Powered by Deep Web Technologies
Note: This page contains sample records for the topic "vehicle miles traveled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Chapter 3. Vehicle-Miles Traveled  

U.S. Energy Information Administration (EIA) Indexed Site

3. Vehicle-Miles Traveled 3. Vehicle-Miles Traveled Chapter 3. Vehicle-Miles Traveled Vehicle-miles traveled--the number of miles that residential vehicles are driven--is probably the most important information collected by the Residential Transportation Energy Consumption Survey. Using the data on vehicle-miles traveled allows analysts to answer such questions as: "Are minivans driven more than passenger cars?" "Do people in the West drive more than people elsewhere?" "Do people conserve their new cars by driving them less?" "Who drives more--people in households with children, or other people?" "At what ages do people drive the most?" "How does growing income affect the amount of driving?" In addition to answering those kinds of questions, analysts also use the number of vehicle-miles traveled to compute estimated, on-road vehicle fuel consumption, economy, and expenditures, all of which have important implications for U.S. energy policy and national security (see Chapter 4).

2

Alternative Fuels Data Center: Vehicle Miles Traveled Tax Feasibility  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Miles Traveled Vehicle Miles Traveled Tax Feasibility Evaluation to someone by E-mail Share Alternative Fuels Data Center: Vehicle Miles Traveled Tax Feasibility Evaluation on Facebook Tweet about Alternative Fuels Data Center: Vehicle Miles Traveled Tax Feasibility Evaluation on Twitter Bookmark Alternative Fuels Data Center: Vehicle Miles Traveled Tax Feasibility Evaluation on Google Bookmark Alternative Fuels Data Center: Vehicle Miles Traveled Tax Feasibility Evaluation on Delicious Rank Alternative Fuels Data Center: Vehicle Miles Traveled Tax Feasibility Evaluation on Digg Find More places to share Alternative Fuels Data Center: Vehicle Miles Traveled Tax Feasibility Evaluation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

3

Petroleum Reduction Strategies to Reduce Vehicle Miles Traveled |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reduce Vehicle Miles Traveled Reduce Vehicle Miles Traveled Petroleum Reduction Strategies to Reduce Vehicle Miles Traveled October 7, 2013 - 11:52am Addthis YOU ARE HERE: Step 3 For reducing greenhouse gas emissions, the table below describes petroleum reduction strategies to reduce vehicle miles traveled, as well as guidance and best practices for each strategy. Table 1. Determining When and How to Promote the Use of Strategies to Reduce Vehicle Miles Traveled Strategy When Applicable Best Practices Consolidate trips Applicable to all vehicles, regardless of ownership or vehicle and fuel type Target vehicle operators who take longer trips Seek vehicle operator input and collaboration to identify regular or occasional trips that involve similar routes. Determine whether trips on multiple days or times can be consolidated into a single trip.

4

Petroleum Reduction Strategies to Reduce Vehicle Miles Traveled  

Energy.gov (U.S. Department of Energy (DOE))

For reducing greenhouse gas emissions, the table below describes petroleum reduction strategies to reduce vehicle miles traveled, as well as guidance and best practices for each strategy.

5

Odometer Versus Self-Reported Estimates of Vehicle Miles Traveled  

Reports and Publications (EIA)

The findings described here compare odometer readings with self-reported estimates of Vehicle Miles Traveled (VMT) to investigate to what extent self-reported VMT is a reliable surrogate for odometer-based VMT.

2000-01-01T23:59:59.000Z

6

Fact #729: May 28, 2012 Secondary Household Vehicles Travel Fewer Miles  

Energy.gov (U.S. Department of Energy (DOE))

When a household has more than one vehicle, the secondary vehicles travel fewer miles than the primary vehicle. In a two-vehicle household, the second vehicle travels less than half of the miles...

7

Equity Evaluation of Vehicle Miles Traveled Fees in Texas  

E-Print Network (OSTI)

to the infrastructure but the money needed to maintain and improve roadways is not being adequately generated. One proposed alternative to the gas tax is the creation of a vehicle miles traveled (VMT) fee; with equity being a crucial issue to consider. This research...

Larsen, Lisa Kay

2012-10-19T23:59:59.000Z

8

Fact #552: January 5, 2009 Vehicle Miles of Travel by Region  

Energy.gov (U.S. Department of Energy (DOE))

Total vehicle miles of travel (VMT) in the U.S. have declined from 2007 to 2008. The latest data available, September 2008, shows a 4.4% decline in travel that varies by region. Comparing September...

9

Fact #670: April 11, 2011 Vehicle-Miles of Travel Rises in 2010  

Energy.gov (U.S. Department of Energy (DOE))

The preliminary estimates from the Federal Highway Administration show that vehicle-miles of travel (VMT) increased slightly in 2010 over the previous year, but have not surpassed the peak of 3.03...

10

Fact #616: March 29, 2010 Household Vehicle-Miles of Travel by Trip Purpose  

Energy.gov (U.S. Department of Energy (DOE))

In 2009, getting to and from work accounted for about 27% of household vehicle-miles of travel (VMT). Work-related business was 8.4% of VMT in 2001, but declined to 6.7% in 2009, possibly due to...

11

Impact of fuel price on vehicle miles traveled (VMT): do the poor respond in the same way as the rich?  

Science Journals Connector (OSTI)

The effects of fuel price on travel demand for different income groups ... choices and constraints by examining the variation of fuel price elasticity of vehicle miles travelled (VMT) ... in VMT as a result of im...

Tingting Wang; Cynthia Chen

2014-01-01T23:59:59.000Z

12

An Econometric Analysis of the Elasticity of Vehicle Travel with Respect to Fuel Cost per Mile Using RTEC Survey Data  

SciTech Connect

This paper presents the results of econometric estimation of the ''rebound effect'' for household vehicle travel in the United States based on a comprehensive analysis of survey data collected by the U.S. Energy Information Administration (EIA) at approximately three-year intervals over a 15-year period. The rebound effect is defined as the percent change in vehicle travel for a percent change in fuel economy. It summarizes the tendency to ''take back'' potential energy savings due to fuel economy improvements in the form of increased vehicle travel. Separate vehicles use models were estimated for one-, two-, three-, four-, and five-vehicle households. The results are consistent with the consensus of recently published estimates based on national or state-level data, which show a long-run rebound effect of about +0.2 (a ten percent increase in fuel economy, all else equal, would produce roughly a two percent increase in vehicle travel and an eight percent reduction in fuel use). The hypothesis that vehicle travel responds equally to changes in fuel cost-per-mile whether caused by changes in fuel economy or fuel price per gallon could not be rejected. Recognizing the interdependency in survey data among miles of travel, fuel economy and price paid for fuel for a particular vehicle turns out to be crucial to obtaining meaningful results.

Greene, D.L.; Kahn, J.; Gibson, R.

1999-03-01T23:59:59.000Z

13

Validating the Relationship Between Urban Form and Travel Behavior with Vehicle Miles Travelled  

E-Print Network (OSTI)

to the conventional travel impact assessment following the ITE?s (Institute of Transportation Engineers) Trip Generation Handbook, developments with higher levels of urban form measures will generate a greater travel impacts because they generate higher number...

Kakumani, Rajanesh

2010-01-14T23:59:59.000Z

14

Estimating commercial truck VMT (vehicle miles of travel) of interstate motor carriers: Data evaluation  

SciTech Connect

This memorandum summarizes the evaluation results of six data sources in terms of their ability to estimate the number of commercial trucks operating in interstate commerce and their vehicle miles of travel (VMT) by carrier type and by state. The six data sources are: (1) Truck Inventory and Use Survey (TIUS) from the Bureau of the Census, (2) nationwide truck activity and commodity survey (NTACS) from the Bureau of the Census, (3) National Truck Trip Information Survey (NTTIS) from the University of Michigan Transportation Research Institute (UMTRI), (4) highway performance monitoring system (HPMS) from the Federal Highway Administration (FHWA), Department of Transportation, (5) state fuel tax reports from each individual state and the international fuel tax agreement (IFTA), and (6) International Registration Plan (IRP) of the American Association of Motor Vehicle Administrators (AAMVA). TIUS, NTACS, and NTTIS are designed to provide data on the physical and operational characteristics of the Nation's truck population (or sub-population); HPMS is implemented to collect information on the physical and usage characteristics of various highway systems; and state fuel tax reports and IRP are tax-oriented registrations. 16 figs., 13 tabs.

Hu, P.S.; Wright, T.; Miaou, Shaw-Pin; Beal, D.J.; Davis, S.C. (Oak Ridge National Lab., TN (USA); Tennessee Univ., Knoxville, TN (USA))

1989-11-01T23:59:59.000Z

15

Vehicle Technologies Office: Fact #227: July 29, 2002 Vehicle Miles of  

NLE Websites -- All DOE Office Websites (Extended Search)

7: July 29, 2002 7: July 29, 2002 Vehicle Miles of Travel (VMT) and Age by Vehicle Type to someone by E-mail Share Vehicle Technologies Office: Fact #227: July 29, 2002 Vehicle Miles of Travel (VMT) and Age by Vehicle Type on Facebook Tweet about Vehicle Technologies Office: Fact #227: July 29, 2002 Vehicle Miles of Travel (VMT) and Age by Vehicle Type on Twitter Bookmark Vehicle Technologies Office: Fact #227: July 29, 2002 Vehicle Miles of Travel (VMT) and Age by Vehicle Type on Google Bookmark Vehicle Technologies Office: Fact #227: July 29, 2002 Vehicle Miles of Travel (VMT) and Age by Vehicle Type on Delicious Rank Vehicle Technologies Office: Fact #227: July 29, 2002 Vehicle Miles of Travel (VMT) and Age by Vehicle Type on Digg Find More places to share Vehicle Technologies Office: Fact #227:

16

Vehicle Technologies Office: Fact #552: January 5, 2009 Vehicle Miles of  

NLE Websites -- All DOE Office Websites (Extended Search)

2: January 5, 2: January 5, 2009 Vehicle Miles of Travel by Region to someone by E-mail Share Vehicle Technologies Office: Fact #552: January 5, 2009 Vehicle Miles of Travel by Region on Facebook Tweet about Vehicle Technologies Office: Fact #552: January 5, 2009 Vehicle Miles of Travel by Region on Twitter Bookmark Vehicle Technologies Office: Fact #552: January 5, 2009 Vehicle Miles of Travel by Region on Google Bookmark Vehicle Technologies Office: Fact #552: January 5, 2009 Vehicle Miles of Travel by Region on Delicious Rank Vehicle Technologies Office: Fact #552: January 5, 2009 Vehicle Miles of Travel by Region on Digg Find More places to share Vehicle Technologies Office: Fact #552: January 5, 2009 Vehicle Miles of Travel by Region on AddThis.com... Fact #552: January 5, 2009

17

Fact #860 February 16, 2015 Relationship of Vehicle Miles of Travel and the Price of Gasoline  

Energy.gov (U.S. Department of Energy (DOE))

The prices of gasoline and diesel fuel affect the transportation sector in many ways. For example, fuel prices can impact the number of miles driven and affect the choices consumers make when...

18

Fact #842: October 13, 2014 Vehicles and Vehicle Travel Trends...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

drivers, number of vehicles in operation, and total vehicle miles traveled. Fact 842 Dataset Supporting Information Population and Vehicle Growth Comparison, 1950-2012 Year...

19

Vehicle Technologies Office: Fact #535: September 8, 2008 Vehicle Miles of  

NLE Websites -- All DOE Office Websites (Extended Search)

5: September 8, 5: September 8, 2008 Vehicle Miles of Travel (VMT) Declines in 2008 to someone by E-mail Share Vehicle Technologies Office: Fact #535: September 8, 2008 Vehicle Miles of Travel (VMT) Declines in 2008 on Facebook Tweet about Vehicle Technologies Office: Fact #535: September 8, 2008 Vehicle Miles of Travel (VMT) Declines in 2008 on Twitter Bookmark Vehicle Technologies Office: Fact #535: September 8, 2008 Vehicle Miles of Travel (VMT) Declines in 2008 on Google Bookmark Vehicle Technologies Office: Fact #535: September 8, 2008 Vehicle Miles of Travel (VMT) Declines in 2008 on Delicious Rank Vehicle Technologies Office: Fact #535: September 8, 2008 Vehicle Miles of Travel (VMT) Declines in 2008 on Digg Find More places to share Vehicle Technologies Office: Fact #535:

20

Miles Electric Vehicles | Open Energy Information  

Open Energy Info (EERE)

Miles Electric Vehicles Jump to: navigation, search Name: Miles Electric Vehicles Place: Santa Monica, California Zip: 90405 Sector: Vehicles Product: California-based developer of...

Note: This page contains sample records for the topic "vehicle miles traveled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

The link between obesity and the built environment. Evidence from an ecological analysis of obesity and vehicle miles of travel in California  

Science Journals Connector (OSTI)

 Aims: Obesity and physical inactivity are known to be risk factors for many chronic diseases including hypertension, coronary artery disease, diabetes, and cancer. We sought to explore the association between an indicator of transportation data (Vehicle Miles of Travel, VMT) at the county level as it relates to obesity and physical inactivity in California.  Methods: Data from the California Health Interview Survey 2001 (CHIS 2001), the US 2000 Census, and the California Department of Transportation were merged to examine ecological correlations between vehicle miles of travel, population density, commute time, and county indicators of obesity and physical inactivity. Obesity was measured by body mass index (BMI). Physical inactivity was based on self-reported behaviors including walking, bicycling, and moderate to vigorous activity. The unit of analysis was the county. Thirty-three counties in California with population size greater than 100,000 persons per county were retained in the analyses.  Results: CHIS 2001 statewide obesity prevalence ranged from 11.2% to 28.5% by county. Physical inactivity ranged from 13.4% to 35.7%. Daily vehicle miles of travel ranged from 3.3 million to 183.8 million per county. By rank bivariate correlation, obesity and physical inactivity were significantly associated ( p < 0.01 ). Furthermore, by rank analysis of variance, the highest mean rank obesity was associated with the highest rank of VMT ( p < 0.01 ). Similar rank patterns were observed between obesity and physical inactivity and commute time. Associations between VMT and physical inactivity were examined but failed to reach statistical significance.  Conclusion: This analysis adds to the growing evidence supporting the association between VMT (a measure of automobile transportation) and obesity. An urban design characterized by over dependence on motorized transportation may be related to adverse health effects.

Javier Lopez-Zetina; Howard Lee; Robert Friis

2006-01-01T23:59:59.000Z

22

Vehicle Technologies Office: Fact #473: June 11, 2007 Vehicle-Miles per  

NLE Websites -- All DOE Office Websites (Extended Search)

3: June 11, 2007 3: June 11, 2007 Vehicle-Miles per Licensed Driver to someone by E-mail Share Vehicle Technologies Office: Fact #473: June 11, 2007 Vehicle-Miles per Licensed Driver on Facebook Tweet about Vehicle Technologies Office: Fact #473: June 11, 2007 Vehicle-Miles per Licensed Driver on Twitter Bookmark Vehicle Technologies Office: Fact #473: June 11, 2007 Vehicle-Miles per Licensed Driver on Google Bookmark Vehicle Technologies Office: Fact #473: June 11, 2007 Vehicle-Miles per Licensed Driver on Delicious Rank Vehicle Technologies Office: Fact #473: June 11, 2007 Vehicle-Miles per Licensed Driver on Digg Find More places to share Vehicle Technologies Office: Fact #473: June 11, 2007 Vehicle-Miles per Licensed Driver on AddThis.com... Fact #473: June 11, 2007 Vehicle-Miles per Licensed Driver

23

Table 5.1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel Consumption . U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel Consumption and Expenditures, 1994 1993 Household and 1994 Vehicle Characteristics RSE Column Factor: Number of Vehicles Vehicle-Miles Traveled Motor Fuel Consumption Motor Fuel Expenditures RSE Row Factor: (million) (percent) (billion) (percent) (billion gallons) (gallon percent) (quadril- lion Btu) (billion dollars) (percent) 0.9 0.8 1.1 1.0 1.1 1.0 1.1 1.1 1.0 Household Characteristics Total .................................................... 156.8 100.0 1,793 100.0 90.6 100.0 11.2 104.7 100.0 2.8 Census Region and Division Northeast ........................................... 26.6 17.0 299 16.7 14.5 16.0 1.8 17.2 16.4 5.7 New England ................................... 7.6 4.8 84 4.7 4.1 4.5 0.5 4.8 4.6 13.8 Middle Atlantic

24

Aggregate vehicle travel forecasting model  

SciTech Connect

This report describes a model for forecasting total US highway travel by all vehicle types, and its implementation in the form of a personal computer program. The model comprises a short-run, econometrically-based module for forecasting through the year 2000, as well as a structural, scenario-based longer term module for forecasting through 2030. The short-term module is driven primarily by economic variables. It includes a detailed vehicle stock model and permits the estimation of fuel use as well as vehicle travel. The longer-tenn module depends on demographic factors to a greater extent, but also on trends in key parameters such as vehicle load factors, and the dematerialization of GNP. Both passenger and freight vehicle movements are accounted for in both modules. The model has been implemented as a compiled program in the Fox-Pro database management system operating in the Windows environment.

Greene, D.L.; Chin, Shih-Miao; Gibson, R. [Tennessee Univ., Knoxville, TN (United States)

1995-05-01T23:59:59.000Z

25

Fact #698: October 24, 2011 Changes in the Federal Highway Administration Vehicle Travel Data  

Energy.gov (U.S. Department of Energy (DOE))

With the April release of Table VM-1 from Highway Statistics 2009 came several changes to the availability of data on vehicle miles of travel (VMT). From 1966 to 2008, the Federal Highway...

26

Fact #584: August 17, 2009 The Price of Gasoline and Vehicle Travel: How Do They Relate?  

Energy.gov (U.S. Department of Energy (DOE))

The price of gasoline is one factor that can have an effect on the number of highway vehicle miles traveled (VMT). The graph below shows a three-month moving average of the percentage change of...

27

Fact #566: April 13, 2009 Vehicle Travel and the Price of Gasoline  

Energy.gov (U.S. Department of Energy (DOE))

The price of gasoline is one factor that can have an effect on the number of highway vehicle miles traveled (VMT). The graph below shows a three-month moving average of the percentage change of...

28

Vehicle Technologies Office: Fact #369: April 25, 2005 Medium-Truck Miles  

NLE Websites -- All DOE Office Websites (Extended Search)

9: April 25, 9: April 25, 2005 Medium-Truck Miles by Age to someone by E-mail Share Vehicle Technologies Office: Fact #369: April 25, 2005 Medium-Truck Miles by Age on Facebook Tweet about Vehicle Technologies Office: Fact #369: April 25, 2005 Medium-Truck Miles by Age on Twitter Bookmark Vehicle Technologies Office: Fact #369: April 25, 2005 Medium-Truck Miles by Age on Google Bookmark Vehicle Technologies Office: Fact #369: April 25, 2005 Medium-Truck Miles by Age on Delicious Rank Vehicle Technologies Office: Fact #369: April 25, 2005 Medium-Truck Miles by Age on Digg Find More places to share Vehicle Technologies Office: Fact #369: April 25, 2005 Medium-Truck Miles by Age on AddThis.com... Fact #369: April 25, 2005 Medium-Truck Miles by Age Medium trucks (class 3-6) were driven an average of 14,439 miles in 2002.

29

Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

6: February 9, 6: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled to someone by E-mail Share Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Facebook Tweet about Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Twitter Bookmark Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Google Bookmark Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Delicious Rank Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Digg Find More places to share Vehicle Technologies Office: Fact #306:

30

Fact #842: October 13, 2014 Vehicles and Vehicle Travel Trends have Changed Since 2008  

Energy.gov (U.S. Department of Energy (DOE))

As the U.S. population has doubled from 1950 to 2012, the number of vehicles has grown nearly 6-fold and vehicle travel even more than that. The number of vehicles and vehicle travel peaked in 2007...

31

Vehicle Technologies Office: Fact #640: September 13, 2010 Monthly Trends  

NLE Websites -- All DOE Office Websites (Extended Search)

0: September 13, 0: September 13, 2010 Monthly Trends in Vehicle Miles of Travel to someone by E-mail Share Vehicle Technologies Office: Fact #640: September 13, 2010 Monthly Trends in Vehicle Miles of Travel on Facebook Tweet about Vehicle Technologies Office: Fact #640: September 13, 2010 Monthly Trends in Vehicle Miles of Travel on Twitter Bookmark Vehicle Technologies Office: Fact #640: September 13, 2010 Monthly Trends in Vehicle Miles of Travel on Google Bookmark Vehicle Technologies Office: Fact #640: September 13, 2010 Monthly Trends in Vehicle Miles of Travel on Delicious Rank Vehicle Technologies Office: Fact #640: September 13, 2010 Monthly Trends in Vehicle Miles of Travel on Digg Find More places to share Vehicle Technologies Office: Fact #640: September 13, 2010 Monthly Trends in Vehicle Miles of Travel on

32

How many electric miles do Nissan Leafs and Chevrolet Volts in The EV Project travel?  

SciTech Connect

This paper presents travel statistics and metrics describing the driving behavior of Nissan Leaf and Chevrolet Volt drivers in the EV Project. It specifically quantifies the distance each group of vehicles drives each month. This paper will be published to INL's external website and will be accessible by the general public.

John Smart

2014-05-01T23:59:59.000Z

33

Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

5: February 5, 5: February 5, 2007 Household Vehicle Miles to someone by E-mail Share Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Facebook Tweet about Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Twitter Bookmark Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Google Bookmark Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Delicious Rank Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Digg Find More places to share Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on AddThis.com... Fact #455: February 5, 2007 Household Vehicle Miles The graphs below show the average vehicle miles of travel (VMT) - daily

34

Vehicle routing for the last mile of power system restoration  

SciTech Connect

This paper studied a novel problem in power system restoration: the Power Restoration Vehicle Routing Problem (PRVRP). The goal of PRVRPs is to decide how coordinate repair crews effectively in order to recover from blackouts as fast as possible after a disaster has occurred. PRVRPs are complex problems that combine vehicle routing and power restoration scheduling problems. The paper proposed a multi-stage optimization algorithm based on the idea of constraint injection that meets the aggressive runtime constraints necessary for disaster recovery. The algorithms were validated on benchmarks produced by the Los Alamos National Laboratory, using the infrastructure of the United States. The disaster scenarios were generated by state-of-the-art hurricane simulation tools similar to those used by the National Hurricane Center. Experimental results show that the constraint-injection algorithms can reduce the blackouts by 50% or more over field practices. Moreover, the results show that the constraint-injection algorithm using large neighborhood search over a blackbox simulator provide competitive quality and scales better than using a MIP solver on the subproblems.

Bent, Russell W [Los Alamos National Laboratory; Coffrin, Carleton [Los Alamos National Laboratory; Van Hentenryck, Pascal [BROWN UNIV.

2010-11-23T23:59:59.000Z

35

Cost Analysis of Plug-In Hybred Electric Vehicles Using GPS-Based Longitudinal Travel Data  

SciTech Connect

Using spatial, longitudinal travel data of 415 vehicles over 3 18 months in the Seattle metropolitan area, this paper estimates the operating costs of plug-in hybrid electric vehicles (PHEVs) of various electric ranges (10, 20, 30, and 40 miles) for 3, 5, and 10 years of payback period, considering different charging infrastructure deployment levels and gasoline prices. Some key findings were made. (1) PHEVs could help save around 60% or 40% in energy costs, compared with conventional gasoline vehicles (CGVs) or hybrid electric vehicles (HEVs), respectively. However, for motorists whose daily vehicle miles traveled (DVMT) is significant, HEVs may be even a better choice than PHEV40s, particularly in areas that lack a public charging infrastructure. (2) The incremental battery cost of large-battery PHEVs is difficult to justify based on the incremental savings of PHEVs operating costs unless a subsidy is offered for largebattery PHEVs. (3) When the price of gasoline increases from $4/gallon to $5/gallon, the number of drivers who benefit from a larger battery increases significantly. (4) Although quick chargers can reduce charging time, they contribute little to energy cost savings for PHEVs, as opposed to Level-II chargers.

Wu, Xing [Lamar University] [Lamar University; Dong, Jing [Iowa State University] [Iowa State University; Lin, Zhenhong [ORNL] [ORNL

2014-01-01T23:59:59.000Z

36

Vehicle Technologies Office: Fact #370: May 2, 2005 How the Price of  

NLE Websites -- All DOE Office Websites (Extended Search)

0: May 2, 2005 0: May 2, 2005 How the Price of Gasoline Relates to Vehicle Miles Traveled to someone by E-mail Share Vehicle Technologies Office: Fact #370: May 2, 2005 How the Price of Gasoline Relates to Vehicle Miles Traveled on Facebook Tweet about Vehicle Technologies Office: Fact #370: May 2, 2005 How the Price of Gasoline Relates to Vehicle Miles Traveled on Twitter Bookmark Vehicle Technologies Office: Fact #370: May 2, 2005 How the Price of Gasoline Relates to Vehicle Miles Traveled on Google Bookmark Vehicle Technologies Office: Fact #370: May 2, 2005 How the Price of Gasoline Relates to Vehicle Miles Traveled on Delicious Rank Vehicle Technologies Office: Fact #370: May 2, 2005 How the Price of Gasoline Relates to Vehicle Miles Traveled on Digg Find More places to share Vehicle Technologies Office: Fact #370:

37

Vehicle engine use when no longer in transit; exceptions -Vehicle idling gets zero miles per gallon; unnecessary idling wastes fuel and pollutes.  

E-Print Network (OSTI)

gallon; unnecessary idling wastes fuel and pollutes. Running an engine at low speed (idling) also causes the point of view of both emissions and fuel consumption. Unless exempted in the following sectionVehicle engine use when no longer in transit; exceptions - Vehicle idling gets zero miles per

Powers, Robert

38

Fact #854 January 5, 2015 Driving Ranges for All-Electric Vehicles in Model Year 2014 Vary from 62 to 265 Miles – Dataset  

Energy.gov (U.S. Department of Energy (DOE))

Excel file with dataset for Driving Ranges for All-Electric Vehicles in Model Year 2014 Vary from 62 to 265 Miles

39

Table 5.2. U.S. per Household Vehicle-Miles Traveled, Vehicle...  

U.S. Energy Information Administration (EIA) Indexed Site

Years or More ... 13.6 1.8 17.1 907 1,044 4.6 Race of Householder White ... 73.3 1.9 21.7 1,099 1,267 1.8 Black...

40

Table 5.3. U.S. per Vehicle Miles Traveled, Vehicle Fuel Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Consumption (gallons) Expenditures (dollars) 1.8 1.0 1.0 1.0 0.5 Race of Householder White ... 138.6 11.5 581 670 19.8 1.4 Black...

