Sample records for vehicle performance characterization

  1. Field Operations Program, Toyota PRIUS Hybrid Electric Vehicle Performance Characterization Report

    SciTech Connect (OSTI)

    Francfort, James Edward; Nguyen, N.; Phung, J.; Smith, J.; Wehrey, M.

    2001-12-01T23:59:59.000Z

    The U.S. Department of Energy’s Field Operations Program evaluates advanced technology vehicles in real-world applications and environments. Advanced technology vehicles include pure electric, hybrid electric, hydrogen, and other vehicles that use emerging technologies such as fuel cells. Information generated by the Program is targeted to fleet managers and others considering the deployment of advanced technology vehicles. As part of the above activities, the Field Operations Program has initiated the testing of the Toyota Prius hybrid electric vehicle (HEV), a technology increasingly being considered for use in fleet applications. This report describes the Pomona Loop testing of the Prius, providing not only initial operational and performance information, but also a better understanding of HEV testing issues. The Pomona Loop testing includes both Urban and Freeway drive cycles, each conducted at four operating scenarios that mix minimum and maximum payloads with different auxiliary (e.g., lights, air conditioning) load levels.

  2. Performance Characterization

    Broader source: Energy.gov [DOE]

    Performance characterization efforts within the SunShot Systems Integration activities focus on collaborations with U.S. solar companies to:

  3. General Vehicle Performance Specifications for the UPRM AUV Vehicle Specifications

    E-Print Network [OSTI]

    Gilbes, Fernando

    General Vehicle Performance Specifications for the UPRM AUV Vehicle Specifications Vehicle Characteristics Specification Maximum Depth 700m with 1.5 safety factor Vehicle power 2kWHr Li Ion Rechargeable Transducer 700m rated Paroscientific Depth Sensor will be integrated into the vehicle navigation stream

  4. Performance Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPO WebsitePalmsthe Price (Percent) YearPerformance

  5. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01T23:59:59.000Z

    ultracapacitors, fuel cells and hybrid vehicle design. Dr.on electric and hybrid vehicle technology and applicationsand performance. Hybrid vehicles utilizing a load leveling

  6. CHARACTERIZATION OF WILD PIG VEHICLE COLLISIONS

    SciTech Connect (OSTI)

    Mayer, J; Paul E. Johns, P

    2007-05-23T23:59:59.000Z

    Wild pig (Sus scrofa) collisions with vehicles are known to occur in the United States, but only minimal information describing these accidents has been reported. In an effort to better characterize these accidents, data were collected from 179 wild pig-vehicle collisions from a location in west central South Carolina. Data included accident parameters pertaining to the animals involved, time, location, and human impacts. The age structure of the animals involved was significantly older than that found in the population. Most collisions involved single animals; however, up to seven animals were involved in individual accidents. As the number of animals per collision increased, the age and body mass of the individuals involved decreased. The percentage of males was significantly higher in the single-animal accidents. Annual attrition due to vehicle collisions averaged 0.8 percent of the population. Wild pig-vehicle collisions occurred year-round and throughout the 24-hour daily time period. Most accidents were at night. The presence of lateral barriers was significantly more frequent at the collision locations. Human injuries were infrequent but potentially serious. The mean vehicle damage estimate was $1,173.

  7. Smith Newton Vehicle Performance Evaluation - Cumulative (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-08-01T23:59:59.000Z

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  8. Vehicle Technologies Office Merit Review 2014: Battery Thermal Characterization

    Broader source: Energy.gov [DOE]

    Presentation given by NREL at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about battery thermal characterization.

  9. Smith Newton Vehicle Performance Evaluation (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-08-01T23:59:59.000Z

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. Through this project, Smith Electric Vehicles will build and deploy 500 all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country.

  10. Diagnostic Characterization of High-Power Lithium-Ion Batteries For Use in Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Diagnostic Characterization of High-Power Lithium-Ion Batteries For Use in Hybrid Electric Vehicles generated specifically for performance characterization of these batteries in HEV applications in contrast to the constant-current profiles typically used in the characterization of lithium-ion batteries for portable

  11. Performance Comparison of Hybrid Vehicle Energy Management Controllers on Real-World Drive Cycle Data

    E-Print Network [OSTI]

    Grizzle, Jessy W.

    Performance Comparison of Hybrid Vehicle Energy Management Controllers on Real-World Drive Cycle. Hybrid vehicles are characterized by multiple energy sources; the strategy to control the energy flow Data Daniel F. Opila, Xiaoyong Wang, Ryan McGee, Jeffrey A. Cook, and J.W. Grizzle Abstract-- Hybrid

  12. Vehicle Technologies Office Merit Review 2014: Performance of...

    Broader source: Energy.gov (indexed) [DOE]

    Performance of Biofuels and Biofuel Blends Vehicle Technologies Office Merit Review 2014: Performance of Biofuels and Biofuel Blends Presentation given by NREL at 2014 DOE Hydrogen...

  13. Vehicle Technologies Office: AVTA- Start-Stop (Micro) Hybrid Vehicles Performance Data

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Performance and testing data on the stop-start hybrid versions of the following vehicles is available: 2010 Smart Fortwo, 2010 Volkswagen Golf Diesel, and 2010 Mazda3 Hatchback.

  14. Electronic Vehicle Identification: Industry Standards, Performance, and Privacy Issues

    E-Print Network [OSTI]

    Texas at Austin, University of

    0-5217-P2 Electronic Vehicle Identification: Industry Standards, Performance, and Privacy Issues Authors: Dr. Khali Persad Dr. C. Michael Walton Shahriyar Hussain Project 0-5217: Vehicle/License Plate. Privacy concerns regarding collection and use of data on vehicle movements are examined in the context

  15. Analysis of Electric Vehicle Battery Performance Targets

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  16. A Review of High Occupancy Vehicle (HOV) Lane Performance and...

    Open Energy Info (EERE)

    High Occupancy Vehicle (HOV) Lane Performance and Policy Options in the United States: Final Report Jump to: navigation, search Tool Summary LAUNCH TOOL Name: A Review of High...

  17. Vehicle Technologies Office Merit Review 2014: Performance and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Reliability of Bonded Interfaces for High-Temperature Packaging Vehicle Technologies Office Merit Review 2014: Performance and Reliability of Bonded Interfaces for...

  18. Vehicle Technologies Office: AVTA- All-Electric Vehicle (Car) Performance Data

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Downloadable performance and testing data on the all-electric versions of the following vehicles is available: 2014 Smart Electric Drive Coupe, 2013 Ford Focus, 2013 Nissan Leaf, 2012 Mitsubishi i-MiEV, 2012 Nissan Leaf, 2011 Nissan Leaf, 2010 USPS eLLV Conversions, and 2009 BMW Mini-E.

  19. Point Source Detection and Characterization for Vehicle Radiation Portal Monitors

    SciTech Connect (OSTI)

    Runkle, Robert C.; Mercier, Terre M.; Anderson, Kevin K.; Carlson, Deborah K.

    2005-12-01T23:59:59.000Z

    Many international border crossings presently screen cargo for illicit nuclear material using radiation portal monitors that measure the gamma ray and/or neutron flux emitted by vehicles. The fact that many target sources have a point-like geometry can be exploited to detect sub-threshold sources and filter out benign sources that frequently possess a distributed geometry. This report describes a two-step process, which has the potential to complement other alarm algorithms, for detecting and characterizing point sources. The first step applies a matched filter whereas step two uses maximum likelihood estimation. In a base-case simulation, matched filtering detected a 250-cps source injected onto a white-noise background at a 95-percent detection probability and a 0.003 false alarm probability. For the same simulation, the probability of success for the maximum likelihood estimation technique performed well at source strengths of 250 and 400 cps. These simulations provided a best-case feasibility study for this technique, which will be extended to experimental data that possess false point-source signatures resulting from background shielding caused by vehicle design and cargo distribution.

  20. A study in hybrid vehicle architectures : comparing efficiency and performance

    E-Print Network [OSTI]

    Cotter, Gavin M

    2009-01-01T23:59:59.000Z

    This paper presents a comparison of performance and efficiencies for four vehicle power architectures; the internal combustion engine (ICE), the parallel hybrid (i.e. Toyota Prius), the serial hybrid (i.e. Chevrolet Volt), ...

  1. Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles Scalable,...

  2. Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles...

  3. In-Use Performance Results of Medium Duty Electric Vehicles (Presentation)

    SciTech Connect (OSTI)

    Walkowicz, K.

    2012-07-01T23:59:59.000Z

    This presentation describes a DOE program to monitor and report on vehicle performance and energy utilization of medium-duty and heavy-duty electric vehicles.

  4. Smith Newton Vehicle Performance Evaluation - 1st Quarter 2014 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01T23:59:59.000Z

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  5. Smith Newton Vehicle Performance Evaluation - Gen2 - 2013 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01T23:59:59.000Z

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  6. Smith Newton Vehicle Performance Evaluation - Gen 2 - Cumulative (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-08-01T23:59:59.000Z

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  7. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01T23:59:59.000Z

    simulation tool for hydrogen fuel cell vehicles, Journal ofeconomies of the direct hydrogen fuel cell vehicle withoutMaximizing Direct-Hydrogen Pem Fuel Cell Vehicle Efficiency-

  8. Electric Vehicles: Performances, Life Cycle Costs, Emissions, and Recharging Requirements

    E-Print Network [OSTI]

    DeLuchi, Mark A.; Wang, Quanlu; Sperling, Daniel

    1989-01-01T23:59:59.000Z

    Sealed lead-acid electric and vehicle battery development.A. (1987a) ture for electric vehicles. In Resources ElectricInternational Conference. Electric Vehicle De- Universityof

  9. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01T23:59:59.000Z

    in batteries, ultracapacitors, fuel cells and hybrid vehicleBattery, Hybrid and Fuel Cell Electric Vehicle SymposiumBattery, Hybrid and Fuel Cell Electric Vehicle Symposium

  10. Real-time Vehicle Reidentification System for Freeway Performance Measurements

    E-Print Network [OSTI]

    Jeng, Shin-Ting

    2007-01-01T23:59:59.000Z

    Tok, A. (2005). “Anonymous Vehicle Tracking for Real-timeField Investigation of Advanced Vehicle Reidentificationvariance, land changing, and vehicle heterogeneity. In:

  11. Hybrid Electric Vehicle Fleet and Baseline Performance Testing

    SciTech Connect (OSTI)

    J. Francfort; D. Karner

    2006-04-01T23:59:59.000Z

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity (AVTA) conducts baseline performance and fleet testing of hybrid electric vehicles (HEV). To date, the AVTA has completed baseline performance testing on seven HEV models and accumulated 1.4 million fleet testing miles on 26 HEVs. The HEV models tested or in testing include: Toyota Gen I and Gen II Prius, and Highlander; Honda Insight, Civic and Accord; Chevrolet Silverado; Ford Escape; and Lexus RX 400h. The baseline performance testing includes dynamometer and closed track testing to document the HEV’s fuel economy (SAE J1634) and performance in a controlled environment. During fleet testing, two of each HEV model are driven to 160,000 miles per vehicle within 36 months, during which maintenance and repair events, and fuel use is recorded and used to compile life-cycle costs. At the conclusion of the 160,000 miles of fleet testing, the SAE J1634 tests are rerun and each HEV battery pack is tested. These AVTA testing activities are conducted by the Idaho National Laboratory, Electric Transportation Applications, and Exponent Failure Analysis Associates. This paper discusses the testing methods and results.

  12. Vehicle Technologies Office Merit Review 2014: Catalyst Characterization (Agreement ID:9130) Project ID:18519

    Broader source: Energy.gov [DOE]

    Presentation given by Cummins at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about catalyst characterization.

  13. Statistical Characterization of Medium-Duty Electric Vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    new EVs. Within the medium- and heavy-duty commercial vehicle segment, both the Smith Electric Newton and Navistar eStar vehicles qualified for such funding opportunities....

  14. Smith Newton Vehicle Performance Evaluation - 3rd Quarter 2012 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01T23:59:59.000Z

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. Through this project, Smith Electric Vehicles will build and deploy 500 all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country.

  15. Performance Characteristics of the First, State-of-the-art Electric Vehicle Implemented in Chile

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    Performance Characteristics of the First, State-of-the-art Electric Vehicle Implemented in Chile@ing.puc.cl *University of Concepción Abstract The first, state-of-the-art electric vehicle implemented in Chile to transform a conventional ICE truck to an electric vehicle. The vehicle used for this transformation

  16. Exhaust particle characterization for lean and stoichiometric DI vehicles operating on ethanol-gasoline blends

    SciTech Connect (OSTI)

    Storey, John Morse [ORNL] [ORNL; Barone, Teresa L [ORNL] [ORNL; Thomas, John F [ORNL] [ORNL; Huff, Shean P [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    Gasoline direct injection (GDI) engines can offer better fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet the U.S. fuel economy standards for 2016. Furthermore, lean-burn GDI engines can offer even higher fuel economy than stoichiometric GDI engines and have overcome challenges associated with cost-effective aftertreatment for NOx control. Along with changes in gasoline engine technology, fuel composition may increase in ethanol content beyond the current 10% due to the recent EPA waiver allowing 15% ethanol. In addition, the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA) mandates the use of biofuels in upcoming years. GDI engines are of environmental concern due to their high particulate matter (PM) emissions relative to port-fuel injected (PFI) gasoline vehicles; widespread market penetration of GDI vehicles may result in additional PM from mobile sources at a time when the diesel contribution is declining. In this study, we characterized particulate emissions from a European certified lean-burn GDI vehicle operating on ethanol-gasoline blends. Particle mass and particle number concentration emissions were measured for the Federal Test Procedure urban driving cycle (FTP 75) and the more aggressive US06 driving cycle. Particle number-size distributions and organic to elemental carbon ratios (OC/EC) were measured for 30 MPH and 80 MPH steady-state operation. In addition, particle number concentration was measured during wide open throttle accelerations (WOTs) and gradual accelerations representative of the FTP 75. Fuels included certification gasoline and 10% (E10) and 20% (E20) ethanol blends from the same supplier. The particle mass emissions were approximately 3 and 7 mg/mile for the FTP75 and US06, respectively, with lower emissions for the ethanol blends. The data are compared to a previous study on a U.S.-legal stoichiometric GDI vehicle operating on the same ethanol blends. The lean-burn GDI vehicle emitted a higher number of particles, but had an overall smaller average size. Particle number per mile decreased with increasing ethanol content for the transient tests. For the 30 and 80 mph tests, particle number concentration decreased with increasing ethanol content, although the shape of the particle size distribution remained the same. Engine-out OC/EC ratios were highest for the stoichiometric GDI vehicle with E20, but tailpipe OC/EC ratios were similar for all vehicles.

  17. Electric Vehicle Performance at McMurdo Station (Antarctica) and Comparison with McMurdo Station Conventional Vehicles

    SciTech Connect (OSTI)

    Sears, T.; Lammert, M.; Colby, K.; Walter, R.

    2014-09-01T23:59:59.000Z

    This report examines the performance of two electric vehicles (EVs) at McMurdo, Antarctica (McMurdo). The study examined the performance of two e-ride Industries EVs initially delivered to McMurdo on February 16, 2011, and compared their performance and fuel use with that of conventional vehicles that have a duty cycle similar to that of the EVs used at McMurdo.

  18. Low Temperature Performance Characterization & Modeling

    Broader source: Energy.gov (indexed) [DOE]

    (BID 2127) Constant Voltage Charge Area 32 cm2 Evaluated at 3.8 V 1.2 M LiPF 6 in EC:EMC (3:7 wt) Gen3-D Positive 30C -30C 0C Technical Accomplishments 2007 Vehicle...

  19. Navistar eStar Vehicle Performance Evaluation - Cumulative (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-08-01T23:59:59.000Z

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Navistar will build and deploy all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country.

  20. Characterizing Test Methods and Emissions Reduction Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Test Methods and Emissions Reduction Performance of In-Use Diesel Retrofit Technologies from the National Clean Diesel Campaign Characterizing Test Methods and Emissions Reduction...

  1. Duty Cycle Analysis & Tools: Maximizing Vehicle Performance (Presentation)

    SciTech Connect (OSTI)

    Walkowicz, K.

    2009-10-28T23:59:59.000Z

    Shows that the benefits of using hybrid vehicle trucks in fleets depends on the duty cycle, or how the vehicles will be driven (e.g., stop and go) over a particular route (e.g., urban or rural).

  2. Monitoring System for Testing the Performance of an Electric Vehicle Using Ultracapacitors

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    Monitoring System for Testing the Performance of an Electric Vehicle Using Ultracapacitors Juan W. Dixon, Micah Ortúzar and Jorge Moreno Abstract A monitoring system for an Electric Vehicle, which uses of ultracapacitors in combination with batteries in electric vehicles. The efficiency gain is being monitored

  3. GPS-FREE TERRAIN-BASED VEHICLE TRACKING PERFORMANCE AS A FUNCTION OF INERTIAL SENSOR CHARACTERISTICS

    E-Print Network [OSTI]

    Brennan, Sean

    and the requirement to maintain redundancy in vehicle automation and driver assist systems necessitatesGPS-FREE TERRAIN-BASED VEHICLE TRACKING PERFORMANCE AS A FUNCTION OF INERTIAL SENSOR-free or degraded-GPS environments, achieve vehicle tracking with tactical-grade inertial sensors. However

  4. Vehicle Technologies Office Merit Review 2015: Battery Thermal Characterization

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about battery...

  5. Vehicle Technologies Office Merit Review 2014: Characterization of Catalysts Microstructures

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  6. DC Fast Charge Impacts on Battery Life and Vehicle Performance

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  7. Using Gasoline, Diesel, and Compressed Natural Gas (CNG) Vehicles, Characterize the Significance of Lube

    E-Print Network [OSTI]

    Using Gasoline, Diesel, and Compressed Natural Gas (CNG) Vehicles, Characterize the Significance from natural gas vehicles will help in the development of PM mitigation technologies. This in turn emissions beyond applicable standards, and that benefit natural gas ratepayers (Public Resources Code 25620

  8. Toxicological and performance aspects of oxygenated motor vehicle fuels

    SciTech Connect (OSTI)

    NONE

    1996-12-31T23:59:59.000Z

    At the request of the Environmental Protection Agency, the committee reviewed a draft of a federal report that assesses the effects of oxygenated fuels on public health, air quality, fuel economy, engine performance, and water quality. The committee determined that much of the federal report adequately represents what is known about the effects of methyl tertiary-butyl ether (MTBE) -- the most commonly used additive in the federal oxygenated-fuels program -- on health, the environment, and motor vehicles. MTBE, a chemical added to gasoline to reduce carbon monoxide pollution, appears not to pose a substantial human health risk, but more-definitive data are needed to assess short-term health effects and to determine whether this additive is effective in reducing carbon monoxide pollution in cold environments.

  9. Diagnostic Characterization of High Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Diagnostic Characterization of High Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles for perfor- mance characterization of these batteries in HEV applications in contrast to the constant microscopy, atomic force microscopy, gas chromatography, etc., were used to characterize the anode, cathode

  10. Cold-Start and Warm-Up Driveability Performance of Hybrid Electric Vehicles Using Oxygenated Fuels

    SciTech Connect (OSTI)

    Thornton, M.; Jorgensen, S.; Evans, B.; Wright, K.

    2003-11-01T23:59:59.000Z

    Provides analysis and results of the driveability performance testing from four hybrid electric vehicles--Honda Civic, Toyota Prius, and two Honda Insights--that used oxygenated fuels.

  11. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01T23:59:59.000Z

    Power Systems Laboratory and performs research and teaches graduate courses on advanced electric driveline technologies, specializing in batteries, ultracapacitors, fuel cells and hybrid vehicle

  12. Test vehicle detector characterization system for the Boeing YAL-1 airborne laser

    E-Print Network [OSTI]

    Steininger-Holmes, Jason Thomas

    2008-01-01T23:59:59.000Z

    The test vehicle detector characterization system provides a convenient and efficient tool for rapidly evaluating the optical sensitivity of the GAP6012, GAP100, GAP300, and GAP1000 indium gallium arsenide detectors used ...

  13. Vehicle Technologies Office: AVTA- Plug-In Hybrid Electric Vehicles Performance and Testing Data

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the plug-in hybrid electric version of the following vehicles is available: 2013 Ford Fusion Energi, 2013 Ford C-Max Energi Fleet, 2013 Ford C-Max Energi, 2012 Chevrolet Volt, 2012 Toyota Prius, 2013 Toyota Prius, 2013 Chevrolet Volt, 2011 Chrysler Town & Country, 2010 Quantum Escape, and 2010 Ford Escape Advanced Research Vehicle.

  14. Vehicle Technologies Office Merit Review 2014: Electrochemical Performance Testing

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electrochemical...

  15. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01T23:59:59.000Z

    system, the power consumption of the hydrogen EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicleelectric vehicles, uninterruptible power sources, distributed power generation systems,

  16. Vehicle Technologies Office Merit Review 2015: Electrochemical Performance Testing

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electrochemical...

  17. Vehicle Technologies Office Merit Review 2014: INL Electrochemical Performance Testing

    Broader source: Energy.gov [DOE]

    Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about INL electrochemical...

  18. Vehicle Technologies Office Merit Review 2015: INL Electrochemical Performance Testing

    Broader source: Energy.gov [DOE]

    Presentation given by Idaho National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about INL electrochemical...

  19. Vehicle Technologies Office Merit Review 2015: Thermal Performance Benchmarking

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about thermal...

  20. Performance Characterization of Random Proximity Sensor Networks

    E-Print Network [OSTI]

    Jensen, Grant J.

    Performance Characterization of Random Proximity Sensor Networks Agostino Capponi Department-- In this paper, we characterize the localization per- formance and connectivity of sensors networks consisting for signal processing. Each sensor has severe constraints on the battery power, and can only communicate

  1. Determining the Effectiveness of Incorporating Geographic Information Into Vehicle Performance Algorithms

    SciTech Connect (OSTI)

    Sera White

    2012-04-01T23:59:59.000Z

    This thesis presents a research study using one year of driving data obtained from plug-in hybrid electric vehicles (PHEV) located in Sacramento and San Francisco, California to determine the effectiveness of incorporating geographic information into vehicle performance algorithms. Sacramento and San Francisco were chosen because of the availability of high resolution (1/9 arc second) digital elevation data. First, I present a method for obtaining instantaneous road slope, given a latitude and longitude, and introduce its use into common driving intensity algorithms. I show that for trips characterized by >40m of net elevation change (from key on to key off), the use of instantaneous road slope significantly changes the results of driving intensity calculations. For trips exhibiting elevation loss, algorithms ignoring road slope overestimated driving intensity by as much as 211 Wh/mile, while for trips exhibiting elevation gain these algorithms underestimated driving intensity by as much as 333 Wh/mile. Second, I describe and test an algorithm that incorporates vehicle route type into computations of city and highway fuel economy. Route type was determined by intersecting trip GPS points with ESRI StreetMap road types and assigning each trip as either city or highway route type according to whichever road type comprised the largest distance traveled. The fuel economy results produced by the geographic classification were compared to the fuel economy results produced by algorithms that assign route type based on average speed or driving style. Most results were within 1 mile per gallon ({approx}3%) of one another; the largest difference was 1.4 miles per gallon for charge depleting highway trips. The methods for acquiring and using geographic data introduced in this thesis will enable other vehicle technology researchers to incorporate geographic data into their research problems.

  2. Investigating the Mobility of Light Autonomous Tracked Vehicles Using a High Performance Computing

    E-Print Network [OSTI]

    Investigating the Mobility of Light Autonomous Tracked Vehicles Using a High Performance Computing limiting the scope and impact of high performance computing (HPC). This scenario is rapidly changing due

  3. Vehicle Technologies Office: AVTA- Hybrid Electric Vehicles Performance and Testing Data

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. This page provides data on the hybrid electric versions of the Volkswagen Jetta, Ford C-Max, Chevrolet Malibu, Honda Civic, Hyundai Sonata, Honda CRZ, Honda Civic with Advanced Experimental Ultra Lead Acid Battery, Mercedes Benz, Toyota Prius Gen III, Ford Fusion, Honda Insight and Honda CR-Z.

  4. Ignition Performance of New and Used Motor Vehicle Upholstery Fabrics 

    E-Print Network [OSTI]

    Spearpoint, Michael; Olenick, Stephen M; Torero, Jose L; Steinhaus, Thomas

    2005-01-01T23:59:59.000Z

    This paper examines the standards for fire safety in transport systems and in particular the test method for the flammability of materials within passenger compartments of motor vehicles. The paper compares data from ...

  5. Vehicle Technologies Office Merit Review 2014: Characterization of Voltage Fade in Lithium-ion Cells with Layered Oxides

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about characterization...

  6. Vehicle Technologies Office Merit Review 2013: A High-Performance PHEV Battery Pack

    Broader source: Energy.gov [DOE]

    Presentation given by LG Chem at 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting about a high-performance battery pack the company is researching for plug-in electric vehicles.

  7. Commuter simulation of lithium-ion battery performance in hybrid electric vehicles.

    SciTech Connect (OSTI)

    Nelson, P. A.; Henriksen, G. L.; Amine, K.

    2000-12-04T23:59:59.000Z

    In this study, a lithium-ion battery was designed for a hybrid electric vehicle, and the design was tested by a computer program that simulates driving of a vehicle on test cycles. The results showed that the performance goals that have been set for such batteries by the Partnership for a New Generation of Vehicles are appropriate. The study also indicated, however, that the heat generation rate in the battery is high, and that the compact lithium-ion battery would probably require cooling by a dielectric liquid for operation under conditions of vigorous vehicle driving.

  8. Fact #868: April 13, 2015 Automotive Technology Has Improved Performance and Fuel Economy of New Light Vehicles – Dataset

    Broader source: Energy.gov [DOE]

    Excel file and dataset for Automotive Technology Has Improved Performance and Fuel Economy of New Light Vehicles

  9. Fuel Economy and Performance of Mild Hybrids with Ultracapacitors: Simulations and Vehicle Test Results (Presentation)

    SciTech Connect (OSTI)

    Gonder, J.; Pesaran, A.; Lustbader, J.; Tataria, H.

    2009-06-01T23:59:59.000Z

    NREL worked with GM and demonstrated equivalent performance in the Saturn Vue Belt Alternator Starter (BAS) hybrid vehicle whether running with its stock batteries or a retrofit ultracapacitor system.

  10. Vehicle Technologies Office Merit Review 2013: Accelerating Predictive Simulation of IC Engines with High Performance Computing

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at the 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting about simulating internal combustion engines using high performance computing.

  11. Vehicle Technologies Office Merit Review 2015: Development of High-Performance Cast Crankshafts

    Broader source: Energy.gov [DOE]

    Presentation given by Caterpillar at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of high-performance...

  12. Vehicle Technologies Office Merit Review 2015: High Performance DC Bus Film Capacitor

    Broader source: Energy.gov [DOE]

    Presentation given by GE Global Research at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high performance DC bus...

  13. Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles DE-FC26-07NT43122 DOE Peer Review Presentation Lembit Salasoo, Project Manager & Presenter Ayman El-Refaie,...

  14. Vehicle Technologies Office Merit Review 2014: High Performance DC Bus Film Capacitor

    Broader source: Energy.gov [DOE]

    Presentation given by GE Global Research at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high performance DC bus...

  15. Correlations of fuel economy, exhaust hydro-carbon concentrations, and vehicle performance efficiency

    E-Print Network [OSTI]

    Baumann, Philip Douglas

    1974-01-01T23:59:59.000Z

    CORRELATIONS OF FUEL ECONOMY, EXHAUST HYDROCARBON CONCENTRATIONS, AND VEHICLE PERFORMANCE EFFICIENCY A Thesis by PHILIP DOUGLAS BAUMANN Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE December 1974 Major Subject: Civil Engineering CORRELATIONS OF FUEL ECONOMY, EXHAUST HYDROCARBON CONCENTRATIONS, AND VEHICLE PERFORMANCE EFFICIENCY A Thesis by PHILIP DOUGLAS BAUMANN Approved as to style and content by...

  16. Estimated and observed performance of a neutron SNM portal monitor for vehicles

    SciTech Connect (OSTI)

    Fehlau, P.E.; Close, D.A.; Coop, K.L.; York, R.

    1996-11-01T23:59:59.000Z

    In July 1987, we completed our development of a neutron-detection- based vehicle SNM portal monitor with a conference paper presented at the annual meeting. The paper described the neutron vehicle portal (NVP), described source-response measurements made with it at Los Alamos, and gave our estimate of the monitor`s potential performance. Later, in December 1988, we had a chance to do a performance test with the monitor in a plant environment. This paper discusses how our original performance estimate should vary in different circumstances, and it uses the information to make a comparison between the monitor`s estimated and actual performance during the 1988 performance testing.

  17. Optimal Charging of Electric Vehicles in Smart Grid: Characterization and Valley-Filling Algorithms

    E-Print Network [OSTI]

    Tan, Chee Wei

    Optimal Charging of Electric Vehicles in Smart Grid: Characterization and Valley-Filling Algorithms with different EV battery charging rate constraints, that is distributed across a smart power grid network the power grid. One way to tackle this problem is to adopt a "smart grid" solution, which allows EVs

  18. Machine characterization and benchmark performance prediction

    SciTech Connect (OSTI)

    Saavedra-Barrera, R.H.

    1988-12-01T23:59:59.000Z

    From runs of standard benchmarks or benchmark suites, it is not possible to characterize the machine nor to predict the run time of other benchmarks which have not been run. A new approach to benchmarking and machine characterization is reported. The creation and use of a machine analyzer is described, which measures the performance of a given machine on FORTRAN source language constructs. The machine analyzer yields a set of parameters which characterize the machine and spotlight its strong and weak points. Also described is a program analyzer, which analyzes FORTRAN programs and determines the frequency of execution of each of the same set of source language operations. It is then shown that by combining a machine characterization and a program characterization, we are able to predict with good accuracy the run time of a given benchmark on a given machine. Characterizations are provided for the Cray-X-MP/48, Cyber 205, IBM 3090/200, Amdahl 5840, Convex C-1, VAX 8600, VAX 11/785, VAX 11/780, SUN 3/50, and IBM RT-PC/125, and for the following benchmark programs or suites: Los Alamos (BMK8A1), Baskett, Linpack, Livermore Loops, Madelbrot Set, NAS Kernels, Shell Sort, Smith, Whetstone and Sieve of Erathostenes.

  19. A Radiological Characterization of the KIWI-I Vehicle

    SciTech Connect (OSTI)

    S.R. Riedhauser

    1999-03-01T23:59:59.000Z

    A review was conducted of the previous Kiwi characterization to understand apparent differences in measured contamination levels observed during recent field work between Kiwi-reported activities and values from another system. The review assessed how the data were processed as well as the assumptions behind the measurement techniques employed. The review included a reassessment of how calculations of conversion factors were preformed. The review also checked for errors in the measurements or calculations of the data collected at these sites. In addition, new characterization measurements were made and new characterization techniques investigated for the Kiwi detector array. These measurements and techniques led to new calculations of conversion factions for the array, which are compared to the previous conversion factors. The new measurements confirmed that the Kiwi detectors are very reproducible in measuring the photopeak count rate from a surface distribution of activity ({+-}3%). Finally, a review was conducted of the various parameters which describe the exponential distribution of activity with depth in the soil. New values have been assigned to the relaxation length and the averaging depth. When combined with the new characterization measurements, they produce a 75% increase over the previous conversion factor.

  20. Vehicle Technologies Office Merit Review 2014: Performance and Reliability

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02 TUEValidation of&SystemsChargingEnergyof Bonded

  1. Vehicle Technologies Office Merit Review 2014: Performance of Biofuels and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02 TUEValidation of&SystemsChargingEnergyof

  2. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01T23:59:59.000Z

    and characterization of spinel Li 4 Ti 5 O 12 nanoparticles anode materials for lithium ion battery.Li-ion battery performance. Figure 34. Characterization of

  3. Improving Grid Performance with Electric Vehicle Charging 2011San Diego Gas & Electric Company. All copyright and trademark rights reserved.

    E-Print Network [OSTI]

    California at Davis, University of

    Improving Grid Performance with Electric Vehicle Charging © 2011San Diego Gas & Electric Company · Education SDG&E Goal ­ Grid Integrated Charging · More plug-in electric vehicles · More electric grid to a hairdryer) per PEV in the population · Instantaneous demand, 40 all-electric vehicles for one day (8

  4. Multi-path transportation futures study : vehicle characterization and scenario analyses.

    SciTech Connect (OSTI)

    Plotkin, S. E.; Singh, M. K.; Energy Systems; TA Engineering; ORNL

    2009-12-03T23:59:59.000Z

    Projecting the future role of advanced drivetrains and fuels in the light vehicle market is inherently difficult, given the uncertainty (and likely volatility) of future oil prices, inadequate understanding of likely consumer response to new technologies, the relative infancy of several important new technologies with inevitable future changes in their performance and costs, and the importance - and uncertainty - of future government marketplace interventions (e.g., new regulatory standards or vehicle purchase incentives). This Multi-Path Transportation Futures (MP) Study has attempted to improve our understanding of this future role by examining several scenarios of vehicle costs, fuel prices, government subsidies, and other key factors. These are projections, not forecasts, in that they try to answer a series of 'what if' questions without assigning probabilities to most of the basic assumptions.

