National Library of Energy BETA

Sample records for vehicle phev integrated

  1. Plug-in Hybrid Electric Vehicle (PHEV) Integrated Test Plan and Evaluation Program - DRAFT 3-29-07

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1-12335 U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity Plug-in Hybrid Electric Vehicle (PHEV) Integrated Test Plan and Evaluation Program DRAFT 3-29-07 Donald Karner Roberta Brayer Derek Peterson Mindy Kirkpatrick James Francfort March 2007 The Idaho National Laboratory is a U.S. Department of Energy National Laboratory Operated by Battelle Energy Alliance INL/EXT-01-12335 U.S. Department of Energy FreedomCAR & Vehicle Technologies

  2. Advancing Transportation Through Vehicle Electrification - PHEV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting, June 7-11, 2010 -- Washington D.C. PDF icon vssarravt067bazzi2010p.pdf More Documents & Publications Advancing Transportation Through Vehicle Electrification - PHEV

  3. Advancing Transportation Through Vehicle Electrification - PHEV |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt067_vss_bazzi_2012_o.pdf More Documents & Publications Advancing Transportation Through Vehicle Electrification - PHEV Advancing Plug In Hybrid Technology and Flex Fuel Application on a Chrysler Mini-Van PHEV DOE Funded Project Vehicle Technologies Office Merit Review 2014: Advancing Transportation through Vehicle Electrification - Ram

  4. Advancing Transportation Through Vehicle Electrification - PHEV |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon vssarravt067_bazzi_2010_p.pdf More Documents & Publications Advancing Transportation Through Vehicle Electrification - PHEV

  5. Advancing Transportation Through Vehicle Electrification - PHEV |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt067_vss_bazzi_2011_o.pdf More Documents & Publications Advancing Plug In Hybrid Technology and Flex Fuel Application on a Chrysler Mini-Van PHEV DOE Funded Project

  6. Integration Technology for PHEV-Grid-Connectivity, with Support...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology for PHEV-Grid-Connectivity, with Support for SAE Electrical Standards Integration Technology for PHEV-Grid-Connectivity, with Support for SAE Electrical Standards 2010...

  7. Advancing Transportation through Vehicle Electrification - PHEV

    SciTech Connect (OSTI)

    Bazzi, Abdullah; Barnhart, Steven

    2014-12-31

    FCA US LLC viewed the American Recovery and Reinvestment Act (ARRA) as an historic opportunity to learn about and develop PHEV technologies and create the FCA US LLC engineering center for Electrified Powertrains. The ARRA funding supported FCA US LLC’s light-duty electric drive vehicle and charging infrastructure-testing activities and enabled FCA US LLC to utilize the funding on advancing Plug-in Hybrid Electric Vehicle (PHEV) technologies for production on future programs. FCA US LLC intended to develop the next-generations of electric drive and energy batteries through a properly paced convergence of standards, technology, components and common modules. To support the development of a strong, commercially viable supplier base, FCA US LLC also utilized this opportunity to evaluate various designated component and sub-system suppliers. The original proposal of this project was submitted in May 2009 and selected in August 2009. The project ended in December 2014.

  8. Advancing Transportation Through Vehicle Electrification - PHEV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advancing Transportation Through Vehicle Electrification - ... Office Merit Review 2014: Advancing Transportation through Vehicle Electrification - Ram ...

  9. Advancing Transportation Through Vehicle Electrification- PHEV

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  10. Advancing Transportation Through Vehicle Electrification - PHEV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt067vssbazzi2011o.pdf More Documents & ...

  11. Vehicle Technologies Office Merit Review 2015: PHEV and EV Battery Performance and Cost Assessment

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about PHEV and EV...

  12. Vehicle Technologies Office Merit Review 2015: High Energy Lithium Batteries for PHEV Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Envia at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy lithium batteries for PHEV...

  13. Integrated Vehicle Thermal Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management Integrated Vehicle Thermal Management 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon vss028_thornton_2010_o.pdf More Documents & Publications Motor Thermal Control Thermal Management of PHEV / EV Charging Systems Power Electronic Thermal System Performance and Integration

  14. Thermal Management of PHEV / EV Charging Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of PHEV / EV Charging Systems Thermal Management of PHEV / EV Charging Systems 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ape029_bennion_2010_p.pdf More Documents & Publications Motor Thermal Control Integrated Vehicle Thermal Management Integration Technology for PHEV-Grid-Connectivity, with Support for SAE Electrical Standards

  15. Vehicle Technologies Office Merit Review 2014: Advanced High Energy Li-Ion Cell for PHEV and EV Applications

    Broader source: Energy.gov [DOE]

    Presentation given by 3M at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced high energy Li-ion cell for PHEV...

  16. Autonomous Intelligent Plug-In Hybrid Electric Vehicles (PHEVs)

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  17. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon vss018cesiel2012...

  18. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon vss018cesiel2011...

  19. AVTA: Ford Escape PHEV Advanced Research Vehicle 2010 Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a plug-in hybrid electric Ford Escape Advanced Research Vehicle, an experimental model not currently for sale. The baseline performance testing provides a point of comparison for the other test results. Taken together, these reports give an overall view of how this vehicle functions under extensive testing. This research was conducted by Idaho National Laboratory.

  20. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Activity | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon vss018_cesiel_2012

  1. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Activity | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon vss018_cesiel_2011

  2. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Activity | Department of Energy 0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon vss018_cesiel_2010

  3. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon vss02sell...

  4. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon vss018cesiel2010...

  5. Novel electrolytes and electrolyte additives for PHEV applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    electrolytes and electrolyte additives for PHEV applications Novel electrolytes and electrolyte additives for PHEV applications 2009 DOE Hydrogen Program and Vehicle Technologies ...

  6. USABC LEESS and PHEV Programs | Department of Energy

    Office of Environmental Management (EM)

    USABC LEESS and PHEV Programs USABC LEESS and PHEV Programs 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

  7. AVTA: Plug-in Hybrid Electric Vehicle Specifications and Test...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon DRAFT - Integrated Test Plan and Evaluation Program for Review for Plug-in Hybrid Electric Vehicles (PHEVs) More Documents & Publications AVTA: Hybrid Electric Vehicle ...

  8. Vehicle Technologies Office Merit Review 2014: Advancing Transportation through Vehicle Electrification – Ram 1500 PHEV

    Broader source: Energy.gov [DOE]

    Presentation given by Chrysler LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advancing transportation through...

  9. PHEV Battery Cost Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    10 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon es001_barnett_2010_o.pdf More Documents & Publications PHEV Battery Cost Assessment PHEV and LEESS Battery Cost Assessment PHEV

  10. PHEV Control Strategy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control Strategy PHEV Control Strategy 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington ...

  11. PHEV Engine Control and Energy Management Strategy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PHEV Engine Control and Energy Management Strategy PHEV Engine Control and Energy Management Strategy 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon vss013_chambon_2012_p.pdf More Documents & Publications PHEV Engine Control and Energy Management Strategy PHEV Engine Control and Energy Management Strategy PHEV Engine Cold Start Emissions Management

  12. Tradeoff between Fuel Consumption and Emissions for PHEV's | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy between Fuel Consumption and Emissions for PHEV's Tradeoff between Fuel Consumption and Emissions for PHEV's 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon vss012_shidore_2010_o.pdf More Documents & Publications PHEV Engine Control and Energy Management Strategy PHEV Engine Control and Energy Management Strategy Evaluation of Ethanol Blends for PHEVs using Simulation and

  13. PHEVs Component Requirements and Efficiencies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PHEVs Component Requirements and Efficiencies PHEVs Component Requirements and Efficiencies 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon vss_10_rousseau.pdf More Documents & Publications PHEV Control Strategy Impact of Driving Behavior on PHEV Fuel Consumption for Different Powertrain, Component Sizes and Control Vehicle Technologies Office: 2008 Advanced Vehicle Technology Analysis and

  14. A High-Performance PHEV Battery Pack | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon es002_alamgir _2011_p.pdf More Documents & Publications A High-Performance PHEV Battery Pack A High-Performance PHEV Battery Pack Vehicle Technologies Office Merit Review 2013: A High-Performance PHEV Battery Pack

  15. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  16. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity

    Office of Energy Efficiency and Renewable Energy (EERE)

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  17. Vehicle Technologies Office Merit Review 2013: A High-Performance PHEV Battery Pack

    Broader source: Energy.gov [DOE]

    Presentation given by LG Chem at 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting about a high-performance battery pack the company is researching for plug-in electric vehicles.

  18. PHEV Engine Control and Energy Management Strategy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon vss013_chambon_2011_o.pdf More Documents & Publications PHEV Engine Control and Energy Management Strategy PHEV Engine Control and Energy Management Strategy PHEV Engine Cold Start Emissions Management

  19. USABC HEV and PHEV Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon es003_yoon_2011_p.pdf More Documents & Publications USABC LEESS and PHEV Programs Review of A123s HEV and PHEV USABC Programs USABC HEV and PHEV Programs

  20. USABC HEV and PHEV Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon es003_holman_2010_o.pdf More Documents & Publications Review of A123s HEV and PHEV USABC Programs USABC HEV and PHEV Programs JCS PHEV System Development-USABC

  1. Vehicle Technologies Office Merit Review 2015: Development of a PHEV Battery

    Broader source: Energy.gov [DOE]

    Presentation given by Xerion Advanced Battery Corp. at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of...

  2. Vehicle Technologies Office Merit Review 2014: High Energy Lithium Batteries for PHEV Applications

    Broader source: Energy.gov [DOE]

    Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy lithium batteries...

  3. Vehicle Technologies Office Merit Review 2014: High Energy High Power Battery Exceeding PHEV-40 Requirements

    Broader source: Energy.gov [DOE]

    Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy high power battery...

  4. HEV, PHEV, BEV Test Standard Validation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HEV, PHEV, BEV Test Standard Validation HEV, PHEV, BEV Test Standard Validation 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon vss052_duoba_2011_o.pdf More Documents & Publications HEV, PHEV, EV Test Standard Development and Validation J1634 SAE BEV Test Procedures Argonne Facilitation of PHEV Standard Testing Procedure (SAE J1711)

  5. Advanced PHEV Engine Systems and Emissions Control Modeling and Analysis |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy PHEV Engine Systems and Emissions Control Modeling and Analysis Advanced PHEV Engine Systems and Emissions Control Modeling and Analysis 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon vss041_daw_2011_o.pdf More Documents & Publications PHEV Engine and Aftertreatment Model Development PHEV Engine and Aftertreatment Model Development Advanced LD Engine Systems and Emissions Control Modeling

  6. Geographic Information System for Visualization of PHEV Fleet Data |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Geographic Information System for Visualization of PHEV Fleet Data Geographic Information System for Visualization of PHEV Fleet Data 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon vss029_white_2010_p.pdf More Documents & Publications AVTA … PHEV Demonstrations and Testing Idaho National Laboratory Testing of Advanced Technology Vehicles Vehicle Technologies Office:

  7. Advanced Cathode Material Development for PHEV Lithium Ion Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Cathode Material Development for PHEV Lithium Ion Batteries Vehicle Technologies Office: 2009 Energy Storage R&D Annual Progress...

  8. Fabricate PHEV Cells for Testing & Diagnostics | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fabricate PHEV Cells for Testing & Diagnostics Vehicle Technologies Office Merit Review 2014: Post-Test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory ...

  9. JCS PHEV System Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development JCS PHEV System Development 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon es_06_engstrom

  10. PHEV Market Introduction Workshop Summary Report

    SciTech Connect (OSTI)

    Weber, Adrienne M; Sikes, Karen R

    2009-03-01

    The Plug-In Hybrid Electric Vehicle (PHEV) Market Introduction Study Workshop was attended by approximately forty representatives from various stakeholder organizations. The event took place at the Hotel Helix in Washington, D.C. on December 1-2, 2008. The purpose of this workshop was to follow-up last year s PHEV Value Proposition Study, which showed that indeed, a viable and even thriving market for these vehicles can exist by the year 2030. This workshop aimed to identify immediate action items that need to be undertaken to achieve a successful market introduction and ensuing large market share of PHEVs in the U.S. automotive fleet.

  11. Integrated Charger with Wireless Charging and Boost Function for PHEV and EV Applications

    SciTech Connect (OSTI)

    Chinthavali, Madhu Sudhan; Onar, Omer C; Campbell, Steven L

    2015-01-01

    Integrated charger topologies that have been researched so far with dc-dc converters and the charging functionality have no isolation in the system. Isolation is an important feature that is required for user interface systems that have grid connections and therefore is a major limitation that needs to be addressed along with the integrated functionality. The topology proposed in this paper is a unique and a first of its kind topology that integrates a wireless charging system and the boost converter for the traction drive system. The new topology is also compared with an on-board charger system from a commercial electric vehicle (EV). The ac-dc efficiency of the proposed system is 85.05% and the specific power and power density of the onboard components is ~455 W/kg and ~302 W/ .

  12. The PHEV Charging Infrastructure Planning (PCIP) Problem

    SciTech Connect (OSTI)

    Dashora, Yogesh [University of Texas, Austin; Barnes, J. Wesley [University of Texas, Austin; Pillai, Rekha S [ORNL; Combs, Todd E [ORNL; Hilliard, Michael R [ORNL; Chinthavali, Madhu Sudhan [ORNL

    2010-01-01

    Increasing debates over a gasoline independent future and the reduction of greenhouse gas (GHG) emissions has led to a surge in plug-in hybrid electric vehicles (PHEVs) being developed around the world. The majority of PHEV related research has been directed at improving engine and battery operations, studying future PHEV impacts on the grid, and projecting future PHEV charging infrastructure requirements. Due to the limited all-electric range of PHEVs, a daytime PHEV charging infrastructure will be required for most PHEV daily usage. In this paper, for the first time, we present a mixed integer mathematical programming model to solve the PHEV charging infrastructure planning (PCIP) problem for organizations with thousands of people working within a defined geographic location and parking lots well suited to charging station installations. Our case study, based on the Oak Ridge National Laboratory (ORNL) campus, produced encouraging results, indicates the viability of the modeling approach and substantiates the importance of considering both employee convenience and appropriate grid connections in the PCIP problem.

  13. PHEV and LEESS Battery Cost Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and LEESS Battery Cost Assessment PHEV and LEESS Battery Cost Assessment 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon es001_barnett_2011_o.pdf More Documents & Publications PHEV Battery Cost Assessment Vehicle Technologies Office Merit Review 2015: A 12V Start-Stop Li Polymer Battery Pack PHEV Battery Cost Assessment

  14. Real-World PHEV Fuel Economy Prediction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PHEV Fuel Economy Prediction Real-World PHEV Fuel Economy Prediction 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon vss047_gonder_2011_o.pdf More Documents & Publications Light Duty Plug-in Hybrid Vehicle Systems Analysis Defining Real World Drive Cycles to Support APRF Technology Evaluations Analysis of maximizing the Synergy between PHEVs/EVs and PV

  15. PHEV Engine and Aftertreatment Model Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon vss_06_daw.pdf More Documents & Publications PHEV Engine and Aftertreatment Model Development Advanced PHEV Engine Systems and Emissions Control Modeling and Analysis System Simulations of Hybrid Electric Vehicles with Focus on Emissions

  16. Advanced Vehicle Testing Activity (AVTA) - Vehicle Testing and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications AVTA HEV, NEV, BEV and HICEV Demonstrations and Testing AVTA PHEV Demonstrations and Testing Advanced Vehicle Benchmarking of HEVs and PHEVs

  17. Integration Technology for PHEV-Grid-Connectivity, with Support for SAE Electrical Standards

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  18. PHEV development test platform Utilization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    development test platform Utilization PHEV development test platform Utilization 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon vssp_07_lohsebusch.pdf More Documents & Publications Tradeoff between Fuel Consumption and Emissions for PHEV's Off-Cycle Benchmarking of PHEVs; Wide Range of Temperatures and Aggressive Driving Cycles Evaluation of Ethanol Blends for PHEVs using Simulation and

  19. Impact of Driving Behavior on PHEV Fuel Consumption for Different

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powertrain, Component Sizes and Control | Department of Energy Driving Behavior on PHEV Fuel Consumption for Different Powertrain, Component Sizes and Control Impact of Driving Behavior on PHEV Fuel Consumption for Different Powertrain, Component Sizes and Control 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon vss011_rousseau_2010_o.pdf More Documents & Publications PHEV Control Strategy

  20. Argonne Facilitation of PHEV Standard Testing Procedure (SAE J1711) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Argonne Facilitation of PHEV Standard Testing Procedure (SAE J1711) Argonne Facilitation of PHEV Standard Testing Procedure (SAE J1711) 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon vss_05_duoba.pdf More Documents & Publications SAE Standards Development HEV, PHEV, EV Test Standard Development and Validation Off-Cycle Benchmarking of PHEVs; Wide Range of

  1. Vehicle Technologies Office: Integration, Validation and Testing...

    Broader source: Energy.gov (indexed) [DOE]

    Integration Laboratory to integrate, validate, and test advanced vehicle technologies. ... To integrate and test vehicle components and subsystems, DOE's national laboratories use ...

  2. Advanced Vehicle Electrification and Transportation Sector Electrifica...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity Advanced Vehicle...

  3. A Bidirectional High-Power-Quality Grid Interface With a Novel Bidirectional Noninverted Buck Boost Converter for PHEVs

    SciTech Connect (OSTI)

    Onar, Omer C

    2012-01-01

    Plug-in hybrid electric vehicles (PHEVs) will play a vital role in future sustainable transportation systems due to their potential in terms of energy security, decreased environmental impact, improved fuel economy, and better performance. Moreover, new regulations have been established to improve the collective gas mileage, cut greenhouse gas emissions, and reduce dependence on foreign oil. This paper primarily focuses on two major thrust areas of PHEVs. First, it introduces a grid-friendly bidirectional alternating current/direct current ac/dc dc/ac rectifier/inverter for facilitating vehicle-to-grid (V2G) integration of PHEVs. Second, it presents an integrated bidirectional noninverted buck boost converter that interfaces the energy storage device of the PHEV to the dc link in both grid-connected and driving modes. The proposed bidirectional converter has minimal grid-level disruptions in terms of power factor and total harmonic distortion, with less switching noise. The integrated bidirectional dc/dc converter assists the grid interface converter to track the charge/discharge power of the PHEV battery. In addition, while driving, the dc/dc converter provides a regulated dc link voltage to the motor drive and captures the braking energy during regenerative braking.

  4. PHEV Engine Control and Energy Management Strategy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon vss013_chambon_2010_o.pdf More Documents & Publications PHEV Engine Control and Energy Management Strategy PHEV Engine Control and Energy Management Strategy Advanced LD Engine Systems and Emissions Control Modeling and Analysis

  5. JCS PHEV System Development-USABC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon es005_engstrom_2010_o.pdf More Documents & Publications JCS PHEV System Development-USABC JCS PHEV System Development

  6. JCS PHEV System Development-USABC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es005_judes_2013_p.pdf More Documents & Publications JCS PHEV System Development-USABC JCS PHEV System Development-USABC FY 2012 Annual Progress Report for Energy Storage R&D

  7. Fabricate PHEV Cells for Testing & Diagnostics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon es030_jansen_2011_p.pdf More Documents & Publications Fabricate PHEV Cells for Testing & Diagnostics Post-test Cell Characterization Facility Fabricate PHEV Cells for Testing & Diagnostics

  8. Review of A123s HEV and PHEV USABC Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A123s HEV and PHEV USABC Programs Review of A123s HEV and PHEV USABC Programs 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon es_04_fulop.pdf More Documents & Publications USABC HEV and PHEV Programs USABC HEV and PHEV Programs Plug-in Hybrid Battery Development

  9. AVTA: 2012 Toyota Prius PHEV Downloadable Dynamometer Database Reports |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2 Toyota Prius PHEV Downloadable Dynamometer Database Reports AVTA: 2012 Toyota Prius PHEV Downloadable Dynamometer Database Reports The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The

  10. AVTA: PHEV Demand and Energy Cost Demonstration Report | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy PHEV Demand and Energy Cost Demonstration Report AVTA: PHEV Demand and Energy Cost Demonstration Report The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report describes results from a

  11. Active Combination of Ultracapacitors and Batteries for PHEV ESS |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Combination of Ultracapacitors and Batteries for PHEV ESS Active Combination of Ultracapacitors and Batteries for PHEV ESS 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon vss_15_bohn.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2014: Powertrain Controls Optimization for Heavy Duty Line Haul Trucks Vehicle Technologies Office Merit

  12. Structural investigations of layered oxide materials for PHEV applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy investigations of layered oxide materials for PHEV applications Structural investigations of layered oxide materials for PHEV applications 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon esp_19_abraham.pdf More Documents & Publications Diagnostic Studies Vehicle Technologies Office Merit Review 2015: User Facilities for Energy Storage Materials Research Vehicle

  13. Vehicle Technologies Office Merit Review 2015: Design and Implementation of a Thermal Load Reduction System in a Hyundai PHEV

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about design...

  14. Advanced Vehicle Benchmarking of HEVs and PHEVs | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Benchmarking of HEVs and PHEVs Advanced Vehicle Benchmarking of HEVs and PHEVs 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer ...

  15. AVTA: Chrysler RAM Experimental PHEV Pickup Truck Recovery Act Project Testing Results- Phase 2

    Broader source: Energy.gov [DOE]

    The following reports describe results of testing done on a 2011 Chrysler RAM PHEV, a demonstration vehicle not currently available for sale.

  16. Integrated Vehicle Thermal Management Systems (VTMS) Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Integrated Vehicle Thermal Management Power Electronic Thermal System Performance and Integration Characterization and Development of Advanced...

  17. Overcharge Protection for PHEV Batteries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es037_chen_2012_o.pdf More Documents & Publications Overcharge Protection for PHEV Batteries Overcharge Protection

  18. Overcharge Protection for PHEV Batteries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon es037_chen_2011_p.pdf More Documents & Publications Overcharge Protection Overcharge Protection for PHEV Batteries

  19. JCS PHEV System Development-USABC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development-USABC JCS PHEV System Development-USABC 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es005_judes_2012_p

  20. PHEV Battery Cost Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es111_gallagher_2012_o.pdf More Documents & Publications Promises and Challenges of Lithium- and Manganese-Rich Transition-Metal Layered-Oxide Cathodes PHEV Battery Cost Assessment EV Everywhere Grand Challenge - Battery Status and Cost Reduction Prospects

  1. Vehicle Technologies Office Merit Review 2014: High Energy Lithium...

    Office of Environmental Management (EM)

    High Energy Lithium Batteries for PHEV Applications Vehicle Technologies Office Merit Review 2014: High Energy Lithium Batteries for PHEV Applications Presentation given by...

  2. AVTA: 2010 Quantum Escape PHEV Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a 2010 Quantum Escape PHEV, an experimental model not currently for sale. The baseline performance testing provides a point of comparison for the other test results. Taken together, these reports give an overall view of how this vehicle functions under extensive testing. This research was conducted by Idaho National Laboratory.

  3. PHEV Engine and Aftertreatment Model Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    10 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon vss008_daw_2010_o.pdf More Documents & Publications PHEV Engine and Aftertreatment Model Development Advanced PHEV Engine Systems and Emissions Control Modeling and Analysis Measurement and Characterization of Lean NOx Adsorber Regeneration and Desulfation and Controlling NOx from Multi-mode

  4. USABC PHEV Battery Development Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PHEV Battery Development Project USABC PHEV Battery Development Project 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon es004_ashtiani_2010_o.pdf More Documents & Publications Plug-in Hybrid Battery Development High Voltage Electrolyte for Lithium Batteries Overview of Battery R&D Activities

  5. Analysis of maximizing the Synergy between PHEVs/EVs and PV | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy maximizing the Synergy between PHEVs/EVs and PV Analysis of maximizing the Synergy between PHEVs/EVs and PV 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon vss007_gonder_2011_p.pdf More Documents & Publications Analyzing Fuel Saving Opportunities through Driver Feedback Mechanisms Defining Real World Drive Cycles to Support APRF Technology Evaluations Real-World PHEV Fuel Economy Prediction

  6. Vehicle Technologies Office Merit Review 2015: Integrated Computationa...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Computational Materials Engineering Approach to Development of Lightweight 3GAHSS Vehicle Assembly Vehicle Technologies Office Merit Review 2015: Integrated...

  7. AVTA: Plug-in Hybrid Electric Vehicle Specifications and Test Procedures |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Plug-in Hybrid Electric Vehicle Specifications and Test Procedures AVTA: Plug-in Hybrid Electric Vehicle Specifications and Test Procedures Plug-in Hybrid Electric Vehicle Test Plan PDF icon DRAFT - Integrated Test Plan and Evaluation Program for Review for Plug-in Hybrid Electric Vehicles (PHEVs) More Documents & Publications AVTA: Hybrid Electric Vehicle Specifications and Test Procedures Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and Testing

  8. Vehicle Technologies Office: Integration, Validation and Testing Tools and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Procedures | Department of Energy Modeling, Testing, Data & Results » Vehicle Technologies Office: Integration, Validation and Testing Tools and Procedures Vehicle Technologies Office: Integration, Validation and Testing Tools and Procedures The Vehicle Technologies Office supports facilities and tools such as Oak Ridge National Laboratory's Vehicle Systems Integration Laboratory to integrate, validate, and test advanced vehicle technologies. Read the text version. The Vehicle

  9. Vehicle Technologies Office: 2010 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. PDF icon 2010vsstreport.pdf More Documents & Publications AVTA PHEV...

  10. PHEV-EV Charger Technology Assessment with an Emphasis on V2G Operation

    SciTech Connect (OSTI)

    Kisacikoglu, Mithat C; Bedir, Abdulkadir; Ozpineci, Burak; Tolbert, Leon M

    2012-03-01

    More battery powered electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) will be introduced to the market in 2011 and beyond. Since these vehicles have large batteries that need to be charged from an external power source or directly from the grid, their batteries, charging circuits, charging stations/infrastructures, and grid interconnection issues are garnering more attention. This report summarizes information regarding the batteries used in PHEVs, different types of chargers, charging standards and circuits, and compares different topologies. Furthermore, it includes a list of vehicles that are going to be in the market soon with information on their charging and energy storage equipment. A summary of different standards governing charging circuits and charging stations concludes the report. There are several battery types that are available for PHEVs; however, the most popular ones have nickel metal hydride (NiMH) and lithium-ion (Li-ion) chemistries. The former one is being used in current hybrid electric vehicles (HEVs), but the latter will be used in most of the PHEVs and EVs due to higher energy densities and higher efficiencies. The chargers can be classified based on the circuit topologies (dedicated or integrated), location of the charger (either on or off the vehicle), connection (conductive, inductive/wireless, and mechanical), electrical waveform (direct current (dc) or alternating current (ac)), and the direction of power flow (unidirectional or bidirectional). The first PHEVs typically will have dedicated, on-board, unidirectional chargers that will have conductive connections to the charging stations or wall outlets and will be charged using either dc or ac. In the near future, bidirectional chargers might also be used in these vehicles once the benefits of practical vehicle to grid applications are realized. The terms charger and charging station cause terminology confusion. To prevent misunderstandings, a more descriptive term of electric vehicle supply equipment (EVSE) is used instead of charging station. The charger is the power conversion equipment that connects the battery to the grid or another power source, while EVSE refers to external equipment between the grid or other power source and the vehicle. EVSE might include conductors, connectors, attachment plugs, microprocessors, energy measurement devices, transformers, etc. Presently, there are more than 40 companies that are producing EVSEs. There are several standards and codes regarding conductive and inductive chargers and EVSEs from the Society of Automotive Engineers (SAE), the Underwriter Laboratories (UL), the International Electrotechnical Commission (IEC), and the National Electric Code (NEC). The two main standards from SAE describe the requirements for conductive and inductive coupled chargers and the charging levels. For inductive coupled charging, three levels are specified: Level 1 (120 V and 12 A, single-phase), Level 2 (208 V-240 V and 32 A, single-phase), and Level 3 (208-600 V and 400 A, three-phase) . The standard for the conductive-coupled charger also has similar charging ratings for Levels 1 and 2, but it allows higher current ratings for Level 2 charging up to 80 A. Level 3 charging for this standard is still under development and considers dc charging instead of three-phase ac. More details in these areas and related references can be found in this Oak Ridge National Laboratory (ORNL) report on PHEV-EV charger technology assessment.

  11. Vehicle Testing and Integration Facility (Brochure), NREL (National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Vehicle Testing and Integration Facility 3 Vehicle Energy Management with Smart Grid * Optimize vehicle energy flow with residential grids and distributed renewables * Manage ...

  12. Advanced Cathode Material Development for PHEV Lithium Ion Batteries |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon es006_gardner_2010_o.pdf More Documents & Publications Advanced Cathode Material Development for PHEV Lithium Ion Batteries Vehicle Technologies Office: 2009 Energy Storage R&D Annual Progress Report Vehicle Technologies Office Merit Review 2014: High Energy Novel Cathode / Alloy Automotive Cell

  13. Deriving In-Use PHEV Fuel Economy Predictions from Standardized Test Cycle Results: Preprint

    SciTech Connect (OSTI)

    Gonder, J.; Brooker, A.; Carlson, R.; Smart, J.

    2009-08-01

    Explores the issue of how to apply an adjustment method to raw plug-in hybrid vehicle dynamometer test results to better estimate PHEVs' in-use fuel and electricity consumption.

