Powered by Deep Web Technologies
Note: This page contains sample records for the topic "vehicle passenger van" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Alternative Fuels Data Center: Passenger Vehicle Procurement Requirements  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Passenger Vehicle Passenger Vehicle Procurement Requirements to someone by E-mail Share Alternative Fuels Data Center: Passenger Vehicle Procurement Requirements on Facebook Tweet about Alternative Fuels Data Center: Passenger Vehicle Procurement Requirements on Twitter Bookmark Alternative Fuels Data Center: Passenger Vehicle Procurement Requirements on Google Bookmark Alternative Fuels Data Center: Passenger Vehicle Procurement Requirements on Delicious Rank Alternative Fuels Data Center: Passenger Vehicle Procurement Requirements on Digg Find More places to share Alternative Fuels Data Center: Passenger Vehicle Procurement Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Passenger Vehicle Procurement Requirements

2

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...  

Broader source: Energy.gov (indexed) [DOE]

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles Thermoelectric Waste Heat Recovery Program for Passenger Vehicles 2013 DOE Hydrogen and Fuel Cells Program and...

3

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...  

Broader source: Energy.gov (indexed) [DOE]

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles Thermoelectric Waste Heat Recovery Program for Passenger Vehicles 2012 DOE Hydrogen and Fuel Cells Program and...

4

The Path to Low Carbon Passenger Vehicles | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Carbon Passenger Vehicles The Path to Low Carbon Passenger Vehicles Technology to reduce GHG emissions by 40% available by 2025, and cost effective. deer10cackette.pdf More...

5

Shunting passenger trains: getting ready for Marjan van den Akker  

E-Print Network [OSTI]

Shunting passenger trains: getting ready for departure Marjan van den Akker Hilbrandt Baarsma Utrecht University P.O. Box 80.089 3508 TB Utrecht The Netherlands #12;Shunting passenger trains: getting of shunting train units on a railway station. Train units arrive at and depart from the station according

Utrecht, Universiteit

6

Using Vehicle Taxes to Reduce Carbon Dioxide Emissions Rates of New Passenger Vehicles: Evidence from France, Germany, and Sweden  

E-Print Network [OSTI]

France, Germany, and Sweden link vehicle taxes to the carbon dioxide (CO2) emissions rates of passenger vehicles. Based on new vehicle registration data from 2005–2010, a vehicle’s tax is negatively correlated with its ...

Klier, Thomas

7

Applying Engineering and Fleet Detail to Represent Passenger Vehicle Transport in a  

E-Print Network [OSTI]

Applying Engineering and Fleet Detail to Represent Passenger Vehicle Transport in a Computable. It seeks to provide leadership in understanding scientific, economic, and ecological aspects://globalchange.mit.edu/ Printed on recycled paper #12;1 Applying Engineering and Fleet Detail to Represent Passenger Vehicle

8

Transient in cab noise investigation on a light duty diesel passenger vehicle.  

Science Journals Connector (OSTI)

A diesel engine in cab sound quality for passenger car market is scrutinized more closely than in the mid? to heavy duty diesel truck applications. This is obviously due to the increasing expectations from the customers for gasolinelike sound quality. This paper deals with a sound quality issue recently investigated on a light duty diesel engine for a passenger van application. The objectionable noise complaint occurred during the vehicle transient operating conditions and was found to be caused by the change in the pilot quantity over a very short period of time. The root cause of the noise complaint was investigated on the noise complaint vehicle as well as simultaneously on a standalone engine in the noise test cell. Several critical combustion and performance parameters were recorded for diagnosing the issue. In addition various standard sound quality metrics were employed to differentiate the sound quality of the objectionable noise. The issue was resolved and verified by making appropriate changes to the engine calibration without affecting key requirements such as emissions and fuel economy. Finally the findings from the experimental tests are summarized and appropriate conclusions are drawn with respect to understanding characterizing and resolving this transient combustion related impulsive powertrain interior noise issue.

Dhanesh Purekar

2010-01-01T23:59:59.000Z

9

Tri-Met's Experience With Automatic Passenger Counter and Automatic Vehicle Location Systems  

E-Print Network [OSTI]

Tri-Met's Experience With Automatic Passenger Counter and Automatic Vehicle Location Systems James includes Automatic Vehicle Location (AVL) using a satellite-based global positioning system (GPS); · Voice for temporary data storage, a vehicle control head displaying schedule adherence to operators, detection

Bertini, Robert L.

10

EPRI-SCE testing and evaluation of electric vehicles: Lucas van and Jet 007, 750, and 1400. Annual report  

SciTech Connect (OSTI)

This report describes the second phase of the EPRI-SCE Electric Vehicle Project, in which four additional electric vehicles (EVs) were tested and evaluated: the Jet Industries Model 007 passenger car, Model 750 pickup truck, and Model 1400 passenger van; and the Lucas-Bedford Model CFE cargo van. During the first phase of this project, four EVs were also tested: Jet 500, Volkswagen Type 2, DAUG Type GM2, and Battronic Minivan. The project emphasizes road-testing of vehicles to acquire data on their useful driving range, performance, reliability, and driver acceptance in utility-fleet use. Each vehicle was driven more than 100 miles along SCE-selected test routes to determine the effects of different terrains (level, slight grades, and steep grades), traffic conditions (one-, two-, three-, and four-stops/mile and freeway), and payload. The vehicle component failures that occurred during testing are itemized and described briefly, and assessments are made of expected field reliability. Other vehicle characteristics and measurements of interest are presented. The data base on these test vehicles is intended to provide the reader an overview of the real world performance that can be expected from present-day state-of-the-art EVs.

Not Available

1981-02-01T23:59:59.000Z

11

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

12

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

13

Phase I of the Near Term Hybrid Passenger Vehicle Development Program. Final report  

SciTech Connect (OSTI)

The results of Phase I of the Near-Term Hybrid Vehicle Program are summarized. This phase of the program ws a study leading to the preliminary design of a 5-passenger hybrid vehicle utilizing two energy sources (electricity and gasoline/diesel fuel) to minimize petroleum usage on a fleet basis. This report presents the following: overall summary of the Phase I activity; summary of the individual tasks; summary of the hybrid vehicle design; summary of the alternative design options; summary of the computer simulations; summary of the economic analysis; summary of the maintenance and reliability considerations; summary of the design for crash safety; and bibliography.

Not Available

1980-10-01T23:59:59.000Z

14

Climate and Energy Policy for U.S. Passenger Vehicles: A Technology-Rich Economic Modeling and Policy Analysis  

E-Print Network [OSTI]

-based relationship between income growth and travel demand, turnover of the vehicle stock, and cost-driven investment both in reduction of internal combustion engine (ICE) vehicle fuel consumption as well as in adoptionClimate and Energy Policy for U.S. Passenger Vehicles: A Technology-Rich Economic Modeling

15

Comparative Life Cycle Assessment (LCA) of passenger seats and their impact on different vehicle models  

Science Journals Connector (OSTI)

The main purpose of Life Cycle Assessment (LCA) to date has been to evaluate life cycle impacts of different design solutions and materials for a car, its sub-systems and components. Considerable number of publications are available on LCA of automotive components. This research aims to extend the LCA approach by evaluating and comparing the effects of mass reduction of passenger seats for different vehicle models in order to provide strategic support for decision making in the development process and to validate the environmental benefits of design alternatives under investigation. For this purpose, the paper presents a comprehensive LCA of passenger seats with detailed consideration of alternative scenarios for the use phase for different vehicle models.

Aleksandar Subic; Francesco Schiavone; Martin Leary; Jack Manning

2010-01-01T23:59:59.000Z

16

ALTERNATIVE FUEL VEHICLE (AFV) INFORMATION Over 98% of the U-M auto passenger fleet is flex fuel vehicles (FFV). A FFV is capable of operating on  

E-Print Network [OSTI]

ALTERNATIVE FUEL VEHICLE (AFV) INFORMATION Over 98% of the U-M auto passenger fleet is flex fuel of both. FFV's are equipped with an engine and fuel system designed specifically to be compatible with ethanol's chemical properties. FFV's qualify as alternative fuel vehicles under the Energy Policy Act

Kirschner, Denise

17

Microsoft Word - EXT-12-27320_Idle-Stop_Light_Duty_Passenger_Vehicles.docx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7320 7320 Quantifying the Effects of Idle-Stop Systems on Fuel Economy in Light- Duty Passenger Vehicles Jeffrey Wishart Matthew Shirk Contract No. DE-FC26-05NT42486 December 2012 DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise,

18

Energy use and CO2 emissions reduction potential in passenger car fleet using zero emission vehicles and lightweight materials  

Science Journals Connector (OSTI)

Introduction of \\{ZEVs\\} (zero emission vehicles) and lightweight materials in a conventional steel-intensive internal combustion engine vehicle fleet will affect energy consumption and automotive material requirements. We developed a bottom-up dynamic accounting model of the light-duty vehicle fleet, including vehicle production and disposal, with detailed coverage of powertrains and automotive materials. The model was used to study the potential for energy consumption and CO2 emissions reduction of \\{ZEVs\\} and lightweight materials in the Colombian passenger car fleet from 2010 to 2050. Results indicate that passenger car stock in Colombia is increased by 6.6 times between 2010 and 2050. In the base scenario energy consumption and CO2 emissions are increased by 5.5 and 4.9 times respectively. Lightweighting and battery electric vehicles offer the largest tank-to-wheel energy consumption and CO2 emissions reductions, 48 and 61% respectively, compared to 2050 baseline values. Slow stock turnover and fleet size increment prevent larger reductions. Switching to electric powertrains has larger impact than lightweighting on energy consumption and CO2 emissions. Iron and steel remain major materials in new cars. Aluminum consumption increases in all scenarios; while carbon fiber reinforced polymer consumption only increases due to fuel cell hybrid electric vehicle or lightweight vehicle use.

Juan C. González Palencia; Takaaki Furubayashi; Toshihiko Nakata

2012-01-01T23:59:59.000Z

19

A techno-economic analysis and optimization of Li-ion batteries for light-duty passenger vehicle electrification  

E-Print Network [OSTI]

A techno-economic analysis and optimization of Li-ion batteries for light-duty passenger vehicle 15213, USA h i g h l i g h t s We analyze EV Li-ion NMC-G battery & pack designs and optimize thickness a b s t r a c t We conduct a techno-economic analysis of Li-ion NMC-G prismatic pouch battery

McGaughey, Alan

20

Advances in Diesel Engine Technologies for European Passenger...  

Broader source: Energy.gov (indexed) [DOE]

Advances in Diesel Engine Technologies for European Passenger Vehicles Advances in Diesel Engine Technologies for European Passenger Vehicles 2002 DEER Conference Presentation:...

Note: This page contains sample records for the topic "vehicle passenger van" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

Aggregate Aggregate Ratio: See Mean and Ratio Estimate. AMPD: Average miles driven per day. See Appendix B, "Estimation Methodologies." Annual Vehicle Miles Traveled: See Vehicle Miles Traveled. Automobile: Includes standard passenger car, 2-seater car and station wagons; excludes passenger vans, cargo vans, motor homes, pickup trucks, and jeeps or similar vehicles. See Vehicle. Average Household Energy Expenditures: A ratio estimate defined as the total household energy expenditures for all RTECS households divided by the total number of households. See Ratio Estimate, and Combined Household Energy Expenditures. Average Number of Vehicles per Household: The average number of vehicles used by a household for personal transportation during 1991. For this report, the average number of vehicles per household is computed as the ratio of the total number of vehicles to the

22

Which Vehicles Are Tested  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Which Vehicles Are Tested Which Vehicles Are Tested Popular Vehicles Exempt from Federal Fuel Economy Standards Prior to 2011 Pickups SUVs Vans Manufacturer Model Chevrolet Avalanche 2500 Series ¾ Ton Silverado 2500/3500 Series Dodge RAM 2500/3500 Series Ford F-250/350 Series GMC Sierra 2500/3500 Series Manufacturer Model Chevrolet Suburban ¾ Ton* Ford Excursion§ GMC Yukon XL ¾ Ton* Hummer H1§ and H2§ Manufacturer Model Chevrolet Express 2500 Passenger* Express 3500 Cargo Ford E Series Passenger (w/ 6.8L Triton or 6.0L Diesel Engine)* E Series Cargo (w/ 6.8L Triton or 6.0L Diesel Engine) GMC Savanna 2500/3500 Passenger* Savanna 3500 Cargo Note: These vehicles are given as examples. This is not a comprehensive list. * No longer exempt as of 2011 § No longer made Manufacturers do not test every new vehicle offered for sale. They are only

23

Hydrogen Air Fuel Cell Powered Passenger Car Fever — Fuel Cell Electric Vehicle for Efficiency and Range  

Science Journals Connector (OSTI)

Various technologies are used or developed to alleviate the atmospheric pollution due to exhaust gases from the vehicles: catalytic post — treatment, gaseous fuel and electric vehicles. Renault has decided to ...

J. C. Griesemann; D. Corgier; P. Achard…

1998-01-01T23:59:59.000Z

24

Intermodal passenger flows on London's public transport network : automated inference of full passenger journeys using fare-transaction and vehicle-location data  

E-Print Network [OSTI]

Urban public transport providers have historically planned and managed their networks and services with limited knowledge of their customers' travel patterns. While ticket gates and bus fareboxes yield counts of passenger ...

Gordon, Jason B. (Jason Benjamin)

2012-01-01T23:59:59.000Z

25

Analysis of the influence of residential location on light passenger vehicle energy demand.  

E-Print Network [OSTI]

??New Zealand???s current urban environment assumes a constant availability and affordability of energy (oil) and as such the energy demand of private vehicles is rarely… (more)

Williamson, Mark

2013-01-01T23:59:59.000Z

26

THE FUTURE DEMAND FOR ALTERNATIVE FUEL PASSENGER VEHICLES: A DIFFUSION OF INNOVATION APPROACH  

E-Print Network [OSTI]

.......................................................................................................... 5 2.1 AUTOMOBILE DEMAND MODELS.....................................................................................................................20 2.2.4 The Application of Diffusion Models to Automobile Demand.......................................................................................................................................36 3.1.5 Electric Vehicles

Levinson, David M.

27

Vehicle Technologies Office Merit Review 2014: Thermoelectric...  

Broader source: Energy.gov (indexed) [DOE]

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles Vehicle Technologies Office Merit Review 2014: Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...

28

Phase I of the Near-Term Hybrid Passenger-Vehicle Development Program. Final report  

SciTech Connect (OSTI)

Heat engine/electric hybrid vehicles offer the potential of greatly reduced petroleum consumption, compared to conventional vehicles, without the disadvantages of limited performance and operating range associated with purely electric vehicles. This report documents a hybrid-vehicle design approach which is aimed at the development of the technology required to achieve this potential - in such a way that it is transferable to the auto industry in the near term. The development of this design approach constituted Phase I of the Near-Term Hybrid-Vehicle Program. The major tasks in this program were: (1) Mission Analysis and Performance Specification Studies; (2) Design Tradeoff Studies; and (3) Preliminary Design. Detailed reports covering each of these tasks are included as appendices to this report and issued under separate cover; a fourth task, Sensitivity Studies, is also included in the report on the Design Tradeoff Studies. Because of the detail with which these appendices cover methodology and both interim and final results, the body of this report was prepared as a brief executive summary of the program activities and results, with appropriate references to the detailed material in the appendices.

Not Available

1980-10-01T23:59:59.000Z

29

Near term hybrid passenger vehicle development program. Phase I. Appendices C and D. Final report  

SciTech Connect (OSTI)

The derivation of and actual preliminary design of the Near Term Hybrid Vehicle (NTHV) are presented. The NTHV uses a modified GM Citation body, a VW Rabbit turbocharged diesel engine, a 24KW compound dc electric motor, a modified GM automatic transmission, and an on-board computer for transmission control. The following NTHV information is presented: the results of the trade-off studies are summarized; the overall vehicle design; the selection of the design concept and the base vehicle (the Chevrolet Citation), the battery pack configuration, structural modifications, occupant protection, vehicle dynamics, and aerodynamics; the powertrain design, including the transmission, coupling devices, engine, motor, accessory drive, and powertrain integration; the motor controller; the battery type, duty cycle, charger, and thermal requirements; the control system (electronics); the identification of requirements, software algorithm requirements, processor selection and system design, sensor and actuator characteristics, displays, diagnostics, and other topics; environmental system including heating, air conditioning, and compressor drive; the specifications, weight breakdown, and energy consumption measures; advanced technology components, and the data sources and assumptions used. (LCL)

Not Available

1980-01-01T23:59:59.000Z

30

Reconciling Sectoral Abatement Strategies with Global Climate Targets: The Case of the Chinese Passenger Vehicle Fleet  

Science Journals Connector (OSTI)

(7-11) The latter report(11) estimates future vehicle ownership based on per capita GDP and stresses the importance of a dynamic stock model and technological change. ... The annual kilometrage (K) and fuel consumption per km (F) for all model years, cohorts, and drive technologies as well as the CO2 intensity of gasoline determine direct energy demand and emissions. ...

Stefan Pauliuk; Ni Made A. Dhaniati; Daniel B. Müller

2011-11-10T23:59:59.000Z

31

Real-world fuel consumption and CO2 (carbon dioxide) emissions by driving conditions for light-duty passenger vehicles in China  

Science Journals Connector (OSTI)

Abstract The increasing discrepancy between on-road and type-approval fuel consumption for \\{LDPVs\\} (light-duty passenger vehicles) has attracted tremendous attention. We measured on-road emissions for 60 \\{LDPVs\\} in three China's cities and calculated their fuel consumption and CO2 (carbon dioxide) emissions. We further evaluated the impacts of variations in area-averaged speed on relative fuel consumption of gasoline \\{LDPVs\\} for the UAB (urban area of Beijing). On-road fuel consumption under the average driving pattern is 10 ± 2% higher than that normalized to the NEDC (new European driving cycle) cycle for all tested vehicles, and the on-road NEDC-normalized fuel consumption is higher by 30 ± 12% compared to type-approval values for gasoline vehicles. We observed very strong correlations between relative fuel consumption and average speed. Traffic control applied to \\{LDPVs\\} driving within the UAB during weekdays can substantially reduce total fleet fuel consumption by 23 ± 5% during restriction hours by limiting vehicle use and improving driving conditions. Our results confirmed that a new cycle for the type approval test for \\{LDPVs\\} with more real-world driving features is of great necessity. Furthermore, enhanced traffic control measures could play an important role in mitigating real-world fuel consumption and CO2 emissions for \\{LDPVs\\} in China.

Shaojun Zhang; Ye Wu; Huan Liu; Ruikun Huang; Puikei Un; Yu Zhou; Lixin Fu; Jiming Hao

2014-01-01T23:59:59.000Z

32

On-vehicle emission measurement of a light-duty diesel van at various speeds at high altitude  

Science Journals Connector (OSTI)

Abstract As part of the research on the relationship between the speed of a vehicle operating at high altitude and its contaminant emissions, an on-vehicle emission measurement of a light-duty diesel van at the altitudes of 1000 m, 2400 m and 3200 m was conducted. The test vehicle was a 2.8 L turbocharged diesel Ford Transit. Its settings were consistent in all experiments. Regulated gaseous emissions, including CO, HC and NOx, together with particulate matter was measured at nine speeds ranged from 10 km h?1 to 90 km h?1 with 10 km h?1 intervals settings. At each speed, measurement lasted for at least 120 s to ensure the sufficiency and reliability of the collected data. The results demonstrated that at all altitudes, CO and HC emissions decreased as the vehicle speed increased. However both \\{NOx\\} and PM increased with vehicle speed. In terms of the effects of altitude, an increase in CO, HC and PM was observed with the rising of altitude at each vehicle speed. \\{NOx\\} behaved different: emission of \\{NOx\\} initially increased as the vehicle was raised from 1000 m to 2400 m, but it decreased when the vehicle was further elevated to 3200 m.

Xin Wang; Hang Yin; Yunshan Ge; Linxiao Yu; Zhenxian Xu; Chenglei Yu; Xuejiao Shi; Hongkun Liu

2013-01-01T23:59:59.000Z

33

Fuel and Vehicle Technology Choices for Passenger Vehicles in Achieving Stringent CO2 Targets: Connections between Transportation and Other Energy Sectors  

Science Journals Connector (OSTI)

Five fuel options (petroleum, natural gas, synthetic fuels (coal to liquid, CTL; gas to liquid, GTL; biomass to liquid, BTL), electricity, and hydrogen) and five vehicle technologies (ICEV, HEV, BEV, PHEV, and FCV) were considered. ... Petro ICEV, Synth ICEV, NG ICEV, H2 ICEV = internal combustion engine vehicle fueled either by petroleum, synthetic fuel (CTL, GTL, or BTL), natural gas, or gaseous hydrogen; HEV = hybrid electric vehicle; BEV = battery electric vehicle, PHEV = plug-in hybrid electric vehicle; Petro FCV, Synth FCV, H2 FCV = fuel-cell vehicle fueled either by petroleum, synthetic fuel, or gaseous hydrogen. ... In their CO2 reduction scenario (reduction from 1990 of 50% by 2050 and 75% by 2100), the car sector is dominated by gasoline/diesel (first in ICEVs, then HEVs and to a small extent also PHEVs) with hydrogen-fueled FCVs becoming dominant by 2100. ...

M. Grahn; C. Azar; M. I. Williander; J. E. Anderson; S. A. Mueller; T. J. Wallington

2009-03-26T23:59:59.000Z

34

Vehicle Technologies Office Merit Review 2014: High Performance Cast Aluminum Alloys for Next Generation Passenger Vehicle Engines 2012 FOA 648 Topic 3a  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

35

On-Road Remote Sensing of Vehicle Emissions in Mexico  

Science Journals Connector (OSTI)

The Subsecretaría de Ecología's Office was able to provide vehicle registration information for 10?654 vehicles. ... The groups consisted of all light-duty passenger vehicles, which included vans and sport utility vehicles; light-duty pickup trucks; Eco taxis (ecological taxis are taxis for hire that are required by the Mexican government to be post-1990 gasoline powered and are painted green and white to signify this); post 1990-VW sedans (including any Eco taxis, nicknamed Beetles in the United States); pre-1991 VW sedans (including any painted as if an Eco taxi); gasoline-powered micro-transit buses, diesel-powered transit buses, and trucks larger than pickup trucks. ...

Gary A. Bishop; Donald H. Stedman; Julián de la Garza Castro; Franciso J. Dávalos

1997-11-26T23:59:59.000Z

36

Behavioral Response to Hydrogen Fuel Cell Vehicles and Refueling: Results of California Drive Clinics  

E-Print Network [OSTI]

hydrogen vehicles in public transportation, including taxis. This study exploring fuel cell powered passenger cars

Martin, Elliot W; Shaheen, Susan A; Lipman, T E; Lidicker, Jeffrey

2009-01-01T23:59:59.000Z

37

NREL: Learning - Advanced Vehicles and Fuels Basics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Vehicles and Fuels Basics Advanced Vehicles and Fuels Basics Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player This video provides an overview of the Center for Transportation Technologies and Systems and its research. Video produced for NREL by Fireside Production. Text Version We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. And we can help to reduce our nation's growing reliance on imported oil by running our vehicles on renewable and alternative fuels. Advanced vehicles and fuels can also put the brakes on air pollution and improve our environment. At least 250 million vehicles are in use in the United States today. They include all kinds of passenger cars, trucks, vans, buses, and large

38

Analysis of environmental factors impacting the life cycle cost analysis of conventional and fuel cell/battery-powered passenger vehicles. Final report  

SciTech Connect (OSTI)

This report presents the results of the further developments and testing of the Life Cycle Cost (LCC) Model previously developed by Engineering Systems Management, Inc. (ESM) on behalf of the U.S. Department of Energy (DOE) under contract No. DE-AC02-91CH10491. The Model incorporates specific analytical relationships and cost/performance data relevant to internal combustion engine (ICE) powered vehicles, battery powered electric vehicles (BPEVs), and fuel cell/battery-powered electric vehicles (FCEVs).

NONE

1995-01-31T23:59:59.000Z

39

Rebound 2007: Analysis of U.S. Light-Duty Vehicle Travel Statistics  

SciTech Connect (OSTI)

U.S. national time series data on vehicle travel by passenger cars and light trucks covering the period 1966 2007 are used to test for the existence, size and stability of the rebound effect for motor vehicle fuel efficiency on vehicle travel. The data show a statistically significant effect of gasoline price on vehicle travel but do not support the existence of a direct impact of fuel efficiency on vehicle travel. Additional tests indicate that fuel price effects have not been constant over time, although the hypothesis of symmetry with respect to price increases and decreases is not rejected. Small and Van Dender (2007) model of a declining rebound effect with income is tested and similar results are obtained.

Greene, David L [ORNL

2010-01-01T23:59:59.000Z

40

The Passenger Pigeon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Passenger Pigeon Passenger Pigeon Nature Bulletin No. 181-A February 27, 1965 Forest Preserve District of Cook County Seymour Simon, President Roland F. Eisenbeis, Supt. of Conservation THE PASSENGER PIGEON We Americans have been a greedy heedless people plundering and wasting the natural resources which made possible the building of this great nation -- the soils, the waters, the forests, the minerals and the wildlife, In the United States there was once an abundance of wildlife never found on any other land. We have come close to exterminating many valuable kinds, notably the buffalo and the beaver. Several species once abundant are extinct, among them the Passenger Pigeon. The passenger pigeon was a graceful elegant bird with a long wedge- shaped tail, considerably larger than our Mourning Dove and mighty good to eat. The males were handsome: slaty blue and brown above; the head blue; the sides and back of the neck iridescent with pink, purple, green and gold; the breast a rich reddish-brown shading to pinkish on the sides; with short stout red legs. Unlike other doves and pigeons, its voice was rather loud and harsh. The females were more drab in color. Native to the unbroken forests which covered most of central and eastern North America, they nested in huge colonies. An area of 100 square miles might have every tree loaded with nests, some times 100 nests in a single tree. The nests were merely a crisscross jumble of sticks in which one pure-white egg was laid.

Note: This page contains sample records for the topic "vehicle passenger van" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

New Vehicle Choice, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and the Gasoline Tax  

E-Print Network [OSTI]

D. (1985), 'The market share of diesel cars in the USA,diesel passenger cars. Models exploring automotive demand have been aggregate, predicting vehicle market

Martin, Elliott William

2009-01-01T23:59:59.000Z

42

New Vehicle Choices, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and Gasoline Tax  

E-Print Network [OSTI]

D. (1985), 'The market share of diesel cars in the USA,diesel passenger cars. Models exploring automotive demand have been aggregate, predicting vehicle market

Martin, Elliot William

2009-01-01T23:59:59.000Z

43

Thermoelectric Generator Performance for Passenger Vehicles  

Broader source: Energy.gov (indexed) [DOE]

modeling and architecture evaluation * Phase 2: Subsystem design, build and bench test * Phase 3: System integration. Planar configuration TEG with primary HEX and secondary...

44

Project Information Form Project Title White Paper on Strategies for Transitioning to Zero-Emission Vehicles--  

E-Print Network [OSTI]

fuel-cell-electric vehicles (HFCVs). These technologies can be used in passenger cars, trucks (ZEVs) include battery-electric vehicles (BEVs), plug-in hybrid-electric vehicles (PHEVs), and hydrogen

California at Davis, University of

45

Zero-Emission Vehicle Scenario Cost Analysis Using A Fuzzy Set-Based Framework  

E-Print Network [OSTI]

Fuel Cell Vehicle Analysis of Energy Use, Emissions, and Cost,"Cost Analysis of Conventional and Fuel Cell/Battery Powered Urban Passenger Vehicles,cost analysis of several types of AFVs, but did not include fuel cell vehicles

Lipman, Timothy Edward

1999-01-01T23:59:59.000Z

46

Zero-Emission Vehicle Scenario Cost Analysis Using A Fuzzy Set-Based Framework  

E-Print Network [OSTI]

Fuel Cell Vehicle Analysis of Energy Use, Emissions, and Cost,&Cost Analysis of Conventional and Fuel Cell/Battery Powered Urban Passenger Vehicles,cost analysis of several types of AFV s, but did not include fuel cell vehicles

Lipman, Timothy E.

1999-01-01T23:59:59.000Z

47

First Commercially Available Fuel Cell Electric Vehicles Hit the Street  

Office of Energy Efficiency and Renewable Energy (EERE)

Fuel cell electric vehicles are now widely available in the United States. These passenger vehicles have the driving range, ease of refueling, and performance of today’s gasoline-powered cars while emitting nothing but water.

48

Chapter 2. Vehicle Characteristics  

U.S. Energy Information Administration (EIA) Indexed Site

2. Vehicle Characteristics 2. Vehicle Characteristics Chapter 2. Vehicle Characteristics U.S. households used a fleet of nearly 157 million vehicles in 1994. Despite remarkable growth in the number of minivans and sport-utility vehicles, passenger cars continued to predominate in the residential vehicle fleet. This chapter looks at changes in the composition of the residential fleet in 1994 compared with earlier years and reviews the effect of technological changes on fuel efficiency (how efficiently a vehicle engine processes motor fuel) and fuel economy (how far a vehicle travels on a given amount of fuel). Using data unique to the Residential Transportation Energy Consumption Survey, it also explores the relationship between residential vehicle use and family income.

49

Gas Mileage of 1995 Vehicles by Chevrolet  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 Chevrolet Vehicles 5 Chevrolet Vehicles EPA MPG MODEL City Comb Hwy 1995 Chevrolet Astro 2WD (cargo) 6 cyl, 4.3 L, Automatic 4-spd, Premium Gasoline Compare 1995 Chevrolet Astro 2WD (cargo) View MPG Estimates Shared By Vehicle Owners 15 City 17 Combined 20 Highway 1995 Chevrolet Astro 2WD (passenger) 6 cyl, 4.3 L, Automatic 4-spd, Premium Gasoline Compare 1995 Chevrolet Astro 2WD (passenger) View MPG Estimates Shared By Vehicle Owners 15 City 16 Combined 19 Highway 1995 Chevrolet Astro AWD (cargo) 6 cyl, 4.3 L, Automatic 4-spd, Premium Gasoline Compare 1995 Chevrolet Astro AWD (cargo) 15 City 16 Combined 20 Highway 1995 Chevrolet Astro AWD (passenger) 6 cyl, 4.3 L, Automatic 4-spd, Premium Gasoline Compare 1995 Chevrolet Astro AWD (passenger) 14 City 15 Combined 17 Highway 1995 Chevrolet Beretta 4 cyl, 2.2 L, Manual 5-spd, Regular Gasoline

50

Emissions Control Failures in Passenger Cars  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 Emissions Control Failures in Passenger Cars Two measures of car model malfunction probability, fraction of cars over 1% CO (y-axis) and average CO concentration of all cars (x-axis), demonstrate that five 1987-89 car models (14 year-model combinations) have a malfunction probability several times that of all other models. When an automobile's emissions control system fails, it may be because that model is more prone to failure than others, according to a study conducted by the Center's Energy Analysis Program and Marc Ross of the University of Michigan. This finding goes against the conventional wisdom that improper maintenance or deliberate disabling of the emissions systems by car owners is the cause of "high-emitting" vehicles. The results may provide clean-air

51

Gas Mileage of 2001 Vehicles by Chevrolet  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Chevrolet Vehicles 1 Chevrolet Vehicles EPA MPG MODEL City Comb Hwy 2001 Chevrolet Astro 2WD (cargo) 6 cyl, 4.3 L, Automatic 4-spd, Regular Gasoline Compare 2001 Chevrolet Astro 2WD (cargo) 15 City 17 Combined 20 Highway 2001 Chevrolet Astro 2WD (passenger) 6 cyl, 4.3 L, Automatic 4-spd, Regular Gasoline Compare 2001 Chevrolet Astro 2WD (passenger) 15 City 17 Combined 20 Highway 2001 Chevrolet Astro AWD (cargo) 6 cyl, 4.3 L, Automatic 4-spd, Regular Gasoline Compare 2001 Chevrolet Astro AWD (cargo) View MPG Estimates Shared By Vehicle Owners 14 City 15 Combined 18 Highway 2001 Chevrolet Astro AWD (passenger) 6 cyl, 4.3 L, Automatic 4-spd, Regular Gasoline Compare 2001 Chevrolet Astro AWD (passenger) 13 City 15 Combined 17 Highway 2001 Chevrolet Blazer 2WD 6 cyl, 4.3 L, Automatic 4-spd, Regular Gasoline

52

Gas Mileage of 1991 Vehicles by Chevrolet  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Chevrolet Vehicles 1 Chevrolet Vehicles EPA MPG MODEL City Comb Hwy 1991 Chevrolet Astro 2WD (cargo) 6 cyl, 4.3 L, Automatic 4-spd, Regular Gasoline Compare 1991 Chevrolet Astro 2WD (cargo) 15 City 17 Combined 20 Highway 1991 Chevrolet Astro 2WD (passenger) 6 cyl, 4.3 L, Automatic 4-spd, Regular Gasoline Compare 1991 Chevrolet Astro 2WD (passenger) View MPG Estimates Shared By Vehicle Owners 15 City 16 Combined 20 Highway 1991 Chevrolet Astro AWD (cargo) 6 cyl, 4.3 L, Automatic 4-spd, Regular Gasoline Compare 1991 Chevrolet Astro AWD (cargo) 15 City 17 Combined 20 Highway 1991 Chevrolet Astro AWD (passenger) 6 cyl, 4.3 L, Automatic 4-spd, Regular Gasoline Compare 1991 Chevrolet Astro AWD (passenger) 14 City 16 Combined 18 Highway 1991 Chevrolet Beretta 4 cyl, 2.2 L, Automatic 3-spd, Regular Gasoline

53

Gas Mileage of 1994 Vehicles by Chevrolet  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Chevrolet Vehicles 4 Chevrolet Vehicles EPA MPG MODEL City Comb Hwy 1994 Chevrolet Astro 2WD (cargo) 6 cyl, 4.3 L, Automatic 4-spd, Regular Gasoline Compare 1994 Chevrolet Astro 2WD (cargo) 15 City 17 Combined 20 Highway 1994 Chevrolet Astro 2WD (cargo) 6 cyl, 4.3 L, Automatic 4-spd, Premium Gasoline Compare 1994 Chevrolet Astro 2WD (cargo) 15 City 17 Combined 20 Highway 1994 Chevrolet Astro 2WD (passenger) 6 cyl, 4.3 L, Automatic 4-spd, Premium Gasoline Compare 1994 Chevrolet Astro 2WD (passenger) 14 City 16 Combined 19 Highway 1994 Chevrolet Astro 2WD (passenger) 6 cyl, 4.3 L, Automatic 4-spd, Regular Gasoline Compare 1994 Chevrolet Astro 2WD (passenger) View MPG Estimates Shared By Vehicle Owners 15 City 16 Combined 20 Highway 1994 Chevrolet Astro AWD (cargo) 6 cyl, 4.3 L, Automatic 4-spd, Premium Gasoline

54

Alternative Fuels Data Center: Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

North American Bus Industries Nova Bus Peterbilt Motors Proterra Schwarze Industries Smith Electric Vehicles StarTrans TYMCO Thomas Built Buses Trans Tech Turtle Top Van Hool...

