National Library of Energy BETA

Sample records for vehicle performance characterization

  1. Performance Characterization

    Broader source: Energy.gov [DOE]

    Performance characterization efforts within the SunShot Systems Integration activities focus on collaborations with U.S. solar companies to:

  2. Low Temperature Performance Characterization | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characterization Low Temperature Performance Characterization Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in...

  3. Proton Exchange Membrane Fuel Cell Characterization for Electric Vehicle Applications

    E-Print Network [OSTI]

    Swan, D.H.; Dickinson, B.E.; Arikara, M.P.

    1994-01-01

    Fuel CelL/Battery HybridSystemfor Electric Vehicle Applications",Fuel Cell Characterization for Electric Vehicle Applicationsthe fuel cell ~stemfor electric vehicle applications. Where

  4. Proton Exchange Membrane Fuel Cell Characterization for Electric Vehicle Applications

    E-Print Network [OSTI]

    Swan, D.H.; Dickinson, B.E.; Arikara, M.P.

    1994-01-01

    Characterization for Electric Vehicle Applications D.H. SwanHybridSystemfor Electric Vehicle Applications", SAEPaperFuel Cells for Electric Vehicles, Knowledge Gaps and

  5. TEG On-Vehicle Performance & Model Validation

    Broader source: Energy.gov [DOE]

    Details efforts and results of steady-state and transient models validated with bench, engine dynamometer, and on-vehicle tests to measure actual performance

  6. Challenges for the vehicle tester in characterizing hybrid electric vehicles

    SciTech Connect (OSTI)

    Duoba, M.

    1997-08-01

    Many problems are associated with applying test methods, like the Federal Test Procedure (FTP), for HEVs. Although there has been considerable progress recently in the area of HEV test procedure development, many challenges are still unsolved. A major hurdle to overcoming the challenges of developing HEV test procedures is the lack of HEV designs available for vehicle testing. Argonne National Laboratory has tested hybrid electric vehicles (HEVs) built by about 50 colleges and universities from 1994 to 1997 in annual vehicle engineering competitions sponsored in part by the U.S. Department of Energy (DOE). From this experience, the Laboratory has gathered information about the basics of HEV testing and issues important to successful characterization of HEVs. A collaboration between ANL and the Society of Automotive Engineer`s (SAE) HEV Test Procedure Task Force has helped guide the development of test protocols for their proposed procedures (draft SAE J1711) and test methods suited for DOE vehicle competitions. HEVs use an electrical energy storage device, which requires that HEV testing include more time and effort to deal with the effects of transient energy storage as the vehicle is operating in HEV mode. HEV operation with electric-only capability can be characterized by correcting the HEV mode data using results from electric-only operation. HEVs without electric-only capability require multiple tests conducted to form data correlations that enable the tester to find the result that corresponds to a zero net change in SOC. HEVs that operate with a net depletion of charge cannot be corrected for battery SOC and are characterized with emissions and fuel consumption results coupled with the electrical energy usage rate. 9 refs., 8 figs.

  7. CHARACTERIZATION OF WILD PIG VEHICLE COLLISIONS

    SciTech Connect (OSTI)

    Mayer, J; Paul E. Johns, P

    2007-05-23

    Wild pig (Sus scrofa) collisions with vehicles are known to occur in the United States, but only minimal information describing these accidents has been reported. In an effort to better characterize these accidents, data were collected from 179 wild pig-vehicle collisions from a location in west central South Carolina. Data included accident parameters pertaining to the animals involved, time, location, and human impacts. The age structure of the animals involved was significantly older than that found in the population. Most collisions involved single animals; however, up to seven animals were involved in individual accidents. As the number of animals per collision increased, the age and body mass of the individuals involved decreased. The percentage of males was significantly higher in the single-animal accidents. Annual attrition due to vehicle collisions averaged 0.8 percent of the population. Wild pig-vehicle collisions occurred year-round and throughout the 24-hour daily time period. Most accidents were at night. The presence of lateral barriers was significantly more frequent at the collision locations. Human injuries were infrequent but potentially serious. The mean vehicle damage estimate was $1,173.

  8. Hybrid Electric Vehicles: How They Perform in the Real World...

    Broader source: Energy.gov (indexed) [DOE]

    States. The AVTA works with government, commercial, and industry fleets to measure real-world vehicle performance of production and pre-production advanced technology vehicles and...

  9. Smith Newton Vehicle Performance Evaluation - Cumulative (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-08-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  10. Vehicle Technologies Office Merit Review 2014: Battery Thermal Characterization

    Broader source: Energy.gov [DOE]

    Presentation given by NREL at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about battery thermal characterization.

  11. Electronic Vehicle Identification: Industry Standards, Performance, and Privacy Issues

    E-Print Network [OSTI]

    Texas at Austin, University of

    0-5217-P2 Electronic Vehicle Identification: Industry Standards, Performance, and Privacy Issues Administration and the Texas Department of Transportation. Abstract: In this research product, industry standards functions. Keywords: Tolling, electronic vehicle identification, DSRC, standards, performance, electronic

  12. Smith Newton Vehicle Performance Evaluation (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-08-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. Through this project, Smith Electric Vehicles will build and deploy 500 all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country.

  13. Performance of the Lester battery charger in electric vehicles

    SciTech Connect (OSTI)

    Vivian, H.C.; Bryant, J.A.

    1984-04-15

    Tests were performed on an improved battery charger manufactured by Lester Electrical of Nebraska, Inc. This charger was installed in a South Coast Technology Rabbit No. 4, which was equipped with lead-acid batteries produced by ESB Company. The primary purpose of the testing was to develop test methodologies for battery charger evaluation. To this end tests were developed to characterize the charger in terms of its charge algorithm and to assess the effects of battery initial state of charge and temperature on charger and battery efficiency. Tests showed this charger to be a considerable improvement in the state of the art for electric vehicle chargers.

  14. Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles Vehicle...

  15. Vehicle Technologies Office: AVTA- Start-Stop (Micro) Hybrid Vehicles Performance Data

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Performance and testing data on the stop-start hybrid versions of the following vehicles is available: 2010 Smart Fortwo, 2010 Volkswagen Golf Diesel, and 2010 Mazda3 Hatchback.

  16. Performance targets for electric vehicle batteries

    E-Print Network [OSTI]

    Chang, Michael Tse-Gene

    2015-01-01

    Light-duty vehicle transportation accounted for 17.2% of US greenhouse gas emissions in 2012 [95]. An important strategy for reducing CO? emissions emitted by light-duty vehicles is to reduce per-mile CO? emissions. While ...

  17. Analysis of Electric Vehicle Battery Performance Targets

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  18. Vehicle Technologies Office Merit Review 2014: Performance of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Biofuels and Biofuel Blends Vehicle Technologies Office Merit Review 2014: Performance of Biofuels and Biofuel Blends Presentation given by NREL at 2014 DOE Hydrogen and Fuel...

  19. Vehicle Technologies Office Merit Review 2014: Performance and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Reliability of Bonded Interfaces for High-Temperature Packaging Vehicle Technologies Office Merit Review 2014: Performance and Reliability of Bonded Interfaces for...

  20. Heavy Duty Vehicle In-Use Emission Performance | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In-Use Emission Performance Heavy Duty Vehicle In-Use Emission Performance 2003 DEER Conference Presentation: VTT Technical Research Centre of Finland deer2003ikonen.pdf More...

  1. Vehicle Technologies Office: AVTA- All-Electric Vehicle (Car) Performance Data

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Downloadable performance and testing data on the all-electric versions of the following vehicles is available: 2014 Smart Electric Drive Coupe, 2013 Ford Focus, 2013 Nissan Leaf, 2012 Mitsubishi i-MiEV, 2012 Nissan Leaf, 2011 Nissan Leaf, 2010 USPS eLLV Conversions, and 2009 BMW Mini-E.

  2. Innovation, Retail Performance and Zero Emission Vehicle Policy

    E-Print Network [OSTI]

    California at Davis, University of

    ;3 "Encourage and support auto dealers to increase sales and leases of ZEVs." (p. 15) " " Why Study the Retail1 Innovation, Retail Performance and Zero Emission Vehicle Policy Eric Cahill Research Briefing Market for Plug-in Electric Vehicles (PEVs)? #12;4 Policy Focus is on Automakers and Consumers Government

  3. A Review of High Occupancy Vehicle (HOV) Lane Performance and...

    Open Energy Info (EERE)

    A Review of High Occupancy Vehicle (HOV) Lane Performance and Policy Options in the United States: Final Report Jump to: navigation, search Tool Summary LAUNCH TOOL Name: A Review...

  4. A study in hybrid vehicle architectures : comparing efficiency and performance

    E-Print Network [OSTI]

    Cotter, Gavin M

    2009-01-01

    This paper presents a comparison of performance and efficiencies for four vehicle power architectures; the internal combustion engine (ICE), the parallel hybrid (i.e. Toyota Prius), the serial hybrid (i.e. Chevrolet Volt), ...

  5. In-Use Performance Results of Medium Duty Electric Vehicles (Presentation)

    SciTech Connect (OSTI)

    Walkowicz, K.

    2012-07-01

    This presentation describes a DOE program to monitor and report on vehicle performance and energy utilization of medium-duty and heavy-duty electric vehicles.

  6. Smith Newton Vehicle Performance Evaluation – Cumulative; Vehicle Technologies Office (VTO), Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect (OSTI)

    2013-10-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  7. Smith Newton Vehicle Performance Evaluation - 1st Quarter 2014 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  8. Smith Newton Vehicle Performance Evaluation - Gen2 - 2013 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  9. Smith Newton Vehicle Performance Evaluation - Gen 2 - Cumulative (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-08-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  10. Electric Vehicles: Performances, Life Cycle Costs, Emissions, and Recharging Requirements

    E-Print Network [OSTI]

    DeLuchi, Mark A.; Wang, Quanlu; Sperling, Daniel

    1989-01-01

    Sealed lead-acid electric and vehicle battery development.A. (1987a) ture for electric vehicles. In Resources ElectricInternational Conference. Electric Vehicle De- Universityof

  11. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01

    for fuel cell systems for vehicle applications, Journal ofand Fuel Cell Electric Vehicle Symposium applications. Thesewhich limits its application in fuel cell vehicles. The

  12. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01

    batteries and ultracapacitors for electric vehicles. EVS24Battery, Hybrid and Fuel Cell Electric Vehicle Symposiumpublications on electric and hybrid vehicle technology and

  13. Electric Vehicles: Performances, Life Cycle Costs, Emissions, and Recharging Requirements

    E-Print Network [OSTI]

    DeLuchi, Mark A.; Wang, Quanlu; Sperling, Daniel

    1989-01-01

    Sealed lead-acid electric and vehicle battery development.Nasar S. A. (1982) electric vehicle technology. John Wiley &batteries fornia. for electric vehicles. Argonne National

  14. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01

    in batteries, ultracapacitors, fuel cells and hybrid vehicleBattery, Hybrid and Fuel Cell Electric Vehicle Symposiumcycles. Vehicles with the fuel cell operating in the optimum

  15. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01

    in batteries, ultracapacitors, fuel cells and hybrid vehicleBattery, Hybrid and Fuel Cell Electric Vehicle SymposiumBattery, Hybrid and Fuel Cell Electric Vehicle Symposium

  16. Vehicle Technologies Office Merit Review 2014: Catalyst Characterization (Agreement ID:9130) Project ID:18519

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Cummins at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about catalyst characterization.

  17. Smith Newton Vehicle Performance Evaluation – Cumulative; Energy Efficiency & Renewable Energy (EERE), Vehicle Technologies Office (VTO)

    SciTech Connect (OSTI)

    2015-04-29

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles.

  18. Smith Newton Vehicle Performance Evaluation - 3rd Quarter 2012 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. Through this project, Smith Electric Vehicles will build and deploy 500 all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country.

  19. Characterizing Test Methods and Emissions Reduction Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Test Methods and Emissions Reduction Performance of In-Use Diesel Retrofit Technologies from the National Clean Diesel Campaign Characterizing Test Methods and Emissions Reduction...

  20. Exhaust particle characterization for lean and stoichiometric DI vehicles operating on ethanol-gasoline blends

    SciTech Connect (OSTI)

    Storey, John Morse; Barone, Teresa L; Thomas, John F; Huff, Shean P

    2012-01-01

    Gasoline direct injection (GDI) engines can offer better fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet the U.S. fuel economy standards for 2016. Furthermore, lean-burn GDI engines can offer even higher fuel economy than stoichiometric GDI engines and have overcome challenges associated with cost-effective aftertreatment for NOx control. Along with changes in gasoline engine technology, fuel composition may increase in ethanol content beyond the current 10% due to the recent EPA waiver allowing 15% ethanol. In addition, the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA) mandates the use of biofuels in upcoming years. GDI engines are of environmental concern due to their high particulate matter (PM) emissions relative to port-fuel injected (PFI) gasoline vehicles; widespread market penetration of GDI vehicles may result in additional PM from mobile sources at a time when the diesel contribution is declining. In this study, we characterized particulate emissions from a European certified lean-burn GDI vehicle operating on ethanol-gasoline blends. Particle mass and particle number concentration emissions were measured for the Federal Test Procedure urban driving cycle (FTP 75) and the more aggressive US06 driving cycle. Particle number-size distributions and organic to elemental carbon ratios (OC/EC) were measured for 30 MPH and 80 MPH steady-state operation. In addition, particle number concentration was measured during wide open throttle accelerations (WOTs) and gradual accelerations representative of the FTP 75. Fuels included certification gasoline and 10% (E10) and 20% (E20) ethanol blends from the same supplier. The particle mass emissions were approximately 3 and 7 mg/mile for the FTP75 and US06, respectively, with lower emissions for the ethanol blends. The data are compared to a previous study on a U.S.-legal stoichiometric GDI vehicle operating on the same ethanol blends. The lean-burn GDI vehicle emitted a higher number of particles, but had an overall smaller average size. Particle number per mile decreased with increasing ethanol content for the transient tests. For the 30 and 80 mph tests, particle number concentration decreased with increasing ethanol content, although the shape of the particle size distribution remained the same. Engine-out OC/EC ratios were highest for the stoichiometric GDI vehicle with E20, but tailpipe OC/EC ratios were similar for all vehicles.

  1. Electric Vehicle Performance at McMurdo Station (Antarctica) and Comparison with McMurdo Station Conventional Vehicles

    SciTech Connect (OSTI)

    Sears, T.; Lammert, M.; Colby, K.; Walter, R.

    2014-09-01

    This report examines the performance of two electric vehicles (EVs) at McMurdo, Antarctica (McMurdo). The study examined the performance of two e-ride Industries EVs initially delivered to McMurdo on February 16, 2011, and compared their performance and fuel use with that of conventional vehicles that have a duty cycle similar to that of the EVs used at McMurdo.

  2. Navistar eStar Vehicle Performance Evaluation - Cumulative (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-08-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Navistar will build and deploy all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country.

  3. Vehicle Technologies Office Merit Review 2015: Battery Thermal Characterization

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about battery...

  4. Vehicle Technologies Office Merit Review 2014: Characterization of Catalysts Microstructures

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  5. Diagnostic Characterization of High-Power Lithium-Ion Batteries For Use in Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Diagnostic Characterization of High-Power Lithium-Ion Batteries For Use in Hybrid Electric Vehicles Lithium-ion batteries are a fast-growing technology that is attractive for use in portable electronics of lithium-ion batteries for hybrid electric vehicle (HEV) applications. The ATD Program is a joint effort

  6. Using Gasoline, Diesel, and Compressed Natural Gas (CNG) Vehicles, Characterize the Significance of Lube

    E-Print Network [OSTI]

    Using Gasoline, Diesel, and Compressed Natural Gas (CNG) Vehicles, Characterize the Significance from natural gas vehicles will help in the development of PM mitigation technologies. This in turn and help bring to market advanced transportation technologies that reduce air pollution and greenhouse gas

  7. Duty Cycle Analysis & Tools: Maximizing Vehicle Performance (Presentation)

    SciTech Connect (OSTI)

    Walkowicz, K.

    2009-10-28

    Shows that the benefits of using hybrid vehicle trucks in fleets depends on the duty cycle, or how the vehicles will be driven (e.g., stop and go) over a particular route (e.g., urban or rural).

  8. Test vehicle detector characterization system for the Boeing YAL-1 airborne laser

    E-Print Network [OSTI]

    Steininger-Holmes, Jason Thomas

    2008-01-01

    The test vehicle detector characterization system provides a convenient and efficient tool for rapidly evaluating the optical sensitivity of the GAP6012, GAP100, GAP300, and GAP1000 indium gallium arsenide detectors used ...

  9. Effect of Auditory Peripheral Displays On Unmanned Aerial Vehicle Operator Performance

    E-Print Network [OSTI]

    Cummings, Mary "Missy"

    Effect of Auditory Peripheral Displays On Unmanned Aerial Vehicle Operator Performance of Defense, or the U.S. Government. #12;Effect of Auditory Peripheral Displays On Unmanned Aerial Vehicle in Engineering Systems Abstract With advanced autonomy, Unmanned Aerial Vehicle (UAV) operations

  10. DC Fast Charge Impacts on Battery Life and Vehicle Performance

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. Vehicle Technologies Office: AVTA- Plug-In Hybrid Electric Vehicles Performance and Testing Data

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the plug-in hybrid electric version of the following vehicles is available: 2013 Ford Fusion Energi, 2013 Ford C-Max Energi Fleet, 2013 Ford C-Max Energi, 2012 Chevrolet Volt, 2012 Toyota Prius, 2013 Toyota Prius, 2013 Chevrolet Volt, 2011 Chrysler Town & Country, 2010 Quantum Escape, and 2010 Ford Escape Advanced Research Vehicle.

  12. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01

    etc. , PEM Fuel Cell System Optimization, Proceedings of thesystem, hybrid fuel cell vehicle, optimization, dynamic,a scalable fuel cell system optimization model [14

  13. Vehicle Technologies Office Merit Review 2015: Thermal Performance Benchmarking

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about thermal...

  14. Vehicle Technologies Office Merit Review 2015: Electrochemical Performance Testing

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electrochemical...

  15. Vehicle Technologies Office Merit Review 2015: INL Electrochemical Performance Testing

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Idaho National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about INL electrochemical...

  16. Vehicle Technologies Office Merit Review 2014: Electrochemical Performance Testing

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electrochemical...

  17. Vehicle Technologies Office Merit Review 2014: INL Electrochemical Performance Testing

    Broader source: Energy.gov [DOE]

    Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about INL electrochemical...

  18. Determining the Effectiveness of Incorporating Geographic Information Into Vehicle Performance Algorithms

    SciTech Connect (OSTI)

    Sera White

    2012-04-01

    This thesis presents a research study using one year of driving data obtained from plug-in hybrid electric vehicles (PHEV) located in Sacramento and San Francisco, California to determine the effectiveness of incorporating geographic information into vehicle performance algorithms. Sacramento and San Francisco were chosen because of the availability of high resolution (1/9 arc second) digital elevation data. First, I present a method for obtaining instantaneous road slope, given a latitude and longitude, and introduce its use into common driving intensity algorithms. I show that for trips characterized by >40m of net elevation change (from key on to key off), the use of instantaneous road slope significantly changes the results of driving intensity calculations. For trips exhibiting elevation loss, algorithms ignoring road slope overestimated driving intensity by as much as 211 Wh/mile, while for trips exhibiting elevation gain these algorithms underestimated driving intensity by as much as 333 Wh/mile. Second, I describe and test an algorithm that incorporates vehicle route type into computations of city and highway fuel economy. Route type was determined by intersecting trip GPS points with ESRI StreetMap road types and assigning each trip as either city or highway route type according to whichever road type comprised the largest distance traveled. The fuel economy results produced by the geographic classification were compared to the fuel economy results produced by algorithms that assign route type based on average speed or driving style. Most results were within 1 mile per gallon ({approx}3%) of one another; the largest difference was 1.4 miles per gallon for charge depleting highway trips. The methods for acquiring and using geographic data introduced in this thesis will enable other vehicle technology researchers to incorporate geographic data into their research problems.

  19. Investigating the Mobility of Light Autonomous Tracked Vehicles Using a High Performance Computing

    E-Print Network [OSTI]

    Investigating the Mobility of Light Autonomous Tracked Vehicles Using a High Performance Computing limiting the scope and impact of high performance computing (HPC). This scenario is rapidly changing due

  20. Vehicle Technologies Office Merit Review 2014: Characterization of Voltage Fade in Lithium-ion Cells with Layered Oxides

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about characterization...

  1. Vehicle Technologies Office: AVTA- Hybrid Electric Vehicles Performance and Testing Data

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. This page provides data on the hybrid electric versions of the Volkswagen Jetta, Ford C-Max, Chevrolet Malibu, Honda Civic, Hyundai Sonata, Honda CRZ, Honda Civic with Advanced Experimental Ultra Lead Acid Battery, Mercedes Benz, Toyota Prius Gen III, Ford Fusion, Honda Insight and Honda CR-Z.

  2. Ignition Performance of New and Used Motor Vehicle Upholstery Fabrics 

    E-Print Network [OSTI]

    Spearpoint, Michael; Olenick, Stephen M; Torero, Jose L; Steinhaus, Thomas

    2005-01-01

    This paper examines the standards for fire safety in transport systems and in particular the test method for the flammability of materials within passenger compartments of motor vehicles. The paper compares data from ...

  3. Smith Newton Vehicle Performance Evaluation – 1st Quarter 2013; Energy Efficiency & Renewable Energy (EERE), Vehicle Technologies Office (VTO)

    SciTech Connect (OSTI)

    2013-10-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  4. Smith Newton Vehicle Performance Evaluation -- Gen 2 -- Cumulative; Energy Efficiency & Renewable Energy (EERE), Vehicle Technologies Office (VTO)

    SciTech Connect (OSTI)

    2014-10-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  5. Smith Newton Vehicle Performance Evaluation – 2nd Quarter 2013; Vehicle Technologies Office (VTO), Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect (OSTI)

    2013-10-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  6. Smith Newton Vehicle Performance Evaluation - 3rd Quarter 2013; Vehicle Technologies Office (VTO), Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect (OSTI)

    2013-10-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  7. Vehicle Technologies Office Merit Review 2013: A High-Performance PHEV Battery Pack

    Broader source: Energy.gov [DOE]

    Presentation given by LG Chem at 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting about a high-performance battery pack the company is researching for plug-in electric vehicles.

  8. Performance Comparison of Hybrid Vehicle Energy Management Controllers on Real-World Drive Cycle Data

    E-Print Network [OSTI]

    Grizzle, Jessy W.

    Performance Comparison of Hybrid Vehicle Energy Management Controllers on Real-World Drive Cycle's highly accurate proprietary vehicle model over large numbers of real- world drive cycles, and compared of Michigan Transportation Research Institute (UMTRI) for providing drive cycle data. of this work focuses

  9. Fact #868: April 13, 2015 Automotive Technology Has Improved Performance and Fuel Economy of New Light Vehicles – Dataset

    Broader source: Energy.gov [DOE]

    Excel file and dataset for Automotive Technology Has Improved Performance and Fuel Economy of New Light Vehicles

  10. Natural gas vehicle technology and fuel performance evaluation program. Final report, November 1994-May 1997

    SciTech Connect (OSTI)

    Bevilacqua, O.M.

    1997-06-01

    This report presents the results of a comprehensive study which examined the impact of natural gas fuel composition variability on natural gas vehicle (NGV) emissions and performance. This study involved eight light-duty NGVs and five different blends of natural gas. The test vehicles were selected to establish a representative sample of state-of-the-art dedicated and bi-fuel models. Fuel blends included common commercial blends, and other gases representing `fringe` compositions. For each vehicle-fuel combination, the tests measured vehicle tailpipe and modal emissions, fuel economy, and driveability. Results show that the impacts of fuel variability are generally minor.

  11. On the Effect of Winglets on the Performance of Micro-Aerial-Vehicles Dr. Helen L. Reed

    E-Print Network [OSTI]

    vehicles. The smallest airplanes in use at that time were the Unmanned Aerial Vehicles (UAV) that had#12;On the Effect of Winglets on the Performance of Micro-Aerial-Vehicles Dr. Helen L. Reed in developing Micro-Aerial-Vehicles (MAVs) has been expressed by various military and civilian entities

  12. Diagnostic Characterization of High Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Diagnostic Characterization of High Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles. Manuscript submitted May 15, 2000; revised manuscript received January 15, 2001. Lithium-ion batteries effort by the U.S. Department of Energy to aid the development of lithium-ion batteries for hybrid

  13. Vehicle Technologies Office Merit Review 2015: Development of High-Performance Cast Crankshafts

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Caterpillar at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of high-performance...

  14. Vehicle Technologies Office Merit Review 2014: High Performance DC Bus Film Capacitor

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by GE Global Research at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high performance DC bus...

  15. Vehicle Technologies Office Merit Review 2015: High Performance DC Bus Film Capacitor

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by GE Global Research at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high performance DC bus...

  16. Fuel Economy and Performance of Mild Hybrids with Ultracapacitors: Simulations and Vehicle Test Results (Presentation)

    SciTech Connect (OSTI)

    Gonder, J.; Pesaran, A.; Lustbader, J.; Tataria, H.

    2009-06-01

    NREL worked with GM and demonstrated equivalent performance in the Saturn Vue Belt Alternator Starter (BAS) hybrid vehicle whether running with its stock batteries or a retrofit ultracapacitor system.

  17. High-Performance Thermoelectric Devices Based on Abundant Silicide Materials for Vehicle Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE)

    Development of high-performance thermoelectric devices for vehicle waste heat recovery will include fundamental research to use abundant promising low-cost thermoelectric materials, thermal management and interfaces design, and metrology

  18. Vehicle Technologies Office Merit Review 2013: Accelerating Predictive Simulation of IC Engines with High Performance Computing

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at the 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting about simulating internal combustion engines using high performance computing.

  19. CRC program for quantifying performance of knock-sensor-equipped vehicles with varying octane level

    SciTech Connect (OSTI)

    Not Available

    1990-08-01

    A pilot study was conducted under the auspices of the Coordinating Research Council, Inc. (CRC) to assess the potential effects of gasoline octane quality on acceleration performance, fuel economy and driveability in vehicles equipped with electronic spark control systems (knock sensors). Fourteen vehicles were tested by five participating laboratories on CRC unleaded reference fuels of varying octane quality (78 to 104 RON). The test vehicles included nine naturally-aspirated and five turbocharged models. The results showed that acceleration performance was the parameter most sensitive to octane quality changes, particularly in the turbocharged models.

  20. Estimated and observed performance of a neutron SNM portal monitor for vehicles

    SciTech Connect (OSTI)

    Fehlau, P.E.; Close, D.A.; Coop, K.L.; York, R.

    1996-11-01

    In July 1987, we completed our development of a neutron-detection- based vehicle SNM portal monitor with a conference paper presented at the annual meeting. The paper described the neutron vehicle portal (NVP), described source-response measurements made with it at Los Alamos, and gave our estimate of the monitor`s potential performance. Later, in December 1988, we had a chance to do a performance test with the monitor in a plant environment. This paper discusses how our original performance estimate should vary in different circumstances, and it uses the information to make a comparison between the monitor`s estimated and actual performance during the 1988 performance testing.

  1. Navistar eStar Vehicle Performance Evaluation - Cumulative; Energy Efficiency & Renewable Energy (EERE), Vehicle Technologies Office (VTO)

    SciTech Connect (OSTI)

    Ragatz, Adam

    2013-07-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Navistar will build and deploy all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country. purchasing these vehicles. Through this project, Navistar will build and deploy all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country.

  2. Performance of electric and hybrid vehicles at the 1995 American Tour de Sol

    SciTech Connect (OSTI)

    Quong, S.; LeBlanc, N.; Buitrago, C.; Duoba, M.; Larsen, R.

    1995-12-31

    Energy consumption and performance data were collected on more than 40 electric and hybrid vehicles during the 1995 American Tour de Sol. At this competition, one electric vehicle drove 229 miles on one charge using nickel metalhydride batteries. The results obtained from the data show that electric vehicle efficiencies reached 9.07 mi./kWh or 70 equivalent mpg of gasoline when compared to the total energy cycle efficiency of electricity and gasoline. A gasoline-fueled 1995 Geo Metro that drove the same route attained 36.4 mpg.

  3. Navistar eStar Vehicle Performance Evaluation – 3rd Quarter 2012; Energy Efficiency & Renewable Energy (EERE), Vehicle Technologies Office (VTO)

    SciTech Connect (OSTI)

    2013-05-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Navistar will build and deploy all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country.

  4. Navistar eStar Vehicle Performance Evaluation - 4th Quarter 2012; Energy Efficiency & Renewable Energy (EERE), Vehicle Technologies Office (VTO)

    SciTech Connect (OSTI)

    2013-05-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Navistar will build and deploy all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country.

  5. Navistar eStar Vehicle Performance Evaluation – 1st Quarter 2013; Energy Efficiency & Renewable Energy (EERE), Vehicle Technologies Office (VTO)

    SciTech Connect (OSTI)

    2013-05-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Navistar will build and deploy all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country.

  6. Navistar eStar Vehicle Performance Evaluation - Cumulative; Energy Efficiency & Renewable Energy (EERE), Vehicle Technologies Office (VTO)

    SciTech Connect (OSTI)

    2013-10-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Navistar will build and deploy all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country. This cumulative report covers the period through the third quarter of 2013.

  7. Navistar eStar Vehicle Performance Evaluation - 1st Quarter 2014; Energy Efficiency & Renewable Energy (EERE), Vehicle Technologies Office (VTO)

    SciTech Connect (OSTI)

    Ragatz, A.

    2014-04-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Navistar will build and deploy all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country.

  8. Navistar eStar Vehicle Performance Evaluation – 4th Quarter 2013; Energy Efficiency & Renewable Energy (EERE), Vehicle Technologies Office (VTO)

    SciTech Connect (OSTI)

    2014-01-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Navistar will build and deploy all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country.

  9. Performance characterization of a hydrogen catalytic heater.

    SciTech Connect (OSTI)

    Johnson, Terry Alan; Kanouff, Michael P.

    2010-04-01

    This report describes the performance of a high efficiency, compact heater that uses the catalytic oxidation of hydrogen to provide heat to the GM Hydrogen Storage Demonstration System. The heater was designed to transfer up to 30 kW of heat from the catalytic reaction to a circulating heat transfer fluid. The fluid then transfers the heat to one or more of the four hydrogen storage modules that make up the Demonstration System to drive off the chemically bound hydrogen. The heater consists of three main parts: (1) the reactor, (2) the gas heat recuperator, and (3) oil and gas flow distribution manifolds. The reactor and recuperator are integrated, compact, finned-plate heat exchangers to maximize heat transfer efficiency and minimize mass and volume. Detailed, three-dimensional, multi-physics computational models were used to design and optimize the system. At full power the heater was able to catalytically combust a 10% hydrogen/air mixture flowing at over 80 cubic feet per minute and transfer 30 kW of heat to a 30 gallon per minute flow of oil over a temperature range from 100 C to 220 C. The total efficiency of the catalytic heater, defined as the heat transferred to the oil divided by the inlet hydrogen chemical energy, was characterized and methods for improvement were investigated.

  10. Multi-path transportation futures study : vehicle characterization and scenario analyses.

    SciTech Connect (OSTI)

    Plotkin, S. E.; Singh, M. K.; Energy Systems; TA Engineering; ORNL

    2009-12-03

    Projecting the future role of advanced drivetrains and fuels in the light vehicle market is inherently difficult, given the uncertainty (and likely volatility) of future oil prices, inadequate understanding of likely consumer response to new technologies, the relative infancy of several important new technologies with inevitable future changes in their performance and costs, and the importance - and uncertainty - of future government marketplace interventions (e.g., new regulatory standards or vehicle purchase incentives). This Multi-Path Transportation Futures (MP) Study has attempted to improve our understanding of this future role by examining several scenarios of vehicle costs, fuel prices, government subsidies, and other key factors. These are projections, not forecasts, in that they try to answer a series of 'what if' questions without assigning probabilities to most of the basic assumptions.