Note: This page contains sample records for the topic "vehicle miles traveled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Table 5.15. U.S. Average Vehicle-Miles Traveled by Vehicle  

Gasoline and Diesel Fuel Update (EIA)

... 9.3 9.3 9.2 12.2 11.3 12.7 9.1 8.8 Q 10.7 Race of Householder White ... 11.5 11.3 11.3 12.1 13.6 12.5 12.1...

42

Identify Petroleum Reduction Strategies for Vehicles and Mobile Equipment  

Energy.gov (U.S. Department of Energy (DOE))

As defined by the Federal Energy Management Program (FEMP), greenhouse gas (GHG) emission reduction strategies for Federal vehicles and equipment are based on the three driving principles of petroleum reduction: Reduce vehicle miles traveled Improve fuel efficiency Use alternative fuels.

43

Arterial Travel Time Estimation Based On Vehicle Re-Identification Using Magnetic Sensors: Performance Analysis  

E-Print Network (OSTI)

: the arterial travel time estimation system is summarized in Section II. The test site and vehicle detection are explained in Section IV. An analysis of the ground truth and the vehicle detection system data is presented City (Figure 1). The performance of the original system and the system with the modified vehicle re

Horowitz, Roberto

44

Rebound 2007: Analysis of U.S. Light-Duty Vehicle Travel Statistics  

SciTech Connect

U.S. national time series data on vehicle travel by passenger cars and light trucks covering the period 1966 2007 are used to test for the existence, size and stability of the rebound effect for motor vehicle fuel efficiency on vehicle travel. The data show a statistically significant effect of gasoline price on vehicle travel but do not support the existence of a direct impact of fuel efficiency on vehicle travel. Additional tests indicate that fuel price effects have not been constant over time, although the hypothesis of symmetry with respect to price increases and decreases is not rejected. Small and Van Dender (2007) model of a declining rebound effect with income is tested and similar results are obtained.

Greene, David L [ORNL

2010-01-01T23:59:59.000Z

45

Vehicle Technologies Office Merit Review 2014: Innovative Cell Materials and Design for 300 Mile Range EVs  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by OneD Material, LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about innovative cell materials...

46

Table 5.12. U.S. Average Vehicle-Miles Traveled by Household...  

Annual Energy Outlook 2012 (EIA)

... 30.7 Q 26.3 37.2 Q Q Q Q Q Q Q 20.7 Race of Householder White ... 26.0 23.2 25.2 32.6 19.3 16.4 13.3...

47

Incident detection using the Standard Normal Deviate model and travel time information from probe vehicles  

E-Print Network (OSTI)

INCIDENT DETECTION USING THE STANDARD iNORMAL DEVIATE MODEL AND TRAVEL TECHIE INFORMATION FROM PROBE VEHICLES A Thesis by CHRISTOPHER EUGENE MOUNTAIN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirement for the degree of MASTFR OF SCIENCE December 1993 Major Subject: Civil Engineering INCIDENT DETECTION USING THE STANDARD NORMAL DEVIATE MODEL AND TRAVEL TIME INFORMATION FROM PROBE VEHICLES A Thesis by CHRISTOPHER EUGENE MOUNTAIN Submitted...

Mountain, Christopher Eugene

2012-06-07T23:59:59.000Z

48

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

Aggregate Aggregate Ratio: See Mean and Ratio Estimate. AMPD: Average miles driven per day. See Appendix B, "Estimation Methodologies." Annual Vehicle Miles Traveled: See Vehicle Miles Traveled. Automobile: Includes standard passenger car, 2-seater car and station wagons; excludes passenger vans, cargo vans, motor homes, pickup trucks, and jeeps or similar vehicles. See Vehicle. Average Household Energy Expenditures: A ratio estimate defined as the total household energy expenditures for all RTECS households divided by the total number of households. See Ratio Estimate, and Combined Household Energy Expenditures. Average Number of Vehicles per Household: The average number of vehicles used by a household for personal transportation during 1991. For this report, the average number of vehicles per household is computed as the ratio of the total number of vehicles to the

49

A ROUTE IMPROVEMENT ALGORITHM FOR THE VEHICLE ROUTING PROBLEM WITH TIME DEPENDENT TRAVEL TIMES  

E-Print Network (OSTI)

) formulate a time dependent vehicle routing problem with a general cost function and time window constraintsA ROUTE IMPROVEMENT ALGORITHM FOR THE VEHICLE ROUTING PROBLEM WITH TIME DEPENDENT TRAVEL TIMES MIGUEL A. FIGLIOZZI Civil & Environmental Engineering Department Portland State University P.O. Box 751

Bertini, Robert L.

50

Figure ES2. Annual Indices of Real Disposable Income, Vehicle...  

U.S. Energy Information Administration (EIA) Indexed Site

ES2 Figure ES2. Annual Indices of Real Disposable Income, Vehicle-Miles Traveled, Consumer Price Index (CPI-U), and Real Average Retail Gasoline Price, 1978-2004, 1985100...

51

Urban air pollution from private vehicles has been declining since the 1970s (1012) even as the number of vehicles and vehicle miles  

E-Print Network (OSTI)

), volatile organic compounds (VOC), and ammonia (NH3)] cost 1.3 to 1.4 cents per VMT for automobiles using from 1.1 to 1.2 cents per VMT for compressed nat- ural gas to 1.5 to 1.6 cents per VMT for hybrid-electric vehicles. For 2007, the American Automobile Association (AAA) estimated that the average cost of automobile

Jaramillo, Paulina

52

Miles Hand Grenade  

DOE Patents (OSTI)

A simulated grenade for MILES-type simulations generates a unique RF signal and a unique audio signal. A detector utilizes the time between receipt of the RF signal and the slower-traveling audio signal to determine the distance between the detector and the simulated grenade.

Harrington, John J. (Albuquerque, NM); Buttz, James H. (Albuquerque, NM); Maish, Alex B. (Corrales, NM); Page, Ray R. (Albuquerque, NM); Metcalf, Herbert E. (Albuquerque, NM)

2005-11-15T23:59:59.000Z

53

Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

1: January 8, 1: January 8, 2007 Household Vehicle Trips to someone by E-mail Share Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Facebook Tweet about Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Twitter Bookmark Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Google Bookmark Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Delicious Rank Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Digg Find More places to share Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on AddThis.com... Fact #451: January 8, 2007 Household Vehicle Trips In a day, the average household traveled 32.7 miles in 2001 (the latest

54

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

3. 3. Vehicle Miles Traveled This chapter presents information on household vehicle usage, as measured by the number of vehicle miles traveled (VMT). VMT is one of the two most important components used in estimating household vehicle fuel consumption. (The other, fuel efficiency, is discussed in Chapter 4). In addition, this chapter examines differences in driving behavior based on the characteristics of the household and the type of vehicle driven. Trends in household driving patterns are also examined using additional information from the Department of Transportation's Nationwide Personal Transportation Survey (NPTS). Household VMT is a measure of the demand for personal transportation. Demand for transportation may be viewed from either an economic or a social perspective. From the economic point-of-view, the use of a household vehicle represents the consumption of one

55

that minimizes vehicle emissions during design of routes in congested environments with time-dependent travel speeds, hard time windows,  

E-Print Network (OSTI)

that minimizes vehicle emissions during design of routes in congested environments with time emissions, and several laboratory and field methods are available for estimating vehicle emissions rates (1 and then begins to increase again (2); hence, the relationship between emission rates and travel speed

Bertini, Robert L.

56

The potential of intelligent vehicle highway systems for enhanced traveler security  

SciTech Connect

The Intelligent Vehicle Highway System (IVHS) program that was mandated by the Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA) presents a number of opportunities and challenges. While the program primarily is intended to address the problem of traffic congestion, the technologies it will require could also be used to enhance the safety and security of the traveling public. Public transit systems offer the most likely near-term opportunities both for IVHS-type technologies, and for new security measures to be applied. This paper will address some of the possible security functions that could be applied to transit systems by utilizing the availability of Automatic Vehicle Location systems (AVL), broadband digital communication systems, and other IVHS functions.

Caskey, D.L.

1992-12-31T23:59:59.000Z

57

Development and Use of a Computer Program “Hyper-N” to Predict the Performance of Air Vehicles Traveling at Hypersonic Speeds.  

E-Print Network (OSTI)

??Abstract The main objective of this thesis was to develop a method than can be used to approximate the pressure forces on air vehicles traveling… (more)

Baalla, Younes

2010-01-01T23:59:59.000Z

58

Siting public electric vehicle charging stations in Beijing using big-data informed travel patterns of the taxi fleet  

Science Journals Connector (OSTI)

Abstract Charging infrastructure is critical to the development of electric vehicle (EV) system. While many countries have implemented great policy efforts to promote EVs, how to build charging infrastructure to maximize overall travel electrification given how people travel has not been well studied. Mismatch of demand and infrastructure can lead to under-utilized charging stations, wasting public resources. Estimating charging demand has been challenging due to lack of realistic vehicle travel data. Public charging is different from refueling from two aspects: required time and home-charging possibility. As a result, traditional approaches for refueling demand estimation (e.g. traffic flow and vehicle ownership density) do not necessarily represent public charging demand. This research uses large-scale trajectory data of 11,880 taxis in Beijing as a case study to evaluate how travel patterns mined from big-data can inform public charging infrastructure development. Although this study assumes charging stations to be dedicated to a fleet of PHEV taxis which may not fully represent the real-world situation, the methodological framework can be used to analyze private vehicle trajectory data as well to improve our understanding of charging demand for electrified private fleet. Our results show that (1) collective vehicle parking “hotspots” are good indicators for charging demand; (2) charging stations sited using travel patterns can improve electrification rate and reduce gasoline consumption; (3) with current grid mix, emissions of CO2, PM, SO2, and \\{NOx\\} will increase with taxi electrification; and (4) power demand for public taxi charging has peak load around noon, overlapping with Beijing’s summer peak power.

Hua Cai; Xiaoping Jia; Anthony S.F. Chiu; Xiaojun Hu; Ming Xu

2014-01-01T23:59:59.000Z

59

Impacts of Economic, Technological and Operational Factors on the1 Economic Competitiveness of Electric Commercial Vehicles in Fleet2  

E-Print Network (OSTI)

of Electric Commercial Vehicles in Fleet2 Replacement Decisions3 4 5 6 7 Wei Feng8 Ph.D. Student9 Department-miles traveled, commercial9 diesel powered vehicles can account for up to 90% of NOx and particulate matter (PM)10 emissions [2].11 12 Electric commercial vehicles (ECVs) are seen by many governments

Bertini, Robert L.

60

Household vehicles energy consumption 1991  

SciTech Connect

The purpose of this report is to provide information on the use of energy in residential vehicles in the 50 States and the District of Columbia. Included are data about: the number and type of vehicles in the residential sector, the characteristics of those vehicles, the total annual Vehicle Miles Traveled (VMT), the per household and per vehicle VMT, the vehicle fuel consumption and expenditures, and vehicle fuel efficiencies. The data for this report are based on the household telephone interviews from the 1991 RTECS, conducted during 1991 and early 1992. The 1991 RTECS represents 94.6 million households, of which 84.6 million own or have access to 151.2 million household motor vehicles in the 50 States and the District of Columbia.

Not Available

1993-12-09T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle miles traveled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Vehicle-Grid Interface Key to Smart Charging Plug-in Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

electrification is an important electrification is an important element in the nation's plan to transition from petroleum to electricity as the main energy source for urban/ suburban transportation - to enhance energy security, reduce environmental impact and maintain mobility in a carbon- constrained future. Well over half of America's passenger cars travel between 20 and 40 miles daily - a range that electric vehicles (EVs)

62

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

. . Vehicle Fuel Efficiency and Consumption Fuel consumption is estimated from RTECS data on the vehicle stock (Chapter 2) and miles traveled (Chapter 3), in combination with vehicle fuel efficiency ratings, adjusted to account for individual driving circumstances. The first two sections of this chapter present estimates of household vehicle fuel efficiency and household fuel consumption calculated from these fuel efficiency estimates. These sections also discuss variations in fuel efficiency and consumption based on differences in household and vehicle characteristics. The third section presents EIA estimates of the potential savings from replacing the oldest (and least fuel-efficient) household vehicles with new (and more fuel-efficient) vehicles. The final section of this chapter focuses on households receiving (or eligible to receive) supplemental income under

63

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

1. 1. Introduction The purpose of this report is to provide information on the use of energy in residential vehicles in the 50 States and the District of Columbia. Included are data about: the number and type of vehicles in the residential sector, the characteristics of those vehicles, the total annual Vehicle Miles Traveled (VMT), the per household and per vehicle VMT, the vehicle fuel consumption and expenditures, and vehicle fuel efficiencies. The Energy Information Administration (EIA) is mandated by Congress to collect, analyze, and disseminate impartial, comprehensive data about energy--how much is produced, who uses it, and the purposes for which it is used. To comply with this mandate, EIA collects energy data from a variety of sources covering a range of topics 1 . Background The data for this report are based on the household telephone interviews from the 1991 RTECS, conducted

64

Traveled distance, stock and fuel efficiency of private vehicles in Canada: price elasticities and rebound effect  

Science Journals Connector (OSTI)

This paper presents estimates of the rebound effect and other elasticities for the Canadian light-duty vehicle fleet using panel data at the provincial level from 1990 to 2004. We estimate a simultaneous three-eq...

Philippe Barla; Bernard Lamonde; Luis F. Miranda-Moreno; Nathalie Boucher

2009-07-01T23:59:59.000Z

65

Fact #854 January 5, 2015 Driving Ranges for All-Electric Vehicles in Model Year 2014 Vary from 62 to 265 Miles  

Energy.gov (U.S. Department of Energy (DOE))

Driving ranges for all-electric vehicles vary considerably. Based on the official Environmental Protection Agency (EPA) range values reported on window stickers, the Mitsubishi i-MiEV has the...

66

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Detailed Tables The following tables present detailed characteristics of vehicles in the residential sector. Data are from the 1991 Residential Transportation Energy Consumption Survey. The "Glossary" contains the definitions of terms used in the tables. Table Organization The "Detailed Tables" section consists of three types of tables: (1) Tables of totals such as number of vehicle miles traveled (VMT) or gallons consumed; (2) Tables of per household statistics such as VMT per household; and (3) Tables of per vehicle statistics such as vehicle fuel consumption per vehicle. The tables have been grouped together by specific topics such as model year data, or family income data to facilitate finding related information. The Quick-Reference Guide to the detailed tables indicates major topics of each table. Row and Column Factors These tables present estimates

67

Alternative Fuels Data Center: Electric Vehicle (EV) Fee  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fee to someone by E-mail Fee to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Fee on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Fee on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Fee on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Fee on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Fee on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Fee on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Electric Vehicle (EV) Fee EV operators must pay an annual vehicle registration renewal fee of $100. This fee expires if the legislature imposes a vehicle miles traveled fee or

68

Water Emissions from Fuel Cell Vehicles | Department of Energy  

Energy Savers (EERE)

Water Emissions from Fuel Cell Vehicles Water Emissions from Fuel Cell Vehicles Hydrogen fuel cell vehicles (FCVs) emit approximately the same amount of water per mile as vehicles...

69

The Effect of Transit-Oriented Development on Vehicle Miles Traveled: A Comparison of a TOD versus a non-TOD Neighborhood in Carlsbad, CA.  

E-Print Network (OSTI)

?? Transit-oriented development (TOD) is a strategy being used to reduce congestion, provide mode choice, and improve quality of life. A large amount of research… (more)

Stiffler, Natalie Louise

2011-01-01T23:59:59.000Z

70

The Effect of Improved Fuel Economy on Vehicle Miles Traveled: Estimating the Rebound Effect Using U.S. State Data, 1966-2001  

E-Print Network (OSTI)

1979, State Energy Fuel Prices by Major Economic Sector fromon variations in the fuel price P F , 1 in which case it isempirical estimates of the fuel-price elasticities of fuel

Small, Kenneth A; Van Dender, Kurt

2005-01-01T23:59:59.000Z

71

Household vehicles energy consumption 1994  

SciTech Connect

Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use some 6,000 vehicles provided information to describe vehicle stock, vehicle-miles traveled, energy end-use consumption, and energy expenditures for personal vehicles. The survey results represent the characteristics of the 84.9 million households that used or had access to vehicles in 1994 nationwide. (An additional 12 million households neither owned or had access to vehicles during the survey year.) To be included in then RTECS survey, vehicles must be either owned or used by household members on a regular basis for personal transportation, or owned by a company rather than a household, but kept at home, regularly available for the use of household members. Most vehicles included in the RTECS are classified as {open_quotes}light-duty vehicles{close_quotes} (weighing less than 8,500 pounds). However, the RTECS also includes a very small number of {open_quotes}other{close_quotes} vehicles, such as motor homes and larger trucks that are available for personal use.

NONE

1997-08-01T23:59:59.000Z

72

Hybrid Electric Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Association Conference Transportation Association Conference Vancouver, Canada December 2005 Hybrid Electric Vehicle Testing Jim Francfort U.S. Department of Energy - FreedomCAR & Vehicle Technologies Program, Advanced Vehicle Testing Activity INL/CON-05-00964 Presentation Outline * Background & goals * Testing partners * Hybrid electric vehicle testing - Baseline performance testing (new HEV models) - 1.5 million miles of HEV fleet testing (160k miles per vehicle in 36 months) - End-of-life HEV testing (rerun fuel economy & conduct battery testing @ 160k miles per vehicle) - Benchmark data: vehicle & battery performance, fuel economy, maintenance & repairs, & life-cycle costs * WWW information location Background * Advanced Vehicle Testing Activity (AVTA) - part of the

73

Innovative Cell Materials and Designs for 300 Mile Range EVs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

300 Mile Range EVs Yimin Zhu, PDPI Nanosys, Inc Palo Alto, California May 13 17, 2013 DOE Vehicle Technologies AMR 2013 ES130zhu2013p This presentation does not contain any...

74

EIA - Appendix B: Estimation Methodologies of Household Vehicles Energy  

U.S. Energy Information Administration (EIA) Indexed Site

If you have trouble viewing this page, contact the National Energy Informaiton Center at (202) 586-8800. Return to Energy Information Administration Home Page If you have trouble viewing this page, contact the National Energy Informaiton Center at (202) 586-8800. Return to Energy Information Administration Home Page EIA Home > Transportation Home Page > Appendix B Estimation MethodologiesIntroduction Appendix B Estimation Methodologies Introduction Statistics concerning vehicle miles traveled (VMT), vehicle fuel efficiency (given in terms of miles per gallon (MPG)), vehicle fuel consumption, and vehicle fuel expenditures are presented in this report. The methodology used to estimate these statistics relied on data from the 1993 Residential Energy Consumption Survey (RECS), the 1994 Residential Transportation Energy Consumption Survey (RTECS), the U.S. Environmental Protection Agency (EPA) fuel efficiency test results, the U.S. Bureau of Labor Statistics (BLS) retail pump price series, and the Lundberg Survey, Inc., price series for 1994.

75

Healthy Transportation Policy and Vehicle Miles  

E-Print Network (OSTI)

Food Environment Index (# of fast food and convenience stores divided by grocery stores and farmers markets) More info at www.publichealthadvocacy.org 2) Distance and safety of access to K-12 schools of procedures, methods and tools by which a policy, program or project may be judged for its potential health

Bertini, Robert L.

76

Vehicle Technologies Office: Fact #278: July 28, 2003 Annual VMT Growth  

NLE Websites -- All DOE Office Websites (Extended Search)

8: July 28, 2003 8: July 28, 2003 Annual VMT Growth Rates to someone by E-mail Share Vehicle Technologies Office: Fact #278: July 28, 2003 Annual VMT Growth Rates on Facebook Tweet about Vehicle Technologies Office: Fact #278: July 28, 2003 Annual VMT Growth Rates on Twitter Bookmark Vehicle Technologies Office: Fact #278: July 28, 2003 Annual VMT Growth Rates on Google Bookmark Vehicle Technologies Office: Fact #278: July 28, 2003 Annual VMT Growth Rates on Delicious Rank Vehicle Technologies Office: Fact #278: July 28, 2003 Annual VMT Growth Rates on Digg Find More places to share Vehicle Technologies Office: Fact #278: July 28, 2003 Annual VMT Growth Rates on AddThis.com... Fact #278: July 28, 2003 Annual VMT Growth Rates Vehicle miles of travel (VMT) of highway vehicles in 2001 was 2.5 times

77

DOE Announces $30 Million for Plug-in Hybrid Electric Vehicle Projects |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 Million for Plug-in Hybrid Electric Vehicle 0 Million for Plug-in Hybrid Electric Vehicle Projects DOE Announces $30 Million for Plug-in Hybrid Electric Vehicle Projects June 12, 2008 - 1:30pm Addthis Adds Plug-in Hybrid Vehicle to Department's Fleet WASHINGTON - U.S. Department of Energy (DOE) Assistant Secretary of Energy Efficiency and Renewable Energy Andy Karsner today announced up to $30 million in funding over three years for three cost-shared Plug-in Hybrid Electric Vehicles (PHEVs) demonstration and development projects. The selected projects will accelerate the development of PHEVs capable of traveling up to 40 miles without recharging, which includes most daily roundtrip commutes and satisfies 70 percent of the average daily travel in the U. S. The projects will also address critical barriers to achieving

78

Household Vehicles Energy Use: Latest Data & Trends  

U.S. Energy Information Administration (EIA) Indexed Site

This page left blank. This page left blank. E N E R G Y O V E RV I E W ENERGY INFORMATION ADMINISTRATION/HOUSEHOLD VEHICLES ENERGY USE: LATEST DATA & TRENDS ENERGY OVERVIEW E N E R G Y O V E RV I E W INTRODUCTION Author's Note Estimates of gallons of fuel consumed, type of fuel used, price paid for fuel, and fuel economy are based on data imputed by EIA, using vehicle characteristics and vehicle-miles traveled data collected during the interview process for the 2001 National Household Travel Survey (NHTS). Rather than obtaining that information directly from fuel purchase diaries, EIA exploited its experience and expertise with modeling techniques for transportation studies, filling missing and uncollected data with information reported to other federal agencies, as described in Appendices

79

Household Vehicles Energy Use: Latest Data & Trends  

U.S. Energy Information Administration (EIA) Indexed Site

E E N E R G Y O V E RV I E W ENERGY INFORMATION ADMINISTRATION/HOUSEHOLD VEHICLES ENERGY USE: LATEST DATA & TRENDS ENERGY OVERVIEW E N E R G Y O V E RV I E W INTRODUCTION Author's Note Estimates of gallons of fuel consumed, type of fuel used, price paid for fuel, and fuel economy are based on data imputed by EIA, using vehicle characteristics and vehicle-miles traveled data collected during the interview process for the 2001 National Household Travel Survey (NHTS). Rather than obtaining that information directly from fuel purchase diaries, EIA exploited its experience and expertise with modeling techniques for transportation studies, filling missing and uncollected data with information reported to other federal agencies, as described in Appendices B and C of this report.

80

Identify Petroleum Reduction Strategies for Vehicles and Mobile Equipment |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Petroleum Reduction Strategies for Vehicles and Mobile Petroleum Reduction Strategies for Vehicles and Mobile Equipment Identify Petroleum Reduction Strategies for Vehicles and Mobile Equipment October 7, 2013 - 11:50am Addthis YOU ARE HERE: Step 3 As defined by the Federal Energy Management Program (FEMP), greenhouse gas (GHG) emission reduction strategies for Federal vehicles and equipment are based on the three driving principles of petroleum reduction: Reduce vehicle miles traveled Improve fuel efficiency Use alternative fuels. These strategies provide a framework for an agency to use when developing a strategic plan that can be specifically tailored to match the agency's fleet profile and meet its mission. Agency fleet managers should evaluate petroleum reduction strategies and tactics for each fleet location, based on an evaluation of site-specific

Note: This page contains sample records for the topic "vehicle miles traveled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

EIA - Gasoline and Diesel Fuel report: Household Vehicles Energy  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 Transportation logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Consumption 1991 December 1993 Release Next Update: August 1997. Based on the 1991 Residential Transportation Energy Consumption Survey conducted by the Energy Information Administration (EIA) - survey series has been discontinued after EIA's 1994 survey. Only light-duty vehicles and recreational vehicles are included in this report. EIA has excluded motorcycles, mopeds, large trucks, and buses. This report, Household Vehicles Energy Consumption 1991, is based on data from the 1991 Residential Transportation Energy Consumption Survey (RTECS). Focusing on vehicle miles traveled (VMT) and energy enduse consumption and expenditures by households for personal transportation, the 1991 RTECS is

82

Vehicle Technologies Office: Fact #469: May 14, 2007 Growth in Per Capita  

NLE Websites -- All DOE Office Websites (Extended Search)

69: May 14, 2007 69: May 14, 2007 Growth in Per Capita Rates for Vehicles and Vehicle-Miles to someone by E-mail Share Vehicle Technologies Office: Fact #469: May 14, 2007 Growth in Per Capita Rates for Vehicles and Vehicle-Miles on Facebook Tweet about Vehicle Technologies Office: Fact #469: May 14, 2007 Growth in Per Capita Rates for Vehicles and Vehicle-Miles on Twitter Bookmark Vehicle Technologies Office: Fact #469: May 14, 2007 Growth in Per Capita Rates for Vehicles and Vehicle-Miles on Google Bookmark Vehicle Technologies Office: Fact #469: May 14, 2007 Growth in Per Capita Rates for Vehicles and Vehicle-Miles on Delicious Rank Vehicle Technologies Office: Fact #469: May 14, 2007 Growth in Per Capita Rates for Vehicles and Vehicle-Miles on Digg Find More places to share Vehicle Technologies Office: Fact #469:

83

miles-99.PDF  

NLE Websites -- All DOE Office Websites (Extended Search)

Vertical Velocity Statistics as Derived from 94-GHz Vertical Velocity Statistics as Derived from 94-GHz Radar Measurements N. L. Miles, D. M. Babb, and J. Verlinde The Pennsylvania State University University Park, Pennsylvania Introduction Profiles of millimeter-wavelength radar Doppler spectra contain information about both the mean vertical velocities and cloud microphysics. In order to obtain this information, it is necessary to remove the effects of turbulence. Stratocumulus clouds often contain various species of ice and liquid, including graupel, crystals, columns, plates, liquid droplets, and drizzle drops. Most of the previous work to remotely determine microphysics of stratus clouds has largely ignored the presence of drizzle and ice, restricting applicability to only liquid clouds with no drizzle, a relatively rare event. Since mixed phase

84

Vehicle Technologies Office: Fact #454: January 29, 2007 Relationship  

NLE Websites -- All DOE Office Websites (Extended Search)

4: January 29, 4: January 29, 2007 Relationship between Vehicle Miles and the Number of Vehicles in a Household to someone by E-mail Share Vehicle Technologies Office: Fact #454: January 29, 2007 Relationship between Vehicle Miles and the Number of Vehicles in a Household on Facebook Tweet about Vehicle Technologies Office: Fact #454: January 29, 2007 Relationship between Vehicle Miles and the Number of Vehicles in a Household on Twitter Bookmark Vehicle Technologies Office: Fact #454: January 29, 2007 Relationship between Vehicle Miles and the Number of Vehicles in a Household on Google Bookmark Vehicle Technologies Office: Fact #454: January 29, 2007 Relationship between Vehicle Miles and the Number of Vehicles in a Household on Delicious Rank Vehicle Technologies Office: Fact #454: January 29, 2007

85

Maglev vehicles and superconductor technology: Integration of high-speed ground transportation into the air travel system  

SciTech Connect

This study was undertaken to (1) evaluate the potential contribution of high-temperature superconductors (HTSCs) to the technical and economic feasibility of magnetically levitated (maglev) vehicles, (2) determine the status of maglev transportation research in the United States and abroad, (3) identify the likelihood of a significant transportation market for high-speed maglev vehicles, and (4) provide a preliminary assessment of the potential energy and economic benefits of maglev systems. HTSCs should be considered as an enhancing, rather than an enabling, development for maglev transportation because they should improve reliability and reduce energy and maintenance costs. Superconducting maglev transportation technologies were developed in the United States in the late 1960s and early 1970s. Federal support was withdrawn in 1975, but major maglev transportation programs were continued in Japan and West Germany, where full-scale prototypes now carry passengers at speeds of 250 mi/h in demonstration runs. Maglev systems are generally viewed as very-high-speed train systems, but this study shows that the potential market for maglev technology as a train system, e.g., from one downtown to another, is limited. Rather, aircraft and maglev vehicles should be seen as complementing rather than competing transportation systems. If maglev systems were integrated into major hub airport operations, they could become economical in many relatively high-density US corridors. Air traffic congestion and associated noise and pollutant emissions around airports would also be reduced. 68 refs., 26 figs., 16 tabs.

