Analysis Based on AEO-2006 Assumptions for 2030  

Science Conference Proceedings (OSTI)

How would air quality and greenhouse gas emissions be affected if significant numbers of Americans drove cars that were fueled by the power grid? A recently completed assessment conducted by the Electric Power Research Institute and the Natural Resources Defense Council made a detailed study of the question looking at a variety of scenarios involving the U.S. fleet of power generation and its fleet of light-duty and medium-duty cars and trucks. The study focused on plug-in hybrid electric vehicles (PHEVs...

2007-07-23T23:59:59.000Z

448

Advanced Vehicle Testing Activity: Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Electric Vehicles Ford Think Neighbor A neighborhood electric vehicle (NEV) is a four-wheeled vehicle that has a top speed of 20-25 miles per hour (mph). It is larger...

449

VEHICLE DETAILS, BATTERY DESCRIPTION AND SPECIFICATIONS Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 VEHICLE DETAILS, BATTERY DESCRIPTION AND SPECIFICATIONS Vehicle Details Base Vehicle: 2011 Nissan Leaf VIN: JN1AZ0CP5BT000356 Propulsion System: BEV Electric Machine: 80 kW...

450

Plug-In Hybrid Electric Vehicles' Potential for Petroleum Use...  

NLE Websites -- All DOE Office Websites (Extended Search)

battery and ICE energy use under several different driving patterns, varying in average speed and aggressiveness of driving. A DISCUSSION OF HEV, PHEV, and EV TYPES Parallel...

451

AZD Power Electronics for Hybrid Vehicles June 13, 2011  

Science Conference Proceedings (OSTI)

... Agenda >Azure Dynamics Background >P/HEV and EV Products ... Page 3. Who is Azure Dynamics? >Azure Dynamics is an industry leader in ...

2011-11-03T23:59:59.000Z

452

Impact of the 3Cs of Batteries on PHEV Value Proposition: Cost, Calendar Life, and Cycle Life (Presentation)  

DOE Green Energy (OSTI)

Battery cost, calendar life, and cycle life are three important challenges for those commercializing plug-in hybrid electric vehicles; battery life is sensitive to temperature and solar loading.

Pesaran, A.; Smith, K.; Markel, T.

2009-06-01T23:59:59.000Z

453

?Just-in-Time? Battery Charge Depletion Control for PHEVs and E-REVs for Maximum Battery Life  

SciTech Connect

Conventional methods of vehicle operation for Plug-in Hybrid Vehicles first discharge the battery to a minimum State of Charge (SOC) before switching to charge sustaining operation. This is very demanding on the battery, maximizing the number of trips ending with a depleted battery and maximizing the distance driven on a depleted battery over the vehicle s life. Several methods have been proposed to reduce the number of trips ending with a deeply discharged battery and also eliminate the need for extended driving on a depleted battery. An optimum SOC can be maintained for long battery life before discharging the battery so that the vehicle reaches an electric plug-in destination just as the battery reaches the minimum operating SOC. These Just-in-Time methods provide maximum effective battery life while getting virtually the same electricity from the grid.

DeVault, Robert C [ORNL

2009-01-01T23:59:59.000Z

454

Robotic vehicle  

DOE Patents (OSTI)

A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 11 figures.

Box, W.D.

1994-03-15T23:59:59.000Z

455

Robotic vehicle  

DOE Patents (OSTI)

A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 14 figs.

Box, W.D.

1996-03-12T23:59:59.000Z

456

Advanced Vehicle Testing Activity - Urban Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

are designed to carry two or four passengers. Click here for more information About Urban Electric Vehicles (PDF 128KB) Vehicle Testing Reports Ford THINK City Ford Thnk...

457

Vehicle Technologies Office: Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

that feature one or more advanced technologies, including: Plug-in hybrid electric vehicle technologies Extended range electric vehicle technologies Hybrid electric, pure...

458

Alternative Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

following types of vehicles: Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane Vehicles Addthis Related Articles...

459

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network (OSTI)

42] Hakim, D. (2005) Hybrid-Car Tinkerers Scoff at No-Plug-J. (1969) and a Commuter Car with Hybrid Drive. PopularCars Initiative (2007) Photo: Technical Photos of Plug-In Hybrids and

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

460

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network (OSTI)

news.cfm? newsid=8142 [30] Toyota Motor Sales (2006) Photo: Toyota Prius Interior, Electronic MultifunctionYork: 2 Apr. p. C 1 [43] Toyota Motor Corporation (2007)

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle phev integrated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Development and design of a Z-Source Inverter for Electric Vehicle Applications Omar ELLABBAN  

E-Print Network (OSTI)

vehicle (HEV), where the high-performance ZSI used to integrate both the fuel cell and the supercapacitor

Glineur, François

462

Modelling and control of underwater inspection vehicle for aquaculture sites.  