  5. Advanced Aerodynamic Devices to Improve the Performance, Economics, Handling, and Safety of Heavy Vehicles

    SciTech Connect (OSTI)

    Robert J. Englar

    2001-05-14T23:59:59.000Z

    Research is being conducted at the Georgia Tech Research Institute (GTRI) to develop advanced aerodynamic devices to improve the performance, economics, stability, handling and safety of operation of Heavy Vehicles by using previously-developed and flight-tested pneumatic (blown) aircraft technology. Recent wind-tunnel investigations of a generic Heavy Vehicle model with blowing slots on both the leading and trailing edges of the trailer have been conducted under contract to the DOE Office of Heavy Vehicle Technologies. These experimental results show overall aerodynamic drag reductions on the Pneumatic Heavy Vehicle of 50% using only 1 psig blowing pressure in the plenums, and over 80% drag reductions if additional blowing air were available. Additionally, an increase in drag force for braking was confirmed by blowing different slots. Lift coefficient was increased for rolling resistance reduction by blowing only the top slot, while downforce was produced for traction increase by blowing only the bottom. Also, side force and yawing moment were generated on either side of the vehicle, and directional stability was restored by blowing the appropriate side slot. These experimental results and the predicted full-scale payoffs are presented in this paper, as is a discussion of additional applications to conventional commercial autos, buses, motor homes, and Sport Utility Vehicles.

  6. Grid Interconnection and Performance Testing Procedures for Vehicle-To-Grid (V2G) Power Electronics: Preprint

    SciTech Connect (OSTI)

    Kramer, W.; Chakraborty, S.; Kroposki, B.; Hoke, A.; Martin, G.; Markel, T.

    2012-03-01T23:59:59.000Z

    Bidirectional power electronics can add vehicle-to-grid (V2G) capability in a plug-in vehicle, which then allows the vehicle to operate as a distributed resource (DR). The uniqueness of the battery-based V2G power electronics requires a test procedure that will not only maintain IEEE interconnection standards, but can also evaluate the electrical performance of the vehicle working as a DR. The objective of this paper is to discuss a recently published NREL technical report that provides interim test procedures for V2G vehicles for their integration into the electrical distribution systems and for their performance in terms of continuous output power, efficiency, and losses. Additionally, some other test procedures are discussed that are applicable to a V2G vehicle that desires to provide power reserve functions. A few sample test results are provided based on testing of prototype V2G vehicles at NREL.

  7. Page 1 of 6 Electric Vehicle Performance in a Highly Polluted City.

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    the problem by impeding proper air renewal. Air pollution in Santiago is now a public health issuePage 1 of 6 Electric Vehicle Performance in a Highly Polluted City. Esteban J. Pino Eduardo P is one of the most polluted capitals in the world. It has been declared saturated by O3, CO, total

  8. Smith Newton Vehicle Performance Evaluation - Gen2 - 1Q2014 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01T23:59:59.000Z

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  9. Test plan for performance testing of the Eaton AC-3 electric vehicle

    SciTech Connect (OSTI)

    Crumley, R.L.; Heiselmann, H.W.

    1985-04-01T23:59:59.000Z

    An alternating current (ac) propulsion system for an electric vehicle has been developed and tested by the Eaton Corporation. The test bed vehicle is a modified 1981 Mercury Lynx. The test plan has been prepared specifically for the third modification to this test bed and identified as the Eaton AC-3. The scope of the EG and G testing at INEL to be done on the Eaton AC-3 will include coastdown and dynamometer tests but will not include environmental, on-road, or track testing. Coastdown testing will be performed in accordance with SAE J-1263 (SAE Recommended Practice for Road Load Measurement and Dynamometer Simulation Using Coastdown Techniques).

  10. U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity, Hydrogen/CNG Blended Fuels Performance Testing in a Ford F-150

    SciTech Connect (OSTI)

    James E. Francfort

    2003-11-01T23:59:59.000Z

    Federal regulation requires energy companies and government entities to utilize alternative fuels in their vehicle fleets. To meet this need, several automobile manufacturers are producing compressed natural gas (CNG)-fueled vehicles. In addition, several converters are modifying gasoline-fueled vehicles to operate on both gasoline and CNG (Bifuel). Because of the availability of CNG vehicles, many energy company and government fleets have adopted CNG as their principle alternative fuel for transportation. Meanwhile, recent research has shown that blending hydrogen with CNG (HCNG) can reduce emissions from CNG vehicles. However, blending hydrogen with CNG (and performing no other vehicle modifications) reduces engine power output, due to the lower volumetric energy density of hydrogen in relation to CNG. Arizona Public Service (APS) and the U.S. Department of Energy’s Advanced Vehicle Testing Activity (DOE AVTA) identified the need to determine the magnitude of these effects and their impact on the viability of using HCNG in existing CNG vehicles. To quantify the effects of using various blended fuels, a work plan was designed to test the acceleration, range, and exhaust emissions of a Ford F-150 pickup truck operating on 100% CNG and blends of 15 and 30% HCNG. This report presents the results of this testing conducted during May and June 2003 by Electric Transportation Applications (Task 4.10, DOE AVTA Cooperative Agreement DEFC36- 00ID-13859).

  11. Electric Vehicles: Performance, Life-Cycle Costs, Emissions, and Recharging Requirements

    E-Print Network [OSTI]

    DeLuchi, Mark A.; Wang, Quanlu; Sperling, Daniel

    1989-01-01T23:59:59.000Z

    Sealed lead-acid electric and vehicle battery development.A. (1987a) ture for electric vehicles. In Resources ElectricInternational Conference. Electric Vehicle De- Universityof

  12. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01T23:59:59.000Z

    supervises testing in the Hybrid Vehicle Propulsion Systemsbattery for plug-in hybrid vehicle is complicated processstorage for Plug-in Hybrid vehicles EVS24 International

  13. Baseline Suppression of Vehicle Portal Monitor Gamma Count Profiles: A Characterization Study

    SciTech Connect (OSTI)

    Lopresti, Charles A.; Weier, Dennis R.; Kouzes, Richard T.; Schweppe, John E.

    2006-06-15T23:59:59.000Z

    Radiation portal monitor (RPM) systems based upon polyvinyl toluene scintillator (PVT) gamma ray detectors have been deployed to detect illicit trafficking in radioactive materials at border crossings. This report sets forth a characterization of the baseline suppression effect in gross-count gamma ray profiles due to shadow shielding by vehicles entering radiation portal monitors. Shadow shielding is of interest because it reduces the alarm sensitivity of portal monitors. This observational study investigated three types of PVT based commercial RPM systems currently deployed at selected ports of entry in terms of spatial effects relative to detector panel orientation - driver versus passenger side, top versus bottom, and narrow lanes versus wide lanes - as observed for a large number of vehicles. Each portal site appears to have a distinctive baseline suppression signature, based on percent maximum suppression relative to measured background. Results suggest that alarm algorithms based on gross-counts may be further refined through attention to individual site characteristics. In addition, longer vehicle transit times were often correlated with stronger baseline suppression, suggesting that baseline suppression studies should take into account duration (length) of transit. (PIET-43741-TM-333-NIM)

  14. Vehicle Technologies Office Merit Review 2015: High Performance Cast Aluminum Alloys for Next Generation Passenger Vehicle Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

  15. Vehicle Technologies Office Merit Review 2015: Development of Advanced High-Performance Batteries for 12V Start Stop Vehicle Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Maxwell at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of advanced high...

  16. Performance characterization of a hydrogen catalytic heater.

    SciTech Connect (OSTI)

    Johnson, Terry Alan; Kanouff, Michael P.

    2010-04-01T23:59:59.000Z

    This report describes the performance of a high efficiency, compact heater that uses the catalytic oxidation of hydrogen to provide heat to the GM Hydrogen Storage Demonstration System. The heater was designed to transfer up to 30 kW of heat from the catalytic reaction to a circulating heat transfer fluid. The fluid then transfers the heat to one or more of the four hydrogen storage modules that make up the Demonstration System to drive off the chemically bound hydrogen. The heater consists of three main parts: (1) the reactor, (2) the gas heat recuperator, and (3) oil and gas flow distribution manifolds. The reactor and recuperator are integrated, compact, finned-plate heat exchangers to maximize heat transfer efficiency and minimize mass and volume. Detailed, three-dimensional, multi-physics computational models were used to design and optimize the system. At full power the heater was able to catalytically combust a 10% hydrogen/air mixture flowing at over 80 cubic feet per minute and transfer 30 kW of heat to a 30 gallon per minute flow of oil over a temperature range from 100 C to 220 C. The total efficiency of the catalytic heater, defined as the heat transferred to the oil divided by the inlet hydrogen chemical energy, was characterized and methods for improvement were investigated.

  17. Performance test results for the Eaton dc developmental power train in an electric test bed vehicle

    SciTech Connect (OSTI)

    Crumley, R.L.; Donaldson, M.R.

    1987-09-01T23:59:59.000Z

    This report presents the results of the tests performed on a direct current (dc) power train in a test bed vehicle developed by the Eaton Corporation for the US Department of Energy (DOE). The tests were performed by EG and G Idaho, Inc. at the Idaho National Engineering Laboratory (INEL). The purpose of the INEL testing was to provide test results from which an evaluation of the performance capabilities of the Eaton dc power train could be made and compared with other vehicle propulsion systems. The planned tests were primarily oriented toward road testing, chassis dynamometer testing, and associated dynamometer coastdown tests for road loss determination. Range tests of the Eaton dc test bed vehicle using an ALCO 2200 lead acid battery pack, produced ranges of 97 km at 56 km/h (60 miles at 35 mph), 79 km at 72 km/h (49 miles at 45 mph), and 47 km at 88 km/h (29 miles at 55 mph). The corresponding net dc energy consumptions are 135 Wh/km (217 Wh/mile), 145 Wh/km (233 Wh/mile), and 178 Wh/km (287 Wh/mile). The energy consumption for the D-cycle test was 241 Wh/km (387 Wh/mile). 8 refs., 11 figs., 16 tabs.

  18. Improvement of speed control performance using PID type neurocontroller in an electric vehicle system

    SciTech Connect (OSTI)

    Matsumura, S.; Omatu, S.; Higasa, H. [Shikoku Research Inst. Inc., Takamatsu (Japan)

    1994-12-31T23:59:59.000Z

    In order to develop an efficient driving system for electric vehicle (EV), a testing system using motors has been built to simulate the driving performance of EVs. In the testing system, the PID (Proportional Integral Derivative) controller is used to control rotating speed of motor when the EV drives. In this paper, in order to improve the performance of speed control, a neural network is applied to tuning parameters of PID controller. It is shown, through experiments that a neural network can reduce output error effectively while the PID controller parameters are being tuned online. 6 refs.

  19. Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andrew

    2009-01-01T23:59:59.000Z

    for Plug-in Hybrid Electric Vehicles (PHEVs): Goals andE. , Plug-in Hybrid-Electric Vehicle Powertrain Design andLithium Batteries for Plug-in Electric Vehicles Andrew Burke

  20. Next Generation Safety Performance Monitoring at Signalized Intersections Using Connected Vehicle Technology 

    E-Print Network [OSTI]

    Zha, Liteng

    2014-04-28T23:59:59.000Z

    and prone to human errors. The advent of connected vehicle technology allows vehicles to communicate with each other as well as infrastructure wirelessly. Through this platform, vehicle movements and signal status at the facilities can be automatically...

  1. Next Generation Safety Performance Monitoring at Signalized Intersections Using Connected Vehicle Technology

    E-Print Network [OSTI]

    Zha, Liteng

    2014-04-28T23:59:59.000Z

    and prone to human errors. The advent of connected vehicle technology allows vehicles to communicate with each other as well as infrastructure wirelessly. Through this platform, vehicle movements and signal status at the facilities can be automatically...

  2. Open loop performance of a biomimetic flapping foil autonomous underwater vehicle

    E-Print Network [OSTI]

    Wolf, Malima Isabelle, 1981-

    2006-01-01T23:59:59.000Z

    Flapping foil propulsion is emerging as an alternative to conventional propulsion for underwater vehicles. MIT's Biomimetic Flapping Foil Autonomous Underwater Vehicle is a prototype vehicle that uses four three-dimensional ...

  3. Remote site survey and characterization for the National ER WM Program using the SRIP (Solider Robot Interface Project) vehicle

    SciTech Connect (OSTI)

    Richardson, B.S.; Killough, S.M.; Emery, M.D.; Herndon, J.N.; Hamel, W.R.; Burks, B.L.

    1990-01-01T23:59:59.000Z

    A significant number of Department of Energy (DOE) production and research sites will require remediation of buried waste sites during the coming years. An important first step in cleanup, restoration, and decontamination activities is burial site characterization. An early field demonstration of buried waste site survey and characterization will be conducted using a remotely operated vehicle equipped with sensors, a manipulator system, and a vision system. This demonstration will be conducted in July 1990. 4 refs., 4 figs.

  4. Design, development, and validation of a remotely reconfigurable vehicle telemetry system for consumer and government applications

    E-Print Network [OSTI]

    Siegel, Joshua Eric

    2011-01-01T23:59:59.000Z

    This thesis explores the design and development of a cost-effective, easy-to-use system for remotely monitoring vehicle performance and drivers' habits, with the aim of collecting data for vehicle characterization and ...

  5. Design and characterization of Hover Nano Aerial Vehicle (HNAV) propulsion system

    E-Print Network [OSTI]

    Sato, Sho, Ph. D. Massachusetts Institute of Technology

    2008-01-01T23:59:59.000Z

    On October 4th 2005, DARPA released a request for proposals for a Nano-Air Vehicle (NAV) program. The program sought to develop an advanced urban reconnaissance vehicle. According the requirement imposed by DARPA, the NAV ...

  6. Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed characterization of

    E-Print Network [OSTI]

    Silver, Whendee

    Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed 19, 2012 (received for review July 22, 2012) Emissions from gasoline and diesel vehicles and diesel vehicles, and find diesel exhaust is seven times more efficient at forming aerosol than gasoline

  7. Performance characterization of the NASA standard detonator

    SciTech Connect (OSTI)

    Tarbell, W.W. [Sandia National Labs., Albuquerque, NM (United States); Burke, T.L.; Solomon, S.E. [Component Engineering, USBI, Huntsville, AL (United States)

    1995-05-01T23:59:59.000Z

    The NASA Standard Detonator (NSD) is employed in support of a number of current applications, including the Space Shuttle. This effort was directed towards providing test results to characterize the output of this device for its use in a safe and arm device. As part of the investigation, flash X-ray was used to provide stop-motion photographs of the flying metal plate that is created by initiation of the detonator. This provided researchers with a better understanding of the shape and character of the high-velocity disk as it propagated across the gap between the detonator and next assembly. The second portion of the study used a velocity interferometer to evaluate the acceleration and velocity histories of the flying plate, providing a quantified assessment of the detonator`s ability to initiate the explosive in the next explosive.

  8. Performance characterization of a packed bed electro-filter

    E-Print Network [OSTI]

    Narayanan, Ajay

    1990-01-01T23:59:59.000Z

    PERFORMANCE CHARACTERIZATION OF A PACKED BED ELECTRO-FILTER A Thesis by A JAY NARAYANAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... December 1990 Major Subject: Safety Engineering PERFORMANCE CHARACTERIZATION OF A PACKED BED ELECTRO-FILTER A Thesis by AJAY NARAYANAN Approved as to style and content by: John P. Wagn (Ch ' of the Com ittee) Aydin Akgerman (Member) Ri ard B...

  9. Performance characterization of a packed bed electro-filter 

    E-Print Network [OSTI]

    Narayanan, Ajay

    1990-01-01T23:59:59.000Z

    PERFORMANCE CHARACTERIZATION OF A PACKED BED ELECTRO-FILTER A Thesis by A JAY NARAYANAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... December 1990 Major Subject: Safety Engineering PERFORMANCE CHARACTERIZATION OF A PACKED BED ELECTRO-FILTER A Thesis by AJAY NARAYANAN Approved as to style and content by: John P. Wagn (Ch ' of the Com ittee) Aydin Akgerman (Member) Ri ard B...

  10. Vehicle Systems Integration Laboratory Accelerates Powertrain Development

    SciTech Connect (OSTI)

    None

    2014-04-15T23:59:59.000Z

    ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

  11. Vehicle Systems Integration Laboratory Accelerates Powertrain Development

    ScienceCinema (OSTI)

    None

    2014-06-25T23:59:59.000Z

    ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

  12. Catalyzed Diesel Particulate Filter Performance in a Light-Duty Vehicle

    SciTech Connect (OSTI)

    Sluder, C.S.

    2001-04-23T23:59:59.000Z

    Light-duty chassis dynamometer driving cycle tests were conducted on a Mercedes A170 diesel vehicle with various sulfur-level fuels and exhaust emission control systems. Triplicate runs of a modified light-duty federal test procedure (FTP), US06 cycle, and SCO3 cycle were conducted with each exhaust configuration and fuel. Ultra-low sulfur (3-ppm) diesel fuel was doped to 30- and 150-ppm sulfur so that all other fuel properties remained the same. The fuels used in these experiments met the specifications of the fuels from the DECSE (Diesel Emission Control Sulfur Effects) program. Although the Mercedes A170 vehicle is not available in the US, its emissions in the as tested condition fell within the U.S. Tier 1 full useful life standards with the OEM catalysts installed. Tests with the OEM catalysts removed showed that the OEM catalysts reduced PM emissions from the engine-out condition by 30-40% but had negligible effects on NOx emissions. Fuel sulfur level had very little effect on th e OEM catalyst performance. A prototype catalyzed diesel particulate filter (CDPF) mounted in an underfloor configuration reduced particulate matter emissions by more than 90% compared to the factory emissions control system. The results show that the CDPF did not promote any significant amounts of SO{sub 2}-to-sulfate conversion during these light-duty drive cycles.

  13. Vehicle Re-Identification using Wireless Magnetic Sensors: Algorithm Revision, Modifications and Performance Analysis

    E-Print Network [OSTI]

    Horowitz, Roberto

    Vehicle Re-Identification using Wireless Magnetic Sensors: Algorithm Revision, Modifications, CA 94305, US. Email: ram.rajagopal@stanford.edu Abstract--A vehicle re-identification method based on match- ing vehicle signatures obtained from wireless magnetic sensors was studied on a single lane loop

  14. Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Accelerated Reliability Test Battery Electric Vehicle Fast Charge Test Battery Energy Storage Performance Test For DC Fast Charge Demand Reduction...

  15. Simulated Fuel Economy and Performance of Advanced Hybrid Electric and Plug-in Hybrid Electric Vehicles Using In-Use Travel Profiles

    SciTech Connect (OSTI)

    Earleywine, M.; Gonder, J.; Markel, T.; Thornton, M.

    2010-01-01T23:59:59.000Z

    As vehicle powertrain efficiency increases through electrification, consumer travel and driving behavior have significantly more influence on the potential fuel consumption of these vehicles. Therefore, it is critical to have a good understanding of in-use or 'real world' driving behavior if accurate fuel consumption estimates of electric drive vehicles are to be achieved. Regional travel surveys using Global Positioning System (GPS) equipment have been found to provide an excellent source of in-use driving profiles. In this study, a variety of vehicle powertrain options were developed and their performance was simulated over GPS-derived driving profiles for 783 vehicles operating in Texas. The results include statistical comparisons of the driving profiles versus national data sets, driving performance characteristics compared with standard drive cycles, and expected petroleum displacement benefits from the electrified vehicles given various vehicle charging scenarios.

  16. Vehicle Technologies Office Merit Review 2014: Non-Rare Earth High-Performance Wrought Magnesium Alloys

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about non...

  17. Vehicle Technologies Office Merit Review 2015: Performance of Biofuels and Biofuel Blends

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and vehicle technologies office annual merit review and peer evaluation meeting about...

  18. Vehicle Technologies Office Merit Review 2015: Accelerating Predictive Simulation of IC Engines with High Performance Computing

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about accelerating...

  19. Vehicle Technologies Office Merit Review 2014: Alloy Development for High-Performance Cast Crankshafts

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about applied alloy...

  20. Vehicle Technologies Office Merit Review 2015: Predicting Microstructure and Performance for Optimal Cell Fabrication

    Broader source: Energy.gov [DOE]

    Presentation given by Brigham Young University at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about predicting...

  1. Vehicle Technologies Office Merit Review 2014: Accelerating Predictive Simulation of IC Engines with High Performance Computing

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about accelerating...

  2. Vehicle Technologies Office Merit Review 2014: Improving Fatigue Performance of AHSS Welds

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about improving...

  3. Vehicle Technologies Office Merit Review 2014: Design of High Performance, High Energy Cathode Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Lawrence Berkeley National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about design...

  4. Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. ape08elrefaie...

  5. Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    10 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. ape013elrefaie2010o...

  6. Vehicle Technologies Office Merit Review 2015: Design of High Performance, High Energy Cathode Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Lawrence Berkley National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about design...

  7. Vehicle Technologies Office Merit Review 2014: Predicting Microstructure and Performance for Optimal Cell Fabrication

    Broader source: Energy.gov [DOE]

    Presentation given by Brigham Young University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about predicting...

  8. Vehicle Technologies Office Merit Review 2015: Enhanced High and Low Temperature Performance of NOx Reduction Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  9. Performance Evaluation of a Cascaded H-Bridge Multi Level Inverter Fed BLDC Motor Drive in an Electric Vehicle 

    E-Print Network [OSTI]

    Emani, Sriram S.

    2011-08-08T23:59:59.000Z

    -emf ................................................................................................. 77 6.8 Regenerative Capability of the Implemented System ....................................... 78 6.9 Fault Analysis .................................................................................................... 79 6.10 Fault Diagnostics... follow the reference drive cycle. e) To evaluate the performance of the batteries during charge and recharge cycles, especially during regeneration which is achieved through the electrical braking. 1.5 Demand for Electric Vehicles In a popular...

  10. Performance Characterization for Fusion Co-design Applications

    E-Print Network [OSTI]

    Oliker, Leonid

    fusion is a long-term solution for producing electrical power for the world, and the large thermonuclear1 Performance Characterization for Fusion Co-design Applications Praveen Narayanan, Alice Koniges international device (ITER) being constructed will produce net energy and a path to fusion energy provided

  11. Vehicle Technologies Office Merit Review 2014: Residual Stress of Bimetallic Joints and Characterization

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about residual stress...

  12. Interim Test Procedures for Evaluating Electrical Performance and Grid Integration of Vehicle-to-Grid Applications

    SciTech Connect (OSTI)

    Chakraborty, S.; Kramer, W.; Kroposki, B.; Martin, G.; McNutt, P.; Kuss, M.; Markel, T.; Hoke, A.

    2011-06-01T23:59:59.000Z

    The objective of this report is to provide a test plan for V2G testing. The test plan is designed to test and evaluate the vehicle's power electronics capability to provide power to the grid, and to evaluate the vehicle's ability to connect and disconnect from the utility according to a subset of the IEEE Std. 1547 tests.

  13. Ultracapacitors for Electric and Hybrid Vehicles - Performance Requirements, Status of the Technology, and R&D Needs

    E-Print Network [OSTI]

    Burke, Andrew F

    1995-01-01T23:59:59.000Z

    5. Burke, A.F. , Electric/Hybrid Vehicle Super Car Designsin Electric and Hybrid Vehicles, SAE Paper No. 951951,for Electric and Hybrid Vehicles - A Technology Update,

  14. Instruction-level performance modeling and characterization of multimedia applications

    SciTech Connect (OSTI)

    Luo, Y. [Los Alamos National Lab., NM (United States). Scientific Computing Group; Cameron, K.W. [Louisiana State Univ., Baton Rouge, LA (United States). Dept. of Computer Science

    1999-06-01T23:59:59.000Z

    One of the challenges for characterizing and modeling realistic multimedia applications is the lack of access to source codes. On-chip performance counters effectively resolve this problem by monitoring run-time behaviors at the instruction-level. This paper presents a novel technique of characterizing and modeling workloads at the instruction level for realistic multimedia applications using hardware performance counters. A variety of instruction counts are collected from some multimedia applications, such as RealPlayer, GSM Vocoder, MPEG encoder/decoder, and speech synthesizer. These instruction counts can be used to form a set of abstract characteristic parameters directly related to a processor`s architectural features. Based on microprocessor architectural constraints and these calculated abstract parameters, the architectural performance bottleneck for a specific application can be estimated. Meanwhile, the bottleneck estimation can provide suggestions about viable architectural/functional improvement for certain workloads. The biggest advantage of this new characterization technique is a better understanding of processor utilization efficiency and architectural bottleneck for each application. This technique also provides predictive insight of future architectural enhancements and their affect on current codes. In this paper the authors also attempt to model architectural effect on processor utilization without memory influence. They derive formulas for calculating CPI{sub 0}, CPI without memory effect, and they quantify utilization of architectural parameters. These equations are architecturally diagnostic and predictive in nature. Results provide promise in code characterization, and empirical/analytical modeling.

  15. High performance path following for marine vehicles using azimuthing podded propulsion

    E-Print Network [OSTI]

    Greytak, Matthew B. (Matthew Bardeen)

    2006-01-01T23:59:59.000Z

    Podded propulsion systems offer greater maneuvering possibilities for marine vehicles than conventional shaft and rudder systems. As the propulsion unit rotates about its vertical axis to a specified azimuth angle, the ...

  16. Vehicle Technologies Office Merit Review 2015: PHEV and EV Battery Performance and Cost Assessment

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about PHEV and EV...

  17. Performance-Based Reliability Analysis and Code Calibration for RC Column Subject to Vehicle Collision 

    E-Print Network [OSTI]

    Sharma, Hrishikesh

    2012-07-16T23:59:59.000Z

    Infrastructure and transportation facilities have increased rapidly over the years. The progress has been accompanied by an increasing number of vehicle collisions with structures. This type of collision might lead to the damage, and often...

  18. Performance-Based Reliability Analysis and Code Calibration for RC Column Subject to Vehicle Collision

    E-Print Network [OSTI]

    Sharma, Hrishikesh

    2012-07-16T23:59:59.000Z

    Infrastructure and transportation facilities have increased rapidly over the years. The progress has been accompanied by an increasing number of vehicle collisions with structures. This type of collision might lead to the damage, and often...

  19. Effect of auditory peripheral displays on unmanned aerial vehicle operator performance

    E-Print Network [OSTI]

    Graham, Hudson D

    2008-01-01T23:59:59.000Z

    With advanced autonomy, Unmanned Aerial Vehicle (UAV) operations will likely be conducted by single operators controlling multiple UAVs. As operator attention is divided across multiple supervisory tasks, there is a need ...

  20. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01T23:59:59.000Z

    batteries for vehicle applications. Unfortunately the graphite/graphite/NiCoMn chemistry. In general, it seems possible to design high power batteries (graphite/NiCoMn chemistry. In general, it seems possible to design high power batteries (

  1. Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andrew

    2009-01-01T23:59:59.000Z

    batteries for vehicle applications. Unfortunately the graphite/graphite/NiCoMn chemistry. In general, it seems possible to design high power batteries (graphite/NiCoMn chemistry. In general, it is possible to design high power batteries (

  2. Incorporating Drivability Metrics into Optimal Energy Management Strategies for Hybrid Vehicles Part 1: Model, Methods, and

    E-Print Network [OSTI]

    Grizzle, Jessy W.

    Incorporating Drivability Metrics into Optimal Energy Management Strategies for Hybrid Vehicles-parallel configuration considered here. Hybrid vehicles are characterized by multiple energy sources; the strategy Gillespie, Jeffrey A. Cook, and J.W. Grizzle Abstract--Hybrid Vehicle fuel economy performance is highly

  3. The effects of driving style and vehicle performance on the real-world fuel consumption of U.S. light-duty vehicles

    E-Print Network [OSTI]

    Berry, Irene Michelle

    2010-01-01T23:59:59.000Z

    Even with advances in vehicle technology, both conservation and methods for reducing the fuel consumption of existing vehicles are needed to decrease the petroleum consumption and greenhouse gas emissions of the U.S. ...

  4. NMOG Emissions Characterization and Estimation for Vehicles Using Ethanol-Blended Fuels

    SciTech Connect (OSTI)

    Sluder, Scott [ORNL; West, Brian H [ORNL

    2012-01-01T23:59:59.000Z

    Ethanol is a biofuel commonly used in gasoline blends to displace petroleum consumption; its utilization is on the rise in the United States, spurred by the biofuel utilization mandates put in place by the Energy Independence and Security Act of 2007 (EISA). The United States Environmental Protection Agency (EPA) has the statutory responsibility to implement the EISA mandates through the promulgation of the Renewable Fuel Standard. EPA has historically mandated an emissions certification fuel specification that calls for ethanol-free fuel, except for the certification of flex-fuel vehicles. However, since the U.S. gasoline marketplace is now virtually saturated with E10, some organizations have suggested that inclusion of ethanol in emissions certification fuels would be appropriate. The test methodologies and calculations contained in the Code of Federal Regulations for gasoline-fueled vehicles have been developed with the presumption that the certification fuel does not contain ethanol; thus, a number of technical issues would require resolution before such a change could be accomplished. This report makes use of the considerable data gathered during the mid-level blends testing program to investigate one such issue: estimation of non-methane organic gas (NMOG) emissions. The data reported in this paper were gathered from over 600 cold-start Federal Test Procedure (FTP) tests conducted on 68 vehicles representing 21 models from model year 2000 to 2009. Most of the vehicles were certified to the Tier-2 emissions standard, but several older Tier-1 and national low emissions vehicle program (NLEV) vehicles were also included in the study. Exhaust speciation shows that ethanol, acetaldehyde, and formaldehyde dominate the oxygenated species emissions when ethanol is blended into the test fuel. A set of correlations were developed that are derived from the measured non-methane hydrocarbon (NMHC) emissions and the ethanol blend level in the fuel. These correlations were applied to the measured NMHC emissions from the mid-level ethanol blends testing program and the results compared against the measured NMOG emissions. The results show that the composite FTP NMOG emissions estimate has an error of 0.0015 g/mile {+-}0.0074 for 95% of the test results. Estimates for the individual phases of the FTP are also presented with similar error levels. A limited number of tests conducted using the LA92, US06, and highway fuel economy test cycles show that the FTP correlation also holds reasonably well for these cycles, though the error level relative to the measured NMOG value increases for NMOG emissions less than 0.010 g/mile.

  5. NMOG Emissions Characterizations and Estimation for Vehicles Using Ethanol-Blended Fuels

    SciTech Connect (OSTI)

    Sluder, Scott [ORNL; West, Brian H [ORNL

    2011-10-01T23:59:59.000Z

    Ethanol is a biofuel commonly used in gasoline blends to displace petroleum consumption; its utilization is on the rise in the United States, spurred by the biofuel utilization mandates put in place by the Energy Independence and Security Act of 2007 (EISA). The United States Environmental Protection Agency (EPA) has the statutory responsibility to implement the EISA mandates through the promulgation of the Renewable Fuel Standard. EPA has historically mandated an emissions certification fuel specification that calls for ethanol-free fuel, except for the certification of flex-fuel vehicles. However, since the U.S. gasoline marketplace is now virtually saturated with E10, some organizations have suggested that inclusion of ethanol in emissions certification fuels would be appropriate. The test methodologies and calculations contained in the Code of Federal Regulations for gasoline-fueled vehicles have been developed with the presumption that the certification fuel does not contain ethanol; thus, a number of technical issues would require resolution before such a change could be accomplished. This report makes use of the considerable data gathered during the mid-level blends testing program to investigate one such issue: estimation of non-methane organic gas (NMOG) emissions. The data reported in this paper were gathered from over 600 cold-start Federal Test Procedure (FTP) tests conducted on 68 vehicles representing 21 models from model year 2000 to 2009. Most of the vehicles were certified to the Tier-2 emissions standard, but several older Tier-1 and national low emissions vehicle program (NLEV) vehicles were also included in the study. Exhaust speciation shows that ethanol, acetaldehyde, and formaldehyde dominate the oxygenated species emissions when ethanol is blended into the test fuel. A set of correlations were developed that are derived from the measured non-methane hydrocarbon (NMHC) emissions and the ethanol blend level in the fuel. These correlations were applied to the measured NMHC emissions from the mid-level ethanol blends testing program and the results compared against the measured NMOG emissions. The results show that the composite FTP NMOG emissions estimate has an error of 0.0015 g/mile {+-}0.0074 for 95% of the test results. Estimates for the individual phases of the FTP are also presented with similar error levels. A limited number of tests conducted using the LA92, US06, and highway fuel economy test cycles show that the FTP correlation also holds reasonably well for these cycles, though the error level relative to the measured NMOG value increases for NMOG emissions less than 0.010 g/mile.