  14. AVTA: 2013 Toyota Prius PHEV Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a Toyota Prius PHEV 2013. Baseline and battery testing data collected at Argonne National Laboratory is available in summary and CSV form on the Argonne Downloadable Dynometer Database site (http://www.anl.gov/energy-systems/group/downloadable-dynamometer-databas...). The reports for download here are based on research done at Idaho National Laboratory. Taken together, these reports give an overall view of how this vehicle functions under extensive testing.

  15. Volttron Enabling Vehicle-to-Building Integration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    VOLTTRON(tm) Enabling Vehicle- to-Building Integration 1 RICK PRATT, P.I. Pacific Northwest National Laboratory Software Framework for Transactive Energy: VOLTTRON(tm) This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 What makes electric vehicle charging control a good market for VOLTTRON TM ? Managed charging is needed * EV adoption growth expected * Distribution feeder loads limiting with growing electric vehicle population * EV charging

  16. Advanced Cathode Material Development for PHEV Lithium Ion Batteries |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon es006_gardner_2011_p.pdf More Documents & Publications Advanced Cathode Material Development for PHEV Lithium Ion Batteries High Energy Novel Cathode / Alloy Automotive Cell Develop & evaluate materials & additives that enhance thermal & overcharge abuse

  17. Vehicle Systems Integration Laboratory Accelerates Powertrain Development

    ScienceCinema (OSTI)

    None

    2014-06-25

    ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

  18. Integrated Powertrain and Vehicle Technologies for Fuel Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Powertrain and Vehicle Technologies for Fuel Efficiency Improvement and CO2 Reduction Integrated Powertrain and Vehicle Technologies for Fuel Efficiency Improvement and...

  19. Evaluation of Ethanol Blends for PHEVs using Simulation and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine-in-the-Loop | Department of Energy Ethanol Blends for PHEVs using Simulation and Engine-in-the-Loop Evaluation of Ethanol Blends for PHEVs using Simulation and Engine-in-the-Loop 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon vss049_shidore_2011_o.pdf More Documents & Publications Evaluation of the Fuel Economy Impacts of Low Temperature Combustion (LTC) using Engine-in-the-Loop Cold-Start Performance and

  20. Who Will More Likely Buy PHEV: A Detailed Market Segmentation Analysis

    SciTech Connect (OSTI)

    Lin, Zhenhong; Greene, David L

    2010-01-01

    Understanding the diverse PHEV purchase behaviors among prospective new car buyers is key for designing efficient and effective policies for promoting new energy vehicle technologies. The ORNL MA3T model developed for the U.S. Department of Energy is described and used to project PHEV purchase probabilities by different consumers. MA3T disaggregates the U.S. household vehicle market into 1458 consumer segments based on region, residential area, driver type, technology attitude, home charging availability and work charging availability and is calibrated to the EIA s Annual Energy Outlook. Simulation results from MA3T are used to identify the more likely PHEV buyers and provide explanations. It is observed that consumers who have home charging, drive more frequently and live in urban area are more likely to buy a PHEV. Early adopters are projected to be more likely PHEV buyers in the early market, but the PHEV purchase probability by the late majority consumer can increase over time when PHEV gradually becomes a familiar product. Copyright Form of EVS25.

  1. PHEV/EV Li-Ion Battery Second-Use Project, NREL (National Renewable Energy Laboratory) (Poster)

    SciTech Connect (OSTI)

    Newbauer, J.; Pesaran, A.

    2010-05-01

    Plug-in hybrid electric vehicles (PHEVs) and full electric vehicles (Evs) have great potential to reduce U.S. dependence on foreign oil and emissions. Battery costs need to be reduced by ~50% to make PHEVs cost competitive with conventional vehicles. One option to reduce initial costs is to reuse the battery in a second application following its retirement from automotive service and offer a cost credit for its residual value.

  2. PHEV Battery Cost Assessment

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  3. Electricity Demand of PHEVs Operated by Private Households and Commercial Fleets: Effects of Driving and Charging Behavior

    SciTech Connect (OSTI)

    John Smart; Matthew Shirk; Ken Kurani; Casey Quinn; Jamie Davies

    2010-11-01

    Automotive and energy researchers have made considerable efforts to predict the impact of plug-in hybrid vehicle (PHEV) charging on the electrical grid. This work has been done primarily through computer modeling and simulation. The US Department of Energys (DOE) Advanced Vehicle Testing Activity (AVTA), in partnership with the University of California at Daviss Institute for Transportation Stuides, have been collecting data from a diverse fleet of PHEVs. The AVTA is conducted by the Idaho National Laboratory for DOEs Vehicle Technologies Program. This work provides the opportunity to quantify the petroleum displacement potential of early PHEV models, and also observe, rather than simulate, the charging behavior of vehicle users. This paper presents actual charging behavior and the resulting electricity demand from these PHEVs operating in undirected, real-world conditions. Charging patterns are examined for both commercial-use and personal-use vehicles. Underlying reasons for charging behavior in both groups are also presented.

  4. Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virtual Lab in Supporting Heavy Duty Engine and Vehicle Emission Rulemaking Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle Emission Rulemaking Presentation ...

  5. AVTA: 2011 Chrysler Town and Country Experimental PHEV Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a Chrysler Town and Country PHEV 2011, an experimental model not currently for sale. The baseline performance testing provides a point of comparison for the other test results. Taken together, these reports give an overall view of how this vehicle functions under extensive testing. This research was conducted by Idaho National Laboratory.

  6. Internal Short Circuits in Lithium-Ion Cells for PHEVs

    SciTech Connect (OSTI)

    Sriramulu, Suresh; Stringfellow, Richard

    2013-05-25

    Development of Plug-in Hybrid Electric Vehicles (PHEVs) has recently become a high national priority because of their potential to enable significantly reduced petroleum consumption by the domestic transportation sector in the relatively near term. Lithium-ion (Li-ion) batteries are a critical enabling technology for PHEVs. Among battery technologies with suitable operating characteristics for use in vehicles, Li-ion batteries offer the best combination of energy, power, life and cost. Consequently, worldwide, leading corporations and government agencies are supporting the development of Li-ion batteries for PHEVs, as well as the full spectrum of vehicular applications ranging from mild hybrid to all-electric. In this project, using a combination of well-defined experiments, custom designed cells and simulations, we have improved the understanding of the process by which a Li-ion cell that develops an internal short progresses to thermal runaway. Using a validated model for thermal runaway, we have explored the influence of environmental factors and cell design on the propensity for thermal runaway in full-sized PHEV cells. We have also gained important perspectives about internal short development and progression; specifically that initial internal shorts may be augmented by secondary shorts related to separator melting. Even though the nature of these shorts is very stochastic, we have shown the critical and insufficiently appreciated role of heat transfer in influencing whether a developing internal short results in a thermal runaway. This work should lead to enhanced perspectives on separator design, the role of active materials and especially cathode materials with respect to safety and the design of automotive cooling systems to enhance battery safety in PHEVs.

  7. PHEV Battery Cost Assessment

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  8. AVTA: Chrysler RAM PHEV Pickups | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chrysler RAM PHEV Pickups AVTA: Chrysler RAM PHEV Pickups Chrysler tested and deployed 140 demonstration Chrysler RAM plug-in hybrid electric pick-up trucks around the country. Chrysler RAM Experimental PHEV Pickup Truck Recovery Act Project Testing Results Chrysler RAM Experimental PHEV Pickup Truck Recovery Act Project Testing Results - Phase 2 Chrysler RAM Experimental PHEV Pickup Truck Recovery Act Project Map

  9. DOD/NREL Model Integrates Vehicles, Renewables & Microgrid (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    Fact sheet on microgrid model created by the Electric Vehicle Grid Integration program at the Fort Carson Army facility.

  10. Advanced Technology Vehicle Lab Benchmarking - Level 1 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications HEV, PHEV, EV Test Standard Development and Validation Vehicle Technologies Office Merit Review 2015: Advanced Technology Vehicle Lab Benchmarking ...

  11. Technology Improvement Pathways to Cost-Effective Vehicle Electrification: Preprint

    SciTech Connect (OSTI)

    Brooker, A.; Thornton, M.; Rugh, J.

    2010-02-01

    This paper evaluates several approaches aimed at making plug-in electric vehicles (EV) and plug-in hybrid electric vehicles (PHEVs) cost-effective.

  12. Vehicle Technologies Office Merit Review 2015: High Energy High Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery Exceeding PHEV-40 Requirements | Department of Energy Energy High Power Battery Exceeding PHEV-40 Requirements Vehicle Technologies Office Merit Review 2015: High Energy High Power Battery Exceeding PHEV-40 Requirements Presentation given by TIAX LLC at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy high power battery exceeding PHEV-40 requirements. PDF icon es209_rempel_2015_p.pdf More

  13. An integrated surface technology for friction reduction in vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy integrated surface technology for friction reduction in vehicles An integrated surface technology for friction reduction in vehicles 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon pmp_08_hsu.pdf More Documents & Publications An Integrated Surface Technology for Optimum Performance Vehicle Technologies Office Merit Review 2014: Friction Reduction through Surface

  14. Argonne Facilitation of PHEV Standard Testing Procedure (SAE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications SAE Standards Development HEV, PHEV, EV Test Standard Development and Validation Off-Cycle Benchmarking of PHEVs; Wide Range of Temperatures and ...

  15. Impact of Driving Behavior on PHEV Fuel Consumption for Different...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Driving Behavior on PHEV Fuel Consumption for Different Powertrain, Component Sizes and Control Impact of Driving Behavior on PHEV Fuel Consumption for Different Powertrain, ...

  16. Advanced PHEV Engine Systems and Emissions Control Modeling and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PHEV Engine Systems and Emissions Control Modeling and Analysis Advanced PHEV Engine Systems and Emissions Control Modeling and Analysis 2011 DOE Hydrogen and Fuel Cells Program,...

  17. Deriving In-Use PHEV Fuel Economy Predictions from Standardized Test Cycle Results

    SciTech Connect (OSTI)

    John Smart; Richard "Barney" Carlson; Jeff Gonder; Aaron Brooker

    2009-09-01

    Plug-in hybrid electric vehicles (PHEVs) have potential to reduce or eliminate the U.S. dependence on foreign oil. Quantifying the amount of petroleum each uses, however, is challenging. To estimate in-use fuel economy for conventional vehicles the Environmental Protection Agency (EPA) conducts chassis dynamometer tests on standard historic drive cycles and then adjusts the resulting raw fuel economy measurements downward. Various publications, such as the forthcoming update to the SAE J1711 recommended practice for PHEV fuel economy testing, address the challenges of applying standard test procedures to PHEVs. This paper explores the issue of how to apply an adjustment method to such raw PHEV dynamometer test results in order to more closely estimate the in-use fuel and electricity consumption characteristics of these vehicles. The paper discusses two possible adjustment methods, and evaluates one method by applying it to dynamometer data and comparing the result to in-use fleet data (on an aftermarket conversion PHEV). The paper will also present the methodologies used to collect the data needed for this comparison.

  18. Bi-Directional DC-DC Converter for PHEV Applications

    SciTech Connect (OSTI)

    Abas Goodarzi

    2011-01-31

    Plug-In Hybrid Electric Vehicles (PHEV) require high power density energy storage system (ESS) for hybrid operation and high energy density ESS for Electric Vehicle (EV) mode range. However, ESS technologies to maximize power density and energy density simultaneously are not commercially feasible. The use of bi-directional DC-DC converter allows use of multiple energy storage, and the flexible DC-link voltages can enhance the system efficiency and reduce component sizing. This will improve fuel consumption, increase the EV mode range, reduce the total weight, reduce battery initial and life cycle cost, and provide flexibility in system design.

  19. Secondary Use of PHEV and EV Batteries: Opportunities & Challenges (Presentation)

    SciTech Connect (OSTI)

    Neubauer, J.; Pesaran, A.; Howell, D.

    2010-05-01

    NREL and partners will investigate the reuse of retired lithium ion batteries for plug-in hybrid, hybrid, and electric vehicles in order to reduce vehicle costs and emissions and curb our dependence on foreign oil. A workshop to solicit industry feedback on the process is planned. Analyses will be conducted, and aged batteries will be tested in two or three suitable second-use applications. The project is considering whether retired PHEV/EV batteries have value for other applications; if so, what are the barriers and how can they be overcome?

  20. Integrated Vehicle Thermal Management - Combining Fluid Loops in Electric Drive Vehicles (Presentation)

    SciTech Connect (OSTI)

    Rugh, J. P.

    2013-07-01

    Plug-in hybrid electric vehicles and electric vehicles have increased vehicle thermal management complexity, using separate coolant loop for advanced power electronics and electric motors. Additional thermal components result in higher costs. Multiple cooling loops lead to reduced range due to increased weight. Energy is required to meet thermal requirements. This presentation for the 2013 Annual Merit Review discusses integrated vehicle thermal management by combining fluid loops in electric drive vehicles.

  1. Vehicle Technologies Office Merit Review 2015: Electric Vehicle Grid Integration

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric...

  2. Fact #595: November 2, 2009 Plug-in Hybrid Vehicle Purchases...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    released results of a 2008 survey on plug-in hybrid vehicles (PHEVs) show that 42% of respondents said there was some chance that they would buy a PHEV sometime in the future. ...

  3. Integrated Vehicle Thermal Management Systems (VTMS) Analysis/Modeling |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Systems (VTMS) Analysis/Modeling Integrated Vehicle Thermal Management Systems (VTMS) Analysis/Modeling 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon vssp_02_thornton.pdf More Documents & Publications Integrated Vehicle Thermal Management Power Electronic Thermal System Performance and Integration Characterization and Development of Advanced Heat Transfer

  4. Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption of a PHEV School Bus: Preprint

    SciTech Connect (OSTI)

    Barnitt, R.; Gonder, J.

    2011-04-01

    The National Renewable Energy Laboratory (NREL) collected and analyzed real-world school bus drive cycle data and selected similar standard drive cycles for testing on a chassis dynamometer. NREL tested a first-generation plug-in hybrid electric vehicle (PHEV) school bus equipped with a 6.4L engine and an Enova PHEV drive system comprising a 25-kW/80 kW (continuous/peak) motor and a 370-volt lithium ion battery pack. A Bluebird 7.2L conventional school bus was also tested. Both vehicles were tested over three different drive cycles to capture a range of driving activity. PHEV fuel savings in charge-depleting (CD) mode ranged from slightly more than 30% to a little over 50%. However, the larger fuel savings lasted over a shorter driving distance, as the fully charged PHEV school bus would initially operate in CD mode for some distance, then in a transitional mode, and finally in a charge-sustaining (CS) mode for continued driving. The test results indicate that a PHEV school bus can achieve significant fuel savings during CD operation relative to a conventional bus. In CS mode, the tested bus showed small fuel savings and somewhat higher nitrogen oxide (NOx) emissions than the baseline comparison bus.

  5. Financial Vehicles within an Integrated Energy Efficiency Program-- Webinar Slides

    Broader source: Energy.gov [DOE]

    "Financial Vehicles Within an Integrated Energy Efficiency Program," webinar slides from the U.S. Department of Energy's Better Buildings program.

  6. Electric Vehicle Grid Integration for Sustainable Military Installations (Presentation)

    SciTech Connect (OSTI)

    Simpson, M.

    2011-05-05

    This presentation discusses electric vehicle grid integration for sustainable military installations. Fort Carson Military Reservation in Colorado Springs is used as a case study.

  7. Integrated Vehicle and Powertrain Technology for EPA 2010 and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Powertrain Technology for EPA 2010 and Beyond Integrated Vehicle and Powertrain Technology for EPA 2010 and Beyond Presentation given at the 2007 Diesel Engine-Efficiency &...

  8. Vehicle Technologies Office Merit Review 2015: Integrated Network...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Integrated Network Testbed for Energy Grid Research and...

  9. PHEV Engine Cold Start Emissions Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cold Start Emissions Management PHEV Engine Cold Start Emissions Management Coordination of engine and powertrain supervisory control strategies to minimize cold start emissions PDF icon p-05_chambon.pdf More Documents & Publications PHEV Engine Control and Energy Management Strategy PHEV Engine Control and Energy Management Strategy PHEV Engine Control and Energy Management Strategy

  10. Vehicle Technologies Office Merit Review 2015: Integrated Network Testbed

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Energy Grid Research and Technology Experimentation (INTEGRATE) | Department of Energy Integrated Network Testbed for Energy Grid Research and Technology Experimentation (INTEGRATE) Vehicle Technologies Office Merit Review 2015: Integrated Network Testbed for Energy Grid Research and Technology Experimentation (INTEGRATE) Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer

  11. U.S. Department of Energy Vehicle Technologies Program -- Advanced Vehicle Testing Activity -- Plug-in Hybrid Electric Vehicle Charging Infrastructure Review

    SciTech Connect (OSTI)

    Kevin Morrow; Donald Darner; James Francfort

    2008-11-01

    Plug-in hybrid electric vehicles (PHEVs) are under evaluation by various stake holders to better understand their capability and potential benefits. PHEVs could allow users to significantly improve fuel economy over a standard HEV and in some cases, depending on daily driving requirements and vehicle design, have the ability to eliminate fuel consumption entirely for daily vehicle trips. The cost associated with providing charge infrastructure for PHEVs, along with the additional costs for the on-board power electronics and added battery requirements associated with PHEV technology will be a key factor in the success of PHEVs. This report analyzes the infrastructure requirements for PHEVs in single family residential, multi-family residential and commercial situations. Costs associated with this infrastructure are tabulated, providing an estimate of the infrastructure costs associated with PHEV deployment.

  12. Vehicle Testing and Integration Facility; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-03-02

    Engineers at the National Renewable Energy Laboratory’s (NREL’s) Vehicle Testing and Integration Facility (VTIF) are developing strategies to address two separate but equally crucial areas of research: meeting the demands of electric vehicle (EV) grid integration and minimizing fuel consumption related to vehicle climate control. Dedicated to renewable and energy-efficient solutions, the VTIF showcases technologies and systems designed to increase the viability of sustainably powered vehicles. NREL researchers instrument every class of on-road vehicle, conduct hardware and software validation for EV components and accessories, and develop analysis tools and technology for the Department of Energy, other government agencies, and industry partners.

  13. Plug-In Hybrid Electric Vehicle Penetration Scenarios

    SciTech Connect (OSTI)

    Balducci, Patrick J.

    2008-04-03

    This report examines the economic drivers, technology constraints, and market potential for plug-in hybrid electric vehicles (PHEVs) in the U.S. A PHEV is a hybrid vehicle with batteries that can be recharged by connecting to the grid and an internal combustion engine that can be activated when batteries need recharging. The report presents and examines a series of PHEV market penetration scenarios. Based on input received from technical experts and industry representative contacted for this report and data obtained through a literature review, annual market penetration rates for PHEVs are presented from 2013 through 2045 for three scenarios. Each scenario is examined and implications for PHEV development are explored.

  14. Development of Production-Intent Plug-In Hybrid Vehicle Using Advanced Lithium-Ion Battery Packs with Deployment to a Demonstration Fleet

    SciTech Connect (OSTI)

    No, author

    2013-09-29

    The primary goal of this project was to speed the development of one of the first commercially available, OEM-produced plug-in hybrid electric vehicles (PHEV). The performance of the PHEV was expected to double the fuel economy of the conventional hybrid version. This vehicle program incorporated a number of advanced technologies, including advanced lithium-ion battery packs and an E85-capable flex-fuel engine. The project developed, fully integrated, and validated plug-in specific systems and controls by using GMs Global Vehicle Development Process (GVDP) for production vehicles. Engineering Development related activities included the build of mule vehicles and integration vehicles for Phases I & II of the project. Performance data for these vehicles was shared with the U.S. Department of Energy (DOE). The deployment of many of these vehicles was restricted to internal use at GM sites or restricted to assigned GM drivers. Phase III of the project captured the first half or Alpha phase of the Engineering tasks for the development of a new thermal management design for a second generation battery module. The project spanned five years. It included six on-site technical reviews with representatives from the DOE. One unique aspect of the GM/DOE collaborative project was the involvement of the DOE throughout the OEM vehicle development process. The DOE gained an understanding of how an OEM develops vehicle efficiency and FE performance, while balancing many other vehicle performance attributes to provide customers well balanced and fuel efficient vehicles that are exciting to drive. Many vehicle content and performance trade-offs were encountered throughout the vehicle development process to achieve product cost and performance targets for both the OEM and end customer. The project team completed two sets of PHEV development vehicles with fully integrated PHEV systems. Over 50 development vehicles were built and operated for over 180,000 development miles. The team also completed four GM engineering development Buy-Off rides/milestones. The project included numerous engineering vehicle and systems development trips including extreme hot, cold and altitude exposure. The final fuel economy performance demonstrated met the objectives of the PHEV collaborative GM/DOE project. Charge depletion fuel economy of twice that of the non-PHEV model was demonstrated. The project team also designed, developed and tested a high voltage battery module concept that appears to be feasible from a manufacturability, cost and performance standpoint. The project provided important product development and knowledge as well as technological learnings and advancements that include multiple U.S. patent applications.

  15. Vehicle Systems Integration (VSI) Research Laboratory at ORNL | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Systems Integration (VSI) Research Laboratory at ORNL Vehicle Systems Integration (VSI) Research Laboratory at ORNL 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon vss035_smith_2011_o.pdf More Documents & Publications The ArvinMeritor Dual Mode Hybrid Powertrain (DMHP): Opportunities and Potential for Systems Optimization Vehicle Technologies Office Merit Review 2014: Cummins MD & HD Accessory

  16. System Simulations of Hybrid Electric Vehicles with Focus on Emissions |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy System Simulations of Hybrid Electric Vehicles with Focus on Emissions System Simulations of Hybrid Electric Vehicles with Focus on Emissions Comparative simulations of hybrid electric vehicles with gasoline and diesel engines will be conducted with focus on emissions control. PDF icon deer10_gao.pdf More Documents & Publications PHEV Engine and Aftertreatment Model Development Advanced PHEV Engine Systems and Emissions Control Modeling and Analysis PHEV Engine and

  17. Correlating Dynamometer Testing to In-Use Fleet Results of Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    John G. Smart; Sera White; Michael Duoba

    2009-05-01

    Standard dynamometer test procedures are currently being developed to determine fuel and electrical energy consumption of plug-in hybrid vehicles (PHEV). To define a repeatable test procedure, assumptions were made about how PHEVs will be driven and charged. This study evaluates these assumptions by comparing results of PHEV dynamometer testing following proposed procedures to actual performance of PHEVs operating in the US Department of Energys (DOE) North American PHEV Demonstration fleet. Results show PHEVs in the fleet exhibit a wide range of energy consumption, which is not demonstrated in dynamometer testing. Sources of variation in performance are identified and examined.

  18. Vehicle Technologies Office Merit Review 2015: Materials Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Development for High Energy High Power Battery Exceeding PHEV-40 Requirements Vehicle Technologies Office Merit Review 2015: Materials Development for High Energy High...

  19. Vehicle Technologies Office Merit Review 2015: High Energy High...

    Energy Savers [EERE]

    Power Battery Exceeding PHEV-40 Requirements Presentation given by TIAX LLC at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and...

  20. Integrated Vehicle Thermal Management for Advanced Vehicle Propulsion Technologies: Preprint

    SciTech Connect (OSTI)

    Bennion, K.; Thornton, M.

    2010-02-01

    Techniques for evaluating and quantifying integrated transient and continuous heat loads of combined systems incorporating electric drive systems operating primarily under transient duty cycles.

  1. Integrated Powertrain and Vehicle Technologies for Fuel Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improvement and CO2 Reduction | Department of Energy Integrated Powertrain and Vehicle Technologies for Fuel Efficiency Improvement and CO2 Reduction Integrated Powertrain and Vehicle Technologies for Fuel Efficiency Improvement and CO2 Reduction Meeting the most stringent emission standards in the world (EPA2002, EPA2007, EPA2010) required the strength of global organizations EPA2002 emission regulation was associated with a significant drop in engine thermal efficiency; DOE support of

  2. Plug-in Hybrid Electric Vehicle Fuel Use Reporting Methods and Results

    SciTech Connect (OSTI)

    James E. Francfort

    2009-07-01

    The Plug-in Hybrid Electric Vehicle (PHEV) Fuel Use Reporting Methods and Results report provides real world test results from PHEV operations and testing in 20 United States and Canada. Examples are given that demonstrate the significant variations operational parameters can have on PHEV petroleum use. In addition to other influences, PHEV mpg results are significantly impacted by driver aggressiveness, cold temperatures, and whether or not the vehicle operator has charged the PHEV battery pack. The U.S. Department of Energys (DOEs) Advanced Vehicle Testing Activity (AVTA) has been testing plug-in hybrid electric vehicles (PHEVs) for several years. The AVTA http://avt.inl.gov/), which is part of DOEs Vehicle Technology Program, also tests other advanced technology vehicles, with 12 million miles of total test vehicle and data collection experience. The Idaho National Laboratory is responsible for conducting the light-duty vehicle testing of PHEVs. Electric Transportation Engineering Corporation also supports the AVTA by conducting PHEV and other types of testing. To date, 12 different PHEV models have been tested, with more than 600,000 miles of PHEV operations data collected.

  3. Overcharge Protection for PHEV Batteries

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  4. Advanced HEV/PHEV Concepts

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  5. PHEV/EV Li-Ion Battery Second-Use Project (Presentation)

    SciTech Connect (OSTI)

    Neubauer, J.; Pesaran, A.

    2010-04-01

    Accelerated development and market penetration of plug-in hybrid electric vehicles (PHEVs) and electric vehicles (Evs) are restricted at present by the high cost of lithium-ion (Li-ion) batteries. One way to address this problem is to recover a fraction of the battery cost via reuse in other applications after the battery is retired from service in the vehicle, if the battery can still meet the performance requirements of other energy storage applications. In several current and emerging applications, the secondary use of PHEV and EV batteries may be beneficial; these applications range from utility peak load reduction to home energy storage appliances. However, neither the full scope of possible opportunities nor the feasibility or profitability of secondary use battery opportunities have been quantified. Therefore, with support from the Energy Storage activity of the U.S. Department of Energy's Vehicle Technologies Program, the National Renewable Energy Laboratory (NREL) is addressing this issue. NREL will bring to bear its expertise and capabilities in energy storage for transportation and in distributed grids, advanced vehicles, utilities, solar energy, wind energy, and grid interfaces as well as its understanding of stakeholder dynamics. This presentation introduces NREL's PHEV/EV Li-ion Battery Secondary-Use project.

  6. Vehicle Technologies Office Merit Review 2015: Materials Development for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Energy High Power Battery Exceeding PHEV-40 Requirements | Department of Energy Materials Development for High Energy High Power Battery Exceeding PHEV-40 Requirements Vehicle Technologies Office Merit Review 2015: Materials Development for High Energy High Power Battery Exceeding PHEV-40 Requirements Presentation given by TIAX LLC at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about materials development for

  7. Fact #796: September 9, 2013 Electric Vehicle and Plug-In Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact 796: September 9, 2013 Electric Vehicle and Plug-In Hybrid Electric Vehicle Sales History Electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) have been ...

  8. Virtual Vehicle - Component-in-the-Loop | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Virtual Vehicle - Component-in-the-Loop Preparing a plug-in hybrid electric vehicle (PHEV) battery for testing on Argonne's Battery-in-the-Loop system Preparing a plug-in hybrid electric vehicle (PHEV) battery for testing on Argonne's Battery-in-the-Loop system How do you evaluate unique vehicle configurations without building each vehicle from the ground up? Argonne researchers have developed sophisticated tools that enable creation of "virtual" vehicles using a technique called

  9. Aggregation server for grid-integrated vehicles

    DOE Patents [OSTI]

    Kempton, Willett

    2015-05-26

    Methods, systems, and apparatus for aggregating electric power flow between an electric grid and electric vehicles are disclosed. An apparatus for aggregating power flow may include a memory and a processor coupled to the memory to receive electric vehicle equipment (EVE) attributes from a plurality of EVEs, aggregate EVE attributes, predict total available capacity based on the EVE attributes, and dispatch at least a portion of the total available capacity to the grid. Power flow may be aggregated by receiving EVE operational parameters from each EVE, aggregating the received EVE operational parameters, predicting total available capacity based on the aggregated EVE operational parameters, and dispatching at least a portion of the total available capacity to the grid.

  10. PHEVs Component Requirements and Efficiencies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Vehicle Technologies Annual Merit Review May 19, 2009 Phil Sharer, Aymeric Rousseau Argonne National Laboratory Sponsored by Lee Slezak This presentation does not...