E-Print Network (OSTI)

?? Underwater vehicles such as AUVs and ROVs with hovering capabilities is a promising method for inspection of net integrity in large scale, sea based, (more)

Hval, Mats Nvik

2012-01-01T23:59:59.000Z

463

Alternative Fuels Data Center: Vehicle-to-Grid Energy Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle-to-Grid Energy Vehicle-to-Grid Energy Credit to someone by E-mail Share Alternative Fuels Data Center: Vehicle-to-Grid Energy Credit on Facebook Tweet about Alternative Fuels Data Center: Vehicle-to-Grid Energy Credit on Twitter Bookmark Alternative Fuels Data Center: Vehicle-to-Grid Energy Credit on Google Bookmark Alternative Fuels Data Center: Vehicle-to-Grid Energy Credit on Delicious Rank Alternative Fuels Data Center: Vehicle-to-Grid Energy Credit on Digg Find More places to share Alternative Fuels Data Center: Vehicle-to-Grid Energy Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vehicle-to-Grid Energy Credit Retail electricity customers with at least one grid-integrated electric vehicle (EV) may qualify to receive kilowatt-hour credits for energy

464

Predicting the navigation performance of underwater vehicles  

Science Conference Proceedings (OSTI)

In this paper we present a general framework for predicting the positioning uncertainty of underwater vehicles. We apply this framework to common examples from marine robotics: standalone long baseline (LBL) positioning and integrated LBL reference and ...

Brian Bingham

2009-10-01T23:59:59.000Z

465

Powerful, Efficient Electric Vehicle Chargers: Low-Cost, Highly-Integrated Silicon Carbide (SiC) Multichip Power Modules (MCPMs) for Plug-In Hybrid Electric  

SciTech Connect

ADEPT Project: Currently, charging the battery of an electric vehicle (EV) is a time-consuming process because chargers can only draw about as much power from the grid as a hair dryer. APEI is developing an EV charger that can draw as much power as a clothes dryer, which would drastically speed up charging time. APEI's charger uses silicon carbide (SiC)-based power transistors. These transistors control the electrical energy flowing through the charger's circuits more effectively and efficiently than traditional transistors made of straight silicon. The SiC-based transistors also require less cooling, enabling APEI to create EV chargers that are 10 times smaller than existing chargers.

None

2010-09-14T23:59:59.000Z

466

Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles  

E-Print Network (OSTI)

Gelder E. Plug-in Hybrid-Electric Vehicle Powertrain DesignIntegration for Hybrid Electric Vehicles, IEEE Transactionsmodels [1-3] of hybrid-electric vehicles using Advisor have

Burke, Andy; Zhao, Hengbing

2010-01-01T23:59:59.000Z

467

Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation  

NLE Websites -- All DOE Office Websites (Extended Search)

Apps for Vehicles Apps for Vehicles Challenge Spurs Innovation in Vehicle Data to someone by E-mail Share Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Facebook Tweet about Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Twitter Bookmark Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Google Bookmark Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Delicious Rank Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Digg Find More places to share Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on AddThis.com... Apps for Vehicles Challenge Spurs Innovation in Vehicle Data

468

PHEV and Grid Interfacing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accelerated Testing and Modeling of Accelerated Testing and Modeling of Utility-Scale Power Electronic Devices Annual DOE Peer Review Meeting - 2008 DOE Power Electronics Research Program Washington Fairmont Hotel Washington, DC 30 September 2008 A. A. Wereszczak* and B. Ozpineci** * Materials Science and Technology Division ** Energy and Transportation Science Division Oak Ridge National Laboratory (ORNL) Oak Ridge, TN, 37831 Research sponsored by the Electric Delivery Technologies Program, DOE Office of Electricity Delivery and Energy Reliability, under contract DE-AC05-00OR22725 with UT-Battelle, LLC. Funded by the Power Electronics Program of the U.S. Department Of Energy (DOE/PE) through Oak Ridge National Laboratories 2 Managed by UT-Battelle for the U.S. Department of Energy System Reliability

469

PHEV and Grid Interfacing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Materials and Processes for High Materials and Processes for High Temperature Packaging of Power Electronic Devices G. Muralidharan, A. Kercher, M. L. Santella, R. Battiste Materials Science and Technology Division Oak Ridge National Laboratory, Oak Ridge, TN L. Seiber, and Burak Ozpineci Engineering Science and Technology Division Oak Ridge National Laboratory Sept. 30, 2008 Energy Storage and Power Electronics Peer Review 2 Managed by UT-Battelle for the U.S. Department of Energy Power Electronics research needs are necessary at many levels System Reliability Next Generation Equipment Power Electronic Module Development Applied Materials Research This project addresses these two levels 3 Managed by UT-Battelle for the U.S. Department of Energy Purpose of Work  Realization of the future electric grid depends on the availability of

470

PHEV and Grid Interfacing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

i or V) i or V Time Constant Amplitude & Dwell i or V Time Constant Dwell & Constant Rate of Amplitude Increase i or V Time Constant Amplitude & Constant Rate of Dwell...