Johnson, L.R.; Rote, D.M.; Hull, J.R.; Coffey, H.T.; Daley, J.G.; Giese, R.F.

1989-04-01T23:59:59.000Z

86

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network (OSTI)

of light-duty vehicles in Xcel Energy service territory inVehicle Charging in the Xcel Energy Colorado Service

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

87

Minority and poor households: patterns of travel and transportation fuel use  

SciTech Connect

This report documents the travel behavior and transportation fuel use of minority and poor households in the US, using information from numerous national-level sources. The resulting data base reveals distinctive patterns of household vehicle availability and use, travel, and fuel use and enables us to relate observed differences between population groups to differences in their demographic characteristics and in the attributes of their household vehicles. When income and residence location are controlled, black (and to a lesser extent, Hispanic and poor) households have fewer vehicles regularly available than do comparable white or nonpoor households; moreover, these vehicles are older and larger and thus have significantly lower fuel economy. The net result is that average black, Hispanic, and poor households travel fewer miles per year but use more fuel than do average white and nonpoor households. Certain other findings - notably, that of significant racial differences in vehicle availability and use by low-income households - challenge the conventional wisdom that such racial variations arise solely because of differences in income and residence location. Results of the study suggest important differences - primarily in the yearly fluctuation of income - between black and white low-income households even when residence location is controlled. These variables are not captured by cross-sectional data sets (either the national surveys used in our analysis or the local data sets that are widely used for urban transportation planning).

Millar, M.; Morrison, R.; Vyas, A.

1986-05-01T23:59:59.000Z

88

Interviewee Travel Regulations Scope  

NLE Websites -- All DOE Office Websites (Extended Search)

3/2012 3/2012 Interviewee Travel Regulations Scope These regulations apply to the reimbursement of round-trip travel expenses incurred by interviewees. These regulations do not apply to applicants who live within a 50-mile radius of Los Alamos based on the Rand McNally Standard Highway Mileage Guide. Reimbursement With the exception of airfare, interviewees will be reimbursed for travel expenses according to Federal travel regulations. For interviewees, airfare reimbursement is limited to the lesser of the standard coach airfare or the actual amount paid. The lowest available airfare should be obtained based on the official business dates and locations. The reimbursement amount will be based on the most direct route available between the interviewee's residence and the laboratory. Costs incurred over the lowest available fare will be the

89

MECHANICAL ENGINEERING TRAVEL AUTHORIZATION INFORMATION FORM  

E-Print Network (OSTI)

. ______________ Estimated Cost AMOUNT Transportation (Does not include USC vehicle) Subsistence Other Expenses (EXPLAINMECHANICAL ENGINEERING TRAVEL AUTHORIZATION INFORMATION FORM Requested) Estimated Total Cost Account(s) to be charged Dept. Fund Class Analytical Amount** Method of Travel Common

Sutton, Michael

90

Vehicle Technologies Office: Fact #328: July 12, 2004 Expected Average  

NLE Websites -- All DOE Office Websites (Extended Search)

8: July 12, 2004 8: July 12, 2004 Expected Average Annual Miles to someone by E-mail Share Vehicle Technologies Office: Fact #328: July 12, 2004 Expected Average Annual Miles on Facebook Tweet about Vehicle Technologies Office: Fact #328: July 12, 2004 Expected Average Annual Miles on Twitter Bookmark Vehicle Technologies Office: Fact #328: July 12, 2004 Expected Average Annual Miles on Google Bookmark Vehicle Technologies Office: Fact #328: July 12, 2004 Expected Average Annual Miles on Delicious Rank Vehicle Technologies Office: Fact #328: July 12, 2004 Expected Average Annual Miles on Digg Find More places to share Vehicle Technologies Office: Fact #328: July 12, 2004 Expected Average Annual Miles on AddThis.com... Fact #328: July 12, 2004 Expected Average Annual Miles Twenty-five percent of the respondents to a nationwide survey said that

91

Fact #615: March 22, 2010 Average Vehicle Trip Length  

Energy.gov (U.S. Department of Energy (DOE))

According to the latest National Household Travel Survey, the average trip length grew to over 10 miles in 2009, just slightly over the 9.9 mile average in 2001. Trips to work in 2009 increased to...

92

Vehicle Technologies Office: 2004 Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Archive 4 Archive #352 Automotive Industry Material Usage December 27, 2004 #351 Gasohol Use Is Up December 20, 2004 #350 U.S. Oil Imports: Top Ten Countries of Origin December 13, 2004 #349 Crude Oil Production: OPEC, the Persian Gulf, and the United States December 6, 2004 #348 U.S. Trade Deficit, 2001-2003 November 29, 2004 #347 The Relationship of VMT and GDP November 22, 2004 #346 What Is Made from a Barrel of Crude Oil? November 15, 2004 #345 Vehicle Miles Traveled and the Price of Gasoline November 8, 2004 #344 Refueling Stations November 1, 2004 #343 Reasons for Rejecting a Particular New Car Model October 25, 2004 #342 Passenger Car Sales in China October 18, 2004 #341 Tire Recycling October 11, 2004 #340 Hydrogen Fuel as a Replacement for Gasoline October 4, 2004

93

Understanding the differences in the development and use of advanced traveler information systems for vehicles (ATIS/V) in the U.S., Germany, and Japan  

E-Print Network (OSTI)

Traffic congestion is becoming a serious problem. As a solution, advanced traveler information systems (ATIS) mitigate traffic congestion by providing real-time traffic information to travelers. ATIS includes various ...

Sugawara, Yoshihiko

2007-01-01T23:59:59.000Z

94

AVTA: 2010 Electric Vehicles International Neighborhood Electric Vehicle Testing Results  

Energy.gov (U.S. Department of Energy (DOE))

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe testing results of the 2010 Electric Vehicles International neighborhood electric vehicle. Neighborhood electric vehicles reach speeds of no more than 35 miles per hour and are only allowed on roads with speed limits of up to 35 miles per hour. This research was conducted by Idaho National Laboratory.

95

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network (OSTI)

PHEV impact on wind energy market (Short et al. , 2006) andVehicles in California Energy Markets, TransportationElectric Vehicles on Wind Energy Markets, National Renewable

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

96

EV Project Nissan Leaf Vehicle Summary Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2011 through March 2011 Vehicle Usage Number of trips 3,364 Total distance traveled (mi) 21,706 Avg trip distance (mi) 5.8 Avg distance traveled per day when the vehicle was...

97

EV Project Nissan Leaf Vehicle Summary Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

through September 2012 Vehicle Usage Number of trips 813,430 Total distance traveled (mi) 5,837,173 Avg trip distance (mi) 7.2 Avg distance traveled per day when the vehicle was...

98

EV Project Nissan Leaf Vehicle Summary Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2012 through June 2012 Vehicle Usage Number of trips 787,895 Total distance traveled (mi) 5,666,469 Avg trip distance (mi) 7.2 Avg distance traveled per day when the vehicle was...

99

EV Project Nissan Leaf Vehicle Summary Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

through December 2012 Vehicle Usage Number of trips 969,853 Total distance traveled (mi) 6,724,952 Avg trip distance (mi) 6.9 Avg distance traveled per day when the vehicle was...

100

EV Project NIssan Leaf Vehicle Summary Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2012 through March 2012 Vehicle Usage Number of trips 773,602 Total distance traveled (mi) 5,558,155 Avg trip distance (mi) 7.2 Avg distance traveled per day when the vehicle was...

Note: This page contains sample records for the topic "vehicle miles traveled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

EV Project NIssan Leaf Vehicle Summary Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

through December 2011 Vehicle Usage Number of trips 707,330 Total distance traveled (mi) 4,878,735 Avg trip distance (mi) 6.9 Avg distance traveled per day when the vehicle was...

102

EV Project NIssan Leaf Vehicle Summary Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2011 through June 2011 Vehicle Usage Number of trips 160,588 Total distance traveled (mi) 1,077,931 Avg trip distance (mi) 6.7 Avg distance traveled per day when the vehicle was...

103

The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis -- A Reflexively Designed Survey of New-Car-Buying Multi-Vehicle California Households  

E-Print Network (OSTI)

electric, $2000 (small vehicle) Zero Emissions Vehicle tax rebate.electric, 60 or miles of range, $4000 Zero Emissions Vehicle tax rebate.tax rebate on LEV). Page12, Hybrid electric vehicles: Both

Turrentine, Thomas; Kurani, Kenneth S.

2001-01-01T23:59:59.000Z

104

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network (OSTI)

the automobile market, Plug- In Hybrid Electric Vehicles (electric vehicles. Because of these factors, the automobileELECTRIC ONLY Figure 5.5c Temporal Trip Distribution Source Energy Profiles Conclusions and Future Research Commercial PHEV release in the automobile

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

105

INTRODUCTION Whether from traveling in a vehicle or from racing across the playground at recess, the concept of speed is one  

E-Print Network (OSTI)

in steps that are factors of 10.) Finally, the notion of a maximum speed (the speed of light) is introduced. The primary points covered in the poster are: · Speed is a measurement of the distance an object travels. · Nothing can travel faster than the speed of light. Even the speed of the Earth in its orbit is much slower

106

Travis Miles ALL RIGHTS RESERVED  

E-Print Network (OSTI)

. These storms also cause extensive coastal damage through direct wind forcing, storm surge and precipitation sampling conditions. In my thesis I present data from Teledyne-Webb Slocum autonomous underwater vehicles

107

Vehicles on demand... Why drive your own vehicle  

E-Print Network (OSTI)

to renter. Vehicle should be returned with no less than a half tank of gas (local gas stations on next page *Daily Rate $50 *Includes gas, unlimited miles, mainte- nance and insurance. No smoking. Hands

108

Travel Medicine  

NLE Websites -- All DOE Office Websites (Extended Search)

SCOPE OF PROBLEM SCOPE OF PROBLEM * 21% of U.S. Adult Population Travel for Business * 1.4 million International Travelers Daily * Numbers will Increase * Include Workers in Planning TRAVEL AND INFECTIOUS DISEASE * Endemic Exotic Diseases * Antimicrobial Resistance *Non-Specific Presentation of Disease * Emergence/ Re-emergence of Infectious Agents * Importation/ Exportation of Infection Mary L. Doyle, MPH, RN, COHN-S/CM DOE Headquarters January 17,2002 INTERNATIONAL TRAVEL * Economic Expansion * Globalization of Companies * Extended * Extended & Short-tenn Assignments * Multi-National Travel * Circle Globe in Three Days * Incubation Period for Infectious Diseases * Employee Needs Advice from OHN HEALTH ASSESSMENT * Potential Travel Illnesses * Employee Health Risks

109

Commercial viability of hybrid vehicles : best household use and cross national considerations.  

SciTech Connect

Japanese automakers have introduced hybrid passenger cars in Japan and will soon do so in the US. In this paper, we report how we used early computer simulation model results to compare the commercial viability of a hypothetical near-term (next decade) hybrid mid-size passenger car configuration under varying fuel price and driving patterns. The fuel prices and driving patterns evaluated are designed to span likely values for major OECD nations. Two types of models are used. One allows the ''design'' of a hybrid to a specified set of performance requirements and the prediction of fuel economy under a number of possible driving patterns (called driving cycles). Another provides an estimate of the incremental cost of the hybrid in comparison to a comparably performing conventional vehicle. In this paper, the models are applied to predict the NPV cost of conventional gasoline-fueled vehicles vs. parallel hybrid vehicles. The parallel hybrids are assumed to (1) be produced at high volume, (2) use nickel metal hydride battery packs, and (3) have high-strength steel bodies. The conventional vehicle also is assumed to have a high-strength steel body. The simulated vehicles are held constant in many respects, including 0-60 time, engine type, aerodynamic drag coefficient, tire rolling resistance, and frontal area. The hybrids analyzed use the minimum size battery pack and motor to meet specified 0-60 times. A key characteristic affecting commercial viability is noted and quantified: that hybrids achieve the most pronounced fuel economy increase (best use) in slow, average-speed, stop-and-go driving, but when households consistently drive these vehicles under these conditions, they tend to travel fewer miles than average vehicles. We find that hours driven is a more valuable measure than miles. Estimates are developed concerning hours of use of household vehicles versus driving cycle, and the pattern of minimum NPV incremental cost (or benefit) of selecting the hybrid over the conventional vehicle at various fuel prices is illustrated. These results are based on data from various OECD motions on fuel price, annual miles of travel per vehicle, and driving cycles assumed to be applicable in those nations. Scatter in results plotted as a function of average speed, related to details of driving cycles and the vehicles selected for analysis, is discussed.

Santini, D. J.; Vyas, A. D.

1999-07-16T23:59:59.000Z

110

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network (OSTI)

by adding additional batteries to the design, allowing theincreases. Advanced Batteries for Electric-Drive Vehicles (generally require larger batteries with correspondingly

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

111

EV Project NIssan Leaf Vehicle Summary Report-Reporting period...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

through September 2011 Vehicle Usage Number of trips 536,548 Total distance traveled (mi) 3,718,272 Avg trip distance (mi) 6.9 Avg distance traveled per day when the vehicle was...

112

Carbon-friendly travel plan construction using an evolutionary algorithm  

Science Journals Connector (OSTI)

This paper discusses the use of an evolutionary algorithm to design workplace travel plans, to promote of car sharing and reduce carbon emissions from single-occupancy motor vehicles. Keywords: carbon-trading, emissions-trading, travel plan

Neil B. Urquhart

2007-07-01T23:59:59.000Z

113

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network (OSTI)

Vehicle (BEV) with an electric motor capable of supplyingmode operation uses the electric motor to run during low-PHEV x can be run on the electric motor only for the first x

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

114

Three Mile Island: then and now  

SciTech Connect

A review of the Three Mile Island Unit 2 accident is presented. Current activities to clean up the reactor are described.

Trauger, D.B.

1980-01-01T23:59:59.000Z

115

Light Properties Light travels at the speed of light `c'  

E-Print Network (OSTI)

LIGHT!! #12;Light Properties Light travels at the speed of light `c' C = 3 x 108 m/s Or 190.nasa.gov #12;The speed of light The speed of light `c' is equal to the frequency ` times the wavelength,000 miles/second!! Light could travel around the world about 8 times in one second #12;What is light?? Light

Mojzsis, Stephen J.

116

Travel Information 1 Symposium and Workshop location  

E-Print Network (OSTI)

/From IAD Washington Dulles International Airport (IAD) is 26 miles (41 km) from downtown Washington away. 2 Travel from local airports There are three local airports: IAD (Washington Dulles), BWI the metro to your hotel (see http://www.airwise.com/airports/us/dulles/by bus.html). For more information

Warnow,Tandy

117

Vehicle Technologies Office: Fact #728: May 21, 2012 Average Trip Length is  

NLE Websites -- All DOE Office Websites (Extended Search)

8: May 21, 2012 8: May 21, 2012 Average Trip Length is Less Than Ten Miles to someone by E-mail Share Vehicle Technologies Office: Fact #728: May 21, 2012 Average Trip Length is Less Than Ten Miles on Facebook Tweet about Vehicle Technologies Office: Fact #728: May 21, 2012 Average Trip Length is Less Than Ten Miles on Twitter Bookmark Vehicle Technologies Office: Fact #728: May 21, 2012 Average Trip Length is Less Than Ten Miles on Google Bookmark Vehicle Technologies Office: Fact #728: May 21, 2012 Average Trip Length is Less Than Ten Miles on Delicious Rank Vehicle Technologies Office: Fact #728: May 21, 2012 Average Trip Length is Less Than Ten Miles on Digg Find More places to share Vehicle Technologies Office: Fact #728: May 21, 2012 Average Trip Length is Less Than Ten Miles on AddThis.com...

118

Graduate, Undergraduate Student Travel  

NLE Websites -- All DOE Office Websites (Extended Search)

Graduate, Undergraduate Travel Graduate, Undergraduate Student Travel Travel reimbursement process information for participants in the Graduate Research Assistant (GRA) and...

119

Fact #591: October 5, 2009 Consumer Reports Tests Vehicle Fuel Economy by Speed  

Energy.gov (U.S. Department of Energy (DOE))

Seven vehicles were tested by Consumer Reports recently to determine the fuel economy of the vehicles at a given speed. For these vehicles, the decline in fuel economy from a speed of 55 miles per...

120

Chapter 2. Vehicle Characteristics  

U.S. Energy Information Administration (EIA) Indexed Site

2. Vehicle Characteristics 2. Vehicle Characteristics Chapter 2. Vehicle Characteristics U.S. households used a fleet of nearly 157 million vehicles in 1994. Despite remarkable growth in the number of minivans and sport-utility vehicles, passenger cars continued to predominate in the residential vehicle fleet. This chapter looks at changes in the composition of the residential fleet in 1994 compared with earlier years and reviews the effect of technological changes on fuel efficiency (how efficiently a vehicle engine processes motor fuel) and fuel economy (how far a vehicle travels on a given amount of fuel). Using data unique to the Residential Transportation Energy Consumption Survey, it also explores the relationship between residential vehicle use and family income.

Note: This page contains sample records for the topic "vehicle miles traveled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Jefferson Lab Travel - Training  

NLE Websites -- All DOE Office Websites (Extended Search)

Tabs Home Announcements Forms Foreign Travel Conferences Travel Reservations Training Travel Guidance Q 'n A print version Individual instruction on travel related topics...

122

Greenhouse Gas Implications of Fleet Electrification Based on Big Data-Informed Individual Travel Patterns  

Science Journals Connector (OSTI)

Greenhouse Gas Implications of Fleet Electrification Based on Big Data-Informed Individual Travel Patterns ... The results indicate that 1) the largest gasoline displacement (1.1 million gallons per year) can be achieved by adopting PHEVs with modest electric range (approximately 80 miles) with current battery cost, limited public charging infrastructure, and no government subsidy; 2) reducing battery cost has the largest impact on increasing the electrification rate of vehicle mileage traveled (VMT), thus increasing gasoline displacement, followed by diversified charging opportunities; 3) government subsidies can be more effective to increase the VMT electrification rate and gasoline displacement if targeted to PHEVs with modest electric ranges (80 to 120 miles); and 4) while taxi fleet electrification can increase greenhouse gas emissions by up to 115 kiloton CO2-eq per year with the current grid in Beijing, emission reduction of up to 36.5 kiloton CO2-eq per year can be achieved if the fuel cycle emission factor of electricity can be reduced to 168.7 g/km. ... (31) We scale up our results obtained from the present data set to reflect total emissions of the entire taxi fleet electrified by PHEVs with different battery size, assuming eight years of taxi service time. ...

Hua Cai; Ming Xu

2013-07-19T23:59:59.000Z

123

Advanced Wireless Power Transfer Vehicle and Infrastructure Analysis (Presentation)  

SciTech Connect

This presentation discusses current research at NREL on advanced wireless power transfer vehicle and infrastructure analysis. The potential benefits of E-roadway include more electrified driving miles from battery electric vehicles, plug-in hybrid electric vehicles, or even properly equipped hybrid electric vehicles (i.e., more electrified miles could be obtained from a given battery size, or electrified driving miles could be maintained while using smaller and less expensive batteries, thereby increasing cost competitiveness and potential market penetration). The system optimization aspect is key given the potential impact of this technology on the vehicles, the power grid and the road infrastructure.

Gonder, J.; Brooker, A.; Burton, E.; Wang, J.; Konan, A.

2014-06-01T23:59:59.000Z

124

The train problem assumes a circular track 101 miles in circumference. The track is labeled clockwise in miles starting at due north. ie. 0 through 100. Mile 101 would be at the same spot as mile 0.  

E-Print Network (OSTI)

A3: trains The train problem assumes a circular track 101 miles in circumference. The track as mile 0. Train1 starts at mile 0 going clockwise. Train2 starts at mile 50 also going clockwise. The program prompts for speeds of each train in mph. The output is the mile (or fraction) at which one train

Huth, Michael

125

Three Mile Canyon | Open Energy Information  

Open Energy Info (EERE)

Mile Canyon Mile Canyon Jump to: navigation, search Name Three Mile Canyon Facility Three Mile Canyon Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John Deere Wind Developer Momentum RE Energy Purchaser PacifiCorp Location Morrow County OR Coordinates 45.717419°, -119.502258° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.717419,"lon":-119.502258,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

126

Wireless Technology Leaps the Last Mile  

Science Journals Connector (OSTI)

Topics include "Wireless Technology Leaps the Last Mile," "Researcher Turns Computers into Better Listeners," and "IBM Puts Encryption in a Processor. Keywords: wireless technology, speech recognition technology, encryption, digital-content protection

Linda Dailey Paulson

2006-06-01T23:59:59.000Z

127

U.S. Department of Energy FreedomCAR & Vehicle Technologies Program: Oil Bypass Filter Technology Evaluation Seventh Quarterly Report April - June 2004  

SciTech Connect

This Oil Bypass Filter Technology Evaluation quarterly report (April–June 2004) details the ongoing fleet evaluation of an oil bypass filter technology by the Idaho National Engineering and Environmental Laboratory (INEEL) for the U.S. Department of Energy’s (DOE) FreedomCAR & Vehicle Technologies Program. Eight INEEL four-cycle diesel engine buses used to transport INEEL employees on various routes and six INEEL Chevrolet Tahoes with gasoline engines are equipped with oil bypass filter systems from the puraDYN Corporation. The bypass filters are reported to have engine oil filtering capability of <1 micron and a built-in additive package to facilitate extended oil-drain intervals. This quarter, the eight diesel engine buses traveled 85,632 miles. As of the end of June 2004, the eight buses have accumulated 498,814 miles since the beginning of the test and 473,192 miles without an oil change. This represents an avoidance of 39 oil changes, which equates to 1,374 quarts (343 gallons) of new oil not consumed and, furthermore, 1,374 quarts of waste oil not generated. One bus had its oil changed due to the degraded quality of the engine oil. Also this quarter, the six Tahoe test vehicles traveled 48,193 miles; to date, the six Tahoes have accumulated 109,708 total test miles. The oil for all six of the Tahoes was changed this quarter due to low Total Base Numbers (TBN). The oil used initially in the Tahoe testing was recycled oil; the recycled oil has been replaced with Castrol virgin oil, and the testing was restarted. However, the six Tahoe’s did travel a total of 98,266 miles on the initial engine oil. This represents an avoidance of 26 oil changes, which equates to 130 quarts (32.5 gallons) of new oil not consumed and, consequently, 130 quarts of waste oil not generated. Based on the number of oil changes avoided by the test buses and Tahoes to date, the potential engine oil savings if an oil bypass filter system were used was estimated for the INEEL, DOE complex and all Federal fleets of on-road vehicles. The estimated potential annual engine oil savings for the three fleets are: INEEL – 3,400 gallons, all DOE fleets – 32,000 gallons, and all Federal fleet – 1.7 million gallons.

Larry Zirker; James Francfort; Jordan Fielding

2004-08-01T23:59:59.000Z

128

Vehicle Technologies Office: Fact #584: August 17, 2009 The Price of  

NLE Websites -- All DOE Office Websites (Extended Search)

4: August 17, 4: August 17, 2009 The Price of Gasoline and Vehicle Travel: How Do They Relate? to someone by E-mail Share Vehicle Technologies Office: Fact #584: August 17, 2009 The Price of Gasoline and Vehicle Travel: How Do They Relate? on Facebook Tweet about Vehicle Technologies Office: Fact #584: August 17, 2009 The Price of Gasoline and Vehicle Travel: How Do They Relate? on Twitter Bookmark Vehicle Technologies Office: Fact #584: August 17, 2009 The Price of Gasoline and Vehicle Travel: How Do They Relate? on Google Bookmark Vehicle Technologies Office: Fact #584: August 17, 2009 The Price of Gasoline and Vehicle Travel: How Do They Relate? on Delicious Rank Vehicle Technologies Office: Fact #584: August 17, 2009 The Price of Gasoline and Vehicle Travel: How Do They Relate? on Digg

129

Vehicle Technologies Office: Fact #425: May 22, 2006 The Price of Gasoline  

NLE Websites -- All DOE Office Websites (Extended Search)

5: May 22, 2006 5: May 22, 2006 The Price of Gasoline and Vehicle Travel: How Do They Relate? to someone by E-mail Share Vehicle Technologies Office: Fact #425: May 22, 2006 The Price of Gasoline and Vehicle Travel: How Do They Relate? on Facebook Tweet about Vehicle Technologies Office: Fact #425: May 22, 2006 The Price of Gasoline and Vehicle Travel: How Do They Relate? on Twitter Bookmark Vehicle Technologies Office: Fact #425: May 22, 2006 The Price of Gasoline and Vehicle Travel: How Do They Relate? on Google Bookmark Vehicle Technologies Office: Fact #425: May 22, 2006 The Price of Gasoline and Vehicle Travel: How Do They Relate? on Delicious Rank Vehicle Technologies Office: Fact #425: May 22, 2006 The Price of Gasoline and Vehicle Travel: How Do They Relate? on Digg

130

Travels of a floating space tool. A spacecraft is in a circular orbit ...  