  11. Characterizing the Effects of Driver Variability on Real-World Vehicle Emissions

    E-Print Network [OSTI]

    Holmén, Britt; Niemeier, Debbie

    1998-01-01

    D. H. (1995) On-road vehicle emissions: regulations, costs,L. (1996) Motor vehicle emissions variability. Journal ofections on controlling vehicle emissions. Science 261, 37±

  12. Advanced Aerodynamic Devices to Improve the Performance, Economics, Handling, and Safety of Heavy Vehicles

    SciTech Connect (OSTI)

    Robert J. Englar

    2001-05-14

    Research is being conducted at the Georgia Tech Research Institute (GTRI) to develop advanced aerodynamic devices to improve the performance, economics, stability, handling and safety of operation of Heavy Vehicles by using previously-developed and flight-tested pneumatic (blown) aircraft technology. Recent wind-tunnel investigations of a generic Heavy Vehicle model with blowing slots on both the leading and trailing edges of the trailer have been conducted under contract to the DOE Office of Heavy Vehicle Technologies. These experimental results show overall aerodynamic drag reductions on the Pneumatic Heavy Vehicle of 50% using only 1 psig blowing pressure in the plenums, and over 80% drag reductions if additional blowing air were available. Additionally, an increase in drag force for braking was confirmed by blowing different slots. Lift coefficient was increased for rolling resistance reduction by blowing only the top slot, while downforce was produced for traction increase by blowing only the bottom. Also, side force and yawing moment were generated on either side of the vehicle, and directional stability was restored by blowing the appropriate side slot. These experimental results and the predicted full-scale payoffs are presented in this paper, as is a discussion of additional applications to conventional commercial autos, buses, motor homes, and Sport Utility Vehicles.

  13. Performance Benefits in Passive Vehicle Suspensions Employing Inerters1

    E-Print Network [OSTI]

    Cambridge, University of

    element in networks has the disadvantage that electrical circuits with ungrounded capacitors do not have different measures in a quarter-car model is demonstrated here in comparison with a conventional passive suspension strut. A study of a full-car model is also undertaken where performance improvements are also

  14. Grid Interconnection and Performance Testing Procedures for Vehicle-To-Grid (V2G) Power Electronics: Preprint

    SciTech Connect (OSTI)

    Kramer, W.; Chakraborty, S.; Kroposki, B.; Hoke, A.; Martin, G.; Markel, T.

    2012-03-01

    Bidirectional power electronics can add vehicle-to-grid (V2G) capability in a plug-in vehicle, which then allows the vehicle to operate as a distributed resource (DR). The uniqueness of the battery-based V2G power electronics requires a test procedure that will not only maintain IEEE interconnection standards, but can also evaluate the electrical performance of the vehicle working as a DR. The objective of this paper is to discuss a recently published NREL technical report that provides interim test procedures for V2G vehicles for their integration into the electrical distribution systems and for their performance in terms of continuous output power, efficiency, and losses. Additionally, some other test procedures are discussed that are applicable to a V2G vehicle that desires to provide power reserve functions. A few sample test results are provided based on testing of prototype V2G vehicles at NREL.

  15. TEST: DOE Hydrogen Storage Technical Performance Targets for Light-Duty Vehicles

    Broader source: Energy.gov [DOE]

    This table summarizes technical performance targets for hydrogen storage systems onboard light-duty vehicles. These targets were established through the U.S. DRIVE Partnership, a partnership between the U.S. Department of Energy (DOE), the U.S. Council for Automotive Research (USCAR), energy companies, and utility companies and organizations.

  16. Smith Newton Vehicle Performance Evaluation - Gen2 - 1Q2014 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  17. Smith Newton Vehicle Performance Evaluation – 4th Quarter 2013; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2014-01-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  18. Smith Newton Vehicle Performance Evaluation – Gen 2 – Cumulative; Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect (OSTI)

    2014-10-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  19. U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity, Hydrogen/CNG Blended Fuels Performance Testing in a Ford F-150

    SciTech Connect (OSTI)

    James E. Francfort

    2003-11-01

    Federal regulation requires energy companies and government entities to utilize alternative fuels in their vehicle fleets. To meet this need, several automobile manufacturers are producing compressed natural gas (CNG)-fueled vehicles. In addition, several converters are modifying gasoline-fueled vehicles to operate on both gasoline and CNG (Bifuel). Because of the availability of CNG vehicles, many energy company and government fleets have adopted CNG as their principle alternative fuel for transportation. Meanwhile, recent research has shown that blending hydrogen with CNG (HCNG) can reduce emissions from CNG vehicles. However, blending hydrogen with CNG (and performing no other vehicle modifications) reduces engine power output, due to the lower volumetric energy density of hydrogen in relation to CNG. Arizona Public Service (APS) and the U.S. Department of Energy’s Advanced Vehicle Testing Activity (DOE AVTA) identified the need to determine the magnitude of these effects and their impact on the viability of using HCNG in existing CNG vehicles. To quantify the effects of using various blended fuels, a work plan was designed to test the acceleration, range, and exhaust emissions of a Ford F-150 pickup truck operating on 100% CNG and blends of 15 and 30% HCNG. This report presents the results of this testing conducted during May and June 2003 by Electric Transportation Applications (Task 4.10, DOE AVTA Cooperative Agreement DEFC36- 00ID-13859).

  20. Electric Vehicles: Performance, Life-Cycle Costs, Emissions, and Recharging Requirements

    E-Print Network [OSTI]

    DeLuchi, Mark A.; Wang, Quanlu; Sperling, Daniel

    1989-01-01

    Sealed lead-acid electric and vehicle battery development.A. (1987a) ture for electric vehicles. In Resources ElectricInternational Conference. Electric Vehicle De- Universityof

  1. Comparison of Module Performance Characterization Methods

    SciTech Connect (OSTI)

    KROPOSKI,B.; MARION,W.; KING,DAVID L.; BOYSON,WILLIAM EARL; KRATOCHVIL,JAY A.

    2000-10-03

    The rating and modeling of photovoltaic PW module performance has been of concern to manufacturers and system designers for over 20 years. Both the National Renewable Energy Laboratory (NREL) and Sandia National Laboratories (SNL) have developed methodologies to predict module and array performance under actual operating conditions. This paper compares the two methods of determining the performance of PV modules, The methods translate module performance to actual or reference conditions using slightly different approaches. The accuracy of both methods is compared for both hourly, daily, and annual energy production over a year of data recorded at NREL in Golden, CO. The comparison of the two methods will be presented for five different PV module technologies.

  2. Vehicle Technologies Office Merit Review 2015: High Performance Cast Aluminum Alloys for Next Generation Passenger Vehicle Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

  3. Vehicle Technologies Office Merit Review 2015: Development of Advanced High-Performance Batteries for 12V Start Stop Vehicle Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Maxwell at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of advanced high...

  4. Measurements and Characterization: Cell and Module Performance (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    Capabilities fact sheet for the National Center for Photovoltaics: Measurements and Characterization -- Cell and Module Performance. One-sided sheet that includes Scope, Core Competencies and Capabilities, and Contact/Web information.

  5. Performance characterization of a packed bed electro-filter 

    E-Print Network [OSTI]

    Narayanan, Ajay

    1990-01-01

    PERFORMANCE CHARACTERIZATION OF A PACKED BED ELECTRO-FILTER A Thesis by A JAY NARAYANAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... December 1990 Major Subject: Safety Engineering PERFORMANCE CHARACTERIZATION OF A PACKED BED ELECTRO-FILTER A Thesis by AJAY NARAYANAN Approved as to style and content by: John P. Wagn (Ch ' of the Com ittee) Aydin Akgerman (Member) Ri ard B...

  6. NREL: Measurements and Characterization - Device Performance Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial Toolkit The GeospatialSolar EnergyDevice Performance

  7. Development of Pneumatic Aerodynamic Devices to Improve the Performance, Economics, and Safety of Heavy Vehicles

    SciTech Connect (OSTI)

    Robert J. Englar

    2000-06-19

    Under contract to the DOE Office of Heavy Vehicle Technologies, the Georgia Tech Research Institute (GTRI) is developing and evaluating pneumatic (blown) aerodynamic devices to improve the performance, economics, stability and safety of operation of Heavy Vehicles. The objective of this program is to apply the pneumatic aerodynamic aircraft technology previously developed and flight-tested by GTRI personnel to the design of an efficient blown tractor-trailer configuration. Recent experimental results obtained by GTRI using blowing have shown drag reductions of 35% on a streamlined automobile wind-tunnel model. Also measured were lift or down-load increases of 100-150% and the ability to control aerodynamic moments about all 3 axes without any moving control surfaces. Similar drag reductions yielded by blowing on bluff afterbody trailers in current US trucking fleet operations are anticipated to reduce yearly fuel consumption by more than 1.2 billion gallons, while even further reduction is possible using pneumatic lift to reduce tire rolling resistance. Conversely, increased drag and down force generated instantaneously by blowing can greatly increase braking characteristics and control in wet/icy weather due to effective ''weight'' increases on the tires. Safety is also enhanced by controlling side loads and moments caused on these Heavy Vehicles by winds, gusts and other vehicles passing. This may also help to eliminate the jack-knifing problem if caused by extreme wind side loads on the trailer. Lastly, reduction of the turbulent wake behind the trailer can reduce splash and spray patterns and rough air being experienced by following vehicles. To be presented by GTRI in this paper will be results developed during the early portion of this effort, including a preliminary systems study, CFD prediction of the blown flowfields, and design of the baseline conventional tractor-trailer model and the pneumatic wind-tunnel model.

  8. Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andrew

    2009-01-01

    for Plug-in Hybrid Electric Vehicles (PHEVs): Goals andE. , Plug-in Hybrid-Electric Vehicle Powertrain Design andLithium Batteries for Plug-in Electric Vehicles Andrew Burke

  9. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01

    into the battery market. Therefore the standard carbonaceouselectric vehicle demand market in our modern life, the

  10. Design and characterization of Hover Nano Aerial Vehicle (HNAV) propulsion system

    E-Print Network [OSTI]

    Sato, Sho, Ph. D. Massachusetts Institute of Technology

    2008-01-01

    On October 4th 2005, DARPA released a request for proposals for a Nano-Air Vehicle (NAV) program. The program sought to develop an advanced urban reconnaissance vehicle. According the requirement imposed by DARPA, the NAV ...

  11. Navistar eStar Vehicle Performance Evaluation -- Cumulative; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-01-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Navistar will build and deploy all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country.

  12. Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed characterization of

    E-Print Network [OSTI]

    Goldstein, Allen

    Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed 19, 2012 (received for review July 22, 2012) Emissions from gasoline and diesel vehicles and diesel vehicles, and find diesel exhaust is seven times more efficient at forming aerosol than gasoline

  13. Design, development, and validation of a remotely reconfigurable vehicle telemetry system for consumer and government applications

    E-Print Network [OSTI]

    Siegel, Joshua Eric

    2011-01-01

    This thesis explores the design and development of a cost-effective, easy-to-use system for remotely monitoring vehicle performance and drivers' habits, with the aim of collecting data for vehicle characterization and ...

  14. PERFORMANCE EVALUATION AND CHARACTERIZATION OF SCALABLE DATA MINING ALGORITHMS

    E-Print Network [OSTI]

    PERFORMANCE EVALUATION AND CHARACTERIZATION OF SCALABLE DATA MINING ALGORITHMS Ying Liu, choudhar}@ece.northwestern.edu ABSTRACT Data mining has become one of the most essential tools in diverse perspectives for a set of representative data mining programs. We first design MineBench, a benchmarking suite

  15. Performance Characterization for Fusion Co-design Applications

    E-Print Network [OSTI]

    Oliker, Leonid

    fusion is a long-term solution for producing electrical power for the world, and the large thermonuclear1 Performance Characterization for Fusion Co-design Applications Praveen Narayanan, Alice Koniges international device (ITER) being constructed will produce net energy and a path to fusion energy provided

  16. Instruction-level performance modeling and characterization of multimedia applications

    SciTech Connect (OSTI)

    Luo, Y.; Cameron, K.W.

    1999-06-01

    One of the challenges for characterizing and modeling realistic multimedia applications is the lack of access to source codes. On-chip performance counters effectively resolve this problem by monitoring run-time behaviors at the instruction-level. This paper presents a novel technique of characterizing and modeling workloads at the instruction level for realistic multimedia applications using hardware performance counters. A variety of instruction counts are collected from some multimedia applications, such as RealPlayer, GSM Vocoder, MPEG encoder/decoder, and speech synthesizer. These instruction counts can be used to form a set of abstract characteristic parameters directly related to a processor`s architectural features. Based on microprocessor architectural constraints and these calculated abstract parameters, the architectural performance bottleneck for a specific application can be estimated. Meanwhile, the bottleneck estimation can provide suggestions about viable architectural/functional improvement for certain workloads. The biggest advantage of this new characterization technique is a better understanding of processor utilization efficiency and architectural bottleneck for each application. This technique also provides predictive insight of future architectural enhancements and their affect on current codes. In this paper the authors also attempt to model architectural effect on processor utilization without memory influence. They derive formulas for calculating CPI{sub 0}, CPI without memory effect, and they quantify utilization of architectural parameters. These equations are architecturally diagnostic and predictive in nature. Results provide promise in code characterization, and empirical/analytical modeling.

  17. Aerodynamic Design Criteria for Class 8 Heavy Vehicles Trailer Base Devices to Attain Optimum Performance

    SciTech Connect (OSTI)

    Salari, K; Ortega, J

    2010-12-13

    Lawrence Livermore National Laboratory (LLNL) as part of its Department of Energy (DOE), Energy Efficiency and Renewable Energy (EERE), and Vehicle Technologies Program (VTP) effort has investigated class 8 tractor-trailer aerodynamics for many years. This effort has identified many drag producing flow structures around the heavy vehicles and also has designed and tested many new active and passive drag reduction techniques and concepts for significant on the road fuel economy improvements. As part of this effort a database of experimental, computational, and conceptual design for aerodynamic drag reduction devices has been established. The objective of this report is to provide design guidance for trailer base devices to improve their aerodynamic performance. These devices are commonly referred to as boattails, base flaps, tail devices, and etc. The information provided here is based on past research and our most recent full-scale experimental investigations in collaboration with Navistar Inc. Additional supporting data from LLNL/Navistar wind tunnel, track test, and on the road test will be published soon. The trailer base devices can be identified by 4 flat panels that are attached to the rear edges of the trailer base to form a closed cavity. These devices have been engineered in many different forms such as, inflatable and non-inflatable, 3 and 4-sided, closed and open cavity, and etc. The following is an in-depth discussion with some recommendations, based on existing data and current research activities, of changes that could be made to these devices to improve their aerodynamic performance. There are 6 primary factors that could influence the aerodynamic performance of trailer base devices: (1) Deflection angle; (2) Boattail length; (3) Sealing of edges and corners; (4) 3 versus 4-sided, Position of the 4th plate; (5) Boattail vertical extension, Skirt - boattail transition; and (6) Closed versus open cavity.

  18. Catalyzed Diesel Particulate Filter Performance in a Light-Duty Vehicle

    SciTech Connect (OSTI)

    Sluder, C.S.

    2001-04-23

    Light-duty chassis dynamometer driving cycle tests were conducted on a Mercedes A170 diesel vehicle with various sulfur-level fuels and exhaust emission control systems. Triplicate runs of a modified light-duty federal test procedure (FTP), US06 cycle, and SCO3 cycle were conducted with each exhaust configuration and fuel. Ultra-low sulfur (3-ppm) diesel fuel was doped to 30- and 150-ppm sulfur so that all other fuel properties remained the same. The fuels used in these experiments met the specifications of the fuels from the DECSE (Diesel Emission Control Sulfur Effects) program. Although the Mercedes A170 vehicle is not available in the US, its emissions in the as tested condition fell within the U.S. Tier 1 full useful life standards with the OEM catalysts installed. Tests with the OEM catalysts removed showed that the OEM catalysts reduced PM emissions from the engine-out condition by 30-40% but had negligible effects on NOx emissions. Fuel sulfur level had very little effect on th e OEM catalyst performance. A prototype catalyzed diesel particulate filter (CDPF) mounted in an underfloor configuration reduced particulate matter emissions by more than 90% compared to the factory emissions control system. The results show that the CDPF did not promote any significant amounts of SO{sub 2}-to-sulfate conversion during these light-duty drive cycles.

  19. Vehicle Systems Integration Laboratory Accelerates Powertrain Development

    ScienceCinema (OSTI)

    None

    2014-06-25

    ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

  20. Vehicle Systems Integration Laboratory Accelerates Powertrain Development

    SciTech Connect (OSTI)

    None

    2014-04-15

    ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

  1. Vehicle Technologies Office Merit Review 2014: Residual Stress of Bimetallic Joints and Characterization

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about residual stress...

  2. Vehicle Technologies Office Merit Review 2015: Enhanced High and Low Temperature Performance of NOx Reduction Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  3. Vehicle Technologies Office Merit Review 2015: Performance of Biofuels and Biofuel Blends

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and vehicle technologies office annual merit review and peer evaluation meeting about...

  4. Vehicle Technologies Office Merit Review 2014: Improving Fatigue Performance of AHSS Welds

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about improving...

  5. Vehicle Technologies Office Merit Review 2015: Electrode Fabrication and Performance Benchmarking

    Broader source: Energy.gov [DOE]

    Presentation given by Lawrence Berkley National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  6. Vehicle Technologies Office Merit Review 2015: Design of High Performance, High Energy Cathode Materials

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Lawrence Berkley National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about design...

  7. Vehicle Technologies Office Merit Review 2014: Design of High Performance, High Energy Cathode Materials

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Lawrence Berkeley National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about design...

  8. Vehicle Technologies Office Merit Review 2015: Predicting Microstructure and Performance for Optimal Cell Fabrication

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Brigham Young University at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about predicting...

  9. Vehicle Technologies Office Merit Review 2014: Predicting Microstructure and Performance for Optimal Cell Fabrication

    Broader source: Energy.gov [DOE]

    Presentation given by Brigham Young University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about predicting...

  10. Vehicle Technologies Office Merit Review 2014: Non-Rare Earth High-Performance Wrought Magnesium Alloys

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about non...

  11. Vehicle Technologies Office Merit Review 2015: Accelerating Predictive Simulation of IC Engines with High Performance Computing

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about accelerating...

  12. Vehicle Technologies Office Merit Review 2014: Accelerating Predictive Simulation of IC Engines with High Performance Computing

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about accelerating...

  13. Vehicle Technologies Office Merit Review 2014: Alloy Development for High-Performance Cast Crankshafts

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about applied alloy...

  14. Spectroradiometer Intercomparison and Impact on Characterizing Photovoltaic Device Performance: Preprint

    SciTech Connect (OSTI)

    Habte, A.; Andreas, A.; Ottoson, L.; Gueymard, C.; Fedor, G.; Fowler, S.; Peterson, J.; Naranen, E.; Kobashi, T.; Akiyama, A.; Takagi, S.

    2014-11-01

    Indoor and outdoor testing of photovoltaic (PV) device performance requires the use of solar simulators and natural solar radiation, respectively. This performance characterization requires accurate knowledge of spectral irradiance distribution that is incident on the devices. Spectroradiometers are used to measure the spectral distribution of solar simulators and solar radiation. On September 17, 2013, a global spectral irradiance intercomparison using spectroradiometers was organized by the Solar Radiation Research Laboratory (SRRL) at the National Renewable Energy Laboratory (NREL). This paper presents highlights of the results of this first intercomparison, which will help to decrease systematic inter-laboratory differences in the measurements of the outputs or efficiencies of PV devices and harmonize laboratory experimental procedures.

  15. Interim Test Procedures for Evaluating Electrical Performance and Grid Integration of Vehicle-to-Grid Applications

    SciTech Connect (OSTI)

    Chakraborty, S.; Kramer, W.; Kroposki, B.; Martin, G.; McNutt, P.; Kuss, M.; Markel, T.; Hoke, A.

    2011-06-01

    The objective of this report is to provide a test plan for V2G testing. The test plan is designed to test and evaluate the vehicle's power electronics capability to provide power to the grid, and to evaluate the vehicle's ability to connect and disconnect from the utility according to a subset of the IEEE Std. 1547 tests.

  16. Plug-in Hybrid Electric Vehicle On-Road Emissions Characterization and Demonstration Study

    E-Print Network [OSTI]

    Hohl, Carrie

    2012-12-31

    On-road emissions and operating data were collected from a plug-in hybrid electric vehicle (PHEV) over the course of 6months spanning August 2007 through January 2008 providing the first comprehensive on-road evaluation of the PHEV drivetrain...

  17. Performance Evaluation of Lower-Energy Energy Storage Alternatives for Full-Hybrid Vehicles; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Gonder, J.; Cosgrove, J.; Pesaran, A.

    2014-02-11

    Automakers have been mass producing hybrid electric vehicles (HEVs) for well over a decade, and the technology has proven to be very effective at reducing per-vehicle fuel use. However, the incremental cost of HEVs such as the Toyota Prius or Ford Fusion Hybrid remains several thousand dollars higher than the cost of comparable conventional vehicles, which has limited HEV market penetration. The b b b b battery energy storage device is typically the component with the greatest contribution toward this cost increment, so significant cost reductions/performance improvements to the energy storage system (ESS) can correspondingly improve the vehicle-level cost/benefit relationship. Such an improvement would in turn lead to larger HEV market penetration and greater aggregate fuel savings. The United States Advanced Battery Consortium (USABC) and the U.S. Department of Energy (DOE) Energy Storage Program managers asked the National Renewable Energy Laboratory (NREL) to collaborate with a USABC Workgroup and analyze the trade-offs between vehicle fuel economy and reducing the decade-old minimum energy requirement for power-assist HEVs. NREL’s analysis showed that significant fuel savings could still be delivered from an ESS with much lower energy storage than the previous targets, which prompted USABC to issue a new set of lower-energy ESS (LEESS) targets that could be satisfied by a variety of technologies. With support from DOE, NREL has developed an HEV test platform for in-vehicle performance and fuel economy validation testing of the hybrid system using such LEESS devices. This presentation describes development of the vehicle test platform, and laboratory as well as in-vehicle evaluation results with alternate energy storage configurations as compared to the production battery system. The alternate energy storage technologies considered include lithium-ion capacitors -- i.e., asymmetric electrochemical energy storage devices possessing one electrode with battery-type characteristics (lithiated graphite) and one with ultracapacitor-type characteristics (carbon) -- and electrochemical double-layer capacitors.

  18. High performance path following for marine vehicles using azimuthing podded propulsion

    E-Print Network [OSTI]

    Greytak, Matthew B. (Matthew Bardeen)

    2006-01-01

    Podded propulsion systems offer greater maneuvering possibilities for marine vehicles than conventional shaft and rudder systems. As the propulsion unit rotates about its vertical axis to a specified azimuth angle, the ...

  19. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01

    for vehicle applications. 2 Lithium-ion battery chemistriesThe lithium-ion battery technology used for consumerfrom EIG Figure 4: Lithium-ion battery modules for testing

  20. Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andrew

    2009-01-01

    2007 7. Bottling Electricity: Storage as a Strategic Toolgiven at the The Electricity Storage Association Meeting,electricity for propulsion. The batteries in those vehicles are sized by the energy storage

  1. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01

    batteries for vehicle applications. Unfortunately the graphite/graphite/NiCoMn chemistry. In general, it seems possible to design high power batteries (graphite/NiCoMn chemistry. In general, it seems possible to design high power batteries (

  2. Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andrew

    2009-01-01

    batteries for vehicle applications. Unfortunately the graphite/graphite/NiCoMn chemistry. In general, it seems possible to design high power batteries (graphite/NiCoMn chemistry. In general, it is possible to design high power batteries (

  3. Performance-Based Reliability Analysis and Code Calibration for RC Column Subject to Vehicle Collision 

    E-Print Network [OSTI]

    Sharma, Hrishikesh

    2012-07-16

    Infrastructure and transportation facilities have increased rapidly over the years. The progress has been accompanied by an increasing number of vehicle collisions with structures. This type of collision might lead to the damage, and often...

  4. Vehicle Technologies Office Merit Review 2015: PHEV and EV Battery Performance and Cost Assessment

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about PHEV and EV...

  5. Effect of auditory peripheral displays on unmanned aerial vehicle operator performance

    E-Print Network [OSTI]

    Graham, Hudson D

    2008-01-01

    With advanced autonomy, Unmanned Aerial Vehicle (UAV) operations will likely be conducted by single operators controlling multiple UAVs. As operator attention is divided across multiple supervisory tasks, there is a need ...

  6. NMOG Emissions Characterizations and Estimation for Vehicles Using Ethanol-Blended Fuels

    SciTech Connect (OSTI)

    Sluder, Scott; West, Brian H

    2011-10-01

    Ethanol is a biofuel commonly used in gasoline blends to displace petroleum consumption; its utilization is on the rise in the United States, spurred by the biofuel utilization mandates put in place by the Energy Independence and Security Act of 2007 (EISA). The United States Environmental Protection Agency (EPA) has the statutory responsibility to implement the EISA mandates through the promulgation of the Renewable Fuel Standard. EPA has historically mandated an emissions certification fuel specification that calls for ethanol-free fuel, except for the certification of flex-fuel vehicles. However, since the U.S. gasoline marketplace is now virtually saturated with E10, some organizations have suggested that inclusion of ethanol in emissions certification fuels would be appropriate. The test methodologies and calculations contained in the Code of Federal Regulations for gasoline-fueled vehicles have been developed with the presumption that the certification fuel does not contain ethanol; thus, a number of technical issues would require resolution before such a change could be accomplished. This report makes use of the considerable data gathered during the mid-level blends testing program to investigate one such issue: estimation of non-methane organic gas (NMOG) emissions. The data reported in this paper were gathered from over 600 cold-start Federal Test Procedure (FTP) tests conducted on 68 vehicles representing 21 models from model year 2000 to 2009. Most of the vehicles were certified to the Tier-2 emissions standard, but several older Tier-1 and national low emissions vehicle program (NLEV) vehicles were also included in the study. Exhaust speciation shows that ethanol, acetaldehyde, and formaldehyde dominate the oxygenated species emissions when ethanol is blended into the test fuel. A set of correlations were developed that are derived from the measured non-methane hydrocarbon (NMHC) emissions and the ethanol blend level in the fuel. These correlations were applied to the measured NMHC emissions from the mid-level ethanol blends testing program and the results compared against the measured NMOG emissions. The results show that the composite FTP NMOG emissions estimate has an error of 0.0015 g/mile {+-}0.0074 for 95% of the test results. Estimates for the individual phases of the FTP are also presented with similar error levels. A limited number of tests conducted using the LA92, US06, and highway fuel economy test cycles show that the FTP correlation also holds reasonably well for these cycles, though the error level relative to the measured NMOG value increases for NMOG emissions less than 0.010 g/mile.

  7. The effects of driving style and vehicle performance on the real-world fuel consumption of U.S. light-duty vehicles

    E-Print Network [OSTI]

    Berry, Irene Michelle

    2010-01-01

    Even with advances in vehicle technology, both conservation and methods for reducing the fuel consumption of existing vehicles are needed to decrease the petroleum consumption and greenhouse gas emissions of the U.S. ...

  8. Characterization of In-Use Medium Duty Electric Vehicle Driving and Charging Behavior: Preprint

    SciTech Connect (OSTI)

    Duran, A.; Ragatz, A.; Prohaska, R.; Kelly, K.; Walkowicz, K.

    2014-11-01

    The U.S. Department of Energy's American Recovery and Reinvestment Act (ARRA) deployment and demonstration projects are helping to commercialize technologies for all-electric vehicles (EVs). Under the ARRA program, data from Smith Electric and Navistar medium duty EVs have been collected, compiled, and analyzed in an effort to quantify the impacts of these new technologies. Over a period of three years, the National Renewable Energy Laboratory (NREL) has compiled data from over 250 Smith Newton EVs for a total of over 100,000 days of in-use operation. Similarly, data have been collected from over 100 Navistar eStar vehicles, with over 15,000 operating days having been analyzed. NREL has analyzed a combined total of over 4 million kilometers of driving and 1 million hours of charging data for commercial operating medium duty EVs. In this paper, the authors present an overview of medium duty EV operating and charging behavior based on in-use data collected from both Smith and Navistar vehicles operating in the United States. Specifically, this paper provides an introduction to the specifications and configurations of the vehicles examined; discusses the approach and methodology of data collection and analysis, and presents detailed results regarding daily driving and charging behavior. In addition, trends observed over the course of multiple years of data collection are examined, and conclusions are drawn about early deployment behavior and ongoing adjustments due to new and improving technology. Results and metrics such as average daily driving distance, route aggressiveness, charging frequency, and liter per kilometer diesel equivalent fuel consumption are documented and discussed.

  9. Vehicle technologies program Government Performance and Results Act (GPA) report for fiscal year 2012

    SciTech Connect (OSTI)

    Ward, J.; Stephens, T. S.; Birky, A. K.

    2012-08-10

    The U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy has defined milestones for its Vehicle Technologies Program (VTP). This report provides estimates of the benefits that would accrue from achieving these milestones relative to a base case that represents a future in which there is no VTP-supported vehicle technology development. Improvements in the fuel economy and reductions in the cost of light- and heavy-duty vehicles were estimated by using Argonne National Laboratory's Autonomie powertrain simulation software and doing some additional analysis. Argonne also estimated the fraction of the fuel economy improvements that were attributable to VTP-supported development in four 'subsystem' technology areas: batteries and electric drives, advanced combustion engines, fuels and lubricants, and materials (i.e., reducing vehicle mass, called 'lightweighting'). Oak Ridge National Laboratory's MA{sup 3}T (Market Acceptance of Advanced Automotive Technologies) tool was used to project the market penetration of light-duty vehicles, and TA Engineering's TRUCK tool was used to project the penetrations of medium- and heavy-duty trucks. Argonne's VISION transportation energy accounting model was used to estimate total fuel savings, reductions in primary energy consumption, and reductions in greenhouse gas emissions that would result from achieving VTP milestones. These projections indicate that by 2030, the on-road fuel economy of both light- and heavy-duty vehicles would improve by more than 20%, and that this positive impact would be accompanied by a reduction in oil consumption of nearly 2 million barrels per day and a reduction in greenhouse gas emissions of more than 300 million metric tons of CO{sub 2} equivalent per year. These benefits would have a significant economic value in the U.S. transportation sector and reduce its dependency on oil and its vulnerability to oil price shocks.

  10. Modeling the performance and cost of lithium-ion batteries for electric-drive vehicles.

    SciTech Connect (OSTI)

    Nelson, P. A. Gallagher, K. G. Bloom, I. Dees, D. W.

    2011-10-20

    This report details the Battery Performance and Cost model (BatPaC) developed at Argonne National Laboratory for lithium-ion battery packs used in automotive transportation. The model designs the battery for a specified power, energy, and type of vehicle battery. The cost of the designed battery is then calculated by accounting for every step in the lithium-ion battery manufacturing process. The assumed annual production level directly affects each process step. The total cost to the original equipment manufacturer calculated by the model includes the materials, manufacturing, and warranty costs for a battery produced in the year 2020 (in 2010 US$). At the time this report is written, this calculation is the only publically available model that performs a bottom-up lithium-ion battery design and cost calculation. Both the model and the report have been publically peer-reviewed by battery experts assembled by the U.S. Environmental Protection Agency. This report and accompanying model include changes made in response to the comments received during the peer-review. The purpose of the report is to document the equations and assumptions from which the model has been created. A user of the model will be able to recreate the calculations and perhaps more importantly, understand the driving forces for the results. Instructions for use and an illustration of model results are also presented. Almost every variable in the calculation may be changed by the user to represent a system different from the default values pre-entered into the program. The distinct advantage of using a bottom-up cost and design model is that the entire power-to-energy space may be traversed to examine the correlation between performance and cost. The BatPaC model accounts for the physical limitations of the electrochemical processes within the battery. Thus, unrealistic designs are penalized in energy density and cost, unlike cost models based on linear extrapolations. Additionally, the consequences on cost and energy density from changes in cell capacity, parallel cell groups, and manufacturing capabilities are easily assessed with the model. New proposed materials may also be examined to translate bench-scale values to the design of full-scale battery packs providing realistic energy densities and prices to the original equipment manufacturer. The model will be openly distributed to the public in the year 2011. Currently, the calculations are based in a Microsoft{reg_sign} Office Excel spreadsheet. Instructions are provided for use; however, the format is admittedly not user-friendly. A parallel development effort has created an alternate version based on a graphical user-interface that will be more intuitive to some users. The version that is more user-friendly should allow for wider adoption of the model.