471

PHEV and Grid Interfacing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

changes that degrade properties of solder joints (die attach materials) and wire bonds - Decrease lifetime and reliability Reliability of high temperature packages...

472

Voltage Vehicles | Open Energy Information  

Open Energy Info (EERE)

Sector Vehicles Product Voltage Vehicles is a nascent, full-service alternative fuel vehicle distributor specializing in the full spectrum of electric vehicles (EV) and...

473

Vehicle barrier  

DOE Patents (OSTI)

A vehicle security barrier which can be conveniently placed across a gate opening as well as readily removed from the gate opening to allow for easy passage. The security barrier includes a barrier gate in the form of a cable/gate member in combination with laterally attached pipe sections fixed by way of the cable to the gate member and lateral, security fixed vertical pipe posts. The security barrier of the present invention provides for the use of cable restraints across gate openings to provide necessary security while at the same time allowing for quick opening and closing of the gate areas without compromising security.

Hirsh, Robert A. (Bethel Park, PA)

1991-01-01T23:59:59.000Z

474

Semiotics and Advanced Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Why it Matters to Consumers  

E-Print Network (OSTI)

Future Toyota Hybrids: Prius Times Three. Available from:S. (2003) Toyota's Prius Hybrid Named Motor Trend's 'Car ofYork. MacCurdy (2006) PHEV Prius Test Program by Sacramento

Heffner, Reid R.

2007-01-01T23:59:59.000Z

475

Calendar and PHEV Cycle Life Aging of High-Energy, Lithium-Ion Cells Containing Blended Spinel and Layered-Oxide Cathodes  

DOE Green Energy (OSTI)

One hundred seven commercially available, off-the-shelf, 1.2-Ah cells were tested for calendar life and CS cycle- and CD cycle-life using the new USABC PHEV Battery Test Manual. Here, the effects of temperature on calendar life, on CS cycle life, and on CD cycle life; the effects of SOC on calendar life and on CS cycle life; and the effects of rest time on CD cycle life were investigated. The results indicated that the test procedures caused performance decline in the cells in an expected manner, calendar < CS cycling < CD cycling. In some cases, the kinetic law changed with test type, from linear-with-time to about t2. Additionally, temperature was found to stress the cells more than SOC, causing increased changes in performance with increasing temperature.

Jeffrey R. Belt; I. Bloom

2011-12-01T23:59:59.000Z

476

Calendar and PHEV Cycle Life Aging of High-Energy, Lithium-Ion Cells Containing Blended Spinel and Layered Oxide Cathodes  

DOE Green Energy (OSTI)

One hundred seven commercially available, off-the-shelf, 1.2-Ah cells were tested for calendar life and CS cycle- and CD cycle-life using the new USABC PHEV Battery Test Manual. Here, the effects of temperature on calendar life, on CS cycle life, and on CD cycle life; the effects of SOC on calendar life and on CS cycle life; and the effects of rest time on CD cycle life were investigated. The results indicated that the test procedures caused performance decline in the cells in an expected manner, calendar < CS cycling < CD cycling. In some cases, the kinetic law changed with test type, from linear-with-time to about t2. Additionally, temperature was found to stress the cells more than SOC, causing increased changes in performance with increasing temperature.

J. Belt

2011-12-01T23:59:59.000Z

477

Vehicle Technologies Office: Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Glossary Glossary A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z A Adsorption: The adhesion of the molecules of gases, dissolved substances, or liquids in more or less concentrated form to the surface of solids or liquids with which they are in contact. Commercial adsorbent materials have enormous internal surfaces. AEMD (Automotive Electric Drive Motor): A U.S. Department of Energy program to develop low-cost traction drive motors for automotive applications. Aerosol: A cloud consisting of particles dispersed in a gas or gases. AIPM (Automotive Integrated Power Module) A U.S. Department of Energy program to integrate the power devices, control electronics, and thermal management of a vehicle into a single low-cost package that will meet all requirements for automotive motor control applications.