  11. FY11 annual Report: PHEV Engine Control and Energy Management Strategy

    SciTech Connect (OSTI)

    Chambon, Paul H

    2011-10-01

    Objectives are to: (1) Investigate novel engine control strategies targeted at rapid engine/catalyst warming for the purpose of mitigating tailpipe emissions from plug-in hybrid electric vehicles (PHEV) exposed to multiple engine cold start events; and (2) Validate and optimize hybrid supervisory control techniques developed during previous and on-going research projects by integrating them into the vehicle level control system and complementing them with the modified engine control strategies in order to further reduce emissions during both cold start and engine re-starts. Approach used are: (1) Perform a literature search of engine control strategies used in conventional powertrains to reduce cold start emissions; (2) Develop an open source engine controller providing full access to engine control strategies in order to implement new engine/catalyst warm-up behaviors; (3) Modify engine cold start control algorithms and characterize impact on cold start behavior; and (4) Develop an experimental Engine-In-the-Loop test stand in order to validate control methodologies and verify transient thermal behavior and emissions of the real engine when combined with a virtual hybrid powertrain. Some major accomplishments are: (1) Commissioned a prototype engine controller on a GM Ecotec 2.4l direct injected gasoline engine on an engine test cell at the University of Tennessee. (2) Obtained from Bosch (with GM's approval) an open calibration engine controller for a GM Ecotec LNF 2.0l Gasoline Turbocharged Direct Injection engine. Bosch will support the bypass of cold start strategies if calibration access proves insufficient. The LNF engine and its open controller were commissioned on an engine test cell at ORNL. (3) Completed a literature search to identify key engine cold start control parameters and characterized their impact on the real engine using the Bosch engine controller to calibrate them. (4) Ported virtual hybrid vehicle model from offline simulation environment to real-time Hardware-In-the-Loop platform.

  12. Vehicle Technologies Office Merit Review 2014: Integrated Computational Materials Engineering Approach to Development of Lightweight 3GAHSS Vehicle Assembly

    Broader source: Energy.gov [DOE]

    Presentation given by USAMP at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about integrated computational materials...

  13. Vehicle Technologies Office Merit Review 2015: Integrated Computational Materials Engineering Approach to Development of Lightweight 3GAHSS Vehicle Assembly

    Broader source: Energy.gov [DOE]

    Presentation given by USAMP at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about integrated computational materials...

  14. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-05-01

    Hybrid and plug-in electric vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  15. Using Electric Vehicles to Meet Balancing Requirements Associated with Wind Power

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Kintner-Meyer, Michael CW

    2011-07-31

    Many states are deploying renewable generation sources at a significant rate to meet renewable portfolio standards. As part of this drive to meet renewable generation levels, significant additions of wind generation are planned. Due to the highly variable nature of wind generation, significant energy imbalances on the power system can be created and need to be handled. This report examines the impact on the Northwest Power Pool (NWPP) region for a 2019 expected wind scenario. One method for mitigating these imbalances is to utilize plug-in hybrid electric vehicles (PHEVs) or battery electric vehicles (BEVs) as assets to the grid. PHEVs and BEVs have the potential to meet this demand through both charging and discharging strategies. This report explores the usage of two different charging schemes: V2GHalf and V2GFull. In V2GHalf, PHEV/BEV charging is varied to absorb the additional imbalance from the wind generation, but never feeds power back into the grid. This scenario is highly desirable to automotive manufacturers, who harbor great concerns about battery warranty if vehicle-to-grid discharging is allowed. The second strategy, V2GFull, varies not only the charging of the vehicle battery, but also can vary the discharging of the battery back into the power grid. This scenario is currently less desirable to automotive manufacturers, but provides an additional resource benefit to PHEV/BEVs in meeting the additional imbalance imposed by wind. Key findings in the report relate to the PHEV/BEV population required to meet the additional imbalance when comparing V2GHalf to V2GFull populations, and when comparing home-only-charging and work-and-home-charging scenarios. Utilizing V2GFull strategies over V2GHalf resulted in a nearly 33% reduction in the number of vehicles required. This reduction indicates fewer vehicles are needed to meet the unhandled energy, but they would utilize discharging of the vehicle battery into the grid. This practice currently results in the voiding of automotive manufacturer's battery warranty, and is not feasible for many customers. The second key finding is the change in the required population when PHEV/BEV charging is available at both home and work. Allowing 10% of the vehicle population access to work charging resulted in nearly 80% of the grid benefit. Home-only charging requires, at best, 94% of the current NWPP light duty vehicle fleet to be a PHEV or BEV. With the introduction of full work charging availability, only 8% of the NWPP light duty vehicle fleet is required. Work charging has primarily been associated with mitigating range anxiety in new electric vehicle owners, but these studies indicate they have significant potential for improving grid reliability. The V2GHalf and V2GFull charging strategies of the report utilize grid frequency as an indication of the imbalance requirements. The introduction of public charging stations, as well as the potential for PHEV/BEVs to be used as a resource for renewable generation integration, creates conditions for additional products into the ancillary services market. In the United Kingdom, such a capability would be bid as a frequency product in the ancillary services market. Such a market could create the need for larger, third-party aggregators or services to manage the use of electric vehicles as a grid resource. Ultimately, customer adoption, usage patterns and habits, and feedback from the power and automotive industries will drive the need.

  16. Advanced Cathode Material Development for PHEV Lithium Ion Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Cathode Material Development for PHEV Lithium Ion Batteries High Energy Novel Cathode Alloy Automotive Cell Develop & evaluate materials & additives that enhance thermal ...

  17. AVTA: 2012 Toyota Prius PHEV Downloadable Dynamometer Database...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications AVTA: 2012 Chevrolet Volt PHEV Downloadable Dynamometer Database Reports AVTA: 2009 Volkswagen Jetta TDI Diesel Downloadable Dynamometer Database ...

  18. AVTA: Chrysler RAM Experimental PHEV Pickup Truck Recovery Act project map

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following map describes the distribution of vehicles for a project with the 2011 Chrysler RAM PHEV, a demonstration vehicle not currently available for sale. This research was conducted by Idaho National Laboratory.

  19. AVTA: Chrysler RAM Experimental PHEV Pickup Truck Recovery Act Project Testing Results Phase 1

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports describe results of testing done on a 2011 Chrysler RAM PHEV, a demonstration vehicle not currently available for sale. The baseline performance testing provides a point of comparison for the other test results. Taken together, these reports give an overall view of how this vehicle functions under extensive testing. This research was conducted by Idaho National Laboratory.

  20. The Effect of Driving Intensity and Incomplete Charging on the Fuel Economy of a Hymotion Prius PHEV

    SciTech Connect (OSTI)

    Richard Barney Carlson

    2009-10-01

    On-road testing was conducted on a Hymotion Prius plug-in hybrid electric vehicle (PHEV) at the Electric Transportation Engineering Corporation in Phoenix, Arizona. The tests were comprised of on-road urban and highway driving during charge-depleting and charge-sustaining operation. Determining real-world effectiveness of PHEVs at reducing petroleum consumption in real world driving was the main focus of the study. Throughout testing, several factors that affect fuel consumption of PHEVs were identified. This report discusses two of these factors: driving intensity (i.e., driving aggressiveness) and battery charging completeness. These two factors are unrelated, yet both significantly impact the vehicles fuel economy. Driving intensity was shown to decrease fuel economy by up to half. Charging completeness, which was affected by human factors and ambient temperature conditions, also showed to have great impact on fuel economy for the Hymotion Prius. These tests were performed for the U.S. Department of Energys Advanced Vehicle Testing Activity. The Advanced Vehicle Testing Activity, part of the U.S. Department of Energys Vehicle Technology Program, is conducted by the Idaho National Laboratory and the Electric Transportation Engineering Corporation.

  1. BEEST: Electric Vehicle Batteries

    SciTech Connect (OSTI)

    2010-07-01

    BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-Es BEEST Project, short for Batteries for Electrical Energy Storage in Transportation, could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

  2. U.S. Department of Energy -- Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle Testing and Demonstration Activities

    SciTech Connect (OSTI)

    James E. Francfort; Donald Karner; John G. Smart

    2009-05-01

    The U.S. Department of Energys (DOE) Advanced Vehicle Testing Activity (AVTA) tests plug-in hybrid electric vehicles (PHEV) in closed track, dynamometer and onroad testing environments. The onroad testing includes the use of dedicated drivers on repeated urban and highway driving cycles that range from 10 to 200 miles, with recharging between each loop. Fleet demonstrations with onboard data collectors are also ongoing with PHEVs operating in several dozen states and Canadian Provinces, during which trips- and miles-per-charge, charging demand and energy profiles, and miles-per-gallon and miles-per-kilowatt-hour fuel use results are all documented, allowing an understanding of fuel use when vehicles are operated in charge depleting, charge sustaining, and mixed charge modes. The intent of the PHEV testing includes documenting the petroleum reduction potential of the PHEV concept, the infrastructure requirements, and operator recharging influences and profiles. As of May 2008, the AVTA has conducted track and dynamometer testing on six PHEV conversion models and fleet testing on 70 PHEVs representing nine PHEV conversion models. A total of 150 PHEVs will be in fleet testing by the end of 2008, all with onboard data loggers. The onroad testing to date has demonstrated 100+ miles per gallon results in mostly urban applications for approximately the first 40 miles of PHEV operations. The primary goal of the AVTA is to provide advanced technology vehicle performance benchmark data for technology modelers, research and development programs, and technology goal setters. The AVTA testing results also assist fleet managers in making informed vehicle purchase, deployment and operating decisions. The AVTA is part of DOEs Vehicle Technologies Program. These AVTA testing activities are conducted by the Idaho National Laboratory and Electric Transportation Engineering Corporation, with Argonne National Laboratory providing dynamometer testing support. The proposed paper and presentation will discuss PHEV testing activities and results. INL/CON-08-14333

  3. Plug-In Hybrid Vehicle Analysis (Milestone Report)

    SciTech Connect (OSTI)

    Markel, T.; Brooker, A.; Gonder, J.; O'Keefe, M.; Simpson, A.; Thornton, M.

    2006-11-01

    NREL's plug-in hybrid electric vehicle (PHEV) analysis activities made great strides in FY06 to objectively assess PHEV technology, support the larger U.S. Department of Energy PHEV assessment effort, and share technical knowledge with the vehicle research community and vehicle manufacturers. This report provides research papers and presentations developed in FY06 to support these efforts. The report focuses on the areas of fuel economy reporting methods, cost and consumption benefit analysis, real-world performance expectations, and energy management strategies.

  4. Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

    2010-06-01

    This report examines energy use and emissions from primary energy source through vehicle operation to help researchers understand the impact of the upstream mix of electricity generation technologies for recharging plug-in hybrid electric vehicles (PHEVs), as well as the powertrain technology and fuel sources for PHEVs.

  5. Hybrid and Plug-in Electric Vehicles

    SciTech Connect (OSTI)

    2014-05-20

    Hybrid and plug-in electric vehicles use electricity either as their primary fuel or to improve the efficiency of conventional vehicle designs. This new generation of vehicles, often called electric drive vehicles, can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles(PHEVs), and all-electric vehicles (EVs). Together, they have great potential to reduce U.S. petroleum use.

  6. Light Duty Plug-in Hybrid Vehicle Systems Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty Plug-in Hybrid Vehicle Systems Analysis Light Duty Plug-in Hybrid Vehicle Systems Analysis 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon vss_08_markel.pdf More Documents & Publications Real-World PHEV Fuel Economy Prediction Advanced HEV/PHEV Concepts Heavy-Duty Vehicle Field Evaluations

  7. Integrated Vehicle Thermal Management … Combining Fluid Loops in Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Drive Vehicles | Department of Energy vss046_rugh_2011_o

  8. Vehicle Technologies Office Merit Review 2015: Integrated Boosting and Hybridization for Extreme Fuel Economy and Downsizing

    Broader source: Energy.gov [DOE]

    Presentation given by Eaton at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about integrated boosting and hybridization...

  9. Better Buildings Webinar Transcription- Financial Vehicles within an Integrated Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    "Financial Vehicles Within an Integrated Energy Efficiency Program," webinar transcript from the U.S. Department of Energy's Better Buildings program.

  10. Advanced Vehicle Testing Activity (AVTA) - Vehicle Testing and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Activities | Department of Energy Activity (AVTA) - Vehicle Testing and Demonstration Activities Advanced Vehicle Testing Activity (AVTA) - Vehicle Testing and Demonstration Activities 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon vss_01_francfort.pdf More Documents & Publications AVTA HEV, NEV, BEV and HICEV Demonstrations and Testing AVTA … PHEV Demonstrations and

  11. Fuel Cell and Battery Electric Vehicles Compared

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Level PHEVs Fuel Cell and Battery Electric Vehicles Compared By C. E. (Sandy) Thomas, Ph.D., President H 2 Gen Innovations, Inc. Alexandria, Virginia Thomas@h2gen.com 1.0 Introduction Detailed computer simulations demonstrate that all-electric vehicles will be required to meet our energy security and climate change reduction goals 1 . As shown in Figure 1, hybrid electric vehicles (HEV's) and plug-in hybrid electric vehicles (PHEV's) both reduce greenhouse gas (GHG) emissions, but neither of

  12. Integrated Vehicle Thermal Management … Combining Fluid Loops in Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Drive Vehicles | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon vss046_rugh_2012

  13. Ford Plug-In Project: Bringing PHEVs to Market Demonstration and Validation Project

    SciTech Connect (OSTI)

    2013-12-31

    This project is in support of our national goal to reduce our dependence on fossil fuels. By supporting efforts that contribute toward the successful mass production of plug-in hybrid electric vehicles, our nation’s transportation-related fuel consumption can be offset with energy from the grid. Over four and a half years ago, when this project was originally initiated, plug-in electric vehicles were not readily available in the mass marketplace. Through the creation of a 21 unit plug-in hybrid vehicle fleet, this program was designed to demonstrate the feasibility of the technology and to help build cross-industry familiarity with the technology and interface of this technology with the grid. Ford Escape PHEV Demonstration Fleet 3 March 26, 2014 Since then, however, plug-in vehicles have become increasingly more commonplace in the market. Ford, itself, now offers an all-electric vehicle and two plug-in hybrid vehicles in North America and has announced a third plug-in vehicle offering for Europe. Lessons learned from this project have helped in these production vehicle launches and are mentioned throughout this report. While the technology of plugging in a vehicle to charge a high voltage battery with energy from the grid is now in production, the ability for vehicle-to-grid or bi-directional energy flow was farther away than originally expected. Several technical, regulatory and potential safety issues prevented progressing the vehicle-to-grid energy flow (V2G) demonstration and, after a review with the DOE, V2G was removed from this demonstration project. Also proving challenging were communications between a plug-in vehicle and the grid or smart meter. While this project successfully demonstrated the vehicle to smart meter interface, cross-industry and regulatory work is still needed to define the vehicle-to-grid communication interface.

  14. Plug-In Electric Vehicle Integration with Renewables

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  15. Integrated Vehicle Thermal Management … Combining Fluid Loops in Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  16. Integrated Vehicle Thermal Management ? Combining Fluid Loops in Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  17. PHEV Energy Storage Performance/Life/Cost Trade-Off Analysis (Presentation)

    SciTech Connect (OSTI)

    Markel, T.; Smith, K.; Pesaran, A.

    2008-05-15

    Developed linked parametric modeling tools to mathematically evaluate battery designs to satisfy challenging operational requirements for a PHEV.

  18. Vehicle Technologies Office Merit Review 2014: Integrated Vehicle Thermal Management – Combining Fluid Loops in Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  19. JCS PHEV System Development-USABC

    Office of Energy Efficiency and Renewable Energy (EERE)

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  20. A High-Performance PHEV Battery Pack

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  1. A High-Performance PHEV Battery Pack

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  2. NREL: Distributed Grid Integration - Vehicle-to-Grid Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle-to-Grid Project NREL engineers test and analyze electrical vehicle charging and discharging to the electric grid, known as Vehicle-to-Grid (V2G). Testing is conducted at NREL's Distributed Energy Resources Test Facility, where researchers connect, instrument, and test V2G platforms. NREL provides calibrated, high-resolution data acquisition, grid simulation, and 240 volt alternating current residential transformer connect-ability for real world analysis. NREL is currently working with

  3. Vehicle Technologies Office Merit Review 2015: PEV / Grid Integration Study

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about PEV /...

  4. Integrated Mathematical Modeling Software Series of Vehicle Propulsion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mathematical Modeling Software Series of Vehicle Propulsion System: (1) Tractive Effort (T ... and Performance Data Collection and Analysis Program WORKSHOP REPORT: Trucks and ...

  5. PEV Grid Integration Research - Vehicles, Buildings, and Renewables...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for enabling the export of vehicle power to assist in grid outages and disaster-recovery efforts Local ... * Oscilloscopes for detail electrical system impacts analysis ...

  6. Vehicle Technologies Office Merit Review 2014: PEV Integration with Renewables

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about PEV...

  7. Grid-Integrated Fleet & Workplace Charging for Plug-in Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid-Integrated Fleet & Workplace Charging for ! Plug-in Electric Vehicles ! J.C. Martin Workplace Charging Challenge - Summit 2014 November 18, 2014 © 2011San Diego Gas & Electric Company. All copyright and trademark rights reserved. SDG&E Goal - Grid Integrated Charging ! Create an excellent customer experience and accelerate the growth of electric transportation by ensuring the safe, reliable and efficient integration of EV loads with the grid * More plug-in electric vehicles *

  8. Vehicle Battery Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery Basics Vehicle Battery Basics November 22, 2013 - 1:58pm Addthis Vehicle Battery Basics Batteries are essential for electric drive technologies such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (EVs). WHAT IS A BATTERY? A battery is a device that stores chemical energy and converts it on demand into electrical energy. It carries out this process through an electrochemical reaction, which is a chemical reaction involving the

  9. Do You Drive a Hybrid Electric Vehicle? | Department of Energy

    Office of Environmental Management (EM)

    Drive a Hybrid Electric Vehicle? Do You Drive a Hybrid Electric Vehicle? July 9, 2009 - 1:34am Addthis In Tuesday's entry, Francis X. Vogel from the Wisconsin Clean Cities coalition told us about his plug-in hybrid electric vehicle (PHEV). He's one of the lucky few in the United States to drive one of these vehicles because factory-made PHEV's are not yet available to the public. Regular hybrid electric vehicles, however, are widely available and seem to be more and more common on the roads. Do

  10. Electric Vehicle Grid Integration for Sustainable Military Installations (Presentation), National Renewable Energy Laboratory (NREL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Vehicle Grid Integration for Sustainable Military Installations NDIA Joint Service Power Expo Mike Simpson Mike.Simpson@NREL.gov 5 May 2011 NREL/PR-5400-51519 NATIONAL RENEWABLE ENERGY LABORATORY Agenda 2 1. NREL Transportation Research 2. Net Zero Energy Installations (NZEI) 3. Fort Carson as a Case Study - Vehicles On-Site - Utility Operations - Vehicle Charge Management 4. Full Fleet Simulation 5. Continuing Work NATIONAL RENEWABLE ENERGY LABORATORY NREL is the only national

  11. Fabricate PHEV Cells for Testing & Diagnostics

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  12. A High-Performance PHEV Battery Pack

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  13. Standards for PHEV/EV Communications Protocol

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  14. Integrated Vehicle and Powertrain Technology for EPA 2010 and Beyond

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  15. Vehicle Technologies Office Merit Review 2014: Technology Integration Overview

    Broader source: Energy.gov [DOE]

    Presentation given by U.S. Department of Energy at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting providing an overview of...

  16. Determining PHEV Performance Potential User and Environmental Influences on A123 Systems Hymotion Plug-In Conversion Module for the Toyota Prius

    SciTech Connect (OSTI)

    John G. Smart; Huang Iu

    2009-05-01

    A123Systemss HymotionTM L5 Plug-in Conversion Module (PCM) is a supplemental battery system that converts the Toyota Prius hybrid electric vehicle (HEV) into a plug-in hybrid electric vehicle (PHEV). The Hymotion system uses a lithium ion battery pack with 4.5 kWh of useable energy capacity and recharges by plugging into a standard 110/120V outlet. The system is designed to more than double the Prius fuel efficiency for 30-50km of charge depleting range. This paper will cover efforts by A123 Systems and the Idaho National Laboratory in studying the on-road performance of this PHEV fleet. The performance potentials of various fleets will be compared in order to determine the major influences on overall performance.

  17. Vehicle Technologies Office: Advanced Vehicle Testing Activity (AVTA) Data and Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office supports work to develop test procedures and carry out testing on a wide range of advanced vehicles and technologies through the Advanced Vehicle Testing Activity (AVTA). These standard procedures and test specifications are used to test and collect data from vehicles on dynamometers, closed test tracks and on-the-road testing for hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs), neighborhood electric vehicles (NEVs), diesel vehicles and compressed natural gas (CNG) vehicles. In addition, it also tests components such as batteries and charging infrastructure.

  18. PHEV Battery Cost Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon es111_gallagher_2011_o.pdf More Documents & Publications Promises and Challenges of Lithium- and Manganese-Rich Transition-Metal Layered-Oxide Cathodes Vehicle Technologies Office Merit Review 2014: Electrochemical Modeling of LMR-NMC Materials and Electrodes Validation of Electrode Materials and Cell Chemistries

  19. Economics of Plug-In Hybrid Electric Vehicles (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    Plug-In hybrid electric vehicles (PHEVs) have gained significant attention in recent years, as concerns about energy, environmental, and economic securityincluding rising gasoline prices have prompted efforts to improve vehicle fuel economy and reduce petroleum consumption in the transportation sector. PHEVs are particularly well suited to meet these objectives, because they have the potential to reduce petroleum consumption both through fuel economy gains and by substituting electric power for gasoline use.

  20. Hybrid and Plug-In Electric Vehicles (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: * Hybrid electric vehicles (HEVs) * Plug-in hybrid electric vehicles (PHEVs) * All-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions. Hybrid Electric Vehicles HEVs are powered by an internal combustion engine (ICE) and by an electric motor that uses energy stored

  1. Integration Issues of Cells into Battery Packs for Plug-in and Hybrid Electric Vehicles: Preprint

    SciTech Connect (OSTI)

    Pesaran, A. A.; Kim, G. H.; Keyser, M.

    2009-05-01

    The main barriers to increased market share of hybrid electric vehicles (HEVs) and commercialization of plug-in HEVs are the cost, safety, and life of lithium ion batteries. Significant effort is being directed to address these issues for lithium ion cells. However, even the best cells may not perform as well when integrated into packs for vehicles because of the environment in which vehicles operate. This paper discusses mechanical, electrical, and thermal integration issues and vehicle interface issues that could impact the cost, life, and safety of the system. It also compares the advantages and disadvantages of using many small cells versus a few large cells and using prismatic cells versus cylindrical cells.

  2. Plug-In Electric Vehicle Fast Charge Station Operational Analysis with Integrated Renewables: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plug-in Electric Vehicle Fast Charge Station Operational Analysis with Integrated Renewables Preprint M. Simpson and T. Markel Presented at the International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 26 (EVS26) Los Angeles, California May 6 - 9, 2012 Conference Paper NREL/CP-5400-53914 August 2012 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No.

  3. Assessing Energy Impact of Plug-In Hybrid Electric Vehicles: Significance of Daily Distance Variation over Time and Among Drivers

    SciTech Connect (OSTI)

    Lin, Zhenhong [ORNL; Greene, David L [ORNL

    2012-01-01

    Accurate assessment of the impact of plug-in hybrid electric vehicles (PHEVs) on petroleum and electricity consumption is a necessary step toward effective policies. Variations in daily vehicle miles traveled (VMT) over time and among drivers affect PHEV energy impact, but the significance is not well understood. This paper uses a graphical illustration, a mathematical derivation, and an empirical study to examine the cause and significance of such an effect. The first two methods reveal that ignoring daily variation in VMT always causes underestimation of petroleum consumption and overestimation of electricity consumption by PHEVs; both biases increase as the assumed PHEV charge-depleting (CD) range moves closer to the average daily VMT. The empirical analysis based on national travel survey data shows that the assumption of uniform daily VMT over time and among drivers causes nearly 68% underestimation of expected petroleum use and nearly 48% overestimation of expected electricity use by PHEVs with a 40-mi CD range (PHEV40s). Also for PHEV40s, consideration of daily variation in VMT over time but not among drivers similar to the way the utility factor curve is derived in SAE Standard SAE J2841 causes underestimation of expected petroleum use by more than 24% and overestimation of expected electricity use by about 17%. Underestimation of petroleum use and overestimation of electricity use increase with larger-battery PHEVs.

  4. Fact #876: June 8, 2015 Plug-in Electric Vehicle Penetration by State, 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 6: June 8, 2015 Plug-in Electric Vehicle Penetration by State, 2014 Fact #876: June 8, 2015 Plug-in Electric Vehicle Penetration by State, 2014 Plug-in electric vehicles (PEVs) include battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs). The first mass marketed PEVs were introduced in 2010 with the Nissan Leaf, which is a BEV, and the Chevrolet Volt, which is a PHEV. After four years of sales, California had the most PEV registrations of any

  5. Hybrid and Plug-In Electric Vehicles (Spanish Version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect (OSTI)

    2015-08-01

    This is a Spanish-language brochure about hybrid and plug-in electric vehicles, which use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  6. Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory

    SciTech Connect (OSTI)

    Parks, K.; Denholm, P.; Markel, T.

    2007-05-01

    The combination of high oil costs, concerns about oil security and availability, and air quality issues related to vehicle emissions are driving interest in plug-in hybrid electric vehicles (PHEVs). PHEVs are similar to conventional hybrid electric vehicles, but feature a larger battery and plug-in charger that allows electricity from the grid to replace a portion of the petroleum-fueled drive energy. PHEVs may derive a substantial fraction of their miles from grid-derived electricity, but without the range restrictions of pure battery electric vehicles. As of early 2007, production of PHEVs is essentially limited to demonstration vehicles and prototypes. However, the technology has received considerable attention from the media, national security interests, environmental organizations, and the electric power industry. The use of PHEVs would represent a significant potential shift in the use of electricity and the operation of electric power systems. Electrification of the transportation sector could increase generation capacity and transmission and distribution (T&D) requirements, especially if vehicles are charged during periods of high demand. This study is designed to evaluate several of these PHEV-charging impacts on utility system operations within the Xcel Energy Colorado service territory.

  7. NREL Vehicle Testing and Integration Facility (VTIF): Rotating Shadowband Radiometer (RSR); Golden, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lustbader, J.; Andreas, A.

    This measurement station at NREL's Vehicle Testing and Integration Facility (VTIF) monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment.

  8. NREL Vehicle Testing and Integration Facility (VTIF): Rotating Shadowband Radiometer (RSR); Golden, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lustbader, J.; Andreas, A.

    2012-04-01

    This measurement station at NREL's Vehicle Testing and Integration Facility (VTIF) monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment.

  9. Plug-In Hybrid Electric Vehicle Value Proposition Study: Interim Report: Phase I Scenario Evaluation

    SciTech Connect (OSTI)

    Sikes, Karen R; Markel, Lawrence C; Hadley, Stanton W; Hinds, Shaun; DeVault, Robert C

    2009-01-01

    Plug-in hybrid electric vehicles (PHEVs) offer significant improvements in fuel economy, convenient low-cost recharging capabilities, potential environmental benefits, and decreased reliance on imported petroleum. However, the cost associated with new components (e.g., advanced batteries) to be introduced in these vehicles will likely result in a price premium to the consumer. This study aims to overcome this market barrier by identifying and evaluating value propositions that will increase the qualitative value and/or decrease the overall cost of ownership relative to the competing conventional vehicles and hybrid electric vehicles (HEVs) of 2030 During this initial phase of this study, business scenarios were developed based on economic advantages that either increase the consumer value or reduce the consumer cost of PHEVs to assure a sustainable market that can thrive without the aid of state and Federal incentives or subsidies. Once the characteristics of a thriving PHEV market have been defined for this timeframe, market introduction steps, such as supportive policies, regulations and temporary incentives, needed to reach this level of sustainability will be determined. PHEVs have gained interest over the past decade for several reasons, including their high fuel economy, convenient low-cost recharging capabilities, potential environmental benefits and reduced use of imported petroleum, potentially contributing to President Bush's goal of a 20% reduction in gasoline use in ten years, or 'Twenty in Ten'. PHEVs and energy storage from advanced batteries have also been suggested as enabling technologies to improve the reliability and efficiency of the electric power grid. However, PHEVs will likely cost significantly more to purchase than conventional or other hybrid electric vehicles (HEVs), in large part because of the cost of batteries. Despite the potential long-term savings to consumers and value to stakeholders, the initial cost of PHEVs presents a major market barrier to their widespread commercialization. The purpose of this project is to identify and evaluate value-added propositions for PHEVs that will help overcome this market barrier. Candidate value propositions for the initial case study were chosen to enhance consumer acceptance of PHEVs and/or compatibility with the grid. Potential benefits of such grid-connected vehicles include the ability to supply peak load or emergency power requirements of the grid, enabling utilities to size their generation capacity and contingency resources at levels below peak. Different models for vehicle/battery ownership, leasing, financing and operation, as well as the grid, communications, and vehicle infrastructure needed to support the proposed value-added functions were explored during Phase 1. Rigorous power system, vehicle, financial and emissions modeling were utilized to help identify the most promising value propositions and market niches to focus PHEV deployment initiatives.