  11. Performance and Economics of Catalytic Glow Plugs and Shields in Direct Injection Natural Gas Engines for the Next Generation Natural Gas Vehicle Program: Final Report

    SciTech Connect (OSTI)

    Mello, J. P.; Bezaire, D.; Sriramulu, S.; Weber, R.

    2003-08-01

    Subcontractor report details work done by TIAX and Westport to test and perform cost analysis for catalytic glow plugs and shields for direct-injection natural gas engines for the Next Generation Natural Gas Vehicle Program.

  12. Ultracapacitors for Electric and Hybrid Vehicles - Performance Requirements, Status of the Technology, and R&D Needs

    E-Print Network [OSTI]

    Burke, Andrew F

    1995-01-01

    Pulse Power Devices in Electric Vehicle Propulsion Systems,the Tenth International Electric Vehicle Symposium (EVS-10),4. Burke, A.F. , Hybrid/Electric Vehicle Design Options and

  13. Cost Characterizations of Supply Chain Delivery Performance Alfred L. Guiffrida and Rakesh Nagi*

    E-Print Network [OSTI]

    Nagi, Rakesh

    Cost Characterizations of Supply Chain Delivery Performance Alfred L. Guiffrida and Rakesh Nagi-645-3302 #12;Cost Characterizations of Supply Chain Delivery Performance 1. Introduction In the past three as a whole, and that focus on measuring performance in terms of cost and uncertainty. Several researchers

  14. Vehicle Technologies Office Merit Review 2014: High Performance Cast Aluminum Alloys for Next Generation Passenger Vehicle Engines 2012 FOA 648 Topic 3a

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

  15. 99Tc Process Monitoring System In-Lab Performance Characterization

    SciTech Connect (OSTI)

    O'Hara, Matthew J.; Niver, Cynthia M.

    2014-01-01

    Executive Summary A 99Tc Process Monitoring (Tc-Mon) System has been designed and built for deployment at the recently constructed 200 West Pump & Treat (200W P&T) Plant in the 200 West Area ZP-1 Operable Unit of the Hanford Site. The plant is operated by CH2M Hill Plateau Remediation Company (CHPRC). The Tc-Mon system was created through collaboration between Pacific Northwest National Laboratory (PNNL) and Burge Environmental, Inc. The new system’s design has been optimized based on experience from an earlier field test (2011) of a prototype system at the 200W-ZP-1 Interim Pump & Treat Plant. A portion of the new 200W P&T Plant is dedicated to removal of 99Tc from contaminated groundwater in the 200 West Area. 99Tc, as the pertechnetate anion (99TcO4-), is remediated through delivery of water into two trains (Trains A and B) of three tandem extraction columns filled with Purolite A530E resin. The resin columns cannot be regenerated; therefore, once they have reached their maximum useful capacity, the columns must be disposed of as radioactive waste. The Tc-Mon system’s primary duty will be to periodically sample and analyze the effluents from each of the two primary extraction columns to determine 99Tc breakthrough. The Tc-Mon system will enable the CH2M Hill Plateau Remediation Company (CHPRC) to measure primary extraction column breakthrough on demand. In this manner, CHPRC will be able to utilize each extraction column to its maximum capacity. This will significantly reduce column disposal and replacement costs over the life of the plant. The Tc-Mon system was constructed by Burge Environmental, Inc. and was delivered to PNNL in June 2013 for setup and initial hardware and software performance testing in the 325 Building. By early July, PNNL had initiated an in-laboratory performance characterization study on the system. The objective was to fully calibrate the system and then evaluate the quality of the analytical outputs 1) against a series of clean groundwater samples prepared as 99Tc standards, and 2) on actual 200W P&T Plant grab samples containing 99Tc (and other radioactive and non-radioactive contaminants) at levels reported by the Waste Sampling and Characterization Facility. These grab samples included pre-treated (Pre-Resin) and post-treated (Post-Resin) 200W P&T Plant waters for May through August 2013. This report contains the following information: • The genesis of the 99Tc sensor and the Tc-Mon analytical system. • A description of the Tc-Mon system’s major hardware and software components. • A description of the operational principles behind the 99Tc sensor. • Results from the calibration of three components within the Tc-Mon system. The three systems requiring calibration are: 1. Sampling Chamber 2. Conductivity Sensor 3. 99Tc Sensor • Presentation of analytical results obtained on the fully calibrated Tc-Mon system. This includes a determination of the precision and accuracy of each system defined above. • Estimation of the 99Tc sensor’s minimum detectable activity and limit of quantification. • A brief discussion of potential chemical and radiological influences on the 99Tc sensor based on known contaminants in 200W P&T Plant water. • Observations regarding 99Tc sensor longevity.

  16. Navistar eStar Vehicle Performance Evaluation - Cumulative; Energy Efficiency & Renewable Energy (EERE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2013-10-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Navistar will build and deploy all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country. This cumulative report covers the project from initiation through the second quarter of 2013.

  17. Characterizing the In-Use Emissions Performance of Novel PM and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the In-Use Emissions Performance of Novel PM and NOx Control Technologies on Diesel Construction Equipment Characterizing the In-Use Emissions Performance of Novel PM and NOx...

  18. Energy consumption characterization as an input to building management and performance benchmarking - a case study PPT 

    E-Print Network [OSTI]

    Bernardo, H.; Neves, L.; Oliveira, F.; Quintal, E.

    2012-01-01

    performance characterization of each of its buildings, looking specifically at the typology of canteen. Developing building energy performance benchmarking systems enables the comparison of actual consumption of individual buildings against others of the same...

  19. Synthesis, Characterization, Properties, and Tribological Performance of 2D Nanomaterials 

    E-Print Network [OSTI]

    He, Xingliang

    2014-04-25

    of lubricants using novel nanostructured particles. Experimental approaches include synthesis, characterization, and tribological and rheological investigation of nanoparticles, yttrium oxide (Y_(2)O_(3)), ?-zirconium phosphate (ZrP), and boron (B...

  20. A Consumer-Oriented Control Framework for Performance Analysis in Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Shoultout, Mohamed L.; Malikopoulos, Andreas; Pannala, Sreekanth; Chen, Dongmei

    2015-01-01

    Hybrid electric vehicles (HEVs) have attracted considerable attention due to their potential to reduce fuel consumption and emissions. The objective of this paper is to enhance our understanding of the associated tradeoffs among the HEV subsystems, e.g., the engine, the motor, and the battery, and investigate the related implications for fuel consumption and battery capacity and lifetime. Addressing this problem can provide insights on how to prioritize these objectives based on consumers needs and preferences. The results of the proposed optimization approach can also be used to investigate the implications for HEV costs related to ownership and warranty.

  1. Studies on Hazard Characterization for Performance-based Structural Design 

    E-Print Network [OSTI]

    Wang, Yue

    2010-07-14

    size parameters, and a measure of storm kinetic energy were used to develop wind-surge and wind-surge-energy models, which can be used to characterize the wind-surge hazard at a level of accuracy suitable for PBE applications. These models provide a...

  2. Vehicle Technologies Office Merit Review 2014: Synthesis and Characterization of Structured Si-Carbon Nanocomposite Anodes and Functional Polymer Binders

    Broader source: Energy.gov [DOE]

    Presentation given by The Pennsylvania State University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about synthesis...

  3. Vehicle Technologies Office Merit Review 2015: Cummins-ORNL\\FEERC Combustion CRADA: Characterization & Reduction of Combustion Variations

    Broader source: Energy.gov [DOE]

    Presentation given by Lawrence LIvermore National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  4. Vehicle Technologies Office Merit Review 2014: International Energy Agency (IEA IA-AMT) International Characterization Methods (Agreement ID:26462)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about International...

  5. A New Approach in Tribological Characterization of High Performance Materials 

    E-Print Network [OSTI]

    Fox, Grant R.

    2010-07-14

    This research conducts tribological investigation in three areas. The first area of research is to obtain basic understanding of tribological properties of high performance Inconel alloys. Pin-on-disk testing was conducted through a range of applied...

  6. Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andrew

    2009-01-01

    Characteristics of Lithium-ion Batteries of VariousResults with Lithium-ion Batteries, paper presented at EET-performance of lithium-ion batteries of several chemistries

  7. Prediction of performance and maneuvering dynamics for marine vehicles applied to DDG-1000

    E-Print Network [OSTI]

    Menard, Louis-Philippe M

    2010-01-01

    Being able to accurately model the performance of ships is an integral part of the ship design process. A considerable amount of money is invested into predicting how a ship will maneuver in a given sea state. Furthermore, ...

  8. Performance and characterization of a MEMS-based device for alignment...

    Office of Scientific and Technical Information (OSTI)

    of a MEMS-based device for alignment and manipulation of x-ray nanofocusing optics Title: Performance and characterization of a MEMS-based device for alignment and...

  9. Characterization of Sensor Performance and Durability for Structural Health Monitoring Systems

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    Characterization of Sensor Performance and Durability for Structural Health Monitoring Systems with regard to successfully implementing Structural Health Monitoring technologies in Air Force systems sensor system design and packaging. Keywords: Structural Health Monitoring, Piezo Wafer Active Sensors

  10. Design and fabrication of a device to characterize spindle performance as a function of bearing preload

    E-Print Network [OSTI]

    Turk, Amanda C. (Amanda Christine)

    2012-01-01

    This paper describes the design and fabrication of an apparatus to characterize the performance of lathe spindles as a function of spindle bearing preload. The apparatus will be used to assist undergraduate students enrolled ...

  11. Characterization and estimation of permeability correlation structure from performance data

    SciTech Connect (OSTI)

    Ershaghi, I.; Al-Qahtani, M.

    1997-08-01

    In this study, the influence of permeability structure and correlation length on the system effective permeability and recovery factors of 2-D cross-sectional reservoir models, under waterflood, is investigated. Reservoirs with identical statistical representation of permeability attributes are shown to exhibit different system effective permeability and production characteristics which can be expressed by a mean and variance. The mean and variance are shown to be significantly influenced by the correlation length. Detailed quantification of the influence of horizontal and vertical correlation lengths for different permeability distributions is presented. The effect of capillary pressure, P{sub c1} on the production characteristics and saturation profiles at different correlation lengths is also investigated. It is observed that neglecting P{sub c} causes considerable error at large horizontal and short vertical correlation lengths. The effect of using constant as opposed to variable relative permeability attributes is also investigated at different correlation lengths. Next we studied the influence of correlation anisotropy in 2-D reservoir models. For a reservoir under five-spot waterflood pattern, it is shown that the ratios of breakthrough times and recovery factors of the wells in each direction of correlation are greatly influenced by the degree of anisotropy. In fully developed fields, performance data can aid in the recognition of reservoir anisotropy. Finally, a procedure for estimating the spatial correlation length from performance data is presented. Both the production performance data and the system`s effective permeability are required in estimating the correlation length.

  12. Dynamics and Performance of Tailless Micro Aerial Vehicle with Flexible Articulated Wings

    E-Print Network [OSTI]

    Chung, Soon-Jo

    The purpose of this paper is to analyze and discuss the performance and stability of a tailless micro aerial's modulus and modulus of rigidity of a material Ib, Ip, ~J = second moment of area about the in-plane axis along the direction of bending, polar moment of area, and torsional stiffness of a cross section

  13. Characterization of UMT2013 Performance on Advanced Architectures

    SciTech Connect (OSTI)

    Howell, Louis

    2014-12-31

    This paper presents part of a larger effort to make detailed assessments of several proxy applications on various advanced architectures, with the eventual goal of extending these assessments to codes of programmatic interest running more realistic simulations. The focus here is on UMT2013, a proxy implementation of deterministic transport for unstructured meshes. I present weak and strong MPI scaling results and studies of OpenMP efficiency on the Sequoia BG/Q system at LLNL, with comparison against similar tests on an Intel Sandy Bridge TLCC2 system. The hardware counters on BG/Q provide detailed information on many aspects of on-node performance, while information from the mpiP tool gives insight into the reasons for the differing scaling behavior on these two different architectures. Preliminary tests that exploit NVRAM as extended memory on an Ivy Bridge machine designed for “Big Data” applications are also included.

  14. Supported Molecular Catalysts: Synthesis, In-Situ Characterization and Performance

    SciTech Connect (OSTI)

    Davis, Mark E.

    2009-03-13

    The objectives of our work are: (i) to create solid catalysts with active sites that can function in a cooperative manner to enhance reactivity and selectivity, and (ii) to prepare solid catalysts that can perform multiple reactions in a network that in some cases would not be possible in solution due to the incompatibilities of the various catalytic entities (for example an acid and a base). We carried out extensive reactions to test the nature of the cooperative effect caused by thiol/sulfonic acid interactions. The acid/thiol combination provided an example where the two organic groups should be positioned as close to one another as possible. We also studied a system where this is not possible (acid-base). We investigated simultaneously incorporating acid and base groups into the same material. For the case of acid and bases, there is an optimal separation distance (too close allows for neutralization while too far eliminates any cooperative behavior).

  15. Vehicle Technologies Office Merit Review 2014: Cummins-ORNL\\FEERC Combustion CRADA: Characterization & Reduction of Combustion Variations

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Cummins-ORNL...

  16. Vehicle Technologies Office Merit Review 2015: Alternative High-Performance Motors with Non-Rare Earth Materials

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by General Electric Global at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about alternative high...

  17. Vehicle Technologies Office Merit Review 2014: Alternative High-Performance Motors with Non-Rare Earth Materials

    Broader source: Energy.gov [DOE]

    Presentation given by General Electric Global at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about alternative high...

  18. Advanced Heat Transfer Technologies Increase Vehicle Performance and Reliability; The Spectrum of Clean Energy Innovation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    Fact sheet describes NREL's work with heat transfer technologies to keep hybrid electric and all-electric vehicle power electronic components cool.

  19. Vehicle Technologies Office Merit Review 2014: High Temperature DC-Bus Capacitors Cost Reduction and Performance Improvements

    Broader source: Energy.gov [DOE]

    Presentation given by Sigma Technologies International at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

  20. Vehicle Technologies Office Merit Review 2014: Overcoming Processing Cost Barriers of High-Performance Lithium-Ion Battery Electrodes

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about overcoming...

  1. Vehicle Technologies Office Merit Review 2015: Advancements in Fuel Spray and Combustion Modeling with High Performance Computing Resources

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advancements in...

  2. Vehicle Technologies Office Merit Review 2014: Performance and Reliability of Bonded Interfaces for High-Temperature Packaging

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  3. Vehicle Technologies Office Merit Review 2015: Performance and Reliability of Bonded Interfaces for High-Temperature Packaging

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  4. Vehicle Technologies Office Merit Review 2015: High Temperature DC-Bus Capacitor Cost Reduction and Performance Improvements

    Broader source: Energy.gov [DOE]

    Presentation given by Sigma Technologies International at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

  5. The origin of California’s zero emission vehicle mandate

    E-Print Network [OSTI]

    Sperling, Dan; Collantes, Gustavo O

    2008-01-01

    Sperling, D. , 1989. Electric vehicles: performance, life-in California: The Role of Electric Vehicles. The ClaremontGM’s Revolutionary Electric Vehicle. Random House, New York.

  6. Performance Characterization of the Production Facility Prototype Helium Flow System

    SciTech Connect (OSTI)

    Woloshun, Keith Albert; Dale, Gregory E.; Dalmas, Dale Allen; Romero, Frank Patrick

    2015-12-16

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating. Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 ?A on each side of the target, 5.72 ?A total. The target design itself is reported elsewhere. With the increased beam heating, the helium flow requirement increased so that a larger blower was need for a mass flow rate of 400 g/s at 2.76 MPa (400 psig). An Aerzen GM 12.4 blower was selected, and is currently being installed at the LANL facility for target and component flow testing. This report describes this blower/motor/pressure vessel package and the status of the facility preparations. Blower performance (mass flow rate as a function of loop pressure drop) was measured at 4 blower speeds. Results are reported below.

  7. MECHANICAL PROPERTY CHARACTERIZATIONS AND PERFORMANCE MODELING OF SOFC SEALS

    SciTech Connect (OSTI)

    Koeppel, Brian J.; Vetrano, John S.; Nguyen, Ba Nghiep; Sun, Xin; Khaleel, Mohammad A.

    2008-03-26

    This study provides modeling tools for the design of reliable seals for SOFC stacks. The work consists of 1) experimental testing to determine fundamental properties of SOFC sealing materials, and 2) numerical modeling of stacks and sealing systems. The material tests capture relevant temperature-dependent physical and mechanical data needed by the analytical models such as thermal expansion, strength, fracture toughness, and relaxation behavior for glass-ceramic seals and other materials. Testing has been performed on both homogenous specimens and multiple material assemblies to investigate the effect of interfacial reactions. A viscoelastic continuum damage model for a glass-ceramic seal was developed to capture the nonlinear behavior of this material at high temperatures. This model was implemented in the MSC MARC finite element code and was used for a detailed analysis of a planar SOFC stack under thermal cycling conditions. Realistic thermal loads for the stack were obtained using PNNL’s in-house multiphysics solver. The accumulated seal damage and component stresses were evaluated for multiple thermal loading cycles, and regions of high seal damage susceptible to cracking were identified. Selected test results, numerical model development, and analysis results will be presented.

  8. Transportable Emissions Testing Laboratory for Alternative Vehicles Emissions Testing

    SciTech Connect (OSTI)

    Clark, Nigel

    2012-01-31

    The overall objective of this project was to perform research to quantify and improve the energy efficiency and the exhaust emissions reduction from advanced technology vehicles using clean, renewable and alternative fuels. Advanced vehicle and alternative fuel fleets were to be identified, and selected vehicles characterized for emissions and efficiency. Target vehicles were to include transit buses, school buses, vocational trucks, delivery trucks, and tractor-trailers. Gaseous species measured were to include carbon monoxide, carbon dioxide, oxides of nitrogen, hydrocarbons, and particulate matter. An objective was to characterize particulate matter more deeply than by mass. Accurate characterization of efficiency and emissions was to be accomplished using a state-of-the-art portable emissions measurement system and an accompanying chassis dynamometer available at West Virginia University. These two units, combined, are termed the Transportable Laboratory. An objective was to load the vehicles in a real-world fashion, using coast down data to establish rolling resistance and wind drag, and to apply the coast down data to the dynamometer control. Test schedules created from actual vehicle operation were to be employed, and a specific objective of the research was to assess the effect of choosing a test schedule which the subject vehicle either cannot follow or can substantially outperform. In addition the vehicle loading objective was to be met better with an improved flywheel system.

  9. Standard Guide for Performance Characterization of Dosimeters and Dosimetry Systems for Use in Radiation Processing

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This guide provides guidance on determining the performance characteristics of dosimeters and dosimetry systems used in radiation processing. 1.2 This guide describes the influence quantities that might affect the performance of dosimeters and dosimetry systems and that should be considered during dosimeter/dosimetry system characterization. 1.3 Users of this guide are directed to existing standards and literature for procedures to determine the effects from individual influence quantities and from combinations of more than one influence quantity. 1.4 Guidance is provided regarding the roles of the manufacturers, suppliers, and users in the characterization of dosimeters and dosimetry systems. 1.5 This guide does not address how the dosimeter/dosimetry system characterization information is to be used in radiation processing applications or in the calibration of dosimetry systems. Note 1—For guidance on the use of dosimeter/dosimetry system characterization information for the selection and use o...

  10. Performance Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access| DepartmentPeer ReviewRadiation LightsourceProcurement

  11. Fact #868: April 13, 2015 Automotive Technology Has Improved Performance and Fuel Economy of New Light Vehicles

    Broader source: Energy.gov [DOE]

    Despite a 124% increase in horsepower and 47% decrease in 0-60 time from 1980 to 2014, the fuel economy of vehicles improved 27%. All of these data series are sales-weighted averages. The weight of...

  12. A Performance Instrumentation Framework to Characterize Computation-Communication Overlap in Message-Passing Systems

    E-Print Network [OSTI]

    Shet, Aniruddha G.

    A Performance Instrumentation Framework to Characterize Computation-Communication Overlap for applications on high-end computers. In this paper, we propose an instrumentation framework for message. The ap- proach has been used to instrument two MPI implementa- tions as well as the ARMCI system

  13. Performance Characterization of Mobile-Class Nodes: Why Fewer Bits is Better

    E-Print Network [OSTI]

    Hazelwood, Kim

    Performance Characterization of Mobile-Class Nodes: Why Fewer Bits is Better Michelle McDaniel and Kim Hazelwood Department of Computer Science University of Virginia I. INTRODUCTION Mobile-class nodes. As is the trend in the computing market, the processors in these mobile-class nodes moving from 32 bits to 64 bits

  14. Synthesis, characterization and performance of Cd1xInxTe compound for solar cell applications

    E-Print Network [OSTI]

    Chow, Lee

    devices, solar energy converters, Videocon devices, sensors, medi- cal imaging and nanodevices [1­11]. CdSynthesis, characterization and performance of Cd1ÀxInxTe compound for solar cell applications Atef), Tebbin, P.O. Box 87 Helwan, Cairo 11412, Egypt b Department of Physics, University of Central Florida

  15. Characterizing User Behavior and Network Performance in a Public Wireless LAN

    E-Print Network [OSTI]

    Saskatchewan, University of

    Characterizing User Behavior and Network Performance in a Public Wireless LAN Anand Balachandran and network perfor- mance in a public-area wireless network using a workload captured at a well-attended ACM conference. The goals of our study are: (1) to extend our understanding of wireless user behavior

  16. Advanced Technology Vehicle Testing

    SciTech Connect (OSTI)

    James Francfort

    2004-06-01

    The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

  17. Electric vehicle test report, Cutler-Hammer Corvette

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    The work described was part of the effort to characterize vehicles for the state-of-the-art assessment of electric vehicles. The vehicle evaluated was a Chevrolet Corvette converted to electric operation. The vehicle was based on a standard production 1967 chassis and body. The original internal combustion engine was replaced by an electric traction motor. Eighteen batteries supplied the electrical energy. A controller, an onboard battery charger, and several dashboard instruments completed the conversion. The remainder of the vehicle, and in particular the remainder of the drive-train (clutch, driveshaft, and differential), was stock, except for the transmission. The overall objective of the tests was to develop performance data at the system and subsystem level. The emphasis was on the electrical portion of the drive train, although some analysis and discussion of the mechanical elements are included. There was no evaluation of other aspects of the vehicle such as braking, ride, handling, passenger accomodations, etc. Included are a description of the vehicle, the tests performed and a discussion of the results. Tests were conducted both on the road (actually a mile long runway) and in a chassis dynamometer equipped laboratory. The majority of the tests performed were according to SAE Procedure J227a and included maximum effort accelerations, constant-speed range, and cyclic range. Some tests that are not a part of the SAE Procedure J227a are described and the analysis of the data from all tests is discussed. (LCL)

  18. Performance Characterization of Global Address Space Applications: A Case Study with NWChem

    SciTech Connect (OSTI)

    Hammond, Jeffrey R.; Krishnamoorthy, Sriram; Shende, Sameer; Romero, Nichols A.; Malony, Allen D.

    2012-02-01

    The use of global address space languages and one-sided communication for complex applications is gaining attention in the parallel computing community. However, lack of good evaluative methods to observe multiple levels of performance makes it difficult to isolate the cause of performance deficiencies and to understand the fundamental limitations of system and application design for future improvement. NWChem is a popular computational chemistry package which depends on the Global Arrays/ ARMCI suite for partitioned global address space functionality to deliver high-end molecular modeling capabilities. A workload characterization methodology was developed to support NWChem performance engineering on large-scale parallel platforms. The research involved both the integration of performance instrumentation and measurement in the NWChem software, as well as the analysis of one-sided communication performance in the context of NWChem workloads. Scaling studies were conducted for NWChem on Blue Gene/P and on two large-scale clusters using different generation Infiniband interconnects and x86 processors. The performance analysis and results show how subtle changes in the runtime parameters related to the communication subsystem could have significant impact on performance behavior. The tool has successfully identified several algorithmic bottlenecks which are already being tackled by computational chemists to improve NWChem performance.

  19. Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maximizing Alternative Fuel Vehicle Efficiency Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency Besides their energy security and environmental benefits,...

  20. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Broader source: Energy.gov (indexed) [DOE]

    Confidential, 4222013 2013 DOE VEHICLE TECHNOLOGIES PROGRAM REVIEW PRESENTATION Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification...

  1. Navistar eStar Vehicle Performance Evalution - 2nd Quarter 2013; Energy Efficiency & Renewable Energy (EERE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2013-10-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Navistar will build and deploy all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country. This report covers the second quarter of 2013.

  2. Richmond Electric Vehicle Initiative Electric Vehicle Readiness...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Richmond Electric Vehicle Initiative Electric Vehicle Readiness Plan Richmond Electric Vehicle Initiative Electric Vehicle Readiness Plan The REVi plan addresses the electric...

  3. European Lean Gasoline Direct Injection Vehicle Benchmark

    SciTech Connect (OSTI)

    Chambon, Paul H; Huff, Shean P; Edwards, Kevin Dean; Norman, Kevin M; Prikhodko, Vitaly Y; Thomas, John F

    2011-01-01

    Lean Gasoline Direct Injection (LGDI) combustion is a promising technical path for achieving significant improvements in fuel efficiency while meeting future emissions requirements. Though Stoichiometric Gasoline Direct Injection (SGDI) technology is commercially available in a few vehicles on the American market, LGDI vehicles are not, but can be found in Europe. Oak Ridge National Laboratory (ORNL) obtained a European BMW 1-series fitted with a 2.0l LGDI engine. The vehicle was instrumented and commissioned on a chassis dynamometer. The engine and after-treatment performance and emissions were characterized over US drive cycles (Federal Test Procedure (FTP), the Highway Fuel Economy Test (HFET), and US06 Supplemental Federal Test Procedure (US06)) and steady state mappings. The vehicle micro hybrid features (engine stop-start and intelligent alternator) were benchmarked as well during the course of that study. The data was analyzed to quantify the benefits and drawbacks of the lean gasoline direct injection and micro hybrid technologies from a fuel economy and emissions perspectives with respect to the US market. Additionally that data will be formatted to develop, substantiate, and exercise vehicle simulations with conventional and advanced powertrains.

  4. Hydrogen and Fuel Cell Vehicle Evaluation Richard Parish, Leslie Eudy, and Ken Proc

    E-Print Network [OSTI]

    Energy Laboratory (NREL) Fleet Test & Evaluation (FT&E) team in Golden, Colorado, is dedicated to evaluating and documenting the performance and operational characteristics of advanced vehicle technologies, and NREL was unable to characterize its performance. A new prototype fuel cell bus from ISE Research

  5. Advanced Vehicle Testing and Evaluation

    SciTech Connect (OSTI)

    Garetson, Thomas

    2013-03-31

    The objective of the United States (U.S.) Department of Energy?s (DOEs) Advanced Vehicle Testing and Evaluation (AVTE) project was to provide test and evaluation services for advanced technology vehicles, to establish a performance baseline, to determine vehicle reliability, and to evaluate vehicle operating costs in fleet operations. Vehicles tested include light and medium-duty vehicles in conventional, hybrid, and all-electric configurations using conventional and alternative fuels, including hydrogen in internal combustion engines. Vehicles were tested on closed tracks and chassis dynamometers, as well as operated on public roads, in fleet operations, and over prescribed routes. All testing was controlled by procedures developed specifically to support such testing. Testing and evaluations were conducted in the following phases: ? Development of test procedures, which established testing procedures; ? Baseline performance testing, which established a performance baseline; ? Accelerated reliability testing, which determined vehicle reliability; ? Fleet testing, used to evaluate vehicle economics in fleet operation, and ? End of test performance evaluation. Test results are reported by two means and posted by Idaho National Laboratory (INL) to their website: quarterly progress reports, used to document work in progress; and final test reports. This final report documents work conducted for the entirety of the contract by the Clarity Group, Inc., doing business as ECOtality North America (ECOtality). The contract was performed from 1 October 2005 through 31 March 2013. There were 113 light-duty on-road (95), off-road (3) and low speed (15) vehicles tested.

  6. Performance characterization and optimization of a diverging cusped field thruster with a calibrated counter-weighted millinewton thrust stand

    E-Print Network [OSTI]

    Daspit, Ryan M

    2012-01-01

    The previously developed Diverging Cusped Field Thruster (DCFT) has undergone further investigations and performance characterization. The DCFT is a magnetically conned plasma thruster that uses cusped magnetic fields to ...

  7. The integration of seismic anisotropy and reservoir performance data for characterization of naturally fractured reservoirs using discrete feature network models 

    E-Print Network [OSTI]

    Will, Robert A.

    2004-09-30

    This dissertation presents the development of a method for quantitative integration of seismic (elastic) anisotropy attributes with reservoir performance data as an aid in characterization of systems of natural fractures ...

  8. Workload Characterization and Performance Implications of Large-Scale Blog Servers

    SciTech Connect (OSTI)

    Jeon, Myeongjae [Rice University; Kim, Youngjae [ORNL; Hwang, Jaeho [KAIST, Daejeon, Republic of Korea; Lee, Joonwon [SungKyunKwan University, Korea; Seo, Euiseong [SungKyunKwan University, Korea

    2012-01-01

    With the ever-increasing popularity of social network services (SNSs), an understanding of the characteristics of these services and their effects on the behavior of their host servers is critical. However, there has been a lack of research on the workload characterization of servers running SNS applications such as blog services. To fill this void, we empirically characterized real-world web server logs collected from one of the largest South Korean blog hosting sites for 12 consecutive days. The logs consist of more than 96 million HTTP requests and 4.7 TB of network traffic. Our analysis reveals the followings: (i) The transfer size of non-multimedia files and blog articles can be modeled using a truncated Pareto distribution and a log-normal distribution, respectively; (ii) User access for blog articles does not show temporal locality, but is strongly biased towards those posted with image or audio files. We additionally discuss the potential performance improvement through clustering of small files on a blog page into contiguous disk blocks, which benefits from the observed file access patterns. Trace-driven simulations show that, on average, the suggested approach achieves 60.6% better system throughput and reduces the processing time for file access by 30.8% compared to the best performance of the Ext4 file system.

  9. Performance Characterization and Remedy of Experimental CuInGaSe2 Mini-Modules: Preprint

    SciTech Connect (OSTI)

    Pern, F. J.; Yan, F.; Mansfield, L.; Glynn, S.; Rekow, M.; Murion, R.

    2011-07-01

    We employed current-voltage (I-V), quantum efficiency (QE), photoluminescence (PL), electroluminescence (EL), lock-in thermography (LIT), and (electrochemical) impedance spectroscopy (ECIS) to complementarily characterize the performance and remedy for two pairs of experimental CuInGaSe2 (CIGS) mini-modules. One pair had the three scribe-lines (P1/P2/P3) done by a single pulse-programmable laser, and the other had the P2/P3 lines by mechanical scribe. Localized QE measurements for each cell strip on all four mini-modules showed non-uniform distributions that correlated well with the presence of performance-degrading strips or spots revealed by PL, EL, and LIT imaging. Performance of the all-laser-scribed mini-modules improved significantly by adding a thicker Al-doped ZnO layer and reworking the P3 line. The efficiency on one of the all-laser-scribed mini-modules increased notably from 7.80% to 8.56% after the performance-degrading spots on the side regions along the cell array were isolated by manual scribes.