478

continued on p. 2 Published by Oak Ridge National Laboratory No. 2 2010  

E-Print Network (OSTI)

of each vehicle, helping meet DOE goals. In a hybrid, plug-in hybrid, and all-elec- tric car, multiple and Integration Center, drove a plug-in hybrid electric vehicle (PHEV) between ORNL and the most energy in NewYork City, ECOSaver IV hybrid vehicles manufac- tured by DesignLine (Charlotte, N.C.) and equipped

479

Proceedings of the Neighborhood Electric Vehicle Workshop  

E-Print Network (OSTI)

Electric Vehicle Workshop Proceedings Vehicle Safety DesignElectric Vehicle Workshop Proceedings Federal Motor Vehicle SafetyElectric Vehicle Workshop Proceedings FEDERAL MOTOR VEHICLE SAFETY

Lipman, Timothy

1994-01-01T23:59:59.000Z

480

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

Traction Battery for the ETX-II Vehicle, EGG-EP-9688, IdahoElectric Vehicle Powertrain (ETX-II) Performance: VehicleDevelopment Program - ETX-II, Phase II Technical Report, DOE

Delucchi, Mark

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle phev integrated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

1-5): Electric/Hybrid Vehicles: An Emerging Global Industry,1-5): Electric/Hybrid Vehicles: An Emerging Global Industry,1-5): Electric/Hybrid Vehicles: An Emerging Global Industry,

Delucchi, Mark

1992-01-01T23:59:59.000Z

482

Hybrid Electric Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Association Conference Transportation Association Conference Vancouver, Canada December 2005 Hybrid Electric Vehicle Testing Jim Francfort U.S. Department of Energy - FreedomCAR & Vehicle Technologies Program, Advanced Vehicle Testing Activity INL/CON-05-00964 Presentation Outline * Background & goals * Testing partners * Hybrid electric vehicle testing - Baseline performance testing (new HEV models) - 1.5 million miles of HEV fleet testing (160k miles per vehicle in 36 months) - End-of-life HEV testing (rerun fuel economy & conduct battery testing @ 160k miles per vehicle) - Benchmark data: vehicle & battery performance, fuel economy, maintenance & repairs, & life-cycle costs * WWW information location Background * Advanced Vehicle Testing Activity (AVTA) - part of the

483

Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NREL. National Clean Fleets partners are investing in hybrid vehicles to reduce their oil use, vehicle emissions and fuel costs. What's Your PEV Readiness Score? PEV readiness...

484

Vehicles and Fuels  

Energy.gov (U.S. Department of Energy (DOE))

Learn more about exciting technologies and ongoing research in alternative and advanced vehiclesor vehicles that run on fuels other than traditional petroleum.

485

Vehicle Technologies Office: Features  

NLE Websites -- All DOE Office Websites (Extended Search)

Event June 2013 The eGallon Tool Advances Deployment of Electric Vehicles May 2013 Vehicle Technologies Office Recognizes Outstanding Researchers December 2012 Apps for...

486

Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

Volt Vehicle Summary Report: April - June 2013 (PDF 1.3MB) EV Project Electric Vehicle Charging Infrastructure Summary Report: April - June 2013 (PDF 11MB) Residential...

487

Vehicles | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

The U.S. Department of Energy (DOE) supports the development and deployment of advanced vehicle technologies, including advances in electric vehicles, engine efficiency, and...

488

Vehicle Technologies Office: Vehicle Technologies Office Organization...  

NLE Websites -- All DOE Office Websites (Extended Search)

Organization and Contacts Organization Chart for the Vehicle Technologies Program Fuel Technologies and Deployment, Technology Managers Advanced Combustion Engines, Technology...

489

Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Maximizing Alternative Maximizing Alternative Fuel Vehicle Efficiency to someone by E-mail Share Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Facebook Tweet about Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Twitter Bookmark Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Google Bookmark Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Delicious Rank Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Digg Find More places to share Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines

490

Advanced Vehicle Testing Activity: Light-Duty Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Light-Duty Light-Duty Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Light-Duty Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Light-Duty Vehicles on Twitter Bookmark Advanced Vehicle Testing Activity: Light-Duty Vehicles on Google Bookmark Advanced Vehicle Testing Activity: Light-Duty Vehicles on Delicious Rank Advanced Vehicle Testing Activity: Light-Duty Vehicles on Digg Find More places to share Advanced Vehicle Testing Activity: Light-Duty Vehicles on AddThis.com... Home Overview Light-Duty Vehicles Alternative Fuel Vehicles Plug-in Hybrid Electric Vehicles Hybrid Electric Vehicles Micro Hybrid Vehicles ARRA Vehicle and Infrastructure Projects EVSE Testing Energy Storage Testing Hydrogen Internal Combustion Engine Vehicles Other ICE

491

Vehicle Technologies Office: Fact #257: March 3, 2003 Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

7: March 3, 2003 Vehicle Occupancy by Type of Vehicle to someone by E-mail Share Vehicle Technologies Office: Fact 257: March 3, 2003 Vehicle Occupancy by Type of Vehicle on...

492

Vehicle Technologies Office: Fact #253: February 3, 2003 Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

3: February 3, 2003 Vehicle Age by Type of Vehicle to someone by E-mail Share Vehicle Technologies Office: Fact 253: February 3, 2003 Vehicle Age by Type of Vehicle on Facebook...