  6. Characterization of In-Use Medium Duty Electric Vehicle Driving and Charging Behavior: Preprint

    SciTech Connect (OSTI)

    Duran, A.; Ragatz, A.; Prohaska, R.; Kelly, K.; Walkowicz, K.

    2014-11-01T23:59:59.000Z

    The U.S. Department of Energy's American Recovery and Reinvestment Act (ARRA) deployment and demonstration projects are helping to commercialize technologies for all-electric vehicles (EVs). Under the ARRA program, data from Smith Electric and Navistar medium duty EVs have been collected, compiled, and analyzed in an effort to quantify the impacts of these new technologies. Over a period of three years, the National Renewable Energy Laboratory (NREL) has compiled data from over 250 Smith Newton EVs for a total of over 100,000 days of in-use operation. Similarly, data have been collected from over 100 Navistar eStar vehicles, with over 15,000 operating days having been analyzed. NREL has analyzed a combined total of over 4 million kilometers of driving and 1 million hours of charging data for commercial operating medium duty EVs. In this paper, the authors present an overview of medium duty EV operating and charging behavior based on in-use data collected from both Smith and Navistar vehicles operating in the United States. Specifically, this paper provides an introduction to the specifications and configurations of the vehicles examined; discusses the approach and methodology of data collection and analysis, and presents detailed results regarding daily driving and charging behavior. In addition, trends observed over the course of multiple years of data collection are examined, and conclusions are drawn about early deployment behavior and ongoing adjustments due to new and improving technology. Results and metrics such as average daily driving distance, route aggressiveness, charging frequency, and liter per kilometer diesel equivalent fuel consumption are documented and discussed.

  7. Vehicle technologies program Government Performance and Results Act (GPA) report for fiscal year 2012

    SciTech Connect (OSTI)

    Ward, J.; Stephens, T. S.; Birky, A. K. (Energy Systems); (DOE-EERE); (TA Engineering)

    2012-08-10T23:59:59.000Z

    The U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy has defined milestones for its Vehicle Technologies Program (VTP). This report provides estimates of the benefits that would accrue from achieving these milestones relative to a base case that represents a future in which there is no VTP-supported vehicle technology development. Improvements in the fuel economy and reductions in the cost of light- and heavy-duty vehicles were estimated by using Argonne National Laboratory's Autonomie powertrain simulation software and doing some additional analysis. Argonne also estimated the fraction of the fuel economy improvements that were attributable to VTP-supported development in four 'subsystem' technology areas: batteries and electric drives, advanced combustion engines, fuels and lubricants, and materials (i.e., reducing vehicle mass, called 'lightweighting'). Oak Ridge National Laboratory's MA{sup 3}T (Market Acceptance of Advanced Automotive Technologies) tool was used to project the market penetration of light-duty vehicles, and TA Engineering's TRUCK tool was used to project the penetrations of medium- and heavy-duty trucks. Argonne's VISION transportation energy accounting model was used to estimate total fuel savings, reductions in primary energy consumption, and reductions in greenhouse gas emissions that would result from achieving VTP milestones. These projections indicate that by 2030, the on-road fuel economy of both light- and heavy-duty vehicles would improve by more than 20%, and that this positive impact would be accompanied by a reduction in oil consumption of nearly 2 million barrels per day and a reduction in greenhouse gas emissions of more than 300 million metric tons of CO{sub 2} equivalent per year. These benefits would have a significant economic value in the U.S. transportation sector and reduce its dependency on oil and its vulnerability to oil price shocks.

  8. Characterization and modification of particulate properties to enhance filtration performance

    SciTech Connect (OSTI)

    Snyder, T.R.; Vann Bush, P.; Robinson, M.S.

    1990-06-01T23:59:59.000Z

    The specific objectives of this project are to characterize the particulate properties that determine the filtration performance of fabric filters, and to investigate methods for modifying these particulate properties to enhance filtration performance. Inherent in these objectives is the development of an experimental approach that will lead to full-scale implementation of beneficial conditioning processes identified during the project. The general approach has included a large number of laboratory evaluations to be followed by optional field tests of a new successful conditioning processes performed on a sidestream device. This project was divided into five tasks. The schedule followed for these tasks is shown in Figure 4. Tasks 2 and 3 each focus on one of the two complementary parts of the project. Task 2 Parametric Tests of Ashes and Fabrics, evaluates the degree to which ash properties and fabric design determine filtration performance. Task 3 Survey of Methods to Modify the Particle Filtration Properties, provides a literature review and laboratory study of techniques to modify ash properties. The results of these two tasks were used in Task 4 Proof-of-Concept Tests of Methods to Modify Particle Filtration Properties to demonstrate the effects on filtration performance of modifying ash properties. The findings of all the tasks are summarized in this Final Report. 13 refs.

  9. Modeling the performance and cost of lithium-ion batteries for electric-drive vehicles.

    SciTech Connect (OSTI)

    Nelson, P. A.

    2011-10-20T23:59:59.000Z

    This report details the Battery Performance and Cost model (BatPaC) developed at Argonne National Laboratory for lithium-ion battery packs used in automotive transportation. The model designs the battery for a specified power, energy, and type of vehicle battery. The cost of the designed battery is then calculated by accounting for every step in the lithium-ion battery manufacturing process. The assumed annual production level directly affects each process step. The total cost to the original equipment manufacturer calculated by the model includes the materials, manufacturing, and warranty costs for a battery produced in the year 2020 (in 2010 US$). At the time this report is written, this calculation is the only publically available model that performs a bottom-up lithium-ion battery design and cost calculation. Both the model and the report have been publically peer-reviewed by battery experts assembled by the U.S. Environmental Protection Agency. This report and accompanying model include changes made in response to the comments received during the peer-review. The purpose of the report is to document the equations and assumptions from which the model has been created. A user of the model will be able to recreate the calculations and perhaps more importantly, understand the driving forces for the results. Instructions for use and an illustration of model results are also presented. Almost every variable in the calculation may be changed by the user to represent a system different from the default values pre-entered into the program. The distinct advantage of using a bottom-up cost and design model is that the entire power-to-energy space may be traversed to examine the correlation between performance and cost. The BatPaC model accounts for the physical limitations of the electrochemical processes within the battery. Thus, unrealistic designs are penalized in energy density and cost, unlike cost models based on linear extrapolations. Additionally, the consequences on cost and energy density from changes in cell capacity, parallel cell groups, and manufacturing capabilities are easily assessed with the model. New proposed materials may also be examined to translate bench-scale values to the design of full-scale battery packs providing realistic energy densities and prices to the original equipment manufacturer. The model will be openly distributed to the public in the year 2011. Currently, the calculations are based in a Microsoft{reg_sign} Office Excel spreadsheet. Instructions are provided for use; however, the format is admittedly not user-friendly. A parallel development effort has created an alternate version based on a graphical user-interface that will be more intuitive to some users. The version that is more user-friendly should allow for wider adoption of the model.

  10. Performance Analysis and Comparison of Three IPMSM with High Homopolar Inductance for Electric Vehicle Applications

    E-Print Network [OSTI]

    Boyer, Edmond

    . Abstract This paper presents a comparison of different permanent magnets synchronous motors (PMSM) having three topologies of PMSM according to the specifications of an electric vehicle (EV) with severe in the rotor, PMSM have the highest power density and efficiency among all types of motors. Therefore, PMSM

  11. Spectroradiometer Intercomparison and Impact on Characterizing Photovoltaic Device Performance: Preprint

    SciTech Connect (OSTI)

    Habte, A.; Andreas, A.; Ottoson, L.; Gueymard, C.; Fedor, G.; Fowler, S.; Peterson, J.; Naranen, E.; Kobashi, T.; Akiyama, A.; Takagi, S.

    2014-11-01T23:59:59.000Z

    Indoor and outdoor testing of photovoltaic (PV) device performance requires the use of solar simulators and natural solar radiation, respectively. This performance characterization requires accurate knowledge of spectral irradiance distribution that is incident on the devices. Spectroradiometers are used to measure the spectral distribution of solar simulators and solar radiation. On September 17, 2013, a global spectral irradiance intercomparison using spectroradiometers was organized by the Solar Radiation Research Laboratory (SRRL) at the National Renewable Energy Laboratory (NREL). This paper presents highlights of the results of this first intercomparison, which will help to decrease systematic inter-laboratory differences in the measurements of the outputs or efficiencies of PV devices and harmonize laboratory experimental procedures.

  12. Characterizing cost and performance of flexibility strategies in autobody manufacturing

    E-Print Network [OSTI]

    Povelaites, Jeffrey C

    2005-01-01T23:59:59.000Z

    Consumer demand is hard to predict in any industry, let alone the automotive industry. Vehicle manufacturers try to produce according to what their customers want, but if these wants change, the company is faced with lots ...

  13. Vehicle Technologies Office Merit Review 2014: High Performance Cast Aluminum Alloys for Next Generation Passenger Vehicle Engines 2012 FOA 648 Topic 3a

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

  14. Vehicle Repair Policy Outline the policy regarding vehicle repair on University of Michigan (U-M) vehicles.

    E-Print Network [OSTI]

    Kirschner, Denise

    Vehicle Repair Policy Objective Outline the policy regarding vehicle repair on University of Michigan (U-M) vehicles. Policy 1. All vehicle repairs performed on U-M vehicles must be coordinated facility to repair their fleet vehicles. 2. U-M vehicles leased through Fleet Services include routine

  15. A Consumer-Oriented Control Framework for Performance Analysis in Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Shoultout, Mohamed L. [University of Texas at Austin; Malikopoulos, Andreas [ORNL; Pannala, Sreekanth [ORNL; Chen, Dongmei [University of Texas at Austin

    2015-01-01T23:59:59.000Z

    Hybrid electric vehicles (HEVs) have attracted considerable attention due to their potential to reduce fuel consumption and emissions. The objective of this paper is to enhance our understanding of the associated tradeoffs among the HEV subsystems, e.g., the engine, the motor, and the battery, and investigate the related implications for fuel consumption and battery capacity and lifetime. Addressing this problem can provide insights on how to prioritize these objectives based on consumers needs and preferences. The results of the proposed optimization approach can also be used to investigate the implications for HEV costs related to ownership and warranty.

  16. User's guide to DIANE Version 2. 1: A microcomputer software package for modeling battery performance in electric vehicle applications

    SciTech Connect (OSTI)

    Marr, W.W.; Walsh, W.J. (Argonne National Lab., IL (USA). Energy Systems Div.); Symons, P.C. (Electrochemical Engineering Consultants, Inc., Morgan Hill, CA (USA))

    1990-06-01T23:59:59.000Z

    DIANE is an interactive microcomputer software package for the analysis of battery performance in electric vehicle (EV) applications. The principal objective of this software package is to enable the prediction of EV performance on the basis of laboratory test data for batteries. The model provides a second-by-second simulation of battery voltage and current for any specified velocity/time or power/time profile. The capability of the battery is modeled by an algorithm that relates the battery voltage to the withdrawn current, taking into account the effect of battery depth-of-discharge (DOD). Because of the lack of test data and other constraints, the current version of DIANE deals only with vehicles using fresh'' batteries with or without regenerative braking. Deterioration of battery capability due to aging can presently be simulated with user-input parameters accounting for an increase of effective internal resistance and/or a decrease of cell no-load voltage. DIANE 2.1 is written in FORTRAN language for use on IBM-compatible microcomputers. 7 refs.

  17. Reforming petroleum-based fuels for fuel cell vehicles : composition-performance relationships.

    SciTech Connect (OSTI)

    Kopasz, J. P.; Miller, L. E.; Ahmed, S.; Devlin, P. R.; Pacheco, M.

    2001-12-04T23:59:59.000Z

    Onboard reforming of petroleum-based fuels, such as gasoline, may help ease the introduction of fuel cell vehicles to the marketplace. Although gasoline can be reformed, it is optimized to meet the demands of ICEs. This optimization includes blending to increase the octane number and addition of oxygenates and detergents to control emissions. The requirements for a fuel for onboard reforming to hydrogen are quite different than those for combustion. Factors such as octane number and flame speed are not important; however, factors such as hydrogen density, catalyst-fuel interactions, and possible catalyst poisoning become paramount. In order to identify what factors are important in a hydrocarbon fuel for reforming to hydrogen and what factors are detrimental, we have begun a program to test various components of gasoline and blends of components under autothermal reforming conditions. The results indicate that fuel composition can have a large effect on reforming behavior. Components which may be beneficial for ICEs for their octane enhancing value were detrimental to reforming. Fuels with high aromatic and naphthenic content were more difficult to reform. Aromatics were also found to have an impact on the kinetics for reforming of paraffins. The effects of sulfur impurities were dependent on the catalyst. Sulfur was detrimental for Ni, Co, and Ru catalysts. Sulfur was beneficial for reforming with Pt catalysts, however, the effect was dependent on the sulfur concentration.

  18. 99Tc Process Monitoring System In-Lab Performance Characterization

    SciTech Connect (OSTI)

    O'Hara, Matthew J.; Niver, Cynthia M.

    2014-01-01T23:59:59.000Z

    Executive Summary A 99Tc Process Monitoring (Tc-Mon) System has been designed and built for deployment at the recently constructed 200 West Pump & Treat (200W P&T) Plant in the 200 West Area ZP-1 Operable Unit of the Hanford Site. The plant is operated by CH2M Hill Plateau Remediation Company (CHPRC). The Tc-Mon system was created through collaboration between Pacific Northwest National Laboratory (PNNL) and Burge Environmental, Inc. The new system’s design has been optimized based on experience from an earlier field test (2011) of a prototype system at the 200W-ZP-1 Interim Pump & Treat Plant. A portion of the new 200W P&T Plant is dedicated to removal of 99Tc from contaminated groundwater in the 200 West Area. 99Tc, as the pertechnetate anion (99TcO4-), is remediated through delivery of water into two trains (Trains A and B) of three tandem extraction columns filled with Purolite A530E resin. The resin columns cannot be regenerated; therefore, once they have reached their maximum useful capacity, the columns must be disposed of as radioactive waste. The Tc-Mon system’s primary duty will be to periodically sample and analyze the effluents from each of the two primary extraction columns to determine 99Tc breakthrough. The Tc-Mon system will enable the CH2M Hill Plateau Remediation Company (CHPRC) to measure primary extraction column breakthrough on demand. In this manner, CHPRC will be able to utilize each extraction column to its maximum capacity. This will significantly reduce column disposal and replacement costs over the life of the plant. The Tc-Mon system was constructed by Burge Environmental, Inc. and was delivered to PNNL in June 2013 for setup and initial hardware and software performance testing in the 325 Building. By early July, PNNL had initiated an in-laboratory performance characterization study on the system. The objective was to fully calibrate the system and then evaluate the quality of the analytical outputs 1) against a series of clean groundwater samples prepared as 99Tc standards, and 2) on actual 200W P&T Plant grab samples containing 99Tc (and other radioactive and non-radioactive contaminants) at levels reported by the Waste Sampling and Characterization Facility. These grab samples included pre-treated (Pre-Resin) and post-treated (Post-Resin) 200W P&T Plant waters for May through August 2013. This report contains the following information: • The genesis of the 99Tc sensor and the Tc-Mon analytical system. • A description of the Tc-Mon system’s major hardware and software components. • A description of the operational principles behind the 99Tc sensor. • Results from the calibration of three components within the Tc-Mon system. The three systems requiring calibration are: 1. Sampling Chamber 2. Conductivity Sensor 3. 99Tc Sensor • Presentation of analytical results obtained on the fully calibrated Tc-Mon system. This includes a determination of the precision and accuracy of each system defined above. • Estimation of the 99Tc sensor’s minimum detectable activity and limit of quantification. • A brief discussion of potential chemical and radiological influences on the 99Tc sensor based on known contaminants in 200W P&T Plant water. • Observations regarding 99Tc sensor longevity.

  19. Vehicle Technologies Office Merit Review 2014: Synthesis and Characterization of Structured Si-Carbon Nanocomposite Anodes and Functional Polymer Binders

    Broader source: Energy.gov [DOE]

    Presentation given by The Pennsylvania State University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about synthesis...

  20. Vehicle Technologies Office Merit Review 2014: International Energy Agency (IEA IA-AMT) International Characterization Methods (Agreement ID:26462)

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about International...

  1. Vehicle Technologies Office Merit Review 2015: Cummins-ORNL\\FEERC Combustion CRADA: Characterization & Reduction of Combustion Variations

    Broader source: Energy.gov [DOE]

    Presentation given by Lawrence LIvermore National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  2. Visualization of Fuel Cell Water Transport and Performance Characterization

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02Report | DepartmentTRUVictorVisualization &under

  3. Prediction of performance and maneuvering dynamics for marine vehicles applied to DDG-1000

    E-Print Network [OSTI]

    Menard, Louis-Philippe M

    2010-01-01T23:59:59.000Z

    Being able to accurately model the performance of ships is an integral part of the ship design process. A considerable amount of money is invested into predicting how a ship will maneuver in a given sea state. Furthermore, ...

  4. Energy consumption characterization as an input to building management and performance benchmarking - a case study PPT

    E-Print Network [OSTI]

    Bernardo, H.; Neves, L.; Oliveira, F.; Quintal, E.

    2012-01-01T23:59:59.000Z

    performance characterization of each of its buildings, looking specifically at the typology of canteen. Developing building energy performance benchmarking systems enables the comparison of actual consumption of individual buildings against others of the same...

  5. Characterizing the In-Use Emissions Performance of Novel PM and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the In-Use Emissions Performance of Novel PM and NOx Control Technologies on Diesel Construction Equipment Characterizing the In-Use Emissions Performance of Novel PM and NOx...

  6. A New Approach in Tribological Characterization of High Performance Materials

    E-Print Network [OSTI]

    Fox, Grant R.

    2010-07-14T23:59:59.000Z

    normal loads and sliding velocities in an unlubricated condition. Average friction coefficient, friction work, and specific wear rates were calculated from the data and microscopy techniques were used to observe and characterize wear mechanisms...

  7. Synthesis, Characterization, Properties, and Tribological Performance of 2D Nanomaterials

    E-Print Network [OSTI]

    He, Xingliang

    2014-04-25T23:59:59.000Z

    of lubricants using novel nanostructured particles. Experimental approaches include synthesis, characterization, and tribological and rheological investigation of nanoparticles, yttrium oxide (Y_(2)O_(3)), ?-zirconium phosphate (ZrP), and boron (B...

  8. A New Approach in Tribological Characterization of High Performance Materials 

    E-Print Network [OSTI]

    Fox, Grant R.

    2010-07-14T23:59:59.000Z

    normal loads and sliding velocities in an unlubricated condition. Average friction coefficient, friction work, and specific wear rates were calculated from the data and microscopy techniques were used to observe and characterize wear mechanisms...

  9. Analysis of a Transit Bus as Probe Vehicle for Arterial Performance Measurement

    E-Print Network [OSTI]

    Bertini, Robert L.

    of an arterial. First, we extract data from the bus dispatch system (BDS) of the Tri- County Metropolitan Transit District (TriMet), the transit provider for Portland, Oregon. Then, the performance characteristics engineers, planners, researchers, and transportation agencies have expended much effort trying to understand

  10. Vehicle Technologies Office Merit Review 2015: High Temperature DC-Bus Capacitor Cost Reduction and Performance Improvements

    Broader source: Energy.gov [DOE]

    Presentation given by Sigma Technologies International at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

  11. Vehicle Technologies Office Merit Review 2014: Alternative High-Performance Motors with Non-Rare Earth Materials

    Broader source: Energy.gov [DOE]

    Presentation given by General Electric Global at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about alternative high...

  12. Vehicle Technologies Office Merit Review 2015: Advancements in Fuel Spray and Combustion Modeling with High Performance Computing Resources

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advancements in...

  13. Vehicle Technologies Office Merit Review 2014: Overcoming Processing Cost Barriers of High-Performance Lithium-Ion Battery Electrodes

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about overcoming...

  14. Advanced Heat Transfer Technologies Increase Vehicle Performance and Reliability; The Spectrum of Clean Energy Innovation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01T23:59:59.000Z

    Fact sheet describes NREL's work with heat transfer technologies to keep hybrid electric and all-electric vehicle power electronic components cool.

  15. Vehicle Technologies Office Merit Review 2015: Alternative High-Performance Motors with Non-Rare Earth Materials

    Broader source: Energy.gov [DOE]

    Presentation given by General Electric Global at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about alternative high...

  16. Vehicle Technologies Office Merit Review 2014: High Temperature DC-Bus Capacitors Cost Reduction and Performance Improvements

    Broader source: Energy.gov [DOE]

    Presentation given by Sigma Technologies International at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

  17. Vehicle Technologies Office Merit Review 2015: Performance and Reliability of Bonded Interfaces for High-Temperature Packaging

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  18. Studies on Hazard Characterization for Performance-based Structural Design

    E-Print Network [OSTI]

    Wang, Yue

    2010-07-14T23:59:59.000Z

    size parameters, and a measure of storm kinetic energy were used to develop wind-surge and wind-surge-energy models, which can be used to characterize the wind-surge hazard at a level of accuracy suitable for PBE applications. These models provide a...

  19. Studies on Hazard Characterization for Performance-based Structural Design 

    E-Print Network [OSTI]

    Wang, Yue

    2010-07-14T23:59:59.000Z

    -based design procedures. This research examined and extended the state-of-the-art in hazard characterization (wind and surge) and risk-based design procedures (seismic). State-of-the-art hurricane models (including wind field, tracking and decay models...

  20. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector...

  1. Vehicle Technologies Office Merit Review 2014: Cummins-ORNL\\FEERC Combustion CRADA: Characterization & Reduction of Combustion Variations

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Cummins-ORNL...

  2. A Characterization of Processor Performance in the VAX-11/780 Joel S. Emer

    E-Print Network [OSTI]

    Moshovos, Andreas

    A Characterization of Processor Performance in the VAX-11/780 Joel S. Emer Digital Equipment Corp, MA 01460 ABSTRACT This paper reports the results of a study of VAX- 11/780 processor performance the 'average'fVAX instruction spends in these activities. 1. INTRODUCTION Processor performance is often

  3. Metrics to Characterize Airport Operational Performance Using Surface Surveillance Data

    E-Print Network [OSTI]

    Gummadi, Ramakrishna

    Time FAA Federal Aviation Administration GPS Global Positioning System Departure Spacing Efficiency Route Traffic Control Center ASDE-X Airport Surface Detection Equipment, Model-X ASPM Aviation System from a combination of the Aviation System Performance Metrics (ASPM) [9] and the Airline Service

  4. Characterization of Sensor Performance and Durability for Structural Health Monitoring Systems

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    Characterization of Sensor Performance and Durability for Structural Health Monitoring Systems with regard to successfully implementing Structural Health Monitoring technologies in Air Force systems sensor system design and packaging. Keywords: Structural Health Monitoring, Piezo Wafer Active Sensors

  5. Development of an improved sodium exposure test cell experiment for characterization of AMTEC electrode performance 

    E-Print Network [OSTI]

    Fiebig, Bradley Nelson

    1999-01-01T23:59:59.000Z

    An investigation into sources of inconsistencies in sodium exposure test cell (SETC) measurements, used to characterize AMTEC electrode performance, was conducted. Development of modifications to the SETC setup and operation ...

  6. Characterization and estimation of permeability correlation structure from performance data

    SciTech Connect (OSTI)

    Ershaghi, I.; Al-Qahtani, M. [Univ. of Southern California, Los Angeles, CA (United States)

    1997-08-01T23:59:59.000Z

    In this study, the influence of permeability structure and correlation length on the system effective permeability and recovery factors of 2-D cross-sectional reservoir models, under waterflood, is investigated. Reservoirs with identical statistical representation of permeability attributes are shown to exhibit different system effective permeability and production characteristics which can be expressed by a mean and variance. The mean and variance are shown to be significantly influenced by the correlation length. Detailed quantification of the influence of horizontal and vertical correlation lengths for different permeability distributions is presented. The effect of capillary pressure, P{sub c1} on the production characteristics and saturation profiles at different correlation lengths is also investigated. It is observed that neglecting P{sub c} causes considerable error at large horizontal and short vertical correlation lengths. The effect of using constant as opposed to variable relative permeability attributes is also investigated at different correlation lengths. Next we studied the influence of correlation anisotropy in 2-D reservoir models. For a reservoir under five-spot waterflood pattern, it is shown that the ratios of breakthrough times and recovery factors of the wells in each direction of correlation are greatly influenced by the degree of anisotropy. In fully developed fields, performance data can aid in the recognition of reservoir anisotropy. Finally, a procedure for estimating the spatial correlation length from performance data is presented. Both the production performance data and the system`s effective permeability are required in estimating the correlation length.

  7. Supported Molecular Catalysts: Synthesis, In-Situ Characterization and Performance

    SciTech Connect (OSTI)

    Davis, Mark E.

    2009-03-13T23:59:59.000Z

    The objectives of our work are: (i) to create solid catalysts with active sites that can function in a cooperative manner to enhance reactivity and selectivity, and (ii) to prepare solid catalysts that can perform multiple reactions in a network that in some cases would not be possible in solution due to the incompatibilities of the various catalytic entities (for example an acid and a base). We carried out extensive reactions to test the nature of the cooperative effect caused by thiol/sulfonic acid interactions. The acid/thiol combination provided an example where the two organic groups should be positioned as close to one another as possible. We also studied a system where this is not possible (acid-base). We investigated simultaneously incorporating acid and base groups into the same material. For the case of acid and bases, there is an optimal separation distance (too close allows for neutralization while too far eliminates any cooperative behavior).

  8. Figure and finish characterization of high performance metal mirrors

    SciTech Connect (OSTI)

    Takacs, P.Z. [Brookhaven National Lab., Upton, NY (United States); Church, E.L. [Army Armament Research and Development Command, Dover, NJ (United States)

    1991-10-01T23:59:59.000Z

    Most metal mirrors currently used in synchrotron radiation (SR) beam lines to reflect soft x-rays are made of electroless nickel plate on an aluminum substrate. This material combination has allowed optical designers to incorporate exotic cylindrical aspheres into grazing incidence x-ray beam-handling systems by taking advantage of single-point diamond machining techniques. But the promise of high-quality electroless nickel surfaces has generally exceeded the performance. We will examine the evolution of electroless nickel surfaces through a study of the quality of mirrors delivered for use at the National Synchrotron Light Source over the past seven years. We have developed techniques to assess surface quality based on the measurement of surface roughness and figure errors with optical profiling instruments. It is instructive to see how the quality of the surface is related to the complexity of the machine operations required to produce it.

  9. Overview of the Capstone Depleted Uranium Study of Aerosols from Impact with Armored Vehicles: Test Setup and Aerosol Generation, Characterization, and Application in Assessing Dose and Risk

    SciTech Connect (OSTI)

    Parkhurst, MaryAnn; Guilmette, Raymond A.

    2009-03-01T23:59:59.000Z

    The Capstone Depleted Uranium (DU) Aerosol Characterization and Risk Assessment Study was conducted to generate data about DU aerosols generated during the perforation of armored combat vehicles with large-caliber DU penetrators, and to apply the data in assessments of human health risks to personnel exposed to these aerosols, primarily through inhalation, during the 1991 Gulf War or in future military operations. The Capstone study consisted of two components: 1) generating, sampling and characterizing DU aerosols by firing at and perforating combat vehicles and 2) applying the source-term quantities and characteristics of the aerosols to the evaluation of doses and risks. This paper reviews the background of the study including the bases for the study, previous reviews of DU particles and health assessments from DU used by the U.S. military, the objectives of the study components, the participants and oversight teams, and the types of exposures it was intended to evaluate. It then discusses exposure scenarios used in the dose and risk assessment and provides an overview of how the field tests and dose and risk assessments were conducted.

  10. Characterization of At-species in simple and biological media by high performance

    E-Print Network [OSTI]

    Boyer, Edmond

    Characterization of At- species in simple and biological media by high performance anion exchange detection system, may be an alternative way to study its chemistry. In this research work, High Performance indicates the existence of negative ion, astatide At- . The methodology was successfully applied

  11. MECHANICAL PROPERTY CHARACTERIZATIONS AND PERFORMANCE MODELING OF SOFC SEALS

    SciTech Connect (OSTI)

    Koeppel, Brian J.; Vetrano, John S.; Nguyen, Ba Nghiep; Sun, Xin; Khaleel, Mohammad A.

    2008-03-26T23:59:59.000Z

    This study provides modeling tools for the design of reliable seals for SOFC stacks. The work consists of 1) experimental testing to determine fundamental properties of SOFC sealing materials, and 2) numerical modeling of stacks and sealing systems. The material tests capture relevant temperature-dependent physical and mechanical data needed by the analytical models such as thermal expansion, strength, fracture toughness, and relaxation behavior for glass-ceramic seals and other materials. Testing has been performed on both homogenous specimens and multiple material assemblies to investigate the effect of interfacial reactions. A viscoelastic continuum damage model for a glass-ceramic seal was developed to capture the nonlinear behavior of this material at high temperatures. This model was implemented in the MSC MARC finite element code and was used for a detailed analysis of a planar SOFC stack under thermal cycling conditions. Realistic thermal loads for the stack were obtained using PNNL’s in-house multiphysics solver. The accumulated seal damage and component stresses were evaluated for multiple thermal loading cycles, and regions of high seal damage susceptible to cracking were identified. Selected test results, numerical model development, and analysis results will be presented.

  12. Characterization and modification of particulate properties to enhance filtration performance

    SciTech Connect (OSTI)

    Snyder, T.R.; Robinson, M.S.; Vann Bush, P.

    1989-06-22T23:59:59.000Z

    This report describes the results of project activities that occurred during the period from March 1 through May 31, 1989. The organization of this report generally follows the outline of work presented in the Project Work Plan. Work performed during this period included tests under Task 2 -- Parametric Tests of Ashes and Fabrics, and Task 3 -- Survey of Methods to Modify Particle Filtration Properties. Discussion of the Task 2 work has been organized topically, rather than adhering to the activities specified in the Work Plan. Cohesive ash from the Tennessee Valley Authority's 160 MW Atmospheric Fluidized-Bed Combustor at the Shawnee Plant in Paducah, Kentucky was obtained during this quarter and has been analyzed in the laboratory. The second phase of the abstract search and review of pertinent articles included in activity 3.1 is nearly complete. A summary of this phase of the literature search is included in this report. A variety of potential conditioning agents have been evaluated during this reporting period. These agents include sodium bicarbonate, hydrated lime, various grades of fine silica powder, gasifier char, glass beads and glass fibers. The three source ashes have been mixed with these agents in different concentrations and using various mixing techniques. These tests are continuing, and this report contains a summary of the combinations evaluated during this past quarter. 17 figs., 7 tabs.

  13. High power battery test methods for hybrid vehicle applications

    SciTech Connect (OSTI)

    Hunt, G.L.; Haskins, H.; Heinrich, B.; Sutula, R.

    1997-11-01T23:59:59.000Z

    Commonly used EV battery tests are not very suitable for testing hybrid vehicle batteries, which may be primarily intended to supply vehicle acceleration power. The capacity of hybrid vehicle batteries will be relatively small, they will typically operate over a restricted range of states-of-charge, and they may seldom if ever be fully recharged. Further, hybrid propulsion system designs will commonly impose a higher regeneration content than is typical for electric vehicles. New test methods have been developed for use in characterizing battery performance and life for hybrid vehicle use. The procedures described in this paper were developed from the requirements of the government-industry cooperative Partnership for A New Generation of Vehicles (PNGV) program; however, they are expected to have broad application to the testing of energy storage devices for hybrid vehicles. The most important performance measure for a high power battery is its pulse power capability as a function of state-of-charge for both discharge and regeneration pulses. It is also important to characterize cycle life, although the {open_quote}cycles{close_quote} involved are quite different from the conventional full-discharge, full-recharge cycle commonly used for EV batteries, This paper illustrates in detail several test profiles which have been selected for PNGV battery testing, along with some sample results and lessons learned to date from the use of these test profiles. The relationship between the PNGV energy storage requirements and these tests is described so that application of the test methods can be made to other hybrid vehicle performance requirements as well. The resulting test procedures can be used to characterize the pulse power capability of high power energy storage devices including batteries and ultracapacitors, as well as the life expectancy of such devices, for either power assist or dual mode hybrid propulsion system designs.