E-Print Network (OSTI)

Travels of a floating space tool. A spacecraft is in a circular orbit 6750 km from the Earth's center of mass (i.e, it is about 250 miles above the surface).

2008-01-22T23:59:59.000Z

131

1st Mile | Open Energy Information  

Open Energy Info (EERE)

Mile Mile Jump to: navigation, search Name 1st Mile Place Lyngby, Denmark Zip 2800 Product Denmark-based company that provides research and screening for venture capitalists. Website http://www.1stmile.dk/ Coordinates 56.866669°, 8.31667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":56.866669,"lon":8.31667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

132

Fact #586: August 31, 2009 New Vehicle Fuel Economies by Vehicle Type  

Energy.gov (U.S. Department of Energy (DOE))

The average fuel economy for new cars climbed to over 30 miles per gallon (mpg) in 2008 while the average for new pickup trucks stayed around 20 mpg. For new vans and sport utility vehicles (SUVs)...

133

Debate over waste imperils 3-mile cleanup  

Science Journals Connector (OSTI)

...solidification ofthe 560,000 gallons of high level waste left from the commercial fuel reprocessing plant that operated at West Valley, New York, from 1966 to 1972. But any suggestion that the new solidification facility also be used for Three Mile...

LJ Carter

1980-10-10T23:59:59.000Z

134

Travel | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Travel Travel Travel The Travel Services Team serves as the Headquarters POC for the following services: Headquarters Travel Management Center (TMC) Official Travel, Domestic and Foriegn Foreign Travel Management System (FTMS) Official Travel Regulations and Guidelines U.S. Passports and Visa Services (Official and Diplomatic) Non-Refundable Airfare Guidance International Insurance for DOE Officials (MEDEX) RezProfiler Instructions Car Rental Hotel Reservations Travel FAQs For questions about Travel Services or the Travel Management Center, see the Contact Us, Travel Services Section Travel Management Center (TMC) The Travel Services Team oversees the Travel Management Center (TMC), which is operated by ADTRAV Travel Management. Office Hours - 8:00 a.m. to 5:00 p.m. Office Location - Forrestal, Room GE-180

135

Modeling and vehicle performance analysis of Earth and lunar hoppers  

E-Print Network (OSTI)

Planetary hoppers-vehicles which travel over the surface as opposed to on it-offer significant advantages over existing rovers. Above all, they are able to travel quickly and can overcome terrain obstacles such as boulders ...

Middleton, Akil J

2010-01-01T23:59:59.000Z

136

DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas Emissions DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas Emissions June 29, 2012 - 12:19pm Addthis Judy McLemore from the Waste Isolation Pilot Plant led efforts to reduce the DOE’s vehicle fleet by 20 percent, improving sustainability and saving money. Under her leadership, greenhouse gas emissions associated with business travel were reduced by 63 percent and travel costs were reduced by greater than 60 percent. Judy McLemore from the Waste Isolation Pilot Plant led efforts to reduce the DOE's vehicle fleet by 20 percent, improving sustainability and saving money. Under her leadership, greenhouse gas emissions associated with business travel were reduced by 63 percent and travel costs were

137

DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas Emissions DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas Emissions June 29, 2012 - 12:19pm Addthis Judy McLemore from the Waste Isolation Pilot Plant led efforts to reduce the DOE’s vehicle fleet by 20 percent, improving sustainability and saving money. Under her leadership, greenhouse gas emissions associated with business travel were reduced by 63 percent and travel costs were reduced by greater than 60 percent. Judy McLemore from the Waste Isolation Pilot Plant led efforts to reduce the DOE's vehicle fleet by 20 percent, improving sustainability and saving money. Under her leadership, greenhouse gas emissions associated with business travel were reduced by 63 percent and travel costs were

138

Fact #854 January 5, 2015 Driving Ranges for All-Electric Vehicles...  

Energy Savers (EERE)

4 January 5, 2015 Driving Ranges for All-Electric Vehicles in Model Year 2014 Vary from 62 to 265 Miles Fact 854 January 5, 2015 Driving Ranges for All-Electric Vehicles in Model...

139

Fact #813: January 20, 2014 New Light Vehicle Fuel Economy Continues to Rise  

Energy.gov (U.S. Department of Energy (DOE))

The sales-weighted fuel economy average of all light vehicles sold in model year (MY) 2013 was 1.6 miles per gallon (mpg) higher than MY 2011. This increase brings the new light vehicle fuel...

140

Lung Adenocarcinoma Incidence Rates and Their Relation to Motor Vehicle Density  

Science Journals Connector (OSTI)

...with about one motor vehicle per square mile...study design. In ecological studies, none of...as follows: As an ecological study, the data of motor vehicle density was obtained...individuals; that is, the ecological fallacy could not...

Fan Chen; Haley Jackson; and William F. Bina

2009-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle miles traveled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Microsoft Word - Seven Mile CX.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 7, 2010 October 7, 2010 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearence Memorandum - Seven Mile Project Erich Orth Project Manager - TEP-TPP-3 Proposed Action: Seven Mile Project Budget Information: Work Order 00211600 Task 03 Categorical Exclusions Applied (from Subpart D, 10 C.F.R. Part 1021: B1.11 "Installation of fencing... that will not adversely affect wildlife of surface water flow." B4.6 "Additions or modifications to electric power transmission facilities that would not affect the environment beyond the previously developed facility area..." B4.11 "Construction or electric power substations (including switching stations and support facilities) with power delivery at 230-kV or below, or modification (other than voltage increases) of existing

142

square miles | OpenEI Community  

Open Energy Info (EERE)

0 0 Varnish cache server Home Groups Community Central Green Button Applications Developer Utility Rate FRED: FRee Energy Database More Public Groups Private Groups Features Groups Blog posts Content Stream Documents Discussions Polls Q & A Events Notices My stuff Energy blogs 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142235190 Varnish cache server square miles Home Sfomail's picture Submitted by Sfomail(48) Member 25 June, 2013 - 12:10 Solar Land Use Data on OpenEI acres csp land use how much land land requirements pv land use solar land use square miles I'm happy to announce that a new report on Solar+Land+Use was just released by the National+Renewable+Energy+Laboratory. You can find a brief summary of the results at the Solar+Land+Use page on OpenEI.

143

Vehicle Technologies Office: Fact #615: March 22, 2010 Average Vehicle Trip  

NLE Websites -- All DOE Office Websites (Extended Search)

5: March 22, 5: March 22, 2010 Average Vehicle Trip Length to someone by E-mail Share Vehicle Technologies Office: Fact #615: March 22, 2010 Average Vehicle Trip Length on Facebook Tweet about Vehicle Technologies Office: Fact #615: March 22, 2010 Average Vehicle Trip Length on Twitter Bookmark Vehicle Technologies Office: Fact #615: March 22, 2010 Average Vehicle Trip Length on Google Bookmark Vehicle Technologies Office: Fact #615: March 22, 2010 Average Vehicle Trip Length on Delicious Rank Vehicle Technologies Office: Fact #615: March 22, 2010 Average Vehicle Trip Length on Digg Find More places to share Vehicle Technologies Office: Fact #615: March 22, 2010 Average Vehicle Trip Length on AddThis.com... Fact #615: March 22, 2010 Average Vehicle Trip Length According to the latest National Household Travel Survey, the average trip

144

Fuel Cell Vehicles and Hydrogen in Preparing for market launch  

E-Print Network (OSTI)

Fuel Cell Vehicles and Hydrogen in California Preparing for market launch Catherine Dunwoody June 27, 2012 #12;2 A fuel cell vehicle is electric! 2 · 300-400 mile range · Zero-tailpipe emissions · To launch market and build capacity #12;12 H2 stations and vehicle growth #12;13 California Fuel Cell

California at Davis, University of

145

NREL Works to Increase Electric Vehicle Efficiency Through Enhanced...  

NLE Websites -- All DOE Office Websites (Extended Search)

at the National Renewable Energy Laboratory (NREL) are providing new insight into how heating and cooling systems affect the distance that electric vehicles can travel on a single...

146

HEALTH EFFECTS OF THE NUCLEAR ACCIDENT AT THREE MILE ISLAND  

E-Print Network (OSTI)

occurred during the nuclear accident, and probably noHEALTH EFFECTS OF THE NUCLEAR ACCIDENT AT MILE ISLAND JacobENG-48 HEALTH EFFECTS OF THE NUCLEAR ACCIDENT A T THREE MILE

Fabrikant, J.I.

2010-01-01T23:59:59.000Z

147

Alternative Fuels Data Center: Oregon Celebrates 200 Miles of Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Oregon Celebrates 200 Oregon Celebrates 200 Miles of Electric Highways to someone by E-mail Share Alternative Fuels Data Center: Oregon Celebrates 200 Miles of Electric Highways on Facebook Tweet about Alternative Fuels Data Center: Oregon Celebrates 200 Miles of Electric Highways on Twitter Bookmark Alternative Fuels Data Center: Oregon Celebrates 200 Miles of Electric Highways on Google Bookmark Alternative Fuels Data Center: Oregon Celebrates 200 Miles of Electric Highways on Delicious Rank Alternative Fuels Data Center: Oregon Celebrates 200 Miles of Electric Highways on Digg Find More places to share Alternative Fuels Data Center: Oregon Celebrates 200 Miles of Electric Highways on AddThis.com... April 18, 2012 Oregon Celebrates 200 Miles of Electric Highways " These [electric charging] stations will help create a corridor that, by the

148

Non-Motorized Travel Study.pub  

NLE Websites -- All DOE Office Websites (Extended Search)

Motorized Travel Study: Motorized Travel Study: Identifying Factors that Influence Communities to Walk and Bike and to Examine Why, or Why Not, Travelers Walk and Bike in Their Communities Oak Ridge National Laboratory managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract number DE-AC05-00OR22725 Research Areas Freight Flows Passenger Flows Supply Chain Efficiency Transportation: Energy Environment Safety Security Vehicle Technologies Research Brief T he idea of livable communities suggests that people should have the option to utilize non-motorized travel (NMT), specifically walking and bicycling, to conduct their daily tasks. Forecasting personal travel by walk and bike is necessary as part of regional transportation planning, and requires fine

149

Table 5.1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel...  

Gasoline and Diesel Fuel Update (EIA)

(billion dollars) (percent) 0.9 0.8 1.1 1.0 1.1 1.0 1.1 1.1 1.0 Race of Householder White ... 138.6 88.4 1,592 88.8 80.5 88.9 10.0...

150

IMPACTT5A model : enhancements and modifications since December 1994 - with special reference to the effect of tripled-fuel-economy vehicles on fuel-cycle energy and emissions.  

SciTech Connect

Version 5A of the Integrated Market Penetration and Anticipated Cost of Transportation Technologies (IMPACTT5A) model is a spreadsheet-based set of algorithms that calculates the effects of advanced-technology vehicles on baseline fuel use and emissions. Outputs of this Argonne National Laboratory-developed model include estimates of (1) energy use and emissions attributable to conventional-technology vehicles under a baseline scenario and (2) energy use and emissions attributable to advanced- and conventional-technology vehicles under an alternative market-penetration scenario. Enhancements to IMPACIT made after its initial documentation in December 1994 have enabled it to deal with a wide range of fuel and propulsion system technologies included in Argonne's GREET model in a somewhat modified three-phased approach. Vehicle stocks are still projected in the largely unchanged STOCK module. Vehicle-miles traveled, fuel use, and oil displacement by advanced-technology vehicles are projected in an updated USAGE module. Now, both modules can incorporate vehicle efficiency and fuel share profiles consistent with those of the Partnership for a New Generation of Vehicles. Finally, fuel-cycle emissions of carbon monoxide, volatile organic compounds, nitrogen oxides, toxics, and greenhouse gases are computed in the EMISSIONS module via an interface with the GREET model that was developed specifically to perform such calculations. Because of this interface, results are now more broadly informative than were results from earlier versions of IMPACTT.

Mintz, M. M.; Saricks, C. L.

1999-08-28T23:59:59.000Z

151

Focus Series: Denver Energy Advisor Program Helps Homeowners Go the Extra Mile in Mile-High City  

Energy.gov (U.S. Department of Energy (DOE))

Focus Series: Denver Energy Advisor Program Helps Homeowners Go the Extra Mile in Mile-High City, a publication of the U.S. Department of Energy's Better Buildings Program.

152

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation 2010 DOE Vehicle Technologies...

153

Attribute-based Vehicle Search in Crowded Surveillance Videos  

E-Print Network (OSTI)

of vehicle characteristics (such as color, direction of travel, speed, length, height, etc.) and the system and environmental factors. This is achieved through a novel multi-view vehicle detection approach which relies is changed to allow the detection of different vehicle types. Once a vehicle is detected and tracked over

Davis, Larry

154

WORD PROBLEMS 1. Suppose your car gets 25 miles per gallon of gasoline and the price of gas is $3.50 per gallon. Write  

E-Print Network (OSTI)

WORD PROBLEMS 1. Suppose your car gets 25 miles per gallon of gasoline and the price of gas is $3.50 per gallon. Write your monthly gasoline cost C in terms of the distance D that you travel each month

Koban, Nic

155

Fact #794: August 26, 2013 How Much Does an Average Vehicle Owner Pay in Fuel Taxes Each Year?  

Energy.gov (U.S. Department of Energy (DOE))

According to the Federal Highway Administration, the average fuel economy for all light vehicles on the road today is 21.4 miles per gallon (mpg). A person owning a gasoline vehicle with that fuel...

156

Evolution of the household vehicle fleet: Anticipating fleet composition, PHEV adoption and GHG emissions in Austin, Texas  

Science Journals Connector (OSTI)

In today’s world of volatile fuel prices and climate concerns, there is little study on the relationship between vehicle ownership patterns and attitudes toward vehicle cost (including fuel prices and feebates) and vehicle technologies. This work provides new data on ownership decisions and owner preferences under various scenarios, coupled with calibrated models to microsimulate Austin’s personal-fleet evolution. Opinion survey results suggest that most Austinites (63%, population-corrected share) support a feebate policy to favor more fuel efficient vehicles. Top purchase criteria are price, type/class, and fuel economy. Most (56%) respondents also indicated that they would consider purchasing a Plug-in Hybrid Electric Vehicle (PHEV) if it were to cost $6000 more than its conventional, gasoline-powered counterpart. And many respond strongly to signals on the external (health and climate) costs of a vehicle’s emissions, more strongly than they respond to information on fuel cost savings. Twenty five-year simulations of Austin’s household vehicle fleet suggest that, under all scenarios modeled, Austin’s vehicle usage levels (measured in total vehicle miles traveled or VMT) are predicted to increase overall, along with average vehicle ownership levels (both per household and per capita). Under a feebate, HEVs, \\{PHEVs\\} and Smart Cars are estimated to represent 25% of the fleet’s VMT by simulation year 25; this scenario is predicted to raise total regional VMT slightly (just 2.32%, by simulation year 25), relative to the trend scenario, while reducing CO2 emissions only slightly (by 5.62%, relative to trend). Doubling the trend-case gas price to $5/gallon is simulated to reduce the year-25 vehicle use levels by 24% and CO2 emissions by 30% (relative to trend). Two- and three-vehicle households are simulated to be the highest adopters of \\{HEVs\\} and \\{PHEVs\\} across all scenarios. The combined share of vans, pickup trucks, sport utility vehicles (SUVs), and cross-over utility vehicles (CUVs) is lowest under the feebate scenario, at 35% (versus 47% in Austin’s current household fleet). Feebate-policy receipts are forecasted to exceed rebates in each simulation year. In the longer term, gas price dynamics, tax incentives, feebates and purchase prices along with new technologies, government-industry partnerships, and more accurate information on range and recharging times (which increase customer confidence in EV technologies) should have added effects on energy dependence and greenhouse gas emissions.

Sashank Musti; Kara M. Kockelman

2011-01-01T23:59:59.000Z

157

U.S. Department of Energy, Energy Information Administration (EIA  

U.S. Energy Information Administration (EIA) Indexed Site

3 - Avg VMT by Efficiency","Table A13. U.S. Average Vehicle-Miles Traveled by Vehicle Fuel Economy Category, 2001 3 - Avg VMT by Efficiency","Table A13. U.S. Average Vehicle-Miles Traveled by Vehicle Fuel Economy Category, 2001 (Thousand Miles per Vehicle) " "Std Errors for A13","Relative Standard Errors for Table A13. U.S. Average Vehicle-Miles Traveled by Vehicle Fuel Economy Category, 2001 (Percent) " "N Cells for A13","Number of Sample Cases Contributing to Estimates in Table A13. U.S. Average Vehicle-Miles Traveled by Vehicle Fuel Economy Category, 2001 "

158

U.S. Department of Energy, Energy Information Administration (EIA  

U.S. Energy Information Administration (EIA) Indexed Site

5- Avg VMT by Veh Type","Table A15. U.S. Average Vehicle-Miles Traveled by Vehicle Type, 2001 5- Avg VMT by Veh Type","Table A15. U.S. Average Vehicle-Miles Traveled by Vehicle Type, 2001 (Thousand Miles per Vehicle) " "Std Errors for A15","Relative Standard Errors for Table A15. U.S. Average Vehicle-Miles Traveled by Vehicle Type, 2001 (Percent) " "N Cells for A15","Number of Sample Cases Contributing to Estimates in Table A15. U.S. Average Vehicle-Miles Traveled by Vehicle Type, 2001 "

159

A GEM Award (Going the Extra Mile)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GEM Award GEM Award Going the Extra Mile A Gift Card Recognition Program Who may receive? All Headquarters Department of Energy Employees except Political Appointees (including Schedule C and non-career members of the SES). Any Employee may nominate. What is it? $25 or $50 Gift Cards from 100s Department Stores, Book Stores, Hotels and more. of nationally well known Movie Tickets, Restaurants, How do I do it? * Nominator fills out form. * Routes form through their organizational protocols. * Faxes or scans/emails to HQ Gift Card. * HQ Gift Card receives form, places order * Gift Certificate is sent to Recipient's Supervisor * Supervisor presents certificate to employee * Employee can redeem On-line or by phone for card their choice of When can I do this? HQ Gift Card is open for business now

160

square-mile Black Warrior Basin  

NLE Websites -- All DOE Office Websites (Extended Search)

will inject CO will inject CO 2 into a coalbed methane (CBM) well in Tuscaloosa County, Alabama, to assess the capability of mature CBM reservoirs to receive and adsorb large volumes of CO 2 . Injection began at the test site on June 15; the site was selected because it is representative of the 23,000- square-mile Black Warrior Basin located in northwestern Alabama and northeastern Mississippi. It is estimated that this area has the potential to store in the range of 1.1 to 2.3 Gigatons of CO 2 , which is approximately the amount that Alabama's coal-fired power plants emit in two decades. The targeted coal seams range from 940 to 1,800 feet deep and are one to six feet thick. Approximately 240 tons of CO 2 will be injected over a 45- to 60-day period. More information

Note: This page contains sample records for the topic "vehicle miles traveled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Three Mile Island: the financial fallout  

SciTech Connect

The nuclear accident at Three Mile Island raised serious questions about the financial ability of the electric utility company owners to clean up and repair the damaged reactor facilities while continuing to provide reliable electric service to customers. Financial insolvency of the companies is not imminent and power supplies are assured for the immediate future. However, the loss of earnings capability by the Metropolitan Edison Company makes it questionable whether it can fund its share of the clean-up costs and maintain system reliability without large rate increases or some external financial assistance. The accident has shown that the utilities and Federal and State regulatory agencies were not prepared to deal with recovery from such a large financial loss. The Department of Energy should move swiftly to assess the financial needs of the affected utilities and develop plans for meeting them.

Not Available

1980-07-07T23:59:59.000Z

162

Three Mile Island: meltdown of democracy  

SciTech Connect

Strong local opposition to a start-up of Unit 1 at Three Mile Island continues because citizen distrust of General Public Utilities was found in post-accident studies to have been justified. Several citizen groups have monitored the Unit 2 clean-up activities and have not been reassured by either the President's Commission or the Nuclear Regulatory Commission. Efforts to improve public relations by distributing radiation kits or other strategies have been outweighed by evidence of government manipulation of early bomb test data and poor industry planning. Arguments over who is responsible for the accident and who is liable for the cost have further undermined credibility. Area residents have received three recent legal signals that their position may prevail. (DCK)

Walsh, E.J.

1983-03-01T23:59:59.000Z

163

On the estimation of arterial route travel time distribution with Markov chains  

E-Print Network (OSTI)

cost, and inherent distributed characteristics lead to tackling GPS-equipped vehicle challenges, Nikolas Geroliminis School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Probe vehicle Travel time distribution Travel time variability a b s t r a c t Recent advances

Moret, Bernard

164

Hydrogen ICE Vehicle Testing Activities  

SciTech Connect

The Advanced Vehicle Testing Activity teamed with Electric Transportation Applications and Arizona Public Service to develop and monitor the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant. The Pilot Plant provides 100% hydrogen, and hydrogen and compressed natural gas (H/CNG)-blended fuels for the evaluation of hydrogen and H/CNG internal combustion engine (ICE) vehicles in controlled and fleet testing environments. Since June 2002, twenty hydrogen and H/CNG vehicles have accumulated 300,000 test miles and 5,700 fueling events. The AVTA is part of the Department of Energy’s FreedomCAR and Vehicle Technologies Program. These testing activities are managed by the Idaho National Laboratory. This paper discusses the Pilot Plant design and monitoring, and hydrogen ICE vehicle testing methods and results.

J. Francfort; D. Karner

2006-04-01T23:59:59.000Z

165

EV Project Chevrolet Volt Vehicle Summary Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2012 Vehicle Usage Overall fuel economy (mpg) 136 Overall electrical energy consumption (AC Whmi) 222 Number of trips 286,682 Total distance traveled (mi) 2,392,509 Avg...

166

EV Project Chevrolet Volt Vehicle Summary Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 2011 Vehicle Usage Overall fuel economy (mpg) 131 Overall electrical energy consumption (AC Whmi) 271 Number of trips 13,819 Total distance traveled (mi) 108,115 Avg trip...

167

EV Project Chevrolet Volt Vehicle Summary Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 2012 Vehicle Usage Overall fuel economy (mpg) 139 Overall electrical energy consumption (AC Whmi) 293 Number of trips 76,425 Total distance traveled (mi) 609,737 Avg...

168

EV Project Nissan Leaf Vehicle Summary Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

40 Reporting period: January 2013 through March 2013 Vehicle Usage Number of trips 1,075,251 Total distance traveled (mi) 7,563,354 Avg trip distance (mi) 7.0 Avg distance...

169

Salt Wells, Eight Mile Flat | Open Energy Information  

Open Energy Info (EERE)

Salt Wells, Eight Mile Flat Salt Wells, Eight Mile Flat Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Salt Wells, Eight Mile Flat Abstract Abstract unavailable. Author Nevada Bureau of Mines and Geology Published Online Nevada Encyclopedia, 2009 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Salt Wells, Eight Mile Flat Citation Nevada Bureau of Mines and Geology. Salt Wells, Eight Mile Flat [Internet]. 2009. Online Nevada Encyclopedia. [updated 2009/03/24;cited 2013/08/07]. Available from: http://www.onlinenevada.org/articles/salt-wells-eight-mile-flat Related Geothermal Exploration Activities Activities (1) Areas (1) Regions (0) Development Wells At Salt Wells Area (Nevada Bureau of Mines and Geology, 2009) Salt Wells Geothermal Area

170

Motor-Vehicle Infrastructure and Services Provided by the Public Sector: Report #7 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

7.8.3 The motor-vehicle fraction of air, water, and solid-7.8.3 The motor-vehicle fraction of air, water, and solid-travel. The motor-vehicle related costs of water treatment

Delucchi, Mark; Murphy, James

2005-01-01T23:59:59.000Z

171

MOTOR-VEHICLE INFRASTRUCTURE AND SERVICES PROVIDED BY THE PUBLIC SECTOR Report #7 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

7.8.3 The motor-vehicle fraction of air, water, and solid-7.8.3 The motor-vehicle fraction of air, water, and solid-travel. The motor-vehicle related costs of water treatment

Delucchi, Mark

2005-01-01T23:59:59.000Z

172

The Least-cost Hydrogen for Southern California Zhenhong Lin*  

E-Print Network (OSTI)

and maintenance SMR = steam methane reforming tonC = one ton of carbon VMT = vehicle miles traveled 1

Fan, Yueyue

173

New York Nuclear Profile - Nine Mile Point Nuclear Station  

U.S. Energy Information Administration (EIA) Indexed Site

Nine Mile Point Nuclear Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

174

Web Reimbursement Create a Travel Authorization for BCD Travel  

E-Print Network (OSTI)

tickets purchased through BCD Travel directly to departmental General Ledger coding. Create TravelWeb Reimbursement Create a Travel Authorization for BCD Travel 7/19/2012 For Harvard Business Use Only Page 1 Create a Travel Authorization for BCD Travel HARVARD UNIVERSITY Create a Travel

Chen, Yiling

175

Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector...