  10. Rapid road repair vehicle

    DOE Patents [OSTI]

    Mara, Leo M. (Livermore, CA)

    1999-01-01

    Disclosed are improvments to a rapid road repair vehicle comprising an improved cleaning device arrangement, two dispensing arrays for filling defects more rapidly and efficiently, an array of pre-heaters to heat the road way surface in order to help the repair material better bond to the repaired surface, a means for detecting, measuring, and computing the number, location and volume of each of the detected surface imperfection, and a computer means schema for controlling the operation of the plurality of vehicle subsystems. The improved vehicle is, therefore, better able to perform its intended function of filling surface imperfections while moving over those surfaces at near normal traffic speeds.

  11. Electric Vehicle Transportation Center

    E-Print Network [OSTI]

    ) power grid has been developed, which includes EV charging stations and integrated photovoltaic (PV vehicles (EVs) into power grids characterized by high penetration of intermittent renewable energy. HNEI and practices. To examine the effects of EVs on electric power systems and their operation, a Hawai

  12. Performance Demonstration Program Plan for Nondestructive Assay of Boxed Wastes for the TRU Waste Characterization Program

    SciTech Connect (OSTI)

    Carlsbad Field Office

    2001-01-31

    The Performance Demonstration Program (PDP) for nondestructive assay (NDA) consists of a series of tests to evaluate the capability for NDA of transuranic (TRU) waste throughout the Department of Energy (DOE) complex. Each test is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements obtained from NDA systems used to characterize the radiological constituents of TRU waste. The primary documents governing the conduct of the PDP are the Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC; DOE 1999a) and the Quality Assurance Program Document (QAPD; DOE 1999b). The WAC requires participation in the PDP; the PDP must comply with the QAPD and the WAC. The WAC contains technical and quality requirements for acceptable NDA. This plan implements the general requirements of the QAPD and applicable requirements of the WAC for the NDA PDP for boxed waste assay systems. Measurement facilities demonstrate acceptable performance by the successful testing of simulated waste containers according to the criteria set by this PDP Plan. Comparison among DOE measurement groups and commercial assay services is achieved by comparing the results of measurements on similar simulated waste containers reported by the different measurement facilities. These tests are used as an independent means to assess the performance of measurement groups regarding compliance with established quality assurance objectives (QAO’s). Measurement facilities must analyze the simulated waste containers using the same procedures used for normal waste characterization activities. For the boxed waste PDP, a simulated waste container consists of a modified standard waste box (SWB) emplaced with radioactive standards and fabricated matrix inserts. An SWB is a waste box with ends designed specifically to fit the TRUPACT-II shipping container. SWB’s will be used to package a substantial volume of the TRU waste for disposal. These PDP sample components are distributed to the participating measurement facilities that have been designated and authorized by the Carlsbad Field Office (CBFO). The NDA Box PDP materials are stored at these sites under secure conditions to protect them from loss, tampering, or accidental damage. Using removable PDP radioactive standards, isotopic activities in the simulated waste containers are varied to the extent possible over the range of concentrations anticipated in actual waste characterization situations. Manufactured matrices simulate expected waste matrix configurations and provide acceptable consistency in the sample preparation process at each measurement facility. Analyses that are required by the Waste Isolation Pilot Plant (WIPP) to demonstrate compliance with various regulatory requirements and that are included in the PDP may only be performed by measurement facilities that demonstrate acceptable performance in the PDP. These analyses are referred to as WIPP analyses, and the wastes on which they are performed are referred to as WIPP wastes in this document.

  13. Vehicle Technologies Office: 2009 Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Thermal Performance and Reliability of Bonded Interfaces Vehicle Technologies Office Merit Review 2014: Performance and Reliability of Bonded...

  14. Thermal Performance and Reliability Characterization of Bonded Interface Materials (BIMs): Preprint

    SciTech Connect (OSTI)

    DeVoto, D.; Paret, P.; Mihalic, M.; Narumanchi, S.; Bar-Cohen, A.; Matin, K.

    2014-08-01

    Thermal interface materials are an important enabler for low thermal resistance and reliable electronics packaging for a wide array of applications. There is a trend towards bonded interface materials (BIMs) because of their potential for low thermal resistivity (< 1 mm2K/W). However, BIMs induce thermomechanical stresses in the package and can be prone to failures and integrity risks. Deteriorated interfaces can result in high thermal resistance in the package and degradation and/or failure of the electronics. DARPA's Thermal Management Technologies program has addressed this challenge, supporting the development of mechanically-compliant, low resistivity nano-thermal interface (NTI) materials. In this work, we describe the testing procedure and report the results of NREL's thermal performance and reliability characterization of an initial sample of four different NTI-BIMs.

  15. Walker Branch Throughfall Displacement Experiment Data Report: Site Characterization, System Performance, Weather, Species Composition, and Growth

    SciTech Connect (OSTI)

    Hanson, P.J.

    2001-09-04

    This numeric data package provides data sets, and accompanying documentation, on site characterization, system performance, weather, species composition, and growth for the Throughfall Displacement Experiment, which was established in the Walker Branch Watershed of East Tennessee to provide data on the responses of forests to altered precipitation regimes. The specific data sets include soil water content and potential, coarse fraction of the soil profile, litter layer temperature, soil temperature, monthly weather, daily weather, hourly weather, species composition of trees and saplings, mature tree and sapling annual growth, and relative leaf area index. Fortran and SAS{trademark} access codes are provided to read the ASCII data files. The data files and this documentation are available without charge on a variety of media and via the Internet from the Carbon Dioxide Information Analysis Center (CDIAC).

  16. Used Nuclear Fuel Loading and Structural Performance Under Normal Conditions of Transport- Demonstration of Approach and Results on Used Fuel Performance Characterization

    SciTech Connect (OSTI)

    Adkins, Harold; Geelhood, Ken; Koeppel, Brian; Coleman, Justin; Bignell, John; Flores, Gregg; Wang, Jy-An; Sanborn, Scott; Spears, Robert; Klymyshyn, Nick

    2013-09-30

    This document addresses Oak Ridge National Laboratory milestone M2FT-13OR0822015 Demonstration of Approach and Results on Used Nuclear Fuel Performance Characterization. This report provides results of the initial demonstration of the modeling capability developed to perform preliminary deterministic evaluations of moderate-to-high burnup used nuclear fuel (UNF) mechanical performance under normal conditions of storage (NCS) and normal conditions of transport (NCT) conditions. This report also provides results from the sensitivity studies that have been performed. Finally, discussion on the long-term goals and objectives of this initiative are provided.

  17. Onboard Hydrogen/Helium Sensors in Support of the Global Technical Regulation: An Assessment of Performance in Fuel Cell Electric Vehicle Crash Tests

    SciTech Connect (OSTI)

    Post, M. B.; Burgess, R.; Rivkin, C.; Buttner, W.; O'Malley, K.; Ruiz, A.

    2012-09-01

    Automobile manufacturers in North America, Europe, and Asia project a 2015 release of commercial hydrogen fuel cell powered light-duty road vehicles. These vehicles will be for general consumer applications, albeit initially in select markets but with much broader market penetration expected by 2025. To assure international harmony, North American, European, and Asian regulatory representatives are striving to base respective national regulations on an international safety standard, the Global Technical Regulation (GTR), Hydrogen Fueled Vehicle, which is part of an international agreement pertaining to wheeled vehicles and equipment for wheeled vehicles.

  18. Vehicle Technologies Office: Integration, Validation and Testing Tools and Procedures

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office supports work to integrate multiple fuel-efficient technologies into a vehicle through hardware-in-the-loop systems. It also supports the development and use of test procedures to measure real-world vehicle performance.

  19. Electric Vehicles

    ScienceCinema (OSTI)

    Ozpineci, Burak

    2014-07-23

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  20. Electric Vehicles

    SciTech Connect (OSTI)

    Ozpineci, Burak

    2014-05-02

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  1. Global Assessment of Hydrogen Technologies - Task 2 Report Comparison of Performance and Emissions from Near-Term Hydrogen Fueled Light Duty Vehicles

    SciTech Connect (OSTI)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Ng, Henry K.; Waller, Thomas

    2007-12-01

    An investigation was conducted on the emissions and efficiency from hydrogen blended compressed natural gas (CNG) in light duty vehicles. The different blends used in this investigation were 0%, 15%, 30%, 50%, 80%, 95%, and ~100% hydrogen, the remainder being compressed natural gas. The blends were tested using a Ford F-150 and a Chevrolet Silverado truck supplied by Arizona Public Services. Tests on emissions were performed using four different driving condition tests. Previous investigation by Don Karner and James Frankfort on a similar Ford F-150 using a 30% hydrogen blend showed that there was substantial reduction when compared to gasoline in carbon monoxide (CO), nitrogen oxide (NOx), and carbon dioxide (CO2) emissions while the reduction in hydrocarbon (HC) emissions was minimal. This investigation was performed using different blends of CNG and hydrogen to evaluate the emissions reducing capabilities associated with the use of the different fuel blends. The results were then tested statistically to confirm or reject the hypotheses on the emission reduction capabilities. Statistically analysis was performed on the test results to determine whether hydrogen concentration in the HCNG had any effect on the emissions and the fuel efficiency. It was found that emissions from hydrogen blended compressed natural gas were a function of driving condition employed. Emissions were found to be dependent on the concentration of hydrogen in the compressed natural gas fuel blend.

  2. PERFORMANCE OF THE SAVANNAH RIVER SITE COULOMETER FOR NEPTUNIUM PROCESSACCOUNTABILITY AND NEPTUNIUM OXIDE PRODUCT CHARACTERIZATION

    SciTech Connect (OSTI)

    Holland, M; Patterson Nuessle, P; Sheldon Nichols, S; Joe Cordaro, J; George Reeves, G

    2008-06-04

    The Savannah River Site's (SRS) H-Area B-Line (HB-Line) nuclear facility is processing neptunium solutions for stabilization as an oxide. The oxide will eventually be reprocessed and fabricated into target material and the 237Np irradiated to produce {sup 238}Pu in support of National Aeronautics and Space Administration space program missions. As part of nuclear materials accountability, solution concentrations were measured using a high-precision controlled-potential coulometer developed and manufactured at the SRS for plutonium accountability measurements. The Savannah River Site Coulometer system and measurement methodology for plutonium meets performance standards in ISO 12183-2005, 'Controlled-Potential Coulometric Assay of Plutonium'. The Department of Energy (DOE) does not produce or supply a neptunium metal certified reference material, which makes qualifying a measurement method and determining accuracy and precision difficult. Testing and performance of the Savannah River Site Coulometer indicates that it can be used to measure neptunium process solutions and dissolved neptunium oxide without purification for material control and accountability purposes. Savannah River Site's Material Control and Accountability organization has accepted the method uncertainty for accountability and product characterization measurements.

  3. Hybrid vehicle control

    DOE Patents [OSTI]

    Shallvari, Iva; Velnati, Sashidhar; DeGroot, Kenneth P.

    2015-07-28

    A method and apparatus for heating a catalytic converter's catalyst to an efficient operating temperature in a hybrid electric vehicle when the vehicle is in a charge limited mode such as e.g., the charge depleting mode or when the vehicle's high voltage battery is otherwise charge limited. The method and apparatus determine whether a high voltage battery of the vehicle is incapable of accepting a first amount of charge associated with a first procedure to warm-up the catalyst. If it is determined that the high voltage battery is incapable of accepting the first amount of charge, a second procedure with an acceptable amount of charge is performed to warm-up the catalyst.

  4. Lightweight materials in the light-duty passenger vehicle market: Their market penetration potential and impacts

    SciTech Connect (OSTI)

    Stodolsky, F. [Argonne National Lab., IL (United States). Center for Transportation Research]|[Argonne National Lab., Washington, DC (United States); Vyas, A.; Cuenca, R. [Argonne National Lab., IL (United States). Center for Transportation Research

    1995-06-01

    This paper summarizes the results of a lightweight materials study. Various lightweight materials are examined and the most cost effective are selected for further analysis. Aluminum and high-performance polymer matrix composites (PMCS) are found to have the highest potential for reducing the weight of automobiles and passenger-oriented light trucks. Weight reduction potential for aluminum and carbon fiber-based PMCs are computed based on a set of component-specific replacement criteria (such as stiffness and strength), and the consequent incremental cost scenarios are developed. The authors assume that a materials R and D program successfully reduces the cost of manufacturing aluminum and carbon fiber PMC-intensive vehicles. A vehicle choice model is used to project market shares for the lightweight vehicles. A vehicle survival and age-related usage model is employed to compute energy consumption over time for the vehicle stock. After a review of projected costs, the following two sets of vehicles are characterized to compete with the conventional materials vehicles: (1) aluminum vehicles with limited replacement providing 19% weight reduction (AIV-Mid), and (2) aluminum vehicles with the maximum replacement providing 31% weight reduction (AIV-Max). Assuming mass-market introduction in 2005, the authors project a national petroleum energy savings of 3% for AIV-Mid and 5% for AIV-Max in 2030.

  5. Vehicle Technologies Office Merit Review 2014: Vehicle & Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Merit Review 2014: Vehicle & Systems Simulation & Testing Vehicle Technologies Office Merit Review 2014: Vehicle & Systems Simulation & Testing...

  6. In-service performance and behavior characterization of the hybrid composite bridge system - a case study

    E-Print Network [OSTI]

    John M. Civitillo; Devin K. Harris; Amir Gheitasi; Mark Saliba; Bernard L. Kassner

    2014-09-08

    The Hybrid Composite Beam (HCB) system is an innovative structural technology that has been recently used in bridge construction within the U.S. transportation network. In this system, the superstructure consists of a conventional reinforced concrete deck supported by Hybrid Composite Beams. Each beam is comprised of a glassfiber reinforced polymer (FRP) box shell containing a tied parabolic concrete arch. Inclined stirrups provide shear integrity and enforce composite action between the HCBs and the concrete deck. This paper focuses on evaluating the in-service performance of a newly constructed HCB bridge superstructure located on Route 205 in Colonial Beach, Virginia. A live load test was conducted using tandem axle dump trucks under both quasi-static and dynamic conditions. Results obtained from the experimental investigation were used to determine three key behavior characteristics. Dynamic amplification and lateral load distribution were found to be reasonable in comparison to the assumed design values. The testing program also included internal and external measurement systems to help characterize the load sharing behavior of the HCB on an element level. The main load carrying elements are the deck in compression and the steel ties in tension, and the FRP shell did not act compositely with the internal components.

  7. Design, Construction and Performance of a Buck-Boost Converter for an Ultracapacitor-Based Auxiliary Energy System for Electric Vehicles

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    energy systems (gas turbines, fuel cells, etc) with lower power ratings, similar to the mean power a serial connection of a generic hybrid vehicle, often used in vehicles running on fuel cells or Zinc energy density of gas or hydrogen and high efficiency of electric drive systems [1]. Still, gas

  8. Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Jeffrey R. Belt

    2010-12-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

  9. Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Jeffrey R. Belt

    2010-09-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

  10. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1997-02-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  11. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (Oak Ridge, TN)

    1997-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  12. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1998-08-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendible appendages, each of which is radially extendible relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendible members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  13. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (Oak Ridge, TN)

    1998-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  14. Visualization of Fuel Cell Water Transport and Performance Characterization under Freezing Conditions

    SciTech Connect (OSTI)

    Kandlikar, S.G.; Lu, Z.; Rao, N.; Sergi, J.; Rath, C.; Dade, C.; Trabold, T.; Owejan, J.; Gagliardo, J.; Allen, J.; Yassar, R.S.; Medici, E.; Herescu, A.

    2010-05-30

    In this program, Rochester Institute of Technology (RIT), General Motors (GM) and Michigan Technological University (MTU) have focused on fundamental studies that address water transport, accumulation and mitigation processes in the gas diffusion layer and flow field channels of the bipolar plate. These studies have been conducted with a particular emphasis on understanding the key transport phenomena which control fuel cell operation under freezing conditions. Technical accomplishments are listed below: • Demonstrated that shutdown air purge is controlled predominantly by the water carrying capacity of the purge stream and the most practical means of reducing the purge time and energy is to reduce the volume of liquid water present in the fuel cell at shutdown. The GDL thermal conductivity has been identified as an important parameter to dictate water accumulation within a GDL. • Found that under the normal shutdown conditions most of the GDL-level water accumulation occurs on the anode side and that the mass transport resistance of the membrane electrode assembly (MEA) thus plays a critically important role in understanding and optimizing purge. • Identified two-phase flow patterns (slug, film and mist flow) in flow field channel, established the features of each pattern, and created a flow pattern map to characterize the two-phase flow in GDL/channel combination. • Implemented changes to the baseline channel surface energy and GDL materials and evaluated their performance with the ex situ multi-channel experiments. It was found that the hydrophilic channel (contact angle ? ? 10?) facilitates the removal of liquid water by capillary effects and by reducing water accumulation at the channel exit. It was also found that GDL without MPL promotes film flow and shifts the slug-to-film flow transition to lower air flow rates, compared with the case of GDL with MPL. • Identified a new mechanism of water transport through GDLs based on Haines jump mechanism. The breakdown and redevelopment of the water paths in GDLs lead to an intermittent water drainage behavior, which is characterized by dynamic capillary pressure and changing of breakthrough location. MPL was found to not only limit the number of water entry locations into the GDL (thus drastically reducing water saturation), but also stabilizes the water paths (or morphology). • Simultaneously visualized the water transport on cathode and anode channels of an operating fuel cell. It was found that under relatively dry hydrogen/air conditions at lower temperatures, the cathode channels display a similar flow pattern map to the ex-situ experiments under similar conditions. Liquid water on the anode side is more likely formed via condensation of water vapor which is transported through the anode GDL. • Investigated the water percolation through the GDL with pseudo-Hele-Shaw experiments and simulated the capillary-driven two-phase flow inside gas diffusion media, with the pore size distributions being modeled by using Weibull distribution functions. The effect of the inclusion of the microporous layer in the fuel cell assembly was explored numerically. • Developed and validated a simple, reliable computational tool for predicting liquid water transport in GDLs. • Developed a new method of determining the pore size distribution in GDL using scanning electron microscope (SEM) image processing, which allows for separate characterization of GDL wetting properties and pore size distribution. • Determined the effect of surface wettability and channel cross section and bend dihedral on liquid holdup in fuel cell flow channels. A major thrust of this research program has been the development of an optimal combination of materials, design features and cell operating conditions that achieve a water management strategy which facilitates fuel cell operation under freezing conditions. Based on our various findings, we have made the final recommendation relative to GDL materials, bipolar design and surface properties, and the combination of materials, design featur

  15. Vehicle Technologies Office- AVTA: Hybrid-Electric Tractor Vehicles

    Broader source: Energy.gov [DOE]

    The following set of reports describes performance data collected from hybrid-electric heavy-duty tractor vehicles in the Coca-Cola fleet. This research was conducted by the National Renewable Energy Laboratory (NREL).

  16. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    how E85 affects vehicle performance, the costs and benefits of using E85, and how to find E85 station locations. 47505.pdf More Documents & Publications Fuel Economy and Emmissions...

  17. Motion Planning for Unmanned Aerial Vehicles with Resource Constraints 

    E-Print Network [OSTI]

    Sundar, Kaarthik

    2012-10-19

    Small Unmanned Aerial Vehicles (UAVs) are currently used in several surveillance applications to monitor a set of targets and collect relevant data. One of the main constraints that characterize a small UAV is the maximum amount of fuel the vehicle...

  18. Synthesis, characterization and electrochemical performance of Al-substituted Li?MnO?

    SciTech Connect (OSTI)

    Dhital, Chetan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Huq, Ashfia [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Paranthaman, Mariappan Parans [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Manivannan, Ayyakkannu [National Energy Technology Lab. (NETL), Morgantown, WV (United States); West Virginia Univ., Morgantown, WV (United States); Torres-Castro, Loraine [Univ. of Puerto Rico, San Juan (Puerto Rico); Shojan, Jifi [Univ. of Puerto Rico, San Juan (Puerto Rico); Julien, Christian M. [Univ. Pierre et Marie Curie, Paris (France); Katiyar, Ram S. [Univ. of Puerto Rico, San Juan (Puerto Rico)

    2015-01-01

    Li?MnO? is known to be electrochemically inactive due to Mn in tetravalent oxidation state. Several compositions such as Li?MnO?, Li1.5Al0.17MnO?, Li1.0Al0.33MnO? and Li0.5Al0.5MnO? were synthesized by a sol-gel Pechini method. All the samples were characterized with XRD, Raman, XPS, SEM, Tap density and BET analyzer. XRD patterns indicated the presence of monoclinic phase for pristine Li?MnO? and mixed monoclinic/spinel phases (Li2-xMn1-yAlx+yO3+z) for Al-substituted Li?MnO? compounds. The Al substitution seems to occur both at Li and Mn sites, which could explain the presence of spinel phase. XPS analysis for Mn 2p orbital reveal a significant decrease in binding energy for Li1.0Al0.33MnO? and Li0.5Al0.5MnO? compounds. Cyclic voltammetry, charge/discharge cycles and electrochemical impedance spectroscopy were also performed. A discharge capacity of 24 mAh g?¹ for Li?MnO?, 68mAh g?¹ for Li1.5Al0.17MnO?, 58 mAh g?¹ for Li1.0Al0.33MnO? and 74 mAh g?¹ for Li0.5Al0.5MnO? were obtained. Aluminum substitutions increased the discharge capacity and the spinel phase.

  19. Synthesis, characterization and electrochemical performance of Al-substituted Li?MnO?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dhital, Chetan; Huq, Ashfia; Paranthaman, Mariappan Parans; Manivannan, Ayyakkannu; Torres-Castro, Loraine; Shojan, Jifi; Julien, Christian M.; Katiyar, Ram S.

    2015-08-08

    Li2MnO3 is known to be electrochemically inactive due to Mn in tetravalent oxidation state. Several compositions such as Li2MnO3 , Li1.5Al0.17MnO3, Li1.0Al0.33MnO3 and Li0.5Al0.5MnO3 were synthesized by a sol–gel Pechini method. All the samples were characterized with x-ray diffraction, Raman, x-ray photoelectron spectroscopy, scanning electron microscopy, Tap density and BET analyzer. X-ray diffraction patterns indicated the presence of monoclinic phase for pristine Li2MnO3and mixed monoclinic/spinel phases (Li2 - xMn1 - yAlx + yO3 + z) for Al-substituted Li2MnO3compounds. The Al substitution seems to occur both at Li and Mn sites, which could explain the presence of spinel phase. X-ray photoelectronmore »spectroscopy for Mn 2p orbital reveals a significant decrease in binding energy for Li1.0Al0.33MnO3 and Li0.5Al0.5MnO3 compounds. Cyclic voltammetry, charge/discharge cycles and electrochemical impedance spectroscopy were also performed. A discharge capacity of 24 mAh g-1 for Li2MnO3, 68 mAh g-1 for Li1.5Al0.17MnO3, 58 mAh g-1 for Li1.0Al0.33MnO3 and 74 mAh g-1 for Li0.5Al0.5MnO3 were obtained. Aluminum substitutions increased the formation of spinel phase which is responsible for cycling.« less

  20. Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Heffner, Reid R.; Kurani, Ken; Turrentine, Tom

    2005-01-01

    of Vehicle Image in Gasoline-Hybrid Electric Vehicles Reidof Vehicle Image in Gasoline-Hybrid Electric Vehicles Reidhigh demand for gasoline-hybrid electric vehicles (HEVs)?

  1. Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tractor Vehicles Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a...

  2. BEEST: Electric Vehicle Batteries

    SciTech Connect (OSTI)

    2010-07-01

    BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

  3. Characterizing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits &BradburyMay 1,CenterJohnCeremonySynchrotronCharacterization

  4. Autonomous vehicles

    SciTech Connect (OSTI)

    Meyrowitz, A.L.; Blidberg, D.R.; Michelson, R.C.

    1996-08-01

    There are various kinds of autonomous vehicles (AV`s) which can operate with varying levels of autonomy. This paper is concerned with underwater, ground, and aerial vehicles operating in a fully autonomous (nonteleoperated) mode. Further, this paper deals with AV`s as a special kind of device, rather than full-scale manned vehicles operating unmanned. The distinction is one in which the AV is likely to be designed for autonomous operation rather than being adapted for it as would be the case for manned vehicles. The authors provide a survey of the technological progress that has been made in AV`s, the current research issues and approaches that are continuing that progress, and the applications which motivate this work. It should be noted that issues of control are pervasive regardless of the kind of AV being considered, but that there are special considerations in the design and operation of AV`s depending on whether the focus is on vehicles underwater, on the ground, or in the air. The authors have separated the discussion into sections treating each of these categories.

  5. Ultracapacitors and Batteries in Hybrid Vehicles

    SciTech Connect (OSTI)

    Pesaran, A.; Markel, T.; Zolot, M.; Sprik, S.

    2005-08-01

    Using an ultracapacitor in conjunction with a battery in a hybrid vehicle combines the power performance of the former with the greater energy storage capability of the latter.

  6. Advanced vehicle technology analysis and evaluation activities

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    FY 2007 annual progress report evaluating the technologies and performance characteristics of advanced automotive powertrain components and subsystems in an integrated vehicle systems context.

  7. Vehicle Technologies Office: Power Electronics | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Office (VTO) is supporting research to lower the cost and improve the performance of power electronics. Vehicle power electronics primarily process and control the flow of...

  8. Performance Characterization, Image Processing, and Multimodality Coregistration of Small Animal Positron Emission Tomography Systems

    E-Print Network [OSTI]

    Daver, Freddie

    2012-01-01

    2003. [7] G. F. Knoll, Radiation Detection and Measurement,isotropic nature of radiation, detection must be performed

  9. Emission control cost-effectiveness of alternative-fuel vehicles

    SciTech Connect (OSTI)

    Wang, Q.; Sperling, D.; Olmstead, J.

    1993-06-14

    Although various legislation and regulations have been adopted to promote the use of alternative-fuel vehicles for curbing urban air pollution problems, there is a lack of systematic comparisons of emission control cost-effectiveness among various alternative-fuel vehicle types. In this paper, life-cycle emission reductions and life-cycle costs were estimated for passenger cars fueled with methanol, ethanol, liquefied petroleum gas, compressed natural gas, and electricity. Vehicle emission estimates included both exhaust and evaporative emissions for air pollutants of hydrocarbon, carbon monoxide, nitrogen oxides, and air-toxic pollutants of benzene, formaldehyde, 1,3-butadiene, and acetaldehyde. Vehicle life-cycle cost estimates accounted for vehicle purchase prices, vehicle life, fuel costs, and vehicle maintenance costs. Emission control cost-effectiveness presented in dollars per ton of emission reduction was calculated for each alternative-fuel vehicle types from the estimated vehicle life-cycle emission reductions and costs. Among various alternative-fuel vehicle types, compressed natural gas vehicles are the most cost-effective vehicle type in controlling vehicle emissions. Dedicated methanol vehicles are the next most cost-effective vehicle type. The cost-effectiveness of electric vehicles depends on improvements in electric vehicle battery technology. With low-cost, high-performance batteries, electric vehicles are more cost-effective than methanol, ethanol, and liquified petroleum gas vehicles.

  10. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1996-03-12

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 14 figs.

  11. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1994-03-15

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 11 figures.

  12. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (115 Newhaven Rd., Oak Ridge, TN 37830)

    1994-01-01

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  13. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (Oak Ridge, TN)

    1996-01-01

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  14. Vehicle Technologies Office: Advanced Vehicle Testing Activity...

    Energy Savers [EERE]

    (AVTA) Data and Results The Vehicle Technologies Office (VTO) supports work to develop test procedures and carry out testing on a wide range of advanced vehicles and technologies...

  15. Vehicle Technologies Office: AVTA - Electric Vehicle Community...

    Energy Savers [EERE]

    AVTA - Electric Vehicle Community and Fleet Readiness Data and Reports Making plug-in electric vehicles (PEVs, also known as electric cars) as affordable and convenient as...

  16. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Broader source: Energy.gov (indexed) [DOE]

    Peer Evaluation Meeting arravt072vssmackie2013o.pdf More Documents & Publications Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector...

  17. Vehicle Technologies Office: 2008 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Well-to-Wheels Analysis of Energy Use and...

  18. Vehicle Technologies Office: 2009 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report 2009avtaehvso.pdf More Documents &...

  19. Advances on multijunction solar cell characterization aimed at the optimization of real concentrator performance

    SciTech Connect (OSTI)

    Garcia-Linares, Pablo Dominguez, César Voarino, Philippe Besson, Pierre Baudrit, Mathieu

    2014-09-26

    Multijunction solar cells (MJSC) are usually developed to maximize efficiency under test conditions and not under real operation. This is the case of anti-reflective coatings (ARC), which are meant to minimize Fresnel reflection losses for a family of incident rays at room temperature. In order to understand and quantify the discrepancies between test and operation conditions, we have experimentally analyzed the spectral response of MJSC for a variety of incidence angles that are in practice received by a concentrator cell in high-concentration photovoltaic (HCPV) receiver designs. Moreover, we characterize this angular dependence as a function of temperature in order to reproduce real operation conditions. As the refractive index of the silicone is dependent on temperature, an optical mismatch is expected. Regarding other characterization techniques, a method called Relative EL Homogeneity Analysis (RELHA) is applied to processed wafers prior to dicing, allowing to diagnose the wafer crystalline homogeneity for each junction. Finally, current (I)-voltage (V) characterization under strongly unbalanced light spectra has also been carried out for a number of low-level irradiances, providing insight on each junction shunt resistance and corresponding radiative coupling.

  20. Electric vehicle climate control

    SciTech Connect (OSTI)

    Dauvergne, J.

    1994-04-01

    EVs have insufficient energy sources for a climatic comfort system. The heat rejection of the drivetrain is dispersed in the vehicle (electric motor, batteries, electronic unit for power control). Its level is generally low (no more than 2-kW peaks) and variable according to the trip profile, with no heat rejection at rest and a maximum during regenerative braking. Nevertheless, it must be used for heating. It is not realistic to have the A/C compressor driven by the electric traction motor: the motor does not operate when the vehicle is at rest, precisely when maximum cooling power is required. The same is true for hybrid vehicles during electric operation. It is necessary to develop solutions that use stored onboard energy either from the traction batteries or specific storage source. In either case, it is necessary to design the climate control system to use the energy efficiently to maximize range and save weight. Heat loss through passenger compartment seals and the walls of the passenger compartment must be limited. Plastic body panes help to reduce heat transfer, and heat gain is minimized with insulating glazing. This article describes technical solutions to solve the problem of passenger thermal comfort. However, the heating and A/C systems of electrically operated vehicles may have marginal performance at extreme outside temperatures.