55

Gas Mileage of 1992 Vehicles by Chevrolet  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Chevrolet Vehicles 2 Chevrolet Vehicles EPA MPG MODEL City Comb Hwy 1992 Chevrolet Astro 2WD (cargo) 6 cyl, 4.3 L, Automatic 4-spd, Regular Gasoline Compare 1992 Chevrolet Astro 2WD (cargo) 15 City 17 Combined 20 Highway 1992 Chevrolet Astro 2WD (cargo) 6 cyl, 4.3 L, Automatic 4-spd, Regular Gasoline Compare 1992 Chevrolet Astro 2WD (cargo) 15 City 17 Combined 21 Highway 1992 Chevrolet Astro 2WD (passenger) 6 cyl, 4.3 L, Automatic 4-spd, Regular Gasoline Compare 1992 Chevrolet Astro 2WD (passenger) 14 City 16 Combined 19 Highway 1992 Chevrolet Astro 2WD (passenger) 6 cyl, 4.3 L, Automatic 4-spd, Regular Gasoline Compare 1992 Chevrolet Astro 2WD (passenger) 15 City 16 Combined 20 Highway 1992 Chevrolet Astro AWD (cargo) 6 cyl, 4.3 L, Automatic 4-spd, Premium Gasoline Compare 1992 Chevrolet Astro AWD (cargo) 14

56

Gas Mileage of 1993 Vehicles by Chevrolet  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Chevrolet Vehicles 3 Chevrolet Vehicles EPA MPG MODEL City Comb Hwy 1993 Chevrolet Astro 2WD (cargo) 6 cyl, 4.3 L, Automatic 4-spd, Premium Gasoline Compare 1993 Chevrolet Astro 2WD (cargo) 15 City 17 Combined 21 Highway 1993 Chevrolet Astro 2WD (cargo) 6 cyl, 4.3 L, Automatic 4-spd, Regular Gasoline Compare 1993 Chevrolet Astro 2WD (cargo) 15 City 17 Combined 20 Highway 1993 Chevrolet Astro 2WD (passenger) 6 cyl, 4.3 L, Automatic 4-spd, Premium Gasoline Compare 1993 Chevrolet Astro 2WD (passenger) 14 City 16 Combined 19 Highway 1993 Chevrolet Astro 2WD (passenger) 6 cyl, 4.3 L, Automatic 4-spd, Regular Gasoline Compare 1993 Chevrolet Astro 2WD (passenger) 15 City 17 Combined 20 Highway 1993 Chevrolet Astro AWD (cargo) 6 cyl, 4.3 L, Automatic 4-spd, Premium Gasoline Compare 1993 Chevrolet Astro AWD (cargo) 14

57

In-vehicle UWB Channel Measurement, Model and Spatial Stationarity  

E-Print Network [OSTI]

devices of the passengers with the vehicle. Considering the average weight of wire harness in modern- hicle's communication systems. Connection of moving parts, such as wheels for tyre pressure monitoring

Zemen, Thomas

58

Assessing vehicle detection utilizing video image processing technology  

E-Print Network [OSTI]

. Autoscope - 45 mph 45 52 56 Table 10. Mean Passenger Car Speeds - Radar Gun vs. Autoscope - 55 mph . . . . . 60 Table 11. Percent Difference Between the Mean Radar Gun Speed and the Unadjusted Mean Autoscope Speed Table 12. Vehicle Speed Calculation...

Hartmann, Duane E

2012-06-07T23:59:59.000Z

59

Control system design for a parallel hybrid electric vehicle  

E-Print Network [OSTI]

This thesis addresses the design of control systems for a parallel hybrid electric drive train which is an alternative to conventional passenger vehicles. The principle components of the drive train are a small internal combustion engine...

Buntin, David Leighton

1994-01-01T23:59:59.000Z

60

Secretary Chu Announces $187 Million to Improve Vehicle Efficiency for  

Broader source: Energy.gov (indexed) [DOE]

Secretary Chu Announces $187 Million to Improve Vehicle Efficiency Secretary Chu Announces $187 Million to Improve Vehicle Efficiency for Heavy-Duty Trucks and Passenger Vehicles Secretary Chu Announces $187 Million to Improve Vehicle Efficiency for Heavy-Duty Trucks and Passenger Vehicles January 11, 2010 - 12:00am Addthis Columbus, Ind. - At an event today in Columbus, Indiana, Secretary Chu announced the selection of nine projects totaling more than $187 million to improve fuel efficiency for heavy-duty trucks and passenger vehicles. The funding includes more than $100 million from the American Recovery and Reinvestment Act, and with a private cost share of 50 percent, will support nearly $375 million in total research, development and demonstration projects across the country. The nine winners have stated their projects

Note: This page contains sample records for the topic "vehicle passenger van" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Secretary Chu Announces $187 Million to Improve Vehicle Efficiency for  

Broader source: Energy.gov (indexed) [DOE]

Secretary Chu Announces $187 Million to Improve Vehicle Efficiency Secretary Chu Announces $187 Million to Improve Vehicle Efficiency for Heavy-Duty Trucks and Passenger Vehicles Secretary Chu Announces $187 Million to Improve Vehicle Efficiency for Heavy-Duty Trucks and Passenger Vehicles January 11, 2010 - 12:00am Addthis Columbus, Ind. - At an event today in Columbus, Indiana, Secretary Chu announced the selection of nine projects totaling more than $187 million to improve fuel efficiency for heavy-duty trucks and passenger vehicles. The funding includes more than $100 million from the American Recovery and Reinvestment Act, and with a private cost share of 50 percent, will support nearly $375 million in total research, development and demonstration projects across the country. The nine winners have stated their projects

62

Mobility chains analysis of technologies for passenger cars and light duty vehicles fueled with biofuels : application of the Greet model to project the role of biomass in America's energy future (RBAEF) project.  

SciTech Connect (OSTI)

The Role of Biomass in America's Energy Future (RBAEF) is a multi-institution, multiple-sponsor research project. The primary focus of the project is to analyze and assess the potential of transportation fuels derived from cellulosic biomass in the years 2015 to 2030. For this project, researchers at Dartmouth College and Princeton University designed and simulated an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity using the ASPEN Plus{trademark} model. With support from the U.S. Department of Energy (DOE), Argonne National Laboratory (ANL) conducted, for the RBAEF project, a mobility chains or well-to-wheels (WTW) analysis using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed at ANL. The mobility chains analysis was intended to estimate the energy consumption and emissions associated with the use of different production biofuels in light-duty vehicle technologies.

Wu, M.; Wu, Y.; Wang, M; Energy Systems

2008-01-31T23:59:59.000Z

63

Vehicles News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

July 14, 2010 July 14, 2010 Department of Energy Releases New Report on Economic Impact of Recovery Act Advanced Vehicle Investments Report Finds Recovery Act Advanced Vehicle Projects Are Creating Jobs, Spurring Private Capital Investment and Cutting Electric Vehicle Cost May 26, 2010 Deputy Secretary Poneman Attends Ground Breaking at Tennessee Advanced Vehicle Battery Plant Smyrna Electric Vehicle Project Expected to provide up to 1,500 Jobs in Tennessee March 31, 2010 GSA Doubles the Federal Hybrid Fleet, DOE Takes the Lead in Updating to Hybrids Agencies Move to Increase Energy Security and Fuel Efficiency January 11, 2010 Secretary Chu Announces $187 Million to Improve Vehicle Efficiency for Heavy-Duty Trucks and Passenger Vehicles October 15, 2009 2010 Annual Fuel Economy Guide Now Available

64

Gas Mileage of 1987 Vehicles by Ford  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 Ford Vehicles 7 Ford Vehicles EPA MPG MODEL City Comb Hwy 1987 Ford Aerostar Van 4 cyl, 2.3 L, Automatic 4-spd, Regular Gasoline Compare 1987 Ford Aerostar Van 18 City 20 Combined 24 Highway 1987 Ford Aerostar Van 4 cyl, 2.3 L, Manual 5-spd, Regular Gasoline Compare 1987 Ford Aerostar Van 23 City 24 Combined 26 Highway 1987 Ford Aerostar Van 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 1987 Ford Aerostar Van 16 City 19 Combined 22 Highway 1987 Ford Aerostar Van 6 cyl, 3.0 L, Manual 5-spd, Regular Gasoline Compare 1987 Ford Aerostar Van 17 City 19 Combined 22 Highway 1987 Ford Aerostar Wagon 4 cyl, 2.3 L, Manual 5-spd, Regular Gasoline Compare 1987 Ford Aerostar Wagon 19 City 21 Combined 24 Highway 1987 Ford Aerostar Wagon 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline

65

NREL: Learning - Hybrid Electric Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hybrid Electric Vehicles Hybrid Electric Vehicles Photo of the front and part of the side of a bus parked at the curb of a city street with tall buildings in the background. This diesel hybrid electric bus operated by the Metropolitan Transit Authority, New York City Transit, was part of a test study that recently investigated the fuel efficiency and reliability of these buses. Credit: Leslie Eudy Today's hybrid electric vehicles (HEVs) range from small passenger cars to sport utility vehicles (SUVs) and large trucks. Though they often look just like conventional vehicles, HEVs usually include an electric motor as well as a small internal combustion engine (ICE). This combination provides greater fuel economy and fewer emissions than most conventional ICE vehicles do. HEVs are powered by two energy sources: an energy conversion unit, such as

66

Policy effectiveness for road passenger transport emissions reductions across the world  

E-Print Network [OSTI]

The effectiveness of policy for emissions reductions in private passenger road transport depends on its ability to incentivise consumers to make choices oriented towards lower emissions vehicles. However, car purchase choices are known to be strongly socially determined, and this sector is highly diverse due to significant socio-economic differences between consumer groups. Here, we present a comprehensive analysis of the structure of the 2012 private passenger vehicle fleet-years in six major economies across the World (UK, USA, China, India, Japan and Brazil) in terms of prices, engine sizes and emissions. This is done in order to evaluate the effectiveness of existing and possible fiscal and technological change policies for emissions reductions. We provide tools to understand and evaluate the effectiveness of policy taking account of the distributive structure of prices and emissions in segments of a diverse market, both for conventional as well as unconventional engine technologies. We furthermore explai...

Mercure, J -F

2014-01-01T23:59:59.000Z

67

E-Print Network 3.0 - amex llc notice Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the University Corporate AMEX card is used to pay... Private Passenger vehicles and Mini Vans are covered under AMEX Vehicles NOT covered are: ALL Trucks... . The University...

68

Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975–2012  

Broader source: Energy.gov [DOE]

In 1975, cars were by far the dominant vehicle style among new light vehicle sales, with a few vans and pickup trucks. Sport Utility Vehicles (SUVs) accounted for less than 2% of the market at that...

69

Vehicle Technologies Office: Advanced Combustion Engines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Combustion Engines Combustion Engines Improving the efficiency of internal combustion engines is one of the most promising and cost-effective near- to mid-term approaches to increasing highway vehicles' fuel economy. The Vehicle Technologies Office's research and development activities address critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles. This technology has great potential to reduce U.S. petroleum consumption, resulting in greater economic, environmental, and energy security. Already offering outstanding drivability and reliability to over 230 million passenger vehicles, internal combustion engines have the potential to become substantially more efficient. Initial results from laboratory engine tests indicate that passenger vehicle fuel economy can be improved by more than up to 50 percent, and some vehicle simulation models estimate potential improvements of up to 75 percent. Advanced combustion engines can utilize renewable fuels, and when combined with hybrid electric powertrains could have even further reductions in fuel consumption. As the EIA reference case forecasts that by 2035, more than 99 percent of light- and heavy-duty vehicles sold will still have internal combustion engines, the potential fuel savings is tremendous.

70

Assessing current vehicle performance and simulating the performance of hydrogen and hybrid cars  

Science Journals Connector (OSTI)

A measure of the efficiency in transforming energy input into transport work is defined and applied to road vehicles as well as to sea, air and rail vehicles for passenger or freight transportation. The insight obtained with this measure is compared with the results of applying the conventional measure of kilometres per unit of energy for current fleets of vehicles. Then, simulation methods are used to assess the performance of fuel cell vehicles, electric vehicles and hybrids between the two. The latter are found to provide an optimum performance for a small, efficient passenger car.

Bent Sørensen

2007-01-01T23:59:59.000Z

71

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles  

Broader source: Energy.gov (indexed) [DOE]

Partners 3 OBJECTIVESRELEVANCE - OVERALL Project objectives: * A detailed production cost analysis for volumes of 100,000 units per year and a discussion of how costs will be...

72

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles  

Broader source: Energy.gov (indexed) [DOE]

integration 3 OBJECTIVESRELEVANCE - OVERALL Project objectives: * Detailed production cost analysis for volumes of 100,000 units per year and a discussion of how costs will be...

73

Organic Rankine Cycle for Light Duty Passenger Vehicles  

Broader source: Energy.gov [DOE]

Dynamic model of organic Rankine cycle with R245fa working fluid and conservative component efficiencies predict power generation in excess of electrical accessory load demand under highway drive cycle

74

Aggregate vehicle travel forecasting model  

SciTech Connect (OSTI)

This report describes a model for forecasting total US highway travel by all vehicle types, and its implementation in the form of a personal computer program. The model comprises a short-run, econometrically-based module for forecasting through the year 2000, as well as a structural, scenario-based longer term module for forecasting through 2030. The short-term module is driven primarily by economic variables. It includes a detailed vehicle stock model and permits the estimation of fuel use as well as vehicle travel. The longer-tenn module depends on demographic factors to a greater extent, but also on trends in key parameters such as vehicle load factors, and the dematerialization of GNP. Both passenger and freight vehicle movements are accounted for in both modules. The model has been implemented as a compiled program in the Fox-Pro database management system operating in the Windows environment.

Greene, D.L.; Chin, Shih-Miao; Gibson, R. [Tennessee Univ., Knoxville, TN (United States)

1995-05-01T23:59:59.000Z

75

Regulatory Control of Vehicle and Power Plant Emissions: How Effective and at What Cost?  

E-Print Network [OSTI]

Passenger vehicles and power plants are major sources of greenhouse gas emissions. While economic analyses generally indicate that a broader market-based approach to greenhouse gas reduction would be less costly and more ...

Paltsev, S.

76

Vehicle routing and scheduling for the ultra short haul transportation system  

E-Print Network [OSTI]

A method of vehicle routing and scheduling for an air based intraurban transportation system is developed. The maximization of level of service to passengers in a system operating under time varying demand is considered ...

Smith, Barry C.

1979-01-01T23:59:59.000Z

77

Fact #562: March 16, 2009 Carbon Reduction of Plug-in Hybrid Electric Vehicles  

Broader source: Energy.gov [DOE]

Estimates from the GREET model (see Argonne National Laboratory's information on GREET) show that passenger car PHEV10s produce about 29% fewer carbon emissions than a conventional vehicle, when...

78

Gas Mileage of 1992 Vehicles by Dodge  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Dodge Vehicles 2 Dodge Vehicles EPA MPG MODEL City Comb Hwy 1992 Dodge B150/B250 Van 2WD 6 cyl, 3.9 L, Automatic 3-spd, Regular Gasoline Compare 1992 Dodge B150/B250 Van 2WD 14 City 14 Combined 16 Highway 1992 Dodge B150/B250 Van 2WD 6 cyl, 3.9 L, Manual 5-spd, Regular Gasoline Compare 1992 Dodge B150/B250 Van 2WD 12 City 14 Combined 17 Highway 1992 Dodge B150/B250 Van 2WD 8 cyl, 5.2 L, Automatic 3-spd, Regular Gasoline Compare 1992 Dodge B150/B250 Van 2WD 11 City 12 Combined 12 Highway 1992 Dodge B150/B250 Van 2WD 8 cyl, 5.2 L, Automatic 4-spd, Regular Gasoline Compare 1992 Dodge B150/B250 Van 2WD View MPG Estimates Shared By Vehicle Owners 11 City 13 Combined 15 Highway 1992 Dodge B150/B250 Van 2WD 8 cyl, 5.9 L, Automatic 4-spd, Regular Gasoline Compare 1992 Dodge B150/B250 Van 2WD 10

79

Vehicle Technologies Office: 2011 Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Archive to someone 1 Archive to someone by E-mail Share Vehicle Technologies Office: 2011 Archive on Facebook Tweet about Vehicle Technologies Office: 2011 Archive on Twitter Bookmark Vehicle Technologies Office: 2011 Archive on Google Bookmark Vehicle Technologies Office: 2011 Archive on Delicious Rank Vehicle Technologies Office: 2011 Archive on Digg Find More places to share Vehicle Technologies Office: 2011 Archive on AddThis.com... 2011 Archive #707 Illustration of Truck Classes December 26, 2011 #706 Vocational Vehicle Fuel Consumption Standards December 19, 2011 #705 Fuel Consumption Standards for Combination Tractors December 12, 2011 #704 Fuel Consumption Standards for New Heavy Pickups and Vans December 5, 2011 #703 Hybrid Vehicles Lose Market Share in 2010 November 28, 2011

80

European Experience and Case study of SCR Passenger Car Integration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Experience and Case study of SCR Passenger Car Integration European Experience and Case study of SCR Passenger Car Integration Presentation given at DEER 2006, August 20-24, 2006,...

Note: This page contains sample records for the topic "vehicle passenger van" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low Emission Vehicle Low Emission Vehicle (LEV) Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle (LEV) Standards All new passenger vehicles, light-duty trucks, and medium-duty vehicles

82

Gas Mileage of 1999 Vehicles by Dodge  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1999 Dodge Vehicles 1999 Dodge Vehicles EPA MPG MODEL City Comb Hwy 1999 Dodge Avenger 4 cyl, 2.0 L, Automatic 4-spd, Regular Gasoline Compare 1999 Dodge Avenger 19 City 22 Combined 27 Highway 1999 Dodge Avenger 4 cyl, 2.0 L, Manual 5-spd, Regular Gasoline Compare 1999 Dodge Avenger 19 City 23 Combined 29 Highway 1999 Dodge Avenger 6 cyl, 2.5 L, Automatic 4-spd, Regular Gasoline Compare 1999 Dodge Avenger View MPG Estimates Shared By Vehicle Owners 17 City 20 Combined 25 Highway 1999 Dodge B1500 Van 2WD 6 cyl, 3.9 L, Automatic 3-spd, Regular Gasoline Compare 1999 Dodge B1500 Van 2WD 14 City 15 Combined 16 Highway 1999 Dodge B1500 Van 2WD 8 cyl, 5.2 L, Automatic 4-spd, Regular Gasoline Compare 1999 Dodge B1500 Van 2WD View MPG Estimates Shared By Vehicle Owners 12 City 14 Combined 18

83

NREL: Vehicles and Fuels Research - Vehicle Ancillary Loads Reduction  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Research Search More Search Options Site Map Photo of Advanced Automotive Manikin Reducing fuel consumption by air conditioning systems is the focus of Vehicle Ancillary Loads Reduction (VALR) activities at NREL. About 7 billion gallons of fuel-about 5.5% of total national light-duty vehicle fuel use-are used annually just to cool light-duty vehicles in the United States. That's why our VALR team works with industry to help increase fuel economy and reduce tailpipe emissions by reducing the ancillary loads requirements in vehicles while maintaining the thermal comfort of the passengers. Approaches include improved cabin insulation, advanced window systems, advanced cooling and venting systems, and heat generated cooling. Another focus of the VALR project is ADAM, the ADvanced Automotive Manikin

84

Vehicle-Grid Interface Key to Smart Charging Plug-in Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

electrification is an important electrification is an important element in the nation's plan to transition from petroleum to electricity as the main energy source for urban/ suburban transportation - to enhance energy security, reduce environmental impact and maintain mobility in a carbon- constrained future. Well over half of America's passenger cars travel between 20 and 40 miles daily - a range that electric vehicles (EVs)

85

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Broader source: Energy.gov (indexed) [DOE]

Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation 2010 DOE Vehicle Technologies...

86

Electric Vehicle Site Operator Program  

SciTech Connect (OSTI)

Kansas State University, with funding support from federal, state, public, and private companies, is participating in the Department of Energy's Electric Vehicle Site Operator Program. Through participation is this program, Kansas State is demonstrating, testing, and evaluating electric or hybrid vehicle technology. This participation will provide organizations the opportunity to examine the latest EHV prototypes under actual operating conditions. KSU proposes to purchase one (1) electric or hybrid van and four (4) electric cars during the first two years of this five year program. KSU has purchased one G-Van built by Conceptor Industries, Toronto, Canada and has initiated a procurement order to purchase two (2) Soleq 1992 Ford EVcort stationwagons.

Not Available

1992-01-01T23:59:59.000Z

87

Gas Mileage of 2003 Vehicles by Chevrolet  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Chevrolet Vehicles 3 Chevrolet Vehicles EPA MPG MODEL City Comb Hwy 2003 Chevrolet Astro 2WD (cargo) 6 cyl, 4.3 L, Automatic 4-spd, Regular Gasoline Compare 2003 Chevrolet Astro 2WD (cargo) 15 City 17 Combined 21 Highway 2003 Chevrolet Astro 2WD (cargo) Conversion 6 cyl, 4.3 L, Automatic 4-spd, Regular Gasoline Compare 2003 Chevrolet Astro 2WD (cargo) Conversion 13 City 15 Combined 18 Highway 2003 Chevrolet Astro 2WD (passenger) 6 cyl, 4.3 L, Automatic 4-spd, Regular Gasoline Compare 2003 Chevrolet Astro 2WD (passenger) View MPG Estimates Shared By Vehicle Owners 14 City 16 Combined 19 Highway 2003 Chevrolet Astro AWD (cargo) 6 cyl, 4.3 L, Automatic 4-spd, Regular Gasoline Compare 2003 Chevrolet Astro AWD (cargo) 14 City 15 Combined 18 Highway 2003 Chevrolet Astro AWD (cargo) Conversion 6 cyl, 4.3 L, Automatic 4-spd, Regular Gasoline

88

Gas Mileage of 2004 Vehicles by Chevrolet  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Chevrolet Vehicles 4 Chevrolet Vehicles EPA MPG MODEL City Comb Hwy 2004 Chevrolet Astro 2WD (cargo) 6 cyl, 4.3 L, Automatic 4-spd, Regular Gasoline Compare 2004 Chevrolet Astro 2WD (cargo) 14 City 16 Combined 19 Highway 2004 Chevrolet Astro 2WD (cargo) Conversion 6 cyl, 4.3 L, Automatic 4-spd, Regular Gasoline Compare 2004 Chevrolet Astro 2WD (cargo) Conversion 14 City 15 Combined 18 Highway 2004 Chevrolet Astro 2WD (passenger) 6 cyl, 4.3 L, Automatic 4-spd, Regular Gasoline Compare 2004 Chevrolet Astro 2WD (passenger) View MPG Estimates Shared By Vehicle Owners 14 City 16 Combined 19 Highway 2004 Chevrolet Astro AWD (cargo) 6 cyl, 4.3 L, Automatic 4-spd, Regular Gasoline Compare 2004 Chevrolet Astro AWD (cargo) 14 City 15 Combined 18 Highway 2004 Chevrolet Astro AWD (cargo) Conversion 6 cyl, 4.3 L, Automatic 4-spd, Regular Gasoline

89

Intercity Passenger Rail Federal Funding presented by  

E-Print Network [OSTI]

Intercity Passenger Rail ­ Federal Funding Process presented by: Minnesota Department, equipment and connections ·! Long term: build efficient HSR network ­! Connecting major population centers ·! Lead state on Milwaukee to Twin Cities segment ·! 2008 state bonding to match federal funds

Minnesota, University of

90

Transportation Network Modeling in Passenger Transportation  

E-Print Network [OSTI]

- Modeled (infrastructure not taken into account) VDxxGasoline car Hybrid car GD M$/M gallon M gallon model of Passenger Network Model to emulate mode competition Infrastructure sharing by fleet 4. Data or induced ­ Arc (Routes) fixed · Infrastructure ­ Highway, railway, waterways, airports · Fleet ­ Trucks

Daniels, Thomas E.

91

Alternative Fuels Data Center: Fuel Inefficient Vehicle Fee  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Inefficient Fuel Inefficient Vehicle Fee to someone by E-mail Share Alternative Fuels Data Center: Fuel Inefficient Vehicle Fee on Facebook Tweet about Alternative Fuels Data Center: Fuel Inefficient Vehicle Fee on Twitter Bookmark Alternative Fuels Data Center: Fuel Inefficient Vehicle Fee on Google Bookmark Alternative Fuels Data Center: Fuel Inefficient Vehicle Fee on Delicious Rank Alternative Fuels Data Center: Fuel Inefficient Vehicle Fee on Digg Find More places to share Alternative Fuels Data Center: Fuel Inefficient Vehicle Fee on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel Inefficient Vehicle Fee New passenger vehicles meeting one of the following criteria are subject to an additional fee payable to the New Jersey Motor Vehicle Commission:

92

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low Emission Vehicle Low Emission Vehicle (LEV) Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle (LEV) Standards The Pennsylvania Clean Vehicles Program requires that all new passenger

93

Exhaust emissions from two intercity passenger locomotives  

SciTech Connect (OSTI)

To enhance the effectiveness of intercity passenger rail service in mitigating exhaust emissions in California, the California Department of Transportation (Caltrans) included limits on exhaust emissions in its intercity locomotive procurement specifications. Because there were no available exhaust emission test data on which emission reduction goals could be based, Caltrans funded a test program to acquire gaseous and particulate exhaust emissions data, along with smoke opacity data, from two state-of-the-art intercity passenger locomotives. The two passenger locomotives (an EMD F59PH and a GE DASH8-32BWH) were tested at the Association of American Railroads Chicago Technical Center. The EMD locomotive was equipped with a separate Detroit Diesel Corporation (DDC) 8V-149 diesel engine used to provide 480 V AC power for the trailing passenger cars. This DDC engine was also emission tested. These data were used to quantify baseline exhaust emission levels as a challenge to locomotive manufacturers to offer new locomotives with reduced emissions. Data from the two locomotive engines were recorded at standard fuel injection timing and with the fuel injection timing retarded 4 deg in an effort to reduce NO[sub x] emissions. Results of this emissions testing were incorporated into the Caltrans locomotive procurement process by including emission performance requirements in the Caltrans intercity passenger locomotive specification, and therefore in the procurement decision. This paper contains steady-state exhaust emission test results for hydrocarbons (HC), carbon monoxide (CO), oxides of nitrogen (NO[sub x]), and particulate matter (PM) from the two locomotives. Computed sulfur dioxide (SO[sub 2]) emissions are also given, and are based on diesel fuel consumption and sulfur content. Exhaust smoke opacity is also reported.

Fritz, S.G. (Southwest Research Inst., San Antonio, TX (United States). Dept. of Emissions Research)

1994-10-01T23:59:59.000Z

94

Comparative analysis of selected fuel cell vehicles  

SciTech Connect (OSTI)

Vehicles powered by fuel cells operate more efficiently, more quietly, and more cleanly than internal combustion engines (ICEs). Furthermore, methanol-fueled fuel cell vehicles (FCVs) can utilize major elements of the existing fueling infrastructure of present-day liquid-fueled ICE vehicles (ICEVs). DOE has maintained an active program to stimulate the development and demonstration o fuel cell technologies in conjunction with rechargeable batteries in road vehicles. The purpose of this study is to identify and assess the availability of data on FCVs, and to develop a vehicle subsystem structure that can be used to compare both FCVs and ICEV, from a number of perspectives--environmental impacts, energy utilization, materials usage, and life cycle costs. This report focuses on methanol-fueled FCVs fueled by gasoline, methanol, and diesel fuel that are likely to be demonstratable by the year 2000. The comparative analysis presented covers four vehicles--two passenger vehicles and two urban transit buses. The passenger vehicles include an ICEV using either gasoline or methanol and an FCV using methanol. The FCV uses a Proton Exchange Membrane (PEM) fuel cell, an on-board methanol reformer, mid-term batteries, and an AC motor. The transit bus ICEV was evaluated for both diesel and methanol fuels. The transit bus FCV runs on methanol and uses a Phosphoric Acid Fuel Cell (PAFC) fuel cell, near-term batteries, a DC motor, and an on-board methanol reformer. 75 refs.

NONE

1993-05-07T23:59:59.000Z

95

The Economic, Energy, and GHG Emissions Impacts of Proposed 2017–2025 Vehicle Fuel Economy Standards in the United States  

E-Print Network [OSTI]

Increases in the U.S. Corporate Average Fuel Economy (CAFE) Standards for 2017 to 2025 model year light-duty vehicles are currently under consideration. This analysis uses an economy-wide model with detail in the passenger ...

Karplus, Valerie

2012-07-31T23:59:59.000Z

96

Fact #586: August 31, 2009 New Vehicle Fuel Economies by Vehicle Type  

Broader source: Energy.gov [DOE]

The average fuel economy for new cars climbed to over 30 miles per gallon (mpg) in 2008 while the average for new pickup trucks stayed around 20 mpg. For new vans and sport utility vehicles (SUVs)...

97

Emission control cost-effectiveness of alternative-fuel vehicles  

SciTech Connect (OSTI)

Although various legislation and regulations have been adopted to promote the use of alternative-fuel vehicles for curbing urban air pollution problems, there is a lack of systematic comparisons of emission control cost-effectiveness among various alternative-fuel vehicle types. In this paper, life-cycle emission reductions and life-cycle costs were estimated for passenger cars fueled with methanol, ethanol, liquefied petroleum gas, compressed natural gas, and electricity. Vehicle emission estimates included both exhaust and evaporative emissions for air pollutants of hydrocarbon, carbon monoxide, nitrogen oxides, and air-toxic pollutants of benzene, formaldehyde, 1,3-butadiene, and acetaldehyde. Vehicle life-cycle cost estimates accounted for vehicle purchase prices, vehicle life, fuel costs, and vehicle maintenance costs. Emission control cost-effectiveness presented in dollars per ton of emission reduction was calculated for each alternative-fuel vehicle types from the estimated vehicle life-cycle emission reductions and costs. Among various alternative-fuel vehicle types, compressed natural gas vehicles are the most cost-effective vehicle type in controlling vehicle emissions. Dedicated methanol vehicles are the next most cost-effective vehicle type. The cost-effectiveness of electric vehicles depends on improvements in electric vehicle battery technology. With low-cost, high-performance batteries, electric vehicles are more cost-effective than methanol, ethanol, and liquified petroleum gas vehicles.

Wang, Q. [Argonne National Lab., IL (United States); Sperling, D.; Olmstead, J. [California Univ., Davis, CA (United States). Inst. of Transportation Studies

1993-06-14T23:59:59.000Z

98

Innovation in Electric Vehicle Technology? Easy as A123 | Department of  

Broader source: Energy.gov (indexed) [DOE]

in Electric Vehicle Technology? Easy as A123 in Electric Vehicle Technology? Easy as A123 Innovation in Electric Vehicle Technology? Easy as A123 May 2, 2011 - 3:45pm Addthis A123 battery in passenger vehicle application | Photo Courtesy of A123 Systems A123 battery in passenger vehicle application | Photo Courtesy of A123 Systems Connie Bezanson Education & Outreach Manager, Vehicle Technologies Program Two weeks ago, I had the pleasure of visiting the great state of Michigan to participate in a two-day workshop entitled, "Electrifying the Economy - Educating the Workforce: Taking Charge of the Electric Vehicle Industry's Educational Needs." In addition to an exciting exchange on promoting innovation in the electric vehicle industry, I had the opportunity to see this innovation first-hand when I visited A123 Systems Livonia, MI battery

99

NREL: Vehicle Ancillary Loads Reduction - Integrated Modeling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integrated Modeling Integrated Modeling NREL's Vehicle Ancillary Loads Reduction (VALR) team predicts the impact of advanced vehicle cooling technologies before testing by using an integrated modeling process. Evaluating the heat load on a vehicle under real world conditions is a difficult task. An accepted method to evaluate passenger compartment airflow and heat transfer is computational fluid dynamics. (CFD). Combining analytical models with CFD provides a powerful tool to assist industry both on current vehicles and on future design studies. Flow chart showing the vehicle integrated modeling process which considers solar radiation, air conditioning, and vehicles with CAD, glazing, cabin thermal/fluid, and thermal comfort modeling tools. Results are provided for fuel economy, tailpipe emissions and occupant thermal comfort.

100

Gas Mileage of 1993 Vehicles by Ford  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Ford Vehicles 3 Ford Vehicles EPA MPG MODEL City Comb Hwy 1993 Ford Aerostar Van 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 1993 Ford Aerostar Van 16 City 18 Combined 22 Highway 1993 Ford Aerostar Van 6 cyl, 3.0 L, Manual 5-spd, Regular Gasoline Compare 1993 Ford Aerostar Van 17 City 19 Combined 23 Highway 1993 Ford Aerostar Van 6 cyl, 4.0 L, Automatic 4-spd, Regular Gasoline Compare 1993 Ford Aerostar Van View MPG Estimates Shared By Vehicle Owners 15 City 17 Combined 20 Highway 1993 Ford Aerostar Van AWD 6 cyl, 4.0 L, Automatic 4-spd, Regular Gasoline Compare 1993 Ford Aerostar Van AWD 15 City 17 Combined 20 Highway 1993 Ford Aerostar Wagon 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 1993 Ford Aerostar Wagon 15 City 17 Combined 21 Highway 1993 Ford Aerostar Wagon 6 cyl, 3.0 L, Manual 5-spd, Regular Gasoline

Note: This page contains sample records for the topic "vehicle passenger van" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Gas Mileage of 1994 Vehicles by Dodge  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Dodge Vehicles 4 Dodge Vehicles EPA MPG MODEL City Comb Hwy 1994 Dodge B150/B250 Van 2WD 6 cyl, 3.9 L, Automatic 3-spd, Regular Gasoline Compare 1994 Dodge B150/B250 Van 2WD 14 City 15 Combined 17 Highway 1994 Dodge B150/B250 Van 2WD 8 cyl, 5.2 L, Automatic 3-spd, Regular Gasoline Compare 1994 Dodge B150/B250 Van 2WD View MPG Estimates Shared By Vehicle Owners 11 City 12 Combined 14 Highway 1994 Dodge B150/B250 Van 2WD 8 cyl, 5.2 L, Automatic 4-spd, Regular Gasoline Compare 1994 Dodge B150/B250 Van 2WD 12 City 13 Combined 16 Highway 1994 Dodge B150/B250 Van 2WD 8 cyl, 5.9 L, Automatic 4-spd, Regular Gasoline Compare 1994 Dodge B150/B250 Van 2WD 11 City 13 Combined 15 Highway 1994 Dodge B150/B250 Wagon 2WD 6 cyl, 3.9 L, Automatic 3-spd, Regular Gasoline Compare 1994 Dodge B150/B250 Wagon 2WD 14

102

Gas Mileage of 1991 Vehicles by Ford  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Ford Vehicles 1 Ford Vehicles EPA MPG MODEL City Comb Hwy 1991 Ford Aerostar Van 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 1991 Ford Aerostar Van View MPG Estimates Shared By Vehicle Owners 16 City 18 Combined 21 Highway 1991 Ford Aerostar Van 6 cyl, 3.0 L, Manual 5-spd, Regular Gasoline Compare 1991 Ford Aerostar Van 17 City 19 Combined 22 Highway 1991 Ford Aerostar Van 6 cyl, 4.0 L, Automatic 4-spd, Regular Gasoline Compare 1991 Ford Aerostar Van 15 City 17 Combined 20 Highway 1991 Ford Aerostar Van AWD 6 cyl, 4.0 L, Automatic 4-spd, Regular Gasoline Compare 1991 Ford Aerostar Van AWD 14 City 16 Combined 19 Highway 1991 Ford Aerostar Wagon 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 1991 Ford Aerostar Wagon 15 City 17 Combined 21 Highway 1991 Ford Aerostar Wagon 6 cyl, 3.0 L, Manual 5-spd, Regular Gasoline

103

Verhalen van de toekomst  

E-Print Network [OSTI]

Verhalen van weer in de toekomst Prof. Dr. ir. Wilco Hazeleger Inaugurele rede bij de aanvaarding #12;#12;Verhalen van weer in de toekomst Prof. dr. ir. Wilco Hazeleger Inaugurele rede bij de

Stoffelen, Ad

104

Van Hove's Birthday  

ScienceCinema (OSTI)

"Happy Birthday Léon!" Plusieurs orateurs rendent hommage à L.Van Hove et son travail à l'occasion de son 65me anniversaire. A la fin remerciements de L.Van Hove.