176

Compare Fuel Cell Vehicles Side-by-Side  

NLE Websites -- All DOE Office Websites (Extended Search)

Recently Tested Vehicles Recently Tested Vehicles Fuel cell vehicles (FCVs) are not yet for sale in the United States. However, manufacturers are producing small fleets of FCVs for evaluation and have estimated the fuel economy of some vehicles using EPA test procedures. Fuel economy estimates and other information for recently tested vehicles are provided below. 2012 Honda FCX Clarity Honda FCX Clarity 2012 Mercedes-Benz F-Cell Mercedes F-Cell Fuel Economy and Driving Range Fuel Economy (miles/kg) Note: One kg of hydrogen is roughly equivalent to one gallon of gasoline. Hydrogen 60 Combined 60 City 60 Hwy Hydrogen 52 Combined 52 City 53 Hwy Range (miles) 240 190 Vehicle Characteristics Vehicle Class Midsize Car Small Station Wagon Motor DC Brushless 100kW DC Permanent Magnet (brushless) Type of Fuel Cell Proton Exchange Membrane Proton Exchange Membrane

177

VIA Motors electric vehicle platform  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Extended-Range Electric Trucks Extended-Range Electric Trucks The fuel economy of a Prius with the payload of a pickup VIA's E-REV powertrain is ideal for America's fleets, cutting fuel costs by up to 75%, while dramatically reducing petroleum consumption and emissions- electricity costs an average of 60 cents per equivalent gallon. Recharging daily, the average driver could expect to refill the gas tank less than 10 times a year rather than once a week. It offers all the advantages of an electric vehicle, without range limitations. Working with vehicle manufacturers, VIA plans to begin delivering E-REV trucks to government and utility fleets in 2011. The onboard generator provides a work site with 15 kW of exportable power Up to 40 miles in all-electric mode and up to 300 miles using the range extender

178

Vehicle Technologies Office: 2011 Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Archive 1 Archive #707 Illustration of Truck Classes December 26, 2011 #706 Vocational Vehicle Fuel Consumption Standards December 19, 2011 #705 Fuel Consumption Standards for Combination Tractors December 12, 2011 #704 Fuel Consumption Standards for New Heavy Pickups and Vans December 5, 2011 #703 Hybrid Vehicles Lose Market Share in 2010 November 28, 2011 #702 Consumer Preferences on Electric Vehicle Charging November 21, 2011 #701 How Much More Would You Pay for an Electric Vehicle? November 14, 2011 #700 Biodiesel Consumption is on the Rise for 2011 November 7, 2011 #699 Transportation Energy Use by Mode and Fuel Type, 2009 October 31, 2011 #698 Changes in the Federal Highway Administration Vehicle Travel Data October 24, 2011 #697 Comparison of Vehicles per Thousand People in Selected Countries/Regions October 17, 2011

179

Travel Policy | The Ames Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Policy Travel Policy Travel Policy for Contractor Personnel Travel Policy Changes October 1, 2009 Per Diem Adjustments for Meals Memo or EXAMPLE...

180

U.S. Department of Energy, Energy Information Administration (EIA  

U.S. Energy Information Administration (EIA) Indexed Site

A3 - Average per Vehicles","Table A3. U.S. Per Vehicle Average Miles Traveled, Vehicle Fuel Consumption and Expenditures, 2001" A3 - Average per Vehicles","Table A3. U.S. Per Vehicle Average Miles Traveled, Vehicle Fuel Consumption and Expenditures, 2001" "Std Errors for A3","Relative Standard Errors for Table A3. U.S. Per Vehicle Average Miles Traveled, Vehicle Fuel Consumption and Expenditures, 2001 (Percent)" "N Cells for A3","Number of Sample Cases Contributing to Estimates in Table A3. U.S. Per Vehicle Average Miles Traveled, Vehicle Fuel Consumption and Expenditures, 2001" " Page A-1 of A-N" "Table A3. U.S. Per Vehicle Average Miles Traveled, Vehicle Fuel Consumption and Expenditures, 2001" "2001 Household and Vehicle Characteristics","Number of Vehicles (million)","Average per Vehicle",,,"Miles per Gallon"

Note: This page contains sample records for the topic "vehicle miles traveled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Energy 101: Electric Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Vehicles Electric Vehicles Energy 101: Electric Vehicles Addthis Below is the text version for the Energy 101: Electric Vehicles video. The video opens with "Energy 101: Electric Vehicles." This is followed by various shots of different electric vehicles on the road. Wouldn't it be pretty cool to do all of your daily driving without ever having to fill up at a gas station? Well, that's quickly becoming a reality for people who drive electric vehicles-sometimes called EVs. EVs are gaining popularity. And with good reason-they're convenient; they're sleek and quiet; they keep our air clean. And for most of the short-distance driving we do, they're the perfect way to get from point A to point B safely, reliably, and comfortably. Text appears onscreen: "80% of Americans drive less than 40 miles round

182

U.S. Department of Energy, Energy Information Administration (EIA  

U.S. Energy Information Administration (EIA) Indexed Site

A2 - Average per Households","Table A2. U.S. Per Household Vehicle-Miles Traveled, Vehicle Fuel Consumption and Expenditures, 2001" A2 - Average per Households","Table A2. U.S. Per Household Vehicle-Miles Traveled, Vehicle Fuel Consumption and Expenditures, 2001" "Std Errors for A2","Relative Standard Errors for Table A2. U.S. Per Household Vehicle-Miles Traveled, Vehicle Fuel Consumption and Expenditures, 2001 (Percent)" "N Cells for A2","Number of Sample Cases Contributing to Estimates in Table A2. U.S. Per Household Vehicle-Miles Traveled, Vehicle Fuel Consumption and Expenditures, 2001" "A3 - Average per Vehicles","Table A3. U.S. Per Vehicle Average Miles Traveled, Vehicle Fuel Consumption and Expenditures, 2001" "Std Errors for A3","Relative Standard Errors for Table A3. U.S. Per Vehicle Average Miles Traveled, Vehicle Fuel Consumption and Expenditures, 2001

183

Evaluation of KDOT's Vehicle Fleet's CO2 Emissions and Possible Energy Reductions  

E-Print Network (OSTI)

across all major vehicle types in the fleet. Using more efficient means of transportation can significantly decrease their fuel demand, namely replacing truck travel with car travel. Additionally, increasing biofuel use in their fleet will decrease...

Nielsen, Eric

2012-12-31T23:59:59.000Z

184

Vehicle Technologies Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

December 18, 2013 December 18, 2013 USDA Offers $118 Million for Renewable Energy, Smart Grid Projects The U.S. Department of Agriculture (USDA) announced $73 million in funding for renewable energy projects and $45 million for smart grid technology as part of more than $1.8 billion in funding for electric utility infrastructure projects in 25 states and one territory. More December 18, 2013 2012 Fuel Economy of New Vehicles Sets Record High: EPA The U.S. Environmental Protection Agency (EPA) reported that model year 2012 vehicles achieved an all-time high fuel economy average of 23.6 miles per gallon. More December 18, 2013 Energy Department Releases Grid Energy Storage Report The Energy Department released its Grid Energy Storage report to the members of the U.S. Senate Energy and Natural Resources Committee, identifying the benefits and challenges of grid energy storage that must be addressed to enable broader use. More

185

Debate over waste imperils 3-Mile cleanup  

SciTech Connect

The cleanup is a task of extraordinary proportions. Every step in the cleanup must be taken in a highly sensitive political and regulatory environment. A demineralizer or ion exchange filtration unit was installed in order that the fission products could be removed from the water spilled in the auxiliary and fuel handling buildings. GPU later vented krypton gas. Twice now engineers have made cautions entries into the containment building as part of the effort to size up the job. Cleanup will be costly, requiring many workers. Some wastes will require special packaging in hundreds of containers with shielded overpacks, plus bulky items of hardware and equipment that cannot be easily packaged. There will be the damaged fuel assemblies from the reactor core. Removing the fuel from the reactor may be difficult. A troublesome waste disposal question has to do with the material to be generated in cleaning up the containment building's sump water. GPU's man in charge of clean-up strategy is to collect the wastes in a form that permits maximum flexibility with respect to their stage, packaging, transport, and ultimate disposal. If plans for disposal of all the wastes from the cleanup are to be completed, an early commitment by Pennsylvania and other northeastern states to establish a burial ground for low level waste generated within the region is needed. Also a speedy commitment by NRC, DOE, and Congress to a plan for disposal of the first-stage zeolites is needed. Should there be a failure to cope with the wastes that Three Mile Island cleanup generates, the whole nuclear enterprise may suffer.

Carter, L.J.

1980-10-10T23:59:59.000Z

186

Alternative Fuel Implementation Tool Kit Case Study on Electric Vehicles  

E-Print Network (OSTI)

in vehicle price. However, Durham's vendor did not agree to such a transfer. Durham used several specific The existing duty cycle/application was feasible for the 70-mile typical driving range of the LEAF The vehicle, brake and fluid checks as well as preventive diagnostics, with no need for oil changes. The LEAF's high

187

Travel Policy and Procedures  

Directives, Delegations, and Requirements

To supplement the Federal Travel Regulation (41 CFR, Parts 300-304), the principal source of policy for Federal employee travel and relocation matters, and to establish DOE M 552.1-1, U.S. Department of Energy Travel Manual, dated 09-04-02, as the repository for supplementary travel requirements information for the Department of Energy (DOE). Cancels DOE 1500.2A and DOE 1500.4A. Canceled by DOE O 552.1A.

2002-09-04T23:59:59.000Z

188

Travel Policy and Procedures  

Directives, Delegations, and Requirements

The Order supplements the Federal Travel Regulation as principal source of policy for Federal employee travel and relocation and establishes DOE M 552.1-1A, U.S. Department of Energy Travel Manual, dated 2-17-06, as the repository for supplementary travel requirements information. Cancels DOE O 552.1. Admin Chg 1, dated 10-1-08 cancels DOE O 552.1A.

2006-02-17T23:59:59.000Z

189

Travel Policy and Procedures  

Directives, Delegations, and Requirements

The Order supplements the Federal Travel Regulation as principal source of policy for Federal employee travel and relocation and establishes DOE M 552.1-1A, U.S. Department of Energy Travel Manual, dated 2-17-06, as the DOE repository for supplementary travel requirements information. Cancels DOE O 552.1-1. Canceled by DOE O 552.1A Admin Chg 1.

2006-02-17T23:59:59.000Z

190

STUDENT TRAVEL POLICY APPLICABILITY  

E-Print Network (OSTI)

STUDENT TRAVEL POLICY APPLICABILITY The student travel policy is subject to the standardized the following funding sources: Activity and Services (A & S) fees, Revenues, and Auxiliary fund. The student travel policy incorporates by reference in the University Regulation 4.006 Student Government and Student

Fernandez, Eduardo

191

Foreign Travel Health & Wellness Information | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wellness Programs » Foreign Travel Health Wellness Programs » Foreign Travel Health & Wellness Information Foreign Travel Health & Wellness Information All travelers should take the following precautions, no matter the destination: Wash hands often with soap and water. Because motor vehicle crashes are a leading cause of injury among travelers, walk and drive defensively; avoid travel at night if possible and always use seat belts. Don't eat or drink dairy products unless you know they have been pasteurized. Never eat undercooked ground beef and poultry, raw eggs, and unpasteurized dairy products; raw shellfish is particularly dangerous to persons who have liver disease or compromised immune systems. Don't eat food purchased from street vendors; do not drink beverages with ice. Don't handle animals, including dogs and cats, to avoid bites and

192

Hybrid powertrain optimization with trajectory prediction based on inter-vehicle-communication and vehicle-infrastructure-integration  

Science Journals Connector (OSTI)

Abstract Recent advances in Inter-Vehicle Communications (IVC) and Vehicle-Infrastructure Integration (VII) paved ways to real-time information sharing among vehicles, which are beneficial for vehicle energy management strategies (EMS). This is especially valuable for power-split hybrid electrical vehicles (HEV) in order to determine the optimal power-split between two different power sources at any particular time. Certainly, researches in this area have been done, but tradeoffs between optimality, driving-cycle sensitivity, speed of calculation and charge-sustaining (CS) conditions have not been cohesively addressed before. In light of this, a combined approach of a time-efficient powertrain optimization strategy, utilizing trajectory prediction based on IVC and VII is proposed. First, Gipps’ car following model for traffic prediction is used to predict the interactions between vehicles, combined with the cell-transmission-model (CTM) for the leading vehicle trajectory prediction. Secondly, a computationally efficient charge-sustaining (CS) HEV powertrain optimization strategy is analytically derived and simulated, based on the Pontryagin’s Minimum Principle and a CS-condition constraint. A 3D lookup-map, generated offline to interpolate the optimizing parameters based on the predicted speed, is also utilized to speed up the calculations. Simulations are conducted for 6-mile and 15-mile cases with different prediction update timings to test the performance of the proposed strategy against a Rule-Based (RB) control strategy. Results for accurate-prediction cases show 9.6% average fuel economy improvements in miles-per-gallon (MPG) over RB for the 6-mile case and 7% improvements for the 15-mile case. Prediction-with-error cases show smaller average MPG’s improvements, with 1.6% to 4.3% improvements for the 6-mile case and 2.6% to 3.4% improvements for the 15-mile case.

Mohd Azrin Mohd Zulkefli; Jianfeng Zheng; Zongxuan Sun; Henry X. Liu

2014-01-01T23:59:59.000Z

193

The relationship of travel agents and consumer travel magazines concerning the travel destinations of tourists using travel agencies  

E-Print Network (OSTI)

important. Also important are travel agents, those professionals who may play a large role in helping tourists determine their travel destinations. Another potentially important factor in determining travel destinations is consumer travel magazines...

Tomlinson, Beverly

2013-02-22T23:59:59.000Z

194

Assessing Energy Impact of Plug-In Hybrid Electric Vehicles: Significance of Daily Distance Variation over Time and Among Drivers  

SciTech Connect

Accurate assessment of the impact of plug-in hybrid electric vehicles (PHEVs) on petroleum and electricity consumption is a necessary step toward effective policies. Variations in daily vehicle miles traveled (VMT) over time and among drivers affect PHEV energy impact, but the significance is not well understood. This paper uses a graphical illustration, a mathematical derivation, and an empirical study to examine the cause and significance of such an effect. The first two methods reveal that ignoring daily variation in VMT always causes underestimation of petroleum consumption and overestimation of electricity consumption by PHEVs; both biases increase as the assumed PHEV charge-depleting (CD) range moves closer to the average daily VMT. The empirical analysis based on national travel survey data shows that the assumption of uniform daily VMT over time and among drivers causes nearly 68% underestimation of expected petroleum use and nearly 48% overestimation of expected electricity use by PHEVs with a 40-mi CD range (PHEV40s). Also for PHEV40s, consideration of daily variation in VMT over time but not among drivers similar to the way the utility factor curve is derived in SAE Standard SAE J2841 causes underestimation of expected petroleum use by more than 24% and overestimation of expected electricity use by about 17%. Underestimation of petroleum use and overestimation of electricity use increase with larger-battery PHEVs.

Lin, Zhenhong [ORNL; Greene, David L [ORNL

2012-01-01T23:59:59.000Z

195

Alternative Fuels Data Center: Low-Speed Vehicle Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low-Speed Vehicle Low-Speed Vehicle Definition to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle Definition on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle Definition on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Definition on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Definition on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle Definition on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Vehicle Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low-Speed Vehicle Definition A low-speed vehicle is defined as a limited use automobile or truck that has a maximum speed greater than 20 miles per hour (mph) but not more than

196

Transportation Efficiency Resources  

Energy.gov (U.S. Department of Energy (DOE))

Transportation efficiency reduces travel demand as measured by vehicle miles traveled (VMT). While transportation efficiency policies are often implemented under local governments, national and...

197

Smart Growth Resources  

Energy.gov (U.S. Department of Energy (DOE))

Transportation efficiency reduces travel demand as measured by vehicle miles traveled (VMT). While transportation efficiency policies are often implemented under local governments, national and...

198

On-Road Particle Matter Emissions from a MY 2010 Compliant HD Diesel Vehicle Driving Across the U.S.  

Energy.gov (U.S. Department of Energy (DOE))

Measuring particle emissions from a 2010 compliant HD Diesel tractor while traveling on-road for 2300 miles found average gravimetric TPM over the entire route to be well below EPA's 2010 PM standard.

199

E-Print Network 3.0 - automatic vehicle location Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Collection: Biology and Medicine 18 Collision Avoidance for Multiple Agent Systems Dong Eui Chang Summary: , such as getting a vehicle to travel from its initial location to some...

200

Portsmouth Herald Local News: Project54 innovations enhance public safety Archives Business Entertainment Health Living Maine News Online Only Public Records Sports Tourism Travel  

E-Print Network (OSTI)

Entertainment Health Living Maine News Online Only Public Records Sports Tourism Travel Click Here Shop Records Sports Tourism Travel emergency vehicles equipped with Project54, including a fire truck from

New Hampshire, University of

Note: This page contains sample records for the topic "vehicle miles traveled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Full Useful Life (120,000 miles) Exhaust Emission Performance...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car and Medium-Duty Engine in Conjunction with...

202

HEALTH EFFECTS OF THE NUCLEAR ACCIDENT AT THREE MILE ISLAND  

E-Print Network (OSTI)

within 50 miles of the nuclear power plant was estimated tothe radiation from the nuclear power plant accident. From anand the Peach Bottom nuclear power plants, like the general

Fabrikant, J.I.

2010-01-01T23:59:59.000Z

203

Fact #657: January 10, 2011 Record Increase for New Light Vehicle Fuel Economy  

Energy.gov (U.S. Department of Energy (DOE))

The sales-weighted fuel economy average of all light vehicles sold in model year (MY) 2009 was 1.4 miles per gallon (mpg) higher than MY2008. This is the largest annual increase in fuel economy...

204

EV Everywhere Battery Workshop: Preliminary Target-Setting Framework  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

technical targets for these vehicles. Levelized Cost of Driving (LCD) vehicle purchase price + fuel expenditure over 5 years, expressed per mile traveled Analysis Assumptions:...

205

EV Everywhere Challenge Kick-Off  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for these vehicles. BEV100 BEV300 Levelized Cost of Driving (LCD) vehicle purchase price + fuel expenditure over 5 years, expressed per mile traveled Levelized cost of...

206

EV Everywhere Electric Drive Workshop: Preliminary Target-Setting...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

technical targets for these vehicles. Levelized Cost of Driving (LCD) vehicle purchase price + fuel expenditure over 5 years, expressed per mile traveled Analysis Assumptions:...

207

Subscriber access provided by University | of Minnesota Libraries Environmental Science & Technology is published by the American Chemical  

E-Print Network (OSTI)

vehicle fleet fuel efficiency, and reduced vehicle miles traveled, is likely the most cost disagreement around the effectiveness, cost, and unintended economic and ecological consequences of GHG

Lotko, William

208

Official Foreign Travel  

Directives, Delegations, and Requirements

The order establishes requirements and responsibilities governing official foreign travel by Federal and contractor employees. Cancels DOE O 551.1C.

2012-04-12T23:59:59.000Z

209

Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle...  

Energy Savers (EERE)

Maximizing Alternative Fuel Vehicle Efficiency Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency Besides their energy security and environmental benefits,...

210

Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...  

Energy Savers (EERE)

Confidential, 4222013 2013 DOE VEHICLE TECHNOLOGIES PROGRAM REVIEW PRESENTATION Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification...

211

Vehicle Technologies Office: Hybrid and Vehicle Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid and Vehicle Hybrid and Vehicle Systems to someone by E-mail Share Vehicle Technologies Office: Hybrid and Vehicle Systems on Facebook Tweet about Vehicle Technologies Office: Hybrid and Vehicle Systems on Twitter Bookmark Vehicle Technologies Office: Hybrid and Vehicle Systems on Google Bookmark Vehicle Technologies Office: Hybrid and Vehicle Systems on Delicious Rank Vehicle Technologies Office: Hybrid and Vehicle Systems on Digg Find More places to share Vehicle Technologies Office: Hybrid and Vehicle Systems on AddThis.com... Just the Basics Hybrid & Vehicle Systems Modeling & Simulation Integration & Validation Benchmarking Parasitic Loss Reduction Propulsion Systems Advanced Vehicle Evaluations Energy Storage Advanced Power Electronics & Electrical Machines

212

Vehicle Technologies Office: 2009 Advanced Vehicle Technology...  

Office of Environmental Management (EM)

Vehicle Technologies Office: 2009 Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle...

213

Hybrid Electric Vehicle Fleet and Baseline Performance Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Fleet and Vehicle Fleet and Baseline Performance Testing James Francfort Idaho National Laboratory 2 Paper #2006-01-1267 Presentation Outline Background & goals Testing partners Baseline performance testing new HEVs Fleet testing (160k miles in 36 months) End-of-life testing (fuel economy & battery testing at 160k miles) WWW information location 3 Paper #2006-01-1267 Background Advanced Vehicle Testing Activity (AVTA) - part of DOE's FreedomCAR and Vehicle Technologies Program Goal - provide benchmark data for technology modeling, and research and development programs Idaho National Laboratory manages these activities, and performs data analysis and reporting activities 4 Paper #2006-01-1267 Testing Partners Qualified Vehicle Testers hElectric Transportation Applications (lead)

214

DOE Hydrogen and Fuel Cells Program Record 5038: Hydrogen Cost Competitive on a Cents per Mile Basis - 2006  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Date: May 22, 2006 8 Date: May 22, 2006 Title: Hydrogen Cost Competitive on a Cents per Mile Basis - 2006 Originator: Patrick Davis & Steve Chalk Approved by: JoAnn Milliken Approval Date: May 22, 2006 Item : Lower the cost of hydrogen from natural gas to be competitive on a cents per mile basis with conventional gasoline vehicles. Supporting Information: The results of a 2003 economic analysis were used to estimate the cost of hydrogen produced from distributed natural gas reforming at $5 per gallon of gasoline equivalent (gge) (See U.S. DOE Record 5030: Hydrogen Baseline Cost of $5 per gge in 2003; available at http://www.hydrogen.energy.gov/program_records). Since the original analysis, DOE-sponsored R&D has resulted in significant cost reductions,

215

Local travel habits of baby boomers in suburban age-restricted communities  

E-Print Network (OSTI)

The baby boomer generation is an unprecedented demographic of 78 million Americans, now entering retirement. Living mostly in suburbs and dependent on private vehicles for nearly all travel needs, boomers face increasing ...

Hebbert, Francis

2008-01-01T23:59:59.000Z

216

Logistic regression models for predicting trip reporting accuracy in GPS-enhanced household travel surveys  

E-Print Network (OSTI)

This thesis presents a methodology for conducting logistic regression modeling of trip and household information obtained from household travel surveys and vehicle trip information obtained from global positioning systems (GPS) to better understand...

Forrest, Timothy Lee

2007-04-25T23:59:59.000Z

217

Capturing the impacts of land use on travel behavior : comparison of modeling approaches  

E-Print Network (OSTI)

Most urban planning literature suggests that compact and mixed-use neighborhoods correlate with lower vehicle kilometers traveled (VKT), and accordingly, lower energy consumption and transportation-related emissions. ...

Hannan, Veronica Adelle

2013-01-01T23:59:59.000Z

218

Seven Mile Hole Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Seven Mile Hole Geothermal Area (Redirected from Seven Mile Hole Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Seven Mile Hole Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (4) 10 References Area Overview Geothermal Area Profile Location: Wyoming Exploration Region: Yellowstone Caldera Geothermal Region GEA Development Phase:

219

Seven Mile Hole Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Seven Mile Hole Geothermal Area Seven Mile Hole Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Seven Mile Hole Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (4) 10 References Area Overview Geothermal Area Profile Location: Wyoming Exploration Region: Yellowstone Caldera Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

220

Conventional vs Electric Commercial Vehicle Fleets 1 Paper published in the Proceedings of "The Seventh International Conference on City Logistics"  

E-Print Network (OSTI)

and lower per-mile operating and maintenance costs. However, the initial purchase cost of electric vehicles operating and maintenance costs of electric vehicles and their high initial capital costs. In this paper. Given the high capital costs associated with vehicle fleets, if fleet owners were to replace

Bertini, Robert L.

Note: This page contains sample records for the topic "vehicle miles traveled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Improvements in Terrain-Based Road Vehicle Localization By Initializing an Unscented Kalman Filter Using Particle Filters  

E-Print Network (OSTI)

the computational cost of the previous terrain- based localization algorithm. In order to localize a vehicle alongImprovements in Terrain-Based Road Vehicle Localization By Initializing an Unscented Kalman Filter of a road vehicle along a one-mile test track and 7 kilometer span of a highway using terrain

Brennan, Sean

222

Retail Infrastructure Costs Comparison for Hydrogen and Electricity for Light-Duty Vehicles: Preprint  

SciTech Connect

Both hydrogen and plug-in electric vehicles offer significant social benefits to enhance energy security and reduce criteria and greenhouse gas emissions from the transportation sector. However, the rollout of electric vehicle supply equipment (EVSE) and hydrogen retail stations (HRS) requires substantial investments with high risks due to many uncertainties. We compare retail infrastructure costs on a common basis - cost per mile, assuming fueling service to 10% of all light-duty vehicles in a typical 1.5 million person city in 2025. Our analysis considers three HRS sizes, four distinct types of EVSE and two distinct EVSE scenarios. EVSE station costs, including equipment and installation, are assumed to be 15% less than today's costs. We find that levelized retail capital costs per mile are essentially indistinguishable given the uncertainty and variability around input assumptions. Total fuel costs per mile for battery electric vehicle (BEV) and plug-in hybrid vehicle (PHEV) are, respectively, 21% lower and 13% lower than that for hydrogen fuel cell electric vehicle (FCEV) under the home-dominant scenario. Including fuel economies and vehicle costs makes FCEVs and BEVs comparable in terms of costs per mile, and PHEVs are about 10% less than FCEVs and BEVs. To account for geographic variability in energy prices and hydrogen delivery costs, we use the Scenario Evaluation, Regionalization and Analysis (SERA) model and confirm the aforementioned estimate of cost per mile, nationally averaged, but see a 15% variability in regional costs of FCEVs and a 5% variability in regional costs for BEVs.

Melaina, M.; Sun, Y.; Bush, B.

2014-08-01T23:59:59.000Z

223

Vehicle Technologies Office: Vehicle Technologies Office Recognizes  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Technologies Vehicle Technologies Office Recognizes Outstanding Researchers to someone by E-mail Share Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Facebook Tweet about Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Twitter Bookmark Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Google Bookmark Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Delicious Rank Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Digg Find More places to share Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on AddThis.com...

224

Creating Efficiencies in Last Mile Delivery through Workforce  

E-Print Network (OSTI)

objectives · Extend the planning horizon to achieve more efficiency · Discuss general trends in workforceCreating Efficiencies in Last Mile Delivery through Workforce Management Maciek Nowak Associate workforce management and its advantages · Discuss new research looking to expand the customer service

Bustamante, Fabián E.

225

NASA maps volcano's 4000-mile-long SO2 cloud  

Science Journals Connector (OSTI)

NASA maps volcano's 4000-mile-long SO2 cloud ... The S02 was mapped on June 18 by the Total Ozone Mapping Spectrometer, an instrument aboard NASA's NIMBUS-7 satellite that has been measuring ozone levels and monitoring S02 since 1978. ...

1991-07-01T23:59:59.000Z

226

Travel Request Form  

NLE Websites -- All DOE Office Websites (Extended Search)

Lodging Lodging Transportation SNAP COLLABORATION MEETING JUNE 1 - 3, 2006 TRAVEL FUNDING REQUEST FORM If you require Travel funding support from LBNL to attend the SNAP Collaboration Meeting, please fill out the travel request form below and click on the "SEND" button. As an alternative, you can simply email the requested information on the form to snap@lbl.gov Deadline: Please submit your request NLT Wednesday, May 10, 2006. Disclaimer: Please note that the submission of this request does not automatically constitute funding approval. 1. First Name Last Name 2. Has this travel funding support been pre-approved by the SNAP management? Yes No 3. If answer to #2 is "Yes": a) Approval by whom? b) What was the maximum reimbursement amount from SNAP?