  10. Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Jeffrey R. Belt

    2010-12-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEVs. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

  11. Optimizing and Diversifying the Electric Range of Plug-in Hybrid Electric Vehicles for U.S. Drivers

    SciTech Connect (OSTI)

    Lin, Zhenhong

    2012-01-01

    To provide useful information for automakers to design successful plug-in hybrid electric vehicle (PHEV) products and for energy and environmental analysts to understand the social impact of PHEVs, this paper addresses the question of how many of the U.S. consumers, if buying a PHEV, would prefer what electric ranges. The Market-oriented Optimal Range for PHEV (MOR-PHEV) model is developed to optimize the PHEV electric range for each of 36,664 sampled individuals representing U.S. new vehicle drivers. The optimization objective is the minimization of the sum of costs on battery, gasoline, electricity and refueling hassle. Assuming no battery subsidy, the empirical results suggest that: 1) the optimal PHEV electric range approximates two thirds of one s typical daily driving distance in the near term, defined as $450/kWh battery delivered price and $4/gallon gasoline price. 2) PHEVs are not ready to directly compete with HEVs at today s situation, defined by the $600/kWh battery delivered price and the $3-$4/gallon gasoline price, but can do so in the near term. 3) PHEV10s will be favored by the market over longer-range PHEVs in the near term, but longer-range PHEVs can dominate the PHEV market if gasoline prices reach as high as $5-$6 per gallon and/or battery delivered prices reach as low as $150-$300/kWh. 4) PHEVs can become much more attractive against HEVs in the near term if the electric range can be extended by only 10% with multiple charges per day, possible with improved charging infrastructure or adapted charging behavior. 5) the impact of a $100/kWh decrease in battery delivered prices on the competiveness of PHEVs against HEVs can be offset by about $1.25/gallon decrease in gasoline prices, or about 7/kWh increase in electricity prices. This also means that the impact of a $1/gallon decrease in gasoline prices can be offset by about 5/kWh decrease in electricity prices.

  12. Control Strategies for Electric Vehicle (EV) Charging Using Renewables and

    Office of Scientific and Technical Information (OSTI)

    Local Storage (Conference) | SciTech Connect Control Strategies for Electric Vehicle (EV) Charging Using Renewables and Local Storage Citation Details In-Document Search Title: Control Strategies for Electric Vehicle (EV) Charging Using Renewables and Local Storage The increase of electric vehicle (EV) and plug-in hybrid-electric vehicle (PHEV) adoption creates a need for more EV supply equipment (EVSE) infrastructure (i.e., EV chargers). The impact of EVSE installations could be significant

  13. Plug-In Hybrid Electric Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plug-In Hybrid Electric Vehicles Plug-In Hybrid Electric Vehicles A new study released on Plug-in Hybrid Electric Vehicles (PHEVs) found there is enough electric capacity to power plug-in vehicles across much of the nation. The Office of Electricity Delivery and Energy Reliability supported researchers at the Pacific Northwest National Laboratory to develop this study that found "off-peak" electricity production and transmission capacity could fuel 84 percent of the 198 million cars,

  14. Fact #878: June 22, 2015 Plug-in Vehicle Penetration in Selected Countries,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 | Department of Energy 8: June 22, 2015 Plug-in Vehicle Penetration in Selected Countries, 2014 Fact #878: June 22, 2015 Plug-in Vehicle Penetration in Selected Countries, 2014 The International Energy Agency released the 2015 report Hybrid and Electric Vehicles, The Electric Drive Delivers which shows the total number of plug-in electric vehicles (PEVs) in selected countries. PEVs include both battery electric vehicles (BEVs) and plug-in hybrid electric vehicles or PHEVs. The United

  15. 2011 Chevrolet Volt VIN 0815 Plug-In Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01

    The U.S. Department of Energy (DOE) Advanced Vehicle Testing Activity (AVTA) program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on plug-in hybrid electric vehicles (PHEVs), including testing the PHEV batteries when both the vehicles and batteries are new and at the conclusion of 12,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Chevrolet Volt PHEV (VIN 1G1RD6E48BU100815). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec) dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  16. Choices and Requirements of Batteries for EVs, HEVs, PHEVs (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A. A.

    2011-04-01

    This presentation describes the choices available and requirements for batteries for electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles.

  17. AVTA … PHEV Demonstrations and Testing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Idaho National Laboratory Testing of Advanced Technology Vehicles Idaho National Laboratory Testing of Advanced Technology Vehicles Advanced Vehicle Benchmarking of HEVs and ...

  18. Optimal Energy Management of a PHEV Using Trip Information |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Energy Management Electric Drive Vehicle Level Control Development Under Various Thermal Conditions Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth)

  19. vehicles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    vehicles - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  20. An Integrated Onboard Charger and Accessary Power Converter for Plug-in Electric Vehicles

    SciTech Connect (OSTI)

    Su, Gui-Jia; Tang, Lixin

    2013-01-01

    Abstract: In this paper, an integrated onboard battery charger and accessary dc-dc converter for plug-in electric vehicles (PEVs) is presented. The idea is to utilize the already available traction drive inverters and motors of a PEV as the frond converter of the charger circuit and the transformer of the 14 V accessary dc-dc converter to provide galvanic isolation. The topology was verified by modeling and experimental results on a 5 kW charger prototype

  1. DOD/NREL Model Integrates Vehicles, Renewables & Microgrid (Fact Sheet), Transportation Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    front lines of national security, the Department of Defense (DOD) recognizes how adoption of renewable energy is vital to reducing dependence on foreign oil, addressing greenhouse gas emissions and maximizing resource utilization. NREL is working with DOD and the U.S. Army Corps of Engineers to specify a system that integrates solar photovoltaics, plug-in electric vehicles and a renewable energy management unit with a microgrid at Fort Carson, a large Army facility in Colorado. Through the

  2. Interim Test Procedures for Evaluating Electrical Performance and Grid Integration of Vehicle-to-Grid Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interim Test Procedures for Evaluating Electrical Performance and Grid Integration of Vehicle-to-Grid Applications S. Chakraborty, W. Kramer, B. Kroposki, G. Martin, P. McNutt, M. Kuss, T. Markel, and A. Hoke Technical Report NREL/TP-5500-51001 June 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado

  3. Well-to-wheels analysis of energy use and greenhouse gas emissions of plug-in hybrid electric vehicles.

    SciTech Connect (OSTI)

    Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

    2010-06-14

    Plug-in hybrid electric vehicles (PHEVs) are being developed for mass production by the automotive industry. PHEVs have been touted for their potential to reduce the US transportation sector's dependence on petroleum and cut greenhouse gas (GHG) emissions by (1) using off-peak excess electric generation capacity and (2) increasing vehicles energy efficiency. A well-to-wheels (WTW) analysis - which examines energy use and emissions from primary energy source through vehicle operation - can help researchers better understand the impact of the upstream mix of electricity generation technologies for PHEV recharging, as well as the powertrain technology and fuel sources for PHEVs. For the WTW analysis, Argonne National Laboratory researchers used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed by Argonne to compare the WTW energy use and GHG emissions associated with various transportation technologies to those associated with PHEVs. Argonne researchers estimated the fuel economy and electricity use of PHEVs and alternative fuel/vehicle systems by using the Powertrain System Analysis Toolkit (PSAT) model. They examined two PHEV designs: the power-split configuration and the series configuration. The first is a parallel hybrid configuration in which the engine and the electric motor are connected to a single mechanical transmission that incorporates a power-split device that allows for parallel power paths - mechanical and electrical - from the engine to the wheels, allowing the engine and the electric motor to share the power during acceleration. In the second configuration, the engine powers a generator, which charges a battery that is used by the electric motor to propel the vehicle; thus, the engine never directly powers the vehicle's transmission. The power-split configuration was adopted for PHEVs with a 10- and 20-mile electric range because they require frequent use of the engine for acceleration and to provide energy when the battery is depleted, while the series configuration was adopted for PHEVs with a 30- and 40-mile electric range because they rely mostly on electrical power for propulsion. Argonne researchers calculated the equivalent on-road (real-world) fuel economy on the basis of U.S. Environmental Protection Agency miles per gallon (mpg)-based formulas. The reduction in fuel economy attributable to the on-road adjustment formula was capped at 30% for advanced vehicle systems (e.g., PHEVs, fuel cell vehicles [FCVs], hybrid electric vehicles [HEVs], and battery-powered electric vehicles [BEVs]). Simulations for calendar year 2020 with model year 2015 mid-size vehicles were chosen for this analysis to address the implications of PHEVs within a reasonable timeframe after their likely introduction over the next few years. For the WTW analysis, Argonne assumed a PHEV market penetration of 10% by 2020 in order to examine the impact of significant PHEV loading on the utility power sector. Technological improvement with medium uncertainty for each vehicle was also assumed for the analysis. Argonne employed detailed dispatch models to simulate the electric power systems in four major regions of the US: the New England Independent System Operator, the New York Independent System Operator, the State of Illinois, and the Western Electric Coordinating Council. Argonne also evaluated the US average generation mix and renewable generation of electricity for PHEV and BEV recharging scenarios to show the effects of these generation mixes on PHEV WTW results. Argonne's GREET model was designed to examine the WTW energy use and GHG emissions for PHEVs and BEVs, as well as FCVs, regular HEVs, and conventional gasoline internal combustion engine vehicles (ICEVs). WTW results are reported for charge-depleting (CD) operation of PHEVs under different recharging scenarios. The combined WTW results of CD and charge-sustaining (CS) PHEV operations (using the utility factor method) were also examined and reported. According to the utility factor method, the share of vehicle miles traveled during CD operation is 25% for PHEV10 and 51% for PHEV40. Argonne's WTW analysis of PHEVs revealed that the following factors significantly impact the energy use and GHG emissions results for PHEVs and BEVs compared with baseline gasoline vehicle technologies: (1) the regional electricity generation mix for battery recharging and (2) the adjustment of fuel economy and electricity consumption to reflect real-world driving conditions. Although the analysis predicted the marginal electricity generation mixes for major regions in the United States, these mixes should be evaluated as possible scenarios for recharging PHEVs because significant uncertainties are associated with the assumed market penetration for these vehicles. Thus, the reported WTW results for PHEVs should be directly correlated with the underlying generation mix, rather than with the region linked to that mix.

  4. EV/PHEV Bidirectional Charger Assessment for V2G Reactive Power Operation

    SciTech Connect (OSTI)

    Kisacikoglu, Mithat C; Ozpineci, Burak; Tolbert, Leon M

    2013-01-01

    This paper presents a summary of the available single-phase ac-dc topologies used for EV/PHEV, level-1 and -2 on-board charging and for providing reactive power support to the utility grid. It presents the design motives of single-phase on-board chargers in detail and makes a classification of the chargers based on their future vehicle-to-grid usage. The pros and cons of each different ac-dc topology are discussed to shed light on their suitability for reactive power support. This paper also presents and analyzes the differences between charging-only operation and capacitive reactive power operation that results in increased demand from the dc-link capacitor (more charge/discharge cycles and increased second harmonic ripple current). Moreover, battery state of charge is spared from losses during reactive power operation, but converter output power must be limited below its rated power rating to have the same stress on the dc-link capacitor.

  5. Xcel/NREL study: With a smart grid, plug-in hybrid electric vehicles could

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    have system benefits - News Releases | NREL Xcel/NREL study: With a smart grid, plug-in hybrid electric vehicles could have system benefits February 21, 2007 Xcel Energy today announced the results of a six-month study related to plug-in hybrid electric vehicles (PHEVs) and how an increase in their popularity may affect Colorado. The study found that PHEVs may result in a reduction of the overall expense of owning a vehicle and, with the help of smart-grid technologies, eliminate harmful

  6. Fact #595: November 2, 2009 Plug-in Hybrid Vehicle Purchases May Depend on

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Savings and Incremental Cost | Department of Energy 5: November 2, 2009 Plug-in Hybrid Vehicle Purchases May Depend on Fuel Savings and Incremental Cost Fact #595: November 2, 2009 Plug-in Hybrid Vehicle Purchases May Depend on Fuel Savings and Incremental Cost The recently released results of a 2008 survey on plug-in hybrid vehicles (PHEVs) show that 42% of respondents said there was some chance that they would buy a PHEV sometime in the future. Questions were also asked that gave an

  7. Fact #798: September 23, 2013 Plug-in Hybrid Vehicle Driving Range |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 8: September 23, 2013 Plug-in Hybrid Vehicle Driving Range Fact #798: September 23, 2013 Plug-in Hybrid Vehicle Driving Range For the 2013 model year (MY) there are four plug-in hybrid electric vehicles (PHEVs) available to consumers. PHEVs offer a limited amount of all-electric driving range that is drawn from a plug and uses a gasoline engine to provide additional range when the battery is depleted. The automakers have taken different approaches to employing this

  8. AVTA: 2013 Ford C-Max Energi PHEV Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road....

  9. AVTA: 2013 Ford Fusion Energi PHEV Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. ...

  10. AVTA: 2012 Chevrolet Volt PHEV Downloadable Dynamometer Database Reports

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. ...

  11. Recovery Act - Sustainable Transportation: Advanced Electric Drive Vehicle Education Program

    SciTech Connect (OSTI)

    Caille, Gary

    2013-12-13

    The collective goals of this effort include: 1) reach all facets of this society with education regarding electric vehicles (EV) and plugin hybrid electric vehicles (PHEV), 2) prepare a workforce to service these advanced vehicles, 3) create webbased learning at an unparalleled level, 4) educate secondary school students to prepare for their future and 5) train the next generation of professional engineers regarding electric vehicles. The Team provided an integrated approach combining secondary schools, community colleges, fouryear colleges and community outreach to provide a consistent message (Figure 1). Colorado State University Ventures (CSUV), as the prime contractor, plays a key program management and coordination role. CSUV is an affiliate of Colorado State University (CSU) and is a separate 501(c)(3) company. The Team consists of CSUV acting as the prime contractor subcontracted to Arapahoe Community College (ACC), CSU, Motion Reality Inc. (MRI), Georgia Institute of Technology (Georgia Tech) and Ricardo. Collaborators are Douglas County Educational Foundation/School District and Gooru (www.goorulearning.org), a nonprofit webbased learning resource and Google spinoff.

  12. Benefits and Challenges of Achieving a Mainstream Market for Electric Vehicles

    SciTech Connect (OSTI)

    Ungar, Edward; Mueller, Howard; Smith, Brett

    2010-08-01

    The Plug-in Hybrid electric Vehicle (PHEV) Market Introduction Study Final Report identified a range of policies, incentives and regulations designed to enhance the probability of success in commercializing PHEVs as they enter the automotive marketplace starting in 2010. The objective of the comprehensive PHEV Value Proposition study, which encompasses the PHEV Market Introduction Study, is to better understand the value proposition that PHEVs (as well as other plug-in electric vehicle platforms - PEVs) provide to the auto companies themselves, to the consumer and to the public at large as represented by the government and its public policies. In this report we use the more inclusive term PEVs, to include PHEVs, BEVs (battery electric vehicles that operate only on battery) and EREVs (extended range electric vehicles that combine battery electric vehicles with an internal combustion engine that charges the battery as needed). The objective of Taratec's contribution to Phase 2 of the PHEV Value Proposition Study is to develop a clear understanding of the benefits of PEVs to three stakeholders - auto original equipment manufacturers (OEMs), utilities, and the government - and of the technical and commercial challenges and risks to be overcome in order to achieve commercial success for these vehicles. The goal is to understand the technical and commercial challenges in moving from the 'early adopters' at the point of market introduction of these vehicles to a 'sustainable' mainstream market in which PEVs and other PEVs represent a normal, commercially available and attractive vehicle to the mainstream consumer. For the purpose of this study, that sustainable market is assumed to be in place in the 2030 timeframe. The principal focus of the study is to better understand the technical and commercial challenges in the transition from early adopters to a sustainable mainstream consumer market. Effectively, that translates to understanding the challenges to be overcome during the transition period - basically the middle years as the second and third generation of these vehicles are developed and come to market. The concern is to understand those things that in the near term would delay that transition. The study looked at identifying and then quantifying these technical and commercial risks and benefits from three perspectives: (1) The auto industry original equipment manufacturers (OEMs) themselves; (2) The utilities who will provide the electric 'fuel' that will fully or partially power the vehicles; and (3) The government, representing public policy interest in PEV success. By clarifying and quantifying these benefits and the technical and commercial risks that could delay the transition to a sustainable mainstream market, the study provides the basis for developing recommendations for government policies and support for PHEV and PEV development.

  13. Hybrid and Plug-In Electric Vehicle Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles & Fuels » Vehicles » Hybrid and Plug-In Electric Vehicle Basics Hybrid and Plug-In Electric Vehicle Basics August 20, 2013 - 9:13am Addthis Text Version Photo of hands holding a battery pack (grey rectangular box) for a hybrid electric vehicle. Hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (EVs)-also called electric drive vehicles collectively-use electricity either as their primary fuel or to improve the efficiency of

  14. Plug-In Electric Vehicle Fast Charge Station Operational Analysis with Integrated Renewables: Preprint

    SciTech Connect (OSTI)

    Simpson, M.; Markel, T.

    2012-08-01

    The growing, though still nascent, plug-in electric vehicle (PEV) market currently operates primarily via level 1 and level 2 charging in the United States. Fast chargers are still a rarity, but offer a confidence boost to oppose 'range anxiety' in consumers making the transition from conventional vehicles to PEVs. Because relatively no real-world usage of fast chargers at scale exists yet, the National Renewable Energy Laboratory developed a simulation to help assess fast charging needs based on real-world travel data. This study documents the data, methods, and results of the simulation run for multiple scenarios, varying fleet sizes, and the number of charger ports. The grid impact of this usage is further quantified to assess the opportunity for integration of renewables; specifically, a high frequency of fast charging is found to be in demand during the late afternoons and evenings coinciding with grid peak periods. Proper integration of a solar array and stationary battery thus helps ease the load and reduces the need for new generator construction to meet the demand of a future PEV market.

  15. Impact of Component Sizing in Plug-In Hybrid Electric Vehicles for Energy Resource and Greenhouse Emissions Reduction

    SciTech Connect (OSTI)

    Malikopoulos, Andreas

    2013-01-01

    Widespread use of alternative hybrid powertrains currently appears inevitable and many opportunities for substantial progress remain. The necessity for environmentally friendly vehicles, in conjunction with increasing concerns regarding U.S. dependency on foreign oil and climate change, has led to significant investment in enhancing the propulsion portfolio with new technologies. Recently, plug-in hybrid electric vehicles (PHEVs) have attracted considerable attention due to their potential to reduce petroleum consumption and greenhouse gas (GHG) emissions in the transportation sector. PHEVs are especially appealing for short daily commutes with excessive stop-and-go driving. However, the high costs associated with their components, and in particular, with their energy storage systems have been significant barriers to extensive market penetration of PEVs. In the research reported here, we investigated the implications of motor/generator and battery size on fuel economy and GHG emissions in a medium duty PHEV. An optimization framework is proposed and applied to two different parallel powertrain configurations, pre-transmission and post-transmission, to derive the Pareto frontier with respect to motor/generator and battery size. The optimization and modeling approach adopted here facilitates better understanding of the potential benefits from proper selection of motor/generator and battery size on fuel economy and GHG emissions. This understanding can help us identify the appropriate sizing of these components and thus reducing the PHEV cost. Addressing optimal sizing of PHEV components could aim at an extensive market penetration of PHEVs.

  16. PHEV Advanced Series Genset Development/Demonstration Activity

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  17. Ford Plug-In Project: Bringing PHEVs to Market

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  18. HEV, PHEV, EV Test Standard Development and Validation

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  19. U.S. Based HEV and PHEV Transaxle Program

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  20. Ford Plug-In Project: Bringing PHEVs to Market

    Office of Energy Efficiency and Renewable Energy (EERE)

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  1. Ford Plug-In Project: Bringing PHEVs to Market

    Office of Energy Efficiency and Renewable Energy (EERE)

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  2. Fact #796: September 9, 2013 Electric Vehicle and Plug-In Hybrid Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Sales History | Department of Energy 6: September 9, 2013 Electric Vehicle and Plug-In Hybrid Electric Vehicle Sales History Fact #796: September 9, 2013 Electric Vehicle and Plug-In Hybrid Electric Vehicle Sales History Electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) have been available in the U.S. in limited numbers for many years. The introduction of the Nissan Leaf and Chevrolet Volt at the end of 2010 mark the beginning of mainstream plug-in vehicle sales in

  3. Evaluation of Utility System Impacts and Benefits of Optimally Dispatched Plug-In Hybrid Electric Vehicles (Revised)

    SciTech Connect (OSTI)

    Denholm, P.; Short, W.

    2006-10-01

    Hybrid electric vehicles with the capability of being recharged from the grid may provide a significant decrease in oil consumption. These ''plug-in'' hybrids (PHEVs) will affect utility operations, adding additional electricity demand. Because many individual vehicles may be charged in the extended overnight period, and because the cost of wireless communication has decreased, there is a unique opportunity for utilities to directly control the charging of these vehicles at the precise times when normal electricity demand is at a minimum. This report evaluates the effects of optimal PHEV charging, under the assumption that utilities will indirectly or directly control when charging takes place, providing consumers with the absolute lowest cost of driving energy. By using low-cost off-peak electricity, PHEVs owners could purchase the drive energy equivalent to a gallon of gasoline for under 75 cents, assuming current national average residential electricity prices.

  4. Ford Plug-In Project: Bringing PHEVs to Market

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  5. Novel electrolytes and electrolyte additives for PHEV applications

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  6. Supertruck- Improving Transportation Efficiency through Integrated Vehicle, Engine and Powertrain Research

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  7. Integrated Computational Materials Engineering Approach to Development of Lightweight 3GAHSS Vehicle Assembly

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  8. Fabricate PHEV Cells for Testing & Diagnostics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon es030_jansen_2010_o.pdf More Documents & Publications Overview of Applied Battery Research Current Research Activities in Electrode and Cell Prototyping Vehicle Technologies Office: 2008 Energy Storage R&D Annual Progress Report

  9. Vehicle Technologies Office: 2010 Energy Storage R&D Annual Progress Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Energy Storage R&D Annual Progress Report Vehicle Technologies Office: 2010 Energy Storage R&D Annual Progress Report The energy storage research and development effort within the Vehicle Technologies Office (VTO) is responsible for researching and improving advanced batteries and ultracapacitors for a wide range of vehicleapplications, including HEVs, PHEVs, EVs, and fuel cell vehicles (FCVs). PDF icon 2010_energy_storage.pdf More Documents & Publications

  10. Structural investigations of layered oxide materials for PHEV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon esp19abraham.pdf More Documents & Publications Diagnostic Studies Vehicle Technologies ...

  11. Vehicle Technologies Office Merit Review 2015: Applied Integrated Computational Materials Engineering (ICME) for New Propulsion Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Applied...

  12. Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle Emission Rulemaking

    Broader source: Energy.gov [DOE]

    Presentation discusses a virtual lab which can model sophisticated future vehicle systems using three layers of model fidelity supporting each other.

  13. Battery Requirements for Plug-In Hybrid Electric Vehicles: Analysis and Rationale (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.

    2007-12-01

    Slide presentation to EVS-23 conference describing NREL work to help identify appropriate requirements for batteries to be useful for plug-in hybrid-electric vehicles (PHEVs). Suggested requirements were submitted to the U.S. Advanced Battery Consortium, which used them for a 2007 request for proposals. Requirements were provided both for charge-depleting mode and charge-sustaining mode and for high power/energy ratio and hige energy/power ration batteries for each (different modes of PHEV operation), along with battery and system level requirements.

  14. Supervisory Power Management Control Algorithms for Hybrid Electric Vehicles. A Survey

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Malikopoulos, Andreas

    2014-03-31

    The growing necessity for environmentally benign hybrid propulsion systems has led to the development of advanced power management control algorithms to maximize fuel economy and minimize pollutant emissions. This paper surveys the control algorithms for hybrid electric vehicles (HEVs) and plug-in HEVs (PHEVs) that have been reported in the literature to date. The exposition ranges from parallel, series, and power split HEVs and PHEVs and includes a classification of the algorithms in terms of their implementation and the chronological order of their appearance. Remaining challenges and potential future research directions are also discussed.

  15. Impact of Sungate EP on PHEV Performance: Results of a Simulated Solar Reflective Glass PHEV Dynamometer Test

    SciTech Connect (OSTI)

    Rugh, J.

    2009-06-01

    Composite fuel economy of a plug-in hybrid electric test vehicle increased 8% to 41.6 mpg because of the reduction in thermal loads from Sungate EP glazings installed in the windshield and backlite.

  16. Interim Test Procedures for Evaluating Electrical Performance and Grid Integration of Vehicle-to-Grid Applications

    SciTech Connect (OSTI)

    Chakraborty, S.; Kramer, W.; Kroposki, B.; Martin, G.; McNutt, P.; Kuss, M.; Markel, T.; Hoke, A.

    2011-06-01

    The objective of this report is to provide a test plan for V2G testing. The test plan is designed to test and evaluate the vehicle's power electronics capability to provide power to the grid, and to evaluate the vehicle's ability to connect and disconnect from the utility according to a subset of the IEEE Std. 1547 tests.

  17. ESTABLISHING SUSTAINABLE US HEV/PHEV MANUFACTURING BASE: STABILIZED LITHIUM METAL POWDER, ENABLING MATERIAL AND REVOLUTIONARY TECHNOLOGY FOR HIGH ENERGY LI-ION BATTERIES

    SciTech Connect (OSTI)

    Yakovleva, Marina

    2012-12-31

    FMC Lithium Division has successfully completed the project Establishing Sustainable US PHEV/EV Manufacturing Base: Stabilized Lithium Metal Powder, Enabling Material and Revolutionary Technology for High Energy Li-ion Batteries. The project included design, acquisition and process development for the production scale units to 1) produce stabilized lithium dispersions in oil medium, 2) to produce dry stabilized lithium metal powders, 3) to evaluate, design and acquire pilot-scale unit for alternative production technology to further decrease the cost, and 4) to demonstrate concepts for integrating SLMP technology into the Li- ion batteries to increase energy density. It is very difficult to satisfy safety, cost and performance requirements for the PHEV and EV applications. As the initial step in SLMP Technology introduction, industry can use commercially available LiMn2O4 or LiFePO4, for example, that are the only proven safer and cheaper lithium providing cathodes available on the market. Unfortunately, these cathodes alone are inferior to the energy density of the conventional LiCoO2 cathode and, even when paired with the advanced anode materials, such as silicon composite material, the resulting cell will still not meet the energy density requirements. We have demonstrated, however, if SLMP Technology is used to compensate for the irreversible capacity in the anode, the efficiency of the cathode utilization will be improved and the cost of the cell, based on the materials, will decrease.

  18. Well-to-wheels energy use and greenhouse gas emissions analysis of plug-in hybrid electric vehicles.

    SciTech Connect (OSTI)

    Elgowainy, A.; Burnham, A.; Wang, M.; Molburg, J.; Rousseau, A.; Energy Systems

    2009-03-31

    Researchers at Argonne National Laboratory expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model and incorporated the fuel economy and electricity use of alternative fuel/vehicle systems simulated by the Powertrain System Analysis Toolkit (PSAT) to conduct a well-to-wheels (WTW) analysis of energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW results were separately calculated for the blended charge-depleting (CD) and charge-sustaining (CS) modes of PHEV operation and then combined by using a weighting factor that represented the CD vehicle-miles-traveled (VMT) share. As indicated by PSAT simulations of the CD operation, grid electricity accounted for a share of the vehicle's total energy use, ranging from 6% for a PHEV 10 to 24% for a PHEV 40, based on CD VMT shares of 23% and 63%, respectively. In addition to the PHEV's fuel economy and type of on-board fuel, the marginal electricity generation mix used to charge the vehicle impacted the WTW results, especially GHG emissions. Three North American Electric Reliability Corporation regions (4, 6, and 13) were selected for this analysis, because they encompassed large metropolitan areas (Illinois, New York, and California, respectively) and provided a significant variation of marginal generation mixes. The WTW results were also reported for the U.S. generation mix and renewable electricity to examine cases of average and clean mixes, respectively. For an all-electric range (AER) between 10 mi and 40 mi, PHEVs that employed petroleum fuels (gasoline and diesel), a blend of 85% ethanol and 15% gasoline (E85), and hydrogen were shown to offer a 40-60%, 70-90%, and more than 90% reduction in petroleum energy use and a 30-60%, 40-80%, and 10-100% reduction in GHG emissions, respectively, relative to an internal combustion engine vehicle that used gasoline. The spread of WTW GHG emissions among the different fuel production technologies and grid generation mixes was wider than the spread of petroleum energy use, mainly due to the diverse fuel production technologies and feedstock sources for the fuels considered in this analysis. The PHEVs offered reductions in petroleum energy use as compared with regular hybrid electric vehicles (HEVs). More petroleum energy savings were realized as the AER increased, except when the marginal grid mix was dominated by oil-fired power generation. Similarly, more GHG emissions reductions were realized at higher AERs, except when the marginal grid generation mix was dominated by oil or coal. Electricity from renewable sources realized the largest reductions in petroleum energy use and GHG emissions for all PHEVs as the AER increased. The PHEVs that employ biomass-based fuels (e.g., biomass-E85 and -hydrogen) may not realize GHG emissions benefits over regular HEVs if the marginal generation mix is dominated by fossil sources. Uncertainties are associated with the adopted PHEV fuel consumption and marginal generation mix simulation results, which impact the WTW results and require further research. More disaggregate marginal generation data within control areas (where the actual dispatching occurs) and an improved dispatch modeling are needed to accurately assess the impact of PHEV electrification. The market penetration of the PHEVs, their total electric load, and their role as complements rather than replacements of regular HEVs are also uncertain. The effects of the number of daily charges, the time of charging, and the charging capacity have not been evaluated in this study. A more robust analysis of the VMT share of the CD operation is also needed.