  14. Vehicle Maintenance Policy Outline the policy regarding vehicle maintenance at University of Michigan (U-M).

    E-Print Network [OSTI]

    Kirschner, Denise

    Vehicle Maintenance Policy Objective Outline the policy regarding vehicle maintenance at University of Michigan (U-M). Policy 1. All maintenance performed on U-M vehicles must be coordinated through Garage to repair their fleet vehicles. 2. U-M vehicles leased through Fleet Services include routine maintenance

  15. VEHICLE NETWORKS: ACHIEVING REGULAR FORMATION

    E-Print Network [OSTI]

    VEHICLE NETWORKS: ACHIEVING REGULAR FORMATION MADALENA CHAVES, ROBERT DAY, LUCIA GOMEZ a network of vehicles exchanging information among themselves with the intention of achieving a specified the performance of the vehicle network. A stochastic model for information flow is also considered, allowing

  16. Vehicle Technologies Office: 2008 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2008 Advanced Vehicle...

  17. Performance Characterization of a Medium-Duty Diesel Engine with Bio-Diesel and Petroleum Diesel Fuels 

    E-Print Network [OSTI]

    Esquivel, Jason

    2010-01-16T23:59:59.000Z

    characterizes the performance of a medium-duty diesel engine fuelled with biodiesel and conventional diesel. The objective is accomplished by taking measurements of manifold pressure and temperature, fuel flow, air flow, and torque. The study first characterizes...

  18. Armored Vehicle 

    E-Print Network [OSTI]

    Unknown

    2011-09-05T23:59:59.000Z

    This research is focused on designing a new generation of CAD tools that could help a ”hybrid vehicle” designer with the design process to come up with better vehicle configurations. The conventional design process for any type of hybrid...

  19. A Performance Counter Based Workload Characterization on Blue Gene/P

    E-Print Network [OSTI]

    John, Lizy Kurian

    A Performance Counter Based Workload Characterization on Blue Gene/P Karthik Ganesan Lizy John V--IBM's Blue Gene/P, the second generation of the Blue Gene supercomputer is designed with a Universal Perfor instrument applications and get a profound insight into its execution on the Blue Gene/P system which could

  20. Characterization and performances of a monitoring ionization chamber dedicated to IBA-universal

    E-Print Network [OSTI]

    an Ionization Chamber in col- laboration with the company IBA (Ion Beam Applications). This monitoring deviceCharacterization and performances of a monitoring ionization chamber dedicated to IBA patented and five IC2/3 chambers were de- Preprint submitted to Elsevier June 28, 2013 in2p3

  1. Performance Characterization of IP Network-based Control Methodologies for DC Motor Applications Part I

    E-Print Network [OSTI]

    Chow, Mo-Yuen

    Performance Characterization of IP Network-based Control Methodologies for DC Motor Applications stability, allowing control of real-time applications. I. INTRODUCTION A recent trend in control systems ­ Part I Tyler Richards Mo-Yuen Chow Advanced Diagnosis Automation and Control Lab Advanced Diagnosis

  2. Characterization techniques for surface-micromachined devices

    SciTech Connect (OSTI)

    Eaton, W.P.; Smith, N.F.; Irwin, L.; Tanner, D.M.

    1998-08-01T23:59:59.000Z

    Using a microengine as the primary test vehicle, the authors have examined several aspects of characterization. Parametric measurements provide fabrication process information. Drive signal optimization is necessary for increased microengine performance. Finally, electrical characterization of resonant frequency and quality factor can be more accurate than visual techniques.

  3. Advanced Vehicle Testing and Evaluation

    SciTech Connect (OSTI)

    Garetson, Thomas

    2013-03-31T23:59:59.000Z

    The objective of the United States (U.S.) Department of Energy?s (DOEs) Advanced Vehicle Testing and Evaluation (AVTE) project was to provide test and evaluation services for advanced technology vehicles, to establish a performance baseline, to determine vehicle reliability, and to evaluate vehicle operating costs in fleet operations. Vehicles tested include light and medium-duty vehicles in conventional, hybrid, and all-electric configurations using conventional and alternative fuels, including hydrogen in internal combustion engines. Vehicles were tested on closed tracks and chassis dynamometers, as well as operated on public roads, in fleet operations, and over prescribed routes. All testing was controlled by procedures developed specifically to support such testing. Testing and evaluations were conducted in the following phases: ? Development of test procedures, which established testing procedures; ? Baseline performance testing, which established a performance baseline; ? Accelerated reliability testing, which determined vehicle reliability; ? Fleet testing, used to evaluate vehicle economics in fleet operation, and ? End of test performance evaluation. Test results are reported by two means and posted by Idaho National Laboratory (INL) to their website: quarterly progress reports, used to document work in progress; and final test reports. This final report documents work conducted for the entirety of the contract by the Clarity Group, Inc., doing business as ECOtality North America (ECOtality). The contract was performed from 1 October 2005 through 31 March 2013. There were 113 light-duty on-road (95), off-road (3) and low speed (15) vehicles tested.

  4. Instruction-Level Characterization of Scientific Computing Applications Using Hardware Performance Counters

    SciTech Connect (OSTI)

    Luo, Y.; Cameron, K.W.

    1998-11-24T23:59:59.000Z

    Workload characterization has been proven an essential tool to architecture design and performance evaluation in both scientific and commercial computing areas. Traditional workload characterization techniques include FLOPS rate, cache miss ratios, CPI (cycles per instruction or IPC, instructions per cycle) etc. With the complexity of sophisticated modern superscalar microprocessors, these traditional characterization techniques are not powerful enough to pinpoint the performance bottleneck of an application on a specific microprocessor. They are also incapable of immediately demonstrating the potential performance benefit of any architectural or functional improvement in a new processor design. To solve these problems, many people rely on simulators, which have substantial constraints especially on large-scale scientific computing applications. This paper presents a new technique of characterizing applications at the instruction level using hardware performance counters. It has the advantage of collecting instruction-level characteristics in a few runs virtually without overhead or slowdown. A variety of instruction counts can be utilized to calculate some average abstract workload parameters corresponding to microprocessor pipelines or functional units. Based on the microprocessor architectural constraints and these calculated abstract parameters, the architectural performance bottleneck for a specific application can be estimated. In particular, the analysis results can provide some insight to the problem that only a small percentage of processor peak performance can be achieved even for many very cache-friendly codes. Meanwhile, the bottleneck estimation can provide suggestions about viable architectural/functional improvement for certain workloads. Eventually, these abstract parameters can lead to the creation of an analytical microprocessor pipeline model and memory hierarchy model.

  5. Rapid road repair vehicle

    DOE Patents [OSTI]

    Mara, Leo M. (Livermore, CA)

    1999-01-01T23:59:59.000Z

    Disclosed are improvments to a rapid road repair vehicle comprising an improved cleaning device arrangement, two dispensing arrays for filling defects more rapidly and efficiently, an array of pre-heaters to heat the road way surface in order to help the repair material better bond to the repaired surface, a means for detecting, measuring, and computing the number, location and volume of each of the detected surface imperfection, and a computer means schema for controlling the operation of the plurality of vehicle subsystems. The improved vehicle is, therefore, better able to perform its intended function of filling surface imperfections while moving over those surfaces at near normal traffic speeds.

  6. Electric vehicles

    SciTech Connect (OSTI)

    Not Available

    1990-03-01T23:59:59.000Z

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

  7. The robust vehicle routing problem with time windows

    E-Print Network [OSTI]

    2012-09-25T23:59:59.000Z

    Sep 25, 2012 ... This paper demonstrates how to efficiently solve the vehicle routing ... Much research has been performed on vehicle routing problems, not the ...

  8. Performance characterization of an internsity-modulated fiber optic displacement sensor

    SciTech Connect (OSTI)

    Moro, Erik Allan [Los Alamos National Laboratory; Todd, Michael D [Los Alamos National Laboratory; Puckett, Santhony D [Los Alamos National Laboratory

    2010-09-30T23:59:59.000Z

    A testbed simulating an intensity-modulated fiber optic displacement sensor is experimentally characterized, and the implications regarding sensor design are discussed. Of interest are the intensity distribution of the transmitted optical signal and the relationships between sensor architecture and performance. Particularly, an intensity-modulated sensor's sensitivity, linearity, displacement range, and resolution are functions of the relative positioning of its transmitting and receiving fibers. In this paper, sensor architectures with various combinations of these performance metrics are discussed. A sensor capable of micrometer resolution is reported, and it is concluded that this work could lead to an improved methodology for sensor design.

  9. Characterizing the impact of using spare-cores on application performance

    SciTech Connect (OSTI)

    Sancho Pitarch, Jose Carlos [Los Alamos National Laboratory; Kerbyson, Darren J [Los Alamos National Laboratory; Lang, Mike [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    Increased parallelism on a single processor is driving improvements in peak-performance at both the node and system levels. However achievable performance, in particular from production scientific applications, is not always directly proportional to the core count. Performance is often limited by constraints in the memory hierarchy and also by a node interconnectivity. Even on state-of-the-art processors, containing between four and eight cores, many applications cannot take full advantage of the compute-performance of all cores. This trend is expected to increase on future processors as the core count per processor increases. In this work we characterize the use of spare-cores, cores that do not provide any improvements in application performance, on current multi-core processors. By using a pulse-width modulation method, we examine the possible performance profile of using a spare-core and quantify under what situations its use will not impact application performance. We show that, for current AMD and Intel multi-core processors, spare-cores can be used for substantial computational tasks but can impact application performance when using shared caches or when significantly accessing main memory.

  10. Electric Vehicles

    ScienceCinema (OSTI)

    Ozpineci, Burak

    2014-07-23T23:59:59.000Z

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  11. Electric Vehicles

    SciTech Connect (OSTI)

    Ozpineci, Burak

    2014-05-02T23:59:59.000Z

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  12. Vehicle Technologies Office: 2009 Advanced Power Electronics...

    Broader source: Energy.gov (indexed) [DOE]

    2009apeemreport.pdf More Documents & Publications Thermal Performance and Reliability of Bonded Interfaces Vehicle Technologies Office Merit Review 2014: Performance and...

  13. Vehicle Technologies Office: AVTA - Electric Vehicle Charging...

    Energy Savers [EERE]

    Charging Equipment (EVSE) Testing Data Vehicle Technologies Office: AVTA - Electric Vehicle Charging Equipment (EVSE) Testing Data Electric vehicle chargers (otherwise known as...

  14. Vehicle Technologies Office: 2009 Advanced Vehicle Technology...

    Broader source: Energy.gov (indexed) [DOE]

    Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Vehicle Technologies Office: 2008 Advanced Vehicle Technology Analysis...

  15. Commercial Vehicle Classification using Vehicle Signature Data

    E-Print Network [OSTI]

    Liu, Hang; Jeng, Shin-Ting; Andre Tok, Yeow Chern; Ritchie, Stephen G.

    2008-01-01T23:59:59.000Z

    Traffic Measurement and Vehicle Classification with SingleG. Ritchie. Real-time Vehicle Classification using InductiveReijmers, J.J. , "On-line vehicle classification," Vehicular

  16. Ultracapacitor Technologies and Application in Hybrid and Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andy

    2009-01-01T23:59:59.000Z

    Power Battery for Hybrid Vehicle Applications. ProceedingsAF. Electric and Hybrid Vehicle Design and Performance.A, Thornton M. Plug-in Hybrid Vehicle Analysis. NREL/MP-540-

  17. Design, Construction and Performance of a Buck-Boost Converter for an Ultracapacitor-Based Auxiliary Energy System for Electric Vehicles

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    -Based Auxiliary Energy System for Electric Vehicles Micah Ortúzar, Juan Dixon (SM IEEE) and Jorge Moreno decades. Nevertheless, pure electric vehicles still have not achieved ranges comparable to that of gas in most electric batteries compared to that of gasoline, is resolved in hybrid vehicles by combining high

  18. In-Vehicle Testing and Computer Modeling of Electric Vehicle Batteries

    E-Print Network [OSTI]

    Wang, Chao-Yang

    In-Vehicle Testing and Computer Modeling of Electric Vehicle Batteries B. Thomas, W.B. Gu, J was performed for both VRLA and NiMH batteries using Penn State University's electric vehicle, the Electric Lion and hybrid-electric vehicles. A thorough understanding of battery systems from the point of view

  19. Onboard Hydrogen/Helium Sensors in Support of the Global Technical Regulation: An Assessment of Performance in Fuel Cell Electric Vehicle Crash Tests

    SciTech Connect (OSTI)

    Post, M. B.; Burgess, R.; Rivkin, C.; Buttner, W.; O'Malley, K.; Ruiz, A.

    2012-09-01T23:59:59.000Z

    Automobile manufacturers in North America, Europe, and Asia project a 2015 release of commercial hydrogen fuel cell powered light-duty road vehicles. These vehicles will be for general consumer applications, albeit initially in select markets but with much broader market penetration expected by 2025. To assure international harmony, North American, European, and Asian regulatory representatives are striving to base respective national regulations on an international safety standard, the Global Technical Regulation (GTR), Hydrogen Fueled Vehicle, which is part of an international agreement pertaining to wheeled vehicles and equipment for wheeled vehicles.

  20. Loaner Vehicle Policy Outline the policy regarding issuance of loaner vehicles for University of Michigan (U-M)

    E-Print Network [OSTI]

    Kirschner, Denise

    Loaner Vehicle Policy Objective Outline the policy regarding issuance of loaner vehicles for University of Michigan (U-M) vehicles in the garage for maintenance. Vehicle Maintenance Policy 1. All maintenance performed on U-M vehicles must be coordinated through Garage Services. Exception: Both U

  1. Performance Evaluation of a Cascaded H-Bridge Multi Level Inverter Fed BLDC Motor Drive in an Electric Vehicle

    E-Print Network [OSTI]

    Emani, Sriram S.

    2011-08-08T23:59:59.000Z

    . The design parameters are meant to meet the requirements of a commercial car. The various advantages of a multi level inverter fed PMSM have been demonstrated and an exhaustive performance evaluation has been done. The investigation is done by testing...

  2. Characterization of subjective uncertainty in the 1996 performance assessment for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    HELTON,JON CRAIG; MARTELL,MARY-ALENA; TIERNEY,MARTIN S.

    2000-05-18T23:59:59.000Z

    The 1996 performance assessment (PA) for the Waste Isolation Pilot Plant (WIPP) maintains a separation between stochastic (i.e., aleatory) and subjective (i.e., epistemic) uncertainty, with stochastic uncertainty arising from the possible disruptions that could occur at the WIPP over the 10,000 yr regulatory period specified by the US Environmental Protection Agency (40 CFR 191,40 CFR 194) and subjective uncertainty arising from an inability to uniquely characterize many of the inputs required in the 1996 WIPP PA. The characterization of subjective uncertainty is discussed, including assignment of distributions, uncertain variables selected for inclusion in analysis, correlation control, sample size, statistical confidence on mean complementary cumulative distribution functions, generation of Latin hypercube samples, sensitivity analysis techniques, and scenarios involving stochastic and subjective uncertainty.

  3. Light-Duty Fuel Cell Vehicles State of Development

    E-Print Network [OSTI]

    Light-Duty Fuel Cell Vehicles State of Development Fuel Cell Vehicles (FCVs) An international race is under way to commercialize fuel cell vehicles (FCVs). The competition is characterized by rapid by taking full advantage of the characteristics and capabilities of fuel cells. But most of the vehicles

  4. Global Assessment of Hydrogen Technologies - Task 2 Report Comparison of Performance and Emissions from Near-Term Hydrogen Fueled Light Duty Vehicles

    SciTech Connect (OSTI)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Ng, Henry K.; Waller, Thomas

    2007-12-01T23:59:59.000Z

    An investigation was conducted on the emissions and efficiency from hydrogen blended compressed natural gas (CNG) in light duty vehicles. The different blends used in this investigation were 0%, 15%, 30%, 50%, 80%, 95%, and ~100% hydrogen, the remainder being compressed natural gas. The blends were tested using a Ford F-150 and a Chevrolet Silverado truck supplied by Arizona Public Services. Tests on emissions were performed using four different driving condition tests. Previous investigation by Don Karner and James Frankfort on a similar Ford F-150 using a 30% hydrogen blend showed that there was substantial reduction when compared to gasoline in carbon monoxide (CO), nitrogen oxide (NOx), and carbon dioxide (CO2) emissions while the reduction in hydrocarbon (HC) emissions was minimal. This investigation was performed using different blends of CNG and hydrogen to evaluate the emissions reducing capabilities associated with the use of the different fuel blends. The results were then tested statistically to confirm or reject the hypotheses on the emission reduction capabilities. Statistically analysis was performed on the test results to determine whether hydrogen concentration in the HCNG had any effect on the emissions and the fuel efficiency. It was found that emissions from hydrogen blended compressed natural gas were a function of driving condition employed. Emissions were found to be dependent on the concentration of hydrogen in the compressed natural gas fuel blend.

  5. Abstract--Many applications call for robots to perform tasks in workspaces where traditional vehicles cannot reach. Using

    E-Print Network [OSTI]

    Sitti, Metin

    1 Abstract-- Many applications call for robots to perform tasks in workspaces where traditional for wall climbing robots which can scale vertical walls. Many applications are of great interest robots for specific applications such as nuclear facilities inspection. In specific cases where

  6. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 58, NO. 4, MAY 2009 1647 Performance Evaluation of Vehicle-Based Mobile

    E-Print Network [OSTI]

    set with long sampling intervals to save communication costs and to avoid network congestion problem to be addressed. A performance evaluation has been carried out in Shanghai, China, by utilizing, such as 1­2 min, not only because they want to reduce communication costs but also because they are only

  7. Performance characterization and optimization of a diverging cusped field thruster with a calibrated counter-weighted millinewton thrust stand

    E-Print Network [OSTI]

    Daspit, Ryan M

    2012-01-01T23:59:59.000Z

    The previously developed Diverging Cusped Field Thruster (DCFT) has undergone further investigations and performance characterization. The DCFT is a magnetically conned plasma thruster that uses cusped magnetic fields to ...

  8. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (Oak Ridge, TN)

    1998-01-01T23:59:59.000Z

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  9. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (Oak Ridge, TN)

    1997-01-01T23:59:59.000Z

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  10. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1998-08-11T23:59:59.000Z

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendible appendages, each of which is radially extendible relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendible members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  11. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1997-02-11T23:59:59.000Z

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  12. Workload Characterization and Performance Implications of Large-Scale Blog Servers

    SciTech Connect (OSTI)

    Jeon, Myeongjae [Rice University; Kim, Youngjae [ORNL; Hwang, Jaeho [KAIST, Daejeon, Republic of Korea; Lee, Joonwon [SungKyunKwan University, Korea; Seo, Euiseong [SungKyunKwan University, Korea

    2012-01-01T23:59:59.000Z

    With the ever-increasing popularity of social network services (SNSs), an understanding of the characteristics of these services and their effects on the behavior of their host servers is critical. However, there has been a lack of research on the workload characterization of servers running SNS applications such as blog services. To fill this void, we empirically characterized real-world web server logs collected from one of the largest South Korean blog hosting sites for 12 consecutive days. The logs consist of more than 96 million HTTP requests and 4.7 TB of network traffic. Our analysis reveals the followings: (i) The transfer size of non-multimedia files and blog articles can be modeled using a truncated Pareto distribution and a log-normal distribution, respectively; (ii) User access for blog articles does not show temporal locality, but is strongly biased towards those posted with image or audio files. We additionally discuss the potential performance improvement through clustering of small files on a blog page into contiguous disk blocks, which benefits from the observed file access patterns. Trace-driven simulations show that, on average, the suggested approach achieves 60.6% better system throughput and reduces the processing time for file access by 30.8% compared to the best performance of the Ext4 file system.

  13. Performance Characterization and Remedy of Experimental CuInGaSe2 Mini-Modules: Preprint

    SciTech Connect (OSTI)

    Pern, F. J.; Yan, F.; Mansfield, L.; Glynn, S.; Rekow, M.; Murion, R.

    2011-07-01T23:59:59.000Z

    We employed current-voltage (I-V), quantum efficiency (QE), photoluminescence (PL), electroluminescence (EL), lock-in thermography (LIT), and (electrochemical) impedance spectroscopy (ECIS) to complementarily characterize the performance and remedy for two pairs of experimental CuInGaSe2 (CIGS) mini-modules. One pair had the three scribe-lines (P1/P2/P3) done by a single pulse-programmable laser, and the other had the P2/P3 lines by mechanical scribe. Localized QE measurements for each cell strip on all four mini-modules showed non-uniform distributions that correlated well with the presence of performance-degrading strips or spots revealed by PL, EL, and LIT imaging. Performance of the all-laser-scribed mini-modules improved significantly by adding a thicker Al-doped ZnO layer and reworking the P3 line. The efficiency on one of the all-laser-scribed mini-modules increased notably from 7.80% to 8.56% after the performance-degrading spots on the side regions along the cell array were isolated by manual scribes.

  14. Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Jeffrey R. Belt

    2010-09-01T23:59:59.000Z

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

  15. Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Jeffrey R. Belt

    2010-12-01T23:59:59.000Z

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

  16. Incorporating Drivability Metrics into Optimal Energy Management Strategies for Hybrid Vehicles

    E-Print Network [OSTI]

    Grizzle, Jessy W.

    Incorporating Drivability Metrics into Optimal Energy Management Strategies for Hybrid Vehicles fuel economy performance is highly sensitive to the energy management strategy used to select among are characterized by multiple energy sources; the control strategy to select among these multiple energy sources

  17. Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tractor Vehicles Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a...

  18. Vehicle Technologies Office: Hybrid and Vehicle Systems | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid and Vehicle Systems Vehicle Technologies Office: Hybrid and Vehicle Systems Hybrid and vehicle systems research provides an overarching vehicle systems perspective to the...

  19. BEEST: Electric Vehicle Batteries

    SciTech Connect (OSTI)

    None

    2010-07-01T23:59:59.000Z

    BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

  20. Vehicle brake testing system

    DOE Patents [OSTI]

    Stevens, Samuel S. (Harriman, TN); Hodgson, Jeffrey W. (Lenoir City, TN)

    2002-11-19T23:59:59.000Z

    This invention relates to a force measuring system capable of measuring forces associated with vehicle braking and of evaluating braking performance. The disclosure concerns an invention which comprises a first row of linearly aligned plates, a force bearing surface extending beneath and beside the plates, vertically oriented links and horizontally oriented links connecting each plate to a force bearing surface, a force measuring device in each link, a transducer coupled to each force measuring device, and a computing device coupled to receive an output signal from the transducer indicative of measured force in each force measuring device. The present invention may be used for testing vehicle brake systems.

  1. Motion Planning for Unmanned Aerial Vehicles with Resource Constraints 

    E-Print Network [OSTI]

    Sundar, Kaarthik

    2012-10-19T23:59:59.000Z

    Small Unmanned Aerial Vehicles (UAVs) are currently used in several surveillance applications to monitor a set of targets and collect relevant data. One of the main constraints that characterize a small UAV is the maximum amount of fuel the vehicle...

  2. Motion Planning for Unmanned Aerial Vehicles with Resource Constraints

    E-Print Network [OSTI]

    Sundar, Kaarthik

    2012-10-19T23:59:59.000Z

    Small Unmanned Aerial Vehicles (UAVs) are currently used in several surveillance applications to monitor a set of targets and collect relevant data. One of the main constraints that characterize a small UAV is the maximum amount of fuel the vehicle...

  3. Autonomous vehicles

    SciTech Connect (OSTI)

    Meyrowitz, A.L. [Navy Center for Applied Research in Artificial Intelligence, Washington, DC (United States)] [Navy Center for Applied Research in Artificial Intelligence, Washington, DC (United States); Blidberg, D.R. [Autonomous Undersea Systems Inst., Lee, NH (United States)] [Autonomous Undersea Systems Inst., Lee, NH (United States); Michelson, R.C. [Georgia Tech Research Inst., Smyrna, GA (United States)] [Georgia Tech Research Inst., Smyrna, GA (United States); [International Association for Unmanned Vehicle Systems, Smyrna, GA (United States)

    1996-08-01T23:59:59.000Z

    There are various kinds of autonomous vehicles (AV`s) which can operate with varying levels of autonomy. This paper is concerned with underwater, ground, and aerial vehicles operating in a fully autonomous (nonteleoperated) mode. Further, this paper deals with AV`s as a special kind of device, rather than full-scale manned vehicles operating unmanned. The distinction is one in which the AV is likely to be designed for autonomous operation rather than being adapted for it as would be the case for manned vehicles. The authors provide a survey of the technological progress that has been made in AV`s, the current research issues and approaches that are continuing that progress, and the applications which motivate this work. It should be noted that issues of control are pervasive regardless of the kind of AV being considered, but that there are special considerations in the design and operation of AV`s depending on whether the focus is on vehicles underwater, on the ground, or in the air. The authors have separated the discussion into sections treating each of these categories.

  4. Characterization of stochastic uncertainty in the 1996 performance assessment for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    HELTON,JON CRAIG; DAVIS,FREDDIE J.; JOHNSON,J.D.

    2000-05-19T23:59:59.000Z

    The 1996 performance assessment (PA) for the Waste Isolation Pilot Plant (WIPP) maintains a separation between stochastic (i.e., aleatory) and subjective (i.e., epistemic) uncertainty, with stochastic uncertainty arising from the possible disruptions that could occur at the WIPP over the 10,000 yr regulatory period specified by the US Environmental Protection Agency (40 CFR 191, 40 CFR 194) and subjective uncertainty arising from an inability to uniquely characterize many of the inputs required in the 1996 WIPP PA. The characterization of stochastic uncertainty is discussed including drilling intrusion time, drilling location penetration of excavated/nonexcavated areas of the repository, penetration of pressurized brine beneath the repository, borehole plugging patterns, activity level of waste, and occurrence of potash mining. Additional topics discussed include sampling procedures, generation of individual 10,000 yr futures for the WIPP, construction of complementary cumulative distribution functions (CCDFs), mechanistic calculations carried out to support CCDF construction the Kaplan/Garrick ordered triple representation for risk and determination of scenarios and scenario probabilities.

  5. CHARACTERIZATION OF MECHANICAL PERFORMANCE OF NT154 SILICON NITRIDE MICROTRUBINE ROTORS

    SciTech Connect (OSTI)

    Lin, Hua-Tay [ORNL; Ferber, Mattison K [ORNL; Waters, Shirley B [ORNL; Kirkland, Timothy Philip [ORNL

    2006-01-01T23:59:59.000Z

    This paper summarizes the results on recent component characterization efforts carried out to verify the mechanical reliability of NT154 silicon nitride microturbine rotors manufactured by Saint-Gobain. Mechanical properties of biaxial discs machined from airfoil as well as hub region of microturbine rotors were evaluated by a ball-on-ring test technique. Results showed that the mechanical properties of specimens from airfoils with as-processed surfaces exhibited lower characteristic strength than those machined from the hub region with as-machined surfaces. The differences in mechanical performance and reliability between as-processed components and simple-shaped test coupons appear to arise mainly from differences in strength limiting flaw type and microstructure verified by detailed electron microscopy analysis.

  6. Thermal Performance and Reliability Characterization of Bonded Interface Materials (BIMs): Preprint

    SciTech Connect (OSTI)

    DeVoto, D.; Paret, P.; Mihalic, M.; Narumanchi, S.; Bar-Cohen, A.; Matin, K.

    2014-08-01T23:59:59.000Z

    Thermal interface materials are an important enabler for low thermal resistance and reliable electronics packaging for a wide array of applications. There is a trend towards bonded interface materials (BIMs) because of their potential for low thermal resistivity (< 1 mm2K/W). However, BIMs induce thermomechanical stresses in the package and can be prone to failures and integrity risks. Deteriorated interfaces can result in high thermal resistance in the package and degradation and/or failure of the electronics. DARPA's Thermal Management Technologies program has addressed this challenge, supporting the development of mechanically-compliant, low resistivity nano-thermal interface (NTI) materials. In this work, we describe the testing procedure and report the results of NREL's thermal performance and reliability characterization of an initial sample of four different NTI-BIMs.

  7. Ultracapacitors and Batteries in Hybrid Vehicles

    SciTech Connect (OSTI)

    Pesaran, A.; Markel, T.; Zolot, M.; Sprik, S.

    2005-08-01T23:59:59.000Z

    Using an ultracapacitor in conjunction with a battery in a hybrid vehicle combines the power performance of the former with the greater energy storage capability of the latter.

  8. PNGV Battery Testing Procedures and Analytical Methodologies for Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Motloch, Chester George; Belt, Jeffrey R; Christophersen, Jon Petter; Wright, Randy Ben; Hunt, Gary Lynn; Haskind, H. J.; Tartamella, T.; Sutula, R.

    2002-06-01T23:59:59.000Z

    Novel testing procedures and analytical methodologies to assess the performance of hybrid electric vehicle batteries have been developed. Tests include both characterization and cycle life and/or calendar life, and have been designed for both Power Assist and Dual Mode applications. Analytical procedures include a battery scaling methodology, the calculation of pulse resistance, pulse power, available energy, and differential capacity, and the modeling of calendar and cycle life data. Representative performance data and examples of the application of the analytical methodologies including resistance growth, power fade, and cycle and calendar life modeling for hybrid electric vehicle batteries are presented.

  9. PERFORMANCE OF THE SAVANNAH RIVER SITE COULOMETER FOR NEPTUNIUM PROCESSACCOUNTABILITY AND NEPTUNIUM OXIDE PRODUCT CHARACTERIZATION

    SciTech Connect (OSTI)

    Holland, M; Patterson Nuessle, P; Sheldon Nichols, S; Joe Cordaro, J; George Reeves, G

    2008-06-04T23:59:59.000Z

    The Savannah River Site's (SRS) H-Area B-Line (HB-Line) nuclear facility is processing neptunium solutions for stabilization as an oxide. The oxide will eventually be reprocessed and fabricated into target material and the 237Np irradiated to produce {sup 238}Pu in support of National Aeronautics and Space Administration space program missions. As part of nuclear materials accountability, solution concentrations were measured using a high-precision controlled-potential coulometer developed and manufactured at the SRS for plutonium accountability measurements. The Savannah River Site Coulometer system and measurement methodology for plutonium meets performance standards in ISO 12183-2005, 'Controlled-Potential Coulometric Assay of Plutonium'. The Department of Energy (DOE) does not produce or supply a neptunium metal certified reference material, which makes qualifying a measurement method and determining accuracy and precision difficult. Testing and performance of the Savannah River Site Coulometer indicates that it can be used to measure neptunium process solutions and dissolved neptunium oxide without purification for material control and accountability purposes. Savannah River Site's Material Control and Accountability organization has accepted the method uncertainty for accountability and product characterization measurements.

  10. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    vehicles except the methanol/fuel cell vehicle and the BPEVe estimates for the methanol/fuel cell vehicle are based onbiomass-derived methanol used in fuel cell vehicles. Several

  11. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (115 Newhaven Rd., Oak Ridge, TN 37830)

    1994-01-01T23:59:59.000Z

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  12. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (Oak Ridge, TN)

    1996-01-01T23:59:59.000Z

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  13. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1996-03-12T23:59:59.000Z

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 14 figs.

  14. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1994-03-15T23:59:59.000Z

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 11 figures.

  15. Vehicle Technologies Office: Advanced Vehicle Testing Activity...

    Energy Savers [EERE]

    (AVTA) Data and Results The Vehicle Technologies Office (VTO) supports work to develop test procedures and carry out testing on a wide range of advanced vehicles and technologies...

  16. Emission control cost-effectiveness of alternative-fuel vehicles

    SciTech Connect (OSTI)

    Wang, Q. [Argonne National Lab., IL (United States); Sperling, D.; Olmstead, J. [California Univ., Davis, CA (United States). Inst. of Transportation Studies

    1993-06-14T23:59:59.000Z

    Although various legislation and regulations have been adopted to promote the use of alternative-fuel vehicles for curbing urban air pollution problems, there is a lack of systematic comparisons of emission control cost-effectiveness among various alternative-fuel vehicle types. In this paper, life-cycle emission reductions and life-cycle costs were estimated for passenger cars fueled with methanol, ethanol, liquefied petroleum gas, compressed natural gas, and electricity. Vehicle emission estimates included both exhaust and evaporative emissions for air pollutants of hydrocarbon, carbon monoxide, nitrogen oxides, and air-toxic pollutants of benzene, formaldehyde, 1,3-butadiene, and acetaldehyde. Vehicle life-cycle cost estimates accounted for vehicle purchase prices, vehicle life, fuel costs, and vehicle maintenance costs. Emission control cost-effectiveness presented in dollars per ton of emission reduction was calculated for each alternative-fuel vehicle types from the estimated vehicle life-cycle emission reductions and costs. Among various alternative-fuel vehicle types, compressed natural gas vehicles are the most cost-effective vehicle type in controlling vehicle emissions. Dedicated methanol vehicles are the next most cost-effective vehicle type. The cost-effectiveness of electric vehicles depends on improvements in electric vehicle battery technology. With low-cost, high-performance batteries, electric vehicles are more cost-effective than methanol, ethanol, and liquified petroleum gas vehicles.