227

Official Foreign Travel  

Directives, Delegations, and Requirements

To establish Department of Energy (DOE) and National Nuclear Security Administration (NNSA) requirements and responsibilities governing official foreign travel by Federal and contractor employees. Cancels DOE O 551.1A. Canceled by DOE O 551.1C.

2003-08-19T23:59:59.000Z

228

Traveling-wave photodetector  

SciTech Connect

The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size.

Hietala, V.M.; Vawter, G.A.

1992-12-31T23:59:59.000Z

229

Projection of Chinese motor vehicle growth, oil demand, and CO{sub 2}emissions through 2050.  

SciTech Connect

As the vehicle population in China increases, oil consumption and carbon dioxide (CO{sub 2}) emissions associated with on-road transportation are rising dramatically. During this study, we developed a methodology to project trends in the growth of the vehicle population, oil demand, and CO{sub 2} emissions associated with on-road transportation in China. By using this methodology, we projected--separately--the number of highway vehicles, motorcycles, and rural vehicles in China through 2050. We used three scenarios of highway vehicle growth (high-, mid-, and low-growth) to reflect patterns of motor vehicle growth that have occurred in different parts of the world (i.e., Europe and Asia). All are essentially business-as-usual scenarios in that almost none of the countries we examined has made concerted efforts to manage vehicle growth or to offer serious alternative transportation means to satisfy people's mobility needs. With this caveat, our projections showed that by 2030, China could have more highway vehicles than the United States has today, and by 2035, it could have the largest number of highway vehicles in the world. By 2050, China could have 486-662 million highway vehicles, 44 million motorcycles, and 28 million rural vehicles. These numbers, which assume essentially unmanaged vehicle growth, would result in potentially disastrous effects on the urban infrastructure, resources, and other social and ecological aspects of life in China. We designed three fuel economy scenarios, from conservative to aggressive, on the basis of current policy efforts and expectations of near-future policies in China and in developed countries. It should be noted that these current and near-future policies have not taken into consideration the significant potential for further fuel economy improvements offered by advanced technologies such as electric drive technologies (e.g., hybrid electric vehicles and fuel-cell vehicles). By using vehicle growth projections and potential vehicle fuel economy, we projected that China's on-road vehicles could consume approximately 614-1016 million metric tons of oil per year (12.4-20.6 million barrels per day) and could emit 1.9-3.2 billion metric tons of CO{sub 2} per year in 2050, which will put tremendous pressure on the balance of the Chinese and world oil supply and demand and could have significant implications on climate change. Our analysis shows that, while improvements in vehicle fuel economy are crucial for reducing transportation energy use, containing the growth of the vehicle population could have an even more profound effect on oil use and CO{sub 2} emissions. This benefit is in addition to other societal and environmental benefits--such as reduced congestion, land use, and urban air pollution--that will result from containing vehicle population growth. Developing public transportation systems for personal travel and rail and other modes for freight transportation will be important for containing the growth of motor vehicles in China. Although the population of passenger cars will far exceed that of all truck types in China in the future, our analysis shows that oil use by and CO{sub 2} emissions from the Chinese truck fleet will be far larger than those related to Chinese passenger cars because trucks are very use intensive (more vehicle miles traveled per year) and energy intensive (lower fuel economy). Unfortunately, the potential for improving fuel economy and reducing air pollutant emissions for trucks has not been fully explored; such efforts are needed. Considering the rapid depletion of the world's oil reserve, the heightened global interest in addressing greenhouse gas emissions, and the geopolitical complications of global oil supply and demand, the study results suggest that unmanaged vehicle growth and limited improvements in vehicle fuel efficiency will lead to an unsustainable and unstable transportation system in China. In other words, while our projections do not definitively indicate what will happen in the Chinese transportation sector by 2050, they do demonstrate

Wang, M.; Huo, H.; Johnson, L.; He, D.

2006-12-20T23:59:59.000Z

230

Projection of Chinese motor vehicle growth, oil demand, and Co{sub 2} emissions through 2050.  

SciTech Connect

As the vehicle population in China increases, oil consumption and carbon dioxide (CO{sub 2}) emissions associated with on-road transportation are rising dramatically. During this study, we developed a methodology to project trends in the growth of the vehicle population, oil demand, and CO{sub 2} emissions associated with on-road transportation in China. By using this methodology, we projected separately the number of highway vehicles, motorcycles, and rural vehicles in China through 2050. We used three scenarios of highway vehicle growth (high-, mid-, and low-growth) to reflect patterns of motor vehicle growth that have occurred in different parts of the world (i.e., Europe and Asia). All are essentially business-as-usual scenarios in that almost none of the countries we examined has made concerted efforts to manage vehicle growth or to offer serious alternative transportation means to satisfy people's mobility needs. With this caveat, our projections showed that by 2030, China could have more highway vehicles than the United States has today, and by 2035, it could have the largest number of highway vehicles in the world. By 2050, China could have 486-662 million highway vehicles, 44 million motorcycles, and 28 million rural vehicles. These numbers, which assume essentially unmanaged vehicle growth, would result in potentially disastrous effects on the urban infrastructure, resources, and other social and ecological aspects of life in China. We designed three fuel economy scenarios, from conservative to aggressive, on the basis of current policy efforts and expectations of near-future policies in China and in developed countries. It should be noted that these current and near-future policies have not taken into consideration the significant potential for further fuel economy improvements offered by advanced technologies such as electric drive technologies (e.g., hybrid electric vehicles and fuel-cell vehicles). By using vehicle growth projections and potential vehicle fuel economy, we projected that China's on-road vehicles could consume approximately 614-1016 million metric tons of oil per year (12.4-20.6 million barrels per day) and could emit 1.9-3.2 billion metric tons of CO{sub 2} per year in 2050, which will put tremendous pressure on the balance of the Chinese and world oil supply and demand and could have significant implications on climate change. Our analysis shows that, while improvements in vehicle fuel economy are crucial for reducing transportation energy use, containing the growth of the vehicle population could have an even more profound effect on oil use and CO{sub 2} emissions. This benefit is in addition to other societal and environmental benefits--such as reduced congestion, land use, and urban air pollution--that will result from containing vehicle population growth. Developing public transportation systems for personal travel and rail and other modes for freight transportation will be important for containing the growth of motor vehicles in China. Although the population of passenger cars will far exceed that of all truck types in China in the future, our analysis shows that oil use by and CO{sub 2} emissions from the Chinese truck fleet will be far larger than those related to Chinese passenger cars because trucks are very use intensive (more vehicle miles traveled per year) and energy intensive (lower fuel economy). Unfortunately, the potential for improving fuel economy and reducing air pollutant emissions for trucks has not been fully explored; such efforts are needed. Considering the rapid depletion of the world's oil reserve, the heightened global interest in addressing greenhouse gas emissions, and the geopolitical complications of global oil supply and demand, the study results suggest that unmanaged vehicle growth and limited improvements in vehicle fuel efficiency will lead to an unsustainable and unstable transportation system in China. In other words, while our projections do not definitively indicate what will happen in the Chinese transportation sector by 2050, they do demonstrate th

Huo, H.; Wang, M.; Johnson, L.; He, D.; Energy Systems; Energy Foundation

2007-01-01T23:59:59.000Z

231

Laredo 2010-2035 Metropolitan Transportation Plan  

E-Print Network (OSTI)

?7? Vehicle?Miles?Traveled...............................................................................................4?8? Truck?Volumes...........................................................................................................4?8? Level...?12? Figure?3?9:?Travel?time?to?work,?Webb?County,?1990,?2000,?2007 .....................................3?14? Figure?3?10:?Daily?Vehicle?Miles?of?Travel?for?Webb?County...............................................3?14? Figure?3?11:?Number?of?Vehicles...

Laredo Urban Transportation Study

2009-12-11T23:59:59.000Z

232

U.S. Department of Energy, Energy Information Administration (EIA  

U.S. Energy Information Administration (EIA) Indexed Site

A2 - Average per Households","Table A2. U.S. Per Household Vehicle-Miles Traveled, Vehicle Fuel Consumption and Expenditures, 2001" A2 - Average per Households","Table A2. U.S. Per Household Vehicle-Miles Traveled, Vehicle Fuel Consumption and Expenditures, 2001" "Std Errors for A2","Relative Standard Errors for Table A2. U.S. Per Household Vehicle-Miles Traveled, Vehicle Fuel Consumption and Expenditures, 2001 (Percent)" "N Cells for A2","Number of Sample Cases Contributing to Estimates in Table A2. U.S. Per Household Vehicle-Miles Traveled, Vehicle Fuel Consumption and Expenditures, 2001" " Page A-1 of A-N" "Table A2. U.S. Per Household Vehicle-Miles Traveled, Vehicle Fuel Consumption and Expenditures, 2001" "2001 Household Characteristics","Number of Households with Vehicles (million)","Average per Household with Vehicles"

233

Transferring 2001 National Household Travel Survey  

SciTech Connect

Policy makers rely on transportation statistics, including data on personal travel behavior, to formulate strategic transportation policies, and to improve the safety and efficiency of the U.S. transportation system. Data on personal travel trends are needed to examine the reliability, efficiency, capacity, and flexibility of the Nation's transportation system to meet current demands and to accommodate future demand. These data are also needed to assess the feasibility and efficiency of alternative congestion-mitigating technologies (e.g., high-speed rail, magnetically levitated trains, and intelligent vehicle and highway systems); to evaluate the merits of alternative transportation investment programs; and to assess the energy-use and air-quality impacts of various policies. To address these data needs, the U.S. Department of Transportation (USDOT) initiated an effort in 1969 to collect detailed data on personal travel. The 1969 survey was the first Nationwide Personal Transportation Survey (NPTS). The survey was conducted again in 1977, 1983, 1990, 1995, and 2001. Data on daily travel were collected in 1969, 1977, 1983, 1990 and 1995. In 2001, the survey was renamed the National Household Travel Survey (NHTS) and it collected both daily and long-distance trips. The 2001 survey was sponsored by three USDOT agencies: Federal Highway Administration (FHWA), Bureau of Transportation Statistics (BTS), and National Highway Traffic Safety Administration (NHTSA). The primary objective of the survey was to collect trip-based data on the nature and characteristics of personal travel so that the relationships between the characteristics of personal travel and the demographics of the traveler can be established. Commercial and institutional travel were not part of the survey. Due to the survey's design, data in the NHTS survey series were not recommended for estimating travel statistics for categories smaller than the combination of Census division (e.g., New England, Middle Atlantic, and Pacific), MSA size, and the availability of rail. Extrapolating NHTS data within small geographic areas could risk developing and subsequently using unreliable estimates. For example, if a planning agency in City X of State Y estimates travel rates and other travel characteristics based on survey data collected from NHTS sample households that were located in City X of State Y, then the agency could risk developing and using unreliable estimates for their planning process. Typically, this limitation significantly increases as the size of an area decreases. That said, the NHTS contains a wealth of information that could allow statistical inferences about small geographic areas, with a pre-determined level of statistical certainty. The question then becomes whether a method can be developed that integrates the NHTS data and other data to estimate key travel characteristics for small geographic areas such as Census tract and transportation analysis zone, and whether this method can outperform other, competing methods.

Hu, Patricia S [ORNL; Reuscher, Tim [ORNL; Schmoyer, Richard L [ORNL; Chin, Shih-Miao [ORNL

2007-05-01T23:59:59.000Z

234

New EPA Fuel Economy and Environment Label - Gasoline Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasoline Vehicles Gasoline Vehicles Gasoline Vehicles Fuel Economy In addition to the MPG estimates displayed on previous labels, combined city/highway fuel use is also given in terms of gallons per 100 miles. New! Fuel Economy & Greenhouse Gas Rating Use this scale to compare vehicles based on tailpipe greenhouse gas emissions, which contribute to climate change. New! Smog Rating You can now compare vehicles based on tailpipe emissions of smog-forming air pollutants. New! Five-Year Fuel Savings This compares the five-year fuel cost of the vehicle to that of an average gasoline vehicle. The assumptions used to calculate these costs are listed at the bottom of the label. Annual Fuel Cost This cost is based on the combined city/highway MPG estimate and assumptions about driving and fuel prices listed at the bottom of the

235

Petroleum Reduction Strategies to Use Alternative Fuels in Vehicles |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Use Alternative Fuels in Vehicles Use Alternative Fuels in Vehicles Petroleum Reduction Strategies to Use Alternative Fuels in Vehicles October 7, 2013 - 11:55am Addthis YOU ARE HERE: Step 3 For reducing greenhouse gas emissions, the table below describes strategies to reduce petroleum through the use of alternative fuels in vehicles, as well as guidance and best practices for each strategy. Table 1. Determining When and How to Promote the Use of Strategies to Use Alternative Fuels Strategy When Applicable Best Practices Use E85, CNG, LNG, LPG and other alternative fuels that require dedicated infrastructure Vehicles are dedicated or dual-fuel vehicles capable of using E85, CNG, LNG, or LPG. Vehicles are garaged within 5 miles of existing dedicated alternative fuel infrastructure. High use locations (i.e., annual gasoline turnover rate of 100,000 gallons or greater) where alternative fuel stations are planned in the near-term

236

2011 Hyundai Sonata 3539 - Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing hybrid electric vehicle batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid (VIN KMHEC4A47BA003539). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Matthew Shirk; Tyler Gray; Jeffrey Wishart

2014-09-01T23:59:59.000Z

237

DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WIPP Representative for Cutting Travel Costs, Greenhouse WIPP Representative for Cutting Travel Costs, Greenhouse Gas Emissions DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas Emissions June 1, 2012 - 12:00pm Addthis Secretary Chu presents the Secretary of Energy's Appreciation Award to Judy A. McLemore. Secretary Chu presents the Secretary of Energy's Appreciation Award to Judy A. McLemore. WASHINGTON, D.C. - A representative of the Waste Isolation Pilot Plant (WIPP) near Carlsbad, N.M., on Tuesday received the Secretary of Energy's Appreciation Award for her efforts to improve sustainability and reduce travel costs and the number of fleet vehicles. Judy A. McLemore, who works for URS Regulatory and Environmental Services, based in Carlsbad, was honored for helping advance DOE's management and

238

Electric Vehicles  

ScienceCinema (OSTI)

Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

Ozpineci, Burak

2014-07-23T23:59:59.000Z

239

Electric Vehicles  

SciTech Connect

Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

Ozpineci, Burak

2014-05-02T23:59:59.000Z

240

Zero Energy Travel  

E-Print Network (OSTI)

It is fundamentally possible to travel with zero energy based on Newton Laws of Motion. According to the first law of motion, a body will continue to travel for infinite distance unless it is acted upon by another force. For a body in motion, the force which stops perpetual motion is friction. However, there are many circumstances that friction is zero, for example in space, where there is vacuum. On earth, gravity makes objects to be in constant contact with each other generating friction but technology exists to separate them in the air using powerful magnetic forces. At low speeds, the friction caused by air is minimal but we can create vacuum even on land for high speed travel. Another condition for travelling is for it to stop at its destination. On land, we can recover the kinetic energy back into electrical energy using brushless permanent magnet generators. These generators can also convert electric energy into kinetic energy in order to provide motion. This article reviews technologies that will allow us to travel with zero energy. It is easier to do it on land but in the air, it is not obvious.

Othman Ahmad; Aroland Kiring; Ali Chekima

2012-10-17T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle miles traveled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Vehicle Technologies Office: 2008 Advanced Vehicle Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

8 Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2008 Advanced...

242

Richmond Electric Vehicle Initiative Electric Vehicle Readiness...  

Office of Environmental Management (EM)

MO) Vehicles Home About Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions Alternative Fuels Modeling, Testing, Data & Results Education...

243

one mile underground into a deep saline formation. The injection  

NLE Websites -- All DOE Office Websites (Extended Search)

mile underground into a deep saline formation. The injection, mile underground into a deep saline formation. The injection, which will occur over a three-year period and is slated to start in early 2010, will compress up to 1 million metric tonnes of CO 2 from the ADM ethanol facility into a liquid-like, dense phase. The targeted rock formation, the Mt. Simon Sandstone, is the thickest and most widespread saline reservoir in the Illinois Basin, with an estimated CO 2 storage capacity of 27 to 109 billion metric tonnes. A comprehensive monitoring program, which will be evaluated yearly, will be implemented after the injection to ensure the injected CO 2 is stored safely and permanently. The RCSP Program was launched by the Office of Fossil Energy (FE)

244

MHK Projects/Twelve Mile Point Project | Open Energy Information  

Open Energy Info (EERE)

Twelve Mile Point Project Twelve Mile Point Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.9177,"lon":-89.9307,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

245

Seven Mile, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Mile, Ohio: Energy Resources Mile, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.480056°, -84.5518916° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.480056,"lon":-84.5518916,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

246

MHK Projects/Fortyeight Mile Point Project | Open Energy Information  

Open Energy Info (EERE)

Fortyeight Mile Point Project Fortyeight Mile Point Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.0447,"lon":-90.6659,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

247

U.S. Department of Energy, Energy Information Administration (EIA  

U.S. Energy Information Administration (EIA) Indexed Site

A7 - VMT by Income","Table A7. U.S. Vehicle-Miles Traveled by Family Income and Poverty Status, 2001 A7 - VMT by Income","Table A7. U.S. Vehicle-Miles Traveled by Family Income and Poverty Status, 2001 (Billion Miles) " "Std Errors for A7","Relative Standard Errors for Table A7. U.S. Vehicle-Miles Traveled by Family Income and Poverty Status, 2001 (Percent) " "N Cells for A7","Number of Sample Cases Contributing to Estimates in Table A7. U.S. Vehicle-Miles Traveled by Family Income and Poverty Status, 2001 "

248

U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Oil Bypass Filter Technology Evaluation - Sixth Quarterly Report, January - March 2004  

SciTech Connect

This Oil Bypass Filter Technology Evaluation quarterly report (January-March 2004) details the ongoing fleet evaluation of an oil bypass filter technology by the Idaho National Engineering and Environmental Laboratory (INEEL) for the U.S. Department of Energy's FreedomCAR & Vehicle Technologies Program. Eight four-cycle diesel-engine buses used to transport INEEL employees on various routes have been equipped with oil bypass filter systems from the puraDYN Corporation. The bypass filters are reported to have engine oil filtering capability of <1 micron and a built-in additive package to facilitate extended oil-drain intervals. This quarter, the heavy-duty buses traveled 88,747 miles, and as of the end of March 2004, the eight buses have accumulated 412,838 total test miles without requiring an oil change. This represents an avoidance of 34 oil changes, which equates to 1,199 quarts (300 gallons) of new oil not consumed and, furthermore, 1,199 quarts of waste oil not generated.

U.S. Department of Energy; Larry Zirker

2004-06-01T23:59:59.000Z

249

Diesel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles Vehicles Audi A3 Diesel vehicles may be making a comeback. Diesel engines are more powerful and fuel-efficient than similar-sized gasoline engines (about 30-35% more fuel efficient). Plus, today's diesel vehicles are much improved over diesels of the past. Better Performance Improved fuel injection and electronic engine control technologies have Increased power Improved acceleration Increased efficiency New engine designs, along with noise- and vibration-damping technologies, have made them quieter and smoother. Cold-weather starting has been improved also. Cleaner Mercedes ML320 BlueTEC Today's diesels must meet the same emissions standards as gasoline vehicles. Advances in engine technologies, ultra-low sulfur diesel fuel, and improved exhaust treatment have made this possible.

250

Efficiency Improvement Opportunities for Light-Duty Natural-Gas-Fueled Vehicles  

SciTech Connect

The purpose of this report is to evaluate and make recommendations concerning technologies that promise to improve the efilciency of compressed natural gas (CNG) light-duty vehicles. Technical targets for CNG automotive technology given in the March 1998 OffIce of Advanced Automotive Technologies research and development plan were used as guidance for this effort. The technical target that necessitates this current study is to validate technologies that enable CNG light vehicles to have at least 10% greater - fuel economy (on a miles per gallon equivalent basis) than equivalent gasoline vehicles by 2006. Other tar- gets important to natural gas (NG) automotive technology and this study are to: (1) increase CNG vehicle range to 380 miles, (2) reduce the incremental vehicle cost (CNG vs gasoline) to $1500, and (3) meet the California ultra low-emission vehicle (ULEV) and Federal Tier 2 emission standards expected to be in effect in 2004.

Staunton, R.H.; Thomas, J.F.

1998-12-01T23:59:59.000Z

251

Boise State University Automobile Use Mileage Log (Documentation for Business Miles)  

E-Print Network (OSTI)

Boise State University Automobile Use Mileage Log (Documentation for Business Miles) Rev. 03 University Automobile Use Mileage Log (Documentation for Business Miles) Rev. 03/10 PAGE ____ (IF YOU NEED

Barrash, Warren

252

NASA Green Flight Challenge: Conceptual Design Approaches and Technologies to Enable 200 Passenger Miles  

E-Print Network (OSTI)

-diesel, and other bio-fuel engines. The aircraft are using various technologies to improve aerodynamic, propulsionW = = = Jet Propellant Knots True Airspeed Kilo-Watt MPG = Miles Per Gallon MPGe MSL = = Miles Per Gallon

Waliser, Duane E.

253

ACADEMIC AFFAIRS TRAVEL POLICIES 10.1 GENERAL TRAVEL INFORMATION  

E-Print Network (OSTI)

must be shown on the TA. The form must be signed by the traveler, the Department Head, and the fund manager for the fund(s) listed. The Provost or his/her designee must approve TAs for Department Head that have been approved by the traveler and their Department Head to the Travel Office for review

254

How to get to Queen Mary University of London (Mile End campus)  

E-Print Network (OSTI)

How to get to Queen Mary ďż˝ University of London (Mile End campus) Please see the enclosed street all the mainline London railway stations. The Docklands Light Railway runs from Stratford to Tower campus. From Mile End station, turn left and cross Burdett Road and Mile End Road at the traffic lights

Wright, Francis

255

Vehicle Technologies Office: Key Activities in Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Key Activities in Key Activities in Vehicles to someone by E-mail Share Vehicle Technologies Office: Key Activities in Vehicles on Facebook Tweet about Vehicle Technologies Office: Key Activities in Vehicles on Twitter Bookmark Vehicle Technologies Office: Key Activities in Vehicles on Google Bookmark Vehicle Technologies Office: Key Activities in Vehicles on Delicious Rank Vehicle Technologies Office: Key Activities in Vehicles on Digg Find More places to share Vehicle Technologies Office: Key Activities in Vehicles on AddThis.com... Key Activities Mission, Vision, & Goals Plans, Implementation, & Results Organization & Contacts National Laboratories Budget Partnerships Key Activities in Vehicles We conduct work in four key areas to develop and deploy vehicle technologies that reduce the use of petroleum while maintaining or

256

Vehicle Technologies Office: Fact #452: January 15, 2007 Driving  

NLE Websites -- All DOE Office Websites (Extended Search)

2: January 15, 2: January 15, 2007 Driving Differences to someone by E-mail Share Vehicle Technologies Office: Fact #452: January 15, 2007 Driving Differences on Facebook Tweet about Vehicle Technologies Office: Fact #452: January 15, 2007 Driving Differences on Twitter Bookmark Vehicle Technologies Office: Fact #452: January 15, 2007 Driving Differences on Google Bookmark Vehicle Technologies Office: Fact #452: January 15, 2007 Driving Differences on Delicious Rank Vehicle Technologies Office: Fact #452: January 15, 2007 Driving Differences on Digg Find More places to share Vehicle Technologies Office: Fact #452: January 15, 2007 Driving Differences on AddThis.com... Fact #452: January 15, 2007 Driving Differences Those living in the center city drive fewer miles in a day than those in

257

VEHICLE SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 of 5 Page 1 of 5 VEHICLE SPECIFICATIONS 1 Vehicle Features Base Vehicle: 2011 Nissan Leaf VIN: JN1AZ0CP5BT000356 Class: Mid-size Seatbelt Positions: 5 Type: EV Motor Type: Three-Phase, Four-Pole Permanent Magnet AC Synchronous Max. Power/Torque: 80 kW/280 Nm Max. Motor Speed: 10,390 rpm Cooling: Active - Liquid cooled Battery Manufacturer: Automotive Energy Supply Corporation Type: Lithium-ion - Laminate type Cathode/Anode Material: LiMn 2 O 4 with LiNiO 2 /Graphite Pack Location: Under center of vehicle Number of Cells: 192 Cell Configuration: 2 parallel, 96 series Nominal Cell Voltage: 3.8 V Nominal System Voltage: 364.8 V Rated Pack Capacity: 66.2 Ah Rated Pack Energy: 24 kWh Max. Cell Charge Voltage 2 : 4.2 V Min. Cell Discharge Voltage 2 : 2.5 V

258

Three Mile Island waste management: a DOE Perspective  

SciTech Connect

The Department of Energy (DOE) is conducting waste management research and development activities which are applicable to the cleanup of the Three Mile Island-Unit 2 nuclear reactor. These activities have enabled DOE to provide timely assistance to General Public Utilities (GPU), the utility owner, the Nuclear Regulatory Commission (NRC), and the State of Pennsylvania in their efforts to quickly and safely clean up the damaged reactor. The DOE has been particularly active in evaluating proposed cleanup systems, providing information on waste characteristics, and advising GPU and NRC as to appropriate disposal methods for the waste generated during the cleanup. A description and discussion of some of these activities is presented.

D'Ambrosia, J.T.

1982-01-01T23:59:59.000Z

259

Integrated defueling system for Three Mile Island Unit 2  

SciTech Connect

The unique clean-up requirements of Three Mile Island Unit 2 have posed first-of-a-kind challenges for the equipment, tools, and operators involved in the defueling effort. Various equipment components and specialty remote tools were designed as an integrated defueling system to provide a means of safely working above the reactor and removing core debris. The basic defueling system consists of support equipment and specialty remote tools for specific operations. This paper describes the different equipment and tools, and explains the key interfaces and features of the integrated defueling system.

Brown, D.A.; Gallagher, R.E.; Rider, R.L.

1986-01-01T23:59:59.000Z

260

Analysis of Three Mile Island-Unit 2 accident  

SciTech Connect

The Nuclear Safety Analysis Center (NSAC) of the Electric Power Research Institute has analyzed the Three Mile Island-2 accident. Early results of this analysis were a brief narrative summary, issued in mid-May 1979 and an initial version of this report issued later in 1979 as noted in the Foreword. The present report is a revised version of the 1979 report, containing summaries, a highly detailed sequence of events, a comparison of that sequence of events with those from other sources, 25 appendices, references and a list of abbreviations and acronyms. A matrix of equipment and system actions is included as a folded insert.