None

2011-04-25T23:59:59.000Z

105

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low Emission Vehicle Low Emission Vehicle (LEV) Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle (LEV) Standards Any new light-duty passenger car, light-duty truck, or medium-duty

106

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low Emission Vehicle Low Emission Vehicle (LEV) Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle (LEV) Standards Under the Oregon LEV Program, all new passenger cars, light-duty trucks,

107

Alternative Fuels Data Center: State Vehicle Fuel Economy Requirements  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

State Vehicle Fuel State Vehicle Fuel Economy Requirements to someone by E-mail Share Alternative Fuels Data Center: State Vehicle Fuel Economy Requirements on Facebook Tweet about Alternative Fuels Data Center: State Vehicle Fuel Economy Requirements on Twitter Bookmark Alternative Fuels Data Center: State Vehicle Fuel Economy Requirements on Google Bookmark Alternative Fuels Data Center: State Vehicle Fuel Economy Requirements on Delicious Rank Alternative Fuels Data Center: State Vehicle Fuel Economy Requirements on Digg Find More places to share Alternative Fuels Data Center: State Vehicle Fuel Economy Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type State Vehicle Fuel Economy Requirements State contracts for the purchase or lease of new passenger automobiles must

108

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low Emission Vehicle Low Emission Vehicle (LEV) Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle (LEV) Standards The Massachusetts LEV Program requires all new passenger cars and

109

Vehicle Technologies Office: 2011 Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Archive 1 Archive #707 Illustration of Truck Classes December 26, 2011 #706 Vocational Vehicle Fuel Consumption Standards December 19, 2011 #705 Fuel Consumption Standards for Combination Tractors December 12, 2011 #704 Fuel Consumption Standards for New Heavy Pickups and Vans December 5, 2011 #703 Hybrid Vehicles Lose Market Share in 2010 November 28, 2011 #702 Consumer Preferences on Electric Vehicle Charging November 21, 2011 #701 How Much More Would You Pay for an Electric Vehicle? November 14, 2011 #700 Biodiesel Consumption is on the Rise for 2011 November 7, 2011 #699 Transportation Energy Use by Mode and Fuel Type, 2009 October 31, 2011 #698 Changes in the Federal Highway Administration Vehicle Travel Data October 24, 2011 #697 Comparison of Vehicles per Thousand People in Selected Countries/Regions October 17, 2011

110

NETPLAN Passenger Network Modeling and Simulation  

E-Print Network [OSTI]

.31 times existing fleet availability of passengers cars and trucks (in PCE) · Air - No investments ­ 1 per mile? 0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0 100 150 200 250 300 $/PCE Miles $ travel time cost per PCE (Highway) $ travel time cost per PCE (Air) $ travel time cost per PCE (HSR) 0 0.2 0.4 0.6 0

Daniels, Thomas E.

111

Association of automobile passenger transportation and economic growth in Japan  

E-Print Network [OSTI]

) (Nember) January 1969 ABSTRACT Association cf Automobile Passenger Transportation and Economic Growth in Japan. (January 1969) Teruhiko Boric, B. A. , &faseda University Directed by: Dr. ~felvin L. Greenhut In order to evaluate the growth... of Japanese post-war passenger transportation, a comparative study of the U. S. passenger transporta- ti. on development between 1910 and 1940 has been made. The growth rate of automobile ownership prior to the Great Depression is larger than the rate...

Horie, Teruhiko

1969-01-01T23:59:59.000Z

112

Passenger experience and their implications for airports retail environment design.  

E-Print Network [OSTI]

??This project develops new knowledge on the full range of activities and interactions that make up airport passengers' retail experiences. The practical application of this… (more)

Livingstone, Alison Kate

2014-01-01T23:59:59.000Z

113

A novel passenger recovery approach for the integrated airline ...  

E-Print Network [OSTI]

Aug 28, 2013 ... transportation applications involve a number of interrelated resources, ... Airline planning and recovery processes and the flow of passengers is ...

2014-05-30T23:59:59.000Z

114

Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...  

Broader source: Energy.gov (indexed) [DOE]

Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector...

115

Vehicle Technologies Office: 2010 Advanced Combustion R&D Annual Progress Report  

Broader source: Energy.gov [DOE]

2010 annual report on the work of the the Advanced Combustion Engine R&D subprogram. The Advanced Combustion Engine R&D subprogram supports the Vehicle Technologies Office mission by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future federal emissions regulations.

116

Vehicle Technologies Office: 2008 Advanced Combustion R&D Annual Progress Report  

Broader source: Energy.gov [DOE]

2008 annual report on the work of the the Advanced Combustion Engine R&D subprogram. The Advanced Combustion Engine R&D subprogram supports the Vehicle Technologies Office's mission by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future federal emissions regulations.

117

Vehicle Technologies Office: 2009 Advanced Combustion R&D Annual Progress Report  

Broader source: Energy.gov [DOE]

2010 annual report on the work of the the Advanced Combustion Engine R&D subprogram.The Advanced Combustion Engine R&D subprogram supports the Vehicle Technologies Office by removing the technical barriers to commercialization of internal combustion engines for passenger and commercial vehicles that meet future Federal emissions regulations.

118

Vehicle Technologies Office: 2012 Advanced Combustion R&D Annual Progress Report  

Broader source: Energy.gov [DOE]

Annual report on the work of the the Advanced Combustion Engine R&D subprogram. The Advanced Combustion Engine R&D subprogram supports the Vehicle Technologies Office mission by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future federal emissions regulations.

119

Gas Mileage of 1990 Vehicles by Chevrolet  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 Chevrolet Vehicles 0 Chevrolet Vehicles EPA MPG MODEL City Comb Hwy 1990 Chevrolet Astro 2WD (cargo) 4 cyl, 2.5 L, Automatic 4-spd, Regular Gasoline Compare 1990 Chevrolet Astro 2WD (cargo) 17 City 19 Combined 23 Highway 1990 Chevrolet Astro 2WD (cargo) 4 cyl, 2.5 L, Manual 5-spd, Regular Gasoline Compare 1990 Chevrolet Astro 2WD (cargo) 18 City 20 Combined 24 Highway 1990 Chevrolet Astro 2WD (cargo) 6 cyl, 4.3 L, Automatic 4-spd, Regular Gasoline Compare 1990 Chevrolet Astro 2WD (cargo) 15 City 17 Combined 20 Highway 1990 Chevrolet Astro 2WD (passenger) 6 cyl, 4.3 L, Automatic 4-spd, Regular Gasoline Compare 1990 Chevrolet Astro 2WD (passenger) 15 City 17 Combined 20 Highway 1990 Chevrolet Astro AWD (cargo) 6 cyl, 4.3 L, Automatic 4-spd, Regular Gasoline Compare 1990 Chevrolet Astro AWD (cargo) 15

120

Gas Mileage of 2000 Vehicles by Dodge  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 Dodge Vehicles 0 Dodge Vehicles EPA MPG MODEL City Comb Hwy 2000 Dodge Avenger 6 cyl, 2.5 L, Automatic 4-spd, Regular Gasoline Compare 2000 Dodge Avenger View MPG Estimates Shared By Vehicle Owners 17 City 20 Combined 25 Highway 2000 Dodge B1500 Van 2WD 6 cyl, 3.9 L, Automatic 3-spd, Regular Gasoline Compare 2000 Dodge B1500 Van 2WD View MPG Estimates Shared By Vehicle Owners 13 City 14 Combined 16 Highway 2000 Dodge B1500 Van 2WD 8 cyl, 5.2 L, Automatic 4-spd, Regular Gasoline Compare 2000 Dodge B1500 Van 2WD 12 City 14 Combined 17 Highway 2000 Dodge B1500 Van 2WD 8 cyl, 5.9 L, Automatic 4-spd, Regular Gasoline Compare 2000 Dodge B1500 Van 2WD 11 City 13 Combined 16 Highway 2000 Dodge B1500 Wagon 2WD 6 cyl, 3.9 L, Automatic 3-spd, Regular Gasoline Compare 2000 Dodge B1500 Wagon 2WD 13

Note: This page contains sample records for the topic "vehicle passenger van" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Alternative Fuels Data Center: Plug-In Electric Vehicle Initiatives  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Plug-In Electric Plug-In Electric Vehicle Initiatives to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle Initiatives on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle Initiatives on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle Initiatives on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle Initiatives on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle Initiatives on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle Initiatives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Plug-In Electric Vehicle Initiatives All solicitation documents that include the purchase of passenger

122

Gas Mileage of 1989 Vehicles by Ford  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

89 Ford Vehicles 89 Ford Vehicles EPA MPG MODEL City Comb Hwy 1989 Ford Aerostar Van 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 1989 Ford Aerostar Van 15 City 17 Combined 21 Highway 1989 Ford Aerostar Van 6 cyl, 3.0 L, Manual 5-spd, Regular Gasoline Compare 1989 Ford Aerostar Van 16 City 18 Combined 21 Highway 1989 Ford Aerostar Wagon 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 1989 Ford Aerostar Wagon 15 City 17 Combined 20 Highway 1989 Ford Aerostar Wagon 6 cyl, 3.0 L, Manual 5-spd, Regular Gasoline Compare 1989 Ford Aerostar Wagon 15 City 17 Combined 21 Highway 1989 Ford Bronco 4WD 6 cyl, 4.9 L, Automatic 3-spd, Regular Gasoline Compare 1989 Ford Bronco 4WD 12 City 13 Combined 14 Highway 1989 Ford Bronco 4WD 6 cyl, 4.9 L, Manual 4-spd, Regular Gasoline

123

Nieuwsbrief van het Katholiek Documentatie Centrum  

E-Print Network [OSTI]

van Impressie besteden wij hier aandacht aan. Gerda Smeets schrijft over de wens van pastoor Rademaker

van Suijlekom, Walter

124

597 Aanbesteding Ambulancezorg Definitief Van Tafel  

Science Journals Connector (OSTI)

De periodieke aanbesteding van de ambulancezorg is voorgoed van tafel. Maatstafconcurrentie, prestatiebekostiging en efficiencytaakstelling komen daarvoor...

2010-06-01T23:59:59.000Z

125

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Decal  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Decal to someone by E-mail Decal to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Decal on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Decal on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Decal on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Decal on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Decal on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Decal on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Vehicle (AFV) Decal The $0.17 per gallon state motor fuel tax does not apply to passenger

126

NREL: Vehicles and Fuels Research Home Page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NREL helps industry partners develop the next generation of energy efficient, high performance vehicles and fuels. NREL's transportation research spans from the materials to the systems level. NREL conducts research on the full range of vehicle types, from light-duty passenger cars to heavy-duty freight trucks. NREL's credible transportation research is grounded in real-world data. NREL's integrated approach links automotive technology advances to the full spectrum of renewable energy solutions. NREL researchers examine infrastructure, market conditions and driver behavior, as well as fuels and vehicles. NREL helps put fuel-efficient, low-emission cars and trucks on the road through research and innovation in electric vehicle, biofuel, and conventional automotive technologies. Researchers collaborate with industry

127

Fuel efficient power trains and vehicles  

SciTech Connect (OSTI)

The pressure on the automotive industry to improve fuel economy has already resulted in major developments in power train technology, as well as highlighting the need to treat the vehicle as a total system. In addition emissions legislation has resulted in further integration of the total vehicle engineering requirement. This volume discusses subject of fuel efficiency in the context of vehicle performance. The contents include: energy and the vehicle; the interaction of fuel economy and emission control in Europe-a literature study; comparison of a turbocharger to a supercharger on a spark ignited engine; knock protection - future fuel and engines; the unomatic transmission; passenger car diesel engines charged by different systems for improved fuel economy.

Not Available

1984-01-01T23:59:59.000Z

128

An Analysis of the Impact of Sport Utility Vehicles in the United States Word Count: 7,493  

E-Print Network [OSTI]

at the historical market share of SUVs and compare it with the market share of other types of personal vehicles. Finally, we examine safety issues. HISTORICAL GROWTH OF THE SUV MARKET Passenger vehicles are usually described by size (e.g., "compact") or price (e.g., "luxury"). The SUV is available with engine sizes

129

Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle...  

Energy Savers [EERE]

Maximizing Alternative Fuel Vehicle Efficiency Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency Besides their energy security and environmental benefits,...

130

Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...  

Energy Savers [EERE]

Confidential, 4222013 2013 DOE VEHICLE TECHNOLOGIES PROGRAM REVIEW PRESENTATION Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification...

131

Gas Mileage of 1995 Vehicles by Ford  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 Ford Vehicles 5 Ford Vehicles EPA MPG MODEL City Comb Hwy 1995 Ford Aerostar Van 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 1995 Ford Aerostar Van 16 City 18 Combined 22 Highway 1995 Ford Aerostar Wagon 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 1995 Ford Aerostar Wagon 15 City 18 Combined 22 Highway 1995 Ford Aerostar Wagon 6 cyl, 4.0 L, Automatic 4-spd, Regular Gasoline Compare 1995 Ford Aerostar Wagon View MPG Estimates Shared By Vehicle Owners 15 City 17 Combined 20 Highway 1995 Ford Aerostar Wagon AWD 6 cyl, 4.0 L, Automatic 4-spd, Regular Gasoline Compare 1995 Ford Aerostar Wagon AWD View MPG Estimates Shared By Vehicle Owners 14 City 15 Combined 18 Highway 1995 Ford Aspire 4 cyl, 1.3 L, Automatic 3-spd, Regular Gasoline Compare 1995 Ford Aspire

132

Gas Mileage of 1997 Vehicles by Ford  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 Ford Vehicles 7 Ford Vehicles EPA MPG MODEL City Comb Hwy 1997 Ford Aerostar Van 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 1997 Ford Aerostar Van 15 City 17 Combined 21 Highway 1997 Ford Aerostar Wagon 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 1997 Ford Aerostar Wagon 15 City 17 Combined 22 Highway 1997 Ford Aerostar Wagon 6 cyl, 4.0 L, Automatic 5-spd, Regular Gasoline Compare 1997 Ford Aerostar Wagon View MPG Estimates Shared By Vehicle Owners 15 City 17 Combined 20 Highway 1997 Ford Aerostar Wagon AWD 6 cyl, 4.0 L, Automatic 5-spd, Regular Gasoline Compare 1997 Ford Aerostar Wagon AWD 13 City 15 Combined 17 Highway 1997 Ford Aspire 4 cyl, 1.3 L, Automatic 3-spd, Regular Gasoline Compare 1997 Ford Aspire View MPG Estimates Shared By Vehicle Owners

133

Flexible-Fuel Vehicle Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Flexible-Fuel Vehicle Basics Flexible-Fuel Vehicle Basics Flexible-Fuel Vehicle Basics August 20, 2013 - 9:05am Addthis Photo of a gray van with 'E85 Ethanol' written on the side. Flexible fuel vehicles (FFVs) are capable of operating on gasoline, E85 (85% ethanol, 15% gasoline), or a mixture of both. There are almost 8 million flexible fuel vehicles on U.S. roads today, but many FFV owners don't know their vehicle is one. Unlike natural gas vehicles and propane bi-fuel vehicles, flexible fuel vehicles contain one fueling system, which is made up of ethanol-compatible components and is set to accommodate the higher oxygen content of E85. E85 should only be used in ethanol-capable FFVs. For more information, read Flexible Fuel Vehicles: Powered by a Renewable American Fuel. Download Adobe Reader.

134

Determining Air Quality and Greenhouse Gas Impacts of Hydrogen Infrastructure and Fuel Cell Vehicles  

Science Journals Connector (OSTI)

The projection accounts for the gradual retirement of old vehicles and introduction of new vehicles compliant with the Low Emission Vehicle II (LEV II) Standards, including a higher penetration of gasoline hybrids, adopted by the California Air Resources Board through the year 2010 (16). ... Findings suggest that, compared to projections of remarkably improved ICE and hybrid ICE vehicles, hydrogen infrastructure and HFCV deployment will substantially improve air quality in an urban airshed and reduce GHG emissions from passenger vehicles, even when fossil fuels are a significant source of hydrogen. ...

Shane Stephens-Romero; Marc Carreras-Sospedra; Jacob Brouwer; Donald Dabdub; Scott Samuelsen

2009-11-04T23:59:59.000Z

135

Vehicle Technologies Office: Hybrid and Vehicle Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hybrid and Vehicle Hybrid and Vehicle Systems to someone by E-mail Share Vehicle Technologies Office: Hybrid and Vehicle Systems on Facebook Tweet about Vehicle Technologies Office: Hybrid and Vehicle Systems on Twitter Bookmark Vehicle Technologies Office: Hybrid and Vehicle Systems on Google Bookmark Vehicle Technologies Office: Hybrid and Vehicle Systems on Delicious Rank Vehicle Technologies Office: Hybrid and Vehicle Systems on Digg Find More places to share Vehicle Technologies Office: Hybrid and Vehicle Systems on AddThis.com... Just the Basics Hybrid & Vehicle Systems Modeling & Simulation Integration & Validation Benchmarking Parasitic Loss Reduction Propulsion Systems Advanced Vehicle Evaluations Energy Storage Advanced Power Electronics & Electrical Machines

136

Vehicle Technologies Office: 2009 Advanced Vehicle Technology...  

Office of Environmental Management (EM)

Vehicle Technologies Office: 2009 Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle...

137

Passenger-to-train assignment model based on automated data  

E-Print Network [OSTI]

This thesis aims at developing a methodology for assigning passengers to individual trains using: (i) fare transaction records from Automatic Fare Collection (AFC) system and (ii) the train tracking data from Automatic ...

Zhu, Yiwen, S.M. Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

138

Transfer passenger needs at airports : human factors in terminal design  

E-Print Network [OSTI]

This thesis analyzes the needs of particular users of airport: transfer passengers. The object of this work has been to produce a set of design guidelines for terminals. these guidelines are framed upon a user-need survey ...

Brillembourg, Marie-Claire

1982-01-01T23:59:59.000Z

139

Chapter 3. Vehicle-Miles Traveled  

U.S. Energy Information Administration (EIA) Indexed Site

3. Vehicle-Miles Traveled 3. Vehicle-Miles Traveled Chapter 3. Vehicle-Miles Traveled Vehicle-miles traveled--the number of miles that residential vehicles are driven--is probably the most important information collected by the Residential Transportation Energy Consumption Survey. Using the data on vehicle-miles traveled allows analysts to answer such questions as: "Are minivans driven more than passenger cars?" "Do people in the West drive more than people elsewhere?" "Do people conserve their new cars by driving them less?" "Who drives more--people in households with children, or other people?" "At what ages do people drive the most?" "How does growing income affect the amount of driving?" In addition to answering those kinds of questions, analysts also use the number of vehicle-miles traveled to compute estimated, on-road vehicle fuel consumption, economy, and expenditures, all of which have important implications for U.S. energy policy and national security (see Chapter 4).

140

Department of Energy Offers Vehicle Production Group Nearly $50 Million  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Production Group Nearly $50 Vehicle Production Group Nearly $50 Million Conditional Loan Commitment Department of Energy Offers Vehicle Production Group Nearly $50 Million Conditional Loan Commitment November 22, 2010 - 12:00am Addthis Washington, D.C. - U.S. Energy Secretary Steven Chu announced today an offer of a nearly $50 million conditional loan commitment to The Vehicle Production Group LLC (VPG). The conditional loan commitment will support the development of the six-passenger MV-1, a factory-built wheelchair accessible vehicle that will run on compressed natural gas. The vehicle will be produced at the Mishawaka, Indiana AM General Plant. "This project represents an investment in innovation that will create new jobs, promote the use of alternative fuels, and help our nation maintain

Note: This page contains sample records for the topic "vehicle passenger van" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Lightweight Buses With Electric Drive Improve Fuel Economy and Passenger Experience  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lightweight Buses With Electric Drive Improve Lightweight Buses With Electric Drive Improve Fuel Economy and Passenger Experience Background The standard, 40-foot diesel- powered transit bus is noisy, consumes a gallon of fuel for every three miles it travels, weighs 28,000 pounds, and contributes significantly to ur- ban air pollution. While hybrid electric buses do exist, they are very expensive, and typi- cally get just four miles to the gallon. Autokinetics and the Department of Energy Office of FreedomCAR and Vehicle Technologies Program saw sig- nificant room for improvement in hybrid electric buses-in terms of weight and noise reduction, better fuel economy, lower cost, and rider percep- tion-using lightweight body

142

Gas Mileage of 1997 Vehicles by Dodge  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 Dodge Vehicles 7 Dodge Vehicles EPA MPG MODEL City Comb Hwy 1997 Dodge Avenger 4 cyl, 2.0 L, Automatic 4-spd, Regular Gasoline Compare 1997 Dodge Avenger 18 City 21 Combined 27 Highway 1997 Dodge Avenger 4 cyl, 2.0 L, Manual 5-spd, Regular Gasoline Compare 1997 Dodge Avenger 19 City 23 Combined 29 Highway 1997 Dodge Avenger 6 cyl, 2.5 L, Automatic 4-spd, Regular Gasoline Compare 1997 Dodge Avenger View MPG Estimates Shared By Vehicle Owners 18 City 20 Combined 25 Highway 1997 Dodge B1500/B2500 Van 2WD 6 cyl, 3.9 L, Automatic 3-spd, Regular Gasoline Compare 1997 Dodge B1500/B2500 Van 2WD 14 City 15 Combined 16 Highway 1997 Dodge B1500/B2500 Van 2WD 8 cyl, 5.2 L, Automatic 3-spd, Regular Gasoline Compare 1997 Dodge B1500/B2500 Van 2WD View MPG Estimates Shared By Vehicle Owners

143

Gas Mileage of 2011 Vehicles by Ford  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Ford Vehicles 1 Ford Vehicles EPA MPG MODEL City Comb Hwy 2011 Ford Crown Victoria FFV 8 cyl, 4.6 L, Automatic 4-spd, Regular Gas or E85 Compare 2011 Ford Crown Victoria FFV View MPG Estimates Shared By Vehicle Owners Gas 16 City 19 Combined 24 Highway E85 12 City 14 Combined 17 Highway 2011 Ford E150 Van FFV 8 cyl, 5.4 L, Automatic 4-spd, Regular Gas or E85 Compare 2011 Ford E150 Van FFV Gas 12 City 14 Combined 16 Highway E85 9 City 10 Combined 12 Highway 2011 Ford E150 Van FFV 8 cyl, 4.6 L, Automatic 4-spd, Regular Gas or E85 Compare 2011 Ford E150 Van FFV View MPG Estimates Shared By Vehicle Owners Gas 13 City 15 Combined 17 Highway E85 10 City 11 Combined 12 Highway 2011 Ford E150 Wagon FFV 8 cyl, 5.4 L, Automatic 4-spd, Regular Gas or E85 Compare 2011 Ford E150 Wagon FFV Gas 12

144

Levels and Spectra of Transportation Vehicle Noise  

Science Journals Connector (OSTI)

In the years immediately preceding the war an informal program of the study of traffic transportationvehicle and industrial noise was undertaken in the Chicago area. In the recent past another but much more exhaustive program has been initiated and further and more detailed work has now been done. One phase of the work has been a study of the noise within the various types of vehicles generally employed in transportation. These include older and newer type trolley cars and trolley buses elevated lines and subway cars suburban electric and steam trains and passenger automobiles.Measurements were made in these vehicles not only of total sound level but of components in octave bands in the audible frequency range. The work has therefore permitted a comparison of the acoustic spectra in these vehicles and curves to show these characteristic differences will be shown.

G. L. Bonvallet

1949-01-01T23:59:59.000Z

145

Vehicle Technologies Office: Vehicle Technologies Office Recognizes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vehicle Technologies Vehicle Technologies Office Recognizes Outstanding Researchers to someone by E-mail Share Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Facebook Tweet about Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Twitter Bookmark Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Google Bookmark Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Delicious Rank Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Digg Find More places to share Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on AddThis.com...

146

Robert Van Buskirk  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Robert D Van Buskirk Robert D Van Buskirk Robert Van Buskirk Sustainable Energy Systems Group Lawrence Berkeley National Laboratory 1 Cyclotron Road MS 90R2002 Berkeley CA 94720 Office Location: 90-2024K (510) 486-6421 RDVanBuskirk@lbl.gov After two years working on engineering studies in support of Native American water rights with Natural Resources Consulting Engineers, he joined the University of Asmara in Eritrea, East Africa as an Assistant Professor of Physics in 1993. During his four years in Eritrea he was one of the founders of the Eritrean national electronic mail system, and moved to the Eritrean Department of Energy in 1995 to help found the research programs in stove efficiency, wind energy resource assessment, and solar energy resource assessment. Then after one year of practical experience working with business and technology

147

DOE Announces 12 Projects To Increase Vehicle Efficiency | Department of  

Broader source: Energy.gov (indexed) [DOE]

Announces 12 Projects To Increase Vehicle Efficiency Announces 12 Projects To Increase Vehicle Efficiency DOE Announces 12 Projects To Increase Vehicle Efficiency February 16, 2005 - 10:16am Addthis Industry Partners to Cost-Share Funding on $175 Million in Research Projects WASHINGTON, DC -- Secretary of Energy Samuel Bodman today announced the selection of projects that will increase the energy efficiency of passenger and commercial vehicles while maintaining low emissions. Twelve projects, with a total value of $175 million (50 percent, or $87.5 million contributed by the private sector) will focus on development of advanced combustion engine and waste heat recovery technologies. "Together with our private sector partners, the Department of Energy is pursuing innovative new technologies to improve vehicle fuel efficiency and

148

DOE Hydrogen Analysis Repository: Biofuels in Light-Duty Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biofuels in Light-Duty Vehicles Biofuels in Light-Duty Vehicles Project Summary Full Title: Mobility Chains Analysis of Technologies for Passenger Cars and Light-Duty Vehicles Fueled with Biofuels: Application of the GREET Model to the Role of Biomass in America's Energy Future (RBAEF) Project Project ID: 82 Principal Investigator: Michael Wang Brief Description: The mobility chains analysis estimated the energy consumption and emissions associated with the use of various biofuels in light-duty vehicles. Keywords: Well-to-wheels (WTW); ethanol; biofuels; Fischer Tropsch diesel; hybrid electric vehicles (HEV) Purpose The project was a multi-organization, multi-sponsor project to examine the potential of biofuels in the U.S. Argonne was responsible for the well-to-wheels analysis of biofuel production and use.

149

Vehicle Technologies Office: 2004 Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Archive 4 Archive #352 Automotive Industry Material Usage December 27, 2004 #351 Gasohol Use Is Up December 20, 2004 #350 U.S. Oil Imports: Top Ten Countries of Origin December 13, 2004 #349 Crude Oil Production: OPEC, the Persian Gulf, and the United States December 6, 2004 #348 U.S. Trade Deficit, 2001-2003 November 29, 2004 #347 The Relationship of VMT and GDP November 22, 2004 #346 What Is Made from a Barrel of Crude Oil? November 15, 2004 #345 Vehicle Miles Traveled and the Price of Gasoline November 8, 2004 #344 Refueling Stations November 1, 2004 #343 Reasons for Rejecting a Particular New Car Model October 25, 2004 #342 Passenger Car Sales in China October 18, 2004 #341 Tire Recycling October 11, 2004 #340 Hydrogen Fuel as a Replacement for Gasoline October 4, 2004

150

Short paper: MVSec: secure and easy-to-use pairing of mobile devices with vehicles  

Science Journals Connector (OSTI)

With the increasing popularity of mobile devices, drivers and passengers will naturally want to connect their devices to their cars. Malicious entities can and likely will try to attack such systems in order to compromise other vehicular components or ... Keywords: secure key agreement, smartphone security, vehicle security

Jun Han; Yue-Hsun Lin; Adrian Perrig; Fan Bai

2014-07-01T23:59:59.000Z

151

Van Allen Scholarship APPLICATION  

E-Print Network [OSTI]

) � Undergraduate or Graduate student � Strong preference for students of Hispanic descent � Academic merit � Financial need Hispanic OtherEthnicity: #12;Van Allen Scholarship APPLICATION FINANCIAL INFORMATION's projected income for the current year (award year) [If applicable]: Family household size: Number

Garfunkel, Eric

152

Electric Vehicles  

ScienceCinema (OSTI)

Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

Ozpineci, Burak

2014-07-23T23:59:59.000Z

153

Electric Vehicles  

SciTech Connect (OSTI)

Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

Ozpineci, Burak

2014-05-02T23:59:59.000Z

154

Impact of Light-Duty Vehicle Emissions on 21st Century Carbon Dioxide Concentrations  

SciTech Connect (OSTI)

The impact of light-duty passenger vehicle emissions on global carbon dioxide concentrations was estimated using the MAGICC reduced-form climate model combined with the PNNL contribution to the CCSP scenarios product. Our central estimate is that tailpipe light duty vehicle emissions of carbon-dioxide over the 21st century will increase global carbon dioxide concentrations by slightly over 12 ppmv by 2100.

Smith, Steven J.; Kyle, G. Page

2007-08-04T23:59:59.000Z

155

Life-cycle Environmental Inventory of Passenger Transportation in the United States  

E-Print Network [OSTI]

Van)  Automobile (Motorcycle / Moped)  Electric Urban Bus Van)  Automobile (Motorcycle / Moped)  Electric Urban Bus Van)  Automobile (Motorcycle / Moped)  Electric Urban Bus 

Chester, Mikhail V

2008-01-01T23:59:59.000Z

156

NREL: Learning - Vehicle Testing and Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vehicle Testing and Analysis Vehicle Testing and Analysis Photo of two large semi-trailer truck cabs parked side by side on a hillside with a shrub-covered hill and sky in the background. Researchers at NREL obtain useful data on energy efficiency during tests conducted both in the laboratory and outdoors in truck cabs like these. Credit: Ken Proc Researchers and engineers test new technologies and vehicles to find out if they will help manufacturers produce more energy-efficient cars, vans, trucks, and buses. They also carry out studies using computer simulations. These studies help to identify the vehicles and components that will provide the best fuel economy and performance at the lowest cost. Fleet Tests and Evaluations NREL's engineers use the latest equipment and techniques to conduct vehicle

157

Global energy consumption due to friction in passenger cars  

Science Journals Connector (OSTI)

This study presents calculations on the global fuel energy consumption used to overcome friction in passenger cars in terms of friction in the engine, transmission, tires, and brakes. Friction in tribocontacts was estimated according to prevailing contact mechanisms such as elastohydrodynamic, hydrodynamic, mixed, and boundary lubrication. Coefficients of friction in the tribocontacts were estimated based on available information in the literature on the average passenger car in use today, a car with today’s advanced commercial tribological technology, a car with today’s best advanced technology based upon recent research and development, and a car with the best technology forecasted in the next 10 years. The following conclusions were reached: • In passenger cars, one-third of the fuel energy is used to overcome friction in the engine, transmission, tires, and brakes. The direct frictional losses, with braking friction excluded, are 28% of the fuel energy. In total, 21.5% of the fuel energy is used to move the car. • Worldwide, 208,000 million liters of fuel (gasoline and diesel) was used in 2009 to overcome friction in passenger cars. This equals 360 million tonne oil equivalent per year (Mtoe/a) or 7.3 million TJ/a. Reductions in frictional losses will lead to a threefold improvement in fuel economy as it will reduce both the exhaust and cooling losses also at the same ratio. • Globally, one passenger car uses on average of 340 l of fuel per year to overcome friction, which would cost 510 euros according to the average European gas price in 2011 and corresponds to an average driving distance of 13,000 km/a. • By taking advantage of new technology for friction reduction in passenger cars, friction losses could be reduced by 18% in the short term (5–10 years) and by 61% in the long term (15–25 years). This would equal worldwide economic savings of 174,000 million euros and 576,000 million euros, respectively; fuel savings of 117,000 million and 385,000 million liters, respectively; and CO2 emission reduction of 290 million and 960 million tonnes, respectively. • The friction-related energy losses in an electric car are estimated to be only about half those of an internal combustion passenger car. Potential actions to reduce friction in passenger cars include the use of advanced coatings and surface texturing technology on engine and transmission components, new low-viscosity and low-shear lubricants and additives, and tire designs that reduce rolling friction.

Kenneth Holmberg; Peter Andersson; Ali Erdemir

2012-01-01T23:59:59.000Z

158

Vehicle Technologies Office: 2008 Advanced Vehicle Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

8 Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2008 Advanced...

159

Richmond Electric Vehicle Initiative Electric Vehicle Readiness...  

Office of Environmental Management (EM)

MO) Vehicles Home About Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions Alternative Fuels Modeling, Testing, Data & Results Education...

160

Gas Mileage of 2014 Vehicles by Ford  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Ford Vehicles 4 Ford Vehicles EPA MPG MODEL City Comb Hwy 2014 Ford E150 Van FFV 8 cyl, 5.4 L, Automatic 4-spd, Regular Gas or E85 Compare 2014 Ford E150 Van FFV Gas 12 City 14 Combined 16 Highway E85 9 City 10 Combined 12 Highway 2014 Ford E150 Van FFV 8 cyl, 4.6 L, Automatic 4-spd, Regular Gas or E85 Compare 2014 Ford E150 Van FFV Gas 13 City 15 Combined 16 Highway E85 10 City 11 Combined 12 Highway 2014 Ford E150 Wagon FFV 8 cyl, 5.4 L, Automatic 4-spd, Regular Gas or E85 Compare 2014 Ford E150 Wagon FFV Gas 12 City 13 Combined 16 Highway E85 9 City 10 Combined 12 Highway 2014 Ford E150 Wagon FFV 8 cyl, 4.6 L, Automatic 4-spd, Regular Gas or E85 Compare 2014 Ford E150 Wagon FFV Gas 13 City 14 Combined 16 Highway E85 9 City 10 Combined 12 Highway 2014 Ford E250 Van FFV 8 cyl, 5.4 L, Automatic 4-spd, Regular Gas or E85

Note: This page contains sample records for the topic "vehicle passenger van" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Gas Mileage of 2012 Vehicles by Ford  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Ford Vehicles 2 Ford Vehicles EPA MPG MODEL City Comb Hwy 2012 Ford E150 Van FFV 8 cyl, 4.6 L, Automatic 4-spd, Regular Gas or E85 Compare 2012 Ford E150 Van FFV Gas 13 City 15 Combined 17 Highway E85 9 City 10 Combined 12 Highway 2012 Ford E150 Van FFV 8 cyl, 5.4 L, Automatic 4-spd, Regular Gas or E85 Compare 2012 Ford E150 Van FFV Gas 12 City 14 Combined 16 Highway E85 9 City 10 Combined 12 Highway 2012 Ford E150 Wagon FFV 8 cyl, 4.6 L, Automatic 4-spd, Regular Gas or E85 Compare 2012 Ford E150 Wagon FFV Gas 13 City 14 Combined 16 Highway E85 9 City 10 Combined 12 Highway 2012 Ford E150 Wagon FFV 8 cyl, 5.4 L, Automatic 4-spd, Regular Gas or E85 Compare 2012 Ford E150 Wagon FFV Gas 12 City 13 Combined 16 Highway E85 9 City 10 Combined 12 Highway 2012 Ford E250 Van FFV 8 cyl, 4.6 L, Automatic 4-spd, Regular Gas or E85

162

Diesel Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vehicles Vehicles Audi A3 Diesel vehicles may be making a comeback. Diesel engines are more powerful and fuel-efficient than similar-sized gasoline engines (about 30-35% more fuel efficient). Plus, today's diesel vehicles are much improved over diesels of the past. Better Performance Improved fuel injection and electronic engine control technologies have Increased power Improved acceleration Increased efficiency New engine designs, along with noise- and vibration-damping technologies, have made them quieter and smoother. Cold-weather starting has been improved also. Cleaner Mercedes ML320 BlueTEC Today's diesels must meet the same emissions standards as gasoline vehicles. Advances in engine technologies, ultra-low sulfur diesel fuel, and improved exhaust treatment have made this possible.