  19. Plug-In Hybrid Electric Vehicle Value Proposition Study: Phase 1, Task 3: Technical Requirements and Procedure for Evaluation of One Scenario

    SciTech Connect (OSTI)

    Sikes, Karen R; Hinds, Shaun; Hadley, Stanton W; McGill, Ralph N; Markel, Lawrence C; Ziegler, Richard E; Smith, David E; Smith, Richard L; Greene, David L; Brooks, Daniel L; Wiegman, Herman; Miller, Nicholas; Marano, Dr. Vincenzo

    2008-07-01

    In Task 2, the project team designed the Phase 1 case study to represent the 'baseline' plug-in hybrid electric vehicle (PHEV) fleet of 2030 that investigates the effects of seventeen (17) value propositions (see Table 1 for complete list). By creating a 'baseline' scenario, a consistent set of assumptions and model parameters can be established for use in more elaborate Phase 2 case studies. The project team chose southern California as the Phase 1 case study location because the economic, environmental, social, and regulatory conditions are conducive to the advantages of PHEVs. Assuming steady growth of PHEV sales over the next two decades, PHEVs are postulated to comprise approximately 10% of the area's private vehicles (about 1,000,000 vehicles) in 2030. New PHEV models introduced in 2030 are anticipated to contain lithium-ion batteries and be classified by a blended mileage description (e.g., 100 mpg, 150 mpg) that demonstrates a battery size equivalence of a PHEV-30. Task 3 includes the determination of data, models, and analysis procedures required to evaluate the Phase 1 case study scenario. Some existing models have been adapted to accommodate the analysis of the business model and establish relationships between costs and value to the respective consumers. Other data, such as the anticipated California generation mix and southern California drive cycles, have also been gathered for use as inputs. The collection of models that encompasses the technical, economic, and financial aspects of Phase 1 analysis has been chosen and is described in this deliverable. The role of PHEV owners, utilities (distribution systems, generators, independent system operators (ISO), aggregators, or regional transmission operators (RTO)), facility owners, financing institutions, and other third parties are also defined.

  20. Electric-drive tractability indicator integrated in hybrid electric vehicle tachometer

    DOE Patents [OSTI]

    Tamai, Goro; Zhou, Jing; Weslati, Feisel

    2014-09-02

    An indicator, system and method of indicating electric drive usability in a hybrid electric vehicle. A tachometer is used that includes a display having an all-electric drive portion and a hybrid drive portion. The all-electric drive portion and the hybrid drive portion share a first boundary which indicates a minimum electric drive usability and a beginning of hybrid drive operation of the vehicle. The indicated level of electric drive usability is derived from at least one of a percent battery discharge, a percent maximum torque provided by the electric drive, and a percent electric drive to hybrid drive operating cost for the hybrid electric vehicle.

  1. Vehicle Technologies Office Merit Review 2015: Overview of VTO Technology Integration Activities

    Broader source: Energy.gov [DOE]

    Presentation given by U.S. Department of Energy at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about overview of VTO...

  2. Vehicle Technologies Office Merit Review 2015: Traction Drive Systems with Integrated Wireless Charging

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about traction drive...

  3. Improving Rangeland Monitoring and Assessment: Integrating Remote Sensing, GIS, and Unmanned Aerial Vehicle Systems

    SciTech Connect (OSTI)

    Robert Paul Breckenridge

    2007-05-01

    Creeping environmental changes are impacting some of the largest remaining intact parcels of sagebrush steppe ecosystems in the western United States, creating major problems for land managers. The Idaho National Laboratory (INL), located in southeastern Idaho, is part of the sagebrush steppe ecosystem, one of the largest ecosystems on the continent. Scientists at the INL and the University of Idaho have integrated existing field and remotely sensed data with geographic information systems technology to analyze how recent fires on the INL have influenced the current distribution of terrestrial vegetation. Three vegetation mapping and classification systems were used to evaluate the changes in vegetation caused by fires between 1994 and 2003. Approximately 24% of the sagebrush steppe community on the INL was altered by fire, mostly over a 5-year period. There were notable differences between methods, especially for juniper woodland and grasslands. The Anderson system (Anderson et al. 1996) was superior for representing the landscape because it includes playa/bare ground/disturbed area and sagebrush steppe on lava as vegetation categories. This study found that assessing existing data sets is useful for quantifying fire impacts and should be helpful in future fire and land use planning. The evaluation identified that data from remote sensing technologies is not currently of sufficient quality to assess the percentage of cover. To fill this need, an approach was designed using both helicopter and fixed wing unmanned aerial vehicles (UAVs) and image processing software to evaluate six cover types on field plots located on the INL. The helicopter UAV provided the best system compared against field sampling, but is more dangerous and has spatial coverage limitations. It was reasonably accurate for dead shrubs and was very good in assessing percentage of bare ground, litter and grasses; accuracy for litter and shrubs is questionable. The fixed wing system proved to be feasible and can collect imagery for very large areas in a short period of time. It was accurate for bare ground and grasses. Both UAV systems have limitations, but these will be reduced as the technology advances. In both cases, the UAV systems collected data at a much faster rate than possible on the ground. The study concluded that improvements in automating the image processing efforts would greatly improve use of the technology. In the near future, UAV technology may revolutionize rangeland monitoring in the same way Global Positioning Systems have affected navigation while conducting field activities.

  4. Electric Vehicle Preparedness Task 3: Detailed Assessment of Target Electrification Vehicles at Joint Base Lewis McChord Utilization

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort

    2014-08-01

    Task 2 involved identifying daily operational characteristics of select vehicles and initiating data logging of vehicle movements in order to characterize the vehicles mission. Individual observations of these selected vehicles provide the basis for recommendations related to PEV adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements and provides observations related to placement of PEV charging infrastructure. This report provides the results of the data analysis and observations related to the replacement of current vehicles with PEVs. This fulfills part of the Task 3 requirements. Task 3 also includes an assessment of charging infrastructure required to support this replacement. That is the subject of a separate report.

  5. Impact of Plug-in Hybrid Vehicles on the Electric Grid

    SciTech Connect (OSTI)

    Hadley, Stanton W

    2006-11-01

    Plug-in hybrid vehicles (PHEVs) are being developed around the world; much work is going on to optimize engine and battery operations for efficient operation, both during discharge and when grid electricity is available for recharging. However, there has generally been the expectation that the grid will not be greatly affected by the use of the vehicles, because the recharging would only occur during offpeak hours, or the number of vehicles will grow slowly enough that capacity planning will respond adequately. But this expectation does not incorporate that endusers will have control of the time of recharging and the inclination for people will be to plug in when convenient for them, rather than when utilities would prefer. It is important to understand the ramifications of introducing a number of plug-in hybrid vehicles onto the grid. Depending on when and where the vehicles are plugged in, they could cause local or regional constraints on the grid. They could require both the addition of new electric capacity along with an increase in the utilization of existing capacity. Local distribution grids will see a change in their utilization pattern, and some lines or substations may become overloaded sooner than expected. Furthermore, the type of generation used to recharge the vehicles will be different depending on the region of the country and timing when the PHEVs recharge. We conducted an analysis of what the grid impact may be in 2018 with one million PHEVs added to the VACAR sub-region of the Southeast Electric Reliability Council, a region that includes South Carolina, North Carolina, and much of Virginia. To do this, we used the Oak Ridge Competitive Electricity Dispatch model, which simulates the hourly dispatch of power generators to meet demand for a region over a given year. Depending on the vehicle, its battery, the charger voltage level, amperage, and duration, the impact on regional electricity demand varied from 1,400 to 6,000 MW. If recharging occurred in the early evening, then peak loads were raised and demands were met largely by combustion turbines and combined cycle plants. Nighttime recharging had less impact on peak loads and generation adequacy, but the increased use of coal-fired generation changed the relative amounts of air emissions. Costs of generation also fluctuated greatly depending on the timing. However, initial analysis shows that even charging at peak times may be less costly than using gasoline to operate the vehicles. Even if the overall region may have sufficient generating power, the region's transmission system or distribution lines to different areas may not be large enough to handle this new type of load. A largely residential feeder circuit may not be sized to have a significant proportion of its customers adding 1.4 to 6 kW loads that would operate continuously for two to six hours beginning in the early evening. On a broader scale, the transmission lines feeding the local substations may be similarly constrained if they are not sized to respond to this extra growth in demand. This initial analysis identifies some of the complexities in analyzing the integrated system of PHEVs and the grid. Depending on the power level, timing, and duration of the PHEV connection to the grid, there could be a wide variety of impacts on grid constraints, capacity needs, fuel types used, and emissions generated. This paper provides a brief description of plug-in hybrid vehicle characteristics in Chapter 2. Various charging strategies for vehicles are discussed, with a consequent impact on the grid. In Chapter 3 we describe the future electrical demand for a region of the country and the impact on this demand with a number of plug-in hybrids. We apply that demand to an inventory of power plants for the region using the Oak Ridge Competitive Electricity Dispatch (ORCED) model to evaluate the change in power production and emissions. In Chapter 4 we discuss the impact of demand increases on local distribution systems. In Chapter 5 we conclude and provide insights into the impacts of plug-ins. Future

  6. National Labs Work to Settle PHEV Fuel Economy Conundrum - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL National Labs Work to Settle PHEV Fuel Economy Conundrum NREL-developed methodology shows promise for estimating real-world energy use September 28, 2009 The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) recently joined forces with researchers from Idaho National Laboratory (INL) and Argonne National Laboratory (ANL) to take the lead in developing and testing a new method for predicting the real-world fuel and electricity consumption of plug-in hybrid

  7. Preliminary Assessment of Plug-in Hybrid Electric Vehicles on Wind Energy Markets

    SciTech Connect (OSTI)

    Short, W.; Denholm, P.

    2006-04-01

    This report examines a measure that may potentially reduce oil use and also more than proportionately reduce carbon emissions from vehicles. The authors present a very preliminary analysis of plug-in hybrid electric vehicles (PHEVs) that can be charged from or discharged to the grid. These vehicles have the potential to reduce gasoline consumption and carbon emissions from vehicles, as well as improve the viability of renewable energy technologies with variable resource availability. This paper is an assessment of the synergisms between plug-in hybrid electric vehicles and wind energy. The authors examine two bounding cases that illuminate this potential synergism.

  8. Fact #877: June 15, 2015 Which States Have More Battery Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    than Plug-in Hybrids? | Department of Energy 7: June 15, 2015 Which States Have More Battery Electric Vehicles than Plug-in Hybrids? Fact #877: June 15, 2015 Which States Have More Battery Electric Vehicles than Plug-in Hybrids? Plug-in electric vehicles (PEVs) include both battery electric vehicles (BEVs) which run only on electricity, and plug-in hybrid electric vehicles (PHEVs) which run on electricity and/or gasoline. Considering all PEVs within a state in 2014, the map below shows

  9. Study Released on the Potential of Plug-In Hybrid Electric Vehicles |

    Energy Savers [EERE]

    Department of Energy Study Released on the Potential of Plug-In Hybrid Electric Vehicles Study Released on the Potential of Plug-In Hybrid Electric Vehicles January 19, 2007 - 10:44am Addthis Study Released on the Potential of Plug-In Hybrid Electric Vehicles A new study released on Plug-in Hybrid Electric Vehicles (PHEVs) found there is enough electric capacity to power plug-in vehicles across much of the nation. The Office of Electricity Delivery and Energy Reliability supported

  10. Cold-Start Emissions Control in Hybrid Vehicles Equipped with a Passive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Adsorber for Hydrocarbons and NOx | Department of Energy Emissions Control in Hybrid Vehicles Equipped with a Passive Adsorber for Hydrocarbons and NOx Cold-Start Emissions Control in Hybrid Vehicles Equipped with a Passive Adsorber for Hydrocarbons and NOx Reports results from study of potential for using chemisorbing materials to temporally trap HC and NOx emissions during cold-start of HEVs and PHEVs over transient driving cycles PDF icon p-13_gao.pdf More Documents & Publications

  11. Smart electric vehicle (EV) charging and grid integration apparatus and methods

    DOE Patents [OSTI]

    Gadh, Rajit; Mal, Siddhartha; Prabhu, Shivanand; Chu, Chi-Cheng; Sheikh, Omar; Chung, Ching-Yen; He, Lei; Xiao, Bingjun; Shi, Yiyu

    2015-05-05

    An expert system manages a power grid wherein charging stations are connected to the power grid, with electric vehicles connected to the charging stations, whereby the expert system selectively backfills power from connected electric vehicles to the power grid through a grid tie inverter (if present) within the charging stations. In more traditional usage, the expert system allows for electric vehicle charging, coupled with user preferences as to charge time, charge cost, and charging station capabilities, without exceeding the power grid capacity at any point. A robust yet accurate state of charge (SOC) calculation method is also presented, whereby initially an open circuit voltage (OCV) based on sampled battery voltages and currents is calculated, and then the SOC is obtained based on a mapping between a previously measured reference OCV (ROCV) and SOC. The OCV-SOC calculation method accommodates likely any battery type with any current profile.

  12. Strategy for the Integration of Hydrogen as a Vehicle Fuel into the Existing Natural Gas Vehicle Fueling Infrastructure of the Interstate Clean Transportation Corridor Project: 22 April 2004--31 August 2005

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy National Renewable Energy Laboratory Innovation for Our Energy Future Subcontract Report Strategy for the Integration of NREL/SR-540-38720 Hydrogen as a Vehicle Fuel into September 2005 the Existing Natural Gas Vehicle Fueling Infrastructure of the Interstate Clean Transportation Corridor Project April 22, 2004 - August 31, 2005 Gladstein, Neandross & Associates Santa Monica, California

  13. Maglev vehicles and superconductor technology: Integration of high-speed ground transportation into the air travel system

    SciTech Connect (OSTI)

    Johnson, L.R.; Rote, D.M.; Hull, J.R.; Coffey, H.T.; Daley, J.G.; Giese, R.F.

    1989-04-01

    This study was undertaken to (1) evaluate the potential contribution of high-temperature superconductors (HTSCs) to the technical and economic feasibility of magnetically levitated (maglev) vehicles, (2) determine the status of maglev transportation research in the United States and abroad, (3) identify the likelihood of a significant transportation market for high-speed maglev vehicles, and (4) provide a preliminary assessment of the potential energy and economic benefits of maglev systems. HTSCs should be considered as an enhancing, rather than an enabling, development for maglev transportation because they should improve reliability and reduce energy and maintenance costs. Superconducting maglev transportation technologies were developed in the United States in the late 1960s and early 1970s. Federal support was withdrawn in 1975, but major maglev transportation programs were continued in Japan and West Germany, where full-scale prototypes now carry passengers at speeds of 250 mi/h in demonstration runs. Maglev systems are generally viewed as very-high-speed train systems, but this study shows that the potential market for maglev technology as a train system, e.g., from one downtown to another, is limited. Rather, aircraft and maglev vehicles should be seen as complementing rather than competing transportation systems. If maglev systems were integrated into major hub airport operations, they could become economical in many relatively high-density US corridors. Air traffic congestion and associated noise and pollutant emissions around airports would also be reduced. 68 refs., 26 figs., 16 tabs.

  14. Hybrid Electric and Plug-in Hybrid Electric Vehicle Testing Activities

    SciTech Connect (OSTI)

    Donald Karner

    2007-12-01

    The Advanced Vehicle Testing Activity (AVTA) conducts hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV) testing in order to provide benchmark data for technology modeling and research and development programs, and to be an independent source of test data for fleet managers and other early adaptors of advanced-technology vehicles. To date, the AVTA has completed baseline performance testing on 12 HEV models and accumulated 2.7 million fleet testing miles on 35 HEVs. The HEV baseline performance testing includes dynamometer and closed-track testing to document HEV performance in a controlled environment. During fleet testing, two of each HEV model accumulate 160,000 test miles within 36 months, during which maintenance and repair events and fuel use were recorded. Three models of PHEVs, from vehicle converters Energy CS and Hymotion and the original equipment manufacturer Renault, are currently in testing. The PHEV baseline performance testing includes 5 days of dynamometer testing with a minimum of 26 test drive cycles, including the Urban Dynamometer Driving Schedule, the Highway Fuel Economy Driving Schedule, and the US06 test cycle, in charge-depleting and charge-sustaining modes. The PHEV accelerated testing is conducted with dedicated drivers for 4,240 miles, over a series of 132 driving loops that range from 10 to 200 miles over various combinations of defined 10-mile urban and 10-mile highway loops, with 984 hours of vehicle charging. The AVTA is part of the U.S. Department of Energys FreedomCAR and Vehicle Technologies Program. These AVTA testing activities were conducted by the Idaho National Laboratory and Electric Transportation Applications, with dynamometer testing conducted at Argonne National Laboratory. This paper discusses the testing methods and results.

  15. Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles

    DOE Patents [OSTI]

    Rote, Donald M. (Lagrange, IL); He, Jianliang (Woodridge, IL); Johnson, Larry R. (Naperville, IL)

    1994-01-01

    A propulsion and stabilization system comprising a series of FIG. 8 coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the FIG. 8 coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension.

  16. Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles

    DOE Patents [OSTI]

    Rote, D.M.; He, Jianliang; Johnson, L.R.

    1992-01-01

    This report discusses a propulsion and stabilization system comprising a series of figure 8 coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the figure 8 coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension.

  17. Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles

    DOE Patents [OSTI]

    Rote, D.M.; He, J.; Johnson, L.R.

    1994-01-04

    A propulsion and stabilization system are described comprising a series of coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance, and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension. 8 figures.

  18. PEV Grid Integration Research - Vehicles, Buildings, and Renewables Working Together; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-07-29

    This presentation will discuss current research activities in PEV grid integration at NREL. Presented at the 2015 IEEE Power and Energy Systems General Meeting, Denver, Colorado.

  19. Variability of Battery Wear in Light Duty Plug-In Electric Vehicles Subject to Ambient Temperature, Battery Size, and Consumer Usage: Preprint

    SciTech Connect (OSTI)

    Wood, E.; Neubauer, J.; Brooker, A. D.; Gonder, J.; Smith, K. A.

    2012-08-01

    Battery wear in plug-in electric vehicles (PEVs) is a complex function of ambient temperature, battery size, and disparate usage. Simulations capturing varying ambient temperature profiles, battery sizes, and driving patterns are of great value to battery and vehicle manufacturers. A predictive battery wear model developed by the National Renewable Energy Laboratory captures the effects of multiple cycling and storage conditions in a representative lithium chemistry. The sensitivity of battery wear rates to ambient conditions, maximum allowable depth-of-discharge, and vehicle miles travelled is explored for two midsize vehicles: a battery electric vehicle (BEV) with a nominal range of 75 mi (121 km) and a plug-in hybrid electric vehicle (PHEV) with a nominal charge-depleting range of 40 mi (64 km). Driving distance distributions represent the variability of vehicle use, both vehicle-to-vehicle and day-to-day. Battery wear over an 8-year period was dominated by ambient conditions for the BEV with capacity fade ranging from 19% to 32% while the PHEV was most sensitive to maximum allowable depth-of-discharge with capacity fade ranging from 16% to 24%. The BEV and PHEV were comparable in terms of petroleum displacement potential after 8 years of service, due to the BEV?s limited utility for accomplishing long trips.

  20. Locating PHEV exchange stations in V2G

    SciTech Connect (OSTI)

    Pan, Feng; Bent, Russell; Berscheid, Alan; Izraelevitz, David

    2010-01-01

    Plug-in hybrid electric vehicle (PREV) is an environment friendly modem transportation method and has been rapidly penetrate the transportation system. Renewable energy is another contributor to clean power but the associated intermittence increases the uncertainty in power generation. As a foreseen benefit of a vchicle-to-grid (V2G) system, PREV supporting infrastructures like battery exchange stations can provide battery service to PREV customers as well as being plugged into a power grid as energy sources and stabilizer. The locations of exchange stations are important for these two objectives under constraints from both ,transportation system and power grid. To model this location problem and to understand and analyze the benefit of a V2G system, we develop a two-stage stochastic program to optimally locate the stations prior to the realizations of battery demands, loads, and generation capacity of renewable power sources. Based on this model, we use two data sets to construct the V2G systems and test the benefit and the performance of these systems.

  1. Plug-in Hybrid Electric Vehicle Value Proposition Study - Final Report

    SciTech Connect (OSTI)

    Sikes, Karen; Hadley, Stanton W; McGill, Ralph N; Cleary, Timothy

    2010-07-01

    PHEVs have been the subject of growing interest in recent years because of their potential for reduced operating costs, oil displacement, national security, and environmental benefits. Despite the potential long-term savings to consumers and value to stakeholders, the initial cost of PHEVs presents a major market barrier to their widespread commercialization. The study Objectives are: (1) To identify and evaluate value-added propositions for PHEVs that will help overcome the initial price premium relative to comparable ICEs and HEVs and (2) to assess other non-monetary benefits and barriers associated with an emerging PHEV fleet, including environmental, societal, and grid impacts. Study results indicate that a single PHEV-30 on the road in 2030 will: (1) Consume 65% and 75% less gasoline than a comparable HEV and ICE, respectively; (2) Displace 7.25 and 4.25 barrels of imported oil each year if substituted for equivalent ICEs and HEVs, respectively, assuming 60% of the nation's oil consumed is imported; (3) Reduce net ownership cost over 10 years by 8-10% relative to a comparable ICE and be highly cost competitive with a comparable HEV; (4) Use 18-22% less total W2W energy than a comparable ICE, but 8-13% more than a comparable HEV (assuming a 70/30 split of E10 and E85 use in 2030); and (5) Emit 10% less W2W CO{sub 2} than equivalent ICEs in southern California and emits 13% more W2W CO{sub 2} than equivalent ICEs in the ECAR region. This also assumes a 70/30 split of E10 and E85 use in 2030. PHEVs and other plug-in vehicles on the road in 2030 may offer many valuable benefits to utilities, business owners, individual consumers, and society as a whole by: (1) Promoting national energy security by displacing large volumes of imported oil; (2) Supporting a secure economy through the expansion of domestic vehicle and component manufacturing; (3) Offsetting the vehicle's initial price premium with lifetime operating cost savings (e.g., lower fuel and maintenance costs); (4) Supporting the use of off-peak renewable energy through smart charging practices. However, smart grid technology is not a prerequisite for realizing the benefits of PHEVs; and (5) Potentially using its bidirectional electricity flow capability to aid in emergency situations or to help better manage a building's or entire grid's load.

  2. VOLTTRON: An Agent Platform for Integrating Electric Vehicles and Smart Grid

    SciTech Connect (OSTI)

    Haack, Jereme N.; Akyol, Bora A.; Tenney, Nathan D.; Carpenter, Brandon J.; Pratt, Richard M.; Carroll, Thomas E.

    2013-12-06

    The VOLTTRON platform provides a secure environment for the deployment of intelligent applications in the smart grid. VOLTTRON design is based on the needs of control applications running on small form factor devices, namely security and resource guarantees. Services such as resource discovery, secure agent mobility, and interacting with smart and legacy devices are provided by the platform to ease the development of control applications and accelerate their deployment. VOLTTRON platform has been demonstrated in several different domains that influenced and enhanced its capabilities. This paper will discuss the features of VOLTTRON and highlight its usage to coordinate electric vehicle charging with home energy usage

  3. Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption of a PHEV School Bus: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption of a PHEV School Bus Preprint Robb Barnitt and Jeff Gonder To be presented at the SAE 2011 World Congress Detroit, Michigan April 12-14, 2011 Conference Paper NREL/CP-5400-50251 April 2011 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain

  4. Potential Impacts of Plug-in Hybrid Electric Vehicles on Regional Power Generation

    SciTech Connect (OSTI)

    Hadley, Stanton W; Tsvetkova, Alexandra A

    2008-01-01

    Plug-in hybrid electric vehicles (PHEVs) are being developed around the world, with much work aiming to optimize engine and battery for efficient operation, both during discharge and when grid electricity is available for recharging. However, the general expectation has been that the grid will not be greatly affected by the use of PHEVs because the recharging will occur during off-peak hours, or the number of vehicles will grow slowly enough so that capacity planning will respond adequately. This expectation does not consider that drivers will control the timing of recharging, and their inclination will be to plug in when convenient, rather than when utilities would prefer. It is important to understand the ramifications of adding load from PHEVs onto the grid. Depending on when and where the vehicles are plugged in, they could cause local or regional constraints on the grid. They could require the addition of new electric capacity and increase the utilization of existing capacity. Usage patterns of local distribution grids will change, and some lines or substations may become overloaded sooner than expected. Furthermore, the type of generation used to meet the demand for recharging PHEVs will depend on the region of the country and the timing of recharging. This paper analyzes the potential impacts of PHEVs on electricity demand, supply, generation structure, prices, and associated emission levels in 2020 and 2030 in 13 regions specified by the North American Electric Reliability Corporation (NERC) and the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), and on which the data and analysis in EIA's Annual Energy Outlook 2007 are based (Figure ES-1). The estimates of power plant supplies and regional hourly electricity demand come from publicly available sources from EIA and the Federal Energy Regulatory Commission. Electricity requirements for PHEVs are based on analysis from the Electric Power Research Institute, with an optimistic projection of 25% market penetration by 2020, involving a mixture of sedans and sport utility vehicles. The calculations were done using the Oak Ridge Competitive Electricity Dispatch (ORCED) model, a model developed over the past 12 years to evaluate a wide variety of critical electricity sector issues. Seven scenarios were run for each region for 2020 and 2030, for a total of 182 scenarios. In addition to a base scenario of no PHEVs, the authors modeled scenarios assuming that vehicles were either plugged in starting at 5:00 p.m. (evening) or at 10:00 p.m.(night) and left until fully charged. Three charging rates were examined: 120V/15A (1.4 kW), 120V/20A (2 kW), and 220V/30A (6 kW). Most regions will need to build additional capacity or utilize demand response to meet the added demand from PHEVs in the evening charging scenarios, especially by 2030 when PHEVs have a larger share of the installed vehicle base and make a larger demand on the system. The added demands of evening charging, especially at high power levels, can impact the overall demand peaks and reduce the reserve margins for a region's system. Night recharging has little potential to influence peak loads, but will still influence the amount and type of generation.

  5. Advancing Plug In Hybrid Technology and Flex Fuel Application...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mini-Van PHEV DOE Funded Project Advancing Transportation Through Vehicle Electrification - PHEV Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity...

  6. Comparison of Plug-In Hybrid Electric Vehicle Battery Life Across Geographies and Drive-Cycles

    SciTech Connect (OSTI)

    Smith, K.; Warleywine, M.; Wood, E.; Neubauer, J.; Pesaran, A.

    2012-06-01

    In a laboratory environment, it is cost prohibitive to run automotive battery aging experiments across a wide range of possible ambient environment, drive cycle and charging scenarios. Since worst-case scenarios drive the conservative sizing of electric-drive vehicle batteries, it is useful to understand how and why those scenarios arise and what design or control actions might be taken to mitigate them. In an effort to explore this problem, this paper applies a semi-empirical life model of the graphite/nickel-cobalt-aluminum lithium-ion chemistry to investigate impacts of geographic environments under storage and simplified cycling conditions. The model is then applied to analyze complex cycling conditions, using battery charge/discharge profiles generated from simulations of PHEV10 and PHEV40 vehicles across 782 single-day driving cycles taken from Texas travel survey data.

  7. Utilizing Electric Vehicles to Assist Integration of Large Penetrations of Distributed Photovoltaic Generation Capacity

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Chassin, Forrest S.; Kintner-Meyer, Michael CW; Gowri, Krishnan

    2012-11-30

    Executive Summary Introduction and Motivation This analysis provides the first insights into the leveraging potential of distributed photovoltaic (PV) technologies on rooftop and electric vehicle (EV) charging. Either of the two technologies by themselves - at some high penetrations may cause some voltage control challenges or overloading problems, respectively. But when combined, there at least intuitively could be synergistic effects, whereby one technology mitigates the negative impacts of the other. High penetration of EV charging may overload existing distribution system components, most prominently the secondary transformer. If PV technology is installed at residential premises or anywhere downstream of the secondary transformer, it will provide another electricity source thus, relieving the loading on the transformers. Another synergetic or mitigating effect could be envisioned when high PV penetration reverts the power flow upward in the distribution system (from the homes upstream into the distribution system). Protection schemes may then no longer work and voltage violation (exceeding the voltage upper limited of the ANSI voltage range) may occur. In this particular situation, EV charging could absorb the electricity from the PV, such that the reversal of power flow can be reduced or alleviated. Given these potential mutual synergistic behaviors of PV and EV technologies, this project attempted to quantify the benefits of combining the two technologies. Furthermore, of interest was how advanced EV control strategies may influence the outcome of the synergy between EV charging and distributed PV installations. Particularly, Californian utility companies with high penetration of the distributed PV technology, who have experienced voltage control problems, are interested how intelligent EV charging could support or affect the voltage control

  8. Evaluation of 2010 Urea-SCR Technology for Hybrid Vehicles using PSAT

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Simulations | Department of Energy 2010 Urea-SCR Technology for Hybrid Vehicles using PSAT System Simulations Evaluation of 2010 Urea-SCR Technology for Hybrid Vehicles using PSAT System Simulations Results of simulations of LDD hybrid vehicle under hybrid drive cycle conditions in PSAT show the potential impact of urea-SCR NOx controls on HEVs and PHEVs powered by lean-burn engines. PDF icon p-05_gao.pdf More Documents & Publications Effect of Premixed Charge Compression Ignition

  9. Fact #685: July 25, 2011 Reasons for Buying a Plug-in Hybrid Vehicle |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 5: July 25, 2011 Reasons for Buying a Plug-in Hybrid Vehicle Fact #685: July 25, 2011 Reasons for Buying a Plug-in Hybrid Vehicle General Motors has been gathering feedback from customers who purchased the 2011 Chevrolet Volt, which is the only plug-in hybrid vehicle (PHEV) on the market today. Through May 2011, about 2,100 Volts have been sold. The top reason cited for purchasing a Volt is to reduce America's dependence on foreign oil. A desire to buy American and the

  10. U.S. Department of Energy Vehicle Technologies Program: Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Jon P. Christophersen

    2014-09-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEVs. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Renata M. Arsenault of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).