Not Available

1980-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle miles traveled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Analysis of stream bed sediments of Four Mile Creek  

SciTech Connect

Until 1988, solutions containing nitric acid, odium hydroxide, low levels of radionuclides (mostly tritiated water) and some metals were discharged to unlined seepage basins at the F and H Areas of the Savannah River Site (SRS) as part of normal operations. The basins are now being closed according to the Resource Conservation and Recovery Act (RCA). As part of the closure, a Part B Post-Closure Care Permit is being prepared. The Part B permit requires information on contaminant concentrations in stream bed sediments in the adjacent Four Mile Creek, which are reported herein. 5 refs., 1 fig., 2 tabs.

Haselow, J.S.

1990-08-13T23:59:59.000Z

262

Novolyte Charging Up Electric Vehicle Sector | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Novolyte Charging Up Electric Vehicle Sector Novolyte Charging Up Electric Vehicle Sector Novolyte Charging Up Electric Vehicle Sector August 11, 2010 - 10:15am Addthis Electric vehicles are powered by electricity that comes in the form of electrically charged molecules known as ions. Those ions need a substance to transport them throughout the system as they travel from the anode to the cathode and back again. That substance is an electrolyte. | Staff Photo Illustration Electric vehicles are powered by electricity that comes in the form of electrically charged molecules known as ions. Those ions need a substance to transport them throughout the system as they travel from the anode to the cathode and back again. That substance is an electrolyte. | Staff Photo Illustration Joshua DeLung What does this mean for me?

263

A hybrid vehicle evaluation code and its application to vehicle design. Revision 2  

SciTech Connect

This paper describes a hybrid vehicle simulation model which can be applied to many of the vehicles currently being considered for low pollution and high fuel economy. The code operates in batch mode with all the vehicle information stored in data files. The code calculates power train dimensions, fuel economy for three driving schedules, time for 0-96 km/h at maximum acceleration, hill climbing performance, and pollution generation rates. This paper also documents the application of the code to a hybrid vehicle that utilizes a hydrogen internal combustion engine. The simulation model is used for parametric studies of the vehicle. The results show the fuel economy of the vehicle as a function of vehicle mass, aerodynamic drag, engine efficiency, accessory load, and flywheel efficiency. The code also calculates the minimum flywheel energy and power to obtain a desired performance. The hydrogen hybrid vehicle analyzed in the paper has a range of 480 km (300 miles), with a predicted gasoline equivalent fuel efficiency of 33.7 km/liter (79.3 mpg).

Aceves, S.M.; Smith, J.R.

1994-12-13T23:59:59.000Z

264

A hybrid vehicle evaluation code and its application to vehicle design. Revision 1  

SciTech Connect

This paper describes a hybrid vehicle simulation model which can be applied to many of the vehicles currently being considered for low pollution and high fuel economy. The code operates in batch mode with all the vehicle information stored in data files. The code calculates fuel economy for three driving schedules, time for 0--96 km/h at maximum acceleration, hill climbing performance, power train dimensions, and pollution generation rates. This paper also documents the application of the code to a hybrid vehicle that utilizes a hydrogen internal combustion engine. The simulation model is used for parametric studies of the vehicle. The results show the fuel economy of the vehicle as a function of vehicle mass, aerodynamic drag, engine efficiency, accessory load, and flywheel efficiency. The code also calculates the minimum flywheel energy and power to obtain a desired performance. The hydrogen hybrid vehicle analyzed in the paper has a predicted range of 480 km (300 miles), with a gasoline equivalent fuel efficiency of 34.2 km/liter (80.9 mpg).

Aceves, S.M.; Smith, J.R.

1994-09-15T23:59:59.000Z

265

Blog Feed: Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 17, 2010 February 17, 2010 Energy Savers in the Community: Fuel Cell Vehicle Pioneer As the communications coordinator for EERE's Clean Cities program, I'm always on the lookout for interesting stories about alternative fuel vehicles. February 4, 2010 How Has Saving Energy Affected Your Health? We don't often speak of it in these terms, but saving energy can sometimes have a positive influence on your health. February 2, 2010 Sites I Thought About Last Wednesday While President Obama was talking about his plans and goals for the future, it made me think of a lot of the work that EERE is already doing. January 26, 2010 Electric Cars Coming to Former Delaware GM Plant If a company's cars are luxurious enough for the Crown Prince of Denmark, then just imagine how the vehicles - which have a 50-mile, emission-free

266

On making energy demand and network constraints compatible in the last mile of the power grid  

Science Journals Connector (OSTI)

Abstract In the classical electricity grid power demand is nearly instantaneously matched by power supply. In this paradigm, the changes in power demand in a low voltage distribution grid are essentially nothing but a disturbance that is compensated for by control at the generators. The disadvantage of this methodology is that it necessarily leads to a transmission and distribution network that must cater for peak demand. So-called smart meters and smart grid technologies provide an opportunity to change this paradigm by using demand side energy storage to moderate instantaneous power demand so as to facilitate the supply-demand match within network limitations. A receding horizon model predictive control method can be used to implement this idea. In this paradigm demand is matched with supply, such that the required customer energy needs are met but power demand is moderated, while ensuring that power flow in the grid is maintained within the safe operating region, and in particular peak demand is limited. This enables a much higher utilisation of the available grid infrastructure, as it reduces the peak-to-base demand ratio as compared to the classical control methodology of power supply following power demand. This paper investigates this approach for matching energy demand to generation in the last mile of the power grid while maintaining all network constraints through a number of case studies involving the charging of electric vehicles in a typical suburban low voltage distribution network in Melbourne, Australia.

Iven Mareels; Julian de Hoog; Doreen Thomas; Marcus Brazil; Tansu Alpcan; Derek Jayasuriya; Valentin Müenzel; Lu Xia; Ramachandra Rao Kolluri

2014-01-01T23:59:59.000Z

267

Secretary Chu Travels to Memphis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Travels to Memphis Travels to Memphis Secretary Chu Travels to Memphis January 31, 2011 - 2:33pm Addthis Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs What does this project do? The Sharp solar manufacturing plant has produced more than 2 million solar panels since 2002, increased its staff from 300 to 480 employees over the last year, and produces enough solar paneling to power more than 140,000 homes. Worldwide, FedEx Express is operating 329 hybrid and 19 all-electric vehicles, reducing fuel use by almost 300,000 gallons and carbon dioxide emissions by approximately 3,000 metric tons. Hero_CHU_Sharp Secretary Steven Chu with Sharp executive T.C. Jones, standing in front of some of Sharp's solar panels. Following the State of the Union on Tuesday and his online town hall on

268

VEHICLE SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

VEHICLE SPECIFICATIONS 1 Vehicle Features Base Vehicle: 2011 Chevrolet Volt VIN: 1G1RD6E48BUI00815 Class: Compact Seatbelt Positions: 4 Type 2 : Multi-Mode PHEV (EV, Series, and Power-split) Motor Type: 12-pole permanent magnet AC synchronous Max. Power/Torque: 111 kW/370 Nm Max. Motor Speed: 9500 rpm Cooling: Active - Liquid cooled Generator Type: 16-pole permanent magnet AC synchronous Max. Power/Torque: 55 kW/200 Nm Max. Generator Speed: 6000 rpm Cooling: Active - Liquid cooled Battery Manufacturer: LG Chem Type: Lithium-ion Cathode/Anode Material: LiMn 2 O 4 /Hard Carbon Number of Cells: 288 Cell Config.: 3 parallel, 96 series Nominal Cell Voltage: 3.7 V Nominal System Voltage: 355.2 V Rated Pack Capacity: 45 Ah Rated Pack Energy: 16 kWh Weight of Pack: 435 lb

269

NREL Reveals Links Among Climate Control, Battery Life, and Electric Vehicle Range (Fact Sheet)  

SciTech Connect

Researchers at the National Renewable Energy Laboratory (NREL) are providing new insights into the relationships between the climate-control systems of plug-in electric vehicles and the distances these vehicles can travel on a single charge. In particular, NREL research has determined that 'preconditioning' a vehicle-achieving a comfortable cabin temperature and preheating or precooling the battery while the vehicle is still plugged in-can extend its driving range and improve battery life over the long term.

Not Available

2012-06-01T23:59:59.000Z

270

Vehicle Technologies Office: Batteries  

Energy.gov (U.S. Department of Energy (DOE))

Improving the batteries for electric drive vehicles, including hybrid electric (HEV) and plug-in electric (PEV) vehicles, is key to improving vehicles' economic, social, and environmental...

271

Vehicles News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

news Office of Energy Efficiency & news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies http://energy.gov/eere/articles/energy-department-announces-45-million-advance-next-generation Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies

272

U.S. Department of Energy, Energy Information Administration (EIA  

U.S. Energy Information Administration (EIA) Indexed Site

9 - Avg VMT by HH Comp EIA","Table A19. U.S. Average Vehicle-Miles Traveled by Household Composition1 (EIA), 2001 9 - Avg VMT by HH Comp EIA","Table A19. U.S. Average Vehicle-Miles Traveled by Household Composition1 (EIA), 2001 (Thousand Miles per Household)" "Std Errors for A19","Relative Standard Errors for Table A19. U.S. Average Vehicle-Miles Traveled by Household Composition1 (EIA), 2001 (Percent)" "N Cells for A19","Number of Sample Cases Contributing to Estimates in Table A19. U.S. Average Vehicle-Miles Traveled by Household Composition1 (EIA), 2001" " Page A-1 of A-N" "Table A19. U.S. Average Vehicle-Miles Traveled by Household Composition1 (EIA), 2001 (Thousand Miles per Household)" "2001 Household Characteristics","Households With Children",,,,"Households Without Children"

273

U.S. Department of Energy, Energy Information Administration (EIA  

U.S. Energy Information Administration (EIA) Indexed Site

A9 - Average VMT by Income","Table A9. U.S. Average Vehicle-Miles Traveled by Family Income and Poverty Status, 2001 A9 - Average VMT by Income","Table A9. U.S. Average Vehicle-Miles Traveled by Family Income and Poverty Status, 2001 (Thousand Miles per Household)" "Std Errors for A9","Relative Standard Errors for Table A9. U.S. Average Vehicle-Miles Traveled by Family Income and Poverty Status, 2001 (Percent)" "N Cells for A9","Number of Sample Cases Contributing to Estimates in Table A9. U.S. Average Vehicle-Miles Traveled by Family Income and Poverty Status, 2001" " Page A-1 of A-N" "Table A9. U.S. Average Vehicle-Miles Traveled by Family Income and Poverty Status, 2001 (Thousand Miles per Household)" "2001 Household Characteristics","Total","2001 Family Income",,,,,,,,,,"Income Relative to Poverty Line"

274

U.S. Department of Energy, Energy Information Administration (EIA  

U.S. Energy Information Administration (EIA) Indexed Site

2 - Avg VMT by HH Comp ","Table A12. U.S. Average Vehicle-Miles Traveled by Household Composition (NHTS)2, 2001 2 - Avg VMT by HH Comp ","Table A12. U.S. Average Vehicle-Miles Traveled by Household Composition (NHTS)2, 2001 (Thousand Miles per Household)" "Std Errors for A12","Relative Standard Errors for Table A12. U.S. Average Vehicle-Miles Traveled by Household Composition (NHTS)2, 2001 (Percent)" "N Cells for A12","Number of Sample Cases Contributing to Estimates in Table A12. U.S. Average Vehicle-Miles Traveled by Household Composition (NHTS)2, 2001" " Page A-1 of A-N" "Table A12. U.S. Average Vehicle-Miles Traveled by Household Composition (NHTS)2, 2001 (Thousand Miles per Household)" "2001 Household Characteristics","No Children",,"Youngest Child 0-5",,"Youngest Child

275

US Department of Energy Hybrid Vehicle Battery and Fuel Economy Testing  

SciTech Connect

The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy’s FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August, 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and research and development programs. The AVTA has tested over 200 advanced technology vehicles including full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles. Currently, the AVTA is conducting significant tests of hybrid electric vehicles (HEV). This testing has included all HEVs produced by major automotive manufacturers and spans over 1.3 million miles. The results of all testing are posted on the AVTA web page maintained by the Idaho National Laboratory. Through the course of this testing, the fuel economy of HEV fleets has been monitored and analyzed to determine the "real world" performance of their hybrid energy systems, particularly the battery. While the initial "real world" fuel economy of these vehicles has typically been less than that evaluated by the manufacturer and varies significantly with environmental conditions, the fuel economy and, therefore, battery performance, has remained stable over vehicle life (160,000 miles).

Donald Karner; J.E. Francfort

2005-09-01T23:59:59.000Z

276

Hidden costs of the accident at Three Mile Island  

SciTech Connect

It has been possible to identify a significant drop in the performance of Pressurised Water Reactors (PWRs) in the western world following the accident at Three Mile Island (TMI). Although there are indications that the magnitude of the load factor reduction was slightly larger in the U.S., there is nevertheless strong evidence to suggest that the response was felt in all countries with operating PWRs. The effect did not, however, extend to other reactor systems; even the generically similar Boiling Water Reactor (BWR) suffered no drop in output. It is estimated that the costs, worldwide, of this fall in performance are of the same order as the TMI clean-up operation.

Evans, N.

1982-09-01T23:59:59.000Z

277

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Miles Traveled Tax Feasibility Study Committee The California Transportation Commission (Commission) and the California Transportation Agency (Agency) must create a Road...

278

U.S. Energy Information Administration (EIA) - Pub  

Annual Energy Outlook 2012 (EIA)

declines in the Reference case CAFE and greenhouse gas emissions standards boost light-duty vehicle fuel economy Miles traveled per licensed driver remains below its...

279

Complete Streets Resources  

Energy.gov (U.S. Department of Energy (DOE))

While transportation efficiency policies are often implemented under local governments, national and state programs can play supportive roles in reducing vehicle miles traveled. Find complete...

280

Climate and Energy Policy for U.S. Passenger Vehicles: A Technology-Rich Economic Modeling and Policy Analysis  

E-Print Network (OSTI)

-based relationship between income growth and travel demand, turnover of the vehicle stock, and cost-driven investment both in reduction of internal combustion engine (ICE) vehicle fuel consumption as well as in adoptionClimate and Energy Policy for U.S. Passenger Vehicles: A Technology-Rich Economic Modeling

Note: This page contains sample records for the topic "vehicle miles traveled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Advanced Vehicle Testing & Evaluation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Provide benchmark data for advanced technology vehicles Develop lifecycle cost data for production vehicles utilizing advanced power trains Provide fleet...

282

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle (EV) Fee EV operators must pay an annual vehicle registration renewal fee of 100. This fee expires if the legislature imposes a vehicle miles traveled fee or tax...

283

Travel and Expense Update www.bc.edu/travel  

E-Print Network (OSTI)

international flights into the US. TSA Officers may ask travelers to power up devices such as laptops and phones will be charged). JetBlue ­ Changes at Logan Airport Please note, flights from BOS-DCA will no longer operate out one of our approved travel agencies. · Flat fare of $99 (taxes not included) each way from Boston

Huang, Jianyu

284

Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low-Speed Vehicle Low-Speed Vehicle Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low-Speed Vehicle Access to Roadways Low-speed vehicles may only travel on roadways with a posted speed limit of

285

Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low-Speed Vehicle Low-Speed Vehicle Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Google Bookmark Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Delicious Rank Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Low-Speed Vehicle Access to Roadways on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low-Speed Vehicle Access to Roadways Low-speed vehicles may only travel on roadways with a posted speed limit of

286

Three Mile Island accident and post-accident recovery: what did we learn  

SciTech Connect

A description of the accident at Three Mile Island-2 reactor is presented. Activities related to the cleanup and decontamination of the reactor are described.

Collins, E.D.

1982-01-01T23:59:59.000Z

287

Title of Project: Ramp High Occupancy Vehicle (HOV) Sponsors: Chicago Metropolitan Agency for Planning  

E-Print Network (OSTI)

: reduced travel delay, value of travel time saved, fuel volume savings, fuel cost savings, reduced vehicle the scope of work: 1. Determine appropriate set of parallel streets to be modeled as alternative routes using planning agency data 7. Input traffic data to the FREQ traffic simulation model for the 2030

Illinois at Chicago, University of

288

NEUP Student Travel Request Form | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Student Travel Request Form NEUP Student Travel Request Form NEUP Fellowship Travel Request Form Student Travel Request Form.pdf More Documents & Publications Investing in the next...

289

U.S. Department of Energy, Energy Information Administration (EIA  

U.S. Energy Information Administration (EIA) Indexed Site

A1 - Number of Vehicles","Table A1. U.S. Number of Vehicles, Vehicles-Miles, Motor Fuel Consumption and Expenditures, 2001" A1 - Number of Vehicles","Table A1. U.S. Number of Vehicles, Vehicles-Miles, Motor Fuel Consumption and Expenditures, 2001" "Std Errors for A1","Relative Standard Errors for Table A1. U.S. Number of Vehicles, Vehicles-Miles, Motor Fuel Consumption and Expenditures, 2001 (Percent)" "N Cells for A1","Number of Sample Cases Contributing to Estimates in Table A1. U.S. Number of Vehicles, Vehicles-Miles, Motor Fuel Consumption and Expenditures, 2001" " Page A-1 of A-N" "Table A1. U.S. Number of Vehicles, Vehicles-Miles, Motor Fuel Consumption and Expenditures, 2001" "2001 Household and Vehicle Characteristics","Number of Vehicles",,"Vehicle-Miles Traveled",,"Motor Fuel Consumption",,,"Motor Fuel Expenditures"

290

EIA - Household Transportation report: Household Vehicles Energy Use:  

U.S. Energy Information Administration (EIA) Indexed Site

Transportation logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Use: Latest Data & Trends November 2005 Release (Next Update: Discontinued) Based on the 2001 National Household Travel Survey conducted by the U.S. Department of Transportation and augmented by EIA Only light-duty vehicles and recreational vehicles are included in this report. EIA has excluded motorcycles, mopeds, large trucks, and buses in an effort to maintain consistency with its past residential transportation series, which was discontinued after 1994. This report, Household Vehicles Energy Use: Latest Data & Trends, provides details on the nation's energy use for household passenger travel. A primary purpose of this report is to release the latest consumer-based data

291

Handbook for Travellers in Norway  

Science Journals Connector (OSTI)

... of tourist invasion is curiously displayed by reference to the various editions of Murray's Handbooks. We have before us the tattered remnants of our old travelling companion and oracle- ... us the tattered remnants of our old travelling companion and oracle-Part 1 of the "Handbook for Northern Europe,"including Denmark, N orway, and Sweden (1849). We are ...

W. M. W.

1892-08-25T23:59:59.000Z

292

Image-based Vehicle Classification System  

E-Print Network (OSTI)

Electronic toll collection (ETC) system has been a common trend used for toll collection on toll road nowadays. The implementation of electronic toll collection allows vehicles to travel at low or full speed during the toll payment, which help to avoid the traffic delay at toll road. One of the major components of an electronic toll collection is the automatic vehicle detection and classification (AVDC) system which is important to classify the vehicle so that the toll is charged according to the vehicle classes. Vision-based vehicle classification system is one type of vehicle classification system which adopt camera as the input sensing device for the system. This type of system has advantage over the rest for it is cost efficient as low cost camera is used. The implementation of vision-based vehicle classification system requires lower initial investment cost and very suitable for the toll collection trend migration in Malaysia from single ETC system to full-scale multi-lane free flow (MLFF). This project ...

Ng, Jun Yee

2012-01-01T23:59:59.000Z

293

Vegetation survey of Four Mile Creek wetlands. [Savannah River Plant  

SciTech Connect

A survey of forested wetlands along upper Four Mile Creek was conducted. The region from Road 3 to the creek headwaters was sampled to evaluate the composition of woody and herbaceons plant communities. All sites were found to fall into either the Nyssa sylvatica (Black Gum) -- Persea borbonia (Red Bay) or Nyssa sylvatica -- Acer rubrum (Red Maple) types. These community types are generally species-rich and diverse. Previous studies (Greenwood et al., 1990; Mackey, 1988) demonstrated contaminant stress in areas downslope from the F- and H-Area seepage basins. In the present study there were some indications of contaminant stress. In the wetland near H-Area, shrub basal area, ground cover stratum species richness, and diversity were low. In the area surrounding the F-Area tree kill zone, ground cover stratum cover and shrub basal area were low and ground cover stratum species richness was low. The moderately stressed site at F-Area also showed reduced overstory richness and diversity and reduced ground cover stratum richness. These results could, however, be due to the very high basal area of overstory trees in both stressed F-Area sites that would reduce light availability to understory plants. No threatened or endangered plant species were found in the areas sampled. 40 refs., 4 figs., 8 tabs.

Loehle, C.

1990-11-01T23:59:59.000Z

294

MOBILE6 Vehicle Emission Modeling Software | Open Energy Information  

Open Energy Info (EERE)

MOBILE6 Vehicle Emission Modeling Software MOBILE6 Vehicle Emission Modeling Software Jump to: navigation, search Tool Summary Name: MOBILE6 Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy Focus Area: Transportation Topics: GHG inventory Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.epa.gov/oms/m6.htm Cost: Free References: http://www.epa.gov/oms/m6.htm MOBILE6 is an emission factor model for predicting gram per mile emissions of Hydrocarbons (HC), Carbon Monoxide (CO), Nitrogen Oxides (NOx), Carbon Dioxide (CO2), Particulate Matter (PM), and toxics from cars, trucks, and motorcycles under various conditions. MOBILE6 is an emission factor model for predicting gram per mile emissions of Hydrocarbons (HC), Carbon Monoxide (CO), Nitrogen Oxides (NOx), Carbon

295

Analyzing the Sensitivity of Hydrogen Vehicle Sales to Consumers' Preferences  

SciTech Connect

The success of hydrogen vehicles will depend on consumer behavior as well as technology, energy prices and public policy. This study examines the sensitivity of the future market shares of hydrogen-powered vehicles to alternative assumptions about consumers preferences. The Market Acceptance of Advanced Automotive Technologies model was used to project future market shares. The model has 1,458 market segments, differentiated by travel behavior, geography, and tolerance to risk, among other factors, and it estimates market shares for twenty advanced power-train technologies. The market potential of hydrogen vehicles is most sensitive to the improvement of drive train technology, especially cost reduction. The long-run market success of hydrogen vehicles is less sensitive to the price elasticity of vehicle choice, how consumers evaluate future fuel costs, the importance of fuel availability and limited driving range. The importance of these factors will likely be greater in the early years following initial commercialization of hydrogen vehicles.

Greene, David L [ORNL] [ORNL; Lin, Zhenhong [ORNL] [ORNL; Dong, Jing [Iowa State University] [Iowa State University

2013-01-01T23:59:59.000Z

296

Advanced Vehicle Testing Activity (AVTA) - Vehicle Testing and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

- Vehicle Testing and Demonstration Activities Advanced Vehicle Testing Activity (AVTA) - Vehicle Testing and Demonstration Activities 2009 DOE Hydrogen Program and Vehicle...

297

Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

298

Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation  

NLE Websites -- All DOE Office Websites (Extended Search)

Apps for Vehicles Apps for Vehicles Challenge Spurs Innovation in Vehicle Data to someone by E-mail Share Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Facebook Tweet about Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Twitter Bookmark Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Google Bookmark Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Delicious Rank Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Digg Find More places to share Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on AddThis.com... Apps for Vehicles Challenge Spurs Innovation in Vehicle Data

299

ADMINISTRATIVE RECORDS SCHEDULE 9: TRAVEL AND TRANSPORTATION...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: TRAVEL AND TRANSPORTATION RECORDS ADMINISTRATIVE RECORDS SCHEDULE 9: TRAVEL AND TRANSPORTATION RECORDS This schedule covers records documenting the movement of goods and persons...

300

ADMINISTRATIVE RECORDS SCHEDULE 9: TRAVEL AND TRANSPORTATION...  

Energy Savers (EERE)

9: TRAVEL AND TRANSPORTATION RECORDS (Revision 2) ADMINISTRATIVE RECORDS SCHEDULE 9: TRAVEL AND TRANSPORTATION RECORDS (Revision 2) This schedule covers records documenting the...

Note: This page contains sample records for the topic "vehicle miles traveled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

NREL: Climate Neutral Research Campuses - Business Travel  

NLE Websites -- All DOE Office Websites (Extended Search)

of business travel. Several options have emerged to reduce andor offset greenhouse gas (GHG) emissions related to business travel. These options include: Teleconferencing:...

302

Carbonyl Emissions from Gasoline and Diesel Motor Vehicles  

Science Journals Connector (OSTI)

In the present study we describe measurements of gas- and particle-phase carbonyl emissions from light-duty gasoline (LDV) and heavy-duty diesel (HDDV) motor vehicles operated on a chassis dynamometer under realistic driving cycles. ... Vehicles were tested under a five-mode driving cycle (HHDDT, heavy heavy-duty diesel truck) consisting of 30-min idle, 17-min creep, and 11-min transient stages and two cruise stages of 34 and 31 min, with a top speed of 65 miles h?1 for the second cruise (30). ... In general, as the volatility of the carbonyl decreased, so did the PUF/total particulate carbonyl ratio. ...

Chris A. Jakober; Michael A. Robert; Sarah G. Riddle; Hugo Destaillats; M. Judith Charles; Peter G. Green; Michael J. Kleeman

2008-05-24T23:59:59.000Z

303

Estimation and prediction of travel time from loop detector data for intelligent transportation systems applications  

E-Print Network (OSTI)

for the accuracy of data from a series of detectors for conservation of vehicles, in addition to the commonly adopted checks. ?? A theoretical model based on traffic flow theory for travel time estimation for both off-peak and peak traffic conditions using flow...

Vanajakshi, Lelitha Devi

2005-11-01T23:59:59.000Z

304

Employment centers and travel behavior: exploring the work commute of Mumbai’s rapidly motorizing middle class  

Science Journals Connector (OSTI)

Abstract In the Greater Mumbai Region (GMR), jobs and housing are agglomerating in nodes in the periphery of Mumbai City. However, current transportation investments focus on strengthening connections within Mumbai City, while these outlying nodes have received less attention. As housing and jobs move out, given limited travel choices, the need for mobility nudges many middle class Indian households into owning private vehicles. Using household travel survey data from the GMR, this paper develops an understanding of how worker’s trips are different for those who commute to the city versus the exurbs. Socio-economic and transportation indicators for middle class workers going to the city versus the exurbs show that these populations are quite similar demographically. However, those traveling to the exurbs, on average, tend to be at a socio-economic disadvantage with respect to income, education and out-of-pocket travel burdens. Those traveling to exurban work locations have shorter travel times and trip distances, and make much higher use of walking, biking, rickshaws, and motorized two-wheelers compared to commuters to Mumbai City. Across the GMR, car users travel longer and farther compared to motorized two-wheeler users. On average, traveling by a private vehicle is faster than bus or rickshaw travel revealing advantages of private vehicle use. These mode choices in the middle class have resulted in rapid motorization and negative externalities such as traffic congestion and emissions. Evidence of large increases in motorized two-wheelers and cars in India suggests that these modes will likely keep growing, unless competing efficient travel options are supplied.