  17. IMC: A Communication Protocol for Networked Vehicles and Sensors

    E-Print Network [OSTI]

    Marques, Eduardo R. B.

    of several types of unmanned robotic vehicles that are able to perform dangerous, long and dull tasks even while unattended. In LSTS, we have built several such vehicles, namely Autonomous Underwater Ve- hicles (AUVs) [1], Autonomous Surface Vehicles (ASVs) [2], Unmanned Air Vehicles (UAVs) [3], and Remotely

  18. In-service performance and behavior characterization of the hybrid composite bridge system - a case study

    E-Print Network [OSTI]

    John M. Civitillo; Devin K. Harris; Amir Gheitasi; Mark Saliba; Bernard L. Kassner

    2014-09-08T23:59:59.000Z

    The Hybrid Composite Beam (HCB) system is an innovative structural technology that has been recently used in bridge construction within the U.S. transportation network. In this system, the superstructure consists of a conventional reinforced concrete deck supported by Hybrid Composite Beams. Each beam is comprised of a glassfiber reinforced polymer (FRP) box shell containing a tied parabolic concrete arch. Inclined stirrups provide shear integrity and enforce composite action between the HCBs and the concrete deck. This paper focuses on evaluating the in-service performance of a newly constructed HCB bridge superstructure located on Route 205 in Colonial Beach, Virginia. A live load test was conducted using tandem axle dump trucks under both quasi-static and dynamic conditions. Results obtained from the experimental investigation were used to determine three key behavior characteristics. Dynamic amplification and lateral load distribution were found to be reasonable in comparison to the assumed design values. The testing program also included internal and external measurement systems to help characterize the load sharing behavior of the HCB on an element level. The main load carrying elements are the deck in compression and the steel ties in tension, and the FRP shell did not act compositely with the internal components.

  19. DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Systems DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle Systems Merit review of DOE Vehicle Technologies Program research efforts 2009meritreview1.p...

  20. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Describes...

  1. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

  2. 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle...

    Energy Savers [EERE]

    - Vehicle Systems Simulation and Testing 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle Systems Simulation and Testing Vehicle systems research and development...

  3. Vehicle Technologies Office: 2013 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: 2013 Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2013 Vehicle and Systems Simulation and Testing...

  4. Lubricating Oil Dominates Primary Organic Aerosol Emissions from Motor Vehicles

    E-Print Network [OSTI]

    Cohen, Ronald C.

    Lubricating Oil Dominates Primary Organic Aerosol Emissions from Motor Vehicles David R. Worton, United States *S Supporting Information ABSTRACT: Motor vehicles are major sources of primary organic characterization of motor vehicle POA emissions in a roadway tunnel with a mass closure of >60%. The observed POA

  5. Modular Energy Storage System for Alternative Energy Vehicles

    SciTech Connect (OSTI)

    Janice Thomas; Frank Ervin

    2012-02-28T23:59:59.000Z

    An electrical vehicle environment was established to promote research and technology development in the area of high power energy management. The project incorporates a topology that permits parallel development of an alternative energy delivery system and an energy storage system. The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles â?? plugin electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. In order to meet the project objectives, the Vehicle Energy Management System (VEMS) was defined and subsystem requirements were obtained. Afterwards, power electronics, energy storage electronics and controls were designed. Finally, these subsystems were built, tested individually, and integrated into an electric vehicle system to evaluate and optimize the subsystemsâ?? performance. Phase 1 of the program established the fundamental test bed to support development of an electrical environment ideal for fuel cell application and the mitigation of many shortcomings of current fuel cell technology. Phase 2, continued development from Phase 1, focusing on implementing subsystem requirements, design and construction of the energy management subsystem, and the integration of this subsystem into the surrogate electric vehicle. Phase 2 also required the development of an Alternative Energy System (AES) capable of emulating electrical characteristics of fuel cells, battery, gen set, etc. Under the scope of the project, a boost converter that couples the alternate energy delivery system to the energy storage system was developed, constructed and tested. Modeling tools were utilized during the design process to optimize both component and system design. This model driven design process enabled an iterative process to track and evaluate the impact of design alternatives and the impact of changes. Refinement of models was accomplished through correlation studies to measured data obtained from functioning hardware. Specifically, correlation and characterization of the boost converter resulted in a model that was effectively used to determine overall VEMS performance. The successful development of the boost converter can be attributed to utilization of previously proven technologies and adapting to meet the VEMS requirements. This program provided significant improvement in development time of various generations of boost converters. The software strategies and testing results support the development of current energy management systems and directly contribute to the future of similar, commercial products at Magna E-Car Systems. Because of this development project, Magna E-Car Systems is able to offer automotive customers a boost converter system with reduced time to market and decreased product cost, thus transferring the cost and timing benefits to the end use consumer.

  6. Visualization of Fuel Cell Water Transport and Performance Characterization under Freezing Conditions

    SciTech Connect (OSTI)

    Kandlikar, S.G.; Lu, Z.; Rao, N.; Sergi, J.; Rath, C.; Dade, C.; Trabold, T.; Owejan, J.; Gagliardo, J.; Allen, J.; Yassar, R.S.; Medici, E.; Herescu, A.

    2010-05-30T23:59:59.000Z

    In this program, Rochester Institute of Technology (RIT), General Motors (GM) and Michigan Technological University (MTU) have focused on fundamental studies that address water transport, accumulation and mitigation processes in the gas diffusion layer and flow field channels of the bipolar plate. These studies have been conducted with a particular emphasis on understanding the key transport phenomena which control fuel cell operation under freezing conditions. Technical accomplishments are listed below: • Demonstrated that shutdown air purge is controlled predominantly by the water carrying capacity of the purge stream and the most practical means of reducing the purge time and energy is to reduce the volume of liquid water present in the fuel cell at shutdown. The GDL thermal conductivity has been identified as an important parameter to dictate water accumulation within a GDL. • Found that under the normal shutdown conditions most of the GDL-level water accumulation occurs on the anode side and that the mass transport resistance of the membrane electrode assembly (MEA) thus plays a critically important role in understanding and optimizing purge. • Identified two-phase flow patterns (slug, film and mist flow) in flow field channel, established the features of each pattern, and created a flow pattern map to characterize the two-phase flow in GDL/channel combination. • Implemented changes to the baseline channel surface energy and GDL materials and evaluated their performance with the ex situ multi-channel experiments. It was found that the hydrophilic channel (contact angle ? ? 10?) facilitates the removal of liquid water by capillary effects and by reducing water accumulation at the channel exit. It was also found that GDL without MPL promotes film flow and shifts the slug-to-film flow transition to lower air flow rates, compared with the case of GDL with MPL. • Identified a new mechanism of water transport through GDLs based on Haines jump mechanism. The breakdown and redevelopment of the water paths in GDLs lead to an intermittent water drainage behavior, which is characterized by dynamic capillary pressure and changing of breakthrough location. MPL was found to not only limit the number of water entry locations into the GDL (thus drastically reducing water saturation), but also stabilizes the water paths (or morphology). • Simultaneously visualized the water transport on cathode and anode channels of an operating fuel cell. It was found that under relatively dry hydrogen/air conditions at lower temperatures, the cathode channels display a similar flow pattern map to the ex-situ experiments under similar conditions. Liquid water on the anode side is more likely formed via condensation of water vapor which is transported through the anode GDL. • Investigated the water percolation through the GDL with pseudo-Hele-Shaw experiments and simulated the capillary-driven two-phase flow inside gas diffusion media, with the pore size distributions being modeled by using Weibull distribution functions. The effect of the inclusion of the microporous layer in the fuel cell assembly was explored numerically. • Developed and validated a simple, reliable computational tool for predicting liquid water transport in GDLs. • Developed a new method of determining the pore size distribution in GDL using scanning electron microscope (SEM) image processing, which allows for separate characterization of GDL wetting properties and pore size distribution. • Determined the effect of surface wettability and channel cross section and bend dihedral on liquid holdup in fuel cell flow channels. A major thrust of this research program has been the development of an optimal combination of materials, design features and cell operating conditions that achieve a water management strategy which facilitates fuel cell operation under freezing conditions. Based on our various findings, we have made the final recommendation relative to GDL materials, bipolar design and surface properties, and the combination of materials, design featur

  7. The Role of Human-Automation Consensus in Multiple Unmanned Vehicle Scheduling

    E-Print Network [OSTI]

    Cummings, Mary "Missy"

    The Role of Human-Automation Consensus in Multiple Unmanned Vehicle Scheduling M. L. Cummings with the automation, which resulted in better performance. Conclusion: In decentralized unmanned vehicle networks systems. KEYWORDS: multiple unmanned vehicles, human supervisory control, workload, human- automation

  8. Coordinated Vehicle Platoon Control: Weighted and Constrained Consensus and Communication Network Topologies

    E-Print Network [OSTI]

    Zhang, Hongwei

    Coordinated Vehicle Platoon Control: Weighted and Constrained Consensus and Communication Network a new method for enhancing highway safety and efficiency by coordinated control of vehicle platoons. One performance. Vehicle deployment is formulated as a weighted and constrained consensus control problem

  9. Preliminary Assessment of Overweight Mainline Vehicles

    SciTech Connect (OSTI)

    Siekmann, Adam [ORNL; Capps, Gary J [ORNL; Lascurain, Mary Beth [ORNL

    2011-11-01T23:59:59.000Z

    The Federal Motor Carrier Safety Administration requested information regarding overweight and oversized vehicle traffic entering inspection stations (ISs) in order to develop strategies for future research efforts and possibly help guide regulatory issues involving overweight commercial motor vehicles (CMVs). For a period of one month, inspection stations in Knox County and Greene County, Tennessee, recorded overweight and oversized vehicles that entered these ISs. During this period, 435 CMVs were recorded using an electronic form filled out by enforcement personnel at the IS. Of the 435 CMVs recorded, 381 had weight information documented with them. The majority (52.2%) of the vehicles recorded were five-axle combination vehicles, and 50.6% of all the vehicles were permitted to operate above the legal weight limit in Tennessee, which is 80,000 lb for vehicles with five or more axles. Only 16.8% of the CMVs recorded were overweight gross (11.5% of permitted vehicles) and 54.1% were overweight on an axle group. The low percentage of overweight gross CMVs was because only 45 of the vehicles over 80,000 lb. were not permitted. On average, axles that were overweight were 2,000 lb. over the legal limit for an axle or group of axles. Of the vehicles recorded, 172 vehicles were given a North American Standard (NAS) inspection during the assessment. Of those, 69% of the inspections were driver-only inspections (Level III) and only 25% of the inspections had a vehicle component (such as a Level I or Level II). The remaining 6% of inspections did not have valid Aspen numbers; the type of was inspection unknown. Data collected on the types of trailers of each vehicle showed that about half of the recorded CMVs could realistically be given a Level I (full vehicle and driver) inspection; this estimate was solely based on trailer type. Enforcement personnel at ISs without an inspection pit have difficulty fully inspecting certain vehicles due to low clearance below the trailer. Because of this, overweight and oversized vehicles were normally only given a Level III (driver) inspection; thus, little is known about the safety of these vehicles. The out-of-service (OOS) rate of all the inspected vehicles (driver and vehicle inspections) was 18.6%, while the OOS rate for vehicle inspections (Level I and II) was 52.4%. Future work will focus on performing Level I inspections on five-axle combination tractor-trailers and the types of violations that overweight vehicles may have. This research will be conducted in Tennessee and possibly in other states as well.

  10. Control of Multiple Robotic Sentry Vehicles

    SciTech Connect (OSTI)

    Feddema, J.; Klarer, P.; Lewis, C.

    1999-04-01T23:59:59.000Z

    As part of a project for the Defense Advanced Research Projects Agency, Sandia National Laboratories is developing and testing the feasibility of using of a cooperative team of robotic sentry vehicles to guard a perimeter and to perform surround and diversion tasks. This paper describes on-going activities in the development of these robotic sentry vehicles. To date, we have developed a robotic perimeter detection system which consists of eight ''Roving All Terrain Lunar Explorer Rover'' (RATLER{trademark}) vehicles, a laptop-based base-station, and several Miniature Intrusion Detection Sensors (MIDS). A radio frequency receiver on each of the RATLER vehicles alerts the sentry vehicles of alarms from the hidden MIDS. When an alarm is received, each vehicle decides whether it should investigate the alarm based on the proximity of itself and the other vehicles to the alarm. As one vehicle attends an alarm, the other vehicles adjust their position around the perimeter to better prepare for another alarm. We have also demonstrated the ability to drive multiple vehicles in formation via tele-operation or by waypoint GPS navigation. This is currently being extended to include mission planning capabilities. At the base-station, the operator can draw on an aerial map the goal regions to be surrounded and the repulsive regions to be avoided. A potential field path planner automatically generates a path from the vehicles' current position to the goal regions while avoiding the repulsive regions and the other vehicles. This path is previewed to the operator before the regions are downloaded to the vehicles. The same potential field path planner resides on the vehicle, except additional repulsive forces from on-board proximity sensors guide the vehicle away from unplanned obstacles.

  11. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September bycost than both. Solar-hydrogen fuel- cell vehicles would becost than both. Solar-hydrogen fuel- cell vehicles would be

  12. Adaptive Rollover Prevention for Automotive Vehicles with Differential Braking

    E-Print Network [OSTI]

    Duffy, Ken

    Adaptive Rollover Prevention for Automotive Vehicles with Differential Braking Selim Solmaz, switching, and tuning (MMST) paradigm [13, 14, 15] for preventing un­tripped rollover in automotive vehicles performance than its fixed robust counterpart. Keywords: Automotive control; Multiple models; Parameter

  13. AEVITA : designing biomimetic vehicle-to-pedestrian communication protocols for autonomously operating & parking on-road electric vehicles

    E-Print Network [OSTI]

    Pennycooke, Nicholas (Nicholas D.)

    2012-01-01T23:59:59.000Z

    With research institutions from various private, government and academic sectors performing research into autonomous vehicle deployment strategies, the way we think about vehicles must adapt. But what happens when the ...

  14. Vehicle Modeling and Simulation

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Modeling and Simulation Vehicle Modeling and Simulation Matthew Thornton National Renewable Energy Laboratory matthewthornton@nrel.gov phone: 303.275.4273 Principal...

  15. Characterizing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamosCharacterization of Selective Binding of AlkaliImpact of

  16. Characterizing the Performance of Parallel Applications on Multi-Socket Virtual Machines

    E-Print Network [OSTI]

    compared to native. Runs on "cold" VMs suffer an average performance degradation of 27%, while subsequent partitioning with proper VM and runtime support is able to re-produce native performance: in a partitioned system with one virtual machine per socket the average workload performance is 5% better than native. I

  17. PASSIVE DETECTION OF VEHICLE LOADING

    SciTech Connect (OSTI)

    Garrett, A.

    2012-01-03T23:59:59.000Z

    The Digital Imaging and Remote Sensing Laboratory (DIRS) at the Rochester Institute of Technology, along with the Savannah River National Laboratory is investigating passive methods to quantify vehicle loading. The research described in this paper investigates multiple vehicle indicators including brake temperature, tire temperature, engine temperature, acceleration and deceleration rates, engine acoustics, suspension response, tire deformation and vibrational response. Our investigation into these variables includes building and implementing a sensing system for data collection as well as multiple full-scale vehicle tests. The sensing system includes; infrared video cameras, triaxial accelerometers, microphones, video cameras and thermocouples. The full scale testing includes both a medium size dump truck and a tractor-trailer truck on closed courses with loads spanning the full range of the vehicle's capacity. Statistical analysis of the collected data is used to determine the effectiveness of each of the indicators for characterizing the weight of a vehicle. The final sensing system will monitor multiple load indicators and combine the results to achieve a more accurate measurement than any of the indicators could provide alone.

  18. AVTA: 2010 Electric Vehicles International Neighborhood Electric...

    Energy Savers [EERE]

    10 Electric Vehicles International Neighborhood Electric Vehicle Testing Results AVTA: 2010 Electric Vehicles International Neighborhood Electric Vehicle Testing Results The...

  19. Massachusetts Electric Vehicle Efforts

    E-Print Network [OSTI]

    California at Davis, University of

    Massachusetts Electric Vehicle Efforts Christine Kirby, MassDEP ZE-MAP Meeting October 24, 2014 #12 · Provide Clean Air · Grow the Clean Energy Economy · Electric vehicles are a key part of the solution #12 is promoting EVs 4 #12;TCI and Electric Vehicles · Established the Northeast Electric Vehicle Network through

  20. > 070131-073Vehicle

    E-Print Network [OSTI]

    Marques, Eduardo R. B.

    on collaborative control ofAutonomous Underwater Vehicles (AUV), Unmanned Aerial Vehicles (UAV) and Autonomous. In another configuration, Swordfish mounts a docking station for the autonomous underwater vehicle Isurus Terms-Autonomous Surface Vehicles, ocean robotics, marine science operations, unmanned survey vessels. I

  1. Alternative Fuel Vehicle Data

    Reports and Publications (EIA)

    2013-01-01T23:59:59.000Z

    Annual data released on the number of on-road alternative fuel vehicles and hybrid vehicles made available by both the original equipment manufacturers and aftermarket vehicle conversion facilities. Data on the use of alternative fueled vehicles and the amount of fuel they consume is also available.

  2. Electric and Hybrid Vehicle Technology: TOPTEC

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today's electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between refueling'' stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  3. Electric and Hybrid Vehicle Technology: TOPTEC

    SciTech Connect (OSTI)

    Not Available

    1992-12-01T23:59:59.000Z

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today`s electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between ``refueling`` stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of ``Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  4. AGGREGATION ALGORITHMS IN A VEHICLE-TO-VEHICLE-TO-

    E-Print Network [OSTI]

    Miller, Jeffrey A.

    -to-infrastructure (V2V2I) architecture, which is a hybrid of the vehicle-to-vehicle (V2V) and vehicle proposing is a hybrid of the V2I and V2V architectures, which is the vehicle-to-vehicle-to-infrastructure (VAGGREGATION ALGORITHMS IN A VEHICLE-TO-VEHICLE-TO- INFRASTRUCTURE (V2V2I) INTELLIGENT

  5. Advances on multijunction solar cell characterization aimed at the optimization of real concentrator performance

    SciTech Connect (OSTI)

    Garcia-Linares, Pablo, E-mail: pablo.garcia-linares@cea.fr; Dominguez, César, E-mail: pablo.garcia-linares@cea.fr; Voarino, Philippe, E-mail: pablo.garcia-linares@cea.fr; Besson, Pierre, E-mail: pablo.garcia-linares@cea.fr; Baudrit, Mathieu, E-mail: pablo.garcia-linares@cea.fr [CEA-LITEN, LCPV, INES, Le Bourget du Lac (France)

    2014-09-26T23:59:59.000Z

    Multijunction solar cells (MJSC) are usually developed to maximize efficiency under test conditions and not under real operation. This is the case of anti-reflective coatings (ARC), which are meant to minimize Fresnel reflection losses for a family of incident rays at room temperature. In order to understand and quantify the discrepancies between test and operation conditions, we have experimentally analyzed the spectral response of MJSC for a variety of incidence angles that are in practice received by a concentrator cell in high-concentration photovoltaic (HCPV) receiver designs. Moreover, we characterize this angular dependence as a function of temperature in order to reproduce real operation conditions. As the refractive index of the silicone is dependent on temperature, an optical mismatch is expected. Regarding other characterization techniques, a method called Relative EL Homogeneity Analysis (RELHA) is applied to processed wafers prior to dicing, allowing to diagnose the wafer crystalline homogeneity for each junction. Finally, current (I)-voltage (V) characterization under strongly unbalanced light spectra has also been carried out for a number of low-level irradiances, providing insight on each junction shunt resistance and corresponding radiative coupling.

  6. Electric Vehicle Preparedness Task 3: Detailed Assessment of Target Electrification Vehicles at Joint Base Lewis McChord Utilization

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort

    2014-08-01T23:59:59.000Z

    Task 2 involved identifying daily operational characteristics of select vehicles and initiating data logging of vehicle movements in order to characterize the vehicle’s mission. Individual observations of these selected vehicles provide the basis for recommendations related to PEV adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements and provides observations related to placement of PEV charging infrastructure. This report provides the results of the data analysis and observations related to the replacement of current vehicles with PEVs. This fulfills part of the Task 3 requirements. Task 3 also includes an assessment of charging infrastructure required to support this replacement. That is the subject of a separate report.

  7. 2007 Nissan Altima-7982 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Grey; Chester Motloch; James Francfort

    2010-01-01T23:59:59.000Z

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Nissan Altima hybrid electric vehicle (Vin Number 1N4CL21E27C177982). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  8. 2006 Toyota Highlander-5681 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01T23:59:59.000Z

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Highlander hybrid electric vehicle (Vin Number JTEDW21A860005681). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  9. 2006 Toyota Highlander-6395 Hyrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01T23:59:59.000Z

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Highlander hybrid electric vehicle (Vin Number JTEDW21A160006395). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  10. 2007 Toyota Camry-7129 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01T23:59:59.000Z

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Camry hybrid electric vehicle (Vin Number JTNBB46K773007129). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  11. Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

    2005-01-01T23:59:59.000Z

    The Images of Hybrid Vehicles Each of the householdsbetween hybrid and non-hybrid vehicles was observed in smallowned Honda Civic Hybrids, vehicles that are virtually

  12. Vehicle Technologies Office: 2012 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2012vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

  13. Vehicle Technologies Office: 2011 Vehicle and Systems Simulation...

    Energy Savers [EERE]

    vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2011vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

  14. Legacy Vehicle Fuel System Testing with Intermediate Ethanol Blends

    SciTech Connect (OSTI)

    Davis, G. W.; Hoff, C. J.; Borton, Z.; Ratcliff, M. A.

    2012-03-01T23:59:59.000Z

    The effects of E10 and E17 on legacy fuel system components from three common mid-1990s vintage vehicle models (Ford, GM, and Toyota) were studied. The fuel systems comprised a fuel sending unit with pump, a fuel rail and integrated pressure regulator, and the fuel injectors. The fuel system components were characterized and then installed and tested in sample aging test rigs to simulate the exposure and operation of the fuel system components in an operating vehicle. The fuel injectors were cycled with varying pulse widths during pump operation. Operational performance, such as fuel flow and pressure, was monitored during the aging tests. Both of the Toyota fuel pumps demonstrated some degradation in performance during testing. Six injectors were tested in each aging rig. The Ford and GM injectors showed little change over the aging tests. Overall, based on the results of both the fuel pump testing and the fuel injector testing, no major failures were observed that could be attributed to E17 exposure. The unknown fuel component histories add a large uncertainty to the aging tests. Acquiring fuel system components from operational legacy vehicles would reduce the uncertainty.

  15. INITIAL CHARACTERIZATION AND PERFORMANCE EVALUATION OF A ZIRCONIUM-BASED METALLIC WASTE FORM

    SciTech Connect (OSTI)

    Kane, M; Robert Sindelar, R

    2008-09-30T23:59:59.000Z

    A metallic waste form or alloy system for immobilization of Zircaloy cladding hulls, Undissolved Solids (UDS), Technicium (Tc) metal and Transition Metal Fission Products (TMFP) waste stream materials from separations processes for commercial spent nuclear fuel has been developed, and initial characterization of the phase assemblage and composition, and corrosion testing under aqueous conditions has been completed for the waste form with various levels of surrogate waste species. The waste stream materials are those from processes being developed as part of the Separations Campaign under the Department of Energy's (DOE's) Global Nuclear Energy Partnership (GNEP) program. The development of waste forms for these materials is under the Waste Form Campaign.

  16. Design of a minimalist autonomous robotic vehicle

    E-Print Network [OSTI]

    Spadafora, Mark (Mark A.)

    2008-01-01T23:59:59.000Z

    The purpose of this thesis is to investigate design alternatives for the creation of a minimalist autonomous robotic vehicle, based on the Ford Escape. The work builds on prior work performed by the MIT DARPA Urban Challenge ...

  17. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-03-01T23:59:59.000Z

    Flexible Fuel vehicles are able to operate using more than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Today more than 7 million vehicles on U.S. highways are flexible fuel vehicles. The fact sheet discusses how E85 affects vehicle performance, the costs and benefits of using E85, and how to find E85 station locations.

  18. Richmond Electric Vehicle Initiative Electric Vehicle Readiness...

    Broader source: Energy.gov (indexed) [DOE]

    The REVi plan addresses the electric vehicle market in Richmond and then addresses a regional plan, policies, and analysis of the the communities readiness. richmondevinitiative....

  19. Vehicle Technologies Office: AVTA - Electric Vehicle Community...

    Broader source: Energy.gov (indexed) [DOE]

    to maximize usage, educating the public and coordinating with utilities. The Vehicle Technologies Office is partnering with city governments, local organizations, and...

  20. Richmond Electric Vehicle Initiative Electric Vehicle Readiness...

    Broader source: Energy.gov (indexed) [DOE]

    reflect those of the United States Government or any agency thereof. Richmond Electric Vehicle Initiative Readiness Plan | 1 Table of Contents Executive Summary...

  1. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt072vssmackie2012...

  2. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Office of Environmental Management (EM)

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt072vssmackie2011...

  3. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    EVSE Designed And Manufactured To Allow Power And Energy Data Collection And Demand Response Control Residential EVSE Installed For All Vehicles 1,300...

  4. Vehicle Technologies Office: AVTA - Diesel Internal Combusion...

    Energy Savers [EERE]

    Vehicle Technologies Office: AVTA - Diesel Internal Combusion Engine Vehicles Vehicle Technologies Office: AVTA - Diesel Internal Combusion Engine Vehicles The Advanced Vehicle...

  5. Heavy Duty Vehicle Futures Analysis.

    SciTech Connect (OSTI)

    Askin, Amanda Christine; Barter, Garrett; West, Todd H.; Manley, Dawn Kataoka

    2014-05-01T23:59:59.000Z

    This report describes work performed for an Early Career Research and Development project. This project developed a heavy-duty vehicle (HDV) sector model to assess the factors influencing alternative fuel and efficiency technology adoption. This model builds on a Sandia light duty vehicle sector model and provides a platform for assessing potential impacts of technological advancements developed at the Combustion Research Facility. Alternative fuel and technology adoption modeling is typically developed around a small set of scenarios. This HDV sector model segments the HDV sector and parameterizes input values, such as fuel prices, efficiencies, and vehicle costs. This parameterization enables sensitivity and trade space analyses to identify the inputs that are most associated with outputs of interest, such as diesel consumption and greenhouse gas emissions. Thus this analysis tool enables identification of the most significant HDV sector drivers that can be used to support energy security and climate change goals.

  6. Vehicle Battery Safety Roadmap Guidance

    SciTech Connect (OSTI)

    Doughty, D. H.

    2012-10-01T23:59:59.000Z

    The safety of electrified vehicles with high capacity energy storage devices creates challenges that must be met to assure commercial acceptance of EVs and HEVs. High performance vehicular traction energy storage systems must be intrinsically tolerant of abusive conditions: overcharge, short circuit, crush, fire exposure, overdischarge, and mechanical shock and vibration. Fail-safe responses to these conditions must be designed into the system, at the materials and the system level, through selection of materials and safety devices that will further reduce the probability of single cell failure and preclude propagation of failure to adjacent cells. One of the most important objectives of DOE's Office of Vehicle Technologies is to support the development of lithium ion batteries that are safe and abuse tolerant in electric drive vehicles. This Roadmap analyzes battery safety and failure modes of state-of-the-art cells and batteries and makes recommendations on future investments that would further DOE's mission.

  7. Field experience with a new performance characterization procedure for photovoltaic arrays

    SciTech Connect (OSTI)

    King, D.L.; Kratochvil, J.A.; Boyson, W.E.

    1997-12-31T23:59:59.000Z

    As photovoltaic systems become larger and more numerous, improved methods are needed for testing and modeling their performance. Test methods that successfully separate the interacting, time-of-day dependent influences of solar irradiance, operating temperature, solar spectrum, and solar angle-of-incidence have now been developed. These test methods have resulted in a new array performance model that is reasonably simple, yet accurately predicts performance for all operating conditions. This paper describes the new model, outdoor tests required to implement it, results of field tests for five arrays of different technologies, and the evolution of the model into a numerical tool for designing and sizing photovoltaic arrays based on annual energy production.

  8. Reservoir characterization and performance predictions for the E.N. Woods lease

    SciTech Connect (OSTI)

    Aka-Milan, Francis A.

    2000-07-07T23:59:59.000Z

    The task of this work was to evaluate the past performance of the E.N. WOODS Unit and to forecast its future economic performance by taking into consideration the geology, petrophysics and production history of the reservoir. The Decline Curve Analysis feature of the Appraisal of Petroleum Properties including Taxation Systems (EDAPT) software along with the Production Management Systems (PMS) software were used to evaluate the original volume of hydrocarbon in place and estimate the reserve. The Black Oil Simulator (BOAST II) was then used to model the waterflooding operation and estimate the incremental oil production attributable to the water injection. BOAST II was also used to predict future performance of the reservoir.

  9. The Case for Electric Vehicles

    E-Print Network [OSTI]

    Sperling, Daniel

    2001-01-01T23:59:59.000Z

    land Press, 1995 TESTING ELECTRIC VEHICLE DEMAND IN " HYBRIDThe Case for Electric Vehicles DanieI Sperlmg Reprint UCTCor The Case for Electric Vehicles Darnel Sperling Institute

  10. Electric Vehicle Smart Charging Infrastructure

    E-Print Network [OSTI]

    Chung, Ching-Yen

    2014-01-01T23:59:59.000Z

    for Multiplexed Electric Vehicle Charging”, US20130154561A1,Chynoweth, ”Intelligent Electric Vehicle Charging System”,of RFID Mesh Network for Electric Vehicle Smart Charging

  11. Coordinating Automated Vehicles via Communication

    E-Print Network [OSTI]

    Bana, Soheila Vahdati

    2001-01-01T23:59:59.000Z

    1.1 Vehicle Automation . . . . . . . . . . . 1.1.1 Controlareas of technology in vehicle automation and communicationChapter 1 Introduction Vehicle Automation Automation is an

  12. Sandia National Laboratories: Vehicle Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EfficiencyVehicle Technologies Vehicle Technologies Combustion Research Facility (CRF) Vehicle Technology programs at Sandia share a common goal: reducing dependence on...

  13. Part-Load Performance Characterization and Energy Savings Potential of the RTU Challenge Unit: Daikin Rebel

    SciTech Connect (OSTI)

    Wang, Weimin; Katipamula, Srinivas

    2013-09-30T23:59:59.000Z

    In 2011, the U.S. Department of Energy’s Building Technology Office (DOE’s BTO), with help from the Better Buildings Alliance (BBA) members, developed a specification for high performance rooftop air-conditioning units (RTU Challenge) with capacity ranges between 10 and 20 tons (DOE 2013). Daikin’s Rebel for the first rooftop unit system that was recognized by DOE in May 2012 as meeting the RTU Challenge specifications. This report documents the development of part-load performance curves and its use with EnergyPlus simulation tool to estimate the potential savings from use of Rebel compared to other standard options.

  14. Energy Storage Fuel Cell Vehicle Analysis: Preprint

    SciTech Connect (OSTI)

    Markel, T.; Pesaran, A.; Zolot, M.; Sprik, S.; Tataria, H.; Duong, T.

    2005-04-01T23:59:59.000Z

    In recent years, hydrogen fuel cell (FC) vehicle technology has received considerable attention as a strategy to decrease oil consumption and reduce harmful emissions. However, the cost, transient response, and cold performance of FC systems may present significant challenges to widespread adoption of the technology for transportation in the next 15 years. The objectives of this effort were to perform energy storage modeling with fuel cell vehicle simulations to quantify the benefits of hybridization and to identify a process for setting the requirements of ES for hydrogen-powered FC vehicles for U.S. Department of Energy's Energy Storage Program.

  15. Energy Storage Fuel Cell Vehicle Analysis

    SciTech Connect (OSTI)

    Pesaran, A.; Markel, T.; Zolot, M.; Sprik, S.; Tataria, H.; Duong, T.

    2005-08-01T23:59:59.000Z

    In recent years, hydrogen fuel cell (FC) vehicle technology has received considerable attention as a strategy to decrease oil consumption and reduce harmful emissions. However, the cost, transient response, and cold performance of FC systems may present significant challenges to widespread adoption of the technology for transportation in the next 15 years. The objectives of this effort were to perform energy storage modeling with fuel cell vehicle simulations to quantify the benefits of hybridization and to identify a process for setting the requirements of ES for hydrogen-powered FC vehicles for U.S. Department of Energy?s Energy Storage Program.

  16. Heavy and Overweight Vehicle Defects Interim Report

    SciTech Connect (OSTI)

    Siekmann, Adam [ORNL; Capps, Gary J [ORNL

    2012-12-01T23:59:59.000Z

    The Federal Highway Administration (FHWA), along with the Federal Motor Carrier Safety Administration (FMCSA), has an interest in overweight commercial motor vehicles, how they affect infrastructure, and their impact on safety on the nation s highways. To assist both FHWA and FMCSA in obtaining more information related to this interest, data was collected and analyzed from two separate sources. A large scale nationwide data collection effort was facilitated by the Commercial Vehicle Safety Alliance as part of a special study on overweight vehicles and an additional, smaller set, of data was collected from the state of Tennessee which included a much more detailed set of data. Over a six-month period, 1,873 Level I inspections were performed in 18 different states that volunteered to be a part of this study. Of the 1,873 inspections, a vehicle out-of-service (OOS) violation was found on 44.79% of the vehicles, a rate significantly higher than the national OOS rate of 27.23%. The main cause of a vehicle being placed OOS was brake-related defects, with approximately 30% of all vehicles having an OOS brake violation. Only about 4% of vehicles had an OOS tire violation, and even fewer had suspension and wheel violations. Vehicle weight violations were most common on an axle group as opposed to a gross vehicle weight violation. About two thirds of the vehicles cited with a weight violation were overweight on an axle group with an average amount of weight over the legal limit of about 2,000 lbs. Data collection is scheduled to continue through January 2014, with more potentially more states volunteering to collect data. More detailed data collections similar to the Tennessee data collection will also be performed in multiple states.