163

Julie Crenshaw Van Fleet  

Broader source: Energy.gov (indexed) [DOE]

Julie Crenshaw Van Fleet Julie Crenshaw Van Fleet 127 S. Fairfax Street, PMB#110 Alexandria, VA 22314 7 January 2007 Mr. Samuel W. Bodman Secretary of Energy Via Mr. Anthony J. Comco SEA Document Manager US DOE anthony.comco@hq.doe.gov 202/287-5736 fax and Ms. Carol Borgstrom, Director Office of NEPA Policy and Compliance US DOE askNEPA@hq.doe.gov 202/586-7031 fax RE: DOE/SEA-04, Special Environmental Analysis: For Actions Taken Under U.S. Department of Energy Emergency Orders Regarding Operation of the Potomac River Generating Station in Alexandria, Virginia, November 2006 Dear Mr. Bodman, Thank you for the opportunity to comment on the above named document hereafter referred to as DOE/SEA-04. It seems given the findings of DOE/SEA-04, that neither DOE nor EPA are aware

164

Gas Mileage of 2013 Vehicles by Ford  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Ford Vehicles 3 Ford Vehicles EPA MPG MODEL City Comb Hwy 2013 Ford C-MAX Hybrid FWD 4 cyl, 2.0 L, Automatic (variable gear ratios), Regular Gasoline Compare 2013 Ford C-MAX Hybrid FWD View MPG Estimates Shared By Vehicle Owners 45 City 43 Combined 40 Highway 2013 Ford C-Max Energi Plug-in Hybrid 4 cyl, 2.0 L, Automatic (variable gear ratios), Regular Gas and Electricity Compare 2013 Ford C-Max Energi Plug-in Hybrid View MPG Estimates Shared By Vehicle Owners Reg. Gas MPG 44 City 43 Combined 41 Highway Elec+Gas kWhrs/100 miles - 34 Combined - MPGe - 100 Combined - 2013 Ford E150 Van FFV 8 cyl, 4.6 L, Automatic 4-spd, Regular Gas or E85 Compare 2013 Ford E150 Van FFV Gas 13 City 15 Combined 17 Highway E85 9 City 10 Combined 12 Highway 2013 Ford E150 Van FFV 8 cyl, 5.4 L, Automatic 4-spd, Regular Gas or E85

165

De strijd om groepsrechten - Strategiën van de Marrons van Suriname.  

E-Print Network [OSTI]

??Minderheden kunnen verschillende strategiën gebruiken om hun rechten te behalen of te verdedigen. Aan de hand van de strategiën organisatie, politiek, media en internationale verbanden… (more)

Jansen, W.D.

2008-01-01T23:59:59.000Z

166

Transformatie van Fabriek C van gistfabriek tot kennisfabriek:.  

E-Print Network [OSTI]

??Drie ontwikkelingen vragen om de transformatie van het DSM Gist terrein in Delft. 1) Spoorzone Delft komt uit op DSM-oost terrein 2) DSM Gist heeft… (more)

De Jong, G.J.

2010-01-01T23:59:59.000Z

167

NREL: Vehicles and Fuels Research - Biofuels Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biofuels Projects Biofuels Projects NREL biofuels projects help overcome technical barriers and expand markets for renewable, biodegradable vehicle fuels. These new liquid fuels include higher-level ethanol blends, butanol, biodiesel, renewable diesel, and other biomass-derived fuels. NREL's biofuels research and development helps improve engine efficiency, reduce polluting emissions, and improve U.S. energy security by reducing petroleum dependency. Biofuels for Diesel Engines NREL's diesel biofuels research and development focuses on developing fuel quality standards and demonstrating compatibility with engines and emission control systems. Highly efficient heavy-duty diesel truck engines are the primary power source for global transportation of freight. Light-duty diesel-fueled passenger vehicles have much higher fuel economy than

168

Vehicle Technologies Office: Key Activities in Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Key Activities in Key Activities in Vehicles to someone by E-mail Share Vehicle Technologies Office: Key Activities in Vehicles on Facebook Tweet about Vehicle Technologies Office: Key Activities in Vehicles on Twitter Bookmark Vehicle Technologies Office: Key Activities in Vehicles on Google Bookmark Vehicle Technologies Office: Key Activities in Vehicles on Delicious Rank Vehicle Technologies Office: Key Activities in Vehicles on Digg Find More places to share Vehicle Technologies Office: Key Activities in Vehicles on AddThis.com... Key Activities Mission, Vision, & Goals Plans, Implementation, & Results Organization & Contacts National Laboratories Budget Partnerships Key Activities in Vehicles We conduct work in four key areas to develop and deploy vehicle technologies that reduce the use of petroleum while maintaining or

169

VEHICLE SPECIFICATIONS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Page 1 of 5 Page 1 of 5 VEHICLE SPECIFICATIONS 1 Vehicle Features Base Vehicle: 2011 Nissan Leaf VIN: JN1AZ0CP5BT000356 Class: Mid-size Seatbelt Positions: 5 Type: EV Motor Type: Three-Phase, Four-Pole Permanent Magnet AC Synchronous Max. Power/Torque: 80 kW/280 Nm Max. Motor Speed: 10,390 rpm Cooling: Active - Liquid cooled Battery Manufacturer: Automotive Energy Supply Corporation Type: Lithium-ion - Laminate type Cathode/Anode Material: LiMn 2 O 4 with LiNiO 2 /Graphite Pack Location: Under center of vehicle Number of Cells: 192 Cell Configuration: 2 parallel, 96 series Nominal Cell Voltage: 3.8 V Nominal System Voltage: 364.8 V Rated Pack Capacity: 66.2 Ah Rated Pack Energy: 24 kWh Max. Cell Charge Voltage 2 : 4.2 V Min. Cell Discharge Voltage 2 : 2.5 V

170

EIA - Household Transportation report: Household Vehicles Energy Use:  

U.S. Energy Information Administration (EIA) Indexed Site

Transportation logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Use: Latest Data & Trends November 2005 Release (Next Update: Discontinued) Based on the 2001 National Household Travel Survey conducted by the U.S. Department of Transportation and augmented by EIA Only light-duty vehicles and recreational vehicles are included in this report. EIA has excluded motorcycles, mopeds, large trucks, and buses in an effort to maintain consistency with its past residential transportation series, which was discontinued after 1994. This report, Household Vehicles Energy Use: Latest Data & Trends, provides details on the nation's energy use for household passenger travel. A primary purpose of this report is to release the latest consumer-based data

171

Orde: NFU-voorstellen moeten van tafel  

Science Journals Connector (OSTI)

De Orde van Medisch Specialisten roept medisch specialisten van universitair medische centra (UMC) op om naar een van de geplande ledenvergaderingen te komen over de onderhandelingen over een nieuwe CAO (collecti...

2011-06-01T23:59:59.000Z

172

Gas Mileage of 1995 Vehicles by Dodge  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 Dodge Vehicles 5 Dodge Vehicles EPA MPG MODEL City Comb Hwy 1995 Dodge Avenger 4 cyl, 2.0 L, Automatic 4-spd, Regular Gasoline Compare 1995 Dodge Avenger 18 City 21 Combined 27 Highway 1995 Dodge Avenger 4 cyl, 2.0 L, Automatic 4-spd, Regular Gasoline Compare 1995 Dodge Avenger 19 City 22 Combined 29 Highway 1995 Dodge Avenger 4 cyl, 2.0 L, Manual 5-spd, Regular Gasoline Compare 1995 Dodge Avenger 19 City 23 Combined 30 Highway 1995 Dodge Avenger 4 cyl, 2.0 L, Manual 5-spd, Regular Gasoline Compare 1995 Dodge Avenger 19 City 23 Combined 29 Highway 1995 Dodge Avenger 6 cyl, 2.5 L, Automatic 4-spd, Regular Gasoline Compare 1995 Dodge Avenger 18 City 21 Combined 26 Highway 1995 Dodge B1500/B2500 Van 2WD 6 cyl, 3.9 L, Automatic 3-spd, Regular Gasoline Compare 1995 Dodge B1500/B2500 Van 2WD

173

Improving Vehicle Efficiency, Reducing Dependence on Foreign Oil (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides an overview of the U.S. Department of Energy's Vehicle Technologies Program. Today, the United States spends about $400 billion each year on imported oil. To realize a secure energy future, America must break its dependence on imported oil and its volatile costs. The transportation sector accounts for about 70% of U.S. oil demand and holds tremendous opportunity to increase America's energy security by reducing oil consumption. That's why the U.S. Department of Energy (DOE) conducts research and development (R and D) on vehicle technologies which can stem America's dependence on oil, strengthen the economy, and protect the environment. Hybrid-electric and plug-in hybrid-electric vehicles can significantly improve fuel economy, displacing petroleum. Researchers are making batteries more affordable and recyclable, while enhancing battery range, performance, and life. This research supports President Obama's goal of putting 1 million electric vehicles on the road by 2015. The program is also working with businesses to develop domestic battery and electric-drive component plants to improve America's economic competitiveness globally. The program facilitates deployment of alternative fuels (ethanol, biodiesel, hydrogen, electricity, propane, and natural gas) and fuel infrastructures by partnering with state and local governments, universities, and industry. Reducing vehicle weight directly improves vehicle efficiency and fuel economy, and can potentially reduce vehicle operating costs. Cost-effective, lightweight, high-strength materials can significantly reduce vehicle weight without compromising safety. Improved combustion technologies and optimized fuel systems can improve near-and mid-term fuel economy by 25% for passenger vehicles and 20% for commercial vehicles by 2015, compared to 2009 vehicles. Reducing the use of oil-based fuels and lubricants in vehicles has more potential to improve the nation's energy security than any other action; even a 1% improvement in vehicle fuel efficiency would save consumers more than $4 billion annually.

Not Available

2012-03-01T23:59:59.000Z

174

2014 Best and Worst MPG Trucks, Vans and SUVs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Trucks Trucks 2014 Most Efficient Trucks by EPA Size Class 2014 Least Efficient Trucks by EPA Size Class 2014 Most Fuel Efficient Trucks, Vans and SUVs EPA Class Vehicle Description Fuel Economy Combined Small Pickup Trucks Toyota Tacoma Toyota Tacoma 2WD 4 cyl, 2.7 L, Manual (5), Regular Gasoline 23 Standard Pickup Trucks Ram 1500 HFE 2WD Ram 1500 HFE 2WD 6 cyl, 3.6 L, Automatic (8), Regular Gasoline 21 Small Sport Utility Vehicles Toyota RAV4 EV Toyota RAV4 EV Automatic (variable gear ratios), 115 kW AC Induction, Electricity 76* Subaru XV Crosstrek Hybrid AWD Subaru XV Crosstrek Hybrid AWD 4 cyl, 2.0 L, Automatic (CVT), Regular Gasoline 31 Standard Sport Utility Vehicles Infiniti QX60 Hybrid AWD Infiniti QX60 Hybrid AWD 4 cyl, 2.5 L, AV-S7, Regular Gasoline Infiniti QX60 Hybrid FWD

175

VEHICLE SPECIFICATIONS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

VEHICLE SPECIFICATIONS 1 Vehicle Features Base Vehicle: 2011 Chevrolet Volt VIN: 1G1RD6E48BUI00815 Class: Compact Seatbelt Positions: 4 Type 2 : Multi-Mode PHEV (EV, Series, and Power-split) Motor Type: 12-pole permanent magnet AC synchronous Max. Power/Torque: 111 kW/370 Nm Max. Motor Speed: 9500 rpm Cooling: Active - Liquid cooled Generator Type: 16-pole permanent magnet AC synchronous Max. Power/Torque: 55 kW/200 Nm Max. Generator Speed: 6000 rpm Cooling: Active - Liquid cooled Battery Manufacturer: LG Chem Type: Lithium-ion Cathode/Anode Material: LiMn 2 O 4 /Hard Carbon Number of Cells: 288 Cell Config.: 3 parallel, 96 series Nominal Cell Voltage: 3.7 V Nominal System Voltage: 355.2 V Rated Pack Capacity: 45 Ah Rated Pack Energy: 16 kWh Weight of Pack: 435 lb

176

Vehicle Technologies Office: Batteries  

Broader source: Energy.gov [DOE]

Improving the batteries for electric drive vehicles, including hybrid electric (HEV) and plug-in electric (PEV) vehicles, is key to improving vehicles' economic, social, and environmental...

177

Modeling the interaction between passenger cars and trucks  

E-Print Network [OSTI]

an easier way to create calibrated traffic flows in driving simulations and to capture vehicle behavior within microscopic traffic simulations. The original design for the prototype was to establish a two-way, real time exchange of vehicle data, however...

Jenkins, Jacqueline Marie

2004-11-15T23:59:59.000Z

178

Vehicles News  

Broader source: Energy.gov (indexed) [DOE]

news Office of Energy Efficiency & news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies http://energy.gov/eere/articles/energy-department-announces-45-million-advance-next-generation Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies

179

Modeling effects of vehicle specifications on fuel economy based on engine fuel consumption map and vehicle dynamics  

Science Journals Connector (OSTI)

Abstract The present study conducts a vehicle dynamic modeling of gasoline and diesel vehicles by using the AVL commercial program. 10 passenger vehicles were tested for 7 types of driving modes containing city, express and highway driving mode. The various vehicle data (specifications, fuel consumption map, gear shifting curve data, etc.) were collected and implemented as input data. The calculations were conducted with changing driving modes and vehicle types, and prediction accuracy of the calculation results were validated based on chassis dynamometer test data. In order to increase prediction accuracy for a wide vehicle operating range, some modifications regarding gear shifting was also conducted. From these processes, it is confirmed that the prediction accuracy of fuel efficiency and CO2 emissions shows a strong correlations with test results. After ensuring the accuracy of the calculation result, parametric studies were conducted to reveal correlations between vehicle specifications (e.g., vehicle weight and frontal area) on fuel efficiency and CO2 emissions and check which parameters were highly impact on fuel efficiency.

Yunjung Oh; Junhong Park; Jongtae Lee; Myung Do Eom; Sungwook Park

2014-01-01T23:59:59.000Z

180

Shifting primary energy source and NOx emission location with plug-in hybrid vehicles  

Science Journals Connector (OSTI)

Plug-in hybrid vehicles (PHEVs) present an interesting technological opportunity for using non-fossil primary energy in light duty passenger vehicles, with the associated potential for reducing air pollutant and greenhouse gas emissions, to the extent that the electric power grid is fed by non-fossil sources. This perspective, accompanying the article by Thompson et al (2011) in this issue, will touch on two other studies that are directly related: the Argonne study (Elgowainy et al 2010) and a PhD thesis from Utrecht (van Vliet 2010). Thompson et al (2011) have examined air quality effects in a case where the grid is predominantly fossil fed. They estimate a reduction of 7.42 tons/day of NOx from motor vehicles as a result of substituting electric VMTs for 20% of the light duty gasoline vehicle miles traveled. To estimate the impact of this reduction on air quality they also consider the increases in NOx emissions due to the increased load on electricity generating units. The NOx emission increases are estimated as 4.0, 5.5 and 6.3 tons for the Convenience, Battery and Night charging scenarios respectively. The net reductions are thus in the 1.1–3.4 tons/day range. The air quality modelling results presented show that the air quality impact from a ground-level ozone perspective is favorable overall, and while the effect is stronger in some localities, the difference between the three scenarios is small. This is quite significant and suggests that localization of the NOx emissions to point sources has a more pronounced effect than the absolute reductions achieved. Furthermore it demonstrates that localization of NOx emissions to electricity generating units by using PHEVs in vehicle traffic has beneficial effects for air quality not only by minimizing direct human exposure to motor vehicle emissions, but also due to reduced exposure to secondary pollutants (i.e. ozone). In an electric power grid with a smaller share of fossil fired generating units, the beneficial effects would be more pronounced. In such a case, it would also be possible to realize reductions in greenhouse gas emissions. The significance of the electric power generation mix for plug-in hybrid vehicles and battery electric vehicles is a key aspect of Argonne National Laboratories' well-to-wheel study which focuses on petroleum use and greenhouse gas emissions (Elgowainy et al 2010). The study evaluates possible reductions in petroleum use and GHG emissions in the electric power systems in four major regions of the United States as well as the US average generation mix, using Argonne's GREET life-cycle analysis model. Two PHEV designs are investigated through a Powertrain System Analysis Toolkit (PSAT) model: the power-split configuration (e.g. the current Toyota Prius model with Hymotion conversion), and a future series configuration where the engine powers a generator, which charges a battery that is used by the electric motor to propel the vehicle. Since the petroleum share is small in the electricity generation mix for most regions in the United States, it is possible to achieve significant reductions in petroleum use by PHEVs. However, GHG reduction is another story. In one of the cases in the study, PHEVs in the charge depleting mode and recharging from a mix with a large share of coal generation (e.g., Illinois marginal mix) produce GHG emissions comparable to those of baseline gasoline internal combustion engine vehicles (with a range from ?15% to +10%) but significantly higher than those of gasoline hybrid electric vehicles (with a range from +20% to +60%). In what is called the unconstrained charging scenario where investments in new generation capacity with high efficiency and low carbon intensity are envisaged, it becomes possible to achieve significant reductions in both petroleum use and GHG emissions. In a PhD dissertation at Utrecht University, van Vliet (2010) presents a comprehensive analysis of alternatives to gasoline and diesel by looking at various fuel and vehicle technologies. Three chapters are of particular interest from the

Deniz Karman

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle passenger van" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Fleet assessment for opportunities to effectively deploy light duty alternative fuel vehicles  

SciTech Connect (OSTI)

The City of Detroit conducted an initial program to assess the potential for substitution of vehicles currently in operation with alternative fuel vehicles. A key task involved the development of an operating profile of the participant light truck and van fleets involved in the study. To do this a survey of operators of light duty trucks and vans within the project participant fleets was conducted. These survey results were analyzed to define the potential for substitution of conventional vehicles with alternate fuel vehicles with alternate fuel vehicles and to identify candidates for participation in the Mini-Demonstration portion of the project. The test program involved the deployment of an electric van (two GM Griffon Electric Vans provided by Detroit Edison) at seven Mini-Demonstration sites for a period of four weeks each for test and evaluation. The Technical Work Group then analyzed vehicle performance data and used a questionnaire to obtain impressions and attitudes of the users toward the acceptability of the electric van. The Technical Work Group (TWG) and Management Assessment Group (MAG) then prepared recommendations and an implementation plan to develop further information aimed toward eventual expanded deployment of alternative fuel vehicles within project participant light duty fleets. The MAG concluded that the study had been beneficial in collecting and developing important quantitative information, introducing a set of public fleet managers to alternative fuel vehicle opportunities and features, and had provided specific experience with the Griffon van which provided some indications of requirements in such vehicles if they are to be a normal part of public fleet operations. These included the need for some increase of the mileage range of the Griffon, an improvement in the ride and handling of the Griffon, and several minor'' difficulties experienced with malfunctioning or inconvenient characteristics of the Griffon equipment. 25 figs., 1 tab.

Not Available

1990-05-01T23:59:59.000Z

182

Planning Model of Optimal Modal-Mix in Intercity Passenger Transportation  

Science Journals Connector (OSTI)

Environmentally sustainable transportation becomes an important issue as well for intercity passenger transportation, where modal shifting from energy consuming airline and bus service to energy efficient high sp...

Makoto Okumura; Huseyin Tirtom; Hiromichi Yamaguchi

2013-01-01T23:59:59.000Z

183

E-Print Network 3.0 - austrian passenger vehicle Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Systems Research Collection: Energy Storage, Conversion and Utilization ; Engineering 6 Community Services Standards for TigerTransit Expectations for our staff...

184

Applying engineering and fleet detail to represent passenger vehicle transport in  

E-Print Network [OSTI]

--essential knowledge for the international dialogue toward a global response to climate change. To this end Change Postal Address: Massachusetts Institute of Technology 77 Massachusetts Avenue, E19-411 Cambridge within the underlying physical system. This work develops a method for projecting global demand

185

Advanced Vehicle Testing & Evaluation  

Broader source: Energy.gov (indexed) [DOE]

Provide benchmark data for advanced technology vehicles Develop lifecycle cost data for production vehicles utilizing advanced power trains Provide fleet...

186

VanNess Feldxnan ATTORHEYS AT LAW October  

Broader source: Energy.gov (indexed) [DOE]

VanNess VanNess Feldxnan ATTORHEYS AT LAW October 20, 2008 Mr. John Schnagl Office of Electricity Delivcry and Energy Reliability (OE-20) U.S. Deparunent of Energy 1000 Independence Avenue, SW Washington, DC 20585 A PROFESSIOtW. CQAPORA.TlON 1050 Thomas JefIerson StnIet, N.W. W~ D.C. 2OCXJ7-38n (202) 298-1800 Tdepl'Ione (202) 338-2416 Faesmie Joeeph B. Nelson (202) 298-1894 jbnOvnf.com Re: Comments on Interim Final Rule for Coordination of Federal Authorizations for Electric Transmission Facilities (73 Fed. Reg. 54,456) Dear Mr. Schnagl: On behalf of Allegheny Energy, Inc. and its subsidiaries, Monongahela Power Company, The Potomac Edison Company and West Penn Power Company, all doing business as Allegheny Power; Trans-Allegheny Interstate Line Company; and PATH Allegheny Transmission Company, LLC (collectively, the "Allegheny Energy Companies"), the following

187

Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles  

SciTech Connect (OSTI)

This research project compares laboratory-measured fuel economy of a medium-duty diesel powered hydraulic hybrid vehicle drivetrain to both a conventional diesel drivetrain and a conventional gasoline drivetrain in a typical commercial parcel delivery application. Vehicles in this study included a model year 2012 Freightliner P100H hybrid compared to a 2012 conventional gasoline P100 and a 2012 conventional diesel parcel delivery van of similar specifications. Drive cycle analysis of 484 days of hybrid parcel delivery van commercial operation from multiple vehicles was used to select three standard laboratory drive cycles as well as to create a custom representative cycle. These four cycles encompass and bracket the range of real world in-use data observed in Baltimore United Parcel Service operations. The NY Composite cycle, the City Suburban Heavy Vehicle Cycle cycle, and the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) cycle as well as a custom Baltimore parcel delivery cycle were tested at the National Renewable Energy Laboratory's Renewable Fuels and Lubricants Laboratory. Fuel consumption was measured and analyzed for all three vehicles. Vehicle laboratory results are compared on the basis of fuel economy. The hydraulic hybrid parcel delivery van demonstrated 19%-52% better fuel economy than the conventional diesel parcel delivery van and 30%-56% better fuel economy than the conventional gasoline parcel delivery van on cycles other than the highway-oriented HHDDT cycle.

Lammert, M. P.; Burton, J.; Sindler, P.; Duran, A.

2014-10-01T23:59:59.000Z

188

Kalman Filtering Jur van den Berg  

E-Print Network [OSTI]

Kalman Filtering Jur van den Berg #12;Kalman Filtering · (Optimal) estimation of the (hidden) state

van den Berg, Jur

189

Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Book), Clean Cities, Energy Efficiency & Renewable Energy (EERE)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

School Bus * Shuttle Bus * Transit Bus * Refuse Truck * Tractor * Van * Vocational Truck School Bus * Shuttle Bus * Transit Bus * Refuse Truck * Tractor * Van * Vocational Truck Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles 2 Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles 3 Table of Contents About the Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Heavy-Duty Vehicle Application Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Heavy-Duty Emission Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Multiple-Stage Construction of Medium- and Heavy-Duty Vehicles . . . . . . . . . . . . . . . . . . 6 Chassis Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

190

Stirling Powered Van Program overview  

SciTech Connect (OSTI)

The Stirling Powered Van Program (SPVP) is a multiyear, multiphase program to evaluate the automotive Stirling engine (ASE) in Air Force vans under realistic conditions. The objective of the SPVP is to have a manufacturer and end user(s) (i.e., on the path to commercialization) of the second-generation Mod II ASE upon completion of the Automotive Stirling Engine Program in 1987. In order to meet this objective, the SPVP must establish Stirling performance, integrity, reliability, durability, and maintainability. This paper reviews the ASE Program background leading to the Van Program and focuses on plans for evaluating the kinematic Stirling engine in Air Force vans. Also discussed are the NASA technology transfers to industry that have been accomplished and those which are currently being developed.

Shaltens, R.K.

1986-01-01T23:59:59.000Z

191

NREL: Vehicles and Fuels Research - Light-Duty Vehicle Thermal...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and passenger thermal comfort. Analogous to crash-test dummies, these manikins measure heat loss and skin temperature through numerous sensors, making it possible to efficiently...

192

Two algorithms for the sorting of unknown train vibration signals into freight and passenger train  

E-Print Network [OSTI]

Two algorithms for the sorting of unknown train vibration signals into freight and passenger train in particular. To facilitate this, two algorithms have been constructed with the aim of sorting unknown train vibration signals into freight and passenger train categories so that they can be further analysed. 307

Paris-Sud XI, Université de

193

Danyi Wang and Dr. Lance Sherry 1 Trend Analysis of Airline Passenger Trip Delays  

E-Print Network [OSTI]

metrics. Researchers have shown that flight-based metrics do not accurately reflect the passenger trip by a combination of different factors such as traffic volume and weather condition, disruptions (flight delays shown that flight-based performance metrics do not accurately reflect the passenger trip experience [3

194

Verschillen in belangstellingsprofielen van vrouwelijke en mannelijke studenten geneeskunde  

Science Journals Connector (OSTI)

Inleiding: In deze studie is nagegaan in hoeverre er verschillen zijn in de belangstellingsprofielen van vrouwelijke en mannelijke studenten geneeskunde ten aanzien van kenmerken van het medisch ...

Dr. J. J. D. J. M. Rademakers; A. L. S. Bloemen…

2008-08-01T23:59:59.000Z

195

Development of a dedicated ethanol ultra-low-emissions vehicle (ULEV): Phase 3 report  

SciTech Connect (OSTI)

The objective of the 3.5 year project discussed in this report was to develop a commercially competitive vehicle powered by ethanol (or an ethanol blend) that can meet California`s Ultra Low Emissions Vehicle (ULEV) standards and equivalent Corporate Average Fuel Economy (CAFE) energy efficiency for a light duty passenger car application. This particular report summarizes the third phase of the project, which lasted 12 months. Emissions tests were conducted with advanced after-treatment devices on one of the two, almost identical, test vehicles, a 1993 Ford Taurus flexible fuel vehicle. The report also covers tests on the engine removed from the second Taurus vehicle. This engine was modified for an increased compression ratio, fitted with air assist injectors, and included an advanced engine control system with model-based control.

Dodge, L.; Callahan, T.; Leone, D.; Naegeli, D.; Shouse, K.; Smith, L.; Whitney, K. [Southwest Research Inst., San Antonio, TX (United States)] [Southwest Research Inst., San Antonio, TX (United States)

1998-04-01T23:59:59.000Z

196

Modelling and analysis of electric power steering system and its effect on vehicle dynamic behaviour  

Science Journals Connector (OSTI)

While most passenger vehicles equipped with power steering systems are hydraulic power assisted, Electric Power Steering (EPS) systems are becoming wide spread since they can afford higher fuel efficiency. This paper develops an integrated simulation of an EPS control system with a full vehicle model. Using co-simulation technique, a full vehicle model interacting with EPS control algorithm is concurrently simulated on a single bump road condition. The effects of EPS on the vehicle dynamic behaviour and handling responses resulting from steer and road input are analysed and compared with proving ground experimental data. The comparisons show reasonable agreement on tie-rod load, rack displacement, steering wheel torque and tyre centre acceleration. This developed co-simulation capability may be useful for EPS performance evaluation and calibration as well as for vehicle handling performance integration.

Y. Gene Liao; H. Isaac Du

2003-01-01T23:59:59.000Z

197

Advanced Vehicle Testing Activity (AVTA) - Vehicle Testing and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

- Vehicle Testing and Demonstration Activities Advanced Vehicle Testing Activity (AVTA) - Vehicle Testing and Demonstration Activities 2009 DOE Hydrogen Program and Vehicle...

198

Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

199

Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Apps for Vehicles Apps for Vehicles Challenge Spurs Innovation in Vehicle Data to someone by E-mail Share Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Facebook Tweet about Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Twitter Bookmark Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Google Bookmark Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Delicious Rank Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Digg Find More places to share Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on AddThis.com... Apps for Vehicles Challenge Spurs Innovation in Vehicle Data

200

Fuel consumption of a vehicle with power split CVT system  

Science Journals Connector (OSTI)

Continuously variable transmissions have made notable progress, especially in the automotive industry, in recent years. In this work, we study the performance of a mid passenger car provided with an original Power Split CVT (PS-CVT) system. The main advantage of the proposed solution is to improve the efficiency of the CVT by means of a power flow without recirculation using two separate phases of operation. By means of a simulation model we evaluate the vehicle's fuel consumption with the hypothesis to consider the value of transmission ratio speed that minimises the specific fuel consumption. Furthermore the PS-CVT performance is compared with that of traditional CVT.

Giacomo Mantriota

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle passenger van" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Thermal management concepts for higher efficiency heavy vehicles.  

SciTech Connect (OSTI)

Thermal management is a cross-cutting technology that directly or indirectly affects engine performance, fuel economy, safety and reliability, aerodynamics, driver/passenger comfort, materials selection, emissions, maintenance, and component life. This review paper provides an assessment of thermal management for large trucks, particularly as it impacts these features. Observations arrived at from a review of the state of the art for thermal management for over-the-road trucks are highlighted and commented on. Trends in the large truck industry, pertinent engine truck design and performance objectives, and the implications of these relative to thermal management, are presented. Finally, new thermal management concepts for high efficiency vehicles are described.

Wambsganss, M. W.

1999-05-19T23:59:59.000Z

202

Determination of Single Particle Mass Spectral Signatures from Light-Duty Vehicle Emissions  

Science Journals Connector (OSTI)

Significant variability was observed in the chemical composition of particles emitted within the different car categories as well as for the same car operating under different driving conditions. ... This increase was also seen for the six TWC passenger cars, which were tested on the FTP and UC cycles (Supplemental Information, Figure S4). ... Given that the majority of those high-emitting vehicles had defective emission control systems (99), it is also likely that they emitted high levels of PM as well. ...

David A. Sodeman; Stephen M. Toner; Kimberly A. Prather

2005-05-12T23:59:59.000Z

203

An assessment of electric vehicles: technology, infrastructure requirements, greenhouse-gas emissions, petroleum use, material use, lifetime cost, consumer acceptance and policy initiatives  

Science Journals Connector (OSTI)

...will have peak-power devices such as high-power batteries or...Fuel-cell passenger cars and sport utility...feedstocks (water, electricity...Comparing land, water, and materials...hybrid vehicles: power sources, models...using a motor car. Transport...

2014-01-01T23:59:59.000Z

204

De herontwikkeling van het DSM terrein; naar een strategisch advies voor de ontwikkeling van het DSM terrein te Delft :.  

E-Print Network [OSTI]

??Het doel van het onderzoek is het traceren van het (bewust of onbewust) gevolgde strategisch proces voor de herontwikkeling van het DSM terrein te Delft,… (more)

Schellekens, F.P.

2013-01-01T23:59:59.000Z

205

TTRDC - Light Duty E-Drive Vehicles Monthly Sales Updates  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Light Duty Electric Drive Vehicles Monthly Sales Updates Currently available electric-drive vehicles (EDV) in the U.S market include hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and all electric vehicles (AEV). Plug-in Vehicles (PEV) include both PHEV and AEV. HEVs debuted in the U.S. market in December 1999 with 17 sales of the first-generation Honda Insight, while the first PHEV (Chevrolet Volt) and AEV (Nissan Leaf) most recently debuted in December 2010. Electric drive vehicles are offered in several car and SUV models, and a few pickup and van models. Historical sales of HEV, PHEV, and AEV are compiled by Argonne's Center for Transportation Research and reported to the U.S. Department of Energy's Vehicle Technology Program Office each month. These sales are shown in Figures 1, 2 and 3. Figure 1 shows monthly new PHEV and AEV sales by model. Figure 2 shows yearly new HEV sales by model. Figure 3 shows electric drive vehicles sales share of total light-duty vehicle (LDV) sales since 1999. Figure 4 shows HEV and PEV sales change with gasoline price..

206

Blog Feed: Vehicles | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

, 2011 , 2011 A123 battery in passenger vehicle application | Photo Courtesy of A123 Systems Innovation in Electric Vehicle Technology? Easy as A123 How A123 Systems evolved from a team of researchers at MIT to becoming the world's second largest producer of lithium-ion batteries. April 29, 2011 This Month on Energy Savers: April 2011 A recap of April Energy Savers news, along with a few other tidbits. April 18, 2011 Participants in the EcoCar2 challenge gather for the spring workshop in Ann Arbor, Michigan. Students Drive Home Innovative Engineering in the EcoCAR2 Competition EcoCar2 kicks off with the announcement of the 16 student teams and the vehicle they'll be re-engineering over the course of the competition. April 13, 2011 Algae samples back at the NREL lab, ready to be analyzed and run through the Fluorescent-Activated Cell Sorter, or FACS, which separates the cells. | Credit: NREL Staff Photographer Dennis Schroeder.

207

9 Sacrale neuromodulatie: het sturen van patiëntenselectie middels urodynamica  

Science Journals Connector (OSTI)

Het doel van deze studie was na te gaan in hoeverre de urodynamische diagnose kan helpen bij het voorspellen van het succes van sacrale neuromodulatie (SNM). Kwantitatieve en kwalitatieve resultaten van urodyn...

J. Drossaerts; K. Rademakers; G. van Koeveringe…

2014-10-01T23:59:59.000Z

208

Chevrolet Volt Vehicle Demonstration  

Broader source: Energy.gov (indexed) [DOE]

Volt Vehicle Demonstration Fleet Summary Report Reporting period: January 2013 through March 2013 Number of vehicles: 146 Number of vehicle days driven: 6,680 4292013 2:38:13 PM...

209

Vehicle suspension  

SciTech Connect (OSTI)

This patent describes a vehicle consisting of sprung and unsprung masses, the combination of struts and support springs for the weight of the sprung mass, an axis defined by pivots between sprung and unsprung masses, with a front pivot approximately midway between the wheels and near the vertical and horizontal planes through the front axles, with a rear pivot lying in an axis through the front pivot and in a plane through the center-of-gravity of the sprung mass, with the plane parallel to the centrifugal force vector through the center-of-gravity of the sprung mass, and with the rear pivot positioned approximately midway between the rear wheels, means for transmitting the centrifugal force component on the front pivot to the front wheels and ground, and means for transmitting the centrifugal force component on the rear pivot to the rear wheels and ground.

Mikina, S.J.

1986-08-05T23:59:59.000Z

210

PREDICATIVE TOPOSES BENNO VAN DEN BERG  

E-Print Network [OSTI]

PREDICATIVE TOPOSES BENNO VAN DEN BERG Abstract. We explain the motivation for looking toposes to have. A list of desiderata would probably include: 1 #12;2 BENNO VAN DEN BERG (1) A predicative

van den Berg, Benno

211

Universitair Medisch Centrum Groningen (UMCG) beste leerbedrijf van Nederland  

Science Journals Connector (OSTI)

Op donderdag 14 maart 2007 ontving het Universitair Medisch Centrum Groningen uit handen van staatssecretaris Marja van Bijsterveldt...

   

2007-03-01T23:59:59.000Z

212

Vehicle Technologies Office: Hybrid and Vehicle Systems  

Broader source: Energy.gov [DOE]

Hybrid and vehicle systems research provides an overarching vehicle systems perspective to the technology research and development (R&D) activities of the U.S. Department of Energy's (DOE's)...