Manish Shirgaokar

2014-01-01T23:59:59.000Z

305

PROVOST'S TRAVEL GRANT FOR STUDY  

E-Print Network (OSTI)

Available for Summer 2013 Study Abroad Participants through the NIU Study Abroad Office Williston Hall 417 Office, Williston Hall 417, to be eligible for an award (NO EXCEPTIONS). 1. Study Abroad Travel Grant

Karonis, Nicholas T.

306

PROVOST'S TRAVEL GRANT FOR STUDY  

E-Print Network (OSTI)

Available for Spring 2014 Study Abroad Participants through the NIU Study Abroad Office Williston Hall 417 Office, Williston Hall 417, to be eligible for an award (NO EXCEPTIONS). 1. Study Abroad Travel Grant

Karonis, Nicholas T.

307

PROVOST'S TRAVEL GRANT FOR STUDY  

E-Print Network (OSTI)

Available for Spring 2013 Study Abroad Participants through the NIU Study Abroad Office Williston Hall 417 Office, Williston Hall 417, to be eligible for an award (NO EXCEPTIONS). 1. Study Abroad Travel Grant

Karonis, Nicholas T.

308

PROVOST'S TRAVEL GRANT FOR STUDY  

E-Print Network (OSTI)

the NIU Study Abroad Office Williston Hall 417 815-753-0700 niuabroad@niu.edu APPLICATION DEADLINE: APRIL Office, Williston Hall 417, to be eligible for an award (NO EXCEPTIONS). 1. Study Abroad Travel Grant

Karonis, Nicholas T.

309

Blog Feed: Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 11, 2010 August 11, 2010 Cody Friesen and his team at Arizona State University | Photo Credit Arizona State University The Future of Electric Vehicles and Arizona State University's MAIL Battery Building cost-effective EVs just got a little easier. August 11, 2010 Electric vehicles are powered by electricity that comes in the form of electrically charged molecules known as ions. Those ions need a substance to transport them throughout the system as they travel from the anode to the cathode and back again. That substance is an electrolyte. | Staff Photo Illustration Novolyte Charging Up Electric Vehicle Sector Just outside Baton Rouge in Zachary, Louisiana, sits Novolyte Technologies, a battery component manufacturer in business since the early 1970s, making components for batteries used in everything from calculators to hearing

310

Chevrolet Volt Vehicle Demonstration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Volt Vehicle Demonstration Fleet Summary Report Reporting period: January 2013 through March 2013 Number of vehicles: 146 Number of vehicle days driven: 6,680 4292013 2:38:13 PM...

311

Sequentially pulsed traveling wave accelerator  

DOE Patents (OSTI)

A sequentially pulsed traveling wave compact accelerator having two or more pulse forming lines each with a switch for producing a short acceleration pulse along a short length of a beam tube, and a trigger mechanism for sequentially triggering the switches so that a traveling axial electric field is produced along the beam tube in synchronism with an axially traversing pulsed beam of charged particles to serially impart energy to the particle beam.

Caporaso, George J. (Livermore, CA); Nelson, Scott D. (Patterson, CA); Poole, Brian R. (Tracy, CA)

2009-08-18T23:59:59.000Z

312

Vehicle suspension  

SciTech Connect

This patent describes a vehicle consisting of sprung and unsprung masses, the combination of struts and support springs for the weight of the sprung mass, an axis defined by pivots between sprung and unsprung masses, with a front pivot approximately midway between the wheels and near the vertical and horizontal planes through the front axles, with a rear pivot lying in an axis through the front pivot and in a plane through the center-of-gravity of the sprung mass, with the plane parallel to the centrifugal force vector through the center-of-gravity of the sprung mass, and with the rear pivot positioned approximately midway between the rear wheels, means for transmitting the centrifugal force component on the front pivot to the front wheels and ground, and means for transmitting the centrifugal force component on the rear pivot to the rear wheels and ground.

Mikina, S.J.

1986-08-05T23:59:59.000Z

313

Vehicle Technologies Office: Hybrid and Vehicle Systems  

Energy.gov (U.S. Department of Energy (DOE))

Hybrid and vehicle systems research provides an overarching vehicle systems perspective to the technology research and development (R&D) activities of the U.S. Department of Energy's (DOE's)...

314

Vehicle & Systems Simulation & Testing  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

penetration of advanced vehicles and systems to displace petroleum consumption, reduce GHG emissions, and achieve vehicle electrification goals. Evaluate technology targets...

315

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utilities Employers Develop long-range Plan Deployment area Vehicle penetration Infrastructure requirements Develop EV Micro-Climate Support...

316

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utilities Employers Develop Long-Range Plan Deployment Area Vehicle Penetration Infrastructure Requirements Develop EV Micro-Climate Initial...

317

Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Maximizing Alternative Maximizing Alternative Fuel Vehicle Efficiency to someone by E-mail Share Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Facebook Tweet about Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Twitter Bookmark Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Google Bookmark Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Delicious Rank Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Digg Find More places to share Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines

318

A Theory of Travel Decision-Making with Applications for Modeling Active Travel Demand  

E-Print Network (OSTI)

A Theory of Travel Decision-Making with Applications for Modeling Active Travel Demand by Patrick interdisciplinary framework for a theory of travel decision-making with applications for travel demand modeling behavior that have a large influence on the development of the theory of travel decision

Bertini, Robert L.

319

Advanced Vehicle Testing Activity: Light-Duty Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Light-Duty Light-Duty Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Light-Duty Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Light-Duty Vehicles on Twitter Bookmark Advanced Vehicle Testing Activity: Light-Duty Vehicles on Google Bookmark Advanced Vehicle Testing Activity: Light-Duty Vehicles on Delicious Rank Advanced Vehicle Testing Activity: Light-Duty Vehicles on Digg Find More places to share Advanced Vehicle Testing Activity: Light-Duty Vehicles on AddThis.com... Home Overview Light-Duty Vehicles Alternative Fuel Vehicles Plug-in Hybrid Electric Vehicles Hybrid Electric Vehicles Micro Hybrid Vehicles ARRA Vehicle and Infrastructure Projects EVSE Testing Energy Storage Testing Hydrogen Internal Combustion Engine Vehicles Other ICE

320

Gas Mileage of 2013 Vehicles by Ford  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Ford Vehicles 3 Ford Vehicles EPA MPG MODEL City Comb Hwy 2013 Ford C-MAX Hybrid FWD 4 cyl, 2.0 L, Automatic (variable gear ratios), Regular Gasoline Compare 2013 Ford C-MAX Hybrid FWD View MPG Estimates Shared By Vehicle Owners 45 City 43 Combined 40 Highway 2013 Ford C-Max Energi Plug-in Hybrid 4 cyl, 2.0 L, Automatic (variable gear ratios), Regular Gas and Electricity Compare 2013 Ford C-Max Energi Plug-in Hybrid View MPG Estimates Shared By Vehicle Owners Reg. Gas MPG 44 City 43 Combined 41 Highway Elec+Gas kWhrs/100 miles - 34 Combined - MPGe - 100 Combined - 2013 Ford E150 Van FFV 8 cyl, 4.6 L, Automatic 4-spd, Regular Gas or E85 Compare 2013 Ford E150 Van FFV Gas 13 City 15 Combined 17 Highway E85 9 City 10 Combined 12 Highway 2013 Ford E150 Van FFV 8 cyl, 5.4 L, Automatic 4-spd, Regular Gas or E85

Note: This page contains sample records for the topic "vehicle miles traveled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

B3 Trains Problem Statement The train problem assumes a circular track 101 miles in circumference. The track is labeled clockwise in  

E-Print Network (OSTI)

B3 Trains ­ Problem Statement The train problem assumes a circular track 101 miles in circumference be at the same spot as mile 0. One train starts at mile 0 going clockwise, another train starts at mile 100 going counterclockwise. The program prompts for speeds of each train in mph. The output is the mile (or fraction

Huth, Michael

322

51-Mile Hydroelectric Power Project Demonstration of new methodologies to reduce the LCOE for small, hydropower development  

Energy.gov (U.S. Department of Energy (DOE))

51-Mile Hydroelectric Power Project Demonstration of new methodologies to reduce the LCOE for small, hydropower development

323

2011 Honda CR-Z 4466 - Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing traction batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Honda CR-Z (VIN JHMZF1C67BS004466). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Office of the U.S. Department of Energy.

Tyler Gray; Matthew Shirk; Jeffrey Wishart

2014-09-01T23:59:59.000Z

324

2011 HONDA CR-Z 2982 - HYBRID ELECTRIC VEHICLE BATTERY TEST RESULTS  

SciTech Connect

The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing traction batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Honda CR-Z (VIN JHMZF1C64BS002982). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Office of the U.S. Department of Energy.

Gray, Tyler [Interek; Shirk, Matthew [Idaho National Laboratory; Wishart, Jeffrey [Interek

2014-09-01T23:59:59.000Z

325

Miles Below the Earth: The Next-Generation of Geothermal Energy |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Miles Below the Earth: The Next-Generation of Geothermal Energy Miles Below the Earth: The Next-Generation of Geothermal Energy Miles Below the Earth: The Next-Generation of Geothermal Energy February 7, 2011 - 12:34pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs What will the project do? Enhanced geothermal systems (EGS) essentially create man-made reservoirs that mimic naturally occurring pockets of steam- with the potential for use as a reliable, 24/7 source of renewable energy. For more than a century, traditional geothermal power plants have been generating electricity by extracting pockets of steam found miles below the Earth's surface. Until recently though, those plants could only be constructed in locations where pockets of steam had formed naturally. Enhanced geothermal systems (EGS) have been crafted to solve that problem

326

Rock Sampling At Seven Mile Hole Area (Larson, Et Al., 2009) | Open Energy  

Open Energy Info (EERE)

Seven Mile Hole Area (Larson, Et Al., 2009) Seven Mile Hole Area (Larson, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At Seven Mile Hole Area (Larson, Et Al., 2009) Exploration Activity Details Location Seven Mile Hole Area Exploration Technique Rock Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes The distribution of hydrothermally altered rocks was mapped over about 1 km2 in the Sevenmile Hole area. Two to four kilogram hand samples located by a handheld GPS were collected from many outcrops for laboratory analyses References Peter B. Larson, Allison Phillips, David John, Michael Cosca, Chad Pritchard, Allen Andersen, Jennifer Manion (2009) A Preliminary Study Of Older Hot Spring Alteration In Sevenmile Hole, Grand Canyon Of The

327

960 x 932 km (576 x 559.2 miles) As big across as Texas  

E-Print Network (OSTI)

of Liberty! 25143 Itokowa 0.54 x 0.27 x .21 km (0.324 x 0.162 x 0.126 miles) size of the Golden Gate Bridge

Waliser, Duane E.

328

Regulations for Gas Transmission Lines Less than Ten Miles Long (New York)  

Energy.gov (U.S. Department of Energy (DOE))

Any person who wishes to construct a gas transmission line that is less than ten miles long must file documents describing the construction plans and potential land use and environmental impacts of...

329

Fact #728: May 21, 2012 Average Trip Length is Less Than Ten Miles  

Energy.gov (U.S. Department of Energy (DOE))

The average trip length (one-way) is 9.7 miles according to the 2009 Nationwide Personal Transportation Survey. Trip lengths vary by the purpose of the trip. Shopping and family/personal business...

330

Field Mapping At Seven Mile Hole Area (Larson, Et Al., 2009) | Open Energy  

Open Energy Info (EERE)

Seven Mile Hole Area (Larson, Et Al., 2009) Seven Mile Hole Area (Larson, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Seven Mile Hole Area (Larson, Et Al., 2009) Exploration Activity Details Location Seven Mile Hole Area Exploration Technique Field Mapping Activity Date Usefulness not indicated DOE-funding Unknown Notes The distribution of hydrothermally altered rocks was mapped over about 1 km2 in the Sevenmile Hole area. Two to four kilogram hand samples located by a handheld GPS were collected from many outcrops K735for laboratory analyses References Peter B. Larson, Allison Phillips, David John, Michael Cosca, Chad Pritchard, Allen Andersen, Jennifer Manion (2009) A Preliminary Study Of Older Hot Spring Alteration In Sevenmile Hole, Grand Canyon Of The

331

Household Vehicles Energy Use: Latest Data & Trends  

U.S. Energy Information Administration (EIA) Indexed Site

B B : E S T I M AT I O N M E T H O D O L O G I E S APPENDIX B A P P E N D I X B ESTIMATION METHODOLOGIES INTRODUCTION The National Household Travel Survey (NHTS) is the nation's inventory of local and long distance travel, according to the U.S. Department of Transportation. Between April 2001 and May 2002, roughly 26 thousand households 41 were interviewed about their travel, based on the use of over 53 thousand vehicles. Using confidential data collected during those interviews, coupled with EIA's retail fuel prices, external data sources of test 42 fuel economy, and internal procedures for modifying test fuel economy to on-road, in-use fuel economy, EIA has extended this inventory to include the energy used for travel, thereby continuing a data series that was discontinued by EIA in 1994. This appendix presents the methods used for each eligible sampled

332

Vehicle Technologies Office: About the Vehicle Technologies Office: Moving  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Vehicle About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles to someone by E-mail Share Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Facebook Tweet about Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Twitter Bookmark Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Google Bookmark Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Delicious Rank Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Digg Find More places to share Vehicle Technologies Office: About the

333

Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

9: August 6, 9: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts to someone by E-mail Share Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Facebook Tweet about Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Twitter Bookmark Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Google Bookmark Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Delicious

334

Vehicle Technologies Office: 2007 Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Archive 7 Archive #499 Alternative Fuel Models: Gains and Losses December 10, 2007 #498 New Light Vehicle Fuel Economy December 3, 2007 #497 Fuel Drops to Third Place in the Trucking Industry Top Ten Concerns November 26, 2007 #496 Diesel Prices in the U.S. and Selected Countries: Cost and Taxes November 19, 2007 #495 Oil Price and Economic Growth, 1971-2006 November 12, 2007 #494 European Priorities When Buying a New Car November 5, 2007 #493 Market Share - Cars vs. Light Trucks October 29, 2007 #492 Gasoline Taxes in the U.S. and Selected Countries October 22, 2007 #491 Gasoline Prices: U.S. and Selected European Countries October 15, 2007 #490 Traffic Congestion Wastes Fuel October 8, 2007 #489 Share of Travel in Congested Conditions October 1, 2007

335

Blog Feed: Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 18, 2012 July 18, 2012 Deputy Secretary Daniel Poneman tours Proinlosa Energy Corp. in Houston, Texas. Proinlosa is a company in the wind turbine manufacturing supply chain that develops tower parts and has benefitted from the Production Tax Credit (PTC). | Photo courtesy of Keri Fulton. Technology Key to Harnessing Natural Gas Potential New projects, funded by the Energy Department, will research ways to increase production of natural gas by reducing our dependency on foreign oil and creating American jobs. June 22, 2012 The Big Green Bus visited the Energy Department and Secretary Chu this Tuesday. Ten Dartmouth students are touring the nation on the Big Green Bus to build enthusiasm for community involvement through environmental action. This is the 8th year this completely student run initiative has hit the road to travel 12,000 miles across 24 states on a reused, veggie-powered Greyhound bus. | Image: Justin Vandenbroeck, Energy Department

336

Analysis of Automobile Travel Demand Elasticities with Respect to Travel Cost  

E-Print Network (OSTI)

Analysis of Automobile Travel Demand Elasticities with Respect to Travel Cost Oak Ridge National relationships between automobile travel demand and cost to analyze the elasticities of the demand for personal

337

Activity based travel demand models as a tool for evaluating sustainable transportation policies  

Science Journals Connector (OSTI)

India is in the course of an economic transition. The economic growth nurtured the life in the cities and cities have become a major livelihood destination for everyone. This migration of people contributed to the increased urbanization of Indian cities. The booming economy fostered the well-being and shaped the lifestyle of people in such a way that the dependency on private vehicle has become an unavoidable affair. Along with population growth, the increased vehicle ownership gave rise to overall spurt in travel demand. But the supply side lagged behind the demand adding to many of the transport related externalities such as accidents, congestion, pollution, inequity etc. The importance of sustainability is understood in the current urban transport scenario leading to the development and promotion of sustainable transport polices. The core agenda of these polices is to target the travel behavior of people and change the way they travel by creating a different travel environment. However, the impacts of many such policies are either unknown or complex. Hence, before adopting and implementing such policies, it is important for the decision makers to be aware of the impacts of them. The role of travel demand models comes here as they predict the future travel demand under different policy scenarios. This paper reviews the ability of travel demand models applied in India in analyzing the sustainable transport policies. The study found that the conventional model system in India, which is trip based four step aggregate methodology, is inadequate in analyzing the sustainable transport policies. A review of alternative approach, known as activity based travel demand modeling found that they are capable of handling such policies better than conventional models and are assistive to the decision makers in arriving at right mix of polices specific to the situations. Since there is no operational activity based travel demand model system developed in India, the study at the end envisaged a conceptual framework of an integrated activity based travel demand model based on the requirements identified from the review. This can potentially replace the existing travel demand models and can be used for planning applications once the modification & validation have been done according to the existing activity-travel behavior of individuals.

Manoj Malayath; Ashish Verma

2013-01-01T23:59:59.000Z

338

Massachusetts Electric Vehicle Efforts  

E-Print Network (OSTI)

Massachusetts Electric Vehicle Efforts Christine Kirby, MassDEP ZE-MAP Meeting October 24, 2014 #12 · Provide Clean Air · Grow the Clean Energy Economy · Electric vehicles are a key part of the solution #12 is promoting EVs 4 #12;TCI and Electric Vehicles · Established the Northeast Electric Vehicle Network through

California at Davis, University of

339

Powertrain & Vehicle Research Centre  

E-Print Network (OSTI)

complexity ·More efficient Vehicles, quicker to market, reduced cost to consumer The Optimisation Task and virtual environments Vehicle baseline testing on rolling road Calibration Control Engine VehiclePowertrain & Vehicle Research Centre Low Carbon Powertrain Development S. Akehurst, EPSRC Advanced

Burton, Geoffrey R.

340

Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

5: November 25, 5: November 25, 2013 Vehicle Technology Penetration to someone by E-mail Share Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Facebook Tweet about Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Twitter Bookmark Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Google Bookmark Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Delicious Rank Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Digg Find More places to share Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on AddThis.com... Fact #805: November 25, 2013

Note: This page contains sample records for the topic "vehicle miles traveled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Running loss emissions from in-use vehicles (CRC project number E-35-2). Final report  

SciTech Connect

In Mesa, Arizona, a total of 150 vehicles were recruited at a local I/M lane and tested for running loss emissions at the Automotive Testing Labs (ATL). Running loss emissions were measured in a Running Loss SHED (Sealed Housing for Evaporative Determination) for a 25 minute, 7.5 mile trip on a hot summer day (95 deg F). Vehicles from model years 1971 through 1991 were tested. The program identified 30 vehicles as candidates for repair and retest. The result showed a very high (ca. 90%) effectiveness for the repairs. Repeat tests were run on 10 vehicles to provide an estimate for test-to-test variability.

Haskew, H.M.; Eng, K.D.; Liberty, T.F.; Reuter, R.M.

1999-02-01T23:59:59.000Z

342

1982 worldwide pipeline construction will top 21,900 miles, $9. 5 billion  

SciTech Connect

Reports that pipeline construction slowed slightly in 1982 because of lowered economic activity worldwide, with an upturn forecast for 1983. Explains that need for new pipelines to transport increasing amounts of oil and gas energy now being discovered, plus use of pipelines to transport other commodities in increasing amounts, has created a backlog of demand for facilities. Indicates that commodities suited for pipeline transport and getting consideration include crude oil; refined products; natural gas liquids; LPG; coal slurries; carbon dioxide (used for enhanced oil recovery); chemicals such as ammonia, ethane, ethylene, and similar petrochemical feedstocks; industrial gases such as oxygen, nitrogen; and solids slurries such as ores, wood chips, and other non-soluble minerals, even items such as wood chips and wood pulp for paper-making. Reveals that there are 10,396 miles of coal slurry pipeline planned for the US and 500 miles in Canada. Major US projects underway in the gas pipeline field include the 797-mile, 36-in. Trailblazer system in Nebraska, Wyoming, Colorado, and Utah. Products/ LPG/NGL pipelines underway include 105 miles of dual 4 and 6-in. line in Kansas. Crude pipeline activity includes 100 miles of 12-in. in California and 80 miles of 4 thru 40-in. in Alaska on the North Slope. Updates plans in Canada, Scotland, Denmark, Ireland, France, the Middle East, Australia, Southeast Asia, Mexico, South America and the USSR.

Hall, D.

1982-07-01T23:59:59.000Z

343

Vehicle Technologies Office: Ambassadors  

NLE Websites -- All DOE Office Websites (Extended Search)

Ambassadors to someone Ambassadors to someone by E-mail Share Vehicle Technologies Office: Ambassadors on Facebook Tweet about Vehicle Technologies Office: Ambassadors on Twitter Bookmark Vehicle Technologies Office: Ambassadors on Google Bookmark Vehicle Technologies Office: Ambassadors on Delicious Rank Vehicle Technologies Office: Ambassadors on Digg Find More places to share Vehicle Technologies Office: Ambassadors on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness Workforce Development Plug-in Electric Vehicle Basics Ambassadors Workplace Charging Challenge Clean Cities Coalitions Clean Cities logo. Clean Cities National: A network of nearly 100 Clean Cities coalitions, supported by the

344

Final report on electric vehicle activities, September 1991--October 1994  

SciTech Connect

The data and information collected for the Public Service Electric and Gas Company`s (PSE&G) electric vehicle demonstration program were intended to support and enhance DOE`s Electric and Hybrid Vehicle Site Operator Program. The DOE Site Operator Program is focused on the life cycle and reliability of Electric Vehicles (EVs). Of particular interest are vehicles currently available with features that are likely to be put into production or demonstrate new technology. PSE&G acquired eight GMC Electric G-Vans in 1991, and three TEVans in 1993, and conducted a program plan to test and assess the overall performance of these electric vehicles. To accomplish the objectives of DOE`s Site Operator`s test program, a manual data collection system was implemented. The manual data collection system has provided energy use and mileage data. From September 1991 to October 1994 PSE&G logged 69,368 miles on eleven test vehicles. PSE&G also demonstrated the EVs to diverse groups and associations at fifty seven various events. Included in the report are lessons learned concerning maintenance, operation, public reactions, and driver`s acceptance of the electric vehicles.

Del Monaco, J.L.; Pandya, D.A.

1995-02-01T23:59:59.000Z

345

NETL: News Release - Vehicle-Mounted Natural Gas Leak Detector Passes Key  

NLE Websites -- All DOE Office Websites (Extended Search)

October 2, 2003 October 2, 2003 Vehicle-Mounted Natural Gas Leak Detector Passes Key "Road Test" Spots Natural Gas Leaks from 30 Feet Away At Speeds Approaching 20 Miles Per Hour Handheld Prototype Gas Detector Now Being Outfitted as a Van-Mounted Unit PSI has modified this early prototype of a handheld remote natural gas detector to operate from a moving vehicle. ANDOVER, MA - Physical Sciences Inc. (PSI) recently conducted a successful test of its mobile natural gas detector at the company's research facilities in Andover, Mass. PSI's prototype leak detector demonstrated its ability to spot natural gas leaks from a distance of up to 30 feet from a vehicle moving at speeds approaching 20 miles per hour. In the United States, significant resources are devoted annually to leak

346

ship's camera-studded, remotely operated vehicle "Jason II" a mile-and-a-half below the surface.  

E-Print Network (OSTI)

, are mineral chimneys rich with extraordinary ecosystems that thrive in extreme temperatures and without, analysis of data from a major eruption on the Sun captured by the Solar Maximum Mission satellite in 1989

Pringle, James "Jamie"

347

NREL: Vehicles and Fuels Research - Hybrid Electric Fleet Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Fleet Vehicle Testing How Hybrid Electric Vehicles Work Hybrid electric vehicles combine a primary power source, an energy storage system, and an electric motor to...

348

VEHICLE USAGE LOG Department ________________________________________ Vehicle Homebase ____________________________ Week Ended (Sunday) _________________  

E-Print Network (OSTI)

VEHICLE USAGE LOG Department ________________________________________ Vehicle Homebase (rev. 10/2005-ecb) #12;Vehicle Usage Log Instructions General instructions: The details of the use

Yang, Zong-Liang

349

Hydrogen Fuel Pilot Plant and Hydrogen ICE Vehicle Testing  

SciTech Connect

The U.S. Department Energy's Advanced Vehicle Testing Activity (AVTA) teamed with Electric Transportation Applications (ETA) and Arizona Public Service (APS) to develop the APS Alternative Fuel (Hydrogen) Pilot Plant that produces and compresses hydrogen on site through an electrolysis process by operating a PEM fuel cell in reverse; natural gas is also compressed onsite. The Pilot Plant dispenses 100% hydrogen, 15 to 50% blends of hydrogen and compressed natural gas (H/CNG), and 100% CNG via a credit card billing system at pressures up to 5,000 psi. Thirty internal combustion engine (ICE) vehicles (including Daimler Chrysler, Ford and General Motors vehicles) are operating on 100% hydrogen and 15 to 50% H/CNG blends. Since the Pilot Plant started operating in June 2002, they hydrogen and H/CNG ICE vehicels have accumulated 250,000 test miles.

J. Francfort (INEEL)

2005-03-01T23:59:59.000Z

350

Vehicle Technologies Office: Lubricants  

NLE Websites -- All DOE Office Websites (Extended Search)

Lubricants to someone by Lubricants to someone by E-mail Share Vehicle Technologies Office: Lubricants on Facebook Tweet about Vehicle Technologies Office: Lubricants on Twitter Bookmark Vehicle Technologies Office: Lubricants on Google Bookmark Vehicle Technologies Office: Lubricants on Delicious Rank Vehicle Technologies Office: Lubricants on Digg Find More places to share Vehicle Technologies Office: Lubricants on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Fuel Effects on Combustion Lubricants Natural Gas Research Biofuels End-Use Research Materials Technologies Lubricants As most vehicles are on the road for more than 15 years before they are retired, investigating technologies that will improve today's vehicles is

351

Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Medium- and Medium- and Heavy-Duty Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Twitter Bookmark Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Google Bookmark Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Delicious Rank Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Digg Find More places to share Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on AddThis.com... Home Overview Light-Duty Vehicles Medium- and Heavy-Duty Vehicles Transit Vehicles Trucks Idle Reduction Oil Bypass Filter