  1. Modular Energy Storage System for Alternative Energy Vehicles

    SciTech Connect (OSTI)

    Janice Thomas; Frank Ervin

    2012-02-28

    An electrical vehicle environment was established to promote research and technology development in the area of high power energy management. The project incorporates a topology that permits parallel development of an alternative energy delivery system and an energy storage system. The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles â?? plugin electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. In order to meet the project objectives, the Vehicle Energy Management System (VEMS) was defined and subsystem requirements were obtained. Afterwards, power electronics, energy storage electronics and controls were designed. Finally, these subsystems were built, tested individually, and integrated into an electric vehicle system to evaluate and optimize the subsystemsâ?? performance. Phase 1 of the program established the fundamental test bed to support development of an electrical environment ideal for fuel cell application and the mitigation of many shortcomings of current fuel cell technology. Phase 2, continued development from Phase 1, focusing on implementing subsystem requirements, design and construction of the energy management subsystem, and the integration of this subsystem into the surrogate electric vehicle. Phase 2 also required the development of an Alternative Energy System (AES) capable of emulating electrical characteristics of fuel cells, battery, gen set, etc. Under the scope of the project, a boost converter that couples the alternate energy delivery system to the energy storage system was developed, constructed and tested. Modeling tools were utilized during the design process to optimize both component and system design. This model driven design process enabled an iterative process to track and evaluate the impact of design alternatives and the impact of changes. Refinement of models was accomplished through correlation studies to measured data obtained from functioning hardware. Specifically, correlation and characterization of the boost converter resulted in a model that was effectively used to determine overall VEMS performance. The successful development of the boost converter can be attributed to utilization of previously proven technologies and adapting to meet the VEMS requirements. This program provided significant improvement in development time of various generations of boost converters. The software strategies and testing results support the development of current energy management systems and directly contribute to the future of similar, commercial products at Magna E-Car Systems. Because of this development project, Magna E-Car Systems is able to offer automotive customers a boost converter system with reduced time to market and decreased product cost, thus transferring the cost and timing benefits to the end use consumer.

  2. A Performance Counter Based Workload Characterization on Blue Gene/P

    E-Print Network [OSTI]

    John, Lizy Kurian

    parallel benchmarks and collected the performance counter data. We studied the MFLOPS, L3-DDR Traffic of the petaflop machine. Blue Gene/P is also claimed to be very energy efficient as in [2] when compared to all

  3. Reservoir characterization, performance monitoring of waterflooding and development opportunities in Germania Spraberry Unit. 

    E-Print Network [OSTI]

    Hernandez Hernandez, Erwin Enrique

    2005-08-29

    of the reservoir under waterflooding, and controlled surveillance to improve field performance. This research should serve as a guide for future work in reservoir simulation and reservoir management and can be used to evaluate various scenarios for additional...

  4. DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Systems DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle Systems Merit review of DOE Vehicle Technologies Program research efforts 2009meritreview1.p...

  5. Vehicle Technologies Office Recognizes Leaders in Advanced Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Recognizes Leaders in Advanced Vehicle Research, Development and Deployment Vehicle Technologies Office Recognizes Leaders in Advanced Vehicle Research,...

  6. 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Vehicle Systems Simulation and Testing 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle Systems Simulation and Testing Vehicle systems research and development...

  7. Vehicle Technologies Office Merit Review 2014: Enhanced High...

    Energy Savers [EERE]

    Enhanced High and Low Temperature Performance of NOx Reduction Materials Vehicle Technologies Office Merit Review 2014: Enhanced High and Low Temperature Performance of NOx...

  8. Performance predictions for mechanical excavators in Yucca Mountain tuffs; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Ozdemir, L.; Gertsch, L.; Neil, D.; Friant, J.

    1992-09-01

    The performances of several mechanical excavators are predicted for use in the tuffs at Yucca Mountain: Tunnel boring machines, the Mobile Miner, a roadheader, a blind shaft borer, a vertical wheel shaft boring machine, raise drills, and V-Moles. Work summarized is comprised of three parts: Initial prediction using existing rock physical property information; Measurement of additional rock physical properties; and Revision of the initial predictions using the enhanced database. The performance predictions are based on theoretical and empirical relationships between rock properties and the forces-experienced by rock cutters and bits during excavation. Machine backup systems and excavation design aspects, such as curves and grades, are considered in determining excavator utilization factors. Instanteous penetration rate, advance rate, and cutter costs are the fundamental performance indicators.

  9. Part-Load Performance Characterization and Energy Savings Potential of the RTU Challenge Unit: Daikin Rebel

    SciTech Connect (OSTI)

    Wang, Weimin; Katipamula, Srinivas

    2013-09-30

    In 2011, the U.S. Department of Energy’s Building Technology Office (DOE’s BTO), with help from the Better Buildings Alliance (BBA) members, developed a specification for high performance rooftop air-conditioning units (RTU Challenge) with capacity ranges between 10 and 20 tons (DOE 2013). Daikin’s Rebel for the first rooftop unit system that was recognized by DOE in May 2012 as meeting the RTU Challenge specifications. This report documents the development of part-load performance curves and its use with EnergyPlus simulation tool to estimate the potential savings from use of Rebel compared to other standard options.

  10. Performance evaluation of the SGI Origin2000: A memory-centric characterization of LANL ASCI applications

    SciTech Connect (OSTI)

    Wasserman, H.; Lubeck, O.M.; Luo, Y.; Bassetti, F.

    1997-11-01

    In this paper the authors compare single processor performance of the SGI Origin and PowerChallenge and utilize a previously reported performance model for hierarchical memory systems to explain the results. Both the Origin and PowerChallenge use the same microprocessor (MIPS R10000) but have significant differences in their memory subsystems. Their memory model includes the effect of overlap between CPU and memory operations and allows them to infer the individual contributions of all three improvements in the Origin`s memory architecture and relate the effectiveness of each improvement to application characteristics.

  11. Dispersed metal cluster catalysts by design. Synthesis, characterization, structure, and performance

    SciTech Connect (OSTI)

    Arslan, Ilke; Dixon, David A.; Gates, Bruce C.; Katz, Alexander

    2015-09-30

    To understand the class of metal cluster catalysts better and to lay a foundation for the prediction of properties leading to improved catalysts, we have synthesized metal catalysts with well-defined structures and varied the cluster structures and compositions systematically—including the ligands bonded to the metals. These ligands include supports and bulky organics that are being tuned to control both the electron transfer to or from the metal and the accessibility of reactants to influence catalytic properties. We have developed novel syntheses to prepare these well-defined catalysts with atomic-scale control the environment by choice and placement of ligands and applied state-of-the art spectroscopic, microscopic, and computational methods to determine their structures, reactivities, and catalytic properties. The ligands range from nearly flat MgO surfaces to enveloping zeolites to bulky calixarenes to provide controlled coverages of the metal clusters, while also enforcing unprecedented degrees of coordinative unsaturation at the metal site—thereby facilitating bonding and catalysis events at exposed metal atoms. With this wide range of ligand properties and our arsenal of characterization tools, we worked to achieve a deep, fundamental understanding of how to synthesize robust supported and ligand-modified metal clusters with controlled catalytic properties, thereby bridging the gap between active site structure and function in unsupported and supported metal catalysts. We used methods of organometallic and inorganic chemistry combined with surface chemistry for the precise synthesis of metal clusters and nanoparticles, characterizing them at various stages of preparation and under various conditions (including catalytic reaction conditions) and determining their structures and reactivities and how their catalytic properties depend on their compositions and structures. Key characterization methods included IR, NMR, and EXAFS spectroscopies to identify ligands on the metals and their reactions; EXAFS spectroscopy and high-resolution STEM to determine cluster framework structures and changes resulting from reactant treatment and locations of metal atoms on support surfaces; X-ray diffraction crystallography to determine full structures of cluster-ligand combinations in the absence of a support, and TEM with tomographic methods to observe individual metal atoms and determine three-dimensional structures of catalysts. Electronic structure calculations were used to verify and interpret spectra and extend the understanding of reactivity beyond what is measurable experimentally.

  12. Characterization, performance and optimization of PVDF as a piezoelectric film for advanced space mirror concepts.

    SciTech Connect (OSTI)

    Jones, Gary D.; Assink, Roger Alan; Dargaville, Tim Richard; Chaplya, Pavel Mikhail; Clough, Roger Lee; Elliott, Julie M.; Martin, Jeffrey W.; Mowery, Daniel Michael; Celina, Mathew Christopher

    2005-11-01

    Piezoelectric polymers based on polyvinylidene fluoride (PVDF) are of interest for large aperture space-based telescopes as adaptive or smart materials. Dimensional adjustments of adaptive polymer films depend on controlled charge deposition. Predicting their long-term performance requires a detailed understanding of the piezoelectric material features, expected to suffer due to space environmental degradation. Hence, the degradation and performance of PVDF and its copolymers under various stress environments expected in low Earth orbit has been reviewed and investigated. Various experiments were conducted to expose these polymers to elevated temperature, vacuum UV, {gamma}-radiation and atomic oxygen. The resulting degradative processes were evaluated. The overall materials performance is governed by a combination of chemical and physical degradation processes. Molecular changes are primarily induced via radiative damage, and physical damage from temperature and atomic oxygen exposure is evident as depoling, loss of orientation and surface erosion. The effects of combined vacuum UV radiation and atomic oxygen resulted in expected surface erosion and pitting rates that determine the lifetime of thin films. Interestingly, the piezo responsiveness in the underlying bulk material remained largely unchanged. This study has delivered a comprehensive framework for material properties and degradation sensitivities with variations in individual polymer performances clearly apparent. The results provide guidance for material selection, qualification, optimization strategies, feedback for manufacturing and processing, or alternative materials. Further material qualification should be conducted via experiments under actual space conditions.

  13. Performance Characterization and Optimization of a Diverging Cusped Field Thruster with a

    E-Print Network [OSTI]

    thruster that uses cusped magnetic fields to confine electron flow and reduce losses to the walls. The magnetic confinement of the plasma away from the walls also reduces wall erosion to increase thruster by altering the magnetic field has also been performed. The DCFT has exhibited competitive thrust

  14. International Workshop on Characterization and PIE Needs for Fundamental Understanding of Fuels Performance and Safety

    SciTech Connect (OSTI)

    Not Listed

    2011-12-01

    The International Workshop on Characterization and PIE Needs to Support Science-Based Development of Innovative Fuels was held June 16-17, 2011, in Paris, France. The Organization for Economic Co-operation and Development (OECD), Nuclear Energy Agency (NEA) Working Party on the Fuel Cycle (WPFC) sponsored the workshop to identify gaps in global capabilities that need to be filled to meet projected needs in the 21st century. First and foremost, the workshop brought nine countries and associated international organizations, together in support of common needs for nuclear fuels and materials testing, characterization, PIE, and modeling capabilities. Finland, France, Germany, Republic of Korea, Russian Federation, Sweden, Switzerland, United Kingdom, United States of America, IAEA, and ITU (on behalf of European Union Joint Research Centers) discussed issues and opportunities for future technical advancements and collaborations. Second, the presentations provided a base level of understanding of current international capabilities. Three main categories were covered: (1) status of facilities and near term plans, (2) PIE needs from fuels engineering and material science perspectives, and (3) novel PIE techniques being developed to meet the needs. The International presentations provided valuable data consistent with the outcome of the National Workshop held in March 2011. Finally, the panel discussion on 21st century PIE capabilities, created a unified approach for future collaborations. In conclusion, (1) existing capabilities are not sufficient to meet the needs of a science-based approach, (2) safety issues and fuels behavior during abnormal conditions will receive more focus post-Fukushima; therefore we need to adopt our techniques to those issues, and (3) International collaboration is needed in the areas of codes and standards development for the new techniques.

  15. Vehicle barrier

    DOE Patents [OSTI]

    Hirsh, Robert A. (Bethel Park, PA)

    1991-01-01

    A vehicle security barrier which can be conveniently placed across a gate opening as well as readily removed from the gate opening to allow for easy passage. The security barrier includes a barrier gate in the form of a cable/gate member in combination with laterally attached pipe sections fixed by way of the cable to the gate member and lateral, security fixed vertical pipe posts. The security barrier of the present invention provides for the use of cable restraints across gate openings to provide necessary security while at the same time allowing for quick opening and closing of the gate areas without compromising security.

  16. Control of Multiple Robotic Sentry Vehicles

    SciTech Connect (OSTI)

    Feddema, J.; Klarer, P.; Lewis, C.

    1999-04-01

    As part of a project for the Defense Advanced Research Projects Agency, Sandia National Laboratories is developing and testing the feasibility of using of a cooperative team of robotic sentry vehicles to guard a perimeter and to perform surround and diversion tasks. This paper describes on-going activities in the development of these robotic sentry vehicles. To date, we have developed a robotic perimeter detection system which consists of eight ''Roving All Terrain Lunar Explorer Rover'' (RATLER{trademark}) vehicles, a laptop-based base-station, and several Miniature Intrusion Detection Sensors (MIDS). A radio frequency receiver on each of the RATLER vehicles alerts the sentry vehicles of alarms from the hidden MIDS. When an alarm is received, each vehicle decides whether it should investigate the alarm based on the proximity of itself and the other vehicles to the alarm. As one vehicle attends an alarm, the other vehicles adjust their position around the perimeter to better prepare for another alarm. We have also demonstrated the ability to drive multiple vehicles in formation via tele-operation or by waypoint GPS navigation. This is currently being extended to include mission planning capabilities. At the base-station, the operator can draw on an aerial map the goal regions to be surrounded and the repulsive regions to be avoided. A potential field path planner automatically generates a path from the vehicles' current position to the goal regions while avoiding the repulsive regions and the other vehicles. This path is previewed to the operator before the regions are downloaded to the vehicles. The same potential field path planner resides on the vehicle, except additional repulsive forces from on-board proximity sensors guide the vehicle away from unplanned obstacles.

  17. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice

    SciTech Connect (OSTI)

    Clean Cities

    2010-03-01

    Flexible fuel vehicles can operate on either gasoline or E85, a mixture of 85% ethanol and 15% gasoline. The fact sheet discusses the costs, benefits, and vehicle performance of using E85.

  18. Multiscale modeling and characterization for performance and safety of lithium-ion batteries

    SciTech Connect (OSTI)

    Pannala, Sreekanth; Turner, John A; Allu, Srikanth; Elwasif, Wael R; Kalnaus, Sergiy; Simunovic, Srdjan; Kumar, Abhishek; Billings, Jay Jay; Wang, Hsin; Nanda, Jagjit

    2015-01-01

    Lithium-ion batteries are highly complex electrochemical systems whose performance and safety are governed by coupled nonlinear electrochemical-electrical-thermal-mechanical processes over a range of spatiotemporal scales. In this paper we describe a new, open source computational framework for Lithium-ion battery simulations that is designed to support a variety of model types and formulations. This framework has been used to create three-dimensional cell and battery pack models that explicitly simulate all the battery components (current collectors, electrodes, and separator). The models are used to predict battery performance under normal operations and to study thermal and mechanical safety aspects under adverse conditions. The model development and validation are supported by experimental methods such as IR-imaging, X-ray tomography and micro-Raman mapping.

  19. Improved characterization of reservoir behavior by integration of reservoir performances data and rock type distributions

    SciTech Connect (OSTI)

    Davies, D.K.; Vessell, R.K.; Doublet, L.E.

    1997-08-01

    An integrated geological/petrophysical and reservoir engineering study was performed for a large, mature waterflood project (>250 wells, {approximately}80% water cut) at the North Robertson (Clear Fork) Unit, Gaines County, Texas. The primary goal of the study was to develop an integrated reservoir description for {open_quotes}targeted{close_quotes} (economic) 10-acre (4-hectare) infill drilling and future recovery operations in a low permeability, carbonate (dolomite) reservoir. Integration of the results from geological/petrophysical studies and reservoir performance analyses provide a rapid and effective method for developing a comprehensive reservoir description. This reservoir description can be used for reservoir flow simulation, performance prediction, infill targeting, waterflood management, and for optimizing well developments (patterns, completions, and stimulations). The following analyses were performed as part of this study: (1) Geological/petrophysical analyses: (core and well log data) - {open_quotes}Rock typing{close_quotes} based on qualitative and quantitative visualization of pore-scale features. Reservoir layering based on {open_quotes}rock typing {close_quotes} and hydraulic flow units. Development of a {open_quotes}core-log{close_quotes} model to estimate permeability using porosity and other properties derived from well logs. The core-log model is based on {open_quotes}rock types.{close_quotes} (2) Engineering analyses: (production and injection history, well tests) Material balance decline type curve analyses to estimate total reservoir volume, formation flow characteristics (flow capacity, skin factor, and fracture half-length), and indications of well/boundary interference. Estimated ultimate recovery analyses to yield movable oil (or injectable water) volumes, as well as indications of well and boundary interference.

  20. Performance specifications for technology development: Application for characterization of volatile organic compounds in the environment

    SciTech Connect (OSTI)

    Carpenter, S.E.; Doskey, P.V.; Erickson, M.D.; Lindahl, P.C.

    1994-07-01

    This report contains information about technology development for the monitoring and remediation of environmental pollution caused by the release of volatile organic compounds. Topics discussed include: performance specification processes, gas chromatography, mass spectrometer, fiber-optic chemical sensors, infrared spectroscopy, Raman spectroscopy, piezoelectric sensors and electrochemical sensors. These methods are analyzed for their cost efficiency, accuracy, and the ability to meet the needs of the customer.

  1. DOE Hydrogen Storage Technical Performance Targets for Light...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light-Duty Vehicles DOE Hydrogen Storage Technical Performance Targets for Light-Duty Vehicles This table summarizes technical performance targets for hydrogen storage systems...

  2. AEVITA : designing biomimetic vehicle-to-pedestrian communication protocols for autonomously operating & parking on-road electric vehicles

    E-Print Network [OSTI]

    Pennycooke, Nicholas (Nicholas D.)

    2012-01-01

    With research institutions from various private, government and academic sectors performing research into autonomous vehicle deployment strategies, the way we think about vehicles must adapt. But what happens when the ...

  3. Characterizing the In-Use Emissions Performance of Novel PM and NOx Control Technologies on Diesel Construction Equipment

    Broader source: Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  4. Method and apparatus for characterizing and enhancing the functional performance of machine tools

    DOE Patents [OSTI]

    Barkman, William E; Babelay, Jr., Edwin F; Smith, Kevin Scott; Assaid, Thomas S; McFarland, Justin T; Tursky, David A; Woody, Bethany; Adams, David

    2013-04-30

    Disclosed are various systems and methods for assessing and improving the capability of a machine tool. The disclosure applies to machine tools having at least one slide configured to move along a motion axis. Various patterns of dynamic excitation commands are employed to drive the one or more slides, typically involving repetitive short distance displacements. A quantification of a measurable merit of machine tool response to the one or more patterns of dynamic excitation commands is typically derived for the machine tool. Examples of measurable merits of machine tool performance include workpiece surface finish, and the ability to generate chips of the desired length.

  5. Method and apparatus for characterizing and enhancing the dynamic performance of machine tools

    DOE Patents [OSTI]

    Barkman, William E; Babelay, Jr., Edwin F

    2013-12-17

    Disclosed are various systems and methods for assessing and improving the capability of a machine tool. The disclosure applies to machine tools having at least one slide configured to move along a motion axis. Various patterns of dynamic excitation commands are employed to drive the one or more slides, typically involving repetitive short distance displacements. A quantification of a measurable merit of machine tool response to the one or more patterns of dynamic excitation commands is typically derived for the machine tool. Examples of measurable merits of machine tool performance include dynamic one axis positional accuracy of the machine tool, dynamic cross-axis stability of the machine tool, and dynamic multi-axis positional accuracy of the machine tool.

  6. Commercial Vehicle Safety Alliance Commercial Vehicle Safety...

    Office of Environmental Management (EM)

    Program Update: Ensuring Safe Transportation of Radioactive Material Carlisle Smith Director, Hazardous Materials Programs Commercial Vehicle Safety Alliance Email:...

  7. Identification and Characterization of Performance Limiting Regions in Poly-Si Wafers Used for PV Cells: Preprint

    SciTech Connect (OSTI)

    Guthrey, H.; Gorman, B.; Al-Jassim, M.

    2011-07-01

    As demand for silicon photovoltaic (PV) material increases, so does the need for cost-effective feedstock and production methods that will allow enhanced penetration of silicon PV into the total energy market. The focus on cost minimization for production of polycrystalline silicon (poly-Si) PV has led to relaxed feedstock purity requirements, which has also introduced undesirable characteristics into cast poly-Si PV wafers. To produce cells with the highest possible conversion efficiencies, it is crucial to understand how reduced purity requirements and defects that are introduced through the casting process can impair minority carrier properties in poly-Si PV cells. This is only possible by using multiple characterization techniques that give macro-scale information (such as the spatial distribution of performance-limiting regions), as well as micro and nano-scale information about the structural and chemical nature of such performance-limiting regions. This study demonstrates the usefulness of combining multiple techniques to analyze performance-limiting regions in the poly-Si wafers that are used for PV cells. This is done by first identifying performance-limiting regions using macro-scale techniques including photoluminescence (PL) imaging, microwave photoconductive decay (uPCD), and reflectometry), then using smaller-scale techniques such as scanning electron microscopy (SEM), electron backscattered diffraction (EBSD), laser ablation inductively coupled mass spectrometry (LA-ICP-MS), cathodoluminescence (CL), and transmission electron microscopy (TEM) to understand the nature of such regions. This analysis shows that structural defects as well as metallic impurities are present in performance-limiting regions, which together act to decrease conversion efficiencies in poly-Si PV cells.

  8. The Thermal Design, Characterization, and Performance of the SPIDER Long-Duration Balloon Cryostat

    E-Print Network [OSTI]

    Gudmundsson, J E; Amiri, M; Benton, S J; Bock, J J; Bond, J R; Bryan, S A; Chiang, H C; Contaldi, C R; Crill, B P; Doré, O; Filippini, J P; Fraisse, A A; Gambrel, A; Gandilo, N N; Hasselfield, M; Halpern, M; Hilton, G C; Holmes, W; Hristov, V V; Irwin, K D; Jones, W C; Kermish, Z; MacTavish, C J; Mason, P V; Megerian, K; Moncelsi, L; Montroy, T E; Morford, T A; Nagy, J M; Netterfield, C B; Rahlin, A S; Reintsema, C D; Ruhl, J E; Runyan, M C; Shariff, J A; Soler, J D; Trangsrud, A; Tucker, C; Tucker, R S; Turner, A D; Wiebe, D V; Young, E

    2015-01-01

    We describe the SPIDER flight cryostat, which is designed to cool six millimeter-wavelength telescopes during an Antarctic long-duration balloon flight. The cryostat, one of the largest to have flown on a stratospheric payload, uses liquid helium-4 to deliver cooling power to stages at 4.2 and 1.6 K. Stainless steel capillaries facilitate a high flow impedance connection between the main liquid helium tank and a smaller superfluid tank, allowing the latter to operate at 1.6 K as long as there is liquid in the 4.2 K main tank. Each telescope houses a closed cycle helium-3 adsorption refrigerator that further cools the focal planes down to 300 mK. Liquid helium vapor from the main tank is routed through heat exchangers that cool radiation shields, providing negative thermal feedback. The system performed successfully during a 17 day flight in the 2014-2015 Antarctic summer. The cryostat had a total hold time of 16.8 days, with 15.9 days occurring during flight.

  9. Review of radionuclide source terms used for performance-assessment analyses; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Barnard, R.W.

    1993-06-01

    Two aspects of the radionuclide source terms used for total-system performance assessment (TSPA) analyses have been reviewed. First, a detailed radionuclide inventory (i.e., one in which the reactor type, decay, and burnup are specified) is compared with the standard source-term inventory used in prior analyses. The latter assumes a fixed ratio of pressurized-water reactor (PWR) to boiling-water reactor (BWR) spent fuel, at specific amounts of burnup and at 10-year decay. TSPA analyses have been used to compare the simplified source term with the detailed one. The TSPA-91 analyses did not show a significant difference between the source terms. Second, the radionuclides used in source terms for TSPA aqueous-transport analyses have been reviewed to select ones that are representative of the entire inventory. It is recommended that two actinide decay chains be included (the 4n+2 ``uranium`` and 4n+3 ``actinium`` decay series), since these include several radionuclides that have potentially important release and dose characteristics. In addition, several fission products are recommended for the same reason. The choice of radionuclides should be influenced by other parameter assumptions, such as the solubility and retardation of the radionuclides.

  10. Plugging Vehicles into Clean Energy October, 2012

    E-Print Network [OSTI]

    California at Davis, University of

    about energy.4 In fact, several participants installed solar panels and undertook building energyPlugging Vehicles into Clean Energy 1 October, 2012 Plugging Vehicles into Clean Energy Max Council, 2 Energy Solutions (the majority of this author's research was performed while employed

  11. Vehicle Systems Analysis Technical Team Roadmap

    SciTech Connect (OSTI)

    2013-06-01

    The mission of the Vehicle Systems Analysis Technical Team (VSATT) is to evaluate the performance and interactions of proposed advanced automotive powertrain components and subsystems, in a vehicle systems context, to inform ongoing research and development activities and maximize the potential for fuel efficiency improvements and emission reduction.

  12. Wireless Relay Communications with Unmanned Aerial Vehicles

    E-Print Network [OSTI]

    Swindlehurst, A. Lee

    1 Wireless Relay Communications with Unmanned Aerial Vehicles: Performance and Optimization in which Unmanned Aerial Vehicles (UAVs) are used as relays between ground-based terminals and a network node and relay assignments as the topology of the network evolves. Index Terms: unmanned aerial

  13. PASSIVE DETECTION OF VEHICLE LOADING

    SciTech Connect (OSTI)

    Garrett, A.

    2012-01-03

    The Digital Imaging and Remote Sensing Laboratory (DIRS) at the Rochester Institute of Technology, along with the Savannah River National Laboratory is investigating passive methods to quantify vehicle loading. The research described in this paper investigates multiple vehicle indicators including brake temperature, tire temperature, engine temperature, acceleration and deceleration rates, engine acoustics, suspension response, tire deformation and vibrational response. Our investigation into these variables includes building and implementing a sensing system for data collection as well as multiple full-scale vehicle tests. The sensing system includes; infrared video cameras, triaxial accelerometers, microphones, video cameras and thermocouples. The full scale testing includes both a medium size dump truck and a tractor-trailer truck on closed courses with loads spanning the full range of the vehicle's capacity. Statistical analysis of the collected data is used to determine the effectiveness of each of the indicators for characterizing the weight of a vehicle. The final sensing system will monitor multiple load indicators and combine the results to achieve a more accurate measurement than any of the indicators could provide alone.

  14. Characterization of image quality and image-guidance performance of a preclinical microirradiator

    SciTech Connect (OSTI)

    Clarkson, R.; Lindsay, P. E.; Ansell, S.; Wilson, G.; Jelveh, S.; Hill, R. P.; Jaffray, D. A.

    2011-02-15

    Purpose: To assess image quality and image-guidance capabilities of a cone-beam CT based small-animal image-guided irradiation unit (micro-IGRT). Methods: A micro-IGRT system has been developed in collaboration with the authors' laboratory as a means to study the radiobiological effects of conformal radiation dose distributions in small animals. The system, the X-Rad 225Cx, consists of a 225 kVp x-ray tube and a flat-panel amorphous silicon detector mounted on a rotational C-arm gantry and is capable of both fluoroscopic x-ray and cone-beam CT imaging, as well as image-guided placement of the radiation beams. Image quality (voxel noise, modulation transfer, CT number accuracy, and geometric accuracy characteristics) was assessed using water cylinder and micro-CT test phantoms. Image guidance was tested by analyzing the dose delivered to radiochromic films fixed to BB's through the end-to-end process of imaging, targeting the center of the BB, and irradiation of the film/BB in order to compare the offset between the center of the field and the center of the BB. Image quality and geometric studies were repeated over a 5-7 month period to assess stability. Results: CT numbers reported were found to be linear (R{sup 2}{>=}0.998) and the noise for images of homogeneous water phantom was 30 HU at imaging doses of approximately 1 cGy (to water). The presampled MTF at 50% and 10% reached 0.64 and 1.35 mm{sup -1}, respectively. Targeting accuracy by means of film irradiations was shown to have a mean displacement error of [{Delta}x,{Delta}y,{Delta}z]=[-0.12,-0.05,-0.02] mm, with standard deviations of [0.02, 0.20, 0.17] mm. The system has proven to be stable over time, with both the image quality and image-guidance performance being reproducible for the duration of the studies. Conclusions: The micro-IGRT unit provides soft-tissue imaging of small-animal anatomy at acceptable imaging doses ({<=}1 cGy). The geometric accuracy and targeting systems permit dose placement with submillimeter accuracy and precision. The system has proven itself to be stable over 2 yr of routine laboratory use (>1800 irradiations) and provides a platform for the exploration of targeted radiation effects in small-animal models.

  15. Alternative Fuel Vehicle Data

    Reports and Publications (EIA)

    2013-01-01

    Annual data released on the number of on-road alternative fuel vehicles and hybrid vehicles made available by both the original equipment manufacturers and aftermarket vehicle conversion facilities. Data on the use of alternative fueled vehicles and the amount of fuel they consume is also available.

  16. Vehicle Emissions Review- 2012

    Broader source: Energy.gov [DOE]

    Reviews vehicle emission control highlighting representative studies that illustrate the state-of-the-art

  17. Electrifying Vehicles Early Release

    E-Print Network [OSTI]

    Electrifying Vehicles Early Release Insights from the Canadian Plug-in Electric Vehicle Study #12;1 The Canadian Plug-in Electric Vehicle Study May 25 2015 Electric-mobility may be a key component-in electric vehicles will involve meaningful shifts in social and technical systems. This report considers

  18. Legacy Vehicle Fuel System Testing with Intermediate Ethanol Blends

    SciTech Connect (OSTI)

    Davis, G. W.; Hoff, C. J.; Borton, Z.; Ratcliff, M. A.

    2012-03-01

    The effects of E10 and E17 on legacy fuel system components from three common mid-1990s vintage vehicle models (Ford, GM, and Toyota) were studied. The fuel systems comprised a fuel sending unit with pump, a fuel rail and integrated pressure regulator, and the fuel injectors. The fuel system components were characterized and then installed and tested in sample aging test rigs to simulate the exposure and operation of the fuel system components in an operating vehicle. The fuel injectors were cycled with varying pulse widths during pump operation. Operational performance, such as fuel flow and pressure, was monitored during the aging tests. Both of the Toyota fuel pumps demonstrated some degradation in performance during testing. Six injectors were tested in each aging rig. The Ford and GM injectors showed little change over the aging tests. Overall, based on the results of both the fuel pump testing and the fuel injector testing, no major failures were observed that could be attributed to E17 exposure. The unknown fuel component histories add a large uncertainty to the aging tests. Acquiring fuel system components from operational legacy vehicles would reduce the uncertainty.

  19. Electric Vehicle Preparedness Task 3: Detailed Assessment of Target Electrification Vehicles at Joint Base Lewis McChord Utilization

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort

    2014-08-01

    Task 2 involved identifying daily operational characteristics of select vehicles and initiating data logging of vehicle movements in order to characterize the vehicle’s mission. Individual observations of these selected vehicles provide the basis for recommendations related to PEV adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements and provides observations related to placement of PEV charging infrastructure. This report provides the results of the data analysis and observations related to the replacement of current vehicles with PEVs. This fulfills part of the Task 3 requirements. Task 3 also includes an assessment of charging infrastructure required to support this replacement. That is the subject of a separate report.

  20. Electrochemical Characterization of Voltage Fade in LMR-NMC cells...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characterization of Voltage Fade in LMR-NMC cells Electrochemical Characterization of Voltage Fade in LMR-NMC cells 2013 DOE Hydrogen and Fuel Cells Program and Vehicle...

  1. Auto/Steel Partnership: Fatigue of AHSS Strain Rate Characterization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fatigue of AHSS Strain Rate Characterization AutoSteel Partnership: Fatigue of AHSS Strain Rate Characterization 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual...

  2. Diesel Soot Filter Characterization and Modeling for Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Soot Filter Characterization and Modeling for Advanced Substrates Diesel Soot Filter Characterization and Modeling for Advanced Substrates 2009 DOE Hydrogen Program and Vehicle...