213

Hybrid Electric Vehicle Testing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Association Conference Transportation Association Conference Vancouver, Canada December 2005 Hybrid Electric Vehicle Testing Jim Francfort U.S. Department of Energy - FreedomCAR & Vehicle Technologies Program, Advanced Vehicle Testing Activity INL/CON-05-00964 Presentation Outline * Background & goals * Testing partners * Hybrid electric vehicle testing - Baseline performance testing (new HEV models) - 1.5 million miles of HEV fleet testing (160k miles per vehicle in 36 months) - End-of-life HEV testing (rerun fuel economy & conduct battery testing @ 160k miles per vehicle) - Benchmark data: vehicle & battery performance, fuel economy, maintenance & repairs, & life-cycle costs * WWW information location Background * Advanced Vehicle Testing Activity (AVTA) - part of the

214

Vehicle & Systems Simulation & Testing  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

penetration of advanced vehicles and systems to displace petroleum consumption, reduce GHG emissions, and achieve vehicle electrification goals. Evaluate technology targets...

215

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Broader source: Energy.gov (indexed) [DOE]

Utilities Employers Develop long-range Plan Deployment area Vehicle penetration Infrastructure requirements Develop EV Micro-Climate Support...

216

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Broader source: Energy.gov (indexed) [DOE]

Utilities Employers Develop Long-Range Plan Deployment Area Vehicle Penetration Infrastructure Requirements Develop EV Micro-Climate Initial...

217

Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Maximizing Alternative Maximizing Alternative Fuel Vehicle Efficiency to someone by E-mail Share Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Facebook Tweet about Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Twitter Bookmark Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Google Bookmark Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Delicious Rank Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Digg Find More places to share Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines

218

Cell division control by the Chromosomal Passenger Complex  

SciTech Connect (OSTI)

The Chromosomal Passenger Complex (CPC) consisting of Aurora B kinase, INCENP, Survivin and Borealin, is essential for genomic stability by controlling multiple processes during both nuclear and cytoplasmic division. In mitosis it ensures accurate segregation of the duplicated chromosomes by regulating the mitotic checkpoint, destabilizing incorrectly attached spindle microtubules and by promoting the axial shortening of chromosomal arms in anaphase. During cytokinesis the CPC most likely prevents chromosome damage by imposing an abscission delay when a chromosome bridge connects the two daughter cells. Moreover, by controlling proper cytoplasmic division, the CPC averts tetraploidization. This review describes recent insights on how the CPC is capable of conducting its various functions in the dividing cell to ensure chromosomal stability.

Waal, Maike S. van der; Hengeveld, Rutger C.C.; Horst, Armando van der; Lens, Susanne M.A., E-mail: s.m.a.lens@umcutrecht.nl

2012-07-15T23:59:59.000Z

219

Advanced Vehicle Testing Activity: Light-Duty Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Light-Duty Light-Duty Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Light-Duty Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Light-Duty Vehicles on Twitter Bookmark Advanced Vehicle Testing Activity: Light-Duty Vehicles on Google Bookmark Advanced Vehicle Testing Activity: Light-Duty Vehicles on Delicious Rank Advanced Vehicle Testing Activity: Light-Duty Vehicles on Digg Find More places to share Advanced Vehicle Testing Activity: Light-Duty Vehicles on AddThis.com... Home Overview Light-Duty Vehicles Alternative Fuel Vehicles Plug-in Hybrid Electric Vehicles Hybrid Electric Vehicles Micro Hybrid Vehicles ARRA Vehicle and Infrastructure Projects EVSE Testing Energy Storage Testing Hydrogen Internal Combustion Engine Vehicles Other ICE

220

Advances in Diesel Engine Technologies for European Passenger...  

Broader source: Energy.gov (indexed) [DOE]

forces of vehicle development 1990 1995 2000 2005 2010 2015 2020 2025 Energy Greenhouse effect CO 2 Exhaust gas emissions CO, NO x , HC, PM Importance European Status European...

Note: This page contains sample records for the topic "vehicle passenger van" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Physics Research Universiteit van Amsterdam  

E-Print Network [OSTI]

Physics Research 1996-2002 Universiteit van Amsterdam and Vrije Universiteit Amsterdam October 2005 #12;QANU / Physics UvA and VU2 Quality Assurance Netherlands Universities (QANU) Catharijnesingel 56 with the permission of QANU if the source is men- tioned. #12;QANU / Physics UvA and VU 3 Table of contents Preface 5

van Rooij, Robert

222

MEDResearch hazeby Philip Van Hulle  

E-Print Network [OSTI]

-Arabic descent. The team believes the hookah trend holds dangerous health implications, including servingMEDResearch Hazardous hazeby Philip Van Hulle Photos by David Dalton WSU researchers tackle health health hazard for Americans, particularly the younger crowd. According to a pilot study completed

Finley Jr., Russell L.

223

Vehicle Technologies Office: About the Vehicle Technologies Office: Moving  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About the Vehicle About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles to someone by E-mail Share Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Facebook Tweet about Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Twitter Bookmark Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Google Bookmark Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Delicious Rank Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Digg Find More places to share Vehicle Technologies Office: About the

224

Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9: August 6, 9: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts to someone by E-mail Share Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Facebook Tweet about Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Twitter Bookmark Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Google Bookmark Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Delicious

225

Development of a dedicated ethanol ultra-low emission vehicle (ULEV) -- Phase 2 report  

SciTech Connect (OSTI)

The objective of this 3.5-year project is to develop a commercially competitive vehicle powered by ethanol (or an ethanol blend) that can meet California`s ultra-low emission vehicle (ULEV) standards and equivalent corporate average fuel economy (CAFE) energy efficiency for a light-duty passenger car application. The definition of commercially competitive is independent of fuel cost, but does include technical requirements for competitive power, performance, refueling times, vehicle range, driveability, fuel handling safety, and overall emissions performance. This report summarizes the second phase of this project, which lasted 12 months. This report documents two baseline vehicles, the engine modifications made to the original equipment manufacturer (OEM) engines, advanced aftertreatment testing, and various fuel tests to evaluate the flammability, lubricity, and material compatibility of the ethanol fuel blends.

Dodge, L.G.; Bourn, G.; Callahan, T.J.; Naegeli, D.W.; Shouse, K.R.; Smith, L.R.; Whitney, K.A. [Southwest Research Inst., San Antonio, TX (United States)

1995-09-01T23:59:59.000Z

226

Massachusetts Electric Vehicle Efforts  

E-Print Network [OSTI]

Massachusetts Electric Vehicle Efforts Christine Kirby, MassDEP ZE-MAP Meeting October 24, 2014 #12 · Provide Clean Air · Grow the Clean Energy Economy · Electric vehicles are a key part of the solution #12 is promoting EVs 4 #12;TCI and Electric Vehicles · Established the Northeast Electric Vehicle Network through

California at Davis, University of

227

Powertrain & Vehicle Research Centre  

E-Print Network [OSTI]

complexity ·More efficient Vehicles, quicker to market, reduced cost to consumer The Optimisation Task and virtual environments Vehicle baseline testing on rolling road Calibration Control Engine VehiclePowertrain & Vehicle Research Centre Low Carbon Powertrain Development S. Akehurst, EPSRC Advanced

Burton, Geoffrey R.

228

Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5: November 25, 5: November 25, 2013 Vehicle Technology Penetration to someone by E-mail Share Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Facebook Tweet about Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Twitter Bookmark Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Google Bookmark Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Delicious Rank Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Digg Find More places to share Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on AddThis.com... Fact #805: November 25, 2013

229

Vehicle Technologies Office: Ambassadors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ambassadors to someone Ambassadors to someone by E-mail Share Vehicle Technologies Office: Ambassadors on Facebook Tweet about Vehicle Technologies Office: Ambassadors on Twitter Bookmark Vehicle Technologies Office: Ambassadors on Google Bookmark Vehicle Technologies Office: Ambassadors on Delicious Rank Vehicle Technologies Office: Ambassadors on Digg Find More places to share Vehicle Technologies Office: Ambassadors on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness Workforce Development Plug-in Electric Vehicle Basics Ambassadors Workplace Charging Challenge Clean Cities Coalitions Clean Cities logo. Clean Cities National: A network of nearly 100 Clean Cities coalitions, supported by the

230

Dynamic Spectrum Analysis of High-Speed Train Passenger Compartment Luggage Rack Noise  

Science Journals Connector (OSTI)

In order to understand the dynamic changes of vibration radiation noise of high-speed train’s passenger compartment luggage rack, the dynamic spectrum is used for analysis ... , spectral structure and dynamic ran...

Chuanhui Wu; Xiangling Gao; Pinxian Gao

2012-01-01T23:59:59.000Z

231

Examining changes in transit passenger travel behavior through a Smart Card activity analysis  

E-Print Network [OSTI]

Transit passenger behavior is an area of major interest for public transportation agencies. The relationship between ridership and maintenance projects, however, is unexplored but increasingly relevant in the era of aging ...

Mojica, Carlos H

2008-01-01T23:59:59.000Z

232

Estimating train passenger load from automated data systems : application to London Underground  

E-Print Network [OSTI]

The purpose of this thesis is to assess the feasibility of identifying which trains individual passengers take to get from their origin to destination while travelling in a high frequency urban rail transportation system. ...

Paul, Elizabeth Cheriyamadam

2010-01-01T23:59:59.000Z

233

The evolution of passenger accessibility in the US airline industry, 1980-2010  

E-Print Network [OSTI]

Since deregulation, passenger air travel and the airline industry as a whole have changed dramatically. While most previous research has focused on the changes experienced by the airlines, this thesis seeks to understand ...

Jenkins, James Joseph, M.C.P. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

234

Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6: February 9, 6: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled to someone by E-mail Share Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Facebook Tweet about Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Twitter Bookmark Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Google Bookmark Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Delicious Rank Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Digg Find More places to share Vehicle Technologies Office: Fact #306:

235

Gas Mileage of 2014 Vehicles by GMC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 GMC Vehicles 4 GMC Vehicles EPA MPG MODEL City Comb Hwy 2014 GMC Acadia AWD 6 cyl, 3.6 L, Automatic 6-spd, Regular Gasoline Compare 2014 GMC Acadia AWD 16 City 18 Combined 23 Highway 2014 GMC Acadia FWD 6 cyl, 3.6 L, Automatic 6-spd, Regular Gasoline Compare 2014 GMC Acadia FWD 17 City 19 Combined 24 Highway 2014 GMC Savana 1500 AWD (cargo) 8 cyl, 5.3 L, Automatic 4-spd, Regular Gas or E85 Compare 2014 GMC Savana 1500 AWD (cargo) Gas 13 City 14 Combined 17 Highway E85 10 City 11 Combined 12 Highway 2014 GMC Savana 1500 AWD Conversion (cargo) 8 cyl, 5.3 L, Automatic 4-spd, Regular Gas or E85 Compare 2014 GMC Savana 1500 AWD Conversion (cargo) Gas 13 City 14 Combined 17 Highway E85 9 City 10 Combined 12 Highway 2014 GMC Savana 1500 2WD (Passenger) 8 cyl, 5.3 L, Automatic 4-spd, Regular Gas or E85

236

Blog Feed: Vehicles | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

June 8, 2010 June 8, 2010 What's Up With Fuel Cells? We hear a lot about renewables like wind and solar these days, but what's the deal with fuel cells and is there a future in them? May 26, 2010 An artist's rendering of a Nissan LEAF charging outside a café. | Courtesy The EV Project LEAFing Through New Vehicle Technology The LEAF is a five-passenger hatchback, powered by advanced lithium-ion batteries - with a range of more than 100 miles on a single charge. The vehicle will cost drivers about $25,000 after a federal tax credit. May 20, 2010 Are You Participating in Bike-to-Work Day? Are you participating in Bike-to-Work day? Tell us about your plans! May 18, 2010 EcoCAR: The NeXt Challenge Beyond the use of advanced technology, EcoCAR is unique among student competitions in that it provides students with access to and training on

237

Koptische muziek, de muziek van de christelijke bevolking van Egypte, is in de Westerse Wereld een onbekend en weinig onderzocht gebied. Alleen van liturgische Koptische muziek  

E-Print Network [OSTI]

Koptische muziek, de muziek van de christelijke bevolking van Egypte, is in de Westerse Wereld een Egypte werden met elkaar vergeleken. Uit de analyses van deze melodieën bleek dat de improvisatorisch

Hille, Sander

238

NREL: Vehicles and Fuels Research - Hybrid Electric Fleet Vehicle...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hybrid Electric Fleet Vehicle Testing How Hybrid Electric Vehicles Work Hybrid electric vehicles combine a primary power source, an energy storage system, and an electric motor to...

239

VEHICLE USAGE LOG Department ________________________________________ Vehicle Homebase ____________________________ Week Ended (Sunday) _________________  

E-Print Network [OSTI]

VEHICLE USAGE LOG Department ________________________________________ Vehicle Homebase (rev. 10/2005-ecb) #12;Vehicle Usage Log Instructions General instructions: The details of the use

Yang, Zong-Liang

240

Fact #842: October 13, 2014 Vehicles and Vehicle Travel Trends...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

drivers, number of vehicles in operation, and total vehicle miles traveled. Fact 842 Dataset Supporting Information Population and Vehicle Growth Comparison, 1950-2012 Year...

Note: This page contains sample records for the topic "vehicle passenger van" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Vehicle Technologies Office: Lubricants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lubricants to someone by Lubricants to someone by E-mail Share Vehicle Technologies Office: Lubricants on Facebook Tweet about Vehicle Technologies Office: Lubricants on Twitter Bookmark Vehicle Technologies Office: Lubricants on Google Bookmark Vehicle Technologies Office: Lubricants on Delicious Rank Vehicle Technologies Office: Lubricants on Digg Find More places to share Vehicle Technologies Office: Lubricants on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Fuel Effects on Combustion Lubricants Natural Gas Research Biofuels End-Use Research Materials Technologies Lubricants As most vehicles are on the road for more than 15 years before they are retired, investigating technologies that will improve today's vehicles is

242

Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Medium- and Medium- and Heavy-Duty Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Twitter Bookmark Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Google Bookmark Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Delicious Rank Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Digg Find More places to share Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on AddThis.com... Home Overview Light-Duty Vehicles Medium- and Heavy-Duty Vehicles Transit Vehicles Trucks Idle Reduction Oil Bypass Filter Airport Ground Support Equipment Medium and Heavy Duty Hybrid Electric Vehicles

243

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Broader source: Energy.gov (indexed) [DOE]

EVSE Designed And Manufactured To Allow Power And Energy Data Collection And Demand Response Control Residential EVSE Installed For All Vehicles 1,300 Commercial EVSE...

244

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt066vsskarner2012...

245

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt066vsskarner2011...

246

Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...  

Energy Savers [EERE]

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt072vssmackie2011...

247

Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...  

Energy Savers [EERE]

2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt072vssmackie2012...

248

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

vehicle aging have an additional but unknown effect on the MPG of individual vehicles. Energy Information AdministrationHousehold Vehicles Energy Consumption 1991 27 Of the...

249

Vehicle Research Laboratory - FEERC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vehicle Research Laboratory Vehicle Research Laboratory Expertise The overall FEERC team has been developed to encompass the many disciplines necessary for world-class fuels, engines, and emissions-related research, with experimental, analytical, and modeling capabilities. Staff members specialize in areas including combustion and thermodynamics, emissions measurements, analytical chemistry, catalysis, sensors and diagnostics, dynamometer cell operations, engine controls and control theory. FEERC engineers have many years of experience in vehicle research, chassis laboratory development and operation, and have developed specialized systems and methods for vehicle R&D. Selected Vehicle Research Topics In-use investigation of Lean NOx Traps (LNTs). Vehicle fuel economy features such as lean operation GDI engines,

250

LD Vehicles AFDC 11 25 13 TC.xlsx  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Model Year 2014: Alternative Fuel and Advanced Technology Vehicles Model Year 2014: Alternative Fuel and Advanced Technology Vehicles 1 (Updated 11/25/2013) MY Fuel/Powertrain Type Make Model Vehicle Type Engine Size/Cylinders Transmission Emissions Class 2 Fuel Economy Gasoline 3,4 City/Hwy Fuel Economy Alt Fuel 3,4 City/Hwy 2014 B20 Chevrolet Cruze Sedan 2.0L I4 diesel Auto Tier II Bin 5 LEV III LEV160 27/46 N/A 2014 B20 Chevrolet Express 2500/3500 2WD Van 6.6L V8 diesel Auto N/A N/A N/A 2014 B20 Chevrolet Silverado 2500/3500 HD 2WD/4WD Pickup 6.6L V8 diesel Auto N/A N/A N/A 2014 B20 Ford Super Duty F-250/350/450 Pickup 6.7L V8 diesel Auto N/A N/A N/A 2014 B20 Ford Super Duty F-650/750 Pickup 6.7L I6 diesel Auto N/A N/A N/A 2014 B20 Ford Transit Van 3.2L I5 diesel Auto N/A N/A N/A 2014 B20 GMC Savana 2500/3500 2WD Van 6.6L V8 diesel Auto N/A

251

A zinc-air battery and flywheel zero emission vehicle  

SciTech Connect (OSTI)

In response to the 1990 Clean Air Act, the California Air Resources Board (CARB) developed a compliance plan known as the Low Emission Vehicle Program. An integral part of that program was a sales mandate to the top seven automobile manufacturers requiring the percentage of Zero Emission Vehicles (ZEVs) sold in California to be 2% in 1998, 5% in 2001 and 10% by 2003. Currently available ZEV technology will probably not meet customer demand for range and moderate cost. A potential option to meet the CARB mandate is to use two Lawrence Livermore National Laboratory (LLNL) technologies, namely, zinc-air refuelable batteries (ZARBs) and electromechanical batteries (EMBs, i. e., flywheels) to develop a ZEV with a 384 kilometer (240 mile) urban range. This vehicle uses a 40 kW, 70 kWh ZARB for energy storage combined with a 102 kW, 0.5 kWh EMB for power peaking. These technologies are sufficiently near-term and cost-effective to plausibly be in production by the 1999-2001 time frame for stationary and initial vehicular applications. Unlike many other ZEVs currently being developed by industry, our proposed ZEV has range, acceleration, and size consistent with larger conventional passenger vehicles available today. Our life-cycle cost projections for this technology are lower than for Pb-acid battery ZEVs. We have used our Hybrid Vehicle Evaluation Code (HVEC) to simulate the performance of the vehicle and to size the various components. The use of conservative subsystem performance parameters and the resulting vehicle performance are discussed in detail.

Tokarz, F.; Smith, J.R.; Cooper, J.; Bender, D.; Aceves, S.

1995-10-03T23:59:59.000Z

252

NNSA selects Lindsey VanNess as NA-00 Inaugural Employee of the Year |  

National Nuclear Security Administration (NNSA)

selects Lindsey VanNess as NA-00 Inaugural Employee of the Year | selects Lindsey VanNess as NA-00 Inaugural Employee of the Year | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > NNSA selects Lindsey VanNess as NA-00 Inaugural ... NNSA selects Lindsey VanNess as NA-00 Inaugural Employee of the Year Posted By Office of Public Affairs

253

Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5: September 15, 5: September 15, 2003 Vehicles per Thousand People: An International Comparison to someone by E-mail Share Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Facebook Tweet about Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Twitter Bookmark Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Google Bookmark Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Delicious Rank Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Digg

254

Uit de praktijk van Noordoost-Groningen  

Science Journals Connector (OSTI)

Hoe doorbreek je de spiraal die van kwaad tot erger gaat? De regio Noordoost-Groningen heeft al jaren lang te maken met...

René van der Most

2014-04-01T23:59:59.000Z

255

1268 Huisarts Krijgt Waarschuwing Niet Van Tafel  

Science Journals Connector (OSTI)

Volgens het Centraal Tuchtcollege (CT) voor de Gezondheidszorg heeft een huisarts van een huisartsenpost uit Noord-Limburg terecht een officiële waarschuwing gekregen wegens het verkeerd inschatt...

   

2006-09-01T23:59:59.000Z

256

Vehicle Technologies Office: Favorites  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Favorites to someone by Favorites to someone by E-mail Share Vehicle Technologies Office: Favorites on Facebook Tweet about Vehicle Technologies Office: Favorites on Twitter Bookmark Vehicle Technologies Office: Favorites on Google Bookmark Vehicle Technologies Office: Favorites on Delicious Rank Vehicle Technologies Office: Favorites on Digg Find More places to share Vehicle Technologies Office: Favorites on AddThis.com... Favorites #248 Top Ten Net Petroleum Importing Countries, 2000 December 23, 2002 #246 U.S. Oil Imports - Top 10 Countries of Origin December 9, 2002 #244 Sport Utility Vehicle Spotlight November 25, 2002 #243 Fuel Economy Leaders for 2003 Model Year Light Trucks November 18, 2002 #242 Fuel Economy Leaders for 2003 Model Year Cars November 11, 2002 #238 Automobile and Truck Population by Vehicle Age, 2001 October 14, 2002

257

Vehicle Technologies Office: Partners  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Partners to someone by Partners to someone by E-mail Share Vehicle Technologies Office: Partners on Facebook Tweet about Vehicle Technologies Office: Partners on Twitter Bookmark Vehicle Technologies Office: Partners on Google Bookmark Vehicle Technologies Office: Partners on Delicious Rank Vehicle Technologies Office: Partners on Digg Find More places to share Vehicle Technologies Office: Partners on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness Workforce Development Plug-in Electric Vehicle Basics Partners The interactive map below highlights Workplace Charging Challenge Partners across the country who are installing plug-in electric vehicle charging infrastructure for their employees. Select a worksite to learn more about

258

Vehicle Technologies Office: News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News News Site Map Printable Version Share this resource Send a link to Vehicle Technologies Office: News to someone by E-mail Share Vehicle Technologies Office: News on Facebook Tweet about Vehicle Technologies Office: News on Twitter Bookmark Vehicle Technologies Office: News on Google Bookmark Vehicle Technologies Office: News on Delicious Rank Vehicle Technologies Office: News on Digg Find More places to share Vehicle Technologies Office: News on AddThis.com... Vehicle Technologies News Blog Newsletters Information for Media Subscribe to News Updates News December 18, 2013 USDA Offers $118 Million for Renewable Energy, Smart Grid Projects The U.S. Department of Agriculture (USDA) announced $73 million in funding for renewable energy projects and $45 million for smart grid technology as

259

Social networking in vehicles  

E-Print Network [OSTI]

In-vehicle, location-aware, socially aware telematic systems, known as Flossers, stand to revolutionize vehicles, and how their drivers interact with their physical and social worlds. With Flossers, users can broadcast and ...

Liang, Philip Angus

2006-01-01T23:59:59.000Z

260

Electric Vehicle Research Group  

E-Print Network [OSTI]

.................................................................................9 From diesel to electric: a new era in personnel transport for underground coal minesElectric Vehicle Research Group Annual Report 2012 #12;Table of Contents Executive Summary................................................................................8 C2-25 Electric Vehicle Drivetrain

Liley, David

Note: This page contains sample records for the topic "vehicle passenger van" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September byet al. , 1988,1989 HYDROGEN FUEL-CELL VEHICLES: TECHNICALIn the FCEV, the hydrogen fuel cell could supply the "net"

Delucchi, Mark

1992-01-01T23:59:59.000Z

262

Vehicles | Open Energy Information  

Open Energy Info (EERE)

renewable and alternative fuels. Advanced vehicles and fuels can also put the brakes on air pollution and improve our environment. At least 250 million vehicles are in use in the...

263

Advanced Vehicle Electrification  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

264

Advanced Vehicle Electrification  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

265

Consumer Vehicle Technology Data  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

266

Advanced Electric Drive Vehicles  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

267

Final report on electric vehicle activities, September 1991--October 1994  

SciTech Connect (OSTI)

The data and information collected for the Public Service Electric and Gas Company`s (PSE&G) electric vehicle demonstration program were intended to support and enhance DOE`s Electric and Hybrid Vehicle Site Operator Program. The DOE Site Operator Program is focused on the life cycle and reliability of Electric Vehicles (EVs). Of particular interest are vehicles currently available with features that are likely to be put into production or demonstrate new technology. PSE&G acquired eight GMC Electric G-Vans in 1991, and three TEVans in 1993, and conducted a program plan to test and assess the overall performance of these electric vehicles. To accomplish the objectives of DOE`s Site Operator`s test program, a manual data collection system was implemented. The manual data collection system has provided energy use and mileage data. From September 1991 to October 1994 PSE&G logged 69,368 miles on eleven test vehicles. PSE&G also demonstrated the EVs to diverse groups and associations at fifty seven various events. Included in the report are lessons learned concerning maintenance, operation, public reactions, and driver`s acceptance of the electric vehicles.

Del Monaco, J.L.; Pandya, D.A.

1995-02-01T23:59:59.000Z

268

Powertrain & Vehicle Research Centre  

E-Print Network [OSTI]

Simulation Basic Engine Test Vehicle Test Cost & Complexity Towards Final Product Lean Powertrain Development Viewing Trade-Offs and Finding Optima Realism Advanced Engine Test Vehicle Test Rolling Road Powertrain powertrain development tasks to reduce costs and time to market The vehicle powertrain is the system

Burton, Geoffrey R.

269

Energy 101: Electric Vehicles  

ScienceCinema (OSTI)

This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

None

2013-05-29T23:59:59.000Z

270

De constructie van een CQI meetinstrument: ervaringen uit de praktijk  

Science Journals Connector (OSTI)

De ontwikkeling van een CQI meetinstrument bestaat uit verschillende fasen. In dit artikel wordt ingegaan op de constructie van de vragenlijst en op de statistische analyses ten aanzien van de psychometrische ...

Jany Rademakers; Herman Sixma; Mattanja Triemstra; Olga Damman; Michelle Hendriks…

2008-08-01T23:59:59.000Z

271

Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2: October 3, 2: October 3, 2005 Household Vehicle Ownership to someone by E-mail Share Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Facebook Tweet about Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Twitter Bookmark Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Google Bookmark Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Delicious Rank Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Digg Find More places to share Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on AddThis.com... Fact #392: October 3, 2005 Household Vehicle Ownership Household vehicle ownership has changed significantly over the last 40

272

Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5: February 5, 5: February 5, 2007 Household Vehicle Miles to someone by E-mail Share Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Facebook Tweet about Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Twitter Bookmark Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Google Bookmark Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Delicious Rank Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Digg Find More places to share Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on AddThis.com... Fact #455: February 5, 2007 Household Vehicle Miles The graphs below show the average vehicle miles of travel (VMT) - daily

273

Integrating Recognition and Reconstruction for Cognitive Traffic Scene Analysis from a Moving Vehicle  

E-Print Network [OSTI]

Vehicle Bastian Leibe1 , Nico Cornelis2 , Kurt Cornelis2 , and Luc Van Gool1,2 1 ETH Zurich, Switzerland locations at which an inadvertent child might suddenly enter the street. As most of the child's body, and rapidly changing lighting conditions between shadowed and brightly lit areas. In addition, geometric scene

274

Learning from Demonstrations Jur van den Berg  

E-Print Network [OSTI]

Jur van den Berg Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA berg@cs.unc.edu Mark Overmars Department of Information and Computing Sciences://ijr.sagepub.com cles (Fiorini and Shiller 19981 Vasquez et al. 20041 van den Berg et al. 20061 Zucker et al. 2007

van den Berg, Jur

275

Corridorontwikkeling in Suriname. De potentie van de as Paramaribo - Zanderij.  

E-Print Network [OSTI]

??Er zijn drie grote bedreigingen voor de verdere ontwikkeling van Paramaribo: er is ruimtegebrek, er is sprake van structurele verkeerscongestie en frequent wateroverlast. Een oplossing… (more)

Kooijmans, J.

2013-01-01T23:59:59.000Z

276

Vehicle Technologies Office: Deployment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deployment Deployment Site Map Printable Version Share this resource Send a link to Vehicle Technologies Office: Deployment to someone by E-mail Share Vehicle Technologies Office: Deployment on Facebook Tweet about Vehicle Technologies Office: Deployment on Twitter Bookmark Vehicle Technologies Office: Deployment on Google Bookmark Vehicle Technologies Office: Deployment on Delicious Rank Vehicle Technologies Office: Deployment on Digg Find More places to share Vehicle Technologies Office: Deployment on AddThis.com... Energy Policy Act (EPAct) Clean Cities Educational Activities Deployment Our nation's energy security depends on the efficiency of our transportation system and on which fuels we use. Transportation in the United States already consumes much more oil than we produce here at home

277

Vehicle Technologies Office: Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Batteries to someone by Batteries to someone by E-mail Share Vehicle Technologies Office: Batteries on Facebook Tweet about Vehicle Technologies Office: Batteries on Twitter Bookmark Vehicle Technologies Office: Batteries on Google Bookmark Vehicle Technologies Office: Batteries on Delicious Rank Vehicle Technologies Office: Batteries on Digg Find More places to share Vehicle Technologies Office: Batteries on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Batteries Battery Systems Applied Battery Research Long-Term Exploratory Research Ultracapacitors Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Materials Technologies Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various

278

Vehicles | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Vehicles Vehicles Vehicles EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. Image of three semi truck cabs. The one on the left is yellow, the middle is green, and the far right truck is red. The U.S. Department of Energy (DOE) supports the development and deployment of advanced vehicle technologies, including advances in electric vehicles, engine efficiency, and lightweight materials. Since 2008, the Department of

279

Making the case for direct hydrogen storage in fuel cell vehicles  

SciTech Connect (OSTI)

Three obstacles to the introduction of direct hydrogen fuel cell vehicles are often states: (1) inadequate onboard hydrogen storage leading to limited vehicle range; (2) lack of an hydrogen infrastructure, and (3) cost of the entire fuel cell system. This paper will address the first point with analysis of the problem/proposed solutions for the remaining two obstacles addressed in other papers. Results of a recent study conducted by Directed Technologies Inc. will be briefly presented. The study, as part of Ford Motor Company/DOE PEM Fuel Cell Program, examines multiple pure hydrogen onboard storage systems on the basis of weight, volume, cost, and complexity. Compressed gas, liquid, carbon adsorption, and metal hydride storage are all examined with compressed hydrogen storage at 5,000 psia being judged the lowest-risk, highest benefit, near-term option. These results are combined with recent fuel cell vehicle drive cycle simulations to estimate the onboard hydrogen storage requirement for full vehicle range (380 miles on the combined Federal driving schedule). The results indicate that a PNGV-like vehicle using powertrain weights and performance realistically available by the 2004 PNGV target data can achieve approximate fuel economy equivalent to 100 mpg on gasoline (100 mpg{sub eq}) and requires storage of approximately 3.6 kg hydrogen for full vehicle storage quantity allows 5,000 psia onboard storage without altering the vehicle exterior lines or appreciably encroaching on the passenger or trunk compartments.

James, B.D.; Thomas, C.E.; Baum, G.N.; Lomas, F.D. Jr.; Kuhn, I.F. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

1997-12-31T23:59:59.000Z

280

Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1: January 8, 1: January 8, 2007 Household Vehicle Trips to someone by E-mail Share Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Facebook Tweet about Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Twitter Bookmark Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Google Bookmark Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Delicious Rank Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Digg Find More places to share Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on AddThis.com... Fact #451: January 8, 2007 Household Vehicle Trips In a day, the average household traveled 32.7 miles in 2001 (the latest

Note: This page contains sample records for the topic "vehicle passenger van" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3: March 8, 2010 3: March 8, 2010 Vehicle Occupancy Rates to someone by E-mail Share Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Facebook Tweet about Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Twitter Bookmark Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Google Bookmark Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Delicious Rank Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Digg Find More places to share Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on AddThis.com... Fact #613: March 8, 2010 Vehicle Occupancy Rates The average number of persons occupying a car is 1.59 and has not changed

282

Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FY 2008 DOE Vehicle FY 2008 DOE Vehicle Technologies Office Annual Merit Review to someone by E-mail Share Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Facebook Tweet about Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Twitter Bookmark Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Google Bookmark Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Delicious Rank Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Digg Find More places to share Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on AddThis.com... Publications

283

Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8: February 16, 8: February 16, 2009 Transit Vehicle Age and Cost to someone by E-mail Share Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on Facebook Tweet about Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on Twitter Bookmark Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on Google Bookmark Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on Delicious Rank Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on Digg Find More places to share Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on AddThis.com... Fact #558: February 16, 2009 Transit Vehicle Age and Cost

284

Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3: January 22, 3: January 22, 2007 Household Vehicle Ownership to someone by E-mail Share Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Facebook Tweet about Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Twitter Bookmark Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Google Bookmark Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Delicious Rank Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Digg Find More places to share Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on AddThis.com... Fact #453: January 22, 2007 Household Vehicle Ownership

285

Project Information Form Project Title White Paper on the Future of Passenger Travel Demand in the United  

E-Print Network [OSTI]

each agency or organization) DOT $26,383.66 Total Project Cost $26,383.66 Agency ID or Contract NumberProject Information Form Project Title White Paper on the Future of Passenger Travel Demand Project This white paper will summarize recent research findings pertaining to future passenger travel

California at Davis, University of

286

Integrated PEV Charging Solutions and Reduced Energy for Occupant Comfort (Brochure), Vehicle Testing and Integration Facility (VTIF)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vehicle Testing and Integration Facility Vehicle Testing and Integration Facility Integrated PEV Charging Solutions and Reduced Energy for Occupant Comfort Plug-in electric vehicles (PEVs) offer the opportunity to shift transportation energy demands from petroleum to electricity, but broad adoption will require integration with other systems. While automotive experts work to reduce the cost of PEVs, fossil- fueled cars and trucks continue to burn hundreds of billions of gallons of petroleum each year-not only to get from point A to point B, but also to keep passengers comfortable with air condi- tioning and heat. At the National Renewable Energy Laboratory (NREL), three instal- lations form a research laboratory known as the Vehicle Testing and Integration Facility (VTIF). At the VTIF, engineers are develop-

287

Vehicle Technologies Office: Key Activities in Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Activities in Vehicles Activities in Vehicles We conduct work in four key areas to develop and deploy vehicle technologies that reduce the use of petroleum while maintaining or improving performance, power, and comfort. Research and development (R&D); testing and analysis; government and community stakeholder support; and education help people access and use efficient, clean vehicles that meet their transportation needs. Researcher loads a sample mount of battery cathode materials for X-ray diffraction, an analysis tool for obtaining information on the crystallographic structure and composition of materials. Research and Development of New Technologies Develop durable and affordable advanced batteries as well as other forms of energy storage. Improve the efficiency of combustion engines.

288

Commercial viability of hybrid vehicles : best household use and cross national considerations.  

SciTech Connect (OSTI)

Japanese automakers have introduced hybrid passenger cars in Japan and will soon do so in the US. In this paper, we report how we used early computer simulation model results to compare the commercial viability of a hypothetical near-term (next decade) hybrid mid-size passenger car configuration under varying fuel price and driving patterns. The fuel prices and driving patterns evaluated are designed to span likely values for major OECD nations. Two types of models are used. One allows the ''design'' of a hybrid to a specified set of performance requirements and the prediction of fuel economy under a number of possible driving patterns (called driving cycles). Another provides an estimate of the incremental cost of the hybrid in comparison to a comparably performing conventional vehicle. In this paper, the models are applied to predict the NPV cost of conventional gasoline-fueled vehicles vs. parallel hybrid vehicles. The parallel hybrids are assumed to (1) be produced at high volume, (2) use nickel metal hydride battery packs, and (3) have high-strength steel bodies. The conventional vehicle also is assumed to have a high-strength steel body. The simulated vehicles are held constant in many respects, including 0-60 time, engine type, aerodynamic drag coefficient, tire rolling resistance, and frontal area. The hybrids analyzed use the minimum size battery pack and motor to meet specified 0-60 times. A key characteristic affecting commercial viability is noted and quantified: that hybrids achieve the most pronounced fuel economy increase (best use) in slow, average-speed, stop-and-go driving, but when households consistently drive these vehicles under these conditions, they tend to travel fewer miles than average vehicles. We find that hours driven is a more valuable measure than miles. Estimates are developed concerning hours of use of household vehicles versus driving cycle, and the pattern of minimum NPV incremental cost (or benefit) of selecting the hybrid over the conventional vehicle at various fuel prices is illustrated. These results are based on data from various OECD motions on fuel price, annual miles of travel per vehicle, and driving cycles assumed to be applicable in those nations. Scatter in results plotted as a function of average speed, related to details of driving cycles and the vehicles selected for analysis, is discussed.

Santini, D. J.; Vyas, A. D.