  17. Characterizations of MCP performance in the hard x-ray range (6–25 keV)

    SciTech Connect (OSTI)

    Wu, Ming, E-mail: minwu@sandia.gov; Rochau, Greg [Sandia National Laboratory, Albuquerque, New Mexico 87185 (United States); Moy, Ken [Special Technology Laboratories, NSTec, Santa Barbara, California 93111-2335 (United States); Kruschwitz, Craig [National Security Technologies, LLC, Los Alamos Operations, Los Alamos, New Mexico 87544 (United States)

    2014-11-15T23:59:59.000Z

    MCP detector performance at hard x-ray energies from 6 to 25 keV was recently investigated using NSLS beamline X15A at BNL. Measurements were made with an NSTec Gen-II (H-CA-65) framing camera, based on a Photonis MCP with ?10 ?m in diameter pores, ?12 ?m center-center spacing, an L/D ratio of 46, and a bias angle of 8°. The MCP characterizations were focused on (1) energy and angle dependent sensitivity, (2) energy and angle dependent spatial resolution, (3) energy dependent gain performance, and (4) energy dependent dynamic range. These measurement corroborated simulation results using a Monte Carlo model that included hard x-ray interactions and the subsequent electron cascade in the MCP.

  18. Characterization, performance and optimization of PVDF as a piezoelectric film for advanced space mirror concepts.

    SciTech Connect (OSTI)

    Jones, Gary D.; Assink, Roger Alan; Dargaville, Tim Richard; Chaplya, Pavel Mikhail; Clough, Roger Lee; Elliott, Julie M.; Martin, Jeffrey W.; Mowery, Daniel Michael; Celina, Mathew Christopher

    2005-11-01T23:59:59.000Z

    Piezoelectric polymers based on polyvinylidene fluoride (PVDF) are of interest for large aperture space-based telescopes as adaptive or smart materials. Dimensional adjustments of adaptive polymer films depend on controlled charge deposition. Predicting their long-term performance requires a detailed understanding of the piezoelectric material features, expected to suffer due to space environmental degradation. Hence, the degradation and performance of PVDF and its copolymers under various stress environments expected in low Earth orbit has been reviewed and investigated. Various experiments were conducted to expose these polymers to elevated temperature, vacuum UV, {gamma}-radiation and atomic oxygen. The resulting degradative processes were evaluated. The overall materials performance is governed by a combination of chemical and physical degradation processes. Molecular changes are primarily induced via radiative damage, and physical damage from temperature and atomic oxygen exposure is evident as depoling, loss of orientation and surface erosion. The effects of combined vacuum UV radiation and atomic oxygen resulted in expected surface erosion and pitting rates that determine the lifetime of thin films. Interestingly, the piezo responsiveness in the underlying bulk material remained largely unchanged. This study has delivered a comprehensive framework for material properties and degradation sensitivities with variations in individual polymer performances clearly apparent. The results provide guidance for material selection, qualification, optimization strategies, feedback for manufacturing and processing, or alternative materials. Further material qualification should be conducted via experiments under actual space conditions.

  19. International Workshop on Characterization and PIE Needs for Fundamental Understanding of Fuels Performance and Safety

    SciTech Connect (OSTI)

    Not Listed

    2011-12-01T23:59:59.000Z

    The International Workshop on Characterization and PIE Needs to Support Science-Based Development of Innovative Fuels was held June 16-17, 2011, in Paris, France. The Organization for Economic Co-operation and Development (OECD), Nuclear Energy Agency (NEA) Working Party on the Fuel Cycle (WPFC) sponsored the workshop to identify gaps in global capabilities that need to be filled to meet projected needs in the 21st century. First and foremost, the workshop brought nine countries and associated international organizations, together in support of common needs for nuclear fuels and materials testing, characterization, PIE, and modeling capabilities. Finland, France, Germany, Republic of Korea, Russian Federation, Sweden, Switzerland, United Kingdom, United States of America, IAEA, and ITU (on behalf of European Union Joint Research Centers) discussed issues and opportunities for future technical advancements and collaborations. Second, the presentations provided a base level of understanding of current international capabilities. Three main categories were covered: (1) status of facilities and near term plans, (2) PIE needs from fuels engineering and material science perspectives, and (3) novel PIE techniques being developed to meet the needs. The International presentations provided valuable data consistent with the outcome of the National Workshop held in March 2011. Finally, the panel discussion on 21st century PIE capabilities, created a unified approach for future collaborations. In conclusion, (1) existing capabilities are not sufficient to meet the needs of a science-based approach, (2) safety issues and fuels behavior during abnormal conditions will receive more focus post-Fukushima; therefore we need to adopt our techniques to those issues, and (3) International collaboration is needed in the areas of codes and standards development for the new techniques.

  20. VEHICLE USAGE LOG Department ________________________________________ Vehicle Homebase ____________________________ Week Ended (Sunday) _________________

    E-Print Network [OSTI]

    Yang, Zong-Liang

    VEHICLE USAGE LOG Department ________________________________________ Vehicle Homebase ____________________________ Week Ended (Sunday) _________________ Door #____________ License Plate ____________________ Vehicle/Supplies (Enter Description such as grade sheets, artifacts, money, etc.) 6. Taking vehicle to Automotive Shop

  1. Vehicle Technologies Office Merit Review 2013: Accelerating Predictive...

    Broader source: Energy.gov (indexed) [DOE]

    3: Accelerating Predictive Simulation of IC Engines with High Performance Computing Vehicle Technologies Office Merit Review 2013: Accelerating Predictive Simulation of IC Engines...

  2. Vehicle Technologies Office Merit Review 2014: Accelerating Predictive...

    Broader source: Energy.gov (indexed) [DOE]

    4: Accelerating Predictive Simulation of IC Engines with High Performance Computing Vehicle Technologies Office Merit Review 2014: Accelerating Predictive Simulation of IC Engines...

  3. Vehicle Technologies Office Merit Review 2014: INL Electrochemical...

    Broader source: Energy.gov (indexed) [DOE]

    company name at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about INL electrochemical performance...

  4. Analytical Target Cascading Optimization of an Electric Vehicle Powertrain System

    E-Print Network [OSTI]

    Papalambros, Panos

    curves and motor power loss maps produced by an electric vehicle (EV) powertrain system. Three, since the motor performance information (torque curves and power loss map) significantly impacts

  5. AVTA: Ford Escape PHEV Advanced Research Vehicle 2010 Testing...

    Broader source: Energy.gov (indexed) [DOE]

    results of testing done on a plug-in hybrid electric Ford Escape Advanced Research Vehicle, an experimental model not currently for sale. The baseline performance testing...

  6. Hydrogen-Enhanced Natural Gas Vehicle Program

    SciTech Connect (OSTI)

    Hyde, Dan; Collier, Kirk

    2009-01-22T23:59:59.000Z

    The project objective is to demonstrate the viability of HCNG fuel (30 to 50% hydrogen by volume and the remainder natural gas) to reduce emissions from light-duty on-road vehicles with no loss in performance or efficiency. The City of Las Vegas has an interest in alternative fuels and already has an existing hydrogen refueling station. Collier Technologies Inc (CT) supplied the latest design retrofit kits capable of converting nine compressed natural gas (CNG) fueled, light-duty vehicles powered by the Ford 5.4L Triton engine. CT installed the kits on the first two vehicles in Las Vegas, trained personnel at the City of Las Vegas (the City) to perform the additional seven retrofits, and developed materials for allowing other entities to perform these retrofits as well. These vehicles were used in normal service by the City while driver impressions, reliability, fuel efficiency and emissions were documented for a minimum of one year after conversion. This project has shown the efficacy of operating vehicles originally designed to operate on compressed natural gas with HCNG fuel incorporating large quantities of exhaust gas recirculation (EGR). There were no safety issues experienced with these vehicles. The only maintenance issue in the project was some rough idling due to problems with the EGR valve and piping parts. Once the rough idling was corrected no further maintenance issues with these vehicles were experienced. Fuel economy data showed no significant changes after conversion even with the added power provided by the superchargers that were part of the conversions. Driver feedback for the conversions was very favorable. The additional power provided by the HCNG vehicles was greatly appreciated, especially in traffic. The drivability of the HCNG vehicles was considered to be superior by the drivers. Most of the converted vehicles showed zero oxides of nitrogen throughout the life of the project using the State of Nevada emissions station.

  7. Improved characterization of reservoir behavior by integration of reservoir performances data and rock type distributions

    SciTech Connect (OSTI)

    Davies, D.K.; Vessell, R.K. [David K. Davies & Associates, Kingwood, TX (United States); Doublet, L.E. [Texas A& M Univ., College Station, TX (United States)] [and others

    1997-08-01T23:59:59.000Z

    An integrated geological/petrophysical and reservoir engineering study was performed for a large, mature waterflood project (>250 wells, {approximately}80% water cut) at the North Robertson (Clear Fork) Unit, Gaines County, Texas. The primary goal of the study was to develop an integrated reservoir description for {open_quotes}targeted{close_quotes} (economic) 10-acre (4-hectare) infill drilling and future recovery operations in a low permeability, carbonate (dolomite) reservoir. Integration of the results from geological/petrophysical studies and reservoir performance analyses provide a rapid and effective method for developing a comprehensive reservoir description. This reservoir description can be used for reservoir flow simulation, performance prediction, infill targeting, waterflood management, and for optimizing well developments (patterns, completions, and stimulations). The following analyses were performed as part of this study: (1) Geological/petrophysical analyses: (core and well log data) - {open_quotes}Rock typing{close_quotes} based on qualitative and quantitative visualization of pore-scale features. Reservoir layering based on {open_quotes}rock typing {close_quotes} and hydraulic flow units. Development of a {open_quotes}core-log{close_quotes} model to estimate permeability using porosity and other properties derived from well logs. The core-log model is based on {open_quotes}rock types.{close_quotes} (2) Engineering analyses: (production and injection history, well tests) Material balance decline type curve analyses to estimate total reservoir volume, formation flow characteristics (flow capacity, skin factor, and fracture half-length), and indications of well/boundary interference. Estimated ultimate recovery analyses to yield movable oil (or injectable water) volumes, as well as indications of well and boundary interference.

  8. Social networking in vehicles

    E-Print Network [OSTI]

    Liang, Philip Angus

    2006-01-01T23:59:59.000Z

    In-vehicle, location-aware, socially aware telematic systems, known as Flossers, stand to revolutionize vehicles, and how their drivers interact with their physical and social worlds. With Flossers, users can broadcast and ...

  9. 2011 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Davis, Stacy Cagle [ORNL; Boundy, Robert Gary [ORNL; Diegel, Susan W [ORNL

    2012-02-01T23:59:59.000Z

    This report details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Program (VTP), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. This third edition since this report was started in 2008 offers several marked improvements relative to its predecessors. Most significantly, where earlier editions of this report focused on supplying information through an examination of market drivers, new vehicle trends, and supplier data, this edition uses a different structure. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. In addition to making this sectional re-alignment, this year s edition of the report also takes a different approach to communicating information. While previous editions relied heavily on text accompanied by auxiliary figures, this third edition relies primarily on charts and graphs to communicate trends. Any accompanying text serves to introduce the trends communication by the graphic and highlight any particularly salient observations. The opening section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. For example, Figures 11 through 13 discuss the connections between global oil prices and U.S. GDP, and Figures 20 and 21 show U.S. employment in the automotive sector. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. Figures 26 through 33 offer snapshots of major light-duty vehicle brands in the U.S. and Figures 38 through 43 examine the performance and efficiency characteristics of vehicles sold. The discussion of Medium and Heavy Trucks offers information on truck sales (Figures 58 through 61) and fuel use (Figures 64 through 66). The Technology section offers information on alternative fuel vehicles and infrastructure (Figures 68 through 77), and the Policy section concludes with information on recent, current, and near-future Federal policies like the Cash for Clunkers program (Figures 87 and 88) and the Corporate Automotive Fuel Economy standard (Figures 90 through 99) and. In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible nuggets.

  10. Automated Vehicle-to-Vehicle Collision Avoidance at Intersections

    E-Print Network [OSTI]

    Del Vecchio, Domitilla

    Automated Vehicle-to-Vehicle Collision Avoidance at Intersections M. R. Hafner1 , D. Cunningham2 on modified Lexus IS250 test vehicles. The system utilizes vehicle-to-vehicle (V2V) Dedicated Short the velocities of both vehicles with automatic brake and throttle commands. Automatic commands can never cause

  11. Motor Vehicle Record Procedure Objective

    E-Print Network [OSTI]

    Kirschner, Denise

    Motor Vehicle Record Procedure Objective Outline the procedure for obtaining motor vehicle record (MVR) through Fleet Services. Vehicle Operator Policy 3. Operators with 7 or more points on their motor vehicle record

  12. Method and apparatus for characterizing and enhancing the functional performance of machine tools

    DOE Patents [OSTI]

    Barkman, William E; Babelay, Jr., Edwin F; Smith, Kevin Scott; Assaid, Thomas S; McFarland, Justin T; Tursky, David A; Woody, Bethany; Adams, David

    2013-04-30T23:59:59.000Z

    Disclosed are various systems and methods for assessing and improving the capability of a machine tool. The disclosure applies to machine tools having at least one slide configured to move along a motion axis. Various patterns of dynamic excitation commands are employed to drive the one or more slides, typically involving repetitive short distance displacements. A quantification of a measurable merit of machine tool response to the one or more patterns of dynamic excitation commands is typically derived for the machine tool. Examples of measurable merits of machine tool performance include workpiece surface finish, and the ability to generate chips of the desired length.

  13. SAND94-2862C PERFORMANCE CHARACTERIZATION OF THE NASA STANDARD DETONATOR*

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Foundenhancer activity than FINALSAND94-2862C PERFORMANCE

  14. Energy 101: Electric Vehicles

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

  15. Washington State Electric Vehicle

    E-Print Network [OSTI]

    California at Davis, University of

    Washington State Electric Vehicle Implementation Bryan Bazard Maintenance and Alternate Fuel Technology Manager #12;Executive Order 14-04 Requires the procurement of electric vehicles where and equipment with electricity or biofuel to the "extent practicable" by June 2015 1. The vehicle is due

  16. Automotive vehicle sensors

    SciTech Connect (OSTI)

    Sheen, S.H.; Raptis, A.C.; Moscynski, M.J.

    1995-09-01T23:59:59.000Z

    This report is an introduction to the field of automotive vehicle sensors. It contains a prototype data base for companies working in automotive vehicle sensors, as well as a prototype data base for automotive vehicle sensors. A market analysis is also included.

  17. Powertrain & Vehicle Research Centre

    E-Print Network [OSTI]

    Burton, Geoffrey R.

    Powertrain & Vehicle Research Centre Low Carbon Powertrain Development S. Akehurst, EPSRC Advanced Research Fellow A vehicles powertrain is a complex combination of interacting sub-systems which include complexity ·More efficient Vehicles, quicker to market, reduced cost to consumer The Optimisation Task

  18. Powertrain & Vehicle Research Centre

    E-Print Network [OSTI]

    Burton, Geoffrey R.

    Powertrain & Vehicle Research Centre Low Carbon Powertrain Development S Akehurst, EPSRC Advanced Viewing Trade-Offs and Finding Optima Realism Advanced Engine Test Vehicle Test Rolling Road Powertrain Simulation Basic Engine Test Vehicle Test Cost & Complexity Towards Final Product Lean Powertrain Development

  19. Electric Vehicle Preparedness: Task 1, Assessment of Fleet Inventory for Marine Corps Base Camp Lejeune

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort

    2015-01-01T23:59:59.000Z

    Several U.S. Department of Defense-based studies were conducted to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). Task 1 included a survey of the inventory of non-tactical fleet vehicles at the Marine Corps Base Camp Lejeune (MCBCL) to characterize the fleet. This information and characterization will be used to select vehicles for monitoring that takes place during Task 2. This monitoring involves data logging of vehicle operation in order to identify the vehicle’s mission and travel requirements. Individual observations of these selected vehicles provide the basis for recommendations related to PEV adoption. It also identifies whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements and provides observations related to placement of PEV charging infrastructure.

  20. A Power Presizing Methodology for Electric Vehicle Traction Motors Bekheira Tabbache1,2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A Power Presizing Methodology for Electric Vehicle Traction Motors Bekheira Tabbache1,2 , Sofiane for presizing the power of an electric vehicle traction motor. Based on the vehicle desired performances methodology is validated through extensive simulations for different induction motor-based electric vehicles

  1. Navigation and Control of the Nereus Hybrid Underwater Vehicle for Global Ocean Science to

    E-Print Network [OSTI]

    Whitcomb, Louis L.

    Navigation and Control of the Nereus Hybrid Underwater Vehicle for Global Ocean Science to 11,000m an overview of the navigation and control system design for the new Nereus hybrid underwater vehicle Nereus hybrid underwater vehicle and summarizes the vehicle's navigation and control performance during

  2. Preventative Maintenance (PM) Policy Outline the policy regarding preventative vehicle maintenance on University of Michigan (U-

    E-Print Network [OSTI]

    Kirschner, Denise

    Preventative Maintenance (PM) Policy Objective Outline the policy regarding preventative vehicle maintenance on University of Michigan (U- M) vehicles. Policy 1. All maintenance performed on U-M vehicles their own campus maintenance facility to repair their fleet vehicles. 2. To ensure proper stewardship of U

  3. Modelling and Design Optimization of Low Speed Fuel Cell Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Victoria, University of

    Modelling and Design Optimization of Low Speed Fuel Cell Hybrid Electric Vehicles by Matthew Blair electric vehicles, empirical fuel cell system data has been incorporated into the NREL's vehicle design and simulation tool, ADVISOR (ADvanced Vehicle SimulatOR), to predict the performance of a low-speed, fuel cell

  4. IMMEDIATE RELEASE April 28, 2006 CRUSHER UNMANNED GROUND COMBAT VEHICLE UNVEILED

    E-Print Network [OSTI]

    Gupta, Abhinav

    -steered, unmanned ground vehicle. The vehicle weighs 14,000 pounds fully fueled, and is designed to carry a 3 for an unmanned ground vehicle to perform military missions autonomously. Crusher will be equipped, "With the combination of a robust, highly mobile vehicle design and an innovative autonomous control

  5. H-infinity Vehicle Control Using NonDimensional Perturbation Measures S. Brennan A. Alleyne*

    E-Print Network [OSTI]

    Brennan, Sean

    H-infinity Vehicle Control Using NonDimensional Perturbation Measures S. Brennan A. Alleyne* Dept to the field of vehicle control to achieve many different performance measures: robust yaw rate control [1 vehicle specific, and is suitable only for application to a single design vehicle. This work shows that (a

  6. Identification and Characterization of Performance Limiting Regions in Poly-Si Wafers Used for PV Cells: Preprint

    SciTech Connect (OSTI)

    Guthrey, H.; Gorman, B.; Al-Jassim, M.

    2011-07-01T23:59:59.000Z

    As demand for silicon photovoltaic (PV) material increases, so does the need for cost-effective feedstock and production methods that will allow enhanced penetration of silicon PV into the total energy market. The focus on cost minimization for production of polycrystalline silicon (poly-Si) PV has led to relaxed feedstock purity requirements, which has also introduced undesirable characteristics into cast poly-Si PV wafers. To produce cells with the highest possible conversion efficiencies, it is crucial to understand how reduced purity requirements and defects that are introduced through the casting process can impair minority carrier properties in poly-Si PV cells. This is only possible by using multiple characterization techniques that give macro-scale information (such as the spatial distribution of performance-limiting regions), as well as micro and nano-scale information about the structural and chemical nature of such performance-limiting regions. This study demonstrates the usefulness of combining multiple techniques to analyze performance-limiting regions in the poly-Si wafers that are used for PV cells. This is done by first identifying performance-limiting regions using macro-scale techniques including photoluminescence (PL) imaging, microwave photoconductive decay (uPCD), and reflectometry), then using smaller-scale techniques such as scanning electron microscopy (SEM), electron backscattered diffraction (EBSD), laser ablation inductively coupled mass spectrometry (LA-ICP-MS), cathodoluminescence (CL), and transmission electron microscopy (TEM) to understand the nature of such regions. This analysis shows that structural defects as well as metallic impurities are present in performance-limiting regions, which together act to decrease conversion efficiencies in poly-Si PV cells.

  7. Method and apparatus for characterizing and enhancing the dynamic performance of machine tools

    DOE Patents [OSTI]

    Barkman, William E; Babelay, Jr., Edwin F

    2013-12-17T23:59:59.000Z

    Disclosed are various systems and methods for assessing and improving the capability of a machine tool. The disclosure applies to machine tools having at least one slide configured to move along a motion axis. Various patterns of dynamic excitation commands are employed to drive the one or more slides, typically involving repetitive short distance displacements. A quantification of a measurable merit of machine tool response to the one or more patterns of dynamic excitation commands is typically derived for the machine tool. Examples of measurable merits of machine tool performance include dynamic one axis positional accuracy of the machine tool, dynamic cross-axis stability of the machine tool, and dynamic multi-axis positional accuracy of the machine tool.

  8. Auto/Steel Partnership: Fatigue of AHSS Strain Rate Characterization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fatigue of AHSS Strain Rate Characterization AutoSteel Partnership: Fatigue of AHSS Strain Rate Characterization 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual...

  9. 2011 Hyundai Sonata 3539 - Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Matthew Shirk; Tyler Gray; Jeffrey Wishart

    2014-09-01T23:59:59.000Z

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing hybrid electric vehicle batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid (VIN KMHEC4A47BA003539). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  10. Testing hybrid electric vehicle emissions and fuel economy at the 1994 Hybrid Electric Vehicle Challenge

    SciTech Connect (OSTI)

    Duoba, M.; Quong, S.; LeBlanc, N.; Larsen, R.P.

    1995-06-01T23:59:59.000Z

    From June 12--20, 1994, an engineering design competition called the 1994 Hybrid Electric Vehicle (HEV) Challenge was held in Southfield, Michigan. This collegiate-level competition, which involved 36 colleges and universities from across North America, challenged the teams to build a superior HEV. One component of this comprehensive competition was the emissions event. Special HEV testing procedures were developed for the competition to find vehicle emissions and correct for battery state-of-charge while fitting into event time constraints. Although there were some problems with a newly-developed data acquisition system, they were able to get a full profile of the best performing vehicles as well as other vehicles that represent typical levels of performance from the rest of the field. This paper will explain the novel test procedures, present the emissions and fuel economy results, and provide analysis of second-by-second data for several vehicles.

  11. Characterization and device performance of (AgCu)(InGa)Se2 absorber layers

    SciTech Connect (OSTI)

    Hanket, Gregory; Boyle, Jonathan H.; Shafarman, William N.

    2009-06-08T23:59:59.000Z

    The study of (AgCu)(InGa)Se2 absorber layers is of interest in that Ag-chalcopyrites exhibit both wider bandgaps and lower melting points than their Cu counterparts. (AgCu)(InGa)Se2 absorber layers were deposited over the composition range 0 < Ag/(Ag+Cu) < 1 and 0.3 < Ga/(In+Ga) < 1.0 using a variety of elemental co-evaporation processes. Films were found to be singlephase over the entire composition range, in contrast to prior studies. Devices with Ga content 0.3 < Ga/(In+Ga) <0.5 tolerated Ag incorporation up to Ag/(Ag+Cu) = 0.5 without appreciable performance loss. Ag-containing films with Ga/(In+Ga) = 0.8 showed improved device characteristics over Cu-only control samples, in particular a 30-40% increase in short-circuit current. An absorber layer with composition Ag/(Ag+Cu) = 0.75 and Ga/(In+Ga) = 0.8 yielded a device with VOC = 890 mV, JSC = 20.5mA/cm2, fill factor = 71.3%, and ? = 13.0%.

  12. Characterization of high-power lithium-ion cells-performance and diagnostic analysis

    SciTech Connect (OSTI)

    Striebel, K.A.; Shim, J.; Kostecki, R.; Richardson, T.J.; Ross, P.N.; Song, X.; Zhuang, G.V.

    2003-11-25T23:59:59.000Z

    Lithium-ion cells, with graphite anodes and LiNi0.8Co0.15Al0.05O2 cathodes, were cycled for up to 1000 cycles over different ranges of SOC and temperatures. The decline in cell performance increases with the span of SOC and temperature during cycling. Capacity fade was caused by a combination of the loss of cycleable Li and degradation of the cathode. The room temperature anodes showed SEI compositions and degrees of graphite disorder that correlated with the extent of the Li consumption, which was linear in cell test time. TEM of the cathodes showed evidence of crystalline defects, though no major new phases were identified, consistent with XRD. No evidence of polymeric deposits on the cathode particles (FTIR) was detected although both Raman and TEM showed evidence of P-containing deposits from electrolyte salt degradation. Raman microscopy showed differences in relative carbon contents of the cycled cathodes, which is blamed for part of the cathode degradation.

  13. DMAPS: a fully depleted monolithic active pixel sensor - analog performance characterization

    E-Print Network [OSTI]

    Miroslav Havránek; Tomasz Hemperek; Hans Krüger; Yunan Fu; Leonard Germic; Tetsuichi Kishishita; Theresa Obermann; Norbert Wermes

    2014-07-02T23:59:59.000Z

    Monolithic Active Pixel Sensors (MAPS) have been developed since the late 1990s based on silicon substrates with a thin epitaxial layer (thickness of 10-15 $\\mu$m) in which charge is collected on an electrode, albeit by disordered and slow diffusion rather than by drift in a directed electric field. As a consequence, the signal is small ($\\approx$ 1000 e$^-$) and the radiation tolerance is much below the LHC requirements by factors of 100 to 1000. In this paper we present the development of a fully Depleted Monolithic Active Pixel Sensors (DMAPS) based on a high resistivity substrate allowing the creation of a fully depleted detection volume. This concept overcomes the inherent limitations of charge collection by diffusion in the standard MAPS designs. We present results from a test chip EPCB01 designed in a commercial 150 nm CMOS technology. The technology provides a thin (50 $\\mu$m) high resistivity n-type silicon substrate as well as an additional deep p-well which allows to integrate full CMOS circuitry inside the pixel. Different matrix types with several variants of collection electrodes have been implemented. Measurements of the analog performance of this first implementation of DMAPS pixels will be presented.

  14. William and Mary Athletics State Vehicle / Rental Vehicle / Personal Vehicle Policies

    E-Print Network [OSTI]

    Swaddle, John

    William and Mary Athletics State Vehicle / Rental Vehicle / Personal Vehicle Policies Last Update: 2/14/14 W&M's vehicle use policy requires that a driver authorization form be completed and approved before driving any vehicle (including a personal vehicle) for university business or a university

  15. Overcoming the Range Limitation of Medium-Duty Battery Electric Vehicles through the use of Hydrogen Fuel-Cells

    SciTech Connect (OSTI)

    Wood, E.; Wang, L.; Gonder, J.; Ulsh, M.

    2013-10-01T23:59:59.000Z

    Battery electric vehicles possess great potential for decreasing lifecycle costs in medium-duty applications, a market segment currently dominated by internal combustion technology. Characterized by frequent repetition of similar routes and daily return to a central depot, medium-duty vocations are well positioned to leverage the low operating costs of battery electric vehicles. Unfortunately, the range limitation of commercially available battery electric vehicles acts as a barrier to widespread adoption. This paper describes the National Renewable Energy Laboratory's collaboration with the U.S. Department of Energy and industry partners to analyze the use of small hydrogen fuel-cell stacks to extend the range of battery electric vehicles as a means of improving utility, and presumably, increasing market adoption. This analysis employs real-world vocational data and near-term economic assumptions to (1) identify optimal component configurations for minimizing lifecycle costs, (2) benchmark economic performance relative to both battery electric and conventional powertrains, and (3) understand how the optimal design and its competitiveness change with respect to duty cycle and economic climate. It is found that small fuel-cell power units provide extended range at significantly lower capital and lifecycle costs than additional battery capacity alone. And while fuel-cell range-extended vehicles are not deemed economically competitive with conventional vehicles given present-day economic conditions, this paper identifies potential future scenarios where cost equivalency is achieved.

  16. Detecting persons concealed in a vehicle

    DOE Patents [OSTI]

    Tucker, Jr., Raymond W.

    2005-03-29T23:59:59.000Z

    An improved method for detecting the presence of humans or animals concealed within in a vehicle uses a combination of the continuous wavelet transform and a ratio-based energy calculation to determine whether the motion detected using seismic sensors placed on the vehicle is due to the presence of a heartbeat within the vehicle or is the result of motion caused by external factors such as the wind. The method performs well in the presence of light to moderate ambient wind levels, producing far fewer false alarm indications. The new method significantly improves the range of ambient environmental conditions under which human presence detection systems can reliably operate.

  17. Cooperative sentry vehicles and differential GPS leapfrog

    SciTech Connect (OSTI)

    FEDDEMA,JOHN T.; LEWIS,CHRISTOPHER L.; LAFARGE,ROBERT A.

    2000-06-07T23:59:59.000Z

    As part of a project for the Defense Advanced Research Projects Agency, Sandia National Laboratories Intelligent Systems and Robotics Center is developing and testing the feasibility of using a cooperative team of robotic sentry vehicles to guard a perimeter, perform a surround task, and travel extended distances. This paper describes the authors most recent activities. In particular, this paper highlights the development of a Differential Global Positioning System (DGPS) leapfrog capability that allows two or more vehicles to alternate sending DGPS corrections. Using this leapfrog technique, this paper shows that a group of autonomous vehicles can travel 22.68 kilometers with a root mean square positioning error of only 5 meters.

  18. Lateral control of articulated vehicles for automated highway systems under uncertainty in vehicle parameters

    E-Print Network [OSTI]

    Daud, Omar

    1998-01-01T23:59:59.000Z

    Studied in this thesis is the formulation of lateral control algorithms for articulated vehicles performing a lane following maneuver on Automated Highway Systems (AHS). A steering control algorithm using the input/output linearization scheme...

  19. Measuring and Reporting Fuel Economy of Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Gonder, J.; Simpson, A.

    2006-11-01T23:59:59.000Z

    This paper reviews techniques used to characterize plug-in hybrid electric vehicle fuel economy, discussing their merits, limitations, and best uses.

  20. Rutting Performance of Airport Hot-Mix Asphalt Characterized by Laboratory Performance Testing, Full-Scale Accelerated Pavement Testing, and Finite Element Modeling

    E-Print Network [OSTI]

    Rushing, John Ford

    2014-04-25T23:59:59.000Z

    California Bearing Ratio DoD Department of Defense DSR Dynamic Shear Rheometer ERDC U.S. Army Engineer Research and Development Center FAA Federal Aviation Administration FN flow number FT flow time HMA Hot Mix Asphalt HVS heavy vehicle simulator... aircraft continue to necessitate modifications in the procedures by which HMA mixtures are designed so that rutting does not become a prevalent distress on airport pavements. The Federal Aviation Administration (FAA) has predominantly required use...

  1. Vehicle Technologies Office: AVTA- Hybrid Electric Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. This page provides data on the hybrid electric versions of the Volkswagen Jetta, Ford C-Max, Chevrolet Malibu, Honda Civic, Hyundai Sonata, Honda CRZ, Honda Civic with Advanced Experimental Ultra Lead Acid Battery, Mercedes Benz, Toyota Prius Gen III, Ford Fusion, Honda Insight and Honda CR-Z.

  2. VEHICLE USE RECORD M/Y DEPARTMENT VEHICLE LOCATION

    E-Print Network [OSTI]

    Watson, Craig A.

    VEHICLE USE RECORD M/Y DEPARTMENT VEHICLE LOCATION Date Origin/Destination Purpose Time Out Time) Accuracy of Information (b) Valid Driver's License VEHICLE # TAG # VEHICLE MAKE, MODEL, AND YEAR NOTE: Vehicle logs must be maintained for audit purposes. It is important that all of the required information

  3. Advanced Vehicle Electrification and Transportation Sector Electrifica...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity Advanced Vehicle...