  3. 2007 Nissan Altima-7982 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Grey; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Nissan Altima hybrid electric vehicle (Vin Number 1N4CL21E27C177982). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  4. 2006 Toyota Highlander-5681 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Highlander hybrid electric vehicle (Vin Number JTEDW21A860005681). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  5. 2006 Toyota Highlander-6395 Hyrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Highlander hybrid electric vehicle (Vin Number JTEDW21A160006395). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  6. 2007 Toyota Camry-7129 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Camry hybrid electric vehicle (Vin Number JTNBB46K773007129). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  7. Characterization and performance of a high-power solid-state laser for a high-current photo-cathode injector

    SciTech Connect (OSTI)

    Shukui Zhang; David Hardy; George Neil; Michelle D. Shinn

    2005-08-21

    We report the characterization and performance of a diode-pumped, high-power, picosecond laser system designed for high-current photo-cathode accelerator injector at repetition rates of both 75MHz and 750MHz. The characterization includes measurement of the amplification gain, thermally induced beam mode variation, harmonic conversion efficiency, system's amplitude stability, beam pointing stability, beam profile, and pulse width for both frequencies.

  8. Effects of Vehicle-vehicle/ roadside-vehicle Communication on Adaptive Cruise Controlled Highway Systems

    E-Print Network [OSTI]

    Sengupta, Raja

    /vehicle-roadside communication on the performance of adaptive cruise control (ACC) systems. Two simulation works are presented benefits such communication system could bring, FCC proposed the allocation of 5.9GHz band spectrum millimeter wave radar or infrared laser). When V-V/R-V communication is conjoined with ACC, the system

  9. Characterization, propagation and analysis of aleatory and epistemic uncertainty in the 2008 performance assessment for the proposed repository for radioactive waste at Yucca Mountain, Nevada.

    SciTech Connect (OSTI)

    Helton, Jon Craig; Sallaberry, Cedric M.; Hansen, Clifford W.

    2010-10-01

    The 2008 performance assessment (PA) for the proposed repository for high-level radioactive waste at Yucca Mountain (YM), Nevada, illustrates the conceptual structure of risk assessments for complex systems. The 2008 YM PA is based on the following three conceptual entities: a probability space that characterizes aleatory uncertainty; a function that predicts consequences for individual elements of the sample space for aleatory uncertainty; and a probability space that characterizes epistemic uncertainty. These entities and their use in the characterization, propagation and analysis of aleatory and epistemic uncertainty are described and illustrated with results from the 2008 YM PA.

  10. Vehicle Technologies Office: 2011 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2011vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

  11. Vehicle Technologies Office: 2012 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2012vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

  12. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-03-01

    Flexible Fuel vehicles are able to operate using more than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Today more than 7 million vehicles on U.S. highways are flexible fuel vehicles. The fact sheet discusses how E85 affects vehicle performance, the costs and benefits of using E85, and how to find E85 station locations.

  13. Energy Storage Fuel Cell Vehicle Analysis: Preprint

    SciTech Connect (OSTI)

    Markel, T.; Pesaran, A.; Zolot, M.; Sprik, S.; Tataria, H.; Duong, T.

    2005-04-01

    In recent years, hydrogen fuel cell (FC) vehicle technology has received considerable attention as a strategy to decrease oil consumption and reduce harmful emissions. However, the cost, transient response, and cold performance of FC systems may present significant challenges to widespread adoption of the technology for transportation in the next 15 years. The objectives of this effort were to perform energy storage modeling with fuel cell vehicle simulations to quantify the benefits of hybridization and to identify a process for setting the requirements of ES for hydrogen-powered FC vehicles for U.S. Department of Energy's Energy Storage Program.

  14. Energy Storage Fuel Cell Vehicle Analysis

    SciTech Connect (OSTI)

    Pesaran, A.; Markel, T.; Zolot, M.; Sprik, S.; Tataria, H.; Duong, T.

    2005-08-01

    In recent years, hydrogen fuel cell (FC) vehicle technology has received considerable attention as a strategy to decrease oil consumption and reduce harmful emissions. However, the cost, transient response, and cold performance of FC systems may present significant challenges to widespread adoption of the technology for transportation in the next 15 years. The objectives of this effort were to perform energy storage modeling with fuel cell vehicle simulations to quantify the benefits of hybridization and to identify a process for setting the requirements of ES for hydrogen-powered FC vehicles for U.S. Department of Energy?s Energy Storage Program.

  15. Vehicle Battery Safety Roadmap Guidance

    SciTech Connect (OSTI)

    Doughty, D. H.

    2012-10-01

    The safety of electrified vehicles with high capacity energy storage devices creates challenges that must be met to assure commercial acceptance of EVs and HEVs. High performance vehicular traction energy storage systems must be intrinsically tolerant of abusive conditions: overcharge, short circuit, crush, fire exposure, overdischarge, and mechanical shock and vibration. Fail-safe responses to these conditions must be designed into the system, at the materials and the system level, through selection of materials and safety devices that will further reduce the probability of single cell failure and preclude propagation of failure to adjacent cells. One of the most important objectives of DOE's Office of Vehicle Technologies is to support the development of lithium ion batteries that are safe and abuse tolerant in electric drive vehicles. This Roadmap analyzes battery safety and failure modes of state-of-the-art cells and batteries and makes recommendations on future investments that would further DOE's mission.

  16. Heavy Duty Vehicle Futures Analysis.

    SciTech Connect (OSTI)

    Askin, Amanda Christine; Barter, Garrett; West, Todd H.; Manley, Dawn Kataoka

    2014-05-01

    This report describes work performed for an Early Career Research and Development project. This project developed a heavy-duty vehicle (HDV) sector model to assess the factors influencing alternative fuel and efficiency technology adoption. This model builds on a Sandia light duty vehicle sector model and provides a platform for assessing potential impacts of technological advancements developed at the Combustion Research Facility. Alternative fuel and technology adoption modeling is typically developed around a small set of scenarios. This HDV sector model segments the HDV sector and parameterizes input values, such as fuel prices, efficiencies, and vehicle costs. This parameterization enables sensitivity and trade space analyses to identify the inputs that are most associated with outputs of interest, such as diesel consumption and greenhouse gas emissions. Thus this analysis tool enables identification of the most significant HDV sector drivers that can be used to support energy security and climate change goals.

  17. Heavy and Overweight Vehicle Defects Interim Report

    SciTech Connect (OSTI)

    Siekmann, Adam [ORNL; Capps, Gary J [ORNL

    2012-12-01

    The Federal Highway Administration (FHWA), along with the Federal Motor Carrier Safety Administration (FMCSA), has an interest in overweight commercial motor vehicles, how they affect infrastructure, and their impact on safety on the nation s highways. To assist both FHWA and FMCSA in obtaining more information related to this interest, data was collected and analyzed from two separate sources. A large scale nationwide data collection effort was facilitated by the Commercial Vehicle Safety Alliance as part of a special study on overweight vehicles and an additional, smaller set, of data was collected from the state of Tennessee which included a much more detailed set of data. Over a six-month period, 1,873 Level I inspections were performed in 18 different states that volunteered to be a part of this study. Of the 1,873 inspections, a vehicle out-of-service (OOS) violation was found on 44.79% of the vehicles, a rate significantly higher than the national OOS rate of 27.23%. The main cause of a vehicle being placed OOS was brake-related defects, with approximately 30% of all vehicles having an OOS brake violation. Only about 4% of vehicles had an OOS tire violation, and even fewer had suspension and wheel violations. Vehicle weight violations were most common on an axle group as opposed to a gross vehicle weight violation. About two thirds of the vehicles cited with a weight violation were overweight on an axle group with an average amount of weight over the legal limit of about 2,000 lbs. Data collection is scheduled to continue through January 2014, with more potentially more states volunteering to collect data. More detailed data collections similar to the Tennessee data collection will also be performed in multiple states.

  18. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. vssarravt066karner2010p...

  19. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt066vsskarner2012...

  20. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt066vsskarner2011...

  1. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt072vssmackie2011...

  2. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt072vssmackie2012...

  3. Emission Impacts of Electric Vehicles

    E-Print Network [OSTI]

    Wang, Quanlu; DeLuchi, Mark A.; Sperling, Daniel

    1990-01-01

    greenhouse effect, and electric vehicles," Proceedingso/9thInternational Electric Vehicles Symposium, 1988. 14. R. M.of 9th International Electric Vehicles Sympo- sium, 1988.

  4. Electric Vehicle Smart Charging Infrastructure

    E-Print Network [OSTI]

    Chung, Ching-Yen

    2014-01-01

    for Multiplexed Electric Vehicle Charging”, US20130154561A1,Chynoweth, ”Intelligent Electric Vehicle Charging System”,of RFID Mesh Network for Electric Vehicle Smart Charging

  5. The Case for Electric Vehicles

    E-Print Network [OSTI]

    Sperling, Daniel

    2001-01-01

    land Press, 1995 TESTING ELECTRIC VEHICLE DEMAND IN " HYBRIDThe Case for Electric Vehicles DanieI Sperlmg Reprint UCTCor The Case for Electric Vehicles Darnel Sperling Institute

  6. Vehicle Technologies Office Merit Review 2014: CLEERS: Aftertreatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Analysis Vehicle Technologies Office Merit Review 2014: Enhanced High and Low Temperature Performance of NOx Reduction Materials CLEERS Aftertreatment Modeling and Analysis...

  7. Vehicle Technologies Office: 2010 Lightweight Materials R&D Annual...

    Broader source: Energy.gov (indexed) [DOE]

    materials and manufacturing technologies to significantly reduce light and heavy duty vehicle weight without compromising other attributes such as safety, performance,recyclabilit...

  8. Vehicle Technologies Office Merit Review 2014: INL Electrochemical...

    Broader source: Energy.gov (indexed) [DOE]

    company name at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about INL electrochemical performance...

  9. Hydrogen-Enhanced Natural Gas Vehicle Program

    SciTech Connect (OSTI)

    Hyde, Dan; Collier, Kirk

    2009-01-22

    The project objective is to demonstrate the viability of HCNG fuel (30 to 50% hydrogen by volume and the remainder natural gas) to reduce emissions from light-duty on-road vehicles with no loss in performance or efficiency. The City of Las Vegas has an interest in alternative fuels and already has an existing hydrogen refueling station. Collier Technologies Inc (CT) supplied the latest design retrofit kits capable of converting nine compressed natural gas (CNG) fueled, light-duty vehicles powered by the Ford 5.4L Triton engine. CT installed the kits on the first two vehicles in Las Vegas, trained personnel at the City of Las Vegas (the City) to perform the additional seven retrofits, and developed materials for allowing other entities to perform these retrofits as well. These vehicles were used in normal service by the City while driver impressions, reliability, fuel efficiency and emissions were documented for a minimum of one year after conversion. This project has shown the efficacy of operating vehicles originally designed to operate on compressed natural gas with HCNG fuel incorporating large quantities of exhaust gas recirculation (EGR). There were no safety issues experienced with these vehicles. The only maintenance issue in the project was some rough idling due to problems with the EGR valve and piping parts. Once the rough idling was corrected no further maintenance issues with these vehicles were experienced. Fuel economy data showed no significant changes after conversion even with the added power provided by the superchargers that were part of the conversions. Driver feedback for the conversions was very favorable. The additional power provided by the HCNG vehicles was greatly appreciated, especially in traffic. The drivability of the HCNG vehicles was considered to be superior by the drivers. Most of the converted vehicles showed zero oxides of nitrogen throughout the life of the project using the State of Nevada emissions station.

  10. Synthesis and Characterization of Cathode Materials | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cathode Materials Synthesis and Characterization of Cathode Materials Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in...

  11. Electric Vehicle Preparedness: Task 1, Assessment of Fleet Inventory for Marine Corps Base Camp Lejeune

    SciTech Connect (OSTI)

    Schey, Stephen; Francfort, Jim

    2015-01-01

    Several U.S. Department of Defense-based studies were conducted to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). Task 1 included a survey of the inventory of non-tactical fleet vehicles at the Marine Corps Base Camp Lejeune (MCBCL) to characterize the fleet. This information and characterization will be used to select vehicles for monitoring that takes place during Task 2. This monitoring involves data logging of vehicle operation in order to identify the vehicle’s mission and travel requirements. Individual observations of these selected vehicles provide the basis for recommendations related to PEV adoption. It also identifies whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements and provides observations related to placement of PEV charging infrastructure.

  12. 340 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2006 Performance Characterization of a Reconfigurable

    E-Print Network [OSTI]

    Goldberg, Mark

    a computational approach to designing a digital microfluidic system (DMFS) that can be rapidly reconfigured340 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2006 Performance Characterization of a Reconfigurable Planar-Array Digital Microfluidic System

  13. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01

    Experience with the German Hydrogen Fuel Project," HydrogenHydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September bycost than both. Solar-hydrogen fuel- cell vehicles would be

  14. Massachusetts Electric Vehicle Efforts

    E-Print Network [OSTI]

    California at Davis, University of

    ,500 for full battery electric vehicle (BEV) and $5,000 for plug- in hybrid electric vehicle (PHEV) · Financial 39 Tesla 39 BMW 26 Toyota 7 Honda 3 Cadillac 3 Mitsubishi 2 #12;Department of Public Utilities · DPU

  15. Computer Aided Design Tool for Electric, Hybrid Electric and Plug-in Hybrid Electric Vehicles 

    E-Print Network [OSTI]

    Eskandari Halvaii, Ali

    2012-07-16

    -electric vehicle would start from the vehicle performance criteria and continue by applying them to the physical models of di?erent components of the vehicle. The final result would be strict and precise characteristics of all components in the vehicle...

  16. Vehicle & Systems Simulation & Testing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV - EVSE Interoperability Advanced Charging Grid Integration Vehicle Systems Optimization Fast and Wireless Charging Grid Integration Load Reduction, HVAC, & Preconditioning...

  17. Consumer Vehicle Technology Data

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  18. Washington State Electric Vehicle

    E-Print Network [OSTI]

    California at Davis, University of

    Washington State Electric Vehicle Implementation Bryan Bazard Maintenance and Alternate Fuel Technology Manager #12;Executive Order 14-04 Requires the procurement of electric vehicles where and equipment with electricity or biofuel to the "extent practicable" by June 2015 1. The vehicle is due

  19. Energy 101: Electric Vehicles

    ScienceCinema (OSTI)

    None

    2013-05-29

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

  20. 2011 Hyundai Sonata 3539 - Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Matthew Shirk; Tyler Gray; Jeffrey Wishart

    2014-09-01

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing hybrid electric vehicle batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid (VIN KMHEC4A47BA003539). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  1. Overcoming the Range Limitation of Medium-Duty Battery Electric Vehicles through the use of Hydrogen Fuel-Cells

    SciTech Connect (OSTI)

    Wood, E.; Wang, L.; Gonder, J.; Ulsh, M.

    2013-10-01

    Battery electric vehicles possess great potential for decreasing lifecycle costs in medium-duty applications, a market segment currently dominated by internal combustion technology. Characterized by frequent repetition of similar routes and daily return to a central depot, medium-duty vocations are well positioned to leverage the low operating costs of battery electric vehicles. Unfortunately, the range limitation of commercially available battery electric vehicles acts as a barrier to widespread adoption. This paper describes the National Renewable Energy Laboratory's collaboration with the U.S. Department of Energy and industry partners to analyze the use of small hydrogen fuel-cell stacks to extend the range of battery electric vehicles as a means of improving utility, and presumably, increasing market adoption. This analysis employs real-world vocational data and near-term economic assumptions to (1) identify optimal component configurations for minimizing lifecycle costs, (2) benchmark economic performance relative to both battery electric and conventional powertrains, and (3) understand how the optimal design and its competitiveness change with respect to duty cycle and economic climate. It is found that small fuel-cell power units provide extended range at significantly lower capital and lifecycle costs than additional battery capacity alone. And while fuel-cell range-extended vehicles are not deemed economically competitive with conventional vehicles given present-day economic conditions, this paper identifies potential future scenarios where cost equivalency is achieved.

  2. Measuring and Reporting Fuel Economy of Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Gonder, J.; Simpson, A.

    2006-11-01

    This paper reviews techniques used to characterize plug-in hybrid electric vehicle fuel economy, discussing their merits, limitations, and best uses.

  3. Results of advanced batter technology evaluations for electric vehicle applications

    SciTech Connect (OSTI)

    DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

    1992-01-01

    Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight Into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, In a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during 1991--1992 on both single cells and multi-cell modules that encompass eight battery technologies (Na/S, Li/MS (M=metal), Ni/MH, Ni/Cd, Ni/Zn, Ni/Fe, Zn/Br, and Pb-acid). These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The results help identify the most-promising R D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R D programs, a comparison of battery technologies, and basic data for modeling.

  4. Results of advanced battery technology evaluations for electric vehicle applications

    SciTech Connect (OSTI)

    DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

    1992-09-01

    Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis & Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight Into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, In a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during 1991--1992 on both single cells and multi-cell modules that encompass eight battery technologies [Na/S, Li/MS (M=metal), Ni/MH, Ni/Cd, Ni/Zn, Ni/Fe, Zn/Br, and Pb-acid]. These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The results help identify the most-promising R&D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R&D programs, a comparison of battery technologies, and basic data for modeling.

  5. William and Mary Athletics State Vehicle / Rental Vehicle / Personal Vehicle Policies

    E-Print Network [OSTI]

    Swaddle, John

    William and Mary Athletics State Vehicle / Rental Vehicle / Personal Vehicle Policies Last Update: 2/14/14 W&M's vehicle use policy requires that a driver authorization form be completed and approved before driving any vehicle (including a personal vehicle) for university business or a university

  6. Detecting persons concealed in a vehicle

    DOE Patents [OSTI]

    Tucker, Jr., Raymond W.

    2005-03-29

    An improved method for detecting the presence of humans or animals concealed within in a vehicle uses a combination of the continuous wavelet transform and a ratio-based energy calculation to determine whether the motion detected using seismic sensors placed on the vehicle is due to the presence of a heartbeat within the vehicle or is the result of motion caused by external factors such as the wind. The method performs well in the presence of light to moderate ambient wind levels, producing far fewer false alarm indications. The new method significantly improves the range of ambient environmental conditions under which human presence detection systems can reliably operate.

  7. Vehicle Technologies Office Merit Review 2015: Dramatically Improve the Safety Performance of Li Ion Battery Separators and Reduce the Manufacturing Cost using Ultraviolet Curing and High Precision Coating Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Miltec UV International at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about dramatically improve...

  8. Thermal Characterization and Analysis of A123 Systems Battery Cells, Modules and Packs: Cooperative Research and Development Final Report, CRADA Number CRD-07-243

    SciTech Connect (OSTI)

    Pesaran, A.

    2012-03-01

    In support of the A123 Systems battery development program with USABC/DOE, NREL provided technical support in thermal characterization, analysis and management of batteries. NREL's effort was part of Energy Storage Project funded by DOE Vehicle Technologies Program. The purpose of this work was for NREL to perform thermal characterization and analysis of A123 Systems cells and modules with the aim for Al23 Systems to improve the thermal performance of their battery cells, modules and packs.

  9. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for the National Park Service: Golden Gate National Recreation Area

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort

    2014-03-01

    Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy's Idaho National Laboratory, is the lead laboratory for U.S. Department of Energy Advanced Vehicle Testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America (ITSNA) to collect data on federal fleet operations as part of the Advanced Vehicle Testing Activity's Federal Fleet Vehicle Data Logging and Characterization study. The Advanced Vehicle Testing Activity study seeks to collect data to validate the utilization of advanced electric drive vehicle transportation. This report focuses on the Golden Gate National Recreation Area (GGNRA) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agencies' fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements. GGNRA identified 182 vehicles in its fleet, which are under the management of the U.S. General Services Administration. Fleet vehicle mission categories are defined in Section 4, and while the GGNRA vehicles conduct many different missions, only two (i.e., support and law enforcement missions) were selected by agency management to be part of this fleet evaluation. The selected vehicles included sedans, trucks, and sport-utility vehicles. This report will show that battery electric vehicles and/or PHEVs are capable of performing the required missions and providing an alternative vehicle for support vehicles and PHEVs provide the same for law enforcement, because each has a sufficient range for individual trips and time is available each day for charging to accommodate multiple trips per day. These charging events could occur at the vehicle home base, high-use work areas, or intermediately along routes that the vehicles frequently travel. Replacement of vehicles in the current fleet would result in significant reductions in the emission of greenhouse gases and petroleum use, while also reducing fuel costs. The San Francisco Bay Area is a leader in the adoption of PEVs in the United States. PEV charging stations, or more appropriately identified as electric vehicle supply equipment, located on the GGNRA facility would be a benefit for both GGNRA fleets and general public use. Fleet drivers and park visitors operating privately owned PEVs benefit by using the charging infrastructure. ITSNA recommends location analysis of the GGNRA site to identify the optimal placement of the electric vehicle supply equipment station. ITSNA recognizes the support of Idaho National Laboratory and ICF International for their efforts to initiate communication with the National Parks Service and GGNRA for participation in the study. ITSNA is pleased to provide this report and is encouraged by the high interest and support from the National Park Service and GGNRA personnel.

  10. U.S. Department of Energy Vehicle Technologies Program: Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Jon P. Christophersen

    2014-09-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Renata M. Arsenault of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).

  11. Milestones for Selection, Characterization, and Analysis of the Performance of a Repository for Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain.

    SciTech Connect (OSTI)

    Rechard, Robert P.

    2014-02-01

    This report presents a concise history in tabular form of events leading up to site identification in 1978, site selection in 1987, subsequent characterization, and ongoing analysis through 2008 of the performance of a repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain in southern Nevada. The tabulated events generally occurred in five periods: (1) commitment to mined geologic disposal and identification of sites; (2) site selection and analysis, based on regional geologic characterization through literature and analogous data; (3) feasibility analysis demonstrating calculation procedures and importance of system components, based on rough measures of performance using surface exploration, waste process knowledge, and general laboratory experiments; (4) suitability analysis demonstrating viability of disposal system, based on environment-specific laboratory experiments, in-situ experiments, and underground disposal system characterization; and (5) compliance analysis, based on completed site-specific characterization. Because the relationship is important to understanding the evolution of the Yucca Mountain Project, the tabulation also shows the interaction between four broad categories of political bodies and government agencies/institutions: (a) technical milestones of the implementing institutions, (b) development of the regulatory requirements and related federal policy in laws and court decisions, (c) Presidential and agency directives and decisions, and (d) critiques of the Yucca Mountain Project and pertinent national and world events related to nuclear energy and radioactive waste.

  12. Advanced Technology Vehicles Manufacturing (ATVM) Loan Program...

    Office of Environmental Management (EM)

    Advanced Technology Vehicles Manufacturing (ATVM) Loan Program Advanced Technology Vehicles Manufacturing (ATVM) Loan Program Advanced Technology Vehicles Manufacturing (ATVM) Loan...

  13. Modular Energy Storage System for Hydrogen Fuel Cell Vehicles

    SciTech Connect (OSTI)

    Janice Thomas

    2010-05-31

    The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles â?? plug-in electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. The in-depth research into the complex interactions between the lower and higher voltage systems from data obtained via modeling, bench testing and instrumented vehicle data will allow an optimum system to be developed from a performance, cost, weight and size perspective. The subsystems are designed for modularity so that they may be used with different propulsion and energy delivery systems. This approach will allow expansion into new alternative energy vehicle markets.

  14. Vehicle underbody fairing

    DOE Patents [OSTI]

    Ortega, Jason M. (Pacifica, CA); Salari, Kambiz (Livermore, CA); McCallen, Rose (Livermore, CA)

    2010-11-09

    A vehicle underbody fairing apparatus for reducing aerodynamic drag caused by a vehicle wheel assembly, by reducing the size of a recirculation zone formed under the vehicle body immediately downstream of the vehicle wheel assembly. The fairing body has a tapered aerodynamic surface that extends from a front end to a rear end of the fairing body with a substantially U-shaped cross-section that tapers in both height and width. Fasteners or other mounting devices secure the fairing body to an underside surface of the vehicle body, so that the front end is immediately downstream of the vehicle wheel assembly and a bottom section of the tapered aerodynamic surface rises towards the underside surface as it extends in a downstream direction.

  15. Vehicle Technologies Office: AVTA - Evaluating Military Bases...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Military Bases and Fleet Readiness for Electric Vehicles Vehicle Technologies Office: AVTA - Evaluating Military Bases and Fleet Readiness for Electric Vehicles The Vehicle...

  16. Alternative Fuel Vehicle Forecasts Final report

    E-Print Network [OSTI]

    ....................................................................................................................................36 Commercial CNG and LNG Vehicles

  17. Electric-Drive Vehicle Basics (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-04-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  18. The 1991 natural gas vehicle challenge: Developing dedicated natural gas vehicle technology

    SciTech Connect (OSTI)

    Larsen, R.; Rimkus, W. [Argonne National Lab., IL (United States); Davies, J. [General Motors of Canada Ltd., Toronto, ON (Canada); Zammit, M. [AC Rochester, NY (United States); Patterson, P. [USDOE, Washington, DC (United States)

    1992-02-01

    An engineering research and design competition to develop and demonstrate dedicated natural gas-powered light-duty trucks, the Natural Gas Vehicle (NGV) Challenge, was held June 6--11, 1191, in Oklahoma. Sponsored by the US Department of Energy (DOE), Energy, Mines, and Resources -- Canada (EMR), the Society of Automative Engineers (SAE), and General Motors Corporation (GM), the competition consisted of rigorous vehicle testing of exhaust emissions, fuel economy, performance parameters, and vehicle design. Using Sierra 2500 pickup trucks donated by GM, 24 teams of college and university engineers from the US and Canada participated in the event. A gasoline-powered control testing as a reference vehicle. This paper discusses the results of the event, summarizes the technologies employed, and makes observations on the state of natural gas vehicle technology.

  19. The 1991 natural gas vehicle challenge: Developing dedicated natural gas vehicle technology

    SciTech Connect (OSTI)

    Larsen, R.; Rimkus, W. (Argonne National Lab., IL (United States)); Davies, J. (General Motors of Canada Ltd., Toronto, ON (Canada)); Zammit, M. (AC Rochester, NY (United States)); Patterson, P. (USDOE, Washington, DC (United States))

    1992-01-01

    An engineering research and design competition to develop and demonstrate dedicated natural gas-powered light-duty trucks, the Natural Gas Vehicle (NGV) Challenge, was held June 6--11, 1191, in Oklahoma. Sponsored by the US Department of Energy (DOE), Energy, Mines, and Resources -- Canada (EMR), the Society of Automative Engineers (SAE), and General Motors Corporation (GM), the competition consisted of rigorous vehicle testing of exhaust emissions, fuel economy, performance parameters, and vehicle design. Using Sierra 2500 pickup trucks donated by GM, 24 teams of college and university engineers from the US and Canada participated in the event. A gasoline-powered control testing as a reference vehicle. This paper discusses the results of the event, summarizes the technologies employed, and makes observations on the state of natural gas vehicle technology.

  20. Vehicle Emissions Review- 2011

    Broader source: Energy.gov [DOE]

    Reviews regulatory requirements and general technology approaches for heavy- and light-duty vehicle emissions control - filter technology, new catalysts, NOx control, diesel oxidation catalysts, gasoline particulate filters

  1. Powertrain & Vehicle Research Centre

    E-Print Network [OSTI]

    Burton, Geoffrey R.

    consumption improvement during European drivecycle Fuel consumption improvement during Motorway cruises for electrical heating to emulate thermal management of powertrain ·Installed in vehicle and drivecycle tested

  2. Flex Fuel Vehicle Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flex Fuel Vehicle Systems * Bosch FFV Project Structure and Partners * Purpose of Work - Project Highlights * Barriers - Existing Flex Fuel Systems and Problems * Approach - Bosch...

  3. Energy 101: Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs.

  4. Laboratory to change vehicle traffic-screening regimen at vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Changes to vehicle traffic-screening Laboratory to change vehicle traffic-screening regimen at vehicle inspection station Lanes two through five will be open 24 hours a day and...

  5. 2007 Toyota Camry-6330 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) conducts several different types of tests on hybrid electric vehicles (HEVs), including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Camry hybrid electric vehicle (Vin Number JTNBB46K673006330). Testing was performed by the Electric Transportation Engineering Corporation. The AVTA is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct AVTA for the U.S. Department of Energy.

  6. Vehicle Technologies Office: 2010 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2010vsstreport.pdf More Documents & Publications AVTA PHEV Demonstrations and...

  7. Vehicle Technologies Office: 2013 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and field evaluations, codes and standards, industry projects, and vehicle systems optimization. 2013vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

  8. Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle...

    Broader source: Energy.gov (indexed) [DOE]

    nation's vehicle fleet. VTO invested 400 million in 18 projects to demonstrate plug-in electric vehicles (PEVs, also known as electric cars) and infrastructure, including 10...

  9. Vehicle Technologies Office Merit Review 2015: Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    Presentation given by Intertek at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced vehicle testing and...

  10. Vehicle Technologies Office Merit Review 2014: Vehicle & Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Testing R&D Annual Progress Report Vehicle Technologies Office Merit Review 2014: Wireless Charging Vehicle Technologies Office Merit Review 2015: Overview of the DOEVTO...

  11. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for the National Park Service: Fort Vancouver National Historic Site

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort

    2014-03-01

    Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s Idaho National Laboratory, is the lead laboratory for the U.S. Department of Energy’s Advanced Vehicle Testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America (ITSNA) to collect data on federal fleet operations as part of the Advanced Vehicle Testing Activity’s Federal Fleet Vehicle Data Logging and Characterization study. The Advanced Vehicle Testing Activity study seeks to collect data to validate the use of advanced electric drive vehicle transportation. This report focuses on the Fort Vancouver National Historic Site (FVNHS) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of electric vehicles (EVs) into the agencies’ fleet. Individual observations of the selected vehicles provided the basis for recommendations related to EV adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles) could fulfill the mission requirements. FVNHS identified three vehicles in its fleet for consideration. While the FVNHS vehicles conduct many different missions, only two (i.e., support and pool missions) were selected by agency management to be part of this fleet evaluation. The logged vehicles included a pickup truck and a minivan. This report will show that BEVs and PHEVs are capable of performing the required missions and providing an alternative vehicle for both mission categories, because each has sufficient range for individual trips and time available each day for charging to accommodate multiple trips per day. These charging events could occur at the vehicle’s home base, high-use work areas, or in intermediate areas along routes that the vehicles frequently travel. Replacement of vehicles in the current fleet would result in significant reductions in emission of greenhouse gases and petroleum use, while also reducing fuel costs. The Vancouver, Washington area and neighboring Portland, Oregon are leaders in adoption of PEVs in the United States1. PEV charging stations, or more appropriately identified as electric vehicle supply equipment, located on the FVNHS facility would be a benefit for both FVNHS fleets and general public use. Fleet drivers and park visitors operating privately owned plug-in electric vehicles benefit by using the charging infrastructure. ITSNA recommends location analysis of the FVNHS site to identify the optimal station placement for electric vehicle supply equipment. ITSNA recognizes the support of Idaho National Laboratory and ICF International for their efforts to initiate communication with the National Parks Service and FVNHS for participation in this study. ITSNA is pleased to provide this report and is encouraged by the high interest and support from the National Park Service and FVNHS personnel

  12. Research, development, and demonstration of nickel-iron batteries for electric vehicle propulsion. Annual report, 1980

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    The objective of the Eagle-Picher nickel-iron battery program is to develop a nickel-iron battery for use in the propulsion of electric and electric-hybrid vehicles. To date, the program has concentrated on the characterization, fabrication and testing of the required electrodes, the fabrication and testing of full-scale cells, and finally, the fabrication and testing of full-scale (270 AH) six (6) volt modules. Electrodes of the final configuration have now exceeded 1880 cycles and are showing minimal capacity decline. Full-scale cells have presently exceeded 600 cycles and are tracking the individual electrode tests almost identically. Six volt module tests have exceeded 500 cycles, with a specific energy of 48 Wh/kg. Results to date indicate the nickel-iron battery is beginning to demonstrate the performance required for electric vehicle propulsion.

  13. Vehicle Technologies Office: Propulsion Systems

    Broader source: Energy.gov [DOE]

    Vehicle Technologies Office research focuses much of its effort on improving vehicle fuel economy while meeting increasingly stringent emissions standards. Achieving these goals requires a...