1999-07-16T23:59:59.000Z

289

De grote droge tijd. Het Nederlandse Surinamebeleid ten tijde van de opschorting van het ontwikkelingssamenwerkingsverdrag, 1982-1988.  

E-Print Network [OSTI]

??In deze scriptie wordt aandacht besteed aan de vraag in hoeverre het Nederlandse Surinamebeleid ten tijde van de opschorting van het ontwikkelingssamenwerkingsverdrag tussen beide landen… (more)

Verheij, Elise

2007-01-01T23:59:59.000Z

290

Risicofactoren van IT-outsourcing; welke invloed heeft het offshoren door de IT-dienstverlener op de risicofactoren van de uitbesteder?.  

E-Print Network [OSTI]

??Het onderwerp van dit afstudeerverslag voor de Masteropleiding Business Processes and IT aan de Open Universiteit Nederland betreft de risicofactoren van IT-outsourcing. De groei van… (more)

Verboon, Margreet

2008-01-01T23:59:59.000Z

291

Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

39: October 6, 39: October 6, 2008 Light Vehicle Production by State to someone by E-mail Share Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Facebook Tweet about Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Twitter Bookmark Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Google Bookmark Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Delicious Rank Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Digg Find More places to share Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on AddThis.com... Fact #539: October 6, 2008

292

Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1: January 23, 1: January 23, 2012 Top Vehicles around the Globe, 2011 to someone by E-mail Share Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on Facebook Tweet about Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on Twitter Bookmark Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on Google Bookmark Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on Delicious Rank Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on Digg Find More places to share Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on AddThis.com...

293

Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Progress Report 4 Progress Report for Heavy Vehicle Propulsion Materials Program to someone by E-mail Share Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Facebook Tweet about Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Twitter Bookmark Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Google Bookmark Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Delicious Rank Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Digg Find More places to share Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on

294

Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9: May 10, 2004 9: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison to someone by E-mail Share Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on Facebook Tweet about Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on Twitter Bookmark Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on Google Bookmark Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on Delicious Rank Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on Digg Find More places to share Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on

295

Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

300: December 29, 300: December 29, 2003 World Vehicle Production by Country/Region to someone by E-mail Share Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on Facebook Tweet about Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on Twitter Bookmark Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on Google Bookmark Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on Delicious Rank Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on Digg Find More places to share Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on

296

Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Progress Report 3 Progress Report for Heavy Vehicle Propulsion Materials Program to someone by E-mail Share Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Facebook Tweet about Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Twitter Bookmark Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Google Bookmark Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Delicious Rank Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Digg Find More places to share Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on

297

Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5: January 11, 5: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 to someone by E-mail Share Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Facebook Tweet about Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Twitter Bookmark Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Google Bookmark Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Delicious Rank Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Digg Find More places to share Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on AddThis.com...

298

Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8: November 23, 8: November 23, 2009 Hybrid Vehicle Sales by Model to someone by E-mail Share Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Facebook Tweet about Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Twitter Bookmark Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Google Bookmark Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Delicious Rank Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Digg Find More places to share Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on AddThis.com... Fact #598: November 23, 2009

299

Vehicle Technologies Office: Favorites  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Favorites Favorites #248 Top Ten Net Petroleum Importing Countries, 2000 December 23, 2002 #246 U.S. Oil Imports - Top 10 Countries of Origin December 9, 2002 #244 Sport Utility Vehicle Spotlight November 25, 2002 #243 Fuel Economy Leaders for 2003 Model Year Light Trucks November 18, 2002 #242 Fuel Economy Leaders for 2003 Model Year Cars November 11, 2002 #238 Automobile and Truck Population by Vehicle Age, 2001 October 14, 2002 #234 2003 Model Year Alternative Fuel Vehicles September 16, 2002 #233 Vehicles per Thousand People: U.S. Compared to Other Countries September 9, 2002 #230 Hybrid Electric Vehicles in the United States August 19, 2002 #229 Medium and Heavy Truck Sales August 12, 2002 #228 New Light Vehicle Sales Shares, 1976-2001 August 5, 2002

300

CMVRTC: Overweight Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

overweight vehicle data collection overweight vehicle data collection scale The Federal Motor Carrier Safety Administration requested information regarding overweight and oversized vehicle traffic entering inspection stations (ISs) in order to develop strategies for future research efforts and possibly help guide regulatory issues involving overweight commercial motor vehicles (CMVs). For a period of one month, inspection stations in Knox County and Greene County, Tennessee, recorded overweight and oversized vehicles that entered these ISs. During this period, 435 CMVs were recorded using an electronic form filled out by enforcement personnel at the IS. Of the 435 CMVs recorded, 381 had weight information documented with them. The majority (52.2%) of the vehicles recorded were five-axle combination

Note: This page contains sample records for the topic "vehicle passenger van" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Vehicle Technologies Office: Lubricants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lubricants Lubricants As most vehicles are on the road for more than 15 years before they are retired, investigating technologies that will improve today's vehicles is essential. Because 11.5 percent of fuel energy is consumed by engine friction, decreasing this friction through lubricants can lead to substantial improvements in the fuel economy of current vehicles, without needing to wait for the fleet to turn over. In fact, a 1 percent fuel savings in the existing vehicle fleet possible through lubricants could save 97 thousand barrels of oil a day or $3.5 billion a year. Because of these benefits, the Vehicle Technologies Office supports research on lubricants that can improve the efficiency of internal combustion engine vehicles, complementing our work on advanced combustion engine technology.

302

Vehicle underbody fairing  

DOE Patents [OSTI]

A vehicle underbody fairing apparatus for reducing aerodynamic drag caused by a vehicle wheel assembly, by reducing the size of a recirculation zone formed under the vehicle body immediately downstream of the vehicle wheel assembly. The fairing body has a tapered aerodynamic surface that extends from a front end to a rear end of the fairing body with a substantially U-shaped cross-section that tapers in both height and width. Fasteners or other mounting devices secure the fairing body to an underside surface of the vehicle body, so that the front end is immediately downstream of the vehicle wheel assembly and a bottom section of the tapered aerodynamic surface rises towards the underside surface as it extends in a downstream direction.

Ortega, Jason M. (Pacifica, CA); Salari, Kambiz (Livermore, CA); McCallen, Rose (Livermore, CA)

2010-11-09T23:59:59.000Z

303

Advanced Technology Vehicle Testing  

SciTech Connect (OSTI)

The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

James Francfort

2004-06-01T23:59:59.000Z

304

Accomodating Electric Vehicles  

E-Print Network [OSTI]

Accommodating Electric Vehicles Dave Aasheim 214-551-4014 daasheim@ecotality.com A leader in clean electric transportation and storage technologies ECOtality North America Overview Today ? Involved in vehicle electrification... ECOtality North America Overview Today ?Warehouse Material Handling ? Lift trucks ? Pallet Jacks ? Over 200 Customers ? Over 5,000 Installations ECOtality North America Overview Today ? 1990?s involved in EV1 ? EV Chargers ? Vehicle & battery...

Aasheim, D.

2011-01-01T23:59:59.000Z

305

Motor vehicle noise emission while accelerating up a hill  

Science Journals Connector (OSTI)

A noise survey was performed in 1975 to determine motor vehiclenoise emissions while accelerating up a grade. A?weighted sound levels were measured at locations 50 ft from urban streets with grades carrying between 4.3% and 9.6%. The recorded sound level data are presented as a function of grade for five classes of vechicles: passenger cars light trucks (GVW: under 8000 lb) light?medium trucks (GVW: 8–14 000 lb) medium trucks (GVW: 14–24 000 lb) and heavy trucks (GVW: over 24 000 lb). Statistical distributions of the recorded sound level data are presented for each class of vehicle and compared to level street acceleration data measured in 1974 [Michael F. Nechvatal and Robert D. Hellweg Jr. J. Acoust. Soc. Am. 56 S34(A) (1974)].

Robert D Hellweg Jr.; Michael F. Nechvatal

1975-01-01T23:59:59.000Z

306

Quadrennial Technology Review Vehicle Efficiency and Electrification...  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Efficiency and Electrification Workshop Documents Quadrennial Technology Review Vehicle Efficiency and Electrification Workshop Documents QTR Vehicle Efficiency and...

307

Advanced Technology Vehicles Manufacturing Incentive Program...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program A fact sheet detailling the advanced technology vehicles...

308

Hybrid Vehicle Technology - Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

* Batteries * Batteries * Modeling * Testing Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Hybrid Vehicle Technology revolutionize transportation Argonne's Research Argonne researchers are developing and testing various hybrid electric vehicles (HEVs) and their components to identify the technologies, configurations, and engine control strategies that provide the best combination of high fuel economy and low emissions. Vehicle Validation Argonne also serves as the lead laboratory for hardware-in-the-loop (HIL) and technology validation for the U.S. Department of Energy (DOE). HIL is a

309

Advanced Vehicle Electrification  

Broader source: Energy.gov [DOE]

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

310

Vehicle Modeling and Simulation  

Broader source: Energy.gov [DOE]

Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

311

Flex Fuel Vehicle Systems  

Broader source: Energy.gov [DOE]

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

312

Electric Vehicle Supply Equipment  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Procurement of Electric Vehicle Supply Equipment This Guidance provides a description of the types of requirements to be included in an employer's workplace charging request for...

313

Vehicle Technologies Office: Conferences  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office supports and sponsors conferences related to the Office's goals and objectives. When such conferences are planned and conference information becomes available, it...

314

Alternative Fuel Vehicle Resources  

Broader source: Energy.gov [DOE]

Alternative fuel vehicles use fuel types other than petroleum and include such fuels as electricity, ethanol, biodiesel, natural gas, hydrogen, and propane. Compared to petroleum, these...

315

Vehicle Emissions Review - 2012  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Emissions Review - 2012 Tim Johnson October 16, 2012 2 Environmental Technologies Summary * Regulations - LEVIII finalized, Tier 3? RDE in Europe developing and very...

316

Vehicle highway automation.  

E-Print Network [OSTI]

??Vehicle Highway Automation has been studied for several years but a practical system has not been possible because of technology limitations. New advances in sensing… (more)

Challa, Dinesh Kumar

2009-01-01T23:59:59.000Z

317

Vehicles | Department of Energy  

Energy Savers [EERE]

Calculator is an interactive tool that helps you plan a route, pick a car and estimate a fuel costs. Subtopics Alternative Fuel Vehicles Batteries Hydrogen & Fuel Cells Bioenergy...

318

Integrated Vehicle Thermal Management  

Broader source: Energy.gov [DOE]

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

319

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

. . Trends in Household Vehicle Stock The 1991 RTECS counted more than 150 million vehicles in use by U.S. households. This chapter examines recent trends in the vehicle stock, as measured by the RTECS and other reputable vehicle surveys. It also provides some details on the type and model year of the household vehicle stock, and identifies regional differences in vehicle stock. Because vehicles are continuously being bought and sold, this chapter also reports findings relating to turnover of the vehicle stock in 1991. Finally, it examines the average vehicle stock in 1991 (which takes into account the acquisition and disposal of household vehicles over the course of the year) and identifies variations in the average number of household vehicles based on differences in household characteristics. Number of Household Vehicles Over the past 8 years, the stock of household vehicles has

320

Propane vehicles : status, challenges, and opportunities.  

SciTech Connect (OSTI)

Propane as an auto fuel has a high octane value and has key properties required for spark-ignited internal combustion engines. To operate a vehicle on propane as either a dedicated fuel or bi-fuel (i.e., switching between gasoline and propane) vehicle, only a few modifications must be made to the engine. Until recently propane vehicles have commonly used a vapor pressure system that was somewhat similar to a carburetion system, wherein the propane would be vaporized and mixed with combustion air in the intake plenum of the engine. This leads to lower efficiency as more air, rather than fuel, is inducted into the cylinder for combustion (Myers 2009). A newer liquid injection system has become available that injects propane directly into the cylinder, resulting in no mixing penalty because air is not diluted with the gaseous fuel in the intake manifold. Use of a direct propane injection system will improve engine efficiency (Gupta 2009). Other systems include the sequential multi-port fuel injection system and a bi-fuel 'hybrid' sequential propane injection system. Carbureted systems remain in use but mostly for non-road applications. In the United States a closed-loop system is used in after-market conversions. This system incorporates an electronic sensor that provides constant feedback to the fuel controller to allow it to measure precisely the proper air/fuel ratio. A complete conversion system includes a fuel controller, pressure regulator valves, fuel injectors, electronics, fuel tank, and software. A slight power loss is expected in conversion to a vapor pressure system, but power can still be optimized with vehicle modifications of such items as the air/fuel mixture and compression ratios. Cold start issues are eliminated for vapor pressure systems since the air/fuel mixture is gaseous. In light-duty propane vehicles, the fuel tank is typically mounted in the trunk; for medium- and heavy-duty vans and trucks, the tank is located under the body of the vehicle. Propane tanks add weight to a vehicle and can slightly increase the consumption of fuel. On a gallon-to-gallon basis, the energy content of propane is 73% that of gasoline, thus requiring more propane fuel to travel an equivalent distance, even in an optimized engine (EERE 2009b).

Rood Werpy, M.; Burnham, A.; Bertram, K.; Energy Systems

2010-06-17T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle passenger van" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Koninklijk Nederlands Meteorologisch Instituut Klimaat van Nederland 3  

E-Print Network [OSTI]

windenergie heeft het KNMI in 1983 een publikatie "Windklimaat van Nederland" uitgegeven. Als logisch vervolg

Stoffelen, Ad

322

2012 U.S. Vehicle Analysis  

E-Print Network [OSTI]

Electric Vehicles …………………………………………………………. Dieselperformance of electric vehicles Diesel Vehicle From Tableelectric vehicles ……………………… 3.15: Emission and fuel efficiency performance of diesel

Lam, Ho Yeung Michael

2012-01-01T23:59:59.000Z

323

Ozone levels in passenger cabins of commercial aircraft on North American  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ozone levels in passenger cabins of commercial aircraft on North American Ozone levels in passenger cabins of commercial aircraft on North American and transoceanic routes Title Ozone levels in passenger cabins of commercial aircraft on North American and transoceanic routes Publication Type Journal Article Year of Publication 2008 Authors Bhangar, Seema, Shannon Cowlin, Brett C. Singer, Richard G. Sextro, and William W. Nazaroff Journal Environmental Science and Technology Volume 42 Issue 11 Pagination 3938-43 Abstract Ozone levels in airplane cabins, and factors that influence them, were studied on northern hemisphere commercial passenger flights on domestic U.S., transatlantic, and transpacific routes. Real-time data from 76 flights were collected in 2006-2007 with a battery-powered UV photometric monitor. Sample mean ozone level, peak-hour ozone level, and flight-integrated ozone exposures were highly variable across domestic segments (N = 68), with ranges of 100 ppbv) ozone levels on domestic flights were associated with winter-spring storms that are linked to enhanced exchange between the lower stratosphere and the upper troposphere.

324

Mobile Journey Planning for Bus Passengers Desmond Rainsford and William A Mackaness  

E-Print Network [OSTI]

1 Mobile Journey Planning for Bus Passengers Desmond Rainsford and William A Mackaness Geography. Developments in mobile technology offer new ways of supporting mobile decision making. One application domain in the area of Location Based Services (LBS) is the delivery of journey plans to a mobile device. Few journey

325

An investigation of the information needs of air passengers traveling to the airport  

E-Print Network [OSTI]

, 1998). As the popularity of air travel continues to increase, the number of trips to and from the airport will inevitably rise also. Passengers will need accurate information about all modes on a total trip basis. This includes the modes of access...

Burdette, Debra Arlene

2000-01-01T23:59:59.000Z

326

Development of Improved Traveler Survey Methods for High-Speed Intercity Passenger Rail Planning  

E-Print Network [OSTI]

High-speed passenger rail is seen by many in the U.S. transportation policy and planning communities as an ideal solution for fast, safe, and resource-efficient mobility in high-demand intercity corridors. To expand the body of knowledge for high...

Sperry, Benjamin

2012-07-16T23:59:59.000Z

327

Comparison of PM emissions from a gasoline direct injected (GDI) vehicle and a port fuel injected (PFI) vehicle measured by electrical low pressure impactor (ELPI) with two fuels: Gasoline and M15 methanol gasoline  

Science Journals Connector (OSTI)

Two Euro 4 gasoline passenger vehicles (one gasoline direct injected vehicle and one port fuel injected vehicle) were tested over the cold start New European Driving Cycle (NEDC). Each vehicle was respectively fueled with gasoline and M15 methanol gasoline. Particle number concentrations were measured by the electrical low pressure impactor (ELPI). Particle masses were measured by gravimetric method and estimated from the number distributions using two density distributions (one is constant with the particle size and one is power law related with the size). The first 7 stages of ELPI were used for estimation. The results show that for each vehicle, PM masses measured by gravimetric method, the total PM numbers measured by ELPI and estimated PM masses for M15 are lower than those for gasoline. For each kind of fuel, PM masses by two methods and total PM numbers from the GDI vehicle are higher than those from the PFI one. PM number distribution curves of the four vehicle/fuel combinations are similar. All decline gradually and the maximum number of each curve occurs in the first stage. More than 99.9% numbers locate in the first 8 stages of which diameters are less than 1 ?m. PM number emissions correlate well with the acceleration of the two vehicles. The estimated particle masses were much lower than the gravimetric measurements.

Bin Liang; Yunshan Ge; Jianwei Tan; Xiukun Han; Liping Gao; Lijun Hao; Wentao Ye; Peipei Dai

2013-01-01T23:59:59.000Z

328

Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4: January 26, 4: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions to someone by E-mail Share Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Facebook Tweet about Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Twitter Bookmark Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Google Bookmark Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Delicious Rank Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Digg Find More places to share Vehicle Technologies Office: Fact #304:

329

Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6: December 2, 6: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 to someone by E-mail Share Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Facebook Tweet about Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Twitter Bookmark Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Google Bookmark Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Delicious Rank Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Digg Find More places to share Vehicle Technologies Office: Fact #806:

330

Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8: April 12, 8: April 12, 2010 Vehicles per Household and Other Demographic Statistics to someone by E-mail Share Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Facebook Tweet about Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Twitter Bookmark Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Google Bookmark Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Delicious Rank Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Digg Find More places to share Vehicle Technologies Office: Fact #618:

331

Vehicle Technologies Office: 2010 Vehicle and Systems Simulation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Office: 2010 Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and Testing R&D Annual Progress...

332

Vehicle Technologies Office: 2012 Vehicle and Systems Simulation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2 Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2012 Vehicle and Systems Simulation and Testing R&D Annual Progress Report FY...

333

Vehicle Technologies Office: 2013 Vehicle and Systems Simulation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

3 Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2013 Vehicle and Systems Simulation and Testing R&D Annual Progress Report FY...

334

Vehicle Technologies Office: 2011 Vehicle and Systems Simulation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2011 Vehicle and Systems Simulation and Testing R&D Annual Progress Report FY...

335

Vehicle Technologies Office Merit Review 2014: In-Vehicle Evaluation...  

Broader source: Energy.gov (indexed) [DOE]

In-Vehicle Evaluation of Lower-Energy Energy Storage System (LEESS) Devices Vehicle Technologies Office Merit Review 2014: In-Vehicle Evaluation of Lower-Energy Energy Storage...

336

Samenstelling IPCC-evaluatiecommissie bekend De InterAcademy Council, het wereldwijde adviesorgaan van de academies van wetenschappen,  

E-Print Network [OSTI]

werkwijze van het IPCC gaat door- lichten. Voorzitter is de econoom Harold T. Shapiro, oud-president van commissie bestaat uit: Harold T. Shapiro, voorzitter. Was, naast president van Princeton en van de Resources for the Future, Washington D.C., en voormalig `lead economist' bij de Wereldbank. Jingyun Fang

Haak, Hein

337

Blog Feed: Vehicles | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

May 17, 2013 May 17, 2013 Zero Emission Bay Area (ZEBA) -- a group of regional transit agencies in Northern California -- operates twelve, zero-emission, fuel cell buses in real-world service throughout the Bay Area's diverse communities and landscapes. | Photo courtesy of Leslie Eudy, NREL. Top 11 Things You Didn't Know About Fuel Cells Test your fuel cell knowledge with these little-known facts. May 15, 2013 Mississippi's Community Counseling Services converted 29 vans to run on propane, saving more than $1.50 per gallon on fuel or more than $60,000 a year. | Photo courtesy of Community Counseling Services. Clean Cities Helps Nonprofit Cut Fuel Costs with Propane Switching to propane vehicles is helping a Mississippi nonprofit save money and maintain key services.

338

Glossary Term - Van de Graaff Generator  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Uranus Uranus Previous Term (Uranus) Glossary Main Index Next Term (Vanadis) Vanadis Van de Graaff Generator A Van de Graaff generator discharges to a grounded metal sphere. A Van de Graaff generator is a device used to create a high voltage static charge. In this Van de Graaff generator, an electric motor pulls a latex belt over a felt covered pulley. Electrons are transferred from the felt to the belt as the belt pulls away from the pulley. The electrons ride the belt to the upper dome, where a pick-up wire transfers them from the belt to the dome. Each electron carries a negative charge and, since like charges repel, the electrons on the dome attempt to get as far away from each other as possible. At some point, too many electrons are placed on the dome. When this occurs the electrons attempt to reach the earth by leaping

339

Heidi VanGenderen | Department of Energy  

Office of Environmental Management (EM)

where she was part of the policy team. Prior to ACORE, she served as a Senior Energy Advisor for the Worldwatch Institute. A Colorado native, Ms. VanGenderen previously served as...

340

CURRICULUM VITAE James Van Loan Haxby  

E-Print Network [OSTI]

CURRICULUM VITAE James Van Loan Haxby Personal Data Status Evans Family Distinguished Professor Director, Center for Cognitive: 603-646-0038 email: james.v.haxby@dartmouth.edu Professor Center

Bucci, David J.

Note: This page contains sample records for the topic "vehicle passenger van" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Behavior Cognition as Movement Van Parunak  

E-Print Network [OSTI]

Behavior Cognition as Movement (CAM) Van Parunak Sven Brueckner 1 #12;Overview · Motivation Coordination Multiple Ghosts per Avatar Alternative Futures H. V. D. Parunak and S. Brueckner. Concurrent

342

De aantrekkelijkheid van Oost-Groningen  

Science Journals Connector (OSTI)

Een huisartsentekort is in de meer afgelegen streken van Nederland -en in de grote steden – nu al voelbaar. Afgelegen gebieden zouden voor huisartsen niet aantrekkelijk zijn. In landen met echt afgelegen strek...

   

2001-09-01T23:59:59.000Z

343

COMMUNITYMAGAZINE VAN DE UGENT De duurzaamheidsvisie  

E-Print Network [OSTI]

;2 DURF DENKEN 3D-PRINTING `CREATIVITEIT WORDT WERKELIJKHEID, LAAG NA LAAG' #12;3 Studenten laten maken. We onderzoeken nu ook hoe we 3D-printing kunnen inzetten in de productie van kleine reeksen

Gent, Universiteit

344

NREL: Vehicles and Fuels Research - Hydraulic Hybrid Fleet Vehicle...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydraulic Hybrid Fleet Vehicle Testing How Hydraulic Hybrid Vehicles Work Hydraulic hybrid systems can capture up to 70% of the kinetic energy that would otherwise be lost during...

345

Challenges in Electric Vehicle Adoption and Vehicle-Grid Integration.  

E-Print Network [OSTI]

??With rapid innovation in vehicle and battery technology and strong support from governmental bodies and regulators, electric vehicles (EV) sales are poised to rise. While… (more)

Xi, Xiaomin

2013-01-01T23:59:59.000Z

346

Vehicle Technologies Market Report  

E-Print Network [OSTI]

· Diesel comprised 73% of the class 3-8 trucks sold in 2010, down from 84% in 2006 · Class 8 combination 2011 · There are more than 4,400 electric vehicle charging stations throughout the nation · Single wide stop sites across the country to reduce truck idling time Policy · Plug-in hybrids and electric vehicle

347

> 070131-073Vehicle  

E-Print Network [OSTI]

-how developed with the design ofthe ROAZ ASV [3] [4]. Power is provided by electric batteries. The computer> 070131-073Vehicle for Network Centric Operations H. Ferreira-The design and development of the Swordfish Autonomous Surface Vehicle (ASV) system is discussed. Swordfish

Marques, Eduardo R. B.

348

Zero emission passenger vehicles in tyhhe [sic] United States, anticipating future automobile industry trends based on stakeholder interview analysis  

E-Print Network [OSTI]

My personal interest in automobile evolution is the primary motivation for this thesis. My engineering education and a fifteen year career in professional automobile racing were also inspired by personal passion for ...

German, Thomas M

2012-01-01T23:59:59.000Z

349

CMVRTC: Overweight Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Heavy and overweight vehicle brake testing for combination five-axle Heavy and overweight vehicle brake testing for combination five-axle tractor-flatbed scale The Federal Motor Carrier Safety Administration, in coordination with the Federal Highway Administration, sponsored the Heavy and Overweight Vehicle Brake Testing (HOVBT) program in order to provide information about the effect of gross vehicle weight (GVW) on braking performance. Because the Federal Motor Carrier Safety Regulations limit the number of braking system defects that may exist for a vehicle to be allowed to operate on the roadways, the examination of the effect of brake defects on brake performance for increased loads is also relevant. The HOVBT program seeks to provide relevant information to policy makers responsible for establishing load limits, beginning with providing test data for a

350

Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1: November 29, 1: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 to someone by E-mail Share Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 on Facebook Tweet about Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 on Twitter Bookmark Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 on Google Bookmark Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 on Delicious Rank Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 on Digg

351

Vehicle Technologies Office: Plug-in Electric Vehicle Basics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Basics Basics Plug-in electric vehicles (PEVs), which include both plug-in hybrid electric vehicles and all-electric vehicles, use electricity as either their primary fuel or to improve efficiency. Commonly Used PEV Terms All-electric vehicle (AEV) - A vehicle with plug-in capability; driving energy comes entirely from its battery. Plug-in hybrid electric vehicle (PHEV) - A vehicle with plug-in capability; driving energy can come from either its battery or a liquid fuel like gasoline, diesel, or biofuels. Plug-in electric vehicle (PEV) - Any vehicle with plug-in capability. This includes AEVs and PHEVs. Hybrid electric vehicle (HEV) - A vehicle that has an electric drive system and battery but does not have plug-in capability; driving energy comes only from liquid fuel.

352

Vehicle Technologies Office: Propulsion Systems  

Broader source: Energy.gov [DOE]

Vehicle Technologies Office research focuses much of its effort on improving vehicle fuel economy while meeting increasingly stringent emissions standards. Achieving these goals requires a...

353

Electric vehicles | Open Energy Information  

Open Energy Info (EERE)

vehicles Jump to: navigation, search TODO: add content Electric vehicles first came into existence in the mid-19th century, when electricity was among the preferred methods for...

354

Gasoline Ultra Fuel Efficient Vehicle  

Broader source: Energy.gov (indexed) [DOE]

Principal Investigator 13MY11 2011 DOE Vehicle Technologies Review Gasoline Ultra Fuel Efficient Vehicle ACE064 "This presentation does not contain any proprietary,...

355

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

homes, pickup trucks, and jeeps or similar vehicles. See Vehicle. Average Household Energy Expenditures: A ratio estimate defined as the total household energy expenditures for...

356

Aberdeen plans extra hydrogen station, plus fuel cell vans and cars  

Science Journals Connector (OSTI)

A second hydrogen refueling and storage station could be built in Aberdeen, Scotland according to a local media report in The Press and Journal. It would become part of the Aberdeen Hydrogen Project (H2 Aberdeen), which aims to establish a supply chain based around hydrogen product and service development in the city. The city council is also considering the purchase of additional hydrogen vehicles, in the form of Renault vans with fuel cell range-extenders as well as Hyundai ix35 Fuel Cell cars.

2014-01-01T23:59:59.000Z

357

Volwassenheid BPM-vaardigheden - De ontwikkeling en beoordeling van een zelfevaluatiemethode.  

E-Print Network [OSTI]

??Business Process Management (BPM) is het integraal beheren van de processen van de organisatie. Sommige organisaties zullen verder zijn met de ontwikkeling van hun BPM-vaardigheden… (more)

Geel, Wilma van

2012-01-01T23:59:59.000Z

358

Textiel in context : een analyse van archeologische textielvondsten uit 16e-eeuws Groningen.  

E-Print Network [OSTI]

??In de beginjaren van de Nederlandse Opstand, van 1568 tot 1575, liet de Spaanse hertog van Alva in de stad Groningen een enorm fort bouwen… (more)

Zimmerman, Johanna Anna

2007-01-01T23:59:59.000Z

359

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

off passengers. Drivers of gasoline powered passenger vehicles are encouraged to limit engine warm-up time to 30 seconds and drivers of diesel powered passenger vehicles, buses,...

360

Advanced Vehicle Electrification and Transportation Sector Electrifica...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Advanced Vehicle Electrification and Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector...

Note: This page contains sample records for the topic "vehicle passenger van" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Vehicle Technologies Office Merit Review 2014: Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification  

Broader source: Energy.gov [DOE]

Presentation given by Smith Electric Vehicles at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Smith Electric...

362

VEHICLE ACCESS PORTALS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

East Jemez Road (Map 1) East Jemez Road (Map 1) VEHICLE ACCESS PORTALS Traffic Lane 1: Closed except for emergencies and maintenance operations. Traffic Lanes 2-7: Drivers required to stop and present LANL badges or other form of valid identification to Protective Force officers. Drivers may proceed upon direction of the officers. Note: Commercial delivery vehicle drivers must also pres- ent their inspection passes from Post 10. More Information: spp-questions@lanl.gov Non-work Hours Vehicles entering LANL at the East Jemez VAPs during non-work hours (between 7

363

Vehicle Technologies Office: Ambassadors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ambassadors Ambassadors Workplace Charging Challenge Clean Cities Coalitions Clean Cities logo. Clean Cities National: A network of nearly 100 Clean Cities coalitions, supported by the Vehicle Technologies Office, brings together public and private stakeholders to deploy plug-in electric vehicles, alternative and renewable fuels, idle-reduction measures, fuel economy improvements, and other petroleum reduction strategies. Clean Cities coordinators are knowledgeable about local incentives and policies for workplace charging as well as other aspects of plug-in electric vehicle community readiness. Workplace Charging Challenge Ambassadors The Workplace Charging Challenge enlists stakeholder organizations as Ambassadors to promote and support workplace charging. The directory below highlights Workplace Charging Challenge Ambassadors across the country.

364

Blast resistant vehicle seat  

DOE Patents [OSTI]

Disclosed are various seats for vehicles particularly military vehicles that are susceptible to attack by road-bed explosive devices such as land mines or improvised explosive devices. The seats often have rigid seat shells and may include rigid bracing for rigidly securing the seat to the chassis of the vehicle. Typically embodiments include channels and particulate media such as sand disposed in the channels. A gas distribution system is generally employed to pump a gas through the channels and in some embodiments the gas is provided at a pressure sufficient to fluidize the particulate media when an occupant is sitting on the seat.

Ripley, Edward B

2013-02-12T23:59:59.000Z

365

Rapid road repair vehicle  

DOE Patents [OSTI]

Disclosed are improvments to a rapid road repair vehicle comprising an improved cleaning device arrangement, two dispensing arrays for filling defects more rapidly and efficiently, an array of pre-heaters to heat the road way surface in order to help the repair material better bond to the repaired surface, a means for detecting, measuring, and computing the number, location and volume of each of the detected surface imperfection, and a computer means schema for controlling the operation of the plurality of vehicle subsystems. The improved vehicle is, therefore, better able to perform its intended function of filling surface imperfections while moving over those surfaces at near normal traffic speeds.

Mara, Leo M. (Livermore, CA)

1999-01-01T23:59:59.000Z

366

Performance Characteristics of Coal-to-Liquids (CTL) Diesel in a 50-State Emissions Compliant Passenger Car  

Broader source: Energy.gov [DOE]

Comparisons between CTL, GTL, no. 2, and European diesel include fuel economy, regulated and unregulated emissions in a 50 State compliant passenger car with DOC, NOx adsorber and particulate trap

367

here are no passengers on planet purple We are all crew. Don't Make Crime Prevention an Alien Concept  

E-Print Network [OSTI]

here are no passengers on planet purple We are all crew. Don't Make Crime Prevention an Alien " " A message from an alien craft was deciphered indicating that Aliens expressed an extra-terrestrial interest

Shahriar, Selim

368

Development scenario for passenger-car diesel engines with optimised: Combustion processes to meet future emission standards  

Science Journals Connector (OSTI)

The main reason why the modern supercharged direct-injection diesel engine is so successful as a means of propelling passenger cars is because it is more efficient than spark-ignition engines in nearly every o...

Jörn Kahrstedt; Kai Behnk; Ansgar Sommer; Thorsten Wormbs

2003-10-01T23:59:59.000Z

369

A Unique Approach to Power Electronics and Motor Cooling in a Hybrid Electric Vehicle Environment  

SciTech Connect (OSTI)

An innovative system for cooling the power electronics of hybrid electric vehicles is presented. This system uses a typical automotive refrigerant R-134a (1,1,1,2 tetrafluoroethane) as the cooling fluid in a system that can be used as either part of the existing vehicle passenger air conditioning system or separately and independently of the existing air conditioner. Because of the design characteristics, the cooling coefficient of performance is on the order of 40. Because liquid refrigerant is used to cool the electronics directly, high heat fluxes can result while maintaining an electronics junction temperature at an acceptable value. In addition, an inverter housing that occupies only half the volume of a conventional inverter has been designed to take advantage of this cooling system. Planned improvements should result in further volume reductions while maintaining a high power level.

Ayers, Curtis William [ORNL; Hsu, John S [ORNL; Lowe, Kirk T [ORNL; Conklin, Jim [ORNL

2007-01-01T23:59:59.000Z

370

Vehicle Technologies Office: 2009 DOE Hydrogen Program and Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE Hydrogen DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting to someone by E-mail Share Vehicle Technologies Office: 2009 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Facebook Tweet about Vehicle Technologies Office: 2009 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Twitter Bookmark Vehicle Technologies Office: 2009 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Google Bookmark Vehicle Technologies Office: 2009 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Delicious Rank Vehicle Technologies Office: 2009 DOE Hydrogen Program and

371

Vehicle Technologies Office: 2010 DOE Hydrogen Program and Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE Hydrogen DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting to someone by E-mail Share Vehicle Technologies Office: 2010 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Facebook Tweet about Vehicle Technologies Office: 2010 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Twitter Bookmark Vehicle Technologies Office: 2010 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Google Bookmark Vehicle Technologies Office: 2010 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Delicious Rank Vehicle Technologies Office: 2010 DOE Hydrogen Program and

372

Vehicle Technologies Office: 2011 DOE Hydrogen Program and Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 DOE Hydrogen 1 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting to someone by E-mail Share Vehicle Technologies Office: 2011 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Facebook Tweet about Vehicle Technologies Office: 2011 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Twitter Bookmark Vehicle Technologies Office: 2011 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Google Bookmark Vehicle Technologies Office: 2011 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Delicious Rank Vehicle Technologies Office: 2011 DOE Hydrogen Program and

373

Vehicle Technologies Office: Fact #233: September 9, 2002 Vehicles per  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3: September 9, 3: September 9, 2002 Vehicles per Thousand People: United States Compared with Other Countries to someone by E-mail Share Vehicle Technologies Office: Fact #233: September 9, 2002 Vehicles per Thousand People: United States Compared with Other Countries on Facebook Tweet about Vehicle Technologies Office: Fact #233: September 9, 2002 Vehicles per Thousand People: United States Compared with Other Countries on Twitter Bookmark Vehicle Technologies Office: Fact #233: September 9, 2002 Vehicles per Thousand People: United States Compared with Other Countries on Google Bookmark Vehicle Technologies Office: Fact #233: September 9, 2002 Vehicles per Thousand People: United States Compared with Other Countries on Delicious Rank Vehicle Technologies Office: Fact #233: September 9, 2002

374

Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0: October 22, 0: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving to someone by E-mail Share Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Facebook Tweet about Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Twitter Bookmark Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Google Bookmark Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Delicious Rank Vehicle Technologies Office: Fact #750: October 22, 2012

375

Design optimization of the electrically peaking hybrid (ELPH) vehicle. Research report  

SciTech Connect (OSTI)

Electrically Peaking Hybrid (ELPH) is a parallel hybrid electric vehicle propulsion concept that was invented at Texas A and M University, by the advanced vehicle systems research group. Over the past six years, design methodologies, component development, and system optimization work has been going on for this invention. This project was a first attempt in integrating the above developments into an optimized design of an ELPH passenger car. Design specifications were chosen for a full size passenger car, performing as well as any conventional car, over the EPA-FTP-75 combined city/highway drive cycles. The results of this design project were two propulsion systems. Both were appropriate for commercial production, from the points of view of cost, availability of the technologies, and components. One utilized regenerative braking and the other did not. Substantial fuel savings and emissions reductions resulted from simulating these designs on the FTP-75 drive cycle. For example, the authors` ELPH full size car, with regenerative braking, was capable of delivering over 50 miles per gallon in city driving, with corresponding reductions in its emissions. This project established the viability of the authors` ELPH concept and their design methodologies, in computer simulations. More work remains to be done on investigating more advanced power plants, such as fuel cells, and more advanced components, such as switched reluctance motor drives, for the authors` designs. Furthermore, the authors` design optimization can be carried out to more detailed levels, for prototyping and production.