  4. Vehicle underbody fairing

    DOE Patents [OSTI]

    Ortega, Jason M. (Pacifica, CA); Salari, Kambiz (Livermore, CA); McCallen, Rose (Livermore, CA)

    2010-11-09T23:59:59.000Z

    A vehicle underbody fairing apparatus for reducing aerodynamic drag caused by a vehicle wheel assembly, by reducing the size of a recirculation zone formed under the vehicle body immediately downstream of the vehicle wheel assembly. The fairing body has a tapered aerodynamic surface that extends from a front end to a rear end of the fairing body with a substantially U-shaped cross-section that tapers in both height and width. Fasteners or other mounting devices secure the fairing body to an underside surface of the vehicle body, so that the front end is immediately downstream of the vehicle wheel assembly and a bottom section of the tapered aerodynamic surface rises towards the underside surface as it extends in a downstream direction.

  5. PNGV Battery Performance Testing and Analyses

    SciTech Connect (OSTI)

    Motloch, Chester George; Belt, Jeffrey R; Christophersen, Jon Petter; Wright, Randy Ben; Hunt, Gary Lynn; Sutula, Raymond; Duong, T.Q.; Barnes, J.A.; Miller, Ted J.; Haskind, H. J.; Tartamella, T. J.

    2002-03-01T23:59:59.000Z

    In support of the Partnership for a New Generation of Vehicles (PNGV), the Idaho National Engineering and Environmental Laboratory (INEEL) has developed novel testing procedures and analytical methodologies to assess the performance of batteries for use in hybrid electric vehicles (HEV’s). Tests have been designed for both Power Assist and Dual Mode applications. They include both characterization and cycle life and/or calendar life. At periodic intervals during life testing, a series of Reference Performance Tests are executed to determine changes in the baseline performance of the batteries. Analytical procedures include a battery scaling methodology, the calculation of pulse resistance, pulse power, available energy, and differential capacity, and the modeling of calendar- and cycle-life data. PNGV goals, test procedures, analytical methodologies, and representative results are presented.

  6. Vehicle Technologies Office Merit Review 2015: Dramatically Improve the Safety Performance of Li Ion Battery Separators and Reduce the Manufacturing Cost using Ultraviolet Curing and High Precision Coating Technologies

    Broader source: Energy.gov [DOE]

    Presentation given by Miltec UV International at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about dramatically improve...

  7. Accomodating Electric Vehicles

    E-Print Network [OSTI]

    Aasheim, D.

    2011-01-01T23:59:59.000Z

    Accommodating Electric Vehicles Dave Aasheim 214-551-4014 daasheim@ecotality.com A leader in clean electric transportation and storage technologies ECOtality North America Overview Today ? Involved in vehicle electrification... ECOtality North America Overview Today ?Warehouse Material Handling ? Lift trucks ? Pallet Jacks ? Over 200 Customers ? Over 5,000 Installations ECOtality North America Overview Today ? 1990?s involved in EV1 ? EV Chargers ? Vehicle & battery...

  8. Accomodating Electric Vehicles 

    E-Print Network [OSTI]

    Aasheim, D.

    2011-01-01T23:59:59.000Z

    Accommodating Electric Vehicles Dave Aasheim 214-551-4014 daasheim@ecotality.com A leader in clean electric transportation and storage technologies ECOtality North America Overview Today ? Involved in vehicle electrification... ECOtality North America Overview Today ?Warehouse Material Handling ? Lift trucks ? Pallet Jacks ? Over 200 Customers ? Over 5,000 Installations ECOtality North America Overview Today ? 1990?s involved in EV1 ? EV Chargers ? Vehicle & battery...

  9. OPTIMAL DESIGN OF HYBRID FUEL CELL VEHICLES

    E-Print Network [OSTI]

    Jeongwoo Han; Michael Kokkolaras; Panos Papalambros

    Fuel cells are being considered increasingly as a viable alternative energy source for automobiles because of their clean and efficient power generation. Numerous technological concepts have been developed and compared in terms of safety, robust operation, fuel economy, and vehicle performance. However, several issues still exist and must be addressed to improve the viability of this emerging technology. Despite the relatively large number of models and prototypes, a model-based vehicle design capability with sufficient fidelity and efficiency is not yet available in the literature. In this article we present an analysis and design optimization model for fuel cell vehicles that can be applied to both hybrid and non-hybrid vehicles by integrating a fuel cell vehicle simulator with a physics-based fuel cell model. The integration is achieved via quasi-steady fuel cell performance maps, and provides the ability to modify the characteristics of fuel cell systems with sufficient accuracy (less than 5 % error) and efficiency (98 % computational time reduction on average). Thus, a vehicle can be optimized subject to constraints that include various performance metrics and design specifications so that the overall efficiency of the hybrid fuel cell vehicle can be improved by 14 % without violating any constraints. The obtained optimal fuel cell system is also compared to other, not vehicle-related, fuel cell systems optimized for maximum power density or maximum efficiency. A tradeoff between power density and efficiency can be observed depending on the size of compressors. Typically, a larger compressor results in higher fuel cell power density at the cost of fuel cell efficiency because it operates in a wider current region. When optimizing the fuel cell

  10. Electric-Drive Vehicle Basics (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-04-01T23:59:59.000Z

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  11. Vehicle Technologies Office: AVTA - Evaluating Military Bases...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Military Bases and Fleet Readiness for Electric Vehicles Vehicle Technologies Office: AVTA - Evaluating Military Bases and Fleet Readiness for Electric Vehicles The Vehicle...

  12. U.S. Department of Energy Vehicle Technologies Program: Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Jon P. Christophersen

    2014-09-01T23:59:59.000Z

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Renata M. Arsenault of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).

  13. Materials Characterization Capabilities at the High Temperature...

    Broader source: Energy.gov (indexed) [DOE]

    Characterization Capabilities at the High Temperature Materials Laboratory: Focus on Carbon Fiber and Composites Project ID: LM027 DOE 2011 Vehicle Technologies Annual Merit...

  14. Modular Energy Storage System for Hydrogen Fuel Cell Vehicles

    SciTech Connect (OSTI)

    Janice Thomas

    2010-05-31T23:59:59.000Z

    The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles â?? plug-in electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. The in-depth research into the complex interactions between the lower and higher voltage systems from data obtained via modeling, bench testing and instrumented vehicle data will allow an optimum system to be developed from a performance, cost, weight and size perspective. The subsystems are designed for modularity so that they may be used with different propulsion and energy delivery systems. This approach will allow expansion into new alternative energy vehicle markets.

  15. Energy 101: Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs.

  16. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    Research Institute 1990 Fuel Cell Status," Proceedings ofMiller, "Introduction: Fuel-Cell-Powered Vehicle DevelopmentPrograms," presented at Fuel Cells for Transportation,

  17. Flex Fuel Vehicle Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flex Fuel Vehicle Systems * Bosch FFV Project Structure and Partners * Purpose of Work - Project Highlights * Barriers - Existing Flex Fuel Systems and Problems * Approach - Bosch...

  18. Georgia Tech Vehicle Acquisition and

    E-Print Network [OSTI]

    1 2012 Georgia Tech 10/10/2012 Vehicle Acquisition and Disposition Manual #12;2 Vehicle Procedures Regardless of value, all vehicles should be included in this process. Acquisition of a Vehicle 1. Contact Fleet Coordinator to guide the departments in the purchasing process for all vehicles. 2. Fill out

  19. The 1991 natural gas vehicle challenge: Developing dedicated natural gas vehicle technology

    SciTech Connect (OSTI)

    Larsen, R.; Rimkus, W. [Argonne National Lab., IL (United States); Davies, J. [General Motors of Canada Ltd., Toronto, ON (Canada); Zammit, M. [AC Rochester, NY (United States); Patterson, P. [USDOE, Washington, DC (United States)

    1992-02-01T23:59:59.000Z

    An engineering research and design competition to develop and demonstrate dedicated natural gas-powered light-duty trucks, the Natural Gas Vehicle (NGV) Challenge, was held June 6--11, 1191, in Oklahoma. Sponsored by the US Department of Energy (DOE), Energy, Mines, and Resources -- Canada (EMR), the Society of Automative Engineers (SAE), and General Motors Corporation (GM), the competition consisted of rigorous vehicle testing of exhaust emissions, fuel economy, performance parameters, and vehicle design. Using Sierra 2500 pickup trucks donated by GM, 24 teams of college and university engineers from the US and Canada participated in the event. A gasoline-powered control testing as a reference vehicle. This paper discusses the results of the event, summarizes the technologies employed, and makes observations on the state of natural gas vehicle technology.

  20. The 1991 natural gas vehicle challenge: Developing dedicated natural gas vehicle technology

    SciTech Connect (OSTI)

    Larsen, R.; Rimkus, W. (Argonne National Lab., IL (United States)); Davies, J. (General Motors of Canada Ltd., Toronto, ON (Canada)); Zammit, M. (AC Rochester, NY (United States)); Patterson, P. (USDOE, Washington, DC (United States))

    1992-01-01T23:59:59.000Z

    An engineering research and design competition to develop and demonstrate dedicated natural gas-powered light-duty trucks, the Natural Gas Vehicle (NGV) Challenge, was held June 6--11, 1191, in Oklahoma. Sponsored by the US Department of Energy (DOE), Energy, Mines, and Resources -- Canada (EMR), the Society of Automative Engineers (SAE), and General Motors Corporation (GM), the competition consisted of rigorous vehicle testing of exhaust emissions, fuel economy, performance parameters, and vehicle design. Using Sierra 2500 pickup trucks donated by GM, 24 teams of college and university engineers from the US and Canada participated in the event. A gasoline-powered control testing as a reference vehicle. This paper discusses the results of the event, summarizes the technologies employed, and makes observations on the state of natural gas vehicle technology.

  1. Low Temperature Performance Characterization

    Broader source: Energy.gov (indexed) [DOE]

    0.0036 0.0038 0.004 0.0042 Inverse Temperature, 1K Gen2 Electrodes and 1.2M LiPF6 in EC:EMC (3:7 ww) (BID 1935), 4.1V, 3 Sep. Gen2 Electrodes and 1.2M LiPF6 in EC:EMC (3:7 ww)...

  2. Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plug-in Electric Vehicle On-Road Demonstration Data Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle On-Road Demonstration Data Through the American Recovery and...

  3. Laboratory to change vehicle traffic-screening regimen at vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Changes to vehicle traffic-screening Laboratory to change vehicle traffic-screening regimen at vehicle inspection station Lanes two through five will be open 24 hours a day and...

  4. 2007 Toyota Camry-6330 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01T23:59:59.000Z

    The U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) conducts several different types of tests on hybrid electric vehicles (HEVs), including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Camry hybrid electric vehicle (Vin Number JTNBB46K673006330). Testing was performed by the Electric Transportation Engineering Corporation. The AVTA is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct AVTA for the U.S. Department of Energy.

  5. Vehicle Technologies Office Merit Review 2015: Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    Presentation given by Intertek at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced vehicle testing and...

  6. Vehicle Technologies Office: 2010 Vehicle and Systems Simulation...

    Broader source: Energy.gov (indexed) [DOE]

    vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2010vsstreport.pdf More Documents & Publications AVTA PHEV Demonstrations and...

  7. Vehicle Technologies Office: 2013 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and field evaluations, codes and standards, industry projects, and vehicle systems optimization. 2013vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

  8. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for the National Park Service: Golden Gate National Recreation Area

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort

    2014-03-01T23:59:59.000Z

    Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy's Idaho National Laboratory, is the lead laboratory for U.S. Department of Energy Advanced Vehicle Testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America (ITSNA) to collect data on federal fleet operations as part of the Advanced Vehicle Testing Activity's Federal Fleet Vehicle Data Logging and Characterization study. The Advanced Vehicle Testing Activity study seeks to collect data to validate the utilization of advanced electric drive vehicle transportation. This report focuses on the Golden Gate National Recreation Area (GGNRA) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agencies' fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements. GGNRA identified 182 vehicles in its fleet, which are under the management of the U.S. General Services Administration. Fleet vehicle mission categories are defined in Section 4, and while the GGNRA vehicles conduct many different missions, only two (i.e., support and law enforcement missions) were selected by agency management to be part of this fleet evaluation. The selected vehicles included sedans, trucks, and sport-utility vehicles. This report will show that battery electric vehicles and/or PHEVs are capable of performing the required missions and providing an alternative vehicle for support vehicles and PHEVs provide the same for law enforcement, because each has a sufficient range for individual trips and time is available each day for charging to accommodate multiple trips per day. These charging events could occur at the vehicle home base, high-use work areas, or intermediately along routes that the vehicles frequently travel. Replacement of vehicles in the current fleet would result in significant reductions in the emission of greenhouse gases and petroleum use, while also reducing fuel costs. The San Francisco Bay Area is a leader in the adoption of PEVs in the United States. PEV charging stations, or more appropriately identified as electric vehicle supply equipment, located on the GGNRA facility would be a benefit for both GGNRA fleets and general public use. Fleet drivers and park visitors operating privately owned PEVs benefit by using the charging infrastructure. ITSNA recommends location analysis of the GGNRA site to identify the optimal placement of the electric vehicle supply equipment station. ITSNA recognizes the support of Idaho National Laboratory and ICF International for their efforts to initiate communication with the National Parks Service and GGNRA for participation in the study. ITSNA is pleased to provide this report and is encouraged by the high interest and support from the National Park Service and GGNRA personnel.

  9. MKV Carrier Vehicle Sensor Calibration

    E-Print Network [OSTI]

    Plotnik, Aaron M.

    The Multiple Kill Vehicle (MKV) system, which is being developed by the US Missile Defense Agency (MDA), is a midcourse payload that includes a carrier vehicle and a number of small kill vehicles. During the mission, the ...

  10. The Vehicle Technologies Market Report

    E-Print Network [OSTI]

    The Vehicle Technologies Market Report Center for Transportation Analysis 2360 Cherahala Boulevard Efficiency Transportation: Energy Environment Safety Security Vehicle Technologies T he Oak Ridge National Laboratory's Center for Transportation Analysis developed and published the first Vehicle Technologies Market

  11. A unified framework for trajectory planning, threat assessment, and semi-autonomous control of passenger vehicles

    E-Print Network [OSTI]

    Anderson, Sterling J., Ph. D. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    This thesis describes the design of an active safety framework that performs trajectory planning, threat assessment, and semi-autonomous control of passenger vehicles in hazard avoidance scenarios. The vehicle navigation ...

  12. 340 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2006 Performance Characterization of a Reconfigurable

    E-Print Network [OSTI]

    Goldberg, Mark

    , FEBRUARY 2006 Performance Characterization of a Reconfigurable Planar-Array Digital Microfluidic System a computational approach to designing a digital microfluidic system (DMFS) that can be rapidly reconfigured be successfully applied. Index Terms--Array layout, biochips, digital microfluidics, droplet routing, lab

  13. Vehicle Technologies Office: Propulsion Systems

    Broader source: Energy.gov [DOE]

    Vehicle Technologies Office research focuses much of its effort on improving vehicle fuel economy while meeting increasingly stringent emissions standards. Achieving these goals requires a...

  14. Gasoline Ultra Fuel Efficient Vehicle

    Broader source: Energy.gov (indexed) [DOE]

    Strategy Phase 2 Demonstrator Vehicle (GDCI) 2011 Sonata 6MT, 2.0L GDI Theta Turbo Technologies on Vehicle: Stop start EMS Control Algorithms Calibration GDi pump...

  15. Sandia National Laboratories: Vehicle Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle Technologies Energy Efficiency On November 11, 2010, in Solid-State Lighting Vehicle Technologies Energy Efficiency News Energy Frontier Research Center for Solid-State...

  16. Thermal Characterization and Analysis of A123 Systems Battery Cells, Modules and Packs: Cooperative Research and Development Final Report, CRADA Number CRD-07-243

    SciTech Connect (OSTI)

    Pesaran, A.

    2012-03-01T23:59:59.000Z

    In support of the A123 Systems battery development program with USABC/DOE, NREL provided technical support in thermal characterization, analysis and management of batteries. NREL's effort was part of Energy Storage Project funded by DOE Vehicle Technologies Program. The purpose of this work was for NREL to perform thermal characterization and analysis of A123 Systems cells and modules with the aim for Al23 Systems to improve the thermal performance of their battery cells, modules and packs.

  17. The Nereus Hybrid Underwater Robotic Vehicle for Global Ocean Science Operations to 11,000m Depth

    E-Print Network [OSTI]

    Whitcomb, Louis L.

    The Nereus Hybrid Underwater Robotic Vehicle for Global Ocean Science Operations to 11,000m Depth-- This paper reports an overview of the new Nereus hybrid underwater vehicle and summarizes the vehicle's per hybrid underwater vehicle and summarizes its performance during its first sea trials. Nereus is a novel

  18. A Verified Hybrid Controller For Automated Vehicles

    E-Print Network [OSTI]

    Lygeros, J.; Godbole, D. N.; Sastry, S.

    1997-01-01T23:59:59.000Z

    con- trollers for vehicle automation," in American ControlTomizuka, Vehicle lateral control for highway automation,"

  19. Research, development, and demonstration of nickel-iron batteries for electric vehicle propulsion. Annual report, 1980

    SciTech Connect (OSTI)

    Not Available

    1981-03-01T23:59:59.000Z

    The objective of the Eagle-Picher nickel-iron battery program is to develop a nickel-iron battery for use in the propulsion of electric and electric-hybrid vehicles. To date, the program has concentrated on the characterization, fabrication and testing of the required electrodes, the fabrication and testing of full-scale cells, and finally, the fabrication and testing of full-scale (270 AH) six (6) volt modules. Electrodes of the final configuration have now exceeded 1880 cycles and are showing minimal capacity decline. Full-scale cells have presently exceeded 600 cycles and are tracking the individual electrode tests almost identically. Six volt module tests have exceeded 500 cycles, with a specific energy of 48 Wh/kg. Results to date indicate the nickel-iron battery is beginning to demonstrate the performance required for electric vehicle propulsion.

  20. Vehicle Technologies Office: AVTA- Neighborhood All-Electric Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the following vehicles is available in downloadable form: 2013 BRP Commander Electric, 2010 Electric Vehicles International E-Mega, 2009 Vantage Pickup EVX1000, and 2009 Vantage Van EVC1000.

  1. Renting Vehicles Renting Vehicles from MSU Motor Pool

    E-Print Network [OSTI]

    Lawrence, Rick L.

    Renting Vehicles Renting Vehicles from MSU Motor Pool Motor Pool/Transportation Services Motor Pool vehicles may ONLY be used for club-related travel). 2) Valid U.S. driver's license in good standing; 3) Completed Vehicle Use Authorization form for all drivers; and 4) Personal medical insurance

  2. ROBUST SCALABLE VEHICLE CONTROL VIA NON-DIMENSIONAL VEHICLE DYNAMICS

    E-Print Network [OSTI]

    Brennan, Sean

    - 1 - ROBUST SCALABLE VEHICLE CONTROL VIA NON-DIMENSIONAL VEHICLE DYNAMICS S. Brennan & A. Alleyne and spatial re-parameterization of the linear vehicle Bicycle Model is presented utilizing non-dimensional ratios of vehicle parameters called -groups. Investigation of the -groups using compiled data from 44

  3. ROBUST SCALABLE VEHICLE CONTROL VIA NON-DIMENSIONAL VEHICLE DYNAMICS

    E-Print Network [OSTI]

    Brennan, Sean

    ROBUST SCALABLE VEHICLE CONTROL VIA NON-DIMENSIONAL VEHICLE DYNAMICS S. Brennan & A. Alleyne Dept, IL 61801 ABSTRACT A temporal and spatial re-parameterization of the well- known linear vehicle Bicycle Model is presented. This parameterization utilizes non-dimensional ratios of vehicle parameters

  4. Vehicle operating costs: evidence from developing countries

    SciTech Connect (OSTI)

    Chesher, A.; Harrison, R.

    1987-01-01T23:59:59.000Z

    The document presents information concerning the relationships between vehicle operating costs and highway conditions derived from four studies performed in Kenya, the Caribbean, Brazil, and India in the 1970s and early 1980s. The levels of transport costs and the amounts by which they are altered when highway conditions change depend on two main factors. The first is the production technology facing firms, in particular, the types and designs of vehicles to which firms have access. The second is the economic environment that firms face, in particular, relative prices of inputs to the production of transportation, such as fuel, tires, labor, and vehicles, and the nature of the transport markets that firms serve. The first part of the book sets out an economic model of firms managing vehicle fleets within which these influences can be examined. The second part of the book reports and interprets the results of the four major research projects which were designed to study the influences on vehicle operating costs. The third part of the book examines total vehicle operating costs.

  5. Blast resistant vehicle seat

    DOE Patents [OSTI]

    Ripley, Edward B

    2013-02-12T23:59:59.000Z

    Disclosed are various seats for vehicles particularly military vehicles that are susceptible to attack by road-bed explosive devices such as land mines or improvised explosive devices. The seats often have rigid seat shells and may include rigid bracing for rigidly securing the seat to the chassis of the vehicle. Typically embodiments include channels and particulate media such as sand disposed in the channels. A gas distribution system is generally employed to pump a gas through the channels and in some embodiments the gas is provided at a pressure sufficient to fluidize the particulate media when an occupant is sitting on the seat.

  6. Energy Star Concepts for Highway Vehicles

    SciTech Connect (OSTI)

    Greene, D.L.

    2003-06-24T23:59:59.000Z

    The authors of this report, under the sponsorship of the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Weatherization and Intergovernmental Program, have investigated the possible application of Energy Star ratings to passenger cars and light trucks. This study establishes a framework for formulating and evaluating Energy Star rating methods that is comprised of energy- and environmental-based metrics, potential vehicle classification systems, vehicle technology factors, and vehicle selection criteria. The study tests several concepts and Energy Star rating methods using model-year 2000 vehicle data--a spreadsheet model has been developed to facilitate these analyses. This study tests two primary types of rating systems: (1) an outcome-based system that rates vehicles based on fuel economy, GHG emissions, and oil use and (2) a technology-based system that rates vehicles based on the energy-saving technologies they use. Rating methods were evaluated based on their ability to select vehicles with high fuel economy, low GHG emissions, and low oil use while preserving a full range of service (size and acceleration) and body style choice. This study concludes that an Energy Star rating for passenger cars and light trucks is feasible and that several methods could be used to achieve reasonable tradeoffs between low energy use and emissions and diversity in size, performance, and body type. It also shows that methods that consider only fuel economy, GHG emissions, or oil use will not select a diverse mix of vehicles. Finally, analyses suggest that methods that encourage the use of technology only, may result in increases in acceleration power and weight rather than reductions in oil use and GHG emissions and improvements in fuel economy.

  7. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice (Revised)

    SciTech Connect (OSTI)

    Not Available

    2008-06-01T23:59:59.000Z

    Clean Cities fact sheet describing aspects of flexible fuel vehicles such as use of E85, special features, benefits of use, costs, and fueling locations. It includes discussion on performance and how to identify these vehicles as well as listing additional resources.

  8. Fast Photovoltaic Array Reconfiguration for Partial Solar Powered Vehicles

    E-Print Network [OSTI]

    Pedram, Massoud

    Fast Photovoltaic Array Reconfiguration for Partial Solar Powered Vehicles Jaemin Kim1 , Yanzhi during cruising using innovative fast photovoltaic array (PV) reconfiguration. Use of all the vehicle sur to install more PV modules, but it also results in severe performance degradation due to inherent partial

  9. AVTA: 2011 Nissan Leaf All-Electric Vehicle Testing Reports

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on an all-electric 2011 Nissan Leaf. The baseline performance testing provides a point of comparison for the other test results. Taken together, these reports give an overall view of how this vehicle functions under extensive testing. This research was conducted by Idaho National Laboratory.

  10. Nanofluids for vehicle thermal management.

    SciTech Connect (OSTI)

    Choi, S. U.-S.; Yu, W.; Hull, J. R.; Zhang, Z. G.; Lockwood, F. E.; Energy Technology; The Valvoline Co.

    2003-01-01T23:59:59.000Z

    Applying nanotechnology to thermal engineering, ANL has addressed the interesting and timely topic of nanofluids. We have developed methods for producing both oxide and metal nanofluids, studied their thermal conductivity, and obtained promising results: (1) Stable suspensions of nanoparticles can be achieved. (2) Nanofluids have significantly higher thermal conductivities than their base liquids. (3) Measured thermal conductivities of nanofluids are much greater than predicted. For these reasons, nanofluids show promise for improving the design and performance of vehicle thermal management systems. However, critical barriers to further development and application of nanofluid technology are agglomeration of nanoparticles and oxidation of metallic nanoparticles. Therefore, methods to prevent particle agglomeration and degradation are required.

  11. Vehicle Technologies Office Merit Review 2014: Smith Electric...

    Office of Environmental Management (EM)

    Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification Vehicle Technologies Office Merit Review 2014: Smith Electric Vehicles: Advanced...

  12. The price of commitment in online stochastic vehicle routing

    SciTech Connect (OSTI)

    Bent, Russell W [Los Alamos National Laboratory; Van Hentenryck, Pascal [BROWN UNIV

    2009-01-01T23:59:59.000Z

    This paper considers online stochastic multiple vehicle routing with time windows in which requests arrive dynamically and the goal is to maximize the number of serviced customers. Early work has focused on very flexible routing settings where the decision to assign a vehicle to a customer is delayed until a vehicle is actually deployed to the customer. Motivated by real applications that require stability in the decision making, this paper considers a setting where the decision to assign a customer request to a vehicle must be taken when that request is accepted. Experimental results suggest that this constraint severely degrades the performance of existing algorithms. However, the paper shows how the use of stochastic information for vehicle assignment and request acceptance improves decision quality considerably. Moreover, the use of resource augmentation quantifies precisely the cost of commitment in online vehicle routing.

  13. Safer Vehicles for People and the Planet

    SciTech Connect (OSTI)

    Wenzel, Thomas P; Wenzel, Thomas P; Ross, Marc

    2008-03-01T23:59:59.000Z

    Motor vehicles contribute to climate change and petroleum dependence. Improving their fuel economy by making them lighter need not compromise safety. The cars and trucks plying America's roads and highways generate roughly 20 percent of the nation's total emissions of carbon dioxide, a pollutant that is, of course, of increasing concern because of its influence on climate. Motor vehicles also account for most of our country's dependence on imported petroleum, the price of which has recently skyrocketed to near-record levels. So policymakers would welcome the many benefits that would accrue from lessening the amount of fuel consumed in this way. Yet lawmakers have not significantly tightened new vehicle fuel-economy standards since they were first enacted three decades ago. Since then, manufacturers have, for the most part, used advances in automotive technology, ones that could have diminished fuel consumption, to boost performance and increase vehicle weight. In addition, the growth in popularity of pickups, sport utility vehicles (SUVs) and minivans--and the large amounts of gas they typically guzzle--has resulted in the average vehicle using the same amount of fuel per mile as it did 20 years ago. One of the historical impediments to imposing tougher fuel-economy standards has been the long-standing worry that reducing the mass of a car or truck to help meet these requirements would make it more dangerous to its occupants in a crash. People often justify this concern in terms of 'simple physics', noting, for example, that, all else being equal, in a head-on collision, the lighter vehicle is the more strongly decelerated, an argument that continues to sway regulators, legislators and many in the general public. We have spent the past several years examining the research underlying this position--and some recent work challenging it. We have also conducted our own analyses and come to the conclusion that the claim that lighter vehicles are inherently dangerous to those riding in them is flawed. For starters, all else is never equal; other aspects of vehicle design appear to control what really happens in a crash, as reflected in the safety record of different kinds of vehicles. What's more, the use of high-strength steel, light-weight metals such as aluminum and magnesium, and fiber-reinforced plastics now offers automotive engineers the means to fashion vehicles that are simultaneously safer and less massive than their predecessors, and such designs would, of course, enjoy the better fuel economy that shedding pounds brings.

  14. Electric-Drive Vehicle engineering

    E-Print Network [OSTI]

    Berdichevsky, Victor

    Electric-Drive Vehicle engineering COLLEGE of ENGINEERING Electric-driveVehicleEngineering engineers for 80 years t Home to nation's first electric-drive vehicle engineering program and alternative-credit EDGE Engineering Entrepreneur Certificate Program is a great addition to an electric-drive vehicle

  15. Alternative Fuel Vehicles: The Case of Compressed Natural Gas (CNG) Vehicles in California Households

    E-Print Network [OSTI]

    Abbanat, Brian A.

    2001-01-01T23:59:59.000Z

    VEHICLES: THE CASE OF COMPRESSED NATURAL GAS (CNG) VEHICLESyou first learn about compressed natural gas (CNG) vehicles?VEHICLES: THE CASE OF COMPRESSED NATURAL GAS (CNG) VEHICLES

  16. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP)

    Broader source: Energy.gov [DOE]

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  17. Director, Vehicle Technologies Office

    Broader source: Energy.gov [DOE]

    This position is located within the Vehicle Technologies Office (VTO), within the Office of Energy Efficiency and Renewable Energy (EERE). The Office reports to the Deputy Assistant Secretary for...

  18. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    Rechargeable Zinc-Air Battery System for Electric Vehicles,"hthium/polymer* Zinc-air battery (Electric Fuel)* NickelThe discharge rate for the zinc/air battery was 5 hours at a

  19. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for the National Park Service: Fort Vancouver National Historic Site

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort

    2014-03-01T23:59:59.000Z

    Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s Idaho National Laboratory, is the lead laboratory for the U.S. Department of Energy’s Advanced Vehicle Testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America (ITSNA) to collect data on federal fleet operations as part of the Advanced Vehicle Testing Activity’s Federal Fleet Vehicle Data Logging and Characterization study. The Advanced Vehicle Testing Activity study seeks to collect data to validate the use of advanced electric drive vehicle transportation. This report focuses on the Fort Vancouver National Historic Site (FVNHS) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of electric vehicles (EVs) into the agencies’ fleet. Individual observations of the selected vehicles provided the basis for recommendations related to EV adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles) could fulfill the mission requirements. FVNHS identified three vehicles in its fleet for consideration. While the FVNHS vehicles conduct many different missions, only two (i.e., support and pool missions) were selected by agency management to be part of this fleet evaluation. The logged vehicles included a pickup truck and a minivan. This report will show that BEVs and PHEVs are capable of performing the required missions and providing an alternative vehicle for both mission categories, because each has sufficient range for individual trips and time available each day for charging to accommodate multiple trips per day. These charging events could occur at the vehicle’s home base, high-use work areas, or in intermediate areas along routes that the vehicles frequently travel. Replacement of vehicles in the current fleet would result in significant reductions in emission of greenhouse gases and petroleum use, while also reducing fuel costs. The Vancouver, Washington area and neighboring Portland, Oregon are leaders in adoption of PEVs in the United States1. PEV charging stations, or more appropriately identified as electric vehicle supply equipment, located on the FVNHS facility would be a benefit for both FVNHS fleets and general public use. Fleet drivers and park visitors operating privately owned plug-in electric vehicles benefit by using the charging infrastructure. ITSNA recommends location analysis of the FVNHS site to identify the optimal station placement for electric vehicle supply equipment. ITSNA recognizes the support of Idaho National Laboratory and ICF International for their efforts to initiate communication with the National Parks Service and FVNHS for participation in this study. ITSNA is pleased to provide this report and is encouraged by the high interest and support from the National Park Service and FVNHS personnel

  20. Method and system for reducing errors in vehicle weighing systems

    DOE Patents [OSTI]

    Hively, Lee M. (Philadelphia, TN); Abercrombie, Robert K. (Knoxville, TN)

    2010-08-24T23:59:59.000Z

    A method and system (10, 23) for determining vehicle weight to a precision of <0.1%, uses a plurality of weight sensing elements (23), a computer (10) for reading in weighing data for a vehicle (25) and produces a dataset representing the total weight of a vehicle via programming (40-53) that is executable by the computer (10) for (a) providing a plurality of mode parameters that characterize each oscillatory mode in the data due to movement of the vehicle during weighing, (b) by determining the oscillatory mode at which there is a minimum error in the weighing data; (c) processing the weighing data to remove that dynamical oscillation from the weighing data; and (d) repeating steps (a)-(c) until the error in the set of weighing data is <0.1% in the vehicle weight.

  1. Thermoelectric Generator Performance for Passenger Vehicles

    Broader source: Energy.gov (indexed) [DOE]

    modeling and architecture evaluation * Phase 2: Subsystem design, build and bench test * Phase 3: System integration. Planar configuration TEG with primary HEX and secondary...