  11. Supertruck - Improving Transportation Efficiency through Integrated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improving Transportation Efficiency through Integrated Vehicle, Engine and Powertrain Research Supertruck - Improving Transportation Efficiency through Integrated Vehicle, Engine ...

  12. Plug-In Hybrid Electric Vehicle Market Introduction Study: Final Report

    SciTech Connect (OSTI)

    Sikes, Karen; Gross, Thomas; Lin, Zhenhong; Sullivan, John; Cleary, Timothy; Ward, Jake

    2010-02-01

    Oak Ridge National Laboratory (ORNL), Sentech, Inc., Pacific Northwest National Laboratory (PNNL)/University of Michigan Transportation Research Institute (UMTRI), and the U.S. Department of Energy (DOE) have conducted a Plug-in Hybrid Electric Vehicle (PHEV) Market Introduction Study to identify and assess the effect of potential policies, regulations, and temporary incentives as key enablers for a successful market debut. The timeframe over which market-stimulating incentives would be implemented - and the timeframe over which they would be phased out - are suggested. Possible sources of revenue to help fund these mechanisms are also presented. In addition, pinch points likely to emerge during market growth are identified and proposed solutions presented. Finally, modeling results from ORNL's Market Acceptance of Advanced Automotive Technologies (MA3T) Model and UMTRI's Virtual AutoMotive MarketPlace (VAMMP) Model were used to quantify the expected effectiveness of the proposed policies and to recommend a consensus strategy aimed at transitioning what begins as a niche industry into a thriving and sustainable market by 2030. The primary objective of the PHEV Market Introduction Study is to identify the most effective means for accelerating the commercialization of PHEVs in order to support national energy and economic goals. Ideally, these mechanisms would maximize PHEV sales while minimizing federal expenditures. To develop a robust market acceleration program, incentives and policies must be examined in light of: (1) clarity and transparency of the market signals they send to the consumer; (2) expenditures and resources needed to support them; (3) expected impacts on the market for PHEVs; (4) incentives that are compatible and/or supportive of each other; (5) complexity of institutional and regulatory coordination needed; and (6) sources of funding.

  13. 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... It is good that graduate students from GATE are involved. Encouraging participation of ... PHEVs is as much a consumer perception and marketing challenge as a technical challenge. ...

  14. DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid and Vehicle Systems Technologies Introduction Hybrid and vehicle systems research provides an overarching vehicle systems perspective to the technology research and development (R&D) activities of the U.S. Department of Energy's (DOE's) vehicle research programs, and identifies major opportunities for improving vehicle efficiencies. The effort evaluates and validates the integration of technologies, provides component and vehicle benchmarking, develops and validates heavy hybrid

  15. Vehicle Technologies Program: Goals, Strategies, and Top Accomplishments

    SciTech Connect (OSTI)

    2010-12-01

    Fact sheet describing the Vehicle Technologies Program integrated portfolio of advanced vehicle and fuel research, development, demonstration, and deployment activities.

  16. Retail Infrastructure Costs Comparison for Hydrogen and Electricity for Light-Duty Vehicles: Preprint

    SciTech Connect (OSTI)

    Melaina, M.; Sun, Y.; Bush, B.

    2014-08-01

    Both hydrogen and plug-in electric vehicles offer significant social benefits to enhance energy security and reduce criteria and greenhouse gas emissions from the transportation sector. However, the rollout of electric vehicle supply equipment (EVSE) and hydrogen retail stations (HRS) requires substantial investments with high risks due to many uncertainties. We compare retail infrastructure costs on a common basis - cost per mile, assuming fueling service to 10% of all light-duty vehicles in a typical 1.5 million person city in 2025. Our analysis considers three HRS sizes, four distinct types of EVSE and two distinct EVSE scenarios. EVSE station costs, including equipment and installation, are assumed to be 15% less than today's costs. We find that levelized retail capital costs per mile are essentially indistinguishable given the uncertainty and variability around input assumptions. Total fuel costs per mile for battery electric vehicle (BEV) and plug-in hybrid vehicle (PHEV) are, respectively, 21% lower and 13% lower than that for hydrogen fuel cell electric vehicle (FCEV) under the home-dominant scenario. Including fuel economies and vehicle costs makes FCEVs and BEVs comparable in terms of costs per mile, and PHEVs are about 10% less than FCEVs and BEVs. To account for geographic variability in energy prices and hydrogen delivery costs, we use the Scenario Evaluation, Regionalization and Analysis (SERA) model and confirm the aforementioned estimate of cost per mile, nationally averaged, but see a 15% variability in regional costs of FCEVs and a 5% variability in regional costs for BEVs.

  17. Impact Assessment of Plug-in Hybrid Vehicles on the U.S. Power Grid

    SciTech Connect (OSTI)

    Kintner-Meyer, Michael CW; Nguyen, Tony B.; Jin, Chunlian; Balducci, Patrick J.; Secrest, Thomas J.

    2010-09-30

    The US electricity grid is a national infrastructure that has the potential to deliver significant amounts of the daily driving energy of the US light duty vehicle (cars, pickups, SUVs, and vans) fleet. This paper discusses a 2030 scenario with 37 million plug-in hybrid electric vehicles (PHEVs) on the road in the US demanding electricity for an average daily driving distance of about 33 miles (53 km). The paper addresses the potential grid impacts of the PHEVs fleet relative to their effects on the production cost of electricity, and the emissions from the electricity sector. The results of this analysis indicate significant regional difference on the cost impacts and the CO2 emissions. Battery charging during the day may have twice the cost impacts than charging during the night. The CO2 emissions impacts are very region-dependent. In predominantly coal regions (Midwest), the new PHEV load may reduce the CO2 emission intensity (ton/MWh), while in others regions with significant clean generation (hydro and renewable energy) the CO2 emission intensity may increase. Discussed will the potential impact of the results with the valuation of carbon emissions.

  18. Improving Petroleum Displacement Potential of PHEVs Using Enhanced Charging Scenarios: Preprint

    SciTech Connect (OSTI)

    Markel, T.; Smith, K.; Pesaran, A. A.

    2009-05-01

    Describes NREL's R&D on the petroleum displacement potential of plug-in hybrid vehicles; vehicles charged during the day would save about 5% more fuel than those charged at night.

  19. DOE Vehicle Technologies Program 2009 Merit Review Report - Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Integration and Education DOE Vehicle Technologies Program 2009 Merit Review Report - Technology Integration and Education Merit review of DOE Vehicle Technologies...

  20. Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  1. Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  2. MD PHEV/EV ARRA Project Data Collection and Reporting (Presentation)

    SciTech Connect (OSTI)

    Walkowicz, K.; Ramroth, L.; Duran, A.; Rosen, B.

    2012-01-01

    This presentation describes a National Renewable Energy Laboratory project to collect and analyze commercial fleet deployment data from medium-duty plug-in hybrid electric and all-electric vehicles that were deployed using funds from the American Recovery and Reinvestment Act. This work supports the Department of Energy's Vehicle Technologies Program and its Advanced Vehicle Testing Activity.

  3. NREL: Transportation Research - Vehicle Thermal Management Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle Thermal Management Facilities Image of a building with two semi truck cabs in front of it. The VTIF is used for thermal testing of every class of on-road vehicle. Photo by Dennis Schroeder, NREL The National Renewable Energy Laboratory (NREL) uses research and testing facilities to develop advanced thermal management technologies for vehicles. Vehicle Testing and Integration Facility The Vehicle Testing and Integration Facility features a test pad to conduct vehicle thermal soak testing

  4. AVTA: 2013 Ford C-Max Energi Fleet PHEV Testing Results

    Broader source: Energy.gov [DOE]

    VTO's National Laboratories have tested and collected both dynamometer and fleet data for the Ford CMAX Energi (a plug-in hybrid electric vehicle).

  5. U.S. Based HEV and PHEV Transaxle Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt024_ape_poet_2012

  6. U.S. Based HEV and PHEV Transaxle Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt024_ape_poet_2011

  7. PHEV Battery Trade-Off Study and Standby Thermal Control (Presentation)

    SciTech Connect (OSTI)

    Smith, K.; Markel, T.; Pesaran, A.

    2009-03-01

    Describes NREL's R&D to optimize the design of batteries for plug-in hybrid electric vehicles to meet established requirements at minimum cost.

  8. Battery Electric Vehicle Driving and Charging Behavior Observed Early in The EV Project

    SciTech Connect (OSTI)

    John Smart; Stephen Schey

    2012-04-01

    As concern about society's dependence on petroleum-based transportation fuels increases, many see plug-in electric vehicles (PEV) as enablers to diversifying transportation energy sources. These vehicles, which include plug-in hybrid electric vehicles (PHEV), range-extended electric vehicles (EREV), and battery electric vehicles (BEV), draw some or all of their power from electricity stored in batteries, which are charged by the electric grid. In order for PEVs to be accepted by the mass market, electric charging infrastructure must also be deployed. Charging infrastructure must be safe, convenient, and financially sustainable. Additionally, electric utilities must be able to manage PEV charging demand on the electric grid. In the Fall of 2009, a large scale PEV infrastructure demonstration was launched to deploy an unprecedented number of PEVs and charging infrastructure. This demonstration, called The EV Project, is led by Electric Transportation Engineering Corporation (eTec) and funded by the U.S. Department of Energy. eTec is partnering with Nissan North America to deploy up to 4,700 Nissan Leaf BEVs and 11,210 charging units in five market areas in Arizona, California, Oregon, Tennessee, and Washington. With the assistance of the Idaho National Laboratory, eTec will collect and analyze data to characterize vehicle consumer driving and charging behavior, evaluate the effectiveness of charging infrastructure, and understand the impact of PEV charging on the electric grid. Trials of various revenue systems for commercial and public charging infrastructure will also be conducted. The ultimate goal of The EV Project is to capture lessons learned to enable the mass deployment of PEVs. This paper is the first in a series of papers documenting the progress and findings of The EV Project. This paper describes key research objectives of The EV Project and establishes the project background, including lessons learned from previous infrastructure deployment and PEV demonstrations. One such previous study was a PHEV demonstration conducted by the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA), led by the Idaho National Laboratory (INL). AVTA's PHEV demonstration involved over 250 vehicles in the United States, Canada, and Finland. This paper summarizes driving and charging behavior observed in that demonstration, including the distribution of distance driven between charging events, charging frequency, and resulting proportion of operation charge depleting mode. Charging demand relative to time of day and day of the week will also be shown. Conclusions from the PHEV demonstration will be given which highlight the need for expanded analysis in The EV Project. For example, the AVTA PHEV demonstration showed that in the absence of controlled charging by the vehicle owner or electric utility, the majority of vehicles were charged in the evening hours, coincident with typical utility peak demand. Given this baseline, The EV Project will demonstrate the effects of consumer charge control and grid-side charge management on electricity demand. This paper will outline further analyses which will be performed by eTec and INL to documenting driving and charging behavior of vehicles operated in a infrastructure-rich environment.

  9. Plug-In Hybrid Electric Vehicle Value Proposition Study: Phase 1, Task 2: Select Value Propositions/Business Model for Further Study

    SciTech Connect (OSTI)

    Sikes, Karen R; Markel, Lawrence C; Hadley, Stanton W; Hinds, Shaun

    2008-04-01

    The Plug-In Hybrid Electric Vehicle (PHEV) Value Propositions Workshop held in Washington, D.C. in December 2007 served as the Task 1 Milestone for this study. Feedback from all five Workshop breakout sessions has been documented in a Workshop Summary Report, which can be found at www.sentech.org/phev. In this report, the project team compiled and presented a comprehensive list of potential value propositions that would later serve as a 'grab bag' of business model components in Task 2. After convening with the Guidance and Evaluation Committee and other PHEV stakeholders during the Workshop, several improvements to the technical approach were identified and incorporated into the project plan to present a more realistic and accurate case study and evaluation. The assumptions and modifications that will have the greatest impact on the case study selection process in Task 2 are described in more detail in this deliverable. The objective of Task 2 is to identify the combination of value propositions that is believed to be achievable by 2030 and collectively hold promise for a sustainable PHEV market by 2030. This deliverable outlines what the project team (with input from the Committee) has defined as its primary scenario to be tested in depth for the remainder of Phase 1. Plans for the second and third highest priority/probability business scenarios are also described in this deliverable as proposed follow up case studies in Phase 2. As part of each case study description, the proposed utility system (or subsystem), PHEV market segment, and facilities/buildings are defined.

  10. Electric Vehicle Service Personnel Training Program

    SciTech Connect (OSTI)

    Bernstein, Gerald

    2013-06-21

    As the share of hybrid, plug-in hybrid (PHEV), electric (EV) and fuel-cell (FCV) vehicles grows in the national automotive fleet, an entirely new set of diagnostic and technical skills needs to be obtained by the maintenance workforce. Electrically-powered vehicles require new diagnostic tools, technique and vocabulary when compared to existing internal combustion engine-powered models. While the manufacturers of these new vehicles train their own maintenance personnel, training for students, independent working technicians and fleet operators is less focused and organized. This DOE-funded effort provided training to these three target groups to help expand availability of skills and to provide more competition (and lower consumer cost) in the maintenance of these hybrid- and electric-powered vehicles. Our approach was to start locally in the San Francisco Bay Area, one of the densest markets in the United States for these types of automobiles. We then expanded training to the Los Angeles area and then out-of-state to identify what types of curriculum was appropriate and what types of problems were encountered as training was disseminated. The fact that this effort trained up to 800 individuals with sessions varying from 2- day workshops to full-semester courses is considered a successful outcome. Diverse programs were developed to match unique time availability and educational needs of each of the three target audiences. Several key findings and observations arising from this effort include: Recognition that hybrid and PHEV training demand is immediate; demand for EV training is starting to emerge; while demand for FCV training is still over the horizon Hybrid and PHEV training are an excellent starting point for all EV-related training as they introduce all the basic concepts (electric motors, battery management, controllers, vocabulary, testing techniques) that are needed for all EVs, and these skills are in-demand in todays market. Faculty training is widely available and can be relatively quickly achieved. Equipment availability (vehicles, specialized tools, diagnostic software and computers) is a bigger challenge for funding-constrained colleges. A computer-based emulation system that would replicate vehicle and diagnostic software in one package is a training aid that would have widespread benefit, but does not appear to exist. This need is further described at the end of Section 6.5. The benefits of this project are unique to each of the three target audiences. Students have learned skills they will use for the remainder of their careers; independent technicians can now accept customers who they previously needed to turn away due to lack of familiarity with hybrid systems; and fleet maintenance personnel are able to lower costs by undertaking work in-house that they previously needed to outsource. The direct job impact is estimated at 0.75 FTE continuously over the 3 -year duration of the grant.

  11. Ford Plug-In Project: Bringing PHEVs to Market | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon vss_02_frenette

  12. U.S. Based HEV and PHEV Transaxle Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon apearravt024_poet_2010

  13. Socially optimal electric driving range of plug-in hybrid electric vehicles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kontou, Eleftheria; Yin, Yafeng; Lin, Zhenhong

    2015-07-25

    This study determines the optimal electric driving range of plug-in hybrid electric vehicles (PHEVs) that minimizes the daily cost borne by the society when using this technology. An optimization framework is developed and applied to datasets representing the US market. Results indicate that the optimal range is 16 miles with an average social cost of 3.19 per day when exclusively charging at home, compared to 3.27 per day of driving a conventional vehicle. The optimal range is found to be sensitive to the cost of battery packs and the price of gasoline. When workplace charging is available, the optimal electricmore » driving range surprisingly increases from 16 to 22 miles, as larger batteries would allow drivers to better take advantage of the charging opportunities to achieve longer electrified travel distances, yielding social cost savings. If workplace charging is available, the optimal density is to deploy a workplace charger for every 3.66 vehicles. Moreover, the diversification of the battery size, i.e., introducing a pair and triple of electric driving ranges to the market, could further decrease the average societal cost per PHEV by 7.45% and 11.5% respectively.« less

  14. Socially optimal electric driving range of plug-in hybrid electric vehicles

    SciTech Connect (OSTI)

    Kontou, Eleftheria; Yin, Yafeng; Lin, Zhenhong

    2015-07-25

    This study determines the optimal electric driving range of plug-in hybrid electric vehicles (PHEVs) that minimizes the daily cost borne by the society when using this technology. An optimization framework is developed and applied to datasets representing the US market. Results indicate that the optimal range is 16 miles with an average social cost of 3.19 per day when exclusively charging at home, compared to 3.27 per day of driving a conventional vehicle. The optimal range is found to be sensitive to the cost of battery packs and the price of gasoline. When workplace charging is available, the optimal electric driving range surprisingly increases from 16 to 22 miles, as larger batteries would allow drivers to better take advantage of the charging opportunities to achieve longer electrified travel distances, yielding social cost savings. If workplace charging is available, the optimal density is to deploy a workplace charger for every 3.66 vehicles. Moreover, the diversification of the battery size, i.e., introducing a pair and triple of electric driving ranges to the market, could further decrease the average societal cost per PHEV by 7.45% and 11.5% respectively.

  15. Advanced Integrated Traction System

    SciTech Connect (OSTI)

    Greg Smith; Charles Gough

    2011-08-31

    The United States Department of Energy elaborates the compelling need for a commercialized competitively priced electric traction drive system to proliferate the acceptance of HEVs, PHEVs, and FCVs in the market. The desired end result is a technically and commercially verified integrated ETS (Electric Traction System) product design that can be manufactured and distributed through a broad network of competitive suppliers to all auto manufacturers. The objectives of this FCVT program are to develop advanced technologies for an integrated ETS capable of 55kW peak power for 18 seconds and 30kW of continuous power. Additionally, to accommodate a variety of automotive platforms the ETS design should be scalable to 120kW peak power for 18 seconds and 65kW of continuous power. The ETS (exclusive of the DC/DC Converter) is to cost no more than $660 (55kW at $12/kW) to produce in quantities of 100,000 units per year, should have a total weight less than 46kg, and have a volume less than 16 liters. The cost target for the optional Bi-Directional DC/DC Converter is $375. The goal is to achieve these targets with the use of engine coolant at a nominal temperature of 105C. The system efficiency should exceed 90% at 20% of rated torque over 10% to 100% of maximum speed. The nominal operating system voltage is to be 325V, with consideration for higher voltages. This project investigated a wide range of technologies, including ETS topologies, components, and interconnects. Each technology and its validity for automotive use were verified and then these technologies were integrated into a high temperature ETS design that would support a wide variety of applications (fuel cell, hybrids, electrics, and plug-ins). This ETS met all the DOE 2010 objectives of cost, weight, volume and efficiency, and the specific power and power density 2015 objectives. Additionally a bi-directional converter was developed that provides charging and electric power take-off which is the first step towards enabling a smart-grid application. GM under this work assessed 29 technologies; investigated 36 configurations/types power electronics and electric machines, filed 41 invention disclosures; and ensured technology compatibility with vehicle production. Besides the development of a high temperature ETS the development of industrial suppliers took place because of this project. Suppliers of industrial power electronic components are numerous, but there are few that have traction drive knowledge. This makes it difficult to achieve component reliability, durability, and cost requirements necessary of high volume automotive production. The commercialization of electric traction systems for automotive industry requires a strong diverse supplier base. Developing this supplier base is dependent on a close working relationship between the OEM and supplier so that appropriate component requirements can be developed. GM has worked closely with suppliers to develop components for electric traction systems. Components that have been the focus of this project are power modules, capacitors, heavy copper boards, current sensors, and gate drive and controller chip sets. Working with suppliers, detailed component specifications have been developed. Current, voltage, and operation environment during the vehicle drive cycle were evaluated to develop higher resolution/accurate component specifications.

  16. Vehicle Technologies Office: VSI Laboratory Video Text Version

    Broader source: Energy.gov [DOE]

    The Vehicle Systems Integration Laboratory at Oak Ridge National Laboratory provides unique tools for helping researchers understand how vehicle technologies interact under real-world conditions.

  17. DOE Vehicle Technologies Program 2009 Merit Review Report - Safety...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Technology Validation DOE Vehicle Technologies Program 2009 Merit Review Report - Technology Integration and Education DOE Vehicle Technologies Program 2009 Merit Review...

  18. NREL: Energy Analysis - Vehicles and Fuels Research Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis and Integration Evaluates advanced vehicle technologies to determine their impact on fuel economy, vehicle performance, exhaust emissions, and more. Transportation...

  19. Integrated Testing, Simulation and Analysis of Electric Drive Options for Medium-Duty Parcel Delivery Vehicles: Preprint

    SciTech Connect (OSTI)

    Ramroth, L. A.; Gonder, J.; Brooker, A.

    2012-09-01

    The National Renewable Energy Laboratory verified diesel-conventional and diesel-hybrid parcel delivery vehicle models to evaluate petroleum reduction and cost implications of plug-in hybrid gasoline and diesel variants. These variants are run on a field-data-derived design matrix to analyze the effects of drive cycle, distance, battery replacements, battery capacity, and motor power on fuel consumption and lifetime cost. Two cost scenarios using fuel prices corresponding to forecasted highs for 2011 and 2030 and battery costs per kilowatt-hour representing current and long-term targets compare plug-in hybrid lifetime costs with diesel conventional lifetime costs. Under a future cost scenario of $100/kWh battery energy and $5/gal fuel, plug-in hybrids are cost effective. Assuming a current cost of $700/kWh and $3/gal fuel, they rarely recoup the additional motor and battery cost. The results highlight the importance of understanding the application's drive cycle, daily driving distance, and kinetic intensity. For instances in the current-cost scenario where the additional plug-in hybrid cost is regained in fuel savings, the combination of kinetic intensity and daily distance travelled does not coincide with the usage patterns observed in the field data. If the usage patterns were adjusted, the hybrids could become cost effective.

  20. 2010 DOE EERE Vehicle Technologies Program Merit Review ? Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration 2011 Annual Merit Review Results Report - Technology Integration DOE Vehicle Technologies Program 2009 Merit Review Report - Technology Integration and Education...

  1. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Broader source: Energy.gov (indexed) [DOE]

    Confidential, 4222013 2013 DOE VEHICLE TECHNOLOGIES PROGRAM REVIEW PRESENTATION Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification...

  2. PEV Integration with Renewables (Presentation)

    SciTech Connect (OSTI)

    Markel, T.

    2014-06-18

    This presentation discusses current research at NREL on integrating plug-in electric vehicles with the grid and using renewable energy to charge the grid. The Electric Vehicle Grid Integration (EVGI) and Integrated Network Testbed for Energy Grid Research and Technology Experimentation (INTEGRATE) are addressing the opportunities and technical requirements for vehicle grid integration that will increase marketability and lead to greater petroleum reduction.

  3. Vehicle Technologies Office: 2009 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2009 Advanced Vehicle ...

  4. Vehicle Technologies Office: 2008 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2008 Advanced Vehicle ...

  5. 2010 DOE EERE Vehicle Technologies Program Merit Review … Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration | Department of Energy … Technology Integration 2010 DOE EERE Vehicle Technologies Program Merit Review … Technology Integration Technology integration merit review results PDF icon 2010_amr_08.pdf More Documents & Publications 2012 Annual Merit Review Results Report - Technology Integration 2011 Annual Merit Review Results Report - Technology Integration DOE Vehicle Technologies Program 2009 Merit Review Report - Technology Integration and Education

  6. Vehicle Aerodynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle Aerodynamics Background Tougher emissions standards, as well as industry demands for more powerful engines and new vehicle equipment, continue to increase the heat rejection requirements of heavy-duty vehicles. However, changes in the physical configuration and weight of these vehicles can affect how they handle wind resistance and energy loss due to aerodynamic drag. Role of High-Performance Computing The field of computational fluid dynamics (CFD) offers researchers the ability to

  7. Electric vehicles

    SciTech Connect (OSTI)

    Not Available

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

  8. Vehicle Crashworthiness

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crashworthiness Background While automakers and truck manufacturers are called upon to increase the levels of safety protection in their vehicles and reduce the number of injuries that occur in accidents, crash testing of vehicles as a means to optimize vehicle safety design is becoming increasingly expensive. Use of more sophisticated and more expensive occupant dummies ($120,000 per dummy) can almost double the current average price of $500,000 per test. In addition, the increasing diversity

  9. Electric Vehicles

    ScienceCinema (OSTI)

    Ozpineci, Burak

    2014-07-23

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  10. Electric Vehicles

    SciTech Connect (OSTI)

    Ozpineci, Burak

    2014-05-02

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  11. Advanced vehicle technology analysis and evaluation activities

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    FY 2007 annual progress report evaluating the technologies and performance characteristics of advanced automotive powertrain components and subsystems in an integrated vehicle systems context.

  12. DOE Vehicle Technologies Program 2009 Merit Review Report - Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration and Education | Department of Energy Technology Integration and Education DOE Vehicle Technologies Program 2009 Merit Review Report - Technology Integration and Education Merit review of DOE Vehicle Technologies Program research efforts PDF icon 2009_merit_review_8.pdf More Documents & Publications DOE Vehicle Technologies Program 2009 Merit Review Report - Technology Validation 2008 Annual Merit Review Results Summary - 16. Technology Integration and Education DOE Vehicle

  13. Vehicle Technologies Office: AVTA - Electric Vehicle Community...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: AVTA - Electric Vehicle Community and Fleet Readiness Data and Reports Making plug-in electric vehicles (PEVs, also known as electric cars) as ...

  14. Integrated Transmission and Distribution Control

    SciTech Connect (OSTI)

    Kalsi, Karanjit; Fuller, Jason C.; Tuffner, Francis K.; Lian, Jianming; Zhang, Wei; Marinovici, Laurentiu D.; Fisher, Andrew R.; Chassin, Forrest S.; Hauer, Matthew L.

    2013-01-16

    Distributed, generation, demand response, distributed storage, smart appliances, electric vehicles and renewable energy resources are expected to play a key part in the transformation of the American power system. Control, coordination and compensation of these smart grid assets are inherently interlinked. Advanced control strategies to warrant large-scale penetration of distributed smart grid assets do not currently exist. While many of the smart grid technologies proposed involve assets being deployed at the distribution level, most of the significant benefits accrue at the transmission level. The development of advanced smart grid simulation tools, such as GridLAB-D, has led to a dramatic improvement in the models of smart grid assets available for design and evaluation of smart grid technology. However, one of the main challenges to quantifying the benefits of smart grid assets at the transmission level is the lack of tools and framework for integrating transmission and distribution technologies into a single simulation environment. Furthermore, given the size and complexity of the distribution system, it is crucial to be able to represent the behavior of distributed smart grid assets using reduced-order controllable models and to analyze their impacts on the bulk power system in terms of stability and reliability. The objectives of the project were to: • Develop a simulation environment for integrating transmission and distribution control, • Construct reduced-order controllable models for smart grid assets at the distribution level, • Design and validate closed-loop control strategies for distributed smart grid assets, and • Demonstrate impact of integrating thousands of smart grid assets under closed-loop control demand response strategies on the transmission system. More specifically, GridLAB-D, a distribution system tool, and PowerWorld, a transmission planning tool, are integrated into a single simulation environment. The integrated environment allows the load flow interactions between the bulk power system and end-use loads to be explicitly modeled. Power system interactions are modeled down to time intervals as short as 1-second. Another practical issue is that the size and complexity of typical distribution systems makes direct integration with transmission models computationally intractable. Hence, the focus of the next main task is to develop reduced-order controllable models for some of the smart grid assets. In particular, HVAC units, which are a type of Thermostatically Controlled Loads (TCLs), are considered. The reduced-order modeling approach can be extended to other smart grid assets, like water heaters, PVs and PHEVs. Closed-loop control strategies are designed for a population of HVAC units under realistic conditions. The proposed load controller is fully responsive and achieves the control objective without sacrificing the end-use performance. Finally, using the T&D simulation platform, the benefits to the bulk power system are demonstrated by controlling smart grid assets under different demand response closed-loop control strategies.

  15. Current Transportation Models Used in the Vehicle Technologies Program

    SciTech Connect (OSTI)

    2009-04-06

    A summary of various transportation models (VISION, TRUCK, GREET, Oil Peaking Model, Feebate Model, Oil Security Metrics Model, ORNL PHEV Choice Model: Version 1, PSAT, PSAT-PRO,

  16. 2012 Annual Merit Review Results Report - Hybrid Vehicle Systems Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1. Hybrid and Vehicle Systems Technologies Hybrid and vehicle systems research provides an overarching vehicle systems perspective to the technology research and development (R&D) activities of the U.S. Department of Energy's (DOE's) vehicle research programs, and identifies major opportunities for improving vehicle efficiencies. The effort evaluates and validates the integration of technologies, provides component and vehicle benchmarking, develops and validates heavy hybrid propulsion

  17. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (Oak Ridge, TN)

    1997-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  18. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (Oak Ridge, TN)

    1998-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  19. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1997-02-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  20. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1998-08-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendible appendages, each of which is radially extendible relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendible members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  1. Strategy for the Integration of Hydrogen as a Vehicle Fuel into the Existing Natural Gas Vehicle Fueling Infrastructure of the Interstate Clean Transportation Corridor Project: 22 April 2004--31 August 2005

    SciTech Connect (OSTI)

    Gladstein, Neandross and Associates

    2005-09-01

    Evaluates opportunities to integrate hydrogen into the fueling stations of the Interstate Clean Transportation Corridor--an existing network of LNG fueling stations in California and Nevada.

  2. Technology Integration Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vtpn02_ti_smith_2012_o.pdf More Documents & Publications Technology Integration Overview Technology Integration Overview Vehicle Technologies Office Merit Review 2014: Technology Integration Overview

  3. Technology Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration Technology Integration 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Vehicle Technologies Plenary PDF icon vtpn02_smith_ti_2011_o.pdf More Documents & Publications Technology Integration Overview Technology Integration Overview Technology Integration Overview

  4. Autonomous vehicles

    SciTech Connect (OSTI)

    Meyrowitz, A.L.; Blidberg, D.R.; Michelson, R.C.

    1996-08-01

    There are various kinds of autonomous vehicles (AV`s) which can operate with varying levels of autonomy. This paper is concerned with underwater, ground, and aerial vehicles operating in a fully autonomous (nonteleoperated) mode. Further, this paper deals with AV`s as a special kind of device, rather than full-scale manned vehicles operating unmanned. The distinction is one in which the AV is likely to be designed for autonomous operation rather than being adapted for it as would be the case for manned vehicles. The authors provide a survey of the technological progress that has been made in AV`s, the current research issues and approaches that are continuing that progress, and the applications which motivate this work. It should be noted that issues of control are pervasive regardless of the kind of AV being considered, but that there are special considerations in the design and operation of AV`s depending on whether the focus is on vehicles underwater, on the ground, or in the air. The authors have separated the discussion into sections treating each of these categories.

  5. Impact of Battery Management on Fuel Efficiency Validity | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications HEV, PHEV, EV Test Standard Development and Validation HEV, PHEV, BEV Test Standard Validation Advanced Technology Vehicle Lab Benchmarking - Level 2 ...

  6. 2014 Clean Cities selectionsproject table for progress alert...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    customer awareness and demand for PHEVs by placing vehicles in the hands of social media influencers. The project will conduct extended test drives with selected PHEV...

  7. Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tractor Vehicles Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a ...

  8. Vehicle Technologies Office: FY14 DE-FOA-0000951 Alternative Fuel Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deployment Initiatives Selection Table | Department of Energy Office: FY14 DE-FOA-0000951 Alternative Fuel Vehicle Deployment Initiatives Selection Table Vehicle Technologies Office: FY14 DE-FOA-0000951 Alternative Fuel Vehicle Deployment Initiatives Selection Table The Energy Department announced $6 million for 11 projects aimed at improving potential buyers' experiences with alternative fuel and plug-in electric vehicles, supporting training, and integrating alternative fuels into

  9. Impact of the 3Cs of Batteries on PHEV Value Proposition: Cost, Calendar Life, and Cycle Life (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.; Smith, K.; Markel, T.

    2009-06-01

    Battery cost, calendar life, and cycle life are three important challenges for those commercializing plug-in hybrid electric vehicles; battery life is sensitive to temperature and solar loading.

  10. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (115 Newhaven Rd., Oak Ridge, TN 37830)

    1994-01-01

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  11. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (Oak Ridge, TN)

    1996-01-01

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  12. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1994-03-15

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 11 figures.

  13. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1996-03-12

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 14 figs.

  14. Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency Besides their energy security and environmental benefits, many alternative fuels such as biodiesel, ...

  15. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Broader source: Energy.gov (indexed) [DOE]

    Peer Evaluation Meeting arravt072vssmackie2013o.pdf More Documents & Publications Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector...

  16. Vehicle Technologies FY14 Budget At-a-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    VEHICLE TECHNOLOGIES FY14 BUDGET AT-A-GLANCE Transportation accounts for 2/3 of U.S. petroleum use, and on-road vehicles are responsible for 80 percent of this amount. This dependence affects the national economy and our wallets. Vehicle Technologies develops and deploys advanced highway transportation technologies that reduce petroleum consumption and greenhouse gas emissions while meeting or exceeding vehicle performance expectations. What We Do Vehicle Technologies uses an integrated

  17. DOE Vehicle Technologies Program 2009 Merit Review Report - Safety Codes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Standards | Department of Energy Safety Codes and Standards DOE Vehicle Technologies Program 2009 Merit Review Report - Safety Codes and Standards Merit review of DOE Vehicle Technologies Program research efforts PDF icon 2009_merit_review_10.pdf More Documents & Publications DOE Vehicle Technologies Program 2009 Merit Review Report - Technology Validation DOE Vehicle Technologies Program 2009 Merit Review Report - Technology Integration and Education DOE Vehicle Technologies Program

  18. Vehicle Technologies Office: VSI Laboratory Video Text Version | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Vehicle Technologies Office: VSI Laboratory Video Text Version Vehicle Technologies Office: VSI Laboratory Video Text Version This is a text version of the video by Oak Ridge National Laboratory about its Vehicle Systems Integration Laboratory. The full video is on the Integration, Validation, and Testing Tools and Procedures page. Narrator: In order to improve upon existing vehicle technologies, there must be an in-depth understanding of how those technologies interact under

  19. Powerful, Efficient Electric Vehicle Chargers: Low-Cost, Highly-Integrated Silicon Carbide (SiC) Multichip Power Modules (MCPMs) for Plug-In Hybrid Electric

    SciTech Connect (OSTI)

    2010-09-14

    ADEPT Project: Currently, charging the battery of an electric vehicle (EV) is a time-consuming process because chargers can only draw about as much power from the grid as a hair dryer. APEI is developing an EV charger that can draw as much power as a clothes dryer, which would drastically speed up charging time. APEI's charger uses silicon carbide (SiC)-based power transistors. These transistors control the electrical energy flowing through the charger's circuits more effectively and efficiently than traditional transistors made of straight silicon. The SiC-based transistors also require less cooling, enabling APEI to create EV chargers that are 10 times smaller than existing chargers.

  20. Vehicle barrier

    DOE Patents [OSTI]

    Hirsh, Robert A. (Bethel Park, PA)

    1991-01-01

    A vehicle security barrier which can be conveniently placed across a gate opening as well as readily removed from the gate opening to allow for easy passage. The security barrier includes a barrier gate in the form of a cable/gate member in combination with laterally attached pipe sections fixed by way of the cable to the gate member and lateral, security fixed vertical pipe posts. The security barrier of the present invention provides for the use of cable restraints across gate openings to provide necessary security while at the same time allowing for quick opening and closing of the gate areas without compromising security.

  1. Electric Vehicle Workplace Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Vehicle Workplace Charging 2  Vertically integrated Vermont utility  We serve  260,000 Customers  202 towns covering 7,500 square miles of service territory  We operate  32 Hydro Plants  6 Peaking Plants  12 Solar Projects  2 Wind Farms  2 100KW Wind Turbines  1 Joint-Owned Biomass Plant (McNeil)  We maintain  976 miles of transmission lines  11,273 miles of distribution lines  185 substations  Started in 2010 with Prius HyMotion

  2. Vehicle Technologies Office Merit Review 2014: Friction Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Vehicle Technologies Office Merit Review 2014: Can hard coatings and lubricant anti-wear additives work together? An integrated surface technology for...

  3. Vehicle Technologies Office Merit Review 2014: Development of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (AHSS) with an Integrated Experimental and Simulation Approach Vehicle Technologies Office Merit Review 2014: Development of 3rd Generation Advanced High Strength Steels (AHSS) ...

  4. Vehicle Technologies Office: 2013 Lightweight Materials R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (AHSS) with an Integrated Experimental and Simulation Approach Vehicle Technologies Office Merit Review 2014: Development of 3rd Generation Advanced High Strength Steels (AHSS) ...

  5. Vehicle Technologies Office: FY14 DE-FOA-0000951 Alternative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at improving potential buyers' experiences with alternative fuel and plug-in electric vehicles, supporting training, and integrating alternative fuels into emergency planning. ...

  6. Power Electronic Thermal System Performance and Integration ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronic Thermal System Performance and Integration Integrated Power Module Cooling Vehicle Technologies Office: 2009 Advanced Power Electronics R&D Annual Progress Report

  7. Vehicle Technologies Office: 2014 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle and Systems Simulation and Testing Annual Progress Report Vehicle Technologies Office: 2014 Vehicle and Systems Simulation and Testing Annual Progress Report The Vehicle...

  8. Motor Thermal Control | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal Control Motor Thermal Control 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ape030_bennion_2010_p.pdf More Documents & Publications Thermal Management of PHEV / EV Charging Systems Integrated Vehicle Thermal Management Power Electronic Thermal System Performance and Integration

  9. An integrated systems approach to remote retrieval of buried transuranic waste using a telerobotic transport vehicle, innovative end effector, and remote excavator

    SciTech Connect (OSTI)

    Smith, A.M.; Rice, P.; Hyde, R.; Peterson, R.

    1995-02-01

    Between 1952 and 1970, over two million cubic feet of transuranic mixed waste was buried in shallow pits and trenches in the Subsurface Disposal Area at the Idaho National Engineering Laboratory Radioactive Waste Management Complex. Commingled with this two million cubic feet of waste is up to 10 million cubic feet of fill soil. The pits and trenches were constructed similarly to municipal landfills with both stacked and random dump waste forms such as barrels and boxes. The main contaminants are micron-sized particles of plutonium and americium oxides, chlorides, and hydroxides. Retrieval, treatment, and disposal is one of the options being considered for the waste. This report describes the results of a field demonstration conducted to evaluate technologies for excavating, and transporting buried transuranic wastes at the INEL, and other hazardous or radioactive waste sites throughout the US Department of Energy complex. The full-scale demonstration, conduced at RAHCO Internationals facilities in Spokane, Washington, in the summer of 1994, evaluated equipment performance and techniques for digging, dumping, and transporting buried waste. Three technologies were evaluated in the demonstration: an Innovative End Effector for dust free dumping, a Telerobotic Transport Vehicle to convey retrieved waste from the digface, and a Remote Operated Excavator to deploy the Innovative End Effector and perform waste retrieval operations. Data were gathered and analyzed to evaluate retrieval performance parameters such as retrieval rates, transportation rates, human factors, and the equipment`s capability to control contamination spread.

  10. Vehicles | Open Energy Information

    Open Energy Info (EERE)

    our nation's growing reliance on imported oil by running our vehicles on renewable and alternative fuels. Advanced vehicles and fuels can also put the brakes on air pollution...

  11. Fact #878: June 22, 2015 Plug-in Vehicle Penetration in Selected...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Austria and Germany data do not include PHEVs, but only BEVs. Austria, Canada, France, and Germany include only passenger cars. Fact 878 Dataset Supporting Information Number of ...

  12. Well-To-Wheels Energy and Greenhouse Gas Analysis of Plug-In Hybrid Electric Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ii This page intentionally left blank. iii CONTENTS ACKNOWLEDGMENTS ........................................................................................................ xi NOTATION .............................................................................................................................. xiii EXECUTIVE SUMMARY ...................................................................................................... 1 ES.1 CD Operation of Gasoline PHEVs and BEVs

  13. Thermoelectric Opportunities in Light-Duty Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Light-Duty Vehicles Thermoelectric Opportunities in Light-Duty Vehicles Overview of thermoelectric (TE) vehicle exhaust heat recovery, TE HVAC systems, and OEM role in establishing guidelines for cost, power density, systems integration, and durability. PDF icon maranville.pdf More Documents & Publications Vehicular Thermoelectrics: A New Green Technology Vehicular Thermoelectrics: A New Green Technology Cost Effectiveness of Technology Solutions for Future Vehicle Systems

  14. Vehicle to Grid Demonstration Project

    SciTech Connect (OSTI)

    Willett Kempton; Meryl Gardner; Michael Hidrue; Fouad Kamilev; Sachin Kamboj; Jon Lilley; Rodney McGee; George Parsons; Nat Pearre; Keith Trnka

    2010-12-31

    This report summarizes the activities and accomplishments of a two-year DOE-funded project on Grid-Integrated Vehicles (GIV) with vehicle to grid power (V2G). The project included several research and development components: an analysis of US driving patterns; an analysis of the market for EVs and V2G-capable EVs; development and testing of GIV components (in-car and in-EVSE); interconnect law and policy; and development and filing of patents. In addition, development activities included GIV manufacturing and licensing of technologies developed under this grant. Also, five vehicles were built and deployed, four for the fleet of the State of Delaware, plus one for the University of Delaware fleet.

  15. Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles Vehicles Watch this video to learn about the benefits of electric vehicles -- including improved fuel efficiency, reduced emissions and lower maintenance costs. Vehicles, and the fuel it takes to power them, are an essential part of our American infrastructure and economy, moving people and goods across the country. From funding research into technologies that will save Americans money at the pump to increasing the fuel economy of gasoline-powered vehicles to encouraging the development

  16. Vehicle Technologies Office: Advanced Vehicle Testing Activity...

    Broader source: Energy.gov (indexed) [DOE]

    The Vehicle Technologies Office (VTO) supports work to develop test procedures and carry ... The standard procedures and test specifications are used to test and collect data from ...

  17. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt072vssmackie2011

  18. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt072vssmackie2012

  19. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt066vsskarner2011...

  20. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt066vsskarner2012...

  1. Vehicle Technologies Office: 2012 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. PDF icon 2012vsstreport.pdf More Documents & Publications Vehicle Technologies...

  2. Vehicle Technologies Office: 2011 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. PDF icon 2011vsstreport.pdf More Documents & Publications Vehicle Technologies...

  3. Vehicle Technologies Office Recognizes Leaders in Advanced Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recognizes Leaders in Advanced Vehicle Research, Development and Deployment Vehicle Technologies ... Wereszczak's work in ceramics and brittle materials supports vehicle OEMs and their ...

  4. Cooling Boiling in Head Region - PACCAR Integrated Underhood...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Integrated External Aerodynamic and Underhood Thermal Analysis for Heavy Vehicles CRADA with PACCAR Experimental Investigation in...

  5. Voltage Vehicles | Open Energy Information

    Open Energy Info (EERE)

    distributor specializing in the full spectrum of electric vehicles (EV) and full-performance alternative fuel vehicles (AFV). References: Voltage Vehicles1 This article is a...

  6. Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  7. Consumer Vehicle Technology Data

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  8. Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles Vehicles EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. The U.S. Department of Energy (DOE) supports the development and

  9. Advanced Vehicles Manufacturing Projects | Department of Energy

    Energy Savers [EERE]

    Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects DOE-LPO_ATVM-Economic-Growth_Thumbnail.png DRIVING ECONOMIC GROWTH: ADVANCED TECHNOLOGY VEHICLES

  10. Energy 101: Electric Vehicles

    ScienceCinema (OSTI)

    None

    2013-05-29

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

  11. 2008 Annual Merit Review Results Summary - 16. Technology Integration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6. Technology Integration and Education 2008 Annual Merit Review Results Summary - 16. Technology Integration and Education DOE Vehicle Technologies Annual Merit Review PDF icon...

  12. Integrated Design and Manufacturing of Cost-Effective & Industrial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Design and Manufacturing of Cost-Effective & Industrial-Scalable TEG for Vehicle Applications Integrated design and manufacture of scalable vehicular TEG PDF icon ...

  13. Application of Distribution Transformer Thermal Life Models to Electrified Vehicle Charging Loads Using Monte-Carlo Method: Preprint

    SciTech Connect (OSTI)

    Kuss, M.; Markel, T.; Kramer, W.

    2011-01-01

    Concentrated purchasing patterns of plug-in vehicles may result in localized distribution transformer overload scenarios. Prolonged periods of transformer overloading causes service life decrements, and in worst-case scenarios, results in tripped thermal relays and residential service outages. This analysis will review distribution transformer load models developed in the IEC 60076 standard, and apply the model to a neighborhood with plug-in hybrids. Residential distribution transformers are sized such that night-time cooling provides thermal recovery from heavy load conditions during the daytime utility peak. It is expected that PHEVs will primarily be charged at night in a residential setting. If not managed properly, some distribution transformers could become overloaded, leading to a reduction in transformer life expectancy, thus increasing costs to utilities and consumers. A Monte-Carlo scheme simulated each day of the year, evaluating 100 load scenarios as it swept through the following variables: number of vehicle per transformer, transformer size, and charging rate. A general method for determining expected transformer aging rate will be developed, based on the energy needs of plug-in vehicles loading a residential transformer.

  14. NREL: Transportation Research - Electric Vehicle Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of building energy systems, utility grids, renewable energy sources, and ... to enable PEV communication with the smart grid and to create opportunities for ...

  15. Vehicle Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    David Howell Acting Director, Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting VEHICLE TECHNOLOGIES OFFICE June 8, 2015 2  Transportation is responsible for 69% of U.S. petroleum usage  28% of GHG emissions  On-Road vehicles responsible for 85% of transportation petroleum usage Oil Dependency is Dominated by Vehicles  16.4M LDVs sold in 2014  240 million light-duty vehicles on the road in the U.S.  10-15 years for annual sales penetration  10-15

  16. Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Choose a vehicle to compare fuel cost and emissions with a conventional vehicle. Select Fuel/Technology Electric Hybrid Electric Plug-in Hybrid Electric Natural Gas (CNG) Flex Fuel (E85) Biodiesel (B20) Propane (LPG) Next Vehicle Cost Calculator Vehicle 0 City 0 Hwy (mi/gal) 0 City 0 Hwy (kWh/100m) Gasoline Vehicle 0 City 0 Hwy (mi/gal) Normal Daily Use 30.5 Total miles/day City 55 % Hwy 45 % Other Trips 3484 Total miles/year City 20 % Hwy 80 % Fuel Cost Emissions Annual Fuel Cost $ $/gal Annual

  17. Determining the Effectiveness of Incorporating Geographic Information Into Vehicle Performance Algorithms

    SciTech Connect (OSTI)

    Sera White

    2012-04-01

    This thesis presents a research study using one year of driving data obtained from plug-in hybrid electric vehicles (PHEV) located in Sacramento and San Francisco, California to determine the effectiveness of incorporating geographic information into vehicle performance algorithms. Sacramento and San Francisco were chosen because of the availability of high resolution (1/9 arc second) digital elevation data. First, I present a method for obtaining instantaneous road slope, given a latitude and longitude, and introduce its use into common driving intensity algorithms. I show that for trips characterized by >40m of net elevation change (from key on to key off), the use of instantaneous road slope significantly changes the results of driving intensity calculations. For trips exhibiting elevation loss, algorithms ignoring road slope overestimated driving intensity by as much as 211 Wh/mile, while for trips exhibiting elevation gain these algorithms underestimated driving intensity by as much as 333 Wh/mile. Second, I describe and test an algorithm that incorporates vehicle route type into computations of city and highway fuel economy. Route type was determined by intersecting trip GPS points with ESRI StreetMap road types and assigning each trip as either city or highway route type according to whichever road type comprised the largest distance traveled. The fuel economy results produced by the geographic classification were compared to the fuel economy results produced by algorithms that assign route type based on average speed or driving style. Most results were within 1 mile per gallon ({approx}3%) of one another; the largest difference was 1.4 miles per gallon for charge depleting highway trips. The methods for acquiring and using geographic data introduced in this thesis will enable other vehicle technology researchers to incorporate geographic data into their research problems.

  18. Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Plug-In Hybrid Electric Vehicles Well-to-Wheels Analysis of Energy Use and ... vehicles (PHEVs), as well as the powertrain technology and fuel sources for PHEVs. ...

  19. Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sector Electrification | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt072_vss_mackie_2012

  20. Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sector Electrification | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt072_vss_mackie_2011

  1. Vehicle Technologies Office: AVTA - Electric Vehicle Charging...

    Office of Environmental Management (EM)

    For a map of the public EVSE available in the U.S., see the Alternative Fuels Station Locator. Idaho National Laboratory, supported by the Vehicle Technologies Office (VTO), ...

  2. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon vssarravt066karner2010p...

  3. Vehicle Technologies Office FY 2015 Budget At-A-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    wallets - making it a high-value opportunity for change. The Vehicle Technologies Office develops and deploys advanced highway transportation technologies that reduce petroleum consumption and greenhouse gas emissions, while meeting or exceeding vehicle performance expectations. What We Do The Vehicle Technologies Office uses an integrated portfolio approach and relies on strategic partnerships to accelerate the movement of technologies from lab to showroom and onto the road:  Research and

  4. Vehicle Technologies Office: Advanced Battery Development, System Analysis,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Testing | Department of Energy Battery Development, System Analysis, and Testing Vehicle Technologies Office: Advanced Battery Development, System Analysis, and Testing To develop better lithium-ion (Li-ion) batteries for plug-in electric vehicles, researchers must integrate the advances made in exploratory battery materials and applied battery research into full battery systems. The Vehicle Technologies Office's (VTO) Advanced Battery Development, System Analysis, and Testing activity

  5. Medium Duty Electric Vehicle Demonstration Project

    SciTech Connect (OSTI)

    Mackie, Robin J. D.

    2015-05-31

    The Smith Electric Vehicle Demonstration Project (SDP) was integral to the Smith business plan to establish a manufacturing base in the United States (US) and produce a portfolio of All Electric Vehicles (AEVs) for the medium duty commercial truck market. Smith focused on the commercial depot based logistics market, as it represented the market that was most ready for the early adoption of AEV technology. The SDP enabled Smith to accelerate its introduction of vehicles and increase the size of its US supply chain to support early market adoption of AEVs that were cost competitive, fully met the needs of a diverse set of end users and were compliant with Federal safety and emissions requirements. The SDP accelerated the development and production of various electric drive vehicle systems to substantially reduce petroleum consumption, reduce vehicular emissions of greenhouse gases (GHG), and increase US jobs.

  6. NREL: Transportation Research - Systems Analysis and Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wireless power transfer for on-road electric vehicles, as depicted in the e-roadway animation. NREL's systems analysis and integration work supports a wide range of...

  7. Integrated Computational Materials Engineering (ICME) for Mg...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project (Part 1) Integrated Computational Materials Engineering (ICME) for Mg: International Pilot Project (Part 1) 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit...

  8. Power Electronic Thermal System Performance and Integration ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Motor Thermal Control Thermal Stress and Reliability for Advanced Power Electronics and Electric Machines Integrated Vehicle Thermal Management

  9. Transportation and Stationary Power Integration Workshop: ""An...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ""An Automaker's Views on the Transition to Hydrogen and Fuel Cell Vehicles Transportation and Stationary Power Integration Workshop: ""An Automaker's Views on the Transition to ...

  10. DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Vehicle Systems DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle Systems Merit review of DOE Vehicle Technologies Program research efforts PDF icon 2009_merit_review_1.pdf More Documents & Publications DOE Vehicle Technologies Program 2009 Merit Review Report DOE Vehicle Technologies Program 2009 Merit Review Report - Energy Storage DOE Vehicle Technologies Program 2009 Merit Review Report - Propulsion Materials

  11. Vehicle Technologies Office: AVTA - Medium and Heavy Duty Vehicle Data

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Results | Department of Energy Medium and Heavy Duty Vehicle Data and Results Vehicle Technologies Office: AVTA - Medium and Heavy Duty Vehicle Data and Results The Vehicle Technologies Office supports work to collect extensive data on light-duty, medium-duty and heavy-duty vehicles through the Advanced Vehicle Testing Activity (AVTA). Idaho National Laboratory and the National Renewable Energy Laboratory (NREL) test and evaluate medium and heavy-duty fleet vehicles that use hybrid

  12. Vehicle Technologies Office Merit Review 2015: Consumer Vehicle Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data | Department of Energy Consumer Vehicle Technology Data Vehicle Technologies Office Merit Review 2015: Consumer Vehicle Technology Data Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about consumer vehicle technology data. PDF icon van003_singer_2015_o.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2014: Consumer Vehicle

  13. 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Simulation and Testing | Department of Energy 0 DOE EERE Vehicle Technologies Program Merit Review - Vehicle Systems Simulation and Testing 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle Systems Simulation and Testing Vehicle systems research and development merit review results PDF icon 2010_amr_01.pdf More Documents & Publications 2010 Annual Merit Review Results Summary 2011 Annual Merit Review Results Report - Hybrid and Vehicle Systems Technologies DOE Vehicle

  14. Advanced Technology Vehicle Testing

    SciTech Connect (OSTI)

    James Francfort

    2004-06-01

    The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

  15. Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Choose a vehicle to compare fuel cost and emissions with a conventional vehicle. Select Fuel/Technology Electric Hybrid Electric Plug-in Hybrid Electric Natural Gas (CNG) Flex Fuel (E85) Biodiesel (B20) Next Vehicle Cost Calculator Update Your Widget Code This widget version will stop working on March 31. Update your widget code. × Widget Code Select All Close U.S. Department of Energy Energy Efficiency and Renewable Energy

  16. Railway vehicle body structures

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    The strength and durability of railway vehicle structures is a major topic of engineering research and design. To reflect this importance the Railway Division of the Institution of Mechanical Engineers organised a conference to discuss all matters relating to railway vehicle design. This book presents the papers discussed in that conference. The contents include: Vehicle body design and the UIC's international contribution; LUL prototype 1986 stock - body structure; vehicle structure for the intermediate capacity transmit system vehicles; car body technology of advanced light rapid transit vehicles; concepts, techniques and experience in the idealization of car body structures for finite element analysis; Calcutta metropolitan railway; design for a lightweight diesel multiple unit body; the design of lightweight inter-city coal structures; the BREL international coach body shell structure; new concepts and design techniques versus material standards; structures of BR diesel electric freight locomotives; structural design philosophy for electric locomotives; suspension design for a locomotive with low structural frequencies; freight wagon structures; a finite element study of coal bodyside panels including the effects of joint flexibility; a fresh approach to the problem of car body design strength; energy absorption in automatic couplings and draw gear; passenger vehicle design loads and structural crashworthiness; design of the front part of railway vehicles (in case of frontal impact); the development of a theoretical technique for rail vehicle structural crashworthiness.

  17. Vehicle Technologies Office: Technologies

    Broader source: Energy.gov [DOE]

    To support DOE's goal to provide clean and secure energy, the Vehicle Technologies Office (VTO) invests in research and development that:

  18. Ford's CNG vehicle research

    SciTech Connect (OSTI)

    Nichols, R.J.

    1983-06-01

    Several natural gas vehicles have been built as part of Ford's Alternative Fuel Demonstration Fleet. Two basic methods, compressed gas (CNG), and liquified gas (LNG) were used. Heat transfer danger and the expense and special training needed for LNG refueling are cited. CNG in a dual-fuel engine was demonstrated first. The overall results were unsatisfactory. A single fuel LNG vehicle was then demonstrated. Four other demonstrations, testing different tank weights and engine sizes, lead to the conclusion that single fuel vehicles optimized for CNG use provide better fuel efficiency than dual-fuel vehicles. Lack of public refueling stations confines use to fleet operations.

  19. Laboratory to change vehicle traffic-screening regimen at vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Changes to vehicle traffic-screening Laboratory to change vehicle traffic-screening regimen at vehicle inspection station Lanes two through five will be open 24 hours a day and...

  20. American Electric Vehicles Inc | Open Energy Information

    Open Energy Info (EERE)

    Vehicles Inc Jump to: navigation, search Name: American Electric Vehicles Inc Place: Palmer Lake, Colorado Zip: 80133 Sector: Vehicles Product: American Electric Vehicles (AEV)...

  1. Vehicle Technologies Office: AVTA - Evaluating Military Bases...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Military Bases and Fleet Readiness for Electric Vehicles Vehicle Technologies Office: AVTA - Evaluating Military Bases and Fleet Readiness for Electric Vehicles The Vehicle...

  2. Electric-Drive Vehicle Basics (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-04-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  3. Vehicle Technologies Office Merit Review 2015: Vehicle Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview | Department of Energy Vehicle Technologies Office Overview Vehicle Technologies Office Merit Review 2015: Vehicle Technologies Office Overview Presentation given by U.S. Department of Energy at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation meeting about Vehicle Technologies Office overview. PDF icon 02_howell_plenary_2015_amr.pdf More Documents & Publications Vehicle Technologies Office FY 2016 Budget

  4. Vehicle Technologies Office - AVTA: Hybrid-Electric Delivery Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Delivery Vehicles Vehicle Technologies Office - AVTA: Hybrid-Electric Delivery Vehicles The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following set of reports (part of the medium and

  5. Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Tractor Vehicles Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following set of reports (part of the medium and

  6. Vehicle Technologies Office: Key Activities in Vehicles | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy About the Vehicle Technologies Office » Vehicle Technologies Office: Key Activities in Vehicles Vehicle Technologies Office: Key Activities in Vehicles We conduct work in four key areas to develop and deploy vehicle technologies that reduce the use of petroleum while maintaining or improving performance, power, and comfort. Research and development (R&D); testing and analysis; government and community stakeholder support; and education help people access and use efficient, clean

  7. Vehicle Technologies Office: Plug-In Electric Vehicles and Batteries |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Plug-In Electric Vehicles and Batteries Vehicle Technologies Office: Plug-In Electric Vehicles and Batteries Vehicle Technologies Office: Plug-In Electric Vehicles and Batteries With their immense potential for increasing the country's energy, economic, and environmental security, plug-in electric vehicles (PEVs, including plug-in hybrid electric and all-electric) will play a key role in the country's transportation future. In fact, transitioning to a mix of plug-in

  8. Vehicle Technologies Office Merit Review 2014: Improving Vehicle...

    Office of Environmental Management (EM)

    and Reduced Weight Vehicle Technologies Office Merit Review 2014: Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight Presentation given by Cooper...