Ehsani, M.; Gao, Y.; Butler, K.

1998-10-01T23:59:59.000Z

376

vehicle | OpenEI  

Open Energy Info (EERE)

vehicle vehicle Dataset Summary Description Supplemental Tables 48-56 of EIA AEO 2011 Early Release Source EIA Date Released December 08th, 2010 (4 years ago) Date Updated Unknown Keywords AEO Annual Energy Outlook EIA Energy Information Administration light-duty sales TEF Transportation Energy Futures vehicle Data text/csv icon Light-Duty_Vehicle_Sales_by_Technology_Type.csv (csv, 1.1 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote

377

Vehicle Technologies Office: Benchmarking  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Benchmarking Benchmarking Research funded by the Vehicle Technologies Office produces a great deal of valuable data, but it is important to compare those research results with similar work done elsewhere in the world. Through laboratory testing, researchers can compare vehicles and components to validate models, support technical target-setting, and provide data to help guide technology development tasks. Benchmarking activities fall into two primary areas: Vehicle and component testing, in which researchers test and analyze emerging technologies obtained from sources throughout the world. The results are used to continually assess program efforts. Model validation, in which researchers use test data to validate the accuracy of vehicle and component computer models including: overall measures such as fuel economy, state-of-charge energy storage across the driving cycle, and transient component behavior, such as fuel rate and torque.

378

Advanced Vehicle Testing & Evaluation  

Broader source: Energy.gov (indexed) [DOE]

Toyota Prius Plug-in 2013 Ford C-Max Hybrid 2013 Ford C-Max Energi 2013 Ford Fusion Energi 2014 VW Jetta Hybrid 2013 FLEET TEST VEHICLES 2 Honda CR-Z HEV 2...

379

Vehicle Cost Calculator  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Annual GHG Emissions (lbs of CO2) Vehicle Cost Calculator See Assumptions and Methodology Back Next U.S. Department of Energy Energy Efficiency and Renewable Energy Get Widget Code...

380

Development of a dedicated ethanol ultra-low emission vehicle (ULEV): Final report  

SciTech Connect (OSTI)

The objective of this project was to develop a commercially competitive vehicle powered by ethanol (or an ethanol blend) that can meet California`s ultra-low emission vehicle (ULEV) standards and equivalent corporate average fuel economy (CAFE) energy efficiency for a light-duty passenger car application. The definition of commercially competitive is independent of fuel cost, but does include technical requirements for competitive power, performance, refueling times, vehicle range, driveability, fuel handling safety, and overall emissions performance. This report summarizes the fourth and final phase of this project, and also the overall project. The focus of this report is the technology used to develop a dedicated ethanol-fueled ULEV, and the emissions results documenting ULV performance. Some of the details for the control system and hardware changes are presented in two appendices that are SAE papers. The demonstrator vehicle has a number of advanced technological features, but it is currently configured with standard original equipment manufacturer (OEM) under-engine catalysts. Close-coupled catalysts would improve emissions results further, but no close-coupled catalysts were available for this testing. Recently, close-coupled catalysts were obtained, but installation and testing will be performed in the future. This report also briefly summarizes work in several other related areas that supported the demonstrator vehicle work.

Dodge, L.; Bourn, G.; Callahan, T.; Grogan, J.; Leone, D.; Naegeli, D.; Shouse, K.; Thring, R.; Whitney, K. [Southwest Research Inst., San Antonio, TX (United States)

1998-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle passenger van" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Development of a dedicated ethanol ultra-low emission vehicle (ULEV) system design  

SciTech Connect (OSTI)

The objective of this 3.5 year project is to develop a commercially competitive vehicle powered by ethanol (or ethanol blend) that can meet California`s ultra-low emission vehicle (ULEV) standards and equivalent corporate average fuel economy (CAFE) energy efficiency for a light-duty passenger car application. The definition of commercially competitive is independent of fuel cost, but does include technical requirements for competitive power, performance, refueling times, vehicle range, driveability, fuel handling safety, and overall emissions performance. This report summarizes a system design study completed after six months of effort on this project. The design study resulted in recommendations for ethanol-fuel blends that shall be tested for engine low-temperature cold-start performance and other criteria. The study also describes three changes to the engine, and two other changes to the vehicle to improve low-temperature starting, efficiency, and emissions. The three engine changes are to increase the compression ratio, to replace the standard fuel injectors with fine spray injectors, and to replace the powertrain controller. The two other vehicle changes involve the fuel tank and the aftertreatment system. The fuel tank will likely need to be replaced to reduce evaporative emissions. In addition to changes in the main catalyst, supplemental aftertreatment systems will be analyzed to reduce emissions before the main catalyst reaches operating temperature.

Bourn, G.; Callahan, T.; Dodge, L.; Mulik, J.; Naegeli, D.; Shouse, K.; Smith, L.; Whitney, K. [Southwest Research Inst., San Antonio, TX (United States)

1995-02-01T23:59:59.000Z

382

Vehicle Technologies Office: Power Electronics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Electronics to Power Electronics to someone by E-mail Share Vehicle Technologies Office: Power Electronics on Facebook Tweet about Vehicle Technologies Office: Power Electronics on Twitter Bookmark Vehicle Technologies Office: Power Electronics on Google Bookmark Vehicle Technologies Office: Power Electronics on Delicious Rank Vehicle Technologies Office: Power Electronics on Digg Find More places to share Vehicle Technologies Office: Power Electronics on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Power Electronics Electrical Machines Thermal Control & System Integration Advanced Combustion Engines Fuels & Lubricants Materials Technologies Power Electronics The power electronics activity focuses on research and development (R&D)

383

Vehicle Technologies Office: Electrical Machines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrical Machines to Electrical Machines to someone by E-mail Share Vehicle Technologies Office: Electrical Machines on Facebook Tweet about Vehicle Technologies Office: Electrical Machines on Twitter Bookmark Vehicle Technologies Office: Electrical Machines on Google Bookmark Vehicle Technologies Office: Electrical Machines on Delicious Rank Vehicle Technologies Office: Electrical Machines on Digg Find More places to share Vehicle Technologies Office: Electrical Machines on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Power Electronics Electrical Machines Thermal Control & System Integration Advanced Combustion Engines Fuels & Lubricants Materials Technologies Electrical Machines Emphasis in the electrical machines activity is on advanced motor

384

Vehicle Technologies Office: Deployment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deployment Deployment Our nation's energy security depends on the efficiency of our transportation system and on which fuels we use. Transportation in the United States already consumes much more oil than we produce here at home and the situation is getting worse. Domestic oil production has been dropping steadily for over 20 years, and experts predict that by 2025, about 70% of our oil will be imported. The U.S. Department of Energy's (DOE's) Vehicle Technologies Office supports research and development (R&D) that will lead to new technologies that reduce our nation's dependence on imported oil, further decrease vehicle emissions, and serve as a bridge from today's conventional powertrains and fuels to tomorrow's hydrogen-powered hybrid fuel cell vehicles. The Vehicle Technologies Office also supports implementation programs that help to transition alternative fuels and vehicles into the marketplace, as well as collegiate educational activities to help encourage engineering and science students to pursue careers in the transportation sector. Following are some of the activities that complement the Vehicle Technologies Office's mission.

385

Vehicle Technologies Office Merit Review 2014: Smith Electric...  

Broader source: Energy.gov (indexed) [DOE]

Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification Vehicle Technologies Office Merit Review 2014: Smith Electric Vehicles: Advanced...

386

Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP)  

Broader source: Energy.gov [DOE]

Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

387

Potentials for Energy Conservation by a Shift to other types of Engines in Passenger Cars  

Science Journals Connector (OSTI)

The energy conserving potential of alternative engine options for the period till 1990 is computed. Included are the fuel consumption of the vehicle, the required energy for the production of the vehicle and t...

Drs. W. Smit

1980-01-01T23:59:59.000Z

388

BNL | Tandem Van de Graaff | Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tandem Van de Graaff Tandem Van de Graaff Tandem Home Conduct Research at the Tandem Capabilities Testing & Callibration SEU Test Facility Ion Species Ion Irradiation / Implantation Schedule Org Chart (.pdf) Contact Welcome to the Tandem The Tandem Van de Graaff Facility consists of two 15-megavolt electrostatic accelerators capable of delivering continuous, or high-intensity pulsed ion beams in a wide range of ion species at various energies to experimental chambers that are available to researchers on a full cost-recovery basis. More » Use the Tandem Follow these simple steps to determine if the Tandem meets your experimental needs, reserve beam time, and to plan for your visit. Review Capabilities Learn what ion species are available at the Tandem and at what LETs, maximum energies, and energy ranges, as well as other capabilities.

389

WISC is independent from ZF Benno van den Berg  

E-Print Network [OSTI]

WISC is independent from ZF Benno van den Berg May 2012 WISC (which stands for Weakly Initial Set on page 151 of [2]) that every variety has free algebras. References [1] B. van den Berg and I. Moerdijk

van den Berg, Benno

390

FOR ASSESSING ROOM ACOUSTICS Jasper van Dorp Schuitman  

E-Print Network [OSTI]

AUDITORY MODELLING FOR ASSESSING ROOM ACOUSTICS Jasper van Dorp Schuitman #12;Auditory modelling Promoties, in het openbaar te verdedigen op donderdag 15 september 2011 om 10:00 uur door Jasper VAN DORP

391

Het Saramacca project : een plan van joodse kolonisatie in Suriname.  

E-Print Network [OSTI]

??Van 1946 tot 1948 onderhandelde een Amerikaans-Joodse organisatie, de Freeland League, met de Nederlandse en Surinaamse regeringen over de vestiging in Suriname van 30.000 joodse… (more)

Heldring, Alexander

2010-01-01T23:59:59.000Z

392

Weerwoord op het commentaar van Jansen en Havermans  

Science Journals Connector (OSTI)

Marlies Marissen en Ingmar Franken reageren op het kritische commentaar van Anita Jansen en Remco Havermans op hun artikel ‘Heeft...

Dr. Marlies Marissen; Dr. Ingmar Franken

2006-12-01T23:59:59.000Z

393

Electric Vehicle Site Operator Program. Year 1 third quarter report, January 1, 1992--March 31, 1992  

SciTech Connect (OSTI)

Kansas State University, with funding support from federal, state, public, and private companies, is participating in the Department of Energy`s Electric Vehicle Site Operator Program. Through participation is this program, Kansas State is demonstrating, testing, and evaluating electric or hybrid vehicle technology. This participation will provide organizations the opportunity to examine the latest EHV prototypes under actual operating conditions. KSU proposes to purchase one (1) electric or hybrid van and four (4) electric cars during the first two years of this five year program. KSU has purchased one G-Van built by Conceptor Industries, Toronto, Canada and has initiated a procurement order to purchase two (2) Soleq 1992 Ford EVcort stationwagons.

Not Available

1992-06-01T23:59:59.000Z

394

AVTA: 2010 Electric Vehicles International Neighborhood Electric Vehicle Testing Results  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe testing results of the 2010 Electric Vehicles International neighborhood electric vehicle. Neighborhood electric vehicles reach speeds of no more than 35 miles per hour and are only allowed on roads with speed limits of up to 35 miles per hour. This research was conducted by Idaho National Laboratory.

395

Workflow Patronen: Een gereedschap voor het evalueren van BPM software  

E-Print Network [OSTI]

Workflow Patronen: Een gereedschap voor het evalueren van BPM software Prof.dr.ir. Wil van der ook niet meer over workflow-management systemen maar over Business Process Management (BPM) systemen. In het vervolg gebruiken we de term BPM om te verwijzen naar dit bredere gebied. Ondanks het belang van

van der Aalst, Wil

396

Jet production in ep collisions Pierre Van Mechelen  

E-Print Network [OSTI]

Jet production in ep collisions Pierre Van Mechelen University of Antwerpen Pierre electroproduction #12; Jet production in ep collisions Pierre Van Mechelen HERA, H1 and ZEUS H1 ZEUS p (920 GeV) e ± (27.6 GeV) #12; Jet production in ep collisions Pierre Van Mechelen Jet finding algorithms Clustering

397

Kunstmatige Intelligentie (AI) Hoofdstuk 25 van Russell/Norvig = [RN  

E-Print Network [OSTI]

AI Kunstmatige Intelligentie (AI) Hoofdstuk 25 van Russell/Norvig = [RN] Robotica voorjaar 2014 College 8, 8 april 2014 www.liacs.nl/home/kosters/AI/ 1 #12;AI--Robotica Robots Een robot is een "actieve schrijver Isaac Asimov (auteur van "I, Robot") zijn de drie (later vier) wetten van de robotica: 1. Een

Kosters, Walter

398

Vehicle Technologies Office: Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage Energy Storage Improving the batteries for electric drive vehicles, including hybrid electric (HEV) and plug-in electric (PEV) vehicles, is key to improving vehicles' economic, social, and environmental sustainability. In fact, transitioning to a light-duty fleet of HEVs and PEVs could reduce U.S. foreign oil dependence by 30-60% and greenhouse gas emissions by 30-45%, depending on the exact mix of technologies. For a general overview of electric drive vehicles, see the DOE's Alternative Fuel Data Center's pages on Hybrid and Plug-in Electric Vehicles and Vehicle Batteries. While a number of electric drive vehicles are available on the market, further improvements in batteries could make them more affordable and convenient to consumers. In addition to light-duty vehicles, some heavy-duty manufacturers are also pursuing hybridization of medium and heavy-duty vehicles to improve fuel economy and reduce idling.

399

Vehicle Technologies Office: 2013 Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Archive to someone 3 Archive to someone by E-mail Share Vehicle Technologies Office: 2013 Archive on Facebook Tweet about Vehicle Technologies Office: 2013 Archive on Twitter Bookmark Vehicle Technologies Office: 2013 Archive on Google Bookmark Vehicle Technologies Office: 2013 Archive on Delicious Rank Vehicle Technologies Office: 2013 Archive on Digg Find More places to share Vehicle Technologies Office: 2013 Archive on AddThis.com... 2013 Archive #810 Leasing on the Rise December 30, 2013 #809 What Do We Pay for in a Gallon of Gasoline? December 23, 2013 #808 Declining Use of Six- and Eight-Cylinder Engines December 16, 2013 #807 Light Vehicle Weights Leveling Off December 9, 2013 #806 Light Vehicle Market Shares, Model Years 1975-2012 December 2, 2013 #805 Vehicle Technology Penetration November 25, 2013

400

Advanced Vehicle Testing Activity: Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Overview to Overview to someone by E-mail Share Advanced Vehicle Testing Activity: Overview on Facebook Tweet about Advanced Vehicle Testing Activity: Overview on Twitter Bookmark Advanced Vehicle Testing Activity: Overview on Google Bookmark Advanced Vehicle Testing Activity: Overview on Delicious Rank Advanced Vehicle Testing Activity: Overview on Digg Find More places to share Advanced Vehicle Testing Activity: Overview on AddThis.com... Home Overview Light-Duty Vehicles Medium- and Heavy-Duty Vehicles Publications Overview The marketplace for advanced transportation technologies and the focus, direction, and funding of transportation programs are continually changing. The Advanced Vehicle Testing Activity's "2005 Overview of Advanced Technology Transportation" (PDF 736 KB) gives the latest information about

Note: This page contains sample records for the topic "vehicle passenger van" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Vehicle Technologies Office: 2009 Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 Archive to someone 9 Archive to someone by E-mail Share Vehicle Technologies Office: 2009 Archive on Facebook Tweet about Vehicle Technologies Office: 2009 Archive on Twitter Bookmark Vehicle Technologies Office: 2009 Archive on Google Bookmark Vehicle Technologies Office: 2009 Archive on Delicious Rank Vehicle Technologies Office: 2009 Archive on Digg Find More places to share Vehicle Technologies Office: 2009 Archive on AddThis.com... 2009 Archive #603 Where Does Lithium Come From? December 28, 2009 #602 Freight Statistics by Mode, 2007 Commodity Flow Survey December 21, 2009 #601 World Motor Vehicle Production December 14, 2009 #600 China Produced More Vehicles than the U.S. in 2008 December 7, 2009 #599 Historical Trend for Light Vehicle Sales November 30, 2009

402

Environmental Life-cycle Assessment of Passenger Transportation: A Detailed Methodology for Energy, Greenhouse Gas and Criteria Pollutant Inventories of Automobiles, Buses, Light Rail, Heavy Rail and Air  

E-Print Network [OSTI]

Greenhouse Gas Emissions (g CO 2 e) per Passenger-Mile-Traveled Bus Pickup SUV Sedan Idling Manufacture Tire Production Roadway Lighting

Chester, Mikhail; Horvath, Arpad

2007-01-01T23:59:59.000Z

403

Verschillende dataverzamelingsmethoden in CQI onderzoek: een overzicht van de respons en representativiteit van respondenten  

Science Journals Connector (OSTI)

Inleiding: In dit artikel wordt uiteengezet welke dataverzamelingsmethoden er tot nu toe gebruikt zijn bij CQ-index (CQI) onderzoek en wat de respons en representativiteit van respondenten waren....

Marloes Zuidgeest; Dolf de Boer; Michelle Hendriks; Jany Rademakers

2008-08-01T23:59:59.000Z

404

WHITE DWARFS H. M. Van Horn  

E-Print Network [OSTI]

WHITE DWARFS H. M. Van Horn Department of Physios and Astronomy £ §.£.Kenneth Mees Observatory of matter in the dense, degenerate cores of white dwarfs, together with efficient heat transport through the high-density envelopes of these stars, affect the theoretical white dwarf lu- minosity function

Paris-Sud XI, Université de

405

Utility, informativity and protocols Robert van Rooy  

E-Print Network [OSTI]

Utility, informativity and protocols Robert van Rooy ILLC/University of Amsterdam R particular natural assumptions the utility of questions and answers reduces to their informativity, and that the ordering relation induced by utility sometimes even reduces to the logical relation of entailment

van Rooij, Robert

406

Power-Aware Epidemics Robbert van Renesse  

E-Print Network [OSTI]

Power-Aware Epidemics Robbert van Renesse Dept. of Computer Science, Cornell University, Ithaca, NY investi- gate the use of power in three styles of epidemic protocols: basic epidemics, neighborhood flooding epidemics, and hi- erarchical epidemics. Basic epidemics turn out to be highly power hungry

Keinan, Alon

407

Vehicles | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Vehicles Vehicles Vehicles In the first half of 2013, Americans doubled the number of PEVs they purchased compared to the same period in 2012, and this summer, PEV sales reached a new record high. More than 11,000 PEVs were sold in August 2013 -- that's a 29 percent improvement in sales over the previous monthly record. Learn now about the clean technology revolution that is here today. In the first half of 2013, Americans doubled the number of PEVs they purchased compared to the same period in 2012, and this summer, PEV sales reached a new record high. More than 11,000 PEVs were sold in August 2013 -- that's a 29 percent improvement in sales over the previous monthly record. Learn now about the clean technology revolution that is here today.

408

US Ethanol Vehicle Coalition | Open Energy Information  

Open Energy Info (EERE)

Ethanol Vehicle Coalition Jump to: navigation, search Name: US Ethanol Vehicle Coalition Place: Jefferson City, Missouri Zip: 65109 Product: The National Ethanol Vehicle Coalition...

409

Renewable Fuel Vehicles | Open Energy Information  

Open Energy Info (EERE)

Vehicles Jump to: navigation, search TODO: Add description List of Renewable Fuel Vehicles Incentives Retrieved from "http:en.openei.orgwindex.php?titleRenewableFuelVehicles...

410

The Evolution of Sustainable Personal Vehicles  

E-Print Network [OSTI]

energy resource conversion (NREL, 2004). Sustainable Vehicle Energy StorageEnergy, Fuel, & Vehicle Technologies.41 Introduction41 Sustainable Energy Resources..42 Sustainable Vehicle Energy Storage..43 Sustainable

Jungers, Bryan D

2009-01-01T23:59:59.000Z

411

American Electric Vehicles Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Jump to: navigation, search Name: American Electric Vehicles Inc Place: Palmer Lake, Colorado Zip: 80133 Sector: Vehicles Product: American Electric Vehicles (AEV) builds high...

412

Advanced Electric Drive Vehicle Education Program | Department...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Electric Drive Vehicle Education Program Advanced Electric Drive Vehicle Education Program 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer...

413

Miles Electric Vehicles | Open Energy Information  

Open Energy Info (EERE)

Miles Electric Vehicles Jump to: navigation, search Name: Miles Electric Vehicles Place: Santa Monica, California Zip: 90405 Sector: Vehicles Product: California-based developer of...

414

Specialty Vehicles and Material Handling Equipment  

Broader source: Energy.gov (indexed) [DOE]

fuel cell vehicles Hydrogen fuel cell vehicles Hydrogen fuel cell vehicles have no GHG emissions have no GHG emissions have no GHG emissions have no GHG emissions GHG...

415

Vehicle & Systems Simulation & Testing | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vehicle & Systems Simulation & Testing Vehicle & Systems Simulation & Testing 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and...

416

Advanced Vehicle Testing & Evaluation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Evaluation vss029karner2011o.pdf More Documents & Publications Advanced Vehicle Testing & Evaluation Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and...

417

Advanced Vehicle Testing & Evaluation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Testing & Evaluation Advanced Vehicle Testing & Evaluation 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

418

Vehicle Technologies Office: National Laboratories | Department...  

Office of Environmental Management (EM)

Technology R&D Center at Argonne National Laboratory Vehicles Home About Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions...

419

Large Scale Tracked Vehicle Concurrent Engineering Environment  

Science Journals Connector (OSTI)

In this paper, a fully integrated Tracked Vehicle Concurrent Engineering environment that exploits CAD and CAE technologies in ... vehicles is presented. The Tracked Vehicle Concurrent Engineering environment com...

Kyung K. Choi; J. Kirk Wu; Kuang-Hua Chang; Jun Tang…

1995-01-01T23:59:59.000Z

420

Hydrogen Vehicle and Infrastructure Demonstration and Validation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vehicle and Infrastructure Demonstration and Validation Hydrogen Vehicle and Infrastructure Demonstration and Validation 2009 DOE Hydrogen Program and Vehicle Technologies Program...

Note: This page contains sample records for the topic "vehicle passenger van" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Commercial Vehicle Safety Alliance | Department of Energy  

Office of Environmental Management (EM)

Commercial Vehicle Safety Alliance Commercial Vehicle Safety Alliance Commercial Vehicle Safety Alliance More Documents & Publications North American Standard Level VI Inspection...

422

Vehicle Technologies Office: Active Solicitations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Active Solicitations to Active Solicitations to someone by E-mail Share Vehicle Technologies Office: Active Solicitations on Facebook Tweet about Vehicle Technologies Office: Active Solicitations on Twitter Bookmark Vehicle Technologies Office: Active Solicitations on Google Bookmark Vehicle Technologies Office: Active Solicitations on Delicious Rank Vehicle Technologies Office: Active Solicitations on Digg Find More places to share Vehicle Technologies Office: Active Solicitations on AddThis.com... Active Solicitations To explore current financial opportunity solicitations, click on the opportunity titles in the table below. To sort the list, click on the arrows in the column headings. Technology Solicitation Title Open Date Close Date Hydrogen and Fuel Cells Research and Development for Hydrogen Storage

423

NREL: Vehicles and Fuels Research - Electric Vehicle Grid Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electric Vehicle Grid Integration Project Electric Vehicle Grid Integration Project Plug-in electric vehicle charging at NREL. PEV charging in the VTIF. Photo by Dennis Schroeder, NREL/PIX 19758 The Electric Vehicle Grid Integration Project supports the development and implementation of electrified transportation systems, particularly those that integrate renewable-based vehicle charging systems. Plug-in electric vehicles (PEVs)-including all-electric vehicles and plug-in hybrid electric vehicles (PHEVs)-provide a new opportunity to reduce oil consumption by drawing on power from the electric grid. To maximize the benefits of PEVs, the emerging PEV infrastructure must provide access to clean electricity generated from renewable sources, satisfy driver expectations, and ensure safety. Value creation from systems

424

Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

425

Vehicle Mass Impact on Vehicle Losses and Fuel Economy  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

426

Vehicle Mass Impact on Vehicle Losses and Fuel Economy  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

427

Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

428

Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

429

Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

430

Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

431

Control device for vehicle speed  

SciTech Connect (OSTI)

This patent describes a control device for vehicle speed comprising: a throttle driving means operatively coupled to a throttle valve of a vehicle; a set switch means for commanding memorization of the vehicle speed; a resume switch means for commanding read of the vehicle speed; a vehicle speed detecting means for generating a signal in accordance with the vehicle speed; a vehicle speed memory; an electronical control means for memorizing in the vehicle speed memory vehicle speed information corresponding to the signal obtained from the vehicle speed detecting means in response to actuation of the set switch means. The control means is also for reading out the content of the vehicle speed memory in response to actuation of the resume switch means to control the throttle driving means in accordance with the read-out content; a power supply means for supplying power to the electronical control means; and a power supply control switch means for controlling supply of power to the electronical control means in response to the state of at least one of the set switch means and the resume switch means and the state of the electronical control means. The improvement described here comprises the electronical control means sets the power supply control switch means into such a state that supply of power to the electronical control means is turned OFF, when vehicle speed information is not memorized in the vehicle speed memory.

Kawata, S.; Hyodo, H.

1987-03-03T23:59:59.000Z

432

Van Allen probes pinpoint driver of speeding electrons  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Van Allen probes pinpoint driver of speeding electrons Van Allen probes pinpoint driver of speeding electrons Van Allen probes pinpoint driver of speeding electrons Los Alamos researchers believe they have solved a lingering mystery about how electrons within Earth's radiation belt can suddenly become energetic enough to kill orbiting satellites. July 25, 2013 Artist's rendering of mechanism within Van Allen radiation belts An artist's rendering of a mechanism within the Van Allen radiation belts that can accelerate electrons to satellite-killing energies. The mechanism was discovered by a group of scientists using data from NASA's Van Allen Probes (formerly known as the Radiation Belt Storm Probes). Researchers, led by Los Alamos National laboratory space physicist Geoffrey Reeves, believe that electromagnetic waves within the Van Allen belts themselves

433

Vehicle Technologies Office: Fact #621: May 3, 2010 Gross Vehicle Weight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1: May 3, 2010 1: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight to someone by E-mail Share Vehicle Technologies Office: Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight on Facebook Tweet about Vehicle Technologies Office: Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight on Twitter Bookmark Vehicle Technologies Office: Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight on Google Bookmark Vehicle Technologies Office: Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight on Delicious Rank Vehicle Technologies Office: Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight on Digg Find More places to share Vehicle Technologies Office: Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight on AddThis.com...

434

Vehicle Technologies Office: 2010 Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 Archive to someone 0 Archive to someone by E-mail Share Vehicle Technologies Office: 2010 Archive on Facebook Tweet about Vehicle Technologies Office: 2010 Archive on Twitter Bookmark Vehicle Technologies Office: 2010 Archive on Google Bookmark Vehicle Technologies Office: 2010 Archive on Delicious Rank Vehicle Technologies Office: 2010 Archive on Digg Find More places to share Vehicle Technologies Office: 2010 Archive on AddThis.com... 2010 Archive #655 New Freight Analysis Tool December 27, 2010 #654 New Light Vehicle Leasing is Big in 2010 December 20, 2010 #653 Import Cars and Trucks Gaining Ground December 13, 2010 #652 U.S. Crude Oil Production Rises December 6, 2010 #651 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 November 29, 2010 #650 Diesel Fuel Prices hit a Two-Year High November 22, 2010

435

Vehicle Technologies Office: 2006 Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 Archive to someone 6 Archive to someone by E-mail Share Vehicle Technologies Office: 2006 Archive on Facebook Tweet about Vehicle Technologies Office: 2006 Archive on Twitter Bookmark Vehicle Technologies Office: 2006 Archive on Google Bookmark Vehicle Technologies Office: 2006 Archive on Delicious Rank Vehicle Technologies Office: 2006 Archive on Digg Find More places to share Vehicle Technologies Office: 2006 Archive on AddThis.com... 2006 Archive #449 Biodiesel to Conventional Diesel: An Emissions Comparison December 25, 2006 #448 Fuel Purchasing Habits December 18, 2006 #447 World Ethanol Production December 11, 2006 #446 More Likely to Buy a Hybrid or Other More Fuel Efficient Vehicle? December 4, 2006 #445 U.S. Population Growth and Light Vehicle Sales November 27, 2006

436

Electric Vehicle Smart Charging Infrastructure  

E-Print Network [OSTI]

Vehicles on the US Power Grid." The 25th World Battery,infrastructure assignment and power grid impacts assessmentfrom the vehicle to the power grid and overcome its current

Chung, Ching-Yen

2014-01-01T23:59:59.000Z

437

Household vehicles energy consumption 1991  

SciTech Connect (OSTI)

The purpose of this report is to provide information on the use of energy in residential vehicles in the 50 States and the District of Columbia. Included are data about: the number and type of vehicles in the residential sector, the characteristics of those vehicles, the total annual Vehicle Miles Traveled (VMT), the per household and per vehicle VMT, the vehicle fuel consumption and expenditures, and vehicle fuel efficiencies. The data for this report are based on the household telephone interviews from the 1991 RTECS, conducted during 1991 and early 1992. The 1991 RTECS represents 94.6 million households, of which 84.6 million own or have access to 151.2 million household motor vehicles in the 50 States and the District of Columbia.

Not Available

1993-12-09T23:59:59.000Z

438

Advanced Technologies for Light-Duty Vehicles (released in AEO2006)  

Reports and Publications (EIA)

A fundamental concern in projecting the future attributes of light-duty vehicles-passenger cars, sport utility vehicles, pickup trucks, and minivans-is how to represent technological change and the market forces that drive it. There is always considerable uncertainty about the evolution of existing technologies, what new technologies might emerge, and how consumer preferences might influence the direction of change. Most of the new and emerging technologies expected to affect the performance and fuel use of light-duty vehicles over the next 25 years are represented in the National Energy Modeling System (NEMS); however, the potential emergence of new, unforeseen technologies makes it impossible to address all the technology options that could come into play. The previous section of Issues in Focus discussed several potential technologies that currently are not represented in NEMS. This section discusses some of the key technologies represented in NEMS that are expected to be implemented in light-duty vehicles over the next 25 years.

2006-01-01T23:59:59.000Z

439

VEHICLE TECHNOLOGIES PROGRAM Electric Vehicle Preparedness  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2: Identification 2: Identification of Joint Base Lewis McChord Vehicles for Installation of Data Loggers June 2013 Prepared for: Joint Base Lewis McChord Prepared by: Idaho National Laboratory and ECOtality North America DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise,

440

Advancing Next-Generation Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the U.S. Department of Energy's (DOE's) lead laboratory for researching advanced vehicle technologies, including hy- the U.S. Department of Energy's (DOE's) lead laboratory for researching advanced vehicle technologies, including hy- brid, plug-in hybrid, battery electric, and alternative fuel vehicles, Argonne provides transportation research critical to advancing the development of next-generation vehicles. Central to this effort is the Lab's Advanced Powertrain Research Facility (APRF), an integrated four-wheel drive chassis dynamometer and component test facility.

Note: This page contains sample records for the topic "vehicle passenger van" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Gasoline Ultra Fuel Efficient Vehicle  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

442

Electric-Drive Vehicle engineering  

E-Print Network [OSTI]

Electric-Drive Vehicle engineering COLLEGE of ENGINEERING Electric-drive engineers for 80 years t Home to nation's first electric-drive vehicle engineering program and alternative-credit EDGE Engineering Entrepreneur Certificate Program is a great addition to an electric-drive vehicle

Berdichevsky, Victor

443

Light-duty vehicle mpg and market shares report, model year 1988  

SciTech Connect (OSTI)

This issue of Light-Duty Vehicle MPG and Market Shares Report: Model Year 1988 reports the estimated sales-weighted fuel economies, sales, market shares, and other vehicle characteristics of automobiles and light trucks. The estimates are made on a make and model basis, from model year 1976 to model year 1988. Vehicle sales data are used as weighting factors in the sales-weighted estimation procedure. Thus, the estimates represent averages of the overall new vehicle fleet, reflecting the composition of the fleet. Highlights are provided on the trends in the vehicle characteristics from one model year to the next. Analyses are also made on the fuel economy changes to determine the factors which caused the changes. The sales-weighted fuel economy for the new car fleet in model year 1988 showed an improvement of 0.1 mpg from model year 1987, while light trucks showed a 0.2 mpg loss. The 0.2 mpg loss by the light trucks can be attributed to the fact that every light truck size class experienced either losses or no change in their fuel economies from the previous model year, except for the large van size class. Overall, the sales-weighted fuel economy of the entire light-duty vehicle fleet (automobiles and light trucks combined) has remained relatively stable since model year 1986. Domestic light-duty vehicles began to gain popularity over their import counterparts; and light trucks increased their market shares relative to automobiles. Domestic cars regained 0.3% of the automobile market, reversing the previous trend. Similar to the automobile market, domestic light trucks continued to gain popularity over their import counterparts, partly due to the increasing popularity of domestic small vans. 3 refs., 35 figs., 48 tabs.

Hu, P.S.; Williams, L.S.; Beal, D.J.

1989-04-01T23:59:59.000Z

444

Reduction of idle knock by EGR in a passenger car diesel engine  

SciTech Connect (OSTI)

In order to reduce the diesel idle knock, the effects of EGR on the idling characteristics were investigated on a passenger car equipped with an EGR Idle Knock Reduction System developed for practical use. It was found that EGR was effective not only for reducing idle knock but also for decreasing fuel consumption, smoke density, exhaust emissions and engine vibration. Moreover, the practical range and possibility of the EGR Idle Knock Reduction System were found by clarifying the relationship between EGR, injection timing, cooling water temperature, noise level and fuel consumption.

Fukutani, I.; Watanabe, E.

1984-01-01T23:59:59.000Z

445

Model-based development and calibration of last generation diesel powertrains for passenger cars  

Science Journals Connector (OSTI)

This paper presents an original model-based approach to the system level development and calibration of diesel powertrains for passenger cars, implemented in a comprehensive software tool. The models for the different subsystems are coupled to execute optimisation loops, involving also the system calibration, and are characterised by flexibility of usage, limited tuning effort and reduced computational time. As an example of the general approach, the engine model is described and some results from its execution are shown and compared with the measurements. Finally, a practical example is given of the usage of the tool for system level optimisation through a specifically developed methodology.

Fabio Mallamo; Federico Millo; Luciano Rolando

2014-01-01T23:59:59.000Z

446

Advanced Vehicle Electrification & Transportation Sector Electrificati...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector Electrification 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies...