  2. Improving Vehicle Efficiency, Reducing Dependence on Foreign Oil (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01T23:59:59.000Z

    This fact sheet provides an overview of the U.S. Department of Energy's Vehicle Technologies Program. Today, the United States spends about $400 billion each year on imported oil. To realize a secure energy future, America must break its dependence on imported oil and its volatile costs. The transportation sector accounts for about 70% of U.S. oil demand and holds tremendous opportunity to increase America's energy security by reducing oil consumption. That's why the U.S. Department of Energy (DOE) conducts research and development (R and D) on vehicle technologies which can stem America's dependence on oil, strengthen the economy, and protect the environment. Hybrid-electric and plug-in hybrid-electric vehicles can significantly improve fuel economy, displacing petroleum. Researchers are making batteries more affordable and recyclable, while enhancing battery range, performance, and life. This research supports President Obama's goal of putting 1 million electric vehicles on the road by 2015. The program is also working with businesses to develop domestic battery and electric-drive component plants to improve America's economic competitiveness globally. The program facilitates deployment of alternative fuels (ethanol, biodiesel, hydrogen, electricity, propane, and natural gas) and fuel infrastructures by partnering with state and local governments, universities, and industry. Reducing vehicle weight directly improves vehicle efficiency and fuel economy, and can potentially reduce vehicle operating costs. Cost-effective, lightweight, high-strength materials can significantly reduce vehicle weight without compromising safety. Improved combustion technologies and optimized fuel systems can improve near-and mid-term fuel economy by 25% for passenger vehicles and 20% for commercial vehicles by 2015, compared to 2009 vehicles. Reducing the use of oil-based fuels and lubricants in vehicles has more potential to improve the nation's energy security than any other action; even a 1% improvement in vehicle fuel efficiency would save consumers more than $4 billion annually.

  3. Advanced Vehicle Technology Analysis and Evaluation Team

    E-Print Network [OSTI]

    Set ­ Models · Conventional, hybrid and electric vehicles · Fuel consumption and performance Testing · Advanced Powertrain Research Facility · ReFuel Facility Fleet Testing · Industry/Government LabFuelReFuel FacilityFacility Fleet TestingFleet Testing ·· Industry/GovernmentIndustry/Government ModelModel Validation

  4. MECHANICS AND NONLINEAR CONTROL: MAKING UNDERWATER VEHICLES

    E-Print Network [OSTI]

    Leonard, Naomi

    which pro­ vide powerful means to understand and describe mechanical system behavior. Methods incorporat performance and efficient use of on­board power. We highlight the underwater vehicle control sys­ tem both torques that mimic the stabilizing moment associated with gravitational and buoy­ ant forces, using

  5. Putting electric vehicles to the test

    E-Print Network [OSTI]

    the needs of the daily commuter? Can they match the performance we've come to expect from their fossil fuel sectors. Dr. Swan and his father have three electric vehicles ­ two 2000 Ford Ranger EV trucks and a 2002 uses a full charge in a day. He uses a Ranger to get to work and hauls any cargo or trailers he needs

  6. Milestones for selection, characterization, and analysis of the performance of a repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain.

    SciTech Connect (OSTI)

    Rechard, Robert P.

    2014-02-01T23:59:59.000Z

    This report presents a concise history in tabular form of events leading up to site identification in 1978, site selection in 1987, subsequent characterization, and ongoing analysis through 2008 of the performance of a repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain in southern Nevada. The tabulated events generally occurred in five periods: (1) commitment to mined geologic disposal and identification of sites; (2) site selection and analysis, based on regional geologic characterization through literature and analogous data; (3) feasibility analysis demonstrating calculation procedures and importance of system components, based on rough measures of performance using surface exploration, waste process knowledge, and general laboratory experiments; (4) suitability analysis demonstrating viability of disposal system, based on environment-specific laboratory experiments, in-situ experiments, and underground disposal system characterization; and (5) compliance analysis, based on completed site-specific characterization. Because the relationship is important to understanding the evolution of the Yucca Mountain Project, the tabulation also shows the interaction between four broad categories of political bodies and government agencies/institutions: (a) technical milestones of the implementing institutions, (b) development of the regulatory requirements and related federal policy in laws and court decisions, (c) Presidential and agency directives and decisions, and (d) critiques of the Yucca Mountain Project and pertinent national and world events related to nuclear energy and radioactive waste.

  7. DSP-Based Sensor Fault-Tolerant Control of Electric Vehicle Powertrains

    E-Print Network [OSTI]

    Brest, Université de

    DSP-Based Sensor Fault-Tolerant Control of Electric Vehicle Powertrains Bekheďra Tabbache, Mohamed-tolerant control for a high performance induction motor drive that propels an electrical vehicle. The proposed and simulations on an electric vehicle are carried-out using a European urban and extra urban driving cycle

  8. Design and Control of the Induction Motor Propulsion of an Electric Vehicle

    E-Print Network [OSTI]

    Brest, Université de

    Design and Control of the Induction Motor Propulsion of an Electric Vehicle B. Tabbache1,2 , A for presizing the induction motor propulsion of an Electric Vehicle (EV). Based on the EV desired performances for different induction motor-based EVs using a siding mode control technique. Index Terms--Electric Vehicle (EV

  9. Implications of technological changes in vehicle routing interfaces for planners' constraint processing

    E-Print Network [OSTI]

    Boyer, Edmond

    greatly decreases decision times and enhances performances. Keywords: vehicle routing, automation-20Jun2012 #12;3 vehicles) is now fully automated, leaving planners to concentrate on the functional1 Implications of technological changes in vehicle routing interfaces for planners' constraint

  10. Architecture and Applications of Language-Centered Intelligence for Unmanned Underwater Vehicles

    E-Print Network [OSTI]

    Idaho, University of

    Architecture and Applications of Language-Centered Intelligence for Unmanned Underwater Vehicles and hypothetical reasoning, and expand the behavioral repertoire of unmanned underwater vehicles (UUVs). We begin and tested for teams of unmanned underwater vehicles capable of performing different cooperative missions

  11. S/EV 91: Solar and electric vehicle symposium, car and trade show. Proceedings

    SciTech Connect (OSTI)

    Not Available

    1991-12-31T23:59:59.000Z

    These proceedings cover the fundamentals of electric vehicles. Papers on the design, testing and performance of the power supplies, drive trains, and bodies of solar and non-solar powered electric vehicles are presented. Results from demonstrations and races are described. Public policy on the economics and environmental impacts of using electric powered vehicles is also presented.

  12. Electric and hybrid vehicle project. Quarterly report of private-sector operations, first quarter 1982

    SciTech Connect (OSTI)

    None

    1982-06-01T23:59:59.000Z

    As of January 1, 1982 sixteen private-sector site operators at 30 sites in the US were involved in electric and hybrid electric-powered vehicle demonstration programs. Data for 1981 and the first quarter of 1982 are presented on vehicle selection, miles accumulated, energy usage, maintenance requirements, reliability and operating performance for demonstration vehicles at each site. (LCL)

  13. Resource-Optimal Planning For An Autonomous Planetary Vehicle

    E-Print Network [OSTI]

    Della Penna, Giuseppe; Magazzeni, Daniele; Mercorio, Fabio; 10.5121/ijaia.2010.1302

    2010-01-01T23:59:59.000Z

    Autonomous planetary vehicles, also known as rovers, are small autonomous vehicles equipped with a variety of sensors used to perform exploration and experiments on a planet's surface. Rovers work in a partially unknown environment, with narrow energy/time/movement constraints and, typically, small computational resources that limit the complexity of on-line planning and scheduling, thus they represent a great challenge in the field of autonomous vehicles. Indeed, formal models for such vehicles usually involve hybrid systems with nonlinear dynamics, which are difficult to handle by most of the current planning algorithms and tools. Therefore, when offline planning of the vehicle activities is required, for example for rovers that operate without a continuous Earth supervision, such planning is often performed on simplified models that are not completely realistic. In this paper we show how the UPMurphi model checking based planning tool can be used to generate resource-optimal plans to control the engine of ...

  14. 2011 Hyundai Sonata 4932 - Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01T23:59:59.000Z

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid HEV (VIN KMHEC4A43BA004932). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  15. 2006 Lexus RX400h-2575 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01T23:59:59.000Z

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Lexus RX900h hybrid electric vehicle (Vin Number JTJHW31U660002575). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  16. 2006 Lexus RX400h-4807 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01T23:59:59.000Z

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Lexus RX900h hybrid electric vehicle (Vin Number JTJHW31U660004807). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  17. Heavy Vehicle Propulsion System Materials Program Semiannual Progress Report for October 1998 Through March 1999

    SciTech Connect (OSTI)

    Johnson, R.D.

    1999-06-01T23:59:59.000Z

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OIT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55% efficiency and low emissions levels of 2.0 g/bhp-h NOX and 0.05 g/bhp-h particulate. The goal is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55% efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies. OIT OHVT also recognizes a significant opportunity for reduction in petroleum consumption by dieselization of pickup trucks, vans, and sport utility vehicles. Application of the diesel engine to class 1,2, and 3 trucks is expected to yield a 35% increase in fuel economy per vehicle. The foremost barrier to diesel use in this market is emission control. Once an engine is made certifiable, subsequent challenges will be in cost; noise, vibration, and harshness (NVH); and performance. The design of advanced components for high-efficiency diesel engines has, in some cases, pushed the performance envelope for materials of construction past the point of reliable operation. Higher mechanical and tribological stresses and higher temperatures of advanced designs limit the engine designer; advanced materials allow the design of components that may operate reliably at higher stresses and temperatures, thus enabling more efficient engine designs. Advanced materials also offer the opportunity to improve the emissions, NVH, and performance of diesel engines for pickup trucks, vans, and sport utility vehicles. The principal areas of research are: (1) Cost Effective High Performance Materials and Processing; (2) Advanced Manufacturing Technology; (3)Testing and Characterization; and (4) Materials and Testing Standards.

  18. AVTA: 2010 Electric Vehicles International Neighborhood Electric Vehicle Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe testing results of the 2010 Electric Vehicles International neighborhood electric vehicle. Neighborhood electric vehicles reach speeds of no more than 35 miles per hour and are only allowed on roads with speed limits of up to 35 miles per hour. This research was conducted by Idaho National Laboratory.

  19. A diagnostic system for air brakes in commercial vehicles 

    E-Print Network [OSTI]

    Coimbatore Subramanian, Shankar Ram

    2007-09-17T23:59:59.000Z

    This dissertation deals with the development of a model-based diagnostic system for air brake systems that are widely used in commercial vehicles, such as trucks, tractor-trailers, buses, etc. The performance of these brake ...

  20. Aerodynamic optimization of a solar powered race vehicle

    E-Print Network [OSTI]

    Augenbergs, Peteris K

    2006-01-01T23:59:59.000Z

    Aerodynamic optimization was performed on Tesseract, the MIT Solar Electric Vehicle Team's 2003-2005 solar car using Wind Tunnel 8 at Jacobs/Sverdrup Drivability Test Facility in Allen Park, MI. These tests include angle ...

  1. Autonomous & adaptive oceanographic feature tracking on board autonomous underwater vehicles

    E-Print Network [OSTI]

    Petillo, Stephanie Marie

    2015-01-01T23:59:59.000Z

    The capabilities of autonomous underwater vehicles (AUVs) and their ability to perform tasks both autonomously and adaptively are rapidly improving, and the desire to quickly and efficiently sample the ocean environment ...

  2. Apparatus for stopping a vehicle

    DOE Patents [OSTI]

    Wattenburg, Willard H. (Walnut Creek, CA); McCallen, David B. (Livermore, CA)

    2007-03-20T23:59:59.000Z

    An apparatus for externally controlling one or more brakes on a vehicle having a pressurized fluid braking system. The apparatus can include a pressurizable vessel that is adapted for fluid-tight coupling to the braking system. Impact to the rear of the vehicle by a pursuit vehicle, shooting a target mounted on the vehicle or sending a signal from a remote control can all result in the fluid pressures in the braking system of the vehicle being modified so that the vehicle is stopped and rendered temporarily inoperable. A control device can also be provided in the driver's compartment of the vehicle for similarly rendering the vehicle inoperable. A driver or hijacker of the vehicle preferably cannot overcome the stopping action from the driver's compartment.

  3. P1.2 -- Hybrid Electric Vehicle and Lithium Polymer NEV Testing

    SciTech Connect (OSTI)

    J. Francfort

    2006-06-01T23:59:59.000Z

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity tests hybrid electric, pure electric, and other advanced technology vehicles. As part of this testing, 28 hybrid electric vehicles (HEV) are being tested in fleet, dynamometer, and closed track environments. This paper discusses some of the HEV test results, with an emphasis on the battery performance of the HEVs. It also discusses the testing results for a small electric vehicle with a lithium polymer traction battery.

  4. Methylotroph cloning vehicle

    DOE Patents [OSTI]

    Hanson, Richard S. (Deephaven, MN); Allen, Larry N. (Excelsior, MN)

    1989-04-25T23:59:59.000Z

    A cloning vehicle comprising: a replication determinant effective for replicating the vehicle in a non-C.sub.1 -utilizing host and in a C.sub.1 -utilizing host; DNA effective to allow the vehicle to be mobilized from the non-C.sub.1 -utilizing host to the C.sub.1 -utilizing host; DNA providing resistance to two antibiotics to which the wild-type C.sub.1 -utilizing host is susceptible, each of the antibiotic resistance markers having a recognition site for a restriction endonuclease; a cos site; and a means for preventing replication in the C.sub.1 -utilizing host. The vehicle is used for complementation mapping as follows. DNA comprising a gene from the C.sub.1 -utilizing organism is inserted at the restriction nuclease recognition site, inactivating the antibiotic resistance marker at that site. The vehicle can then be used to form a cosmid structure to infect the non-C.sub.1 -utilizing (e.g., E. coli) host, and then conjugated with a selected C.sub.1 -utilizing mutant. Resistance to the other antibiotic by the mutant is a marker of the conjugation. Other phenotypical changes in the mutant, e.g., loss of an auxotrophic trait, is attributed to the C.sub.1 gene. The vector is also used to inactivate genes whose protein products catalyze side reactions that divert compounds from a biosynthetic pathway to a desired product, thereby producing an organism that makes the desired product in higher yields.

  5. Vehicle Technologies Office - AVTA: All Electric USPS Long Life...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    USPS Long Life Vehicle Conversions Vehicle Technologies Office - AVTA: All Electric USPS Long Life Vehicle Conversions The Vehicle Technologies Office's Advanced Vehicle Testing...

  6. Vehicle Technologies Office - AVTA: Hybrid-Electric Delivery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivery Vehicles Vehicle Technologies Office - AVTA: Hybrid-Electric Delivery Vehicles The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a...

  7. Vehicle Technologies Office: 2008 Advanced Power Electronics...

    Broader source: Energy.gov (indexed) [DOE]

    waste heat recovery devices for vehicles Vehicle Technologies Office Merit Review 2014: Thermal Control of Power Electronics of Electric Vehicles with Small Channel Coolant Boiling...

  8. Achieving and Demonstrating Vehicle Technologies Engine Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Technologies Engine Fuel Efficiency Milestones Achieving and Demonstrating Vehicle Technologies Engine Fuel Efficiency Milestones 2010 DOE Vehicle Technologies and Hydrogen...

  9. Vehicle Technologies Office: AVTA - Evaluating National Parks...

    Energy Savers [EERE]

    Vehicle Technologies Office: AVTA - Evaluating National Parks and Forest Service Fleets for Plug-in Electric Vehicles Vehicle Technologies Office: AVTA - Evaluating National Parks...

  10. Advanced Vehicle Technologies | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    activities that provide data critical to the development and commercialization of next-generation vehicles Vehicle Electrification Advancing the future of electric vehicles...

  11. Demonstration of Automated Heavy-Duty Vehicles

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    a future in which vehicle automation technologies are ableto support the heavy vehicle automation including PrecisionCommittee on Vehicle-Highway Automation, and the attendees

  12. The Evolution of Sustainable Personal Vehicles

    E-Print Network [OSTI]

    Jungers, Bryan D

    2009-01-01T23:59:59.000Z

    Propulsion Systems for Hybrid Vehicles. The Institution ofA.B. (1996). Ultralight-Hybrid Vehicle Design: OvercomingLightweight Electric/Hybrid Vehicle Design. Reel Educational

  13. Vehicle Technologies Office: Power Electronics and Electrical...

    Broader source: Energy.gov (indexed) [DOE]

    overview of electric drive vehicles, see the Alternative Fuels Data Center's pages on Hybrid and Plug-in Electric Vehicles. The Vehicle Technologies Office (VTO) supports...

  14. Vehicle-Grid Interoperability | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle-Grid Interoperability Charging a test vehicle using the laboratory's solar-powered charging station. Charging a test vehicle using the laboratory's solar-powered charging...

  15. Specialty Vehicles and Material Handling Equipment

    Broader source: Energy.gov (indexed) [DOE]

    Benefits Environmental Benefits "Well-to-Tank" Greenhouse Gas Factors Hydrogen fuel cell vehicles Hydrogen fuel cell vehicles Hydrogen fuel cell vehicles Hydrogen fuel cell...

  16. Commercial Motor Vehicle Brake-Related Research

    E-Print Network [OSTI]

    Commercial Motor Vehicle Brake-Related Research Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 Commercial Motor Vehicle Roadside Technology Corridor

  17. Vehicle Technologies Office: Annual Progress Reports | Department...

    Energy Savers [EERE]

    Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program DOE Vehicle Technologies Office Annual Merit Review Energy Storage Research...

  18. Hydrogen Vehicle and Infrastructure Demonstration and Validation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle and Infrastructure Demonstration and Validation Hydrogen Vehicle and Infrastructure Demonstration and Validation 2009 DOE Hydrogen Program and Vehicle Technologies Program...

  19. Characterization of the thermo-mechanical behaviour of Hemp fibres intended for the manufacturing of high performance composites.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Characterization of the thermo-mechanical behaviour of Hemp fibres intended for the manufacturing-mechanical behaviour of hemp fibres (Cannabis sativa L.) is investigated by means of a Dynamic Mechanical Analyser, in the material's organisation. In addition, the behaviour of hemp fibres is affected by temperature, which acts

  20. Analysis of data from electric and hybrid electric vehicle student competitions

    SciTech Connect (OSTI)

    Wipke, K.B. [National Renewable Energy Lab., Golden, CO (United States); Hill, N.; Larsen, R.P. [Argonne National Lab., IL (United States)

    1994-01-01T23:59:59.000Z

    The US Department of Energy sponsored several student engineering competitions in 1993 that provided useful information on electric and hybrid electric vehicles. The electrical energy usage from these competitions has been recorded with a custom-built digital meter installed in every vehicle and used under controlled conditions. When combined with other factors, such as vehicle mass, speed, distance traveled, battery type, and type of components, this information provides useful insight into the performance characteristics of electrics and hybrids. All the vehicles tested were either electric vehicles or hybrid vehicles in electric-only mode, and had an average energy economy of 7.0 km/kwh. Based on the performance of the ``ground-up`` hybrid electric vehicles in the 1993 Hybrid Electric Vehicle Challenge, data revealed a I km/kwh energy economy benefit for every 133 kg decrease in vehicle mass. By running all the electric vehicles at a competition in Atlanta at several different constant speeds, the effects of rolling resistance and aerodynamic drag were evaluated. On average, these vehicles were 32% more energy efficient at 40 km/h than at 72 km/h. The results of the competition data analysis confirm that these engineering competitions not only provide an educational experience for the students, but also show technology performance and improvements in electric and hybrid vehicles by setting benchmarks and revealing trends.

  1. Vehicle Technologies Office Merit Review 2015: Vehicle Technologies Office Overview

    Broader source: Energy.gov [DOE]

    Presentation given by U.S. Department of Energy  at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation meeting about Vehicle...

  2. Near-term electric test vehicle ETV-2. Phase II. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-04-01T23:59:59.000Z

    A unique battery-powered passenger vehicle has been developed that provides a significant improvement over conventional electric vehicle performance, particularly during stop-and-go driving. The vehicle is unique in two major respects: (1) the power system incorporates a flywheel that stores energy during regenerative braking and makes possible the acceleration capability needed to keep up with traffic without reducing range to unacceptable values; and (2) lightweight plastic materials are used for the vehicle unibody to minimize weight and increase range. These features were analyzed and demonstrated in an electric test vehicle, ETV-2. Characteristics of this vehicle are summarized. Information is presented on: vehicle design, fabrication, safety testing, and performance testing; power system design and operation; flywheel; battery pack performance; and controls and electronic equipment. (LCL)

  3. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  4. Vehicle Mass Impact on Vehicle Losses and Fuel Economy

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  5. The Role of Human-Automation Consensus in Multiple Unmanned Vehicle Scheduling

    E-Print Network [OSTI]

    Cummings, M. L.

    Objective: This study examined the impact of increasing automation replanning rates on operator performance and workload when supervising a decentralized network of heterogeneous unmanned vehicles. Background: Futuristic ...

  6. The Role of Human-Automation Consensus in Multiple Unmanned Vehicle Scheduling

    E-Print Network [OSTI]

    Cummings, M.L.

    2010-01-01T23:59:59.000Z

    Objective: This study examined the impact of increasing automation replanning rates on operator performance and workload when supervising a decentralized network of heterogeneous unmanned vehicles. Background: Futuristic ...

  7. Apps for Vehicles: Why should I care what data is in my car and...

    Open Energy Info (EERE)

    on data that reveals how driving patterns affect GHG emissions. Someone interested in vehicle performance may use it to compare engine operations given different oil weights or...

  8. Comparing the Performance of SunDiesel and Conventional Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Performance of SunDiesel and Conventional Diesel in a Light-Duty Vehicle and Engines Comparing the Performance of SunDiesel and Conventional Diesel in a Light-Duty Vehicle and...

  9. Abstract--Increasing concerns about energy security and reliability are intensifying the interest in microgrid and vehicle-

    E-Print Network [OSTI]

    Hiskens, Ian A.

    , frequency, and voltage control algorithms for the inverters that connect microsources to the microgrid of PEVs on the microgrid at different penetration levels and for different control parameters on microgrid performance. Index Terms--Electric vehicles; frequency control; microgrid; vehicle

  10. Vehicle Technologies Office: AVTA- Start-Stop (Micro) Hybrid Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the stop-start hybrid versions of the following vehicles is available: 2010 Smart Fortwo, 2010 Volkswagen Golf Diesel, and 2010 Mazda3 Hatchback.

  11. Vehicle Technologies Office: AVTA- Diesel Internal Combusion Engine Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Downloadable data on the following vehicles is available: 2014 Chevrolet Cruze Diesel, 2013 Volkswagen Jetta TDI, and 2009 Volkswagen Jetta TDI.

  12. Heat-pipe-coupled planar thermionic converter: Performance characterization, nondestructive testing, and evaluation. Final report, 1 Aug 90-30 Nov 91

    SciTech Connect (OSTI)

    Young, T.J.; Lamp, T.R.; Tsao, B.H.; Ramalingam, M.L.

    1992-03-15T23:59:59.000Z

    This report provides the technical details on the research activities conducted by Wright Laboratory and UES, Inc. personnel during the period of August 1990 to November 1991. The performance of two heat pipe coupled, planar thermionic energy converters was characterized using experimental and analytical methods. Nondestructive failure analysis was performed to evaluate the causes for the failure of a molybdenum-rhenium converter. The experimentation was carded out at the thermionic facilities at the USAF Wright Laboratory while the computer simulations were performed at Wright Laboratory and the University of Central Florida. A maximum current density of 10.1 amps/cm[sup 2] and a peak power density of 7.7 watts/cm[sup 2] were obtained from the rhenium-rhenium diode operating in the ignited mode.

  13. Diesel Soot Filter Characterization and Modeling for Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Substrates Diesel Soot Filter Characterization and Modeling for Advanced Substrates 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer...

  14. Diesel Soot Filter Characterization and Modeling for Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and DOW Automotive) Diesel Soot Filter Characterization and Modeling for Advanced Substrates (CRADA and DOW Automotive) Presentation from the U.S. DOE Office of Vehicle...

  15. Diesel Soot Filter Characterization and Modeling for Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with DOW Automotive) Diesel Soot Filter Characterization and Modeling for Advanced Substrates (CRADA with DOW Automotive) Presentation from the U.S. DOE Office of Vehicle...

  16. Electrochemical Characterization of Voltage Fade in LMR-NMC cells...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrochemical Characterization of Voltage Fade in LMR-NMC cells 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

  17. Parametrized maneuvers for autonomous vehicles

    E-Print Network [OSTI]

    Dever, Christopher W. (Christopher Walden), 1972-

    2004-01-01T23:59:59.000Z

    This thesis presents a method for creating continuously parametrized maneuver classes for autonomous vehicles. These classes provide useful tools for motion planners, bundling sets of related vehicle motions based on a ...

  18. VEHICLE OPERATING PROCEDURES DEPARTMENT OF BIOLOGICAL SCIENCE

    E-Print Network [OSTI]

    Ronquist, Fredrik

    VEHICLE OPERATING PROCEDURES DEPARTMENT OF BIOLOGICAL SCIENCE GENERAL INFORMATION Vehicles resposniblity and disciplinary action. Vehicles may be used by faculty or staff from other departments complete the vehicle usage agreement form certifying that they have a valid driver's license

  19. Commercial Motor Vehicle Roadside Technology Corridor (CMVRTC)

    E-Print Network [OSTI]

    Commercial Motor Vehicle Roadside Technology Corridor (CMVRTC) Oak Ridge National Laboratory Safety Security Vehicle Technologies Research Brief T he Commercial Motor Vehicle Roadside Technology in Tennessee to demonstrate, test, evaluation, and showcase innovative commercial motor vehicle (CMV) safety

  20. Utility vehicle safety Operator training program

    E-Print Network [OSTI]

    Minnesota, University of

    Utility vehicle safety Operator training program #12;Permissible use Utility Vehicles may only Utility Vehicle operator · When equipped with the "Required Equipment" · On public roadways within Drivers" · Obey all traffic regulations · Trained; update training every two years · Operate vehicles

  1. Gasoline Ultra Fuel Efficient Vehicle

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  2. Heavy Vehicle Systems

    SciTech Connect (OSTI)

    Sid Diamond; Richard Wares; Jules Routbort

    2000-04-11T23:59:59.000Z

    Heavy Vehicle (HV) systems are a necessary component of achieving OHVT goals. Elements are in place for a far-ranging program: short, intermediate, and long-term. Solicitation will bring industrial input and support. Future funding trend is positive, outlook for HV systems is good.

  3. Commercial Vehicles Collaboration for

    E-Print Network [OSTI]

    Waliser, Duane E.

    events (level derived from integrated design and safety analysis) · Protection against fire, depress Vehicle Transition Concepts Astronaut Office letter (June, 2010) describes position on crew suit as a resource to expedite this transition to the commercial market The current astronaut corps can be used

  4. AVTA: Ford Escape PHEV Advanced Research Vehicle 2010 Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a plug-in hybrid electric Ford Escape Advanced Research Vehicle, an experimental model not currently for sale. The baseline performance testing provides a point of comparison for the other test results. Taken together, these reports give an overall view of how this vehicle functions under extensive testing. This research was conducted by Idaho National Laboratory.

  5. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for National Institute of Health

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort

    2014-11-01T23:59:59.000Z

    This report focuses on the National Institute of Health (NIH) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles, or PEVs) can fulfill the mission requirements.

  6. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for NASA White Sands Test Facility

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort

    2014-10-01T23:59:59.000Z

    This report focuses on the NASA White Sands Test Facility (WSTF) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles, or PEVs) can fulfill the mission requirements.

  7. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for NASA Glenn Research Center

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort

    2014-10-01T23:59:59.000Z

    The Advanced Vehicle Testing Activity’s study seeks to collect and evaluate data to validate the utilization of advanced plug-in electric vehicle (PEV) transportation. This report focuses on the NASA Glenn Research Center (GRC) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of PEVs into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements.

  8. Hybrid & Hydrogen Vehicle Research Laboratory

    E-Print Network [OSTI]

    Lee, Dongwon

    Hybrid & Hydrogen Vehicle Research Laboratory www.vss.psu.edu/hhvrl Joel R. Anstrom, Director 201 The Pennsylvania Transportation Institute Hybrid and Hydrogen Vehicle Research Laboratory will contribute to the advancement of hybrid and hydrogen vehicle technology to promote the emerging hydrogen economy by providing

  9. Vehicle Operation and Parking Policy

    E-Print Network [OSTI]

    Vehicle Operation and Parking Policy Responsible Administrative Unit: Finance & Administration in this policy. 2.0 POLICY STATEMENT This policy is intended to promote safe driving by operators of all vehicles are in effect at all times and apply to all persons and vehicles physically present on the CSM campus

  10. UWO Vehicle ACCIDENT REPORTING FORM

    E-Print Network [OSTI]

    Sinnamon, Gordon J.

    UWO Vehicle ­ ACCIDENT REPORTING FORM To be completed at the scene. (Important: Do not admit liability or discuss any settlement.) If there are personal injuries or severe damage to the vehicle, call 911. If vehicle is drivable and if it's safe to do so, pull to the side of road away from traffic. Put

  11. Vehicle Operation and Parking Policy

    E-Print Network [OSTI]

    Vehicle Operation and Parking Policy Responsible Administrative Unit: Finance & Administration STATEMENT This policy is intended to promote safe driving by operators of all vehicles utilizing streets and apply to all persons and vehicles physically present on the CSM campus. For the purpose of this policy

  12. Vehicle Management Driver Safety Program

    E-Print Network [OSTI]

    Machel, Hans

    Vehicle Management and Driver Safety Program Manual Facilities & Operations / Finance & Administration Version 2 April 2012 #12;© 2012 University of Alberta. #12;The Vehicle Management and Driver of employment. Driver Acknowledgement I have received the University of Alberta, Vehicle Management and Driver

  13. Measurement of running loss emissions from in-use vehicles (CRC project E-35). Final report

    SciTech Connect (OSTI)

    McClement, D.; Dueck, J.A.; Hall, B.

    1998-02-16T23:59:59.000Z

    A total of one hundred and fifty randomly procured in-use vehicles were tested in Mesa, Arizona during the summer months of 1997. Running loss hydrocarbon emissions were measured using a dynamometer enclosed in an evaporative emissions enclosure (SHED). New vehicle evaporative emission certification test equipment specifications, test procedures, and quality control limits were used, with specified exceptions required to test publicly owned in-use vehicles. A thorough inspection of vehicle components related to evaporative emissions was performed on each vehicle following the initial test with the vehicles in the `as-received` condition. Thirty vehicles were selected for repairs and were retested following repairs. Ten vehicles were selected for as-received replicate testing.

  14. Achieving and Demonstrating Vehicle Technologies Engine Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    Engine Fuel Efficiency Milestones Achieving and Demonstrating Vehicle Technologies Engine Fuel Efficiency Milestones 2009 DOE Hydrogen Program and Vehicle Technologies...

  15. Quadrennial Technology Review Vehicle Efficiency and Electrification...

    Energy Savers [EERE]

    Quadrennial Technology Review Vehicle Efficiency and Electrification Workshop Documents Quadrennial Technology Review Vehicle Efficiency and Electrification Workshop Documents QTR...

  16. Vehicle Technologies Office: Workforce Development and Professional...

    Office of Environmental Management (EM)

    Education & Workforce Development Vehicle Technologies Office: Workforce Development and Professional Education Vehicle Technologies Office: Workforce Development and...

  17. 2012 U.S. Vehicle Analysis

    E-Print Network [OSTI]

    Lam, Ho Yeung Michael

    2012-01-01T23:59:59.000Z

    Vehicles …………………………………………………………….. Ethanol Fuel Mixturesperformance of ethanol fuel mixtures vehicles ……….. Summaryon diesel, electricity, and ethanol fuel mixtures (ethanol/

  18. Advanced Vehicle Electrification & Transportation Sector Electrificati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector Electrification 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies...

  19. Microstructural Characterization of the Chemo-mechanical Behavior of Asphalt in Terms of Aging and Fatigue Performance Properties

    E-Print Network [OSTI]

    Allen, Robert Grover

    2013-03-27T23:59:59.000Z

    The study of asphalt chemo-mechanics requires a basic understanding of the physical properties and chemical composition of asphalt and how these properties are linked to changes in performance induced by chemical modifications. This work uniquely...

  20. Methylotroph cloning vehicle

    DOE Patents [OSTI]

    Hanson, R.S.; Allen, L.N.

    1989-04-25T23:59:59.000Z

    A cloning vehicle comprising: a replication determinant effective for replicating the vehicle in a non-C[sub 1]-utilizing host and in a C[sub 1]-utilizing host; DNA effective to allow the vehicle to be mobilized from the non-C[sub 1]-utilizing host to the C[sub 1]-utilizing host; DNA providing resistance to two antibiotics to which the wild-type C[sub 1]-utilizing host is susceptible, each of the antibiotic resistance markers having a recognition site for a restriction endonuclease; a cos site; and a means for preventing replication in the C[sub 1]-utilizing host. The vehicle is used for complementation mapping as follows. DNA comprising a gene from the C[sub 1]-utilizing organism is inserted at the restriction nuclease recognition site, inactivating the antibiotic resistance marker at that site. The vehicle can then be used to form a cosmid structure to infect the non-C[sub 1]-utilizing (e.g., E. coli) host, and then conjugated with a selected C[sub 1]-utilizing mutant. Resistance to the other antibiotic by the mutant is a marker of the conjugation. Other phenotypical changes in the mutant, e.g., loss of an auxotrophic trait, is attributed to the C[sub 1] gene. The vector is also used to inactivate genes whose protein products catalyze side reactions that divert compounds from a biosynthetic pathway to a desired product, thereby producing an organism that makes the desired product in higher yields. 3 figs.