  14. Public Service Vehicles Tramcars and Trolley Vehicles: The Public Service Vehicles (Conditions of Fitness) Regulations, 1958 

    E-Print Network [OSTI]

    Watkinson, Harold

    1958-01-01

    These Regulations, which prescribe the conditions to be satisfied by a public service vehicle before a certificate of fitness (without the issue of which a vehicle may not be licensed to be used as a public service vehicle) ...

  15. Microstructural Characterization of the Chemo-mechanical Behavior of Asphalt in Terms of Aging and Fatigue Performance Properties 

    E-Print Network [OSTI]

    Allen, Robert Grover

    2013-03-27

    The study of asphalt chemo-mechanics requires a basic understanding of the physical properties and chemical composition of asphalt and how these properties are linked to changes in performance induced by chemical modifications. ...

  16. All-terrain vehicle

    SciTech Connect (OSTI)

    Somerton-Rayner, M.

    1986-12-16

    This patent describes an all-terrain vehicle comprising: a chassis; four road wheel axles equally spaced along the chassis; suspension means mounting the axles on the chassis; wheels mounted adjacent both ends of each of the axles, the wheels on the foremost and the rearmost axles being steerably mounted; propulsion and driving means including a single internal combustion engine and gearbox, and first and second transfer boxes both coupled to be driven by the engine through the gearbox; the first transfer box driving the first and third axles and the second transfer box driving the second and fourth axles; means for driving in the alternative all four wheels and only the center two wheels; power-assisted steering gear means operatively connected to the steerably-mounted wheels of the foremost axle; and steering coupling means extending between the steerably-mounted wheels on the foremost and rearmost axles so dimensioned that upon steering of the front wheels, the rear wheels perform castoring constrained to a smaller turning angle and a lower rate of angular movement than the front wheels.

  17. Vehicle Technologies Program Government Performance and Results...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stock were attributed to individual VTO technology areas, which included batteries and electric drives, advanced combustion engines, fuels and lubricants, materials (i.e.,...

  18. Vehicle Technologies Office Merit Review 2014: Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Smith Electric Vehicles at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Smith Electric...

  19. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice (Revised)

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    Clean Cities fact sheet describing aspects of flexible fuel vehicles such as use of E85, special features, benefits of use, costs, and fueling locations. It includes discussion on performance and how to identify these vehicles as well as listing additional resources.

  20. AVTA: 2011 Nissan Leaf All-Electric Vehicle Testing Reports

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on an all-electric 2011 Nissan Leaf. The baseline performance testing provides a point of comparison for the other test results. Taken together, these reports give an overall view of how this vehicle functions under extensive testing. This research was conducted by Idaho National Laboratory.

  1. Renting Vehicles Renting Vehicles from MSU Motor Pool

    E-Print Network [OSTI]

    Lawrence, Rick L.

    Renting Vehicles Renting Vehicles from MSU Motor Pool Motor Pool/Transportation Services Motor Pool vehicles may ONLY be used for club-related travel). 2) Valid U.S. driver's license in good standing; 3) Completed Vehicle Use Authorization form for all drivers; and 4) Personal medical insurance

  2. Vehicle Technologies Office: AVTA- Neighborhood All-Electric Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the following vehicles is available in downloadable form: 2013 BRP Commander Electric, 2010 Electric Vehicles International E-Mega, 2009 Vantage Pickup EVX1000, and 2009 Vantage Van EVC1000.

  3. Energy Star Concepts for Highway Vehicles

    SciTech Connect (OSTI)

    Greene, D.L.

    2003-06-24

    The authors of this report, under the sponsorship of the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Weatherization and Intergovernmental Program, have investigated the possible application of Energy Star ratings to passenger cars and light trucks. This study establishes a framework for formulating and evaluating Energy Star rating methods that is comprised of energy- and environmental-based metrics, potential vehicle classification systems, vehicle technology factors, and vehicle selection criteria. The study tests several concepts and Energy Star rating methods using model-year 2000 vehicle data--a spreadsheet model has been developed to facilitate these analyses. This study tests two primary types of rating systems: (1) an outcome-based system that rates vehicles based on fuel economy, GHG emissions, and oil use and (2) a technology-based system that rates vehicles based on the energy-saving technologies they use. Rating methods were evaluated based on their ability to select vehicles with high fuel economy, low GHG emissions, and low oil use while preserving a full range of service (size and acceleration) and body style choice. This study concludes that an Energy Star rating for passenger cars and light trucks is feasible and that several methods could be used to achieve reasonable tradeoffs between low energy use and emissions and diversity in size, performance, and body type. It also shows that methods that consider only fuel economy, GHG emissions, or oil use will not select a diverse mix of vehicles. Finally, analyses suggest that methods that encourage the use of technology only, may result in increases in acceleration power and weight rather than reductions in oil use and GHG emissions and improvements in fuel economy.

  4. Blast resistant vehicle seat

    DOE Patents [OSTI]

    Ripley, Edward B

    2013-02-12

    Disclosed are various seats for vehicles particularly military vehicles that are susceptible to attack by road-bed explosive devices such as land mines or improvised explosive devices. The seats often have rigid seat shells and may include rigid bracing for rigidly securing the seat to the chassis of the vehicle. Typically embodiments include channels and particulate media such as sand disposed in the channels. A gas distribution system is generally employed to pump a gas through the channels and in some embodiments the gas is provided at a pressure sufficient to fluidize the particulate media when an occupant is sitting on the seat.

  5. Natural gas vehicles - market potential

    SciTech Connect (OSTI)

    Not Available

    1984-04-27

    Proponents of natural-gas fueled vehicles (NGVs) claim that the economic, environmental, and performance advantages have a potential market, particularly for large fleets. They also concede that obstacles in the form of price uncertainties, the lack of financial incentives, a weak service infrastructure, state and local taxes and regulations, the high cost of natural gas pumps, and competition from other fuel alternatives are major impediments. Gas utilities must promote the NGV market and the federal government must develop safety and environmental standards before the NGV industry can hope to develop a significant market. 6 references.

  6. The price of commitment in online stochastic vehicle routing

    SciTech Connect (OSTI)

    Bent, Russell W; Van Hentenryck, Pascal

    2009-01-01

    This paper considers online stochastic multiple vehicle routing with time windows in which requests arrive dynamically and the goal is to maximize the number of serviced customers. Early work has focused on very flexible routing settings where the decision to assign a vehicle to a customer is delayed until a vehicle is actually deployed to the customer. Motivated by real applications that require stability in the decision making, this paper considers a setting where the decision to assign a customer request to a vehicle must be taken when that request is accepted. Experimental results suggest that this constraint severely degrades the performance of existing algorithms. However, the paper shows how the use of stochastic information for vehicle assignment and request acceptance improves decision quality considerably. Moreover, the use of resource augmentation quantifies precisely the cost of commitment in online vehicle routing.

  7. Measurement and Characterization of Lean NOx Adsorber Regeneration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    mode Measurement and Characterization of Lean NOx Adsorber Regeneration and Desulfation and Controlling NOx from Multi-mode 2009 DOE Hydrogen Program and Vehicle Technologies...

  8. Diesel Soot Filter Characterization and Modeling for Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with DOW Automotive) Diesel Soot Filter Characterization and Modeling for Advanced Substrates (CRADA with DOW Automotive) Presentation from the U.S. DOE Office of Vehicle...

  9. Characterization of Thermo-Mechanical Behaviors of Advanced High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AHHS) Characterization of Thermo-Mechanical Behaviors of Advanced High Strength Steels (AHHS) Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008...

  10. Diesel Soot Filter Characterization and Modeling for Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and DOW Automotive) Diesel Soot Filter Characterization and Modeling for Advanced Substrates (CRADA and DOW Automotive) Presentation from the U.S. DOE Office of Vehicle...

  11. Dynamic Characterization of Spot Welds | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Welds Dynamic Characterization of Spot Welds Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland....

  12. Synthesis and Characterization of Silicon Clathrates for Anode...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Characterization of Silicon Clathrates for Anode Applications in Lithium-Ion Batteries 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual...

  13. In situ Characterizations of New Battery Materials and the Studies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characterizations of New Battery Materials and the Studies of High Energy Density Li-Air Batteries 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program...

  14. In Situ Characterizations of New Battery Materials and the Studies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characterizations of New Battery Materials and the Studies of High Energy Density Li-Air Batteries 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer...

  15. Method and system for reducing errors in vehicle weighing systems

    DOE Patents [OSTI]

    Hively, Lee M. (Philadelphia, TN); Abercrombie, Robert K. (Knoxville, TN)

    2010-08-24

    A method and system (10, 23) for determining vehicle weight to a precision of <0.1%, uses a plurality of weight sensing elements (23), a computer (10) for reading in weighing data for a vehicle (25) and produces a dataset representing the total weight of a vehicle via programming (40-53) that is executable by the computer (10) for (a) providing a plurality of mode parameters that characterize each oscillatory mode in the data due to movement of the vehicle during weighing, (b) by determining the oscillatory mode at which there is a minimum error in the weighing data; (c) processing the weighing data to remove that dynamical oscillation from the weighing data; and (d) repeating steps (a)-(c) until the error in the set of weighing data is <0.1% in the vehicle weight.

  16. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP)

    Broader source: Energy.gov [DOE]

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  17. Effects of Vehicle Speed and Engine Load on Motor Vehicle Emissions

    E-Print Network [OSTI]

    Kean, Andrew J.; Harley, Robert A.; Kendall, Gary R.

    2003-01-01

    Engine Load on Motor Vehicle Emissions ANDREW J. KEAN, † R Oknowledge regarding vehicle emissions, but questions remainbetween on-road vehicle emissions and changes in vehicle

  18. Effect of Intake Air Filter Condition on Light-Duty Gasoline Vehicles

    SciTech Connect (OSTI)

    Thomas, John F; Huff, Shean P; West, Brian H; Norman, Kevin M

    2012-01-01

    Proper maintenance can help vehicles perform as designed, positively affecting fuel economy, emissions, and the overall drivability. This effort investigates the effect of one maintenance factor, intake air filter replacement, with primary focus on vehicle fuel economy, but also examining emissions and performance. Older studies, dealing with carbureted gasoline vehicles, have indicated that replacing a clogged or dirty air filter can improve vehicle fuel economy and conversely that a dirty air filter can be significantly detrimental to fuel economy. The effect of clogged air filters on the fuel economy, acceleration and emissions of five gasoline fueled vehicles is examined. Four of these were modern vehicles, featuring closed-loop control and ranging in model year from 2003 to 2007. Three vehicles were powered by naturally aspirated, port fuel injection (PFI) engines of differing size and cylinder configuration: an inline 4, a V6 and a V8. A turbocharged inline 4-cylinder gasoline direct injection (GDI) engine powered vehicle was the fourth modern gasoline vehicle tested. A vintage 1972 vehicle equipped with a carburetor (open-loop control) was also examined. Results reveal insignificant fuel economy and emissions sensitivity of modern vehicles to air filter condition, but measureable effects on the 1972 vehicle. All vehicles experienced a measured acceleration performance penalty with clogged intake air filters.

  19. Electric-Drive Vehicle engineering

    E-Print Network [OSTI]

    Berdichevsky, Victor

    Electric-Drive Vehicle engineering COLLEGE of ENGINEERING Electric-driveVehicle engineers for 80 years t Home to nation's first electric-drive vehicle engineering program and alternative-credit EDGE Engineering Entrepreneur Certificate Program is a great addition to an electric-drive vehicle

  20. Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    fuel cost and emissions with a conventional vehicle. Select FuelTechnology Electric Hybrid Electric Plug-in Hybrid Electric Natural Gas (CNG) Flex Fuel (E85) Biodiesel (B20)...

  1. Improving Vehicle Efficiency, Reducing Dependence on Foreign Oil (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet provides an overview of the U.S. Department of Energy's Vehicle Technologies Program. Today, the United States spends about $400 billion each year on imported oil. To realize a secure energy future, America must break its dependence on imported oil and its volatile costs. The transportation sector accounts for about 70% of U.S. oil demand and holds tremendous opportunity to increase America's energy security by reducing oil consumption. That's why the U.S. Department of Energy (DOE) conducts research and development (R and D) on vehicle technologies which can stem America's dependence on oil, strengthen the economy, and protect the environment. Hybrid-electric and plug-in hybrid-electric vehicles can significantly improve fuel economy, displacing petroleum. Researchers are making batteries more affordable and recyclable, while enhancing battery range, performance, and life. This research supports President Obama's goal of putting 1 million electric vehicles on the road by 2015. The program is also working with businesses to develop domestic battery and electric-drive component plants to improve America's economic competitiveness globally. The program facilitates deployment of alternative fuels (ethanol, biodiesel, hydrogen, electricity, propane, and natural gas) and fuel infrastructures by partnering with state and local governments, universities, and industry. Reducing vehicle weight directly improves vehicle efficiency and fuel economy, and can potentially reduce vehicle operating costs. Cost-effective, lightweight, high-strength materials can significantly reduce vehicle weight without compromising safety. Improved combustion technologies and optimized fuel systems can improve near-and mid-term fuel economy by 25% for passenger vehicles and 20% for commercial vehicles by 2015, compared to 2009 vehicles. Reducing the use of oil-based fuels and lubricants in vehicles has more potential to improve the nation's energy security than any other action; even a 1% improvement in vehicle fuel efficiency would save consumers more than $4 billion annually.

  2. Electric and Hydrogen Vehicles Past and Progress

    E-Print Network [OSTI]

    Kammen, Daniel M.

    in performance · Practical NiMH batteries did not yet exist · Production hybrid cars did not yet exist · Andy · Transportation Propulsion, Fuels, & Emissions ­ Electric-drive vehicles (including plug-in hybrid and fuel Research (IMR) · Intelligent Transportation Systems (ITS) ­ Smart cars, smart parking, goods movement

  3. Comparing the Performance of SunDiesel and Conventional Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Performance of SunDiesel and Conventional Diesel in a Light-Duty Vehicle and Engines Comparing the Performance of SunDiesel and Conventional Diesel in a Light-Duty Vehicle and...

  4. Heavy Vehicle Propulsion System Materials Program Semiannual Progress Report for October 1998 Through March 1999

    SciTech Connect (OSTI)

    Johnson, R.D.

    1999-06-01

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OIT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55% efficiency and low emissions levels of 2.0 g/bhp-h NOX and 0.05 g/bhp-h particulate. The goal is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55% efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies. OIT OHVT also recognizes a significant opportunity for reduction in petroleum consumption by dieselization of pickup trucks, vans, and sport utility vehicles. Application of the diesel engine to class 1,2, and 3 trucks is expected to yield a 35% increase in fuel economy per vehicle. The foremost barrier to diesel use in this market is emission control. Once an engine is made certifiable, subsequent challenges will be in cost; noise, vibration, and harshness (NVH); and performance. The design of advanced components for high-efficiency diesel engines has, in some cases, pushed the performance envelope for materials of construction past the point of reliable operation. Higher mechanical and tribological stresses and higher temperatures of advanced designs limit the engine designer; advanced materials allow the design of components that may operate reliably at higher stresses and temperatures, thus enabling more efficient engine designs. Advanced materials also offer the opportunity to improve the emissions, NVH, and performance of diesel engines for pickup trucks, vans, and sport utility vehicles. The principal areas of research are: (1) Cost Effective High Performance Materials and Processing; (2) Advanced Manufacturing Technology; (3)Testing and Characterization; and (4) Materials and Testing Standards.

  5. Optimal Fleet Management Plan Excerpt from the Vehicle Allocation Methodology (VAM) required by

    E-Print Network [OSTI]

    US Army Corps of Engineers

    's Alternative Fuels and Advanced Vehicles Data Center: http://www.afdc.energy.gov/afdc/locator/stations/ which by Presidential Memorandum ­ Federal Fleet Performance, 24 May 2011 Alternative Fuel Vehicles (AFV): A) USACE hasOptimal Fleet Management Plan Excerpt from the Vehicle Allocation Methodology (VAM) required

  6. S/EV 91: Solar and electric vehicle symposium, car and trade show. Proceedings

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    These proceedings cover the fundamentals of electric vehicles. Papers on the design, testing and performance of the power supplies, drive trains, and bodies of solar and non-solar powered electric vehicles are presented. Results from demonstrations and races are described. Public policy on the economics and environmental impacts of using electric powered vehicles is also presented.

  7. 2011 Hyundai Sonata 4932 - Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid HEV (VIN KMHEC4A43BA004932). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  8. 2006 Lexus RX400h-4807 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Lexus RX900h hybrid electric vehicle (Vin Number JTJHW31U660004807). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  9. 2006 Lexus RX400h-2575 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Lexus RX900h hybrid electric vehicle (Vin Number JTJHW31U660002575). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  10. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for NASA Glenn Research Center

    SciTech Connect (OSTI)

    Schey, Stephen; Francfort, Jim

    2014-10-01

    The Advanced Vehicle Testing Activity’s study seeks to collect and evaluate data to validate the utilization of advanced plug-in electric vehicle (PEV) transportation. This report focuses on the NASA Glenn Research Center (GRC) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of PEVs into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements.

  11. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for National Institute of Health

    SciTech Connect (OSTI)

    Schey, Stephen; Francfort, Jim

    2014-11-01

    This report focuses on the National Institute of Health (NIH) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles, or PEVs) can fulfill the mission requirements.

  12. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for NASA White Sands Test Facility

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort

    2014-10-01

    This report focuses on the NASA White Sands Test Facility (WSTF) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles, or PEVs) can fulfill the mission requirements.

  13. Refueling stations for natural gas vehicles

    SciTech Connect (OSTI)

    Blazek, C.F.; Kinast, J.A.; Biederman, R.T.; Jasionowski, W.

    1991-01-01

    The unavailability of natural gas vehicle (NGV) refueling stations constitutes one of the major barriers to the wide spread utilization of natural gas in the transportation market. The purpose of this paper is to review and evaluate the current technical and economic status of compressed natural gas vehicle refueling stations and to identify the components or design features that offer the greatest potential for performance improvements and/or cost reductions. Both fast-fill- and slow-fill-type refueling systems will be discussed. 4 refs., 10 figs., 6 tabs.

  14. Autonomous & adaptive oceanographic feature tracking on board autonomous underwater vehicles

    E-Print Network [OSTI]

    Petillo, Stephanie Marie

    2015-01-01

    The capabilities of autonomous underwater vehicles (AUVs) and their ability to perform tasks both autonomously and adaptively are rapidly improving, and the desire to quickly and efficiently sample the ocean environment ...

  15. Comparison of various battery technologies for electric vehicles 

    E-Print Network [OSTI]

    Dickinson, Blake Edward

    1993-01-01

    for comparison of batteries were: performance, projected vehicle range, cost, and applicability to various types of EVs. The four battery technologies have individual strengths and weaknesses and each is suited to fill a particular application. None...

  16. Power Conditioning for Plug-In Hybrid Electric Vehicles 

    E-Print Network [OSTI]

    Farhangi, Babak

    2014-07-25

    , enacted by the United States Congress. Exchanging energy between the vehicle and external sources is performed by the vehicular power conditioner (VPC). This dissertation proposes a design procedure for VPCs. The research mainly focuses on the VPC’s power...

  17. Navigation System for Ground Vehicles using Temporally Interconnected Observers

    E-Print Network [OSTI]

    navigation technique for an automotive vehicle. This method involves several observers, each designed attitude measurements from an inertial measurement unit (IMU) is performed (at rest) on the launch platform

  18. Aerodynamic optimization of a solar powered race vehicle

    E-Print Network [OSTI]

    Augenbergs, Peteris K

    2006-01-01

    Aerodynamic optimization was performed on Tesseract, the MIT Solar Electric Vehicle Team's 2003-2005 solar car using Wind Tunnel 8 at Jacobs/Sverdrup Drivability Test Facility in Allen Park, MI. These tests include angle ...

  19. Performance, Efficiency, and Emissions Characterization of Reciprocating Internal Combustion Engines Fueled with Hydrogen/Natural Gas Blends

    SciTech Connect (OSTI)

    Kirby S. Chapman; Amar Patil

    2007-06-30

    Hydrogen is an attractive fuel source not only because it is abundant and renewable but also because it produces almost zero regulated emissions. Internal combustion engines fueled by compressed natural gas (CNG) are operated throughout a variety of industries in a number of mobile and stationary applications. While CNG engines offer many advantages over conventional gasoline and diesel combustion engines, CNG engine performance can be substantially improved in the lean operating region. Lean operation has a number of benefits, the most notable of which is reduced emissions. However, the extremely low flame propagation velocities of CNG greatly restrict the lean operating limits of CNG engines. Hydrogen, however, has a high flame speed and a wide operating limit that extends into the lean region. The addition of hydrogen to a CNG engine makes it a viable and economical method to significantly extend the lean operating limit and thereby improve performance and reduce emissions. Drawbacks of hydrogen as a fuel source, however, include lower power density due to a lower heating value per unit volume as compared to CNG, and susceptibility to pre-ignition and engine knock due to wide flammability limits and low minimum ignition energy. Combining hydrogen with CNG, however, overcomes the drawbacks inherent in each fuel type. Objectives of the current study were to evaluate the feasibility of using blends of hydrogen and natural gas as a fuel for conventional natural gas engines. The experiment and data analysis included evaluation of engine performance, efficiency, and emissions along with detailed in-cylinder measurements of key physical parameters. This provided a detailed knowledge base of the impact of using hydrogen/natural gas blends. A four-stroke, 4.2 L, V-6 naturally aspirated natural gas engine coupled to an eddy current dynamometer was used to measure the impact of hydrogen/natural gas blends on performance, thermodynamic efficiency and exhaust gas emissions in a reciprocating four stroke cycle engine. The test matrix varied engine load and air-to-fuel ratio at throttle openings of 50% and 100% at equivalence ratios of 1.00 and 0.90 for hydrogen percentages of 10%, 20% and 30% by volume. In addition, tests were performed at 100% throttle opening, with an equivalence ratio of 0.98 and a hydrogen blend of 20% to further investigate CO emission variations. Data analysis indicated that the use of hydrogen/natural gas fuel blend penalizes the engine operation with a 1.5 to 2.0% decrease in torque, but provided up to a 36% reduction in CO, a 30% reduction in NOX, and a 5% increase in brake thermal efficiency. These results concur with previous results published in the open literature. Further reduction in emissions can be obtained by retarding the ignition timing.

  20. Additional Development of a Dedicated Liquefied Petroleum Gas (LPG) Ultra Low Emissions Vehicle (ULEV)

    SciTech Connect (OSTI)

    IMPCO Technologies

    1998-10-28

    This report describes the last in a series of three projects designed to develop a commercially competitive LPG light-duty passenger car that meets California ULEV standards and corporate average fuel economy (CAFE) energy efficiency guidelines for such a vehicle. In this project, IMPCO upgraded the vehicle's LPG vapor fuel injection system and performed emissions testing. The vehicle met the 1998 ULEV standards successfully, demonstrating the feasibility of meeting ULEV standards with a dedicated LPG vehicle.

  1. P1.2 -- Hybrid Electric Vehicle and Lithium Polymer NEV Testing

    SciTech Connect (OSTI)

    J. Francfort

    2006-06-01

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity tests hybrid electric, pure electric, and other advanced technology vehicles. As part of this testing, 28 hybrid electric vehicles (HEV) are being tested in fleet, dynamometer, and closed track environments. This paper discusses some of the HEV test results, with an emphasis on the battery performance of the HEVs. It also discusses the testing results for a small electric vehicle with a lithium polymer traction battery.

  2. Performance Contracting 

    E-Print Network [OSTI]

    Goodin, E.

    2011-01-01

    vehicle to reach the city/district?s goals ? Make needed improvements ? Promote campus-wide energy efficiency ? Speed up renovation timeline ? Receive guaranteed results Schneider Electric ? Buildings Business ? CATEE 2011 8 City of Dallas...Performance Contracting ? A Resource for Energy Efficiency Projects Schneider Electric ? Buildings Business ? CATEE 2011 2 Top Challenges for Cities & Schools Tax Revenue Reductions Property values down, sales tax revenue down, etc Energy...

  3. AVTA: 2010 Electric Vehicles International Neighborhood Electric Vehicle Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe testing results of the 2010 Electric Vehicles International neighborhood electric vehicle. Neighborhood electric vehicles reach speeds of no more than 35 miles per hour and are only allowed on roads with speed limits of up to 35 miles per hour. This research was conducted by Idaho National Laboratory.

  4. Fuel performance improvement program: description and characterization of HBWR Series H-2, H-3, and H-4 test rods

    SciTech Connect (OSTI)

    Guenther, R.J.; Barner, J.O.; Welty, R.K.

    1980-03-01

    The fabrication process and as-built characteristics of the HBWR Series H-2 and H-3 test rods, as well as the three packed-particle (sphere-pac) rods in HBWR Series H-4 are described. The HBWR Series H-2, H-3, and H-4 tests are part of the irradiation test program of the Fuel Performance Improvement Program. Fifteen rods were fabricated for the three test series. Rod designs include: (1) a reference dished pellet design incorporating chamfered edges, (2) a chamfered, annular pellet design combined with graphite-coated cladding, and (3) a sphere-pac design. Both the annular-coated and sphere-pac designs include internal pressurization using helium.

  5. Fuel and emission impacts of heavy hybrid vehicles.

    SciTech Connect (OSTI)

    An, F.; Eberhardt, J. J.; Stodolsky, F.

    1999-03-02

    Hybrid powertrains for certain heavy vehicles may improve fuel economy and reduce emissions. Of particular interest are commercial vehicles, typically in Classes 3-6, that travel in urban areas. Hybrid strategies and associated energy/emissions benefits for these classes of vehicles could be significantly different from those for passenger cars. A preliminary analysis has been conducted to investigate the energy and emissions performance of Class 3 and 6 medium-duty trucks and Class 6 school buses under eight different test cycles. Three elements are associated with this analysis: (1) establish baseline fuel consumption and emission scenario's from selected, representative baseline vehicles and driving schedules; (2) identify sources of energy inefficiency from baseline technology vehicles; and (3) assess maximum and practical potentials for energy savings and emissions reductions associated with heavy vehicle hybridization under real-world driving conditions. Our analysis excludes efficiency gains associated with such other measures as vehicle weight reduction and air resistance reduction, because such measures would also benefit conventional technology vehicles. Our research indicates that fuel economy and emission benefits of hybridization can be very sensitive to different test cycles. We conclude that, on the basis of present-day technology, the potential fuel economy gains average about 60-75% for Class 3 medium-duty trucks and 35% for Class 6 school buses. The fuel economy gains can be higher in the future, as hybrid technology continues to improve. The practical emissions reduction potentials associated with vehicle hybridization are significant as well.

  6. Apparatus for stopping a vehicle

    DOE Patents [OSTI]

    Wattenburg, Willard H. (Walnut Creek, CA); McCallen, David B. (Livermore, CA)

    2007-03-20

    An apparatus for externally controlling one or more brakes on a vehicle having a pressurized fluid braking system. The apparatus can include a pressurizable vessel that is adapted for fluid-tight coupling to the braking system. Impact to the rear of the vehicle by a pursuit vehicle, shooting a target mounted on the vehicle or sending a signal from a remote control can all result in the fluid pressures in the braking system of the vehicle being modified so that the vehicle is stopped and rendered temporarily inoperable. A control device can also be provided in the driver's compartment of the vehicle for similarly rendering the vehicle inoperable. A driver or hijacker of the vehicle preferably cannot overcome the stopping action from the driver's compartment.

  7. Vehicle Technologies Office - AVTA: All Electric USPS Long Life...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    USPS Long Life Vehicle Conversions Vehicle Technologies Office - AVTA: All Electric USPS Long Life Vehicle Conversions The Vehicle Technologies Office's Advanced Vehicle Testing...

  8. Vehicle Technologies Office - AVTA: Hybrid-Electric Delivery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivery Vehicles Vehicle Technologies Office - AVTA: Hybrid-Electric Delivery Vehicles The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a...

  9. Methylotroph cloning vehicle

    DOE Patents [OSTI]

    Hanson, Richard S. (Deephaven, MN); Allen, Larry N. (Excelsior, MN)

    1989-04-25

    A cloning vehicle comprising: a replication determinant effective for replicating the vehicle in a non-C.sub.1 -utilizing host and in a C.sub.1 -utilizing host; DNA effective to allow the vehicle to be mobilized from the non-C.sub.1 -utilizing host to the C.sub.1 -utilizing host; DNA providing resistance to two antibiotics to which the wild-type C.sub.1 -utilizing host is susceptible, each of the antibiotic resistance markers having a recognition site for a restriction endonuclease; a cos site; and a means for preventing replication in the C.sub.1 -utilizing host. The vehicle is used for complementation mapping as follows. DNA comprising a gene from the C.sub.1 -utilizing organism is inserted at the restriction nuclease recognition site, inactivating the antibiotic resistance marker at that site. The vehicle can then be used to form a cosmid structure to infect the non-C.sub.1 -utilizing (e.g., E. coli) host, and then conjugated with a selected C.sub.1 -utilizing mutant. Resistance to the other antibiotic by the mutant is a marker of the conjugation. Other phenotypical changes in the mutant, e.g., loss of an auxotrophic trait, is attributed to the C.sub.1 gene. The vector is also used to inactivate genes whose protein products catalyze side reactions that divert compounds from a biosynthetic pathway to a desired product, thereby producing an organism that makes the desired product in higher yields.

  10. Proceedings of the Neighborhood Electric Vehicle Workshop

    E-Print Network [OSTI]

    Lipman, Timothy E.; Kurani, Kenneth S.; Sperling, Daniel

    1994-01-01

    Preferences for Electric Vehicles. Electric PowerResearchWilliam L. Garrison, "Electric Vehicle Potential in Hawaii,"Ro Warf Pacific Electric Vehicles Research and Development

  11. Proceedings of the Neighborhood Electric Vehicle Workshop

    E-Print Network [OSTI]

    Lipman, Timothy

    1994-01-01

    Preferences for Electric Vehicles. Electric Power ResearchWilliam L. Garrison, "Electric Vehicle Potential in Hawaii,"R. Warf Pacific Electric Vehicles Research and Development

  12. Vehicle Battery Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Battery Basics November 22, 2013 - 1:58pm Addthis Vehicle Battery Basics Batteries are essential for electric drive technologies such as hybrid electric vehicles...

  13. Vehicle Technologies Office: Events | Department of Energy

    Office of Environmental Management (EM)

    Vehicle Technologies Office: Events Vehicle Technologies Office: Events The Vehicle Technologies Office holds a number of events to advance research, development and deployment of...

  14. Commercial Vehicle Safety Alliance | Department of Energy

    Office of Environmental Management (EM)

    Commercial Vehicle Safety Alliance Commercial Vehicle Safety Alliance Commercial Vehicle Safety Alliance More Documents & Publications North American Standard Level VI Inspection...

  15. Commercial Motor Vehicle Brake-Related Research

    E-Print Network [OSTI]

    Commercial Motor Vehicle Brake-Related Research Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 Commercial Motor Vehicle Roadside Technology Corridor

  16. Vehicle Technologies Office Merit Review 2015: Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Energy Data Book, Vehicle Technologies Market Report, and VT Fact of the Week Vehicle Technologies Office Merit Review 2015: Transportation Energy Data Book, Vehicle...

  17. Vehicle Technologies Office Merit Review 2014: Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Energy Data Book, Vehicle Technologies Market Report, and VT Fact of the Week Vehicle Technologies Office Merit Review 2014: Transportation Energy Data Book, Vehicle...