447

Advanced Vehicle Electrification and Transportation Sector Electrifica...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and...

448

NREL: Vehicle Systems Analysis - Plug-In Hybrid Electric Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plug-In Hybrid Electric Vehicles Plug-In Hybrid Electric Vehicles NREL's vehicle systems analysts work to advance the technology of plug-in hybrid electric vehicles (PHEVs), also known as grid-connected or grid-charged hybrids. Technology Targets and Metrics Analysis We use our Technical Targets Tool to determine pathways for maximizing the potential national impact of plug-in hybrid electric vehicles. This assessment includes consideration of how consumers will value the new vehicle technology based on attributes such as: Acceleration Fuel economy and consumption Cargo capacity Cost. We use the resulting competitiveness index to predict the vehicle's market penetration rate. Then, we can create a total national benefits picture after adding in other factors such as: Existing fleet turnover

449

Auto/Steel Partnership: Hydroforming Materials and Lubricant Lightweight Rear Chassis Structures Future Generation Passenger Compartment  

Broader source: Energy.gov [DOE]

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

450

UTSR_2010_vanDuin.ppt  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Adri van Duin Adri van Duin Department of Mechanical and Nuclear Engineering Pennsylvania State University E-mail acv13@psu.edu Reactive Molecular Dynamics Modeling and Advanced Power Generation Applications 2010 UTSR meeting, October 21 2010 Engineering challenges.... - Higher efficiency - Lower exhaust - Higher combustion temperature - Need new materials that can sustain higher temperatures and oxidation chemistry - Higher efficiency - Longer lifetime - Cheaper - Need new, cheap catalyst materials that are resistant to poisoning Coal power plant Fuel cell Pre-oxidized Al-tube with ethylene/O 2 /ozone mixture ...require atomistic-scale solutions Ni-particle reacting with propene at T=1500K Solving the size/time gap between simulation and experiment

451

Household vehicles energy consumption 1994  

SciTech Connect (OSTI)

Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use some 6,000 vehicles provided information to describe vehicle stock, vehicle-miles traveled, energy end-use consumption, and energy expenditures for personal vehicles. The survey results represent the characteristics of the 84.9 million households that used or had access to vehicles in 1994 nationwide. (An additional 12 million households neither owned or had access to vehicles during the survey year.) To be included in then RTECS survey, vehicles must be either owned or used by household members on a regular basis for personal transportation, or owned by a company rather than a household, but kept at home, regularly available for the use of household members. Most vehicles included in the RTECS are classified as {open_quotes}light-duty vehicles{close_quotes} (weighing less than 8,500 pounds). However, the RTECS also includes a very small number of {open_quotes}other{close_quotes} vehicles, such as motor homes and larger trucks that are available for personal use.

NONE

1997-08-01T23:59:59.000Z

452

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

. . Vehicle Fuel Efficiency and Consumption Fuel consumption is estimated from RTECS data on the vehicle stock (Chapter 2) and miles traveled (Chapter 3), in combination with vehicle fuel efficiency ratings, adjusted to account for individual driving circumstances. The first two sections of this chapter present estimates of household vehicle fuel efficiency and household fuel consumption calculated from these fuel efficiency estimates. These sections also discuss variations in fuel efficiency and consumption based on differences in household and vehicle characteristics. The third section presents EIA estimates of the potential savings from replacing the oldest (and least fuel-efficient) household vehicles with new (and more fuel-efficient) vehicles. The final section of this chapter focuses on households receiving (or eligible to receive) supplemental income under

453

Vehicle Technologies Office: 2007 Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 Archive to someone 7 Archive to someone by E-mail Share Vehicle Technologies Office: 2007 Archive on Facebook Tweet about Vehicle Technologies Office: 2007 Archive on Twitter Bookmark Vehicle Technologies Office: 2007 Archive on Google Bookmark Vehicle Technologies Office: 2007 Archive on Delicious Rank Vehicle Technologies Office: 2007 Archive on Digg Find More places to share Vehicle Technologies Office: 2007 Archive on AddThis.com... 2007 Archive #499 Alternative Fuel Models: Gains and Losses December 10, 2007 #498 New Light Vehicle Fuel Economy December 3, 2007 #497 Fuel Drops to Third Place in the Trucking Industry Top Ten Concerns November 26, 2007 #496 Diesel Prices in the U.S. and Selected Countries: Cost and Taxes November 19, 2007 #495 Oil Price and Economic Growth, 1971-2006 November 12, 2007

454

Vehicle Technologies Office: 2012 Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Archive to someone 2 Archive to someone by E-mail Share Vehicle Technologies Office: 2012 Archive on Facebook Tweet about Vehicle Technologies Office: 2012 Archive on Twitter Bookmark Vehicle Technologies Office: 2012 Archive on Google Bookmark Vehicle Technologies Office: 2012 Archive on Delicious Rank Vehicle Technologies Office: 2012 Archive on Digg Find More places to share Vehicle Technologies Office: 2012 Archive on AddThis.com... 2012 Archive #760 Commuting to Work, 1960-2010 December 31, 2012 #759 Rural vs. Urban Driving Differences December 24, 2012 #758 U.S. Production of Crude Oil by State, 2011 December 17, 2012 #757 The U.S. Manufactures More Light Trucks than Cars December 10, 2012 #756 Midwest Produces Two-Thirds of All Light Vehicles December 3, 2012

455

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

1. 1. Introduction The purpose of this report is to provide information on the use of energy in residential vehicles in the 50 States and the District of Columbia. Included are data about: the number and type of vehicles in the residential sector, the characteristics of those vehicles, the total annual Vehicle Miles Traveled (VMT), the per household and per vehicle VMT, the vehicle fuel consumption and expenditures, and vehicle fuel efficiencies. The Energy Information Administration (EIA) is mandated by Congress to collect, analyze, and disseminate impartial, comprehensive data about energy--how much is produced, who uses it, and the purposes for which it is used. To comply with this mandate, EIA collects energy data from a variety of sources covering a range of topics 1 . Background The data for this report are based on the household telephone interviews from the 1991 RTECS, conducted

456

Vehicle Technologies Office: Educational Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deployment Deployment Site Map Printable Version Share this resource Send a link to Vehicle Technologies Office: Educational Activities to someone by E-mail Share Vehicle Technologies Office: Educational Activities on Facebook Tweet about Vehicle Technologies Office: Educational Activities on Twitter Bookmark Vehicle Technologies Office: Educational Activities on Google Bookmark Vehicle Technologies Office: Educational Activities on Delicious Rank Vehicle Technologies Office: Educational Activities on Digg Find More places to share Vehicle Technologies Office: Educational Activities on AddThis.com... Energy Policy Act (EPAct) Clean Cities Educational Activities Graduate Automotive Technology Education (GATE) Educational Activities EcoCAR 2: Plugging In to the Future EcoCAR 2: Plugging In to the Future is the successor to EcoCAR: The NeXt

457

Blog Feed: Vehicles  

Broader source: Energy.gov (indexed) [DOE]

feed-vehicles 1000 Independence Ave. SW Washington feed-vehicles 1000 Independence Ave. SW Washington DC 20585 202-586-5000 en Our Best Energy Videos of 2013 http://energy.gov/articles/our-best-energy-videos-2013 Our Best Energy Videos of 2013

458

Vehicle Technologies Office: News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

December 18, 2013 December 18, 2013 USDA Offers $118 Million for Renewable Energy, Smart Grid Projects The U.S. Department of Agriculture (USDA) announced $73 million in funding for renewable energy projects and $45 million for smart grid technology as part of more than $1.8 billion in funding for electric utility infrastructure projects in 25 states and one territory. More December 18, 2013 2012 Fuel Economy of New Vehicles Sets Record High: EPA The U.S. Environmental Protection Agency (EPA) reported that model year 2012 vehicles achieved an all-time high fuel economy average of 23.6 miles per gallon. More December 18, 2013 Energy Department Releases Grid Energy Storage Report The Energy Department released its Grid Energy Storage report to the members of the U.S. Senate Energy and Natural Resources Committee, identifying the benefits and challenges of grid energy storage that must be addressed to enable broader use. More

459

Vehicle rear suspension mechanism  

SciTech Connect (OSTI)

A vehicle rear suspension mechanism is described which consists of: a suspension member connected with a vehicle body; wheel hub means supporting a rear wheel having a wheel center plane for rotation about a rotating axis; and connecting means for connecting the wheel hub means with the suspension member. The connecting means include ball joint means having a pivot center located forwardly of and below the rotating axis of the rear wheel and connecting the wheel hub means to the suspension member pivotably about the pivot center, first resilient means located between the wheel hub means and the suspension member rearwardly of and above the rotating axis of the rear wheel, and second resilient means located between the wheel hub means and the suspension member forwardly of and above the rotating axis of the rear wheel.

Kijima, T.; Maebayashi, J.

1986-08-05T23:59:59.000Z

460

Rapid road repair vehicle  

DOE Patents [OSTI]

Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find at the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was not heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past. 2 figs.

Mara, L.M.

1998-05-05T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle passenger van" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Rapid road repair vehicle  

DOE Patents [OSTI]

Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find an the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was was heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past.

Mara, Leo M. (Livermore, CA)

1998-01-01T23:59:59.000Z

462

Unmanned Aerospace Vehicle Workshop  

SciTech Connect (OSTI)

The Unmanned Aerospace Vehicle (UAV) Workshop concentrated on reviewing and refining the science experiments planned for the UAV Demonstration Flights (UDF) scheduled at the Oklahoma Cloud and Radiation Testbed (CART) in April 1994. These experiments were focused around the following sets of parameters: Clear sky, daylight; Clear-sky, night-to-day transition; Clear sky - improve/validate the accuracy of radiative fluxes derived from satellite-based measurements; Daylight, clouds of opportunity; and, Daylight, broken clouds.

Vitko, J. Jr. [Sandia National Labs., Livermore, CA (United States)

1995-04-01T23:59:59.000Z

463

Low-cost conformable storage to maximize vehicle range  

SciTech Connect (OSTI)

Liquefied petroleum gas (LPG) and compressed natural gas (CNG) are currently the leading fuel contenders for converting vehicles from gasoline and diesel to alternative fuels. Two factors that inhibit conversion are additional vehicle costs and reduced range compared to gasoline. In overcoming these barriers, a key element of the alternative fuel system becomes the storage tank for these pressurized fuels. Using cylindrical pressure vessels is the conventional approach, but they do not package well in the available vehicle volume. Thiokol Corporation has developed and is now producing a conformable (non-cylindrical) aluminum storage system for LPG vans. This system increases fuel storage in a given rectangular envelope. The goal of this project was to develop the technology for a lower cost conformable tank made of injection-molded plastic. Much of the cost of the aluminum conformable tank is in the fabrication because several weld seams are required. The injection-molding process has the potential to greatly reduce the fabrication costs. The requirements of a pressurized fuel tank on a vehicle necessitate the proper combination of material properties. Material selection and tank design must be optimized for maximum internal volume and minimum material use to be competitive with other technologies. The material and the design must also facilitate the injection-molding process. Prototype tanks must be fabricated to reveal molding problems, prove solutions, and measure results. In production, efficient fabrication will be key to making these tanks cost competitive. The work accomplished during this project has demonstrated that conformable LPG tanks can be molded with thermoplastics. However, to achieve a competitive tank, improvements are needed in the effective material strength. If these improvements can be made, molded plastics should produce a lower cost tank that can store more LPG on a vehicle than conventional cylinders.

Graham, R.P.

1998-01-01T23:59:59.000Z

464

Vehicle Technologies Office: Fact #227: July 29, 2002 Vehicle Miles of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7: July 29, 2002 7: July 29, 2002 Vehicle Miles of Travel (VMT) and Age by Vehicle Type to someone by E-mail Share Vehicle Technologies Office: Fact #227: July 29, 2002 Vehicle Miles of Travel (VMT) and Age by Vehicle Type on Facebook Tweet about Vehicle Technologies Office: Fact #227: July 29, 2002 Vehicle Miles of Travel (VMT) and Age by Vehicle Type on Twitter Bookmark Vehicle Technologies Office: Fact #227: July 29, 2002 Vehicle Miles of Travel (VMT) and Age by Vehicle Type on Google Bookmark Vehicle Technologies Office: Fact #227: July 29, 2002 Vehicle Miles of Travel (VMT) and Age by Vehicle Type on Delicious Rank Vehicle Technologies Office: Fact #227: July 29, 2002 Vehicle Miles of Travel (VMT) and Age by Vehicle Type on Digg Find More places to share Vehicle Technologies Office: Fact #227:

465

Vehicle Technologies Office: Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Batteries Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various consumer electronics and appliances, from MP3 players to laptops to our vehicles. Batteries play an important role in our vehicles and are gradually becoming more and more important as they assume energy storage responsibilities from fuel in vehicle propulsion systems. A battery is a device that stores chemical energy in its active materials and converts it, on demand, into electrical energy by means of an electrochemical reaction. An electrochemical reaction is a chemical reaction involving the transfer of electrons, and it is that reaction which creates electricity. There are three main parts of a battery: the anode, cathode, and electrolyte. The anode is the "fuel" electrode which gives up electrons to the external circuit to create the flow of electrons or electricity. The cathode is the oxidizing electrode which accepts electrons in the external circuit. Finally, the electrolyte carries the electric current, as ions, inside the cell, between the anode and cathode.

466

Stabilizer for motor vehicle  

SciTech Connect (OSTI)

This patent describes a stabilizer for a motor vehicle comprising: a rod-shaped torsion section extending in the transverse direction of a motor vehicle; a pair of arm sections continuous with both ends of the torsion section and extending in the longitudinal direction of the motor vehicle; a first member attached to the torsion section or at least one of the arm sections and formed with an axially penetrating cylindrical bore; a columnar second member inserted in the bore of the first member; at least one coil spring disposed between the inner peripheral surface of the bore of the first member and the outer peripheral surface of the second member and wound around the second member, at least one end of the coil spring being a free end; an operating member connected to the free end of the coil spring, at least a part of the operating member being located outside the first member; and drive means coupled to the operating member and adapted to apply a force in a direction such that the diameter of the coil spring is increased or reduced.

Takadera, I.; Kuroda, S.

1986-11-11T23:59:59.000Z

467

List of Vehicles Incentives | Open Energy Information  

Open Energy Info (EERE)

The following contains the list of 34 Vehicles Incentives. The following contains the list of 34 Vehicles Incentives. CSV (rows 1 - 34) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alternative Fuel Transportation Grant Program (Indiana) State Grant Program Indiana Commercial Nonprofit Local Government Renewable Transportation Fuels Renewable Fuel Vehicles Fuel Cells No Alternative Fuel Vehicle Loan Program (Missouri) State Loan Program Missouri Schools Local Government Renewable Fuel Vehicles Other Alternative Fuel Vehicles Refueling Stations No Alternative Fuel Vehicle Rebate (Colorado) State Rebate Program Colorado Schools Local Government State Government Renewable Fuel Vehicles No Alternative Fuel Vehicle Tax Credit (West Virginia) Personal Tax Credit West Virginia Residential Renewable Fuel Vehicles No

468

Clean Cities: Electric Vehicle Infrastructure Training Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electric Vehicle Infrastructure Electric Vehicle Infrastructure Training Program to someone by E-mail Share Clean Cities: Electric Vehicle Infrastructure Training Program on Facebook Tweet about Clean Cities: Electric Vehicle Infrastructure Training Program on Twitter Bookmark Clean Cities: Electric Vehicle Infrastructure Training Program on Google Bookmark Clean Cities: Electric Vehicle Infrastructure Training Program on Delicious Rank Clean Cities: Electric Vehicle Infrastructure Training Program on Digg Find More places to share Clean Cities: Electric Vehicle Infrastructure Training Program on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions

469

Alternative Fuels Data Center: Hybrid Electric Vehicles  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Hybrid Electric Hybrid Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Hybrid Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Batteries Deployment Maintenance & Safety Laws & Incentives Hybrids Plug-In Hybrids All-Electric Vehicles Hybrid Electric Vehicles

470

Alternative Fuels Data Center: Vehicle Registration Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Vehicle Registration Vehicle Registration Requirement to someone by E-mail Share Alternative Fuels Data Center: Vehicle Registration Requirement on Facebook Tweet about Alternative Fuels Data Center: Vehicle Registration Requirement on Twitter Bookmark Alternative Fuels Data Center: Vehicle Registration Requirement on Google Bookmark Alternative Fuels Data Center: Vehicle Registration Requirement on Delicious Rank Alternative Fuels Data Center: Vehicle Registration Requirement on Digg Find More places to share Alternative Fuels Data Center: Vehicle Registration Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vehicle Registration Requirement Motor vehicle registration applicants must provide proof of compliance with

471

Projection of Chinese motor vehicle growth, oil demand, and CO{sub 2}emissions through 2050.  

SciTech Connect (OSTI)

As the vehicle population in China increases, oil consumption and carbon dioxide (CO{sub 2}) emissions associated with on-road transportation are rising dramatically. During this study, we developed a methodology to project trends in the growth of the vehicle population, oil demand, and CO{sub 2} emissions associated with on-road transportation in China. By using this methodology, we projected--separately--the number of highway vehicles, motorcycles, and rural vehicles in China through 2050. We used three scenarios of highway vehicle growth (high-, mid-, and low-growth) to reflect patterns of motor vehicle growth that have occurred in different parts of the world (i.e., Europe and Asia). All are essentially business-as-usual scenarios in that almost none of the countries we examined has made concerted efforts to manage vehicle growth or to offer serious alternative transportation means to satisfy people's mobility needs. With this caveat, our projections showed that by 2030, China could have more highway vehicles than the United States has today, and by 2035, it could have the largest number of highway vehicles in the world. By 2050, China could have 486-662 million highway vehicles, 44 million motorcycles, and 28 million rural vehicles. These numbers, which assume essentially unmanaged vehicle growth, would result in potentially disastrous effects on the urban infrastructure, resources, and other social and ecological aspects of life in China. We designed three fuel economy scenarios, from conservative to aggressive, on the basis of current policy efforts and expectations of near-future policies in China and in developed countries. It should be noted that these current and near-future policies have not taken into consideration the significant potential for further fuel economy improvements offered by advanced technologies such as electric drive technologies (e.g., hybrid electric vehicles and fuel-cell vehicles). By using vehicle growth projections and potential vehicle fuel economy, we projected that China's on-road vehicles could consume approximately 614-1016 million metric tons of oil per year (12.4-20.6 million barrels per day) and could emit 1.9-3.2 billion metric tons of CO{sub 2} per year in 2050, which will put tremendous pressure on the balance of the Chinese and world oil supply and demand and could have significant implications on climate change. Our analysis shows that, while improvements in vehicle fuel economy are crucial for reducing transportation energy use, containing the growth of the vehicle population could have an even more profound effect on oil use and CO{sub 2} emissions. This benefit is in addition to other societal and environmental benefits--such as reduced congestion, land use, and urban air pollution--that will result from containing vehicle population growth. Developing public transportation systems for personal travel and rail and other modes for freight transportation will be important for containing the growth of motor vehicles in China. Although the population of passenger cars will far exceed that of all truck types in China in the future, our analysis shows that oil use by and CO{sub 2} emissions from the Chinese truck fleet will be far larger than those related to Chinese passenger cars because trucks are very use intensive (more vehicle miles traveled per year) and energy intensive (lower fuel economy). Unfortunately, the potential for improving fuel economy and reducing air pollutant emissions for trucks has not been fully explored; such efforts are needed. Considering the rapid depletion of the world's oil reserve, the heightened global interest in addressing greenhouse gas emissions, and the geopolitical complications of global oil supply and demand, the study results suggest that unmanaged vehicle growth and limited improvements in vehicle fuel efficiency will lead to an unsustainable and unstable transportation system in China. In other words, while our projections do not definitively indicate what will happen in the Chinese transportation sector by 2050, they do demonstrate

Wang, M.; Huo, H.; Johnson, L.; He, D.

2006-12-20T23:59:59.000Z

472

Projection of Chinese motor vehicle growth, oil demand, and Co{sub 2} emissions through 2050.  

SciTech Connect (OSTI)

As the vehicle population in China increases, oil consumption and carbon dioxide (CO{sub 2}) emissions associated with on-road transportation are rising dramatically. During this study, we developed a methodology to project trends in the growth of the vehicle population, oil demand, and CO{sub 2} emissions associated with on-road transportation in China. By using this methodology, we projected separately the number of highway vehicles, motorcycles, and rural vehicles in China through 2050. We used three scenarios of highway vehicle growth (high-, mid-, and low-growth) to reflect patterns of motor vehicle growth that have occurred in different parts of the world (i.e., Europe and Asia). All are essentially business-as-usual scenarios in that almost none of the countries we examined has made concerted efforts to manage vehicle growth or to offer serious alternative transportation means to satisfy people's mobility needs. With this caveat, our projections showed that by 2030, China could have more highway vehicles than the United States has today, and by 2035, it could have the largest number of highway vehicles in the world. By 2050, China could have 486-662 million highway vehicles, 44 million motorcycles, and 28 million rural vehicles. These numbers, which assume essentially unmanaged vehicle growth, would result in potentially disastrous effects on the urban infrastructure, resources, and other social and ecological aspects of life in China. We designed three fuel economy scenarios, from conservative to aggressive, on the basis of current policy efforts and expectations of near-future policies in China and in developed countries. It should be noted that these current and near-future policies have not taken into consideration the significant potential for further fuel economy improvements offered by advanced technologies such as electric drive technologies (e.g., hybrid electric vehicles and fuel-cell vehicles). By using vehicle growth projections and potential vehicle fuel economy, we projected that China's on-road vehicles could consume approximately 614-1016 million metric tons of oil per year (12.4-20.6 million barrels per day) and could emit 1.9-3.2 billion metric tons of CO{sub 2} per year in 2050, which will put tremendous pressure on the balance of the Chinese and world oil supply and demand and could have significant implications on climate change. Our analysis shows that, while improvements in vehicle fuel economy are crucial for reducing transportation energy use, containing the growth of the vehicle population could have an even more profound effect on oil use and CO{sub 2} emissions. This benefit is in addition to other societal and environmental benefits--such as reduced congestion, land use, and urban air pollution--that will result from containing vehicle population growth. Developing public transportation systems for personal travel and rail and other modes for freight transportation will be important for containing the growth of motor vehicles in China. Although the population of passenger cars will far exceed that of all truck types in China in the future, our analysis shows that oil use by and CO{sub 2} emissions from the Chinese truck fleet will be far larger than those related to Chinese passenger cars because trucks are very use intensive (more vehicle miles traveled per year) and energy intensive (lower fuel economy). Unfortunately, the potential for improving fuel economy and reducing air pollutant emissions for trucks has not been fully explored; such efforts are needed. Considering the rapid depletion of the world's oil reserve, the heightened global interest in addressing greenhouse gas emissions, and the geopolitical complications of global oil supply and demand, the study results suggest that unmanaged vehicle growth and limited improvements in vehicle fuel efficiency will lead to an unsustainable and unstable transportation system in China. In other words, while our projections do not definitively indicate what will happen in the Chinese transportation sector by 2050, they do demonstrate th

Huo, H.; Wang, M.; Johnson, L.; He, D.; Energy Systems; Energy Foundation

2007-01-01T23:59:59.000Z

473

Women @ Energy: Kerstin Kleese van Dam | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Kerstin Kleese van Dam Kerstin Kleese van Dam Women @ Energy: Kerstin Kleese van Dam March 27, 2013 - 3:41pm Addthis Kerstin Kleese van Dam is an associate division director of the Computational Science and Mathematics Division and leads the Scientific Data Management Group at Pacific Northwest National Laboratory. Kerstin Kleese van Dam is an associate division director of the Computational Science and Mathematics Division and leads the Scientific Data Management Group at Pacific Northwest National Laboratory. Check out other profiles in the Women @ Energy series and share your favorites on Pinterest. Kerstin Kleese van Dam has led the charge at Pacific Northwest National Laboratory to resolve data management, analysis, and knowledge discovery challenges in extreme-scale data environments. She also directs data

474

NETL: News Release - Vehicle-Mounted Natural Gas Leak Detector Passes Key  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

October 2, 2003 October 2, 2003 Vehicle-Mounted Natural Gas Leak Detector Passes Key "Road Test" Spots Natural Gas Leaks from 30 Feet Away At Speeds Approaching 20 Miles Per Hour Handheld Prototype Gas Detector Now Being Outfitted as a Van-Mounted Unit PSI has modified this early prototype of a handheld remote natural gas detector to operate from a moving vehicle. ANDOVER, MA - Physical Sciences Inc. (PSI) recently conducted a successful test of its mobile natural gas detector at the company's research facilities in Andover, Mass. PSI's prototype leak detector demonstrated its ability to spot natural gas leaks from a distance of up to 30 feet from a vehicle moving at speeds approaching 20 miles per hour. In the United States, significant resources are devoted annually to leak

475

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine Search  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ballard Power Systems (3) Balqon (3) Bosch Rexroth (1) Boulder Electric Ballard Power Systems (3) Balqon (3) Bosch Rexroth (1) Boulder Electric Vehicle (1) Capstone Turbine Corp. (2) Cummins (2) Cummins Westport (2) Electric Vehicles International (1) Enova Systems (1) Ford Motor Co. (5) General Motors (5) Hino (1) KEM (1) Navistar (1) Paccar (2) Smith Electric Vehicles (2) UQM (2) UTC Power (1) Valence (1) Vision Motor Corp. (2) Volvo (1) Westport Innovations (1) Fuel Type All CNG (8) Electricity (11) Ethanol (2) Hybrid - Diesel Hydraulic (5) Hydrogen (3) LNG (4) Propane (10) Application All Bus - School (6) Bus - Shuttle (9) Bus - Transit (11) Refuse hauler (2) Street sweeper (5) Tractor (13) Trolley (3) Van (9) Vocational truck (16) Go Compare Ballard Power Systems - FCvelocity-HD6 fuel cell Ballard Power Systems - Hydrogen Fuel Cell

476

Strategies for Local Low-Carbon Development  

E-Print Network [OSTI]

passenger car. Electric vehicles running on renewable energypassenger car. Electric vehicles running on renewable energy

Zhou, Nan

2014-01-01T23:59:59.000Z

477

Myths Regarding Alternative Fuel Vehicle Demand by Light-Duty Vehicle Fleets  

E-Print Network [OSTI]

eet demand for alternative-fuel vehicles in California.Britain MYTHS REGARDING ALTERNATIVE FUEL VEHICLE DEMAND BYinitial market for alternative fuel vehicles (AFVs). We

Nesbitt, Kevin; Sperling, Daniel

1998-01-01T23:59:59.000Z

478

Van Sciver receives international award for cryogenics research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tsukuba, Japan, presented the award to Van Sciver on July 22 during the International Cryogenic Engineering Conference-International Cryogenic Materials Conference in Wroclaw,...

479

305 Centraal Tuchtcollege Veegt Waarschuwing Huisarts Van Tafel  

Science Journals Connector (OSTI)

Het Centraal Tuchtcollege voor de Gezondheidszorg in Den Haag veegt de waarschuwing van tafel, die een huisarts uit Hattem enige tijd...

   

2008-03-01T23:59:59.000Z

480

Vehicle Technologies Office: Key Activities in Vehicles | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in four key areas to develop and deploy vehicle technologies that reduce the use of petroleum while maintaining or improving performance, power, and comfort. Research and...

Note: This page contains sample records for the topic "vehicle passenger van" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office supports research to design engines optimized for alternative fuels that increases efficiency and takes advantage of these fuels' unique properties.

482

Richmond Electric Vehicle Initiative Electric Vehicle Readiness Plan  

Broader source: Energy.gov [DOE]

The REVi plan addresses the electric vehicle market in Richmond and then addresses a regional plan, policies, and analysis of the the communities readiness.

483

Vehicle Technologies Office Merit Review 2014: Advanced Vehicle Testing & Evaluation  

Broader source: Energy.gov [DOE]

Presentation given by Intertek at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about testing and evaluating advanced...

484

Vehicle Technologies Office Merit Review 2014: Consumer Vehicle Technology Data  

Broader source: Energy.gov [DOE]

Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about consumer...

485

Vehicle Technologies Office Merit Review 2014: Vehicle & Systems...  

Energy Savers [EERE]

& Testing Presentation given by U.S. Department of Energy at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

486

Advanced Vehicle Testing Activity (AVTA)- Vehicle Testing and Demonstration Activities  

Broader source: Energy.gov [DOE]

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

487

Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies...  

Broader source: Energy.gov (indexed) [DOE]

vehicle into an electric power source. Although electricity production may contribute to air pollution, the U.S. Environmental Protection Agency (EPA) considers EVs Hybrid and...

488

Commercial Vehicle Safety Alliance Commercial Vehicle Safety Alliance  

Broader source: Energy.gov (indexed) [DOE]

Alliance Alliance Commercial Vehicle Safety Alliance North American Standard Level VI Inspection Program Update: Ensuring Safe Transportation of Radioactive Material Carlisle Smith Director, Hazardous Materials Programs Commercial Vehicle Safety Alliance Email: carlisles@cvsa.org Phone: 301-830-6147 CVSA Levels of Inspections Level I Full inspection Level II Walk Around - Driver - Vehicle Level III Driver - Paperwork Level IV Special Project - Generally focus on one item CVSA Levels of Inspections Level V Vehicle Only Level VI Enhanced RAM Level VII Jurisdictional Mandated * 8 basic classes/year held in various states * Prerequisites: CVSA Level I and HAZMAT certified * Industry attends course * To date 135 classes/2268 attendees * Currently 702 certified Level VI

489

ILYA KOLMANOVSKY, PAUL MORAAL, MICHIEL VAN NIEUWSTADT AND ANNA STEFANOPOULOU  

E-Print Network [OSTI]

components are increasingly being considered for production of passenger car internal combustion engines), oxides of nitrogen (NOx), hydrocarbons (HC) and carbon monoxide (CO). Speci - cally, increased air gas and it increases the speci c heat capacity of the charge. This reduces the burn rate, lowering

Stefanopoulou, Anna

490

Project Information Form Project Title White Paper on the Future of Passenger Travel Demand in the United  

E-Print Network [OSTI]

each agency or organization) Caltrans $26,383 Total Project Cost $26,383 Agency ID or Contract NumberProject Information Form Project Title White Paper on the Future of Passenger Travel Demand DTRT13-G-UTC29 Start and End Dates September 2014 to June 2015 Brief Description of Research Project

California at Davis, University of

491

Commercial Vehicle Classification System using Advanced Inductive Loop Technology  

E-Print Network [OSTI]

Platform Enclosed Van Drop Frame Van 40' Container 20' Container Auto Transport Chemical /Platform Enclosed Van Drop Frame Van 40' Container 20' Container Auto Transport Chemical /Platform Image source: http://www.overbilttrailers.com T7 Auto Transport Image source: http://www.trailersforless.com T3 Enclosed Van Image source: http://www.scientificbrake.com T8 Chemical/

Tok, Yeow Chern Andre

2008-01-01T23:59:59.000Z

492

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

3. 3. Vehicle Miles Traveled This chapter presents information on household vehicle usage, as measured by the number of vehicle miles traveled (VMT). VMT is one of the two most important components used in estimating household vehicle fuel consumption. (The other, fuel efficiency, is discussed in Chapter 4). In addition, this chapter examines differences in driving behavior based on the characteristics of the household and the type of vehicle driven. Trends in household driving patterns are also examined using additional information from the Department of Transportation's Nationwide Personal Transportation Survey (NPTS). Household VMT is a measure of the demand for personal transportation. Demand for transportation may be viewed from either an economic or a social perspective. From the economic point-of-view, the use of a household vehicle represents the consumption of one

493

Vehicle Technologies Office: 2004 Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Archive to someone 4 Archive to someone by E-mail Share Vehicle Technologies Office: 2004 Archive on Facebook Tweet about Vehicle Technologies Office: 2004 Archive on Twitter Bookmark Vehicle Technologies Office: 2004 Archive on Google Bookmark Vehicle Technologies Office: 2004 Archive on Delicious Rank Vehicle Technologies Office: 2004 Archive on Digg Find More places to share Vehicle Technologies Office: 2004 Archive on AddThis.com... 2004 Archive #352 Automotive Industry Material Usage December 27, 2004 #351 Gasohol Use Is Up December 20, 2004 #350 U.S. Oil Imports: Top Ten Countries of Origin December 13, 2004 #349 Crude Oil Production: OPEC, the Persian Gulf, and the United States December 6, 2004 #348 U.S. Trade Deficit, 2001-2003 November 29, 2004 #347 The Relationship of VMT and GDP November 22, 2004

494

Vehicle Technologies Office: 2008 Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 Archive to someone 8 Archive to someone by E-mail Share Vehicle Technologies Office: 2008 Archive on Facebook Tweet about Vehicle Technologies Office: 2008 Archive on Twitter Bookmark Vehicle Technologies Office: 2008 Archive on Google Bookmark Vehicle Technologies Office: 2008 Archive on Delicious Rank Vehicle Technologies Office: 2008 Archive on Digg Find More places to share Vehicle Technologies Office: 2008 Archive on AddThis.com... 2008 Archive #551 Truck Stop Electrification Sites December 29, 2008 #550 Clean Cities Coalitions December 22, 2008 #549 Biofuels Corridor extends from the Great Lakes to the Gulf of Mexico December 15, 2008 #548 Number of Gasoline Stations Continues to Decline in 2007 December 8, 2008 #547 Research and Development (R&D) Spending in the Automotive Industry December 1, 2008

495

Mack LNG vehicle development  

SciTech Connect (OSTI)

The goal of this project was to install a production-ready, state-of-the-art engine control system on the Mack E7G natural gas engine to improve efficiency and lower exhaust emissions. In addition, the power rating was increased from 300 brake horsepower (bhp) to 325 bhp. The emissions targets were oxides of nitrogen plus nonmethane hydrocarbons of less than 2.5 g/bhp-hr and particulate matter of less than 0.05 g/bhp-hr on 99% methane. Vehicle durability and field testing were also conducted. Further development of this engine should include efficiency improvements and oxides of nitrogen reductions.

Southwest Research Institute

2000-01-05T23:59:59.000Z

496

Hybrid vehicle motor alignment  

DOE Patents [OSTI]

A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.

Levin, Michael Benjamin (Ann Arbor, MI)

2001-07-03T23:59:59.000Z

497

Alternative Fuel Vehicles  

SciTech Connect (OSTI)

This Federal Technology Alert on alternative fuel vehicles (AFVs), prepared for the U.S. Department of Energy's Federal Energy Management Program (FEMP), is intended for fleet managers in government agencies and other government officials who need to use more alternative fuels and AFVs in their fleets of cars and trucks. This publication describes the government's plans and progress in meeting goals for the use of AFVs, which are stated in the Energy Policy Act and various Executive Orders. It describes the types of AFVs available, lists actual and potential federal uses, makes some general recommendations, and presents field experiences to date.

Not Available

2003-09-01T23:59:59.000Z

498

Vehicle Technologies Office: Propulsion Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Materials Manufacturers use propulsion (or powertrain) materials in the components that move vehicles of every size and shape. Conventional vehicles use these materials in components such as the engine, transmission, fuel system, and exhaust after-treatment systems. Electric drive vehicles use propulsion materials in their electric motors and power electronics. Developing advanced propulsion materials is essential to commercializing new, highly efficient automotive technologies that have technical requirements that existing powertrain materials cannot meet. The Vehicle Technology Office's (VTO) research in propulsion materials focuses on four areas: Materials for hybrid and electric drive systems Materials for high efficiency combustion engines Materials to enable energy recovery systems and control exhaust gases

499

Heavy Duty Vehicle Modeling & Simulation  

Broader source: Energy.gov [DOE]

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

500

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

Protection Agency (EPA) certification files (CERT files) containing laboratory test results of MPG. When the vehicle characteristic was missing from the questionnaire, but...