  9. Vehicle Technologies Office Merit Review 2015: Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    Presentation given by Intertek at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced vehicle testing and...

  10. Vehicle Technologies Office: 2013 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and field evaluations, codes and standards, industry projects, and vehicle systems optimization. PDF icon 2013vsstreport.pdf More Documents & Publications Vehicle Technologies...

  11. Vehicle Technologies Office Merit Review 2014: Vehicle & Systems...

    Broader source: Energy.gov (indexed) [DOE]

    and Testing R&D Annual Progress Report Vehicle Technologies Office Merit Review 2014: Wireless Charging Vehicle Technologies Office Merit Review 2015: Overview of the DOEVTO...

  12. 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010 Annual Merit Review Results Summary 2011 Annual Merit Review Results Report - Hybrid and Vehicle Systems Technologies DOE Vehicle Technologies Program 2009 Merit Review...

  13. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    16.8 17.4 18.6 18.9 1.7 2.2 0.6 1.5 Energy Information AdministrationHousehold Vehicles Energy Consumption 1991 15 Vehicle Miles Traveled per Vehicle (Thousand) . . . . . . . . ....

  14. Fleet Vehicles | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fleet Vehicles General Information: The Materials and Transportation Fleet Vehicle section provides acquisition, utilization and maintenance records, and disposal of vehicles used in support of research conducted by Ames Laboratory employees. Vehicles are for official DOE business use only. Cars: The Laboratory has no permanently leased vehicles for personnel transportation. Vehicles for transportation (travel) are rented/leased from ISU Transportation Services on Haber Road (4-1882) or from

  15. Advancing Plug In Hybrid Technology and Flex Fuel Application on a Chrysler

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mini-Van PHEV DOE Funded Project | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon vss063_bazzi_2011_o.pdf More Documents & Publications Advancing Plug In Hybrid Technology and Flex Fuel Application on a Chrysler Mini-Van PHEV DOE Funded Project Advancing Transportation Through Vehicle Electrification - PHEV Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity

  16. Advancing Plug In Hybrid Technology and Flex Fuel Application on a Chrysler

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mini-Van PHEV DOE Funded Project | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon vss063_bazzi_2012_o.pdf More Documents & Publications Advancing Plug In Hybrid Technology and Flex Fuel Application on a Chrysler Mini-Van PHEV DOE Funded Project Advancing Transportation Through Vehicle Electrification - PHEV Advancing Transportation Through Vehicle Electrification - PHEV

  17. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    were imputed as disposed vehicles. To impute vehicle stock changes in the 1991 RTECS, logistic regression equations were used to compute a predicted probability (or propensity)...

  18. Vehicle Technologies Office: Propulsion Systems

    Broader source: Energy.gov [DOE]

    Vehicle Technologies Office research focuses much of its effort on improving vehicle fuel economy while meeting increasingly stringent emissions standards. Achieving these goals requires a...

  19. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    more fuel-efficient vehicles, and the implementation of Corporate Average Fuel Economy (CAFE) 6 standards. Figure 13. Average Fuel Efficiency of All Vehicles, by Model Year 6...

  20. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    or commercial trucks (See Table 1). Energy Information AdministrationHousehold Vehicles Energy Consumption 1991 5 The 1991 RTECS count includes vehicles that were owned or used...

  1. Impact of Solar Control PVB Glass on Vehicle Interior Temperatures, Air-Conditioning Capacity, Fuel Consumption, and Vehicle Range

    SciTech Connect (OSTI)

    Rugh, J.; Chaney, L.; Venson, T.; Ramroth, L.; Rose, M.

    2013-04-01

    The objective of the study was to assess the impact of Saflex1 S-series Solar Control PVB (polyvinyl butyral) configurations on conventional vehicle fuel economy and electric vehicle (EV) range. The approach included outdoor vehicle thermal soak testing, RadTherm cool-down analysis, and vehicle simulations. Thermal soak tests were conducted at the National Renewable Energy Laboratory's Vehicle Testing and Integration Facility in Golden, Colorado. The test results quantified interior temperature reductions and were used to generate initial conditions for the RadTherm cool-down analysis. The RadTherm model determined the potential reduction in air-conditioning (A/C) capacity, which was used to calculate the A/C load for the vehicle simulations. The vehicle simulation tool identified the potential reduction in fuel consumption or improvement in EV range between a baseline and modified configurations for the city and highway drive cycles. The thermal analysis determined a potential 4.0% reduction in A/C power for the Saflex Solar PVB solar control configuration. The reduction in A/C power improved the vehicle range of EVs and fuel economy of conventional vehicles and plug-in hybrid electric vehicles.

  2. Blast resistant vehicle seat

    DOE Patents [OSTI]

    Ripley, Edward B

    2013-02-12

    Disclosed are various seats for vehicles particularly military vehicles that are susceptible to attack by road-bed explosive devices such as land mines or improvised explosive devices. The seats often have rigid seat shells and may include rigid bracing for rigidly securing the seat to the chassis of the vehicle. Typically embodiments include channels and particulate media such as sand disposed in the channels. A gas distribution system is generally employed to pump a gas through the channels and in some embodiments the gas is provided at a pressure sufficient to fluidize the particulate media when an occupant is sitting on the seat.

  3. Heavy-Duty Powertrain and Vehicle Development - A Look Toward 2020 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy and Vehicle Development - A Look Toward 2020 Heavy-Duty Powertrain and Vehicle Development - A Look Toward 2020 Globalization in emissions regulation will be driving freight efficiency improvements and will require heavy-duty engine and powertrain advancements, vehicle improvements, and optimized system integration PDF icon deer11_groeneweg.pdf More Documents & Publications View from the Bridge: Commercial Vehicle Perspective High-Efficiency Engine Technologies

  4. Dynamic Wireless Power Transfer - Grid Impacts Analysis (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynamic Wireless Power Transfer Grid Impacts Analysis Tony Markel, Andrew Meintz, and Jeff Gonder EPRI EV IWC Meeting Atlanta, GA November 19, 2015 NREL/PR-5400-65449 2 Electrified Roadways Implementation Benefits * Electrified Roadways Opportunity o Expand vehicle utility and value o Integrate with renewable resources and grid operations * Electric Vehicles (EVs) o Roadway electrification extends operable range * Plug-In Hybrid Electric Vehicles (PHEVs) o Fully electrified operation possible

  5. Vehicle Technologies Office Merit Review 2014: Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification

    Broader source: Energy.gov [DOE]

    Presentation given by Smith Electric Vehicles at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Smith Electric...

  6. Integrated Design and Manufacturing of Cost-Effective & Industrial-Scalable

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TEG for Vehicle Applications | Department of Energy Cost-Effective & Industrial-Scalable TEG for Vehicle Applications Integrated Design and Manufacturing of Cost-Effective & Industrial-Scalable TEG for Vehicle Applications Integrated design and manufacture of scalable vehicular TEG PDF icon zuo.pdf More Documents & Publications Integrated Design and Manufacturing of Cost-Effective & Industrial-Scalable TEG for Vehicle Applications Integrated Design and Manufacturing of

  7. Lightweight Composite Materials for Heavy Duty Vehicles

    SciTech Connect (OSTI)

    Pruez, Jacky; Shoukry, Samir; Williams, Gergis; Shoukry, Mark

    2013-08-31

    The main objective of this project is to develop, analyze and validate data, methodologies and tools that support widespread applications of automotive lightweighting technologies. Two underlying principles are guiding the research efforts towards this objective: Seamless integration between the lightweight materials selected for certain vehicle systems, cost-effective methods for their design and manufacturing, and practical means to enhance their durability while reducing their Life-Cycle-Costs (LCC). Smooth migration of the experience and findings accumulated so far at WVU in the areas of designing with lightweight materials, innovative joining concepts and durability predictions, from applications to the area of weight savings for heavy vehicle systems and hydrogen storage tanks, to lightweighting applications of selected systems or assemblies in lightduty vehicles.

  8. Vehicle Technologies Office: AVTA- Neighborhood All-Electric Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the following vehicles is available in downloadable form: 2013 BRP Commander Electric, 2010 Electric Vehicles International E-Mega, 2009 Vantage Pickup EVX1000, and 2009 Vantage Van EVC1000.

  9. 2014 Annual Merit review Results Report - Technology Integration |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy review Results Report - Technology Integration 2014 Annual Merit review Results Report - Technology Integration Merit review of DOE Vehicle Technologies research activities PDF icon 2014_amr_08.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2014: Advancing Alternative Fuel Markets in Florida Vehicle Technologies Office Merit Review 2014: Removing Barriers, Implementing Policies and Advancing Alternative Fuels Markets in New England Vehicle

  10. Integrated External Aerodynamic and Underhood Thermal Analysis for Heavy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles | Department of Energy External Aerodynamic and Underhood Thermal Analysis for Heavy Vehicles Integrated External Aerodynamic and Underhood Thermal Analysis for Heavy Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon vss080_sofu_2012_o.pdf More Documents & Publications Cooling Boiling in Head Region - PACCAR Integrated Underhood Thermal and External Aerodynamics- Cummins Cummins SuperTruck

  11. Vehicle Technologies Program Overview

    SciTech Connect (OSTI)

    none,

    2006-09-05

    Overview of the Vehicle Technologies Program including external assessment and market view; internal assessment, program history and progress; program justification and federal role; program vision, mission, approach, strategic goals, outputs, and outcomes; and performance goals.

  12. Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Annual GHG Emissions (lbs of CO2) Vehicle Cost Calculator See Assumptions and Methodology Back Next U.S. Department of Energy Energy Efficiency and Renewable Energy Get Widget Code...

  13. TRACKED VEHICLE Rev 75

    SciTech Connect (OSTI)

    Raby, Eric Y.

    2007-05-08

    Revision 75 of the Tracked Vehicle software is a soft real-time simulation of a differentially steered, tracked mobile robot, which, because of the track flippers, resembles the iRobot PackBot (http://www.irobot.com/). Open source libraries are used for the physics engine (http://www.ode.org/), the display and user interface (http://www.mathies.com/cpw/), and the program command line and configuration file parameters (http://www.boost.org/). The simulation can be controlled by a USB joystick or the keyboard. The configuration file contains demonstration model parameters of no particular vehicle. This simulation can be used as a starting point for those doing tracked vehicle simulations. This simulation software is essentially a research tool which can be modified and adapted for certain types of tracked vehicle research. An open source license allows an individual researchers to tailor the code to their specific research needs.

  14. TRACKED VEHICLE Rev 75

    Energy Science and Technology Software Center (OSTI)

    2007-05-08

    Revision 75 of the Tracked Vehicle software is a soft real-time simulation of a differentially steered, tracked mobile robot, which, because of the track flippers, resembles the iRobot PackBot (http://www.irobot.com/). Open source libraries are used for the physics engine (http://www.ode.org/), the display and user interface (http://www.mathies.com/cpw/), and the program command line and configuration file parameters (http://www.boost.org/). The simulation can be controlled by a USB joystick or the keyboard. The configuration file contains demonstration model parametersmore » of no particular vehicle. This simulation can be used as a starting point for those doing tracked vehicle simulations. This simulation software is essentially a research tool which can be modified and adapted for certain types of tracked vehicle research. An open source license allows an individual researchers to tailor the code to their specific research needs.« less

  15. Director, Vehicle Technologies Office

    Broader source: Energy.gov [DOE]

    The Office of Energy Efficiency and Renewable Energy within the U.S. Department of Energy is looking for a dynamic, innovative, and experienced executive to lead the efforts of the Vehicle...

  16. Hybrid vehicle control

    DOE Patents [OSTI]

    Shallvari, Iva; Velnati, Sashidhar; DeGroot, Kenneth P.

    2015-07-28

    A method and apparatus for heating a catalytic converter's catalyst to an efficient operating temperature in a hybrid electric vehicle when the vehicle is in a charge limited mode such as e.g., the charge depleting mode or when the vehicle's high voltage battery is otherwise charge limited. The method and apparatus determine whether a high voltage battery of the vehicle is incapable of accepting a first amount of charge associated with a first procedure to warm-up the catalyst. If it is determined that the high voltage battery is incapable of accepting the first amount of charge, a second procedure with an acceptable amount of charge is performed to warm-up the catalyst.

  17. Electric Vehicle Supply Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Procurement of Electric Vehicle Supply Equipment This Guidance provides a description of the types of requirements to be included in an employer's workplace charging request for proposal (RFP). This Guidance is not intended to be a sample or manual for acquiring electric vehicle supply equipment (EVSE), but rather to serve as a reference for an employer to consider when acquiring EVSE as part of a workplace charging program. Contact the Workplace Charging Challenge at

  18. Fact #873: May 18, 2015 Plug-In Vehicle Sales Total Nearly 120...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Nissan Leaf, Chevrolet Volt, Tesla Model S, Toyota Prius PHEV, and Ford Fusion Energi. ... Panamera S E-Hybrid 0 0 0 51 879 Ford Fusion Energi 0 0 0 6,089 11,550 Honda Accord 0 ...

  19. Vehicle Technologies Office: 2011 Vehicle and Systems Simulation and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing R&D Annual Progress Report | Department of Energy 1 Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2011 Vehicle and Systems Simulation and Testing R&D Annual Progress Report FY 2011 annual report focusing on five main areas: modeling and simulation, component and systems evaluation, laboratory and field vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. PDF icon

  20. Vehicle Technologies Office: 2012 Vehicle and Systems Simulation and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing R&D Annual Progress Report | Department of Energy 2 Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2012 Vehicle and Systems Simulation and Testing R&D Annual Progress Report FY 2012 annual report focusing on five main areas: modeling and simulation, component and systems evaluation, laboratory and field vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. PDF icon

  1. Vehicle Technologies Office: 2013 Vehicle and Systems Simulation and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing R&D Annual Progress Report | Department of Energy Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2013 Vehicle and Systems Simulation and Testing R&D Annual Progress Report FY 2013 annual report focuses on the following areas: vehicle modeling and simulation, component and systems evaluations, laboratory and field evaluations, codes and standards, industry projects, and vehicle systems optimization. PDF icon

  2. Vehicle Technologies Office: 2014 Vehicle and Systems Simulation and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing Annual Progress Report | Department of Energy Vehicle and Systems Simulation and Testing Annual Progress Report Vehicle Technologies Office: 2014 Vehicle and Systems Simulation and Testing Annual Progress Report The Vehicle and Systems Simulation and Testing research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical

  3. Vehicle Technologies Office: AVTA - Electric Vehicle Charging Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (EVSE) Testing Data | Department of Energy Charging Equipment (EVSE) Testing Data Vehicle Technologies Office: AVTA - Electric Vehicle Charging Equipment (EVSE) Testing Data Electric vehicle chargers (otherwise known as Electric Vehicle Supply Equipment - EVSE) are a fundamental part of the plug-in electric vehicle system. Currently, there are three major types of EVSE: AC Level 1, AC Level 2, and DC Fast Charging. For an overview of the types of EVSE, see the Alternative Fuel Data Center's

  4. Vehicle Technologies Office Merit Review 2014: Improving Vehicle Fuel

    Energy Savers [EERE]

    Efficiency Through Tire Design, Materials, and Reduced Weight | Department of Energy Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight Vehicle Technologies Office Merit Review 2014: Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight Presentation given by Cooper Tire at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about improving vehicle fuel

  5. Vehicle Technologies Office: 2015 Vehicle Systems Annual Progress Report

    Broader source: Energy.gov [DOE]

    This report describes the progress made on the research and development projects funded by the Vehicle Systems subprogram. The Vehicle Systems research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to advancing light-, medium-, and heavy-duty vehicle systems to help maximize the number of electric miles driven and increase the energy efficiency of transportation vehicles.

  6. Richmond Electric Vehicle Initiative Electric Vehicle Readiness Plan |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Richmond Electric Vehicle Initiative Electric Vehicle Readiness Plan Richmond Electric Vehicle Initiative Electric Vehicle Readiness Plan The REVi plan addresses the electric vehicle market in Richmond and then addresses a regional plan, policies, and analysis of the the communities readiness. PDF icon Richmond EV Initiative More Documents & Publications EV Community Readiness projects: South Florida Regional Planning Council; Virginia Department of Mines, Minerals

  7. Vehicle Technologies Office: Moving America Forward with Clean Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Moving America Forward with Clean Vehicles Vehicle Technologies Office: Moving America Forward with Clean Vehicles The U.S. Department of Energy's Vehicle Technologies Office supports research, development (R&D), and deployment of efficient and sustainable highway transportation technologies that will improve fuel economy and enable America to use less petroleum. These technologies, which include plug-in electric vehicles (also known as EVs or electric cars),

  8. Future Emissions Impact On Off-Road Vehicles

    SciTech Connect (OSTI)

    Kirby Baumgard; Steve Ephraim

    2001-04-18

    Summaries of paper: Emission requirements dictate vehicle update cycles; Packaging, performance and cost impacted; Styling updates can be integrated; Opportunity to integrate features and performance; Non-uniform regulations challenge resources; and Customers won't expect to pay more or receive less.

  9. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP)

    Broader source: Energy.gov [DOE]

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  10. Control Strategies for Electric Vehicle (EV) Charging Using Renewables and Local Storage

    SciTech Connect (OSTI)

    Castello, Charles C; LaClair, Tim J; Maxey, L Curt

    2014-01-01

    The increase of electric vehicle (EV) and plug-in hybrid-electric vehicle (PHEV) adoption creates a need for more EV supply equipment (EVSE) infrastructure (i.e., EV chargers). The impact of EVSE installations could be significant due to limitations in the electric grid and potential demand charges for residential and commercial customers. The use of renewables (e.g., solar) and local storage (e.g., battery bank) can mitigate loads caused by EVSE on the electric grid. This would eliminate costly upgrades needed by utilities and decrease demand charges for consumers. This paper aims to explore control systems that mitigate the impact of EVSE on the electric grid using solar energy and battery banks. Three control systems are investigated and compared in this study. The first control system discharges the battery bank at a constant rate during specific times of the day based on historical data. The second discharges the battery bank based on the number of EVs charging (linear) and the amount of solar energy being generated. The third discharges the battery bank based on a sigmoid function (non-linear) in response to the number of EVs charging, and also takes into consideration the amount of renewables being generated. The first and second control systems recharge the battery bank at night when demand charges are lowest. The third recharges the battery bank at night and during times of the day when there is an excess of solar. Experiments are conducted using data from a private site that has 25 solar-assisted charging stations at Oak Ridge National Laboratory (ORNL) in Oak Ridge, TN and 4 at a public site in Nashville, TN. Results indicate the third control system having better performance, negating up to 71% of EVSE load, compared with the second control system (up to 61%) and the first control system (up to 58%).

  11. Methylotroph cloning vehicle

    DOE Patents [OSTI]

    Hanson, Richard S.; Allen, Larry N.

    1989-04-25

    A cloning vehicle comprising: a replication determinant effective for replicating the vehicle in a non-C.sub.1 -utilizing host and in a C.sub.1 -utilizing host; DNA effective to allow the vehicle to be mobilized from the non-C.sub.1 -utilizing host to the C.sub.1 -utilizing host; DNA providing resistance to two antibiotics to which the wild-type C.sub.1 -utilizing host is susceptible, each of the antibiotic resistance markers having a recognition site for a restriction endonuclease; a cos site; and a means for preventing replication in the C.sub.1 -utilizing host. The vehicle is used for complementation mapping as follows. DNA comprising a gene from the C.sub.1 -utilizing organism is inserted at the restriction nuclease recognition site, inactivating the antibiotic resistance marker at that site. The vehicle can then be used to form a cosmid structure to infect the non-C.sub.1 -utilizing (e.g., E. coli) host, and then conjugated with a selected C.sub.1 -utilizing mutant. Resistance to the other antibiotic by the mutant is a marker of the conjugation. Other phenotypical changes in the mutant, e.g., loss of an auxotrophic trait, is attributed to the C.sub.1 gene. The vector is also used to inactivate genes whose protein products catalyze side reactions that divert compounds from a biosynthetic pathway to a desired product, thereby producing an organism that makes the desired product in higher yields.

  12. AVTA: 2010 Electric Vehicles International Neighborhood Electric Vehicle Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe testing results of the 2010 Electric Vehicles International neighborhood electric vehicle. Neighborhood electric vehicles reach speeds of no more than 35 miles per hour and are only allowed on roads with speed limits of up to 35 miles per hour. This research was conducted by Idaho National Laboratory.

  13. Integrated Module Heat Exchanger | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Module Heat Exchanger Integrated Module Heat Exchanger 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ape047_bennion_2012_p.pdf More Documents & Publications Integrated Power Module Cooling Vehicle Technologies Office: 2008 Advanced Power Electronics and Electric Machinery R&D Annual Progress Report Power Electronic Thermal System Performance and Integration

  14. Vehicle Technologies Office FY 2016 Budget At-A-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    wallets-making it a high-value opportunity for change. The Vehicle Technologies Office (VTO) develops and deploys advanced highway transportation technologies that reduce petroleum consumption and greenhouse gas emissions, while meeting or exceeding vehicle performance expectations. What We Do VTO uses an integrated portfolio approach and relies on strategic partnerships to accelerate the movement of technologies from the laboratory onto the road.  Research and Development (R&D) seeks to

  15. Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reduction | Department of Energy Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_rumsey.pdf More Documents & Publications High Engine Efficiency at 2010 Emissions Integrated Engine and Aftertreatment Technology Roadmap for EPA 2010 Heavy-duty Emissions Regulations Optimization

  16. NREL: Transportation Research - Vehicle Technology Simulation and Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tools Vehicle Technology Simulation and Analysis Tools NREL's systems analysis and integration team uses the following NREL-developed modeling, simulation, and analysis tools to investigate novel vehicle technologies with the potential to achieve significant fuel savings and greenhouse gas reductions. NREL conducts technical analyses of promising technologies and explores trade-offs between component sizes and design goals (e.g., fuel economy versus performance) to find cost-competitive

  17. Use of automatic vehicle identification techniques for measuring traffic

    Office of Scientific and Technical Information (OSTI)

    performance and performing incident detection. Final report (Technical Report) | SciTech Connect Technical Report: Use of automatic vehicle identification techniques for measuring traffic performance and performing incident detection. Final report Citation Details In-Document Search Title: Use of automatic vehicle identification techniques for measuring traffic performance and performing incident detection. Final report Traffic performance information is an integral part of traffic control

  18. Vehicle Technologies Office: Materials by Design | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by Design Vehicle Technologies Office: Materials by Design According to the Materials Genome Initiative, it generally requires more than 20 years to develop and implement a new or improved material for automotive applications. To accelerate this process, the Vehicle Technologies Office (VTO) supports research to develop and implement new or improved application-specific materials through Integrated Computational Materials Engineering (ICME). This approach combines advanced characterization,

  19. Market Implications of Synergism Between Low Drag Area and Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Targets Validation FY 2009 DOE Vehicle Technologies Program Argonne Facilitation of PHEV Standard Testing Procedure (SAE J1711) VIA Motors electric vehicle platform...

  20. Energy Department Supporting Nevada's Effort to Increase Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Plug-in hybrid electric vehicles (PHEVs) use both conventional fuel and electricity to power the ... will produce about half the carbon pollution of a conventional gas vehicle, ...

  1. Efficient Drivetrains Inc | Open Energy Information

    Open Energy Info (EERE)

    have direct applications in Plug-in Hybrid Electric Vehicles (PHEVs), Hybrids, and Electric Vehicles (EVs), including trucks, buses and cars. The company's closely related...

  2. Evaluation and Adaptation of 5-Cycle Fuel Economy Testing and Calculations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for HEVs and PHEVs | Department of Energy Adaptation of 5-Cycle Fuel Economy Testing and Calculations for HEVs and PHEVs Evaluation and Adaptation of 5-Cycle Fuel Economy Testing and Calculations for HEVs and PHEVs 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon vss065_lohsebusch_2012_o.pdf More Documents & Publications HEV, PHEV, EV Test Standard Development and Validation Advanced Technology Vehicle Lab

  3. Vehicle Technologies Office Merit Review 2014: Development of 3rd

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generation Advanced High Strength Steels (AHSS) with an Integrated Experimental and Simulation Approach | Department of Energy of 3rd Generation Advanced High Strength Steels (AHSS) with an Integrated Experimental and Simulation Approach Vehicle Technologies Office Merit Review 2014: Development of 3rd Generation Advanced High Strength Steels (AHSS) with an Integrated Experimental and Simulation Approach Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and

  4. Development of High-Capacity Cathode Materials with Integrated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Development of High-Capacity Cathode Materials with Integrated Structures Vehicle Technologies Office Merit Review 2015: Design and Evaluation of High...

  5. Integration of Novel Flux Coupling Motor and Current Source Inverter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Current Source Inverters for HEVs and FCVs Vehicle Technologies Office Merit Review 2014: Wireless Charging Integration of Novel Flux Coupling Motor and Current Source Inverter...

  6. Fact #842: October 13, 2014 Vehicles and Vehicle Travel Trends...

    Broader source: Energy.gov (indexed) [DOE]

    reflecting that the average driver is driving more miles in 2012 than in 1950. However, the trends have changed for vehicle miles traveled and number of vehicles in operation. ...

  7. Environmental Evaluation of New Generation Vehicles and Vehicle Components

    SciTech Connect (OSTI)

    Schexnayder, S.M.

    2002-02-06

    This report documents assessments that address waste issues and life cycle impacts associated with the vehicle materials and vehicle technologies being developed under the Partnership for a New Generation of Vehicles (PNGV) program. We refer to these vehicles as 3XVs, referring to the PNGV goal that their fuel mileage be three times better than the baseline vehicle. To meet the program's fuel consumption goals, these vehicles substitute lightweight materials for heavier materials such as steel and iron that currently dominate the composition of vehicles, and use engineering and power system changes. Alternative power systems being developed through the PNGV program include batteries for hybrid electric vehicles and fuel cells. With respect to all these developments, it is imperative to learn what effects they will have on the environment before adopting these designs and technologies on a large-scale basis.

  8. US Ethanol Vehicle Coalition | Open Energy Information

    Open Energy Info (EERE)

    Vehicle Coalition Jump to: navigation, search Name: US Ethanol Vehicle Coalition Place: Jefferson City, Missouri Zip: 65109 Product: The National Ethanol Vehicle Coalition is the...

  9. Solar Electrical Vehicles | Open Energy Information

    Open Energy Info (EERE)

    Electrical Vehicles Jump to: navigation, search Name: Solar Electrical Vehicles Place: Westlake Village, California Zip: 91361 Sector: Solar, Vehicles Product: US-based...

  10. Clean Cities Recovery Act: Vehicle & Infrastructure Deployment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act: Vehicle & Infrastructure Deployment Clean Cities Recovery Act: Vehicle & Infrastructure Deployment 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit...

  11. Vehicles Data Challenge | OpenEI Community

    Open Energy Info (EERE)

    Apps for Vehicles Challenge has begun contest data fuel efficiency launch Obama Administration OpenEI Vehicles Data Challenge **Update: Visit the Apps for Vehicles page for all...

  12. EVI Electric Vehicles International | Open Energy Information

    Open Energy Info (EERE)

    EVI Electric Vehicles International Jump to: navigation, search Name: EVI (Electric Vehicles International) Place: Stockton, California Product: California-based Electric Vehicle...

  13. Miles Electric Vehicles | Open Energy Information

    Open Energy Info (EERE)

    Electric Vehicles Jump to: navigation, search Name: Miles Electric Vehicles Place: Santa Monica, California Zip: 90405 Sector: Vehicles Product: California-based developer of...

  14. Advanced Vehicle Technologies | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an entire vehicle each time a component is changed Vehicle and Component Benchmarking Conducting vehicle benchmarking and testing activities that provide data critical...

  15. Advanced Electric Drive Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon arravt039tischwendeman2011p.pdf More Documents & Publications Advanced Electric Drive Vehicles Advanced Electric Drive Vehicles 2010 DOE EERE Vehicle...

  16. Vehicle Technologies Office Merit Review 2015: Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Energy Data Book, Vehicle Technologies Market Report, and VT Fact of the Week Vehicle Technologies Office Merit Review 2015: Transportation Energy Data Book, Vehicle ...

  17. Vehicle Technologies Office Merit Review 2014: Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Energy Data Book, Vehicle Technologies Market Report, and VT Fact of the Week Vehicle Technologies Office Merit Review 2014: Transportation Energy Data Book, Vehicle ...

  18. Vehicle Mass Impact on Vehicle Losses and Fuel Economy

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  19. Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  20. Vehicle Technologies Office Recognizes Leaders in Advanced Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research, Development and Deployment | Department of Energy Recognizes Leaders in Advanced Vehicle Research, Development and Deployment Vehicle Technologies Office Recognizes Leaders in Advanced Vehicle Research, Development and Deployment June 25, 2014 - 11:33am Addthis The DOE's Vehicle Technologies Office supports a variety of research, development, and deployment efforts in partnership with our national laboratories and private partners. The success of these projects relies on the hard