  18. Proceedings of the Neighborhood Electric Vehicle Workshop

    E-Print Network [OSTI]

    Lipman, Timothy E.; Kurani, Kenneth S.; Sperling, Daniel

    1994-01-01

    Ro Warf Pacific Electric Vehicles Research and DevelopmentPreferences for Electric Vehicles. Electric PowerResearchWilliam L. Garrison, "Electric Vehicle Potential in Hawaii,"

  19. Proceedings of the Neighborhood Electric Vehicle Workshop

    E-Print Network [OSTI]

    Lipman, Timothy

    1994-01-01

    R. Warf Pacific Electric Vehicles Research and DevelopmentPreferences for Electric Vehicles. Electric Power ResearchWilliam L. Garrison, "Electric Vehicle Potential in Hawaii,"

  20. Quantifying the benefits of hybrid vehicles

    E-Print Network [OSTI]

    Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

    2006-01-01

    century. Hybrid electric vehicles (HEVs) reduce emissionsas plug-in HEVs and full electric vehicles to market. In theon their design, hybrid electric vehicles employ electric

  1. Incentive Policies for Neighborhood Electric Vehicles

    E-Print Network [OSTI]

    Lipman, Timothy E.; Kurani, Kenneth S.; Sperling, Daniel

    2001-01-01

    Developmentfor Neighborhood Electric Vehicles. Institute ofPaul. "Small and Electric: Vehicles With a Future." ResearchElectric Company. Electric Vehicle Program: Exhibit III

  2. Incentive Policies for Neighborhood Electric Vehicles

    E-Print Network [OSTI]

    Lipman, Timothy E.; Kuranu, Kenneth S.; Sperling, Daniel

    1994-01-01

    Developmentfor Neighborhood Electric Vehicles. Institute ofPaul. "Small and Electric: Vehicles With a Future." ResearchElectric Company. Electric Vehicle Program: Exhibit III

  3. Inhalation of Vehicle Emissions in Urban Environments

    E-Print Network [OSTI]

    Marshall, Julian David

    2005-01-01

    distances between vehicles, and emissions from neighboringgasoline on motor vehicle emissions. 2. 6 Volatile organicgasoline on motor vehicle emissions. 1. Mass emission rates.

  4. The Role of Human-Automation Consensus in Multiple Unmanned Vehicle Scheduling

    E-Print Network [OSTI]

    Cummings, M. L.

    Objective: This study examined the impact of increasing automation replanning rates on operator performance and workload when supervising a decentralized network of heterogeneous unmanned vehicles. Background: Futuristic ...

  5. The Role of Human-Automation Consensus in Multiple Unmanned Vehicle Scheduling

    E-Print Network [OSTI]

    Cummings, M.L.

    2010-01-01

    Objective: This study examined the impact of increasing automation replanning rates on operator performance and workload when supervising a decentralized network of heterogeneous unmanned vehicles. Background: Futuristic ...

  6. Implementation Approach for Plug-in Electric Vehicles at Joint Base Lewis McChord. Task 4

    SciTech Connect (OSTI)

    Schey, Stephen; Francfort, Jim

    2014-12-01

    This study focused on Joint Base Lewis McChord (JBLM), which is located in Washington State. Task 1 consisted of a survey of the non-tactical fleet of vehicles at JBLM to begin the review of vehicle mission assignments and the types of vehicles in service. In Task 2, daily operational characteristics of select vehicles were identified and vehicle movements were recorded in data loggers in order to characterize the vehicles’ missions. In Task 3, the results of the data analysis and observations were provided. Individual observations of the selected vehicles provided the basis for recommendations related to PEV adoption (i.e., whether a battery electric vehicle or plug-in hybrid electric vehicle [collectively referred to as PEVs] can fulfill the mission requirements0, as well as the basis for recommendations related to placement of PEV charging infrastructure. This report focuses on an implementation plan for the near-term adoption of PEVs into the JBLM fleet.

  7. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for the National Park Service: Grand Canyon National Park

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort; Ian Nienhueser

    2014-08-01

    This report focuses on the Grand Canyon National Park (GCNP) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of PEVs into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively PEVs) can fulfill the mission requirements.

  8. TSPA 1991: An initial total-system performance assessment for Yucca Mountain; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Barnard, R.W.; Wilson, M.L.; Dockery, H.A.; Kaplan, P.G.; Eaton, R.R.; Bingham, F.W. [Sandia National Labs., Albuquerque, NM (United States); Gauthier, J.H.; Robey, T.H. [Spectra Research Inst., Albuquerque, NM (United States)

    1992-07-01

    This report describes an assessment of the long-term performance of a repository system that contains deeply buried highly radioactive waste; the system is assumed to be located at the potential site at Yucca Mountain, Nevada. The study includes an identification of features, events, and processes that might affect the potential repository, a construction of scenarios based on this identification, a selection of models describing these scenarios (including abstraction of appropriate models from detailed models), a selection of probability distributions for the parameters in the models, a stochastic calculation of radionuclide releases for the scenarios, and a derivation of complementary cumulative distribution functions (CCDFs) for the releases. Releases and CCDFs are calculated for four categories of scenarios: aqueous flow (modeling primarily the existing conditions at the site, with allowances for climate change), gaseous flow, basaltic igneous activity, and human intrusion. The study shows that models of complex processes can be abstracted into more simplified representations that preserve the understanding of the processes and produce results consistent with those of more complex models.

  9. Social Vehicle Navigation: Integrating Shared Driving Experience into Vehicle Navigation

    E-Print Network [OSTI]

    Iftode, Liviu

    Vehicle Navigation system that integrates driver-provided information into a vehicle navigation system Systems Applications]: Miscellaneous; K.4.m [Computers and Society]: Miscellaneous General Terms Design, Human Factors Keywords Social networks, vehicular networks, navigation systems, human- computer

  10. Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  12. Vehicle Mass Impact on Vehicle Losses and Fuel Economy

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  13. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications: Conceptual vehicle design report pure fuel cell powertrain vehicle

    SciTech Connect (OSTI)

    Oei, D.; Kinnelly, A.; Sims, R.; Sulek, M.; Wernette, D.

    1997-02-01

    In partial fulfillment of the Department of Energy (DOE) Contract No. DE-AC02-94CE50389, {open_quotes}Direct-Hydrogen-Fueled Proton-Exchange-Membrane (PEM) Fuel Cell for Transportation Applications{close_quotes}, this preliminary report addresses the conceptual design and packaging of a fuel cell-only powered vehicle. Three classes of vehicles are considered in this design and packaging exercise, the Aspire representing the small vehicle class, the Taurus or Aluminum Intensive Vehicle (AIV) Sable representing the mid-size vehicle and the E-150 Econoline representing the van-size class. A fuel cell system spreadsheet model and Ford`s Corporate Vehicle Simulation Program (CVSP) were utilized to determine the size and the weight of the fuel cell required to power a particular size vehicle. The fuel cell power system must meet the required performance criteria for each vehicle. In this vehicle design and packaging exercise, the following assumptions were made: fuel cell power system density of 0.33 kW/kg and 0.33 kg/liter, platinum catalyst loading less than or equal to 0.25 mg/cm{sup 2} total and hydrogen tanks containing gaseous hydrogen under 340 atm (5000 psia) pressure. The fuel cell power system includes gas conditioning, thermal management, humidity control, and blowers or compressors, where appropriate. This conceptual design of a fuel cell-only powered vehicle will help in the determination of the propulsion system requirements for a vehicle powered by a PEMFC engine in lieu of the internal combustion (IC) engine. Only basic performance level requirements are considered for the three classes of vehicles in this report. Each vehicle will contain one or more hydrogen storage tanks and hydrogen fuel for 560 km (350 mi) driving range. Under these circumstances, the packaging of a fuel cell-only powered vehicle is increasingly difficult as the vehicle size diminishes.

  14. Vehicle Technologies Office: AVTA- Diesel Internal Combusion Engine Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Downloadable data on the following vehicles is available: 2014 Chevrolet Cruze Diesel, 2013 Volkswagen Jetta TDI, and 2009 Volkswagen Jetta TDI.

  15. Specialty Vehicles The first fuel cell vehicles were specialty

    E-Print Network [OSTI]

    for space applications. Union Carbide delivered a fuel cell scooter to the U.S. Army in 1967. PEM fuel cellsSpecialty Vehicles History The first fuel cell vehicles were specialty vehicles. Allis Chalmers built and demonstrated a tractor in 1959 utilizing an alkaline fuel cell that produced 20 horsepower

  16. USF PHYSICAL PLANT VEHICLE MAINTENANCE

    E-Print Network [OSTI]

    Meyers, Steven D.

    USF PHYSICAL PLANT VEHICLE MAINTENANCE TELEPHONE NO. 974-2500 GAS PUMP AUTHORIZATION FORM PLEASE. _____ THE FOLLOWING PERSONNEL ARE AUTHORIZED BY THIS DOCUMENT TO PUMP GASOLINE/DIESEL FUEL FOR OUR USF OWNED VEHICLES

  17. Parametrized maneuvers for autonomous vehicles

    E-Print Network [OSTI]

    Dever, Christopher W. (Christopher Walden), 1972-

    2004-01-01

    This thesis presents a method for creating continuously parametrized maneuver classes for autonomous vehicles. These classes provide useful tools for motion planners, bundling sets of related vehicle motions based on a ...

  18. AVTA: Ford Escape PHEV Advanced Research Vehicle 2010 Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a plug-in hybrid electric Ford Escape Advanced Research Vehicle, an experimental model not currently for sale. The baseline performance testing provides a point of comparison for the other test results. Taken together, these reports give an overall view of how this vehicle functions under extensive testing. This research was conducted by Idaho National Laboratory.

  19. VEHICLE OPERATING PROCEDURES DEPARTMENT OF BIOLOGICAL SCIENCE

    E-Print Network [OSTI]

    Ronquist, Fredrik

    VEHICLE OPERATING PROCEDURES DEPARTMENT OF BIOLOGICAL SCIENCE GENERAL INFORMATION Vehicles resposniblity and disciplinary action. Vehicles may be used by faculty or staff from other departments complete the vehicle usage agreement form certifying that they have a valid driver's license

  20. Appendix J - GPRA06 vehicle technologies program

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The target market for the Office of FreedomCAR and Vehicle Technologies (FCVT) program include light vehicles (cars and light trucks) and heavy vehicles (trucks more than 10,000 pounds Gross Vehicle Weight).

  1. Gasoline Ultra Fuel Efficient Vehicle

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  2. Battery Electric Vehicle Driving and Charging Behavior Observed Early in The EV Project

    SciTech Connect (OSTI)

    John Smart; Stephen Schey

    2012-04-01

    As concern about society's dependence on petroleum-based transportation fuels increases, many see plug-in electric vehicles (PEV) as enablers to diversifying transportation energy sources. These vehicles, which include plug-in hybrid electric vehicles (PHEV), range-extended electric vehicles (EREV), and battery electric vehicles (BEV), draw some or all of their power from electricity stored in batteries, which are charged by the electric grid. In order for PEVs to be accepted by the mass market, electric charging infrastructure must also be deployed. Charging infrastructure must be safe, convenient, and financially sustainable. Additionally, electric utilities must be able to manage PEV charging demand on the electric grid. In the Fall of 2009, a large scale PEV infrastructure demonstration was launched to deploy an unprecedented number of PEVs and charging infrastructure. This demonstration, called The EV Project, is led by Electric Transportation Engineering Corporation (eTec) and funded by the U.S. Department of Energy. eTec is partnering with Nissan North America to deploy up to 4,700 Nissan Leaf BEVs and 11,210 charging units in five market areas in Arizona, California, Oregon, Tennessee, and Washington. With the assistance of the Idaho National Laboratory, eTec will collect and analyze data to characterize vehicle consumer driving and charging behavior, evaluate the effectiveness of charging infrastructure, and understand the impact of PEV charging on the electric grid. Trials of various revenue systems for commercial and public charging infrastructure will also be conducted. The ultimate goal of The EV Project is to capture lessons learned to enable the mass deployment of PEVs. This paper is the first in a series of papers documenting the progress and findings of The EV Project. This paper describes key research objectives of The EV Project and establishes the project background, including lessons learned from previous infrastructure deployment and PEV demonstrations. One such previous study was a PHEV demonstration conducted by the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA), led by the Idaho National Laboratory (INL). AVTA's PHEV demonstration involved over 250 vehicles in the United States, Canada, and Finland. This paper summarizes driving and charging behavior observed in that demonstration, including the distribution of distance driven between charging events, charging frequency, and resulting proportion of operation charge depleting mode. Charging demand relative to time of day and day of the week will also be shown. Conclusions from the PHEV demonstration will be given which highlight the need for expanded analysis in The EV Project. For example, the AVTA PHEV demonstration showed that in the absence of controlled charging by the vehicle owner or electric utility, the majority of vehicles were charged in the evening hours, coincident with typical utility peak demand. Given this baseline, The EV Project will demonstrate the effects of consumer charge control and grid-side charge management on electricity demand. This paper will outline further analyses which will be performed by eTec and INL to documenting driving and charging behavior of vehicles operated in a infrastructure-rich environment.

  3. Heavy Vehicle Systems

    SciTech Connect (OSTI)

    Sid Diamond; Richard Wares; Jules Routbort

    2000-04-11

    Heavy Vehicle (HV) systems are a necessary component of achieving OHVT goals. Elements are in place for a far-ranging program: short, intermediate, and long-term. Solicitation will bring industrial input and support. Future funding trend is positive, outlook for HV systems is good.

  4. Vehicle Technologies Market Report

    E-Print Network [OSTI]

    billion in 2010 · The average price of a new car is just under $25,000 · Sixteen percent of household.2% · Nearly 14% of cars sold in 2010 have continuously variable transmissions · Two-thirds of new lightVehicle Technologies Market Report February 2012 2011 #12;Quick Facts Energy and Economics

  5. Quadrennial Technology Review Vehicle Efficiency and Electrification...

    Broader source: Energy.gov (indexed) [DOE]

    QTR Vehicle Efficiency and Electrification Workshop Documents Quadrennial Technology Review Vehicle Efficiency and Electrification Workshop Documents More Documents & Publications...

  6. Hybrid & Hydrogen Vehicle Research Laboratory

    E-Print Network [OSTI]

    Lee, Dongwon

    Hybrid & Hydrogen Vehicle Research Laboratory www.vss.psu.edu/hhvrl Joel R. Anstrom, Director 201 The Pennsylvania Transportation Institute Hybrid and Hydrogen Vehicle Research Laboratory will contribute to the advancement of hybrid and hydrogen vehicle technology to promote the emerging hydrogen economy by providing

  7. Vehicle Technologies Office- AVTA: All Electric USPS Long Life Vehicle Conversions

    Office of Energy Efficiency and Renewable Energy (EERE)

    The following set of reports (part of the medium and heavy-duty truck data) describes performance data collected from all-electric conversions of U.S. Postal Service (USPS) Long-Life Vehicles. This research was conducted by Idaho National Laboratory, which has several additional reports available.

  8. DRIVE Analysis Tool Generates Custom Vehicle Drive Cycles Based on Real-World Data (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-04-01

    This fact sheet from the National Renewable Energy Laboratory describes the Drive-Cycle Rapid Investigation, Visualization, and Evaluation (DRIVE) analysis tool, which uses GPS and controller area network data to characterize vehicle operation and produce custom vehicle drive cycles, analyzing thousands of hours of data in a matter of minutes.

  9. Methylotroph cloning vehicle

    DOE Patents [OSTI]

    Hanson, R.S.; Allen, L.N.

    1989-04-25

    A cloning vehicle comprising: a replication determinant effective for replicating the vehicle in a non-C[sub 1]-utilizing host and in a C[sub 1]-utilizing host; DNA effective to allow the vehicle to be mobilized from the non-C[sub 1]-utilizing host to the C[sub 1]-utilizing host; DNA providing resistance to two antibiotics to which the wild-type C[sub 1]-utilizing host is susceptible, each of the antibiotic resistance markers having a recognition site for a restriction endonuclease; a cos site; and a means for preventing replication in the C[sub 1]-utilizing host. The vehicle is used for complementation mapping as follows. DNA comprising a gene from the C[sub 1]-utilizing organism is inserted at the restriction nuclease recognition site, inactivating the antibiotic resistance marker at that site. The vehicle can then be used to form a cosmid structure to infect the non-C[sub 1]-utilizing (e.g., E. coli) host, and then conjugated with a selected C[sub 1]-utilizing mutant. Resistance to the other antibiotic by the mutant is a marker of the conjugation. Other phenotypical changes in the mutant, e.g., loss of an auxotrophic trait, is attributed to the C[sub 1] gene. The vector is also used to inactivate genes whose protein products catalyze side reactions that divert compounds from a biosynthetic pathway to a desired product, thereby producing an organism that makes the desired product in higher yields. 3 figs.

  10. Performance Enhancement of Cathodes with Conductive Polymers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhancement of Cathodes with Conductive Polymers Performance Enhancement of Cathodes with Conductive Polymers Presentation from the U.S. DOE Office of Vehicle Technologies "Mega"...

  11. Modeling the vehicle cycle impacts of hybrid electric vehicles

    SciTech Connect (OSTI)

    Wang, M.Q.; Gaines, L.; Cuenca, R. [Argonne National Lab., IL (United States). Center for Transportation Research

    1997-03-13

    Pure and hybrid electric vehicles, considered environmentally benign, are being developed to reduce urban air pollutant emissions. The obvious emissions benefit of pure electric vehicles is that they produce no tailpipe emissions. Hybrid electric vehicles have the potential of improving fuel economy and reducing emissions. However, both electric vehicles and hybrid electric vehicles (HEVs) do have their own environmental impacts. In order to quantify the potential benefits from introducing such vehicles, it is necessary to compare their impacts with those from the conventional vehicles they would replace. These impacts include energy use and emissions from the entire energy cycle, including fuel production, vehicle and battery production and recycling, and vehicle operation. Argonne`s previous work in collaboration with other national laboratories analyzed the total energy cycle of electric vehicles; this paper compares energy use and emissions for the total energy cycles of several HEV designs with those from modern conventional vehicles. The estimates presented indicate that use of HEVs can reduce energy use and emissions of greenhouse gases, volatile organic gases, carbon monoxide, and particulate matter smaller than 10 micrometers. HEVs may, in some cases, increase emissions of nitrogen oxides and sulfur oxides. Although some of the HEV designs illustrated in this paper could run a significant proportion of annual miles in all electric operation, no calculation of the emission reductions that result from using electricity from the utility grid is presented in this paper.

  12. NSF/DOE Thermoelectric Partnership: High-Performance Thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Performance Thermoelectric Devices Based on Abundant Silicide Materials for Vehicle Waste Heat Recovery NSFDOE Thermoelectric Partnership: High-Performance Thermoelectric...

  13. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for the National Park Service: Sleeping Bear Dunes National Lakeshore

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort

    2014-11-01

    This report focuses on the Sleeping Bear Dunes National Lakeshore (SLBE) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles, or PEVs) can fulfill the mission requirements.

  14. Plug-In Hybrid Vehicle Analysis (Milestone Report)

    SciTech Connect (OSTI)

    Markel, T.; Brooker, A.; Gonder, J.; O'Keefe, M.; Simpson, A.; Thornton, M.

    2006-11-01

    NREL's plug-in hybrid electric vehicle (PHEV) analysis activities made great strides in FY06 to objectively assess PHEV technology, support the larger U.S. Department of Energy PHEV assessment effort, and share technical knowledge with the vehicle research community and vehicle manufacturers. This report provides research papers and presentations developed in FY06 to support these efforts. The report focuses on the areas of fuel economy reporting methods, cost and consumption benefit analysis, real-world performance expectations, and energy management strategies.

  15. 2007 Nissan Altima-2351 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's (DOE) Advanced Vehicle Testing Activity (AVTA) conducts several different types of tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of on-road accelerated testing. This report documents the battery testing performed and the battery testing results for the 2007 Nissan Altima HEV, number 2351 (VIN 1N4CL21E87C172351). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec). The Idaho National Laboratory and eTec conduct the AVTA for DOE’s Vehicle Technologies Program.

  16. Rapid road repair vehicle

    DOE Patents [OSTI]

    Mara, Leo M. (Livermore, CA)

    1998-01-01

    Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find an the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was was heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past.

  17. Rapid road repair vehicle

    DOE Patents [OSTI]

    Mara, L.M.

    1998-05-05

    Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find at the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was not heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past. 2 figs.

  18. Accomodating Electric Vehicles 

    E-Print Network [OSTI]

    Aasheim, D.

    2011-01-01

    ? New Building Construction & Core & Shell (SSc4.3) ? Up to 3 LEED points ? Existing Building (SSc4) ? 3-15 LEED points available Retail Benefits ? Green Differentiator ? Business associated with EV locator sites ? Vehicle GPS + websites... ? Encourage Sales Behavior ? Park/shop where EVSE is located ? Advertise on blink screen ? Discount or Free charge with minimum purchase (Host controls pricing) Recent Additions to the blink Network ? Nissan?s Smyrna Plant Solar EV Carport- Tennessee...

  19. Unmanned Aerospace Vehicle Workshop

    SciTech Connect (OSTI)

    Vitko, J. Jr.

    1995-04-01

    The Unmanned Aerospace Vehicle (UAV) Workshop concentrated on reviewing and refining the science experiments planned for the UAV Demonstration Flights (UDF) scheduled at the Oklahoma Cloud and Radiation Testbed (CART) in April 1994. These experiments were focused around the following sets of parameters: Clear sky, daylight; Clear-sky, night-to-day transition; Clear sky - improve/validate the accuracy of radiative fluxes derived from satellite-based measurements; Daylight, clouds of opportunity; and, Daylight, broken clouds.

  20. Vehicle Technologies Office News

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY 2009,BiofuelsLetEnergy VehicleTechnology

  1. Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle ReplacementStates andMeasures | Department of

  2. Alternative Fuel Vehicles: The Case of Compressed Natural Gas (CNG) Vehicles in California Households

    E-Print Network [OSTI]

    Abbanat, Brian A.

    2001-01-01

    Infrastructure F. Current California CNG Vehicle UseCharacteristics of CNG Vehicles Review of Previous Studies/RP) Studies of AFVs/CNG Vehicles i. British Columbia, Canada

  3. Designing On-Road Vehicle Test Programs for the Development of Effective Vehicle Emission Models

    E-Print Network [OSTI]

    Younglove, T; Scora, G; Barth, M

    2005-01-01

    Uncertainty in Highway Vehicle Emission Factors,” EmissionPrograms for Effective Vehicle Emission Model DevelopmentU.S. EPA’s Mobile Vehicle Emission Simulator) are becoming

  4. Optimization of a CNG series hybrid concept vehicle

    SciTech Connect (OSTI)

    Aceves, S.M.; Smith, J.R.; Perkins, L.J.; Haney, S.W.; Flowers, D.L.

    1995-09-22

    Compressed Natural Gas (CNG) has favorable characteristics as a vehicular fuel, in terms of fuel economy as well as emissions. Using CNG as a fuel in a series hybrid vehicle has the potential of resulting in very high fuel economy (between 26 and 30 km/liter, 60 to 70 mpg) and very low emissions (substantially lower than Federal Tier II or CARB ULEV). This paper uses a vehicle evaluation code and an optimizer to find a set of vehicle parameters that result in optimum vehicle fuel economy. The vehicle evaluation code used in this analysis estimates vehicle power performance, including engine efficiency and power, generator efficiency, energy storage device efficiency and state-of-charge, and motor and transmission efficiencies. Eight vehicle parameters are selected as free variables for the optimization. The optimum vehicle must also meet two perfect requirements: accelerate to 97 km/h in less than 10 s, and climb an infinitely long hill with a 6% slope at 97 km/h with a 272 kg (600 lb.) payload. The optimizer used in this work was originally developed in the magnetic fusion energy program, and has been used to optimize complex systems, such as magnetic and inertial fusion devices, neutron sources, and mil guns. The optimizer consists of two parts: an optimization package for minimizing non-linear functions of many variables subject to several non-linear equality and/or inequality constraints and a programmable shell that allows interactive configuration and execution of the optimizer. The results of the analysis indicate that the CNG series hybrid vehicle has a high efficiency and low emissions. These results emphasize the advantages of CNG as a near-term alternative fuel for vehicles.

  5. Hybrid and Plug-in Electric Vehicles

    SciTech Connect (OSTI)

    2014-05-20

    Hybrid and plug-in electric vehicles use electricity either as their primary fuel or to improve the efficiency of conventional vehicle designs. This new generation of vehicles, often called electric drive vehicles, can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles(PHEVs), and all-electric vehicles (EVs). Together, they have great potential to reduce U.S. petroleum use.

  6. Statistical Characterization of School Bus Drive Cycles Collected via Onboard Logging Systems

    SciTech Connect (OSTI)

    Duran, A.; Walkowicz, K.

    2013-10-01

    In an effort to characterize the dynamics typical of school bus operation, National Renewable Energy Laboratory (NREL) researchers set out to gather in-use duty cycle data from school bus fleets operating across the country. Employing a combination of Isaac Instruments GPS/CAN data loggers in conjunction with existing onboard telemetric systems resulted in the capture of operating information for more than 200 individual vehicles in three geographically unique domestic locations. In total, over 1,500 individual operational route shifts from Washington, New York, and Colorado were collected. Upon completing the collection of in-use field data using either NREL-installed data acquisition devices or existing onboard telemetry systems, large-scale duty-cycle statistical analyses were performed to examine underlying vehicle dynamics trends within the data and to explore vehicle operation variations between fleet locations. Based on the results of these analyses, high, low, and average vehicle dynamics requirements were determined, resulting in the selection of representative standard chassis dynamometer test cycles for each condition. In this paper, the methodology and accompanying results of the large-scale duty-cycle statistical analysis are presented, including graphical and tabular representations of a number of relationships between key duty-cycle metrics observed within the larger data set. In addition to presenting the results of this analysis, conclusions are drawn and presented regarding potential applications of advanced vehicle technology as it relates specifically to school buses.

  7. Vehicle Technologies Office- AVTA: Hybrid-Electric Delivery Vehicles

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following set of reports describes data collected from testing on FedEx Express and UPS hybrid-electric delivery trucks. This research was conducted by the National Renewable Energy Laboratory (NREL).

  8. Vehicle technologies heavy vehicle program : FY 2008 benefits analysis, methodology and results --- final report.

    SciTech Connect (OSTI)

    Singh, M.; Energy Systems; TA Engineering

    2008-02-29

    This report describes the approach to estimating the benefits and analysis results for the Heavy Vehicle Technologies activities of the Vehicle Technologies (VT) Program of EERE. The scope of the effort includes: (1) Characterizing baseline and advanced technology vehicles for Class 3-6 and Class 7 and 8 trucks, (2) Identifying technology goals associated with the DOE EERE programs, (3) Estimating the market potential of technologies that improve fuel efficiency and/or use alternative fuels, and (4) Determining the petroleum and greenhouse gas emissions reductions associated with the advanced technologies. In FY 08 the Heavy Vehicles program continued its involvement with various sources of energy loss as compared to focusing more narrowly on engine efficiency and alternative fuels. These changes are the result of a planning effort that first occurred during FY 04 and was updated in the past year. (Ref. 1) This narrative describes characteristics of the heavy truck market as they relate to the analysis, a description of the analysis methodology (including a discussion of the models used to estimate market potential and benefits), and a presentation of the benefits estimated as a result of the adoption of the advanced technologies. The market penetrations are used as part of the EERE-wide integrated analysis to provide final benefit estimates reported in the FY08 Budget Request. The energy savings models are utilized by the VT program for internal project management purposes.

  9. DOE Hybrid and Electric Vehicle Test Platform

    SciTech Connect (OSTI)

    Gao, Yimin [Advanced Vehicle Research Center, Danville, VA (United States)

    2012-03-31

    Based on the contract NT-42790 to the Department of Energy, “Plug-in Hybrid Ethanol Research Platform”, Advanced Vehicle Research Center (AVRC) Virginia has successfully developed the phase I electric drive train research platform which has been named as Laboratory Rapid Application Testbed (LabRAT). In phase II, LabRAT is to be upgraded into plug-in hybrid research platform, which will be capable of testing power systems for electric vehicles, and plug-in hybrid electric vehicles running on conventional as well as alternative fuels. LabRAT is configured as a rolling testbed with plentiful space for installing various component configurations. Component connections are modularized for flexibility and are easily replaced for testing various mechanisms. LabRAT is designed and built as a full functional vehicle chassis with a steering system, brake system and four wheel suspension. The rear drive axle offers maximum flexibility with a quickly changeable gear ratio final drive to accommodate different motor speed requirements. The electric drive system includes an electric motor which is mechanically connected to the rear axle through an integrated speed/torque sensor. Initially, a 100 kW UQM motor and corresponding UQM motor controller is used which can be easily replaced with another motor/controller combination. A lithium iron phosphate (LiFePO4) battery pack is installed, which consists of 108 cells of 100 AH capacity, giving the total energy capacity of 32.5 kWh. Correspondingly, a fully functional battery management system (BMS) is installed to perform battery cell operation monitoring, cell voltage balancing, and reporting battery real time operating parameters to vehicle controller. An advanced vehicle controller ECU is installed for controlling the drive train. The vehicle controller ECU receives traction or braking torque command from driver through accelerator and brake pedal position sensors and battery operating signals from the BMS through CAN BUS, and then generates motor torque command (traction or braking) to the motor controller based on the control algorithm software embedded in the vehicle controller ECU. The vehicle controller ECU is a re-programmable electronic control unit. Any control algorithm software developed can be easily downloaded to vehicle controller ECU to test any newly developed control strategy. The flexibility of the control system significantly enhances the practical applicability of the LabRAT. A new test methodology has been developed for the LabRAT simulating any vehicles running on road with different weights from compact passenger car to light duty truck on an AC or eddy current dynamometers without much effort for modification of the system. LabRAT is equipped with a fully functional data acquisition system supplied by CyberMetrix. The measurement points along the drive train are DC electric power between battery pack and motor controller input, AC electric power between motor controller and electric motor, mechanical power between motor and rear axle. The data acquisition system is designed with more capability than current requirements in order to meet the requirements for phase II.

  10. Vehicle Technologies Office Merit Review 2015: Electric Vehicle Grid Integration

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric...

  11. Vehicle Technologies Office Recognizes Leaders in Advanced Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    have greatly furthered plug-in electric vehicle-grid connectivity, interoperability, and wireless charging. Gi-Heon Kim (National Renewable Energy Laboratory): Mr. Kim's research...

  12. Vehicle Technologies Office Merit Review 2014: Consumer Vehicle Technology Data

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about consumer...

  13. Vehicle Technologies Office Merit Review 2014: Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    Presentation given by Intertek at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about testing and evaluating advanced...

  14. Vehicle Technologies Office Merit Review 2015: Consumer Vehicle...

    Energy Savers [EERE]

    Data Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  15. Data Needs for Evolving Motor Vehicle Emission Modeling Approaches

    E-Print Network [OSTI]

    Guensler, Randall

    1993-01-01

    Agency; Highway Vehicle Emission Estimates; Office offor Evolving Motor Vehicle Emission Modeling Approachesfor Evolving Motor Vehicle Emission Modeling Approaches

  16. Using lightweight unmanned aerial vehicles to monitor tropical forest recovery

    E-Print Network [OSTI]

    Zahawi, RA; Dandois, JP; Holl, KD; Nadwodny, D; Reid, JL; Ellis, EC

    2015-01-01

    Lightweight unmanned aerial vehicles will revolutionizelightweight unmanned aerial vehicles to monitor tropicalfrom lightweight unmanned aerial vehicles (UAV) are a cost-

  17. Future Emissions Impact On Off-Road Vehicles

    SciTech Connect (OSTI)

    Kirby Baumgard; Steve Ephraim

    2001-04-18

    Summaries of paper: Emission requirements dictate vehicle update cycles; Packaging, performance and cost impacted; Styling updates can be integrated; Opportunity to integrate features and performance; Non-uniform regulations challenge resources; and Customers won't expect to pay more or receive less.

  18. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-05-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  19. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  20. Vehicle Technologies Office: Power Electronics Research and Developmen...

    Office of Environmental Management (EM)

    drive vehicles. Vehicle power electronics primarily process and control the flow of electrical energy in hybrid and plug-in electric vehicles, including plug-in electric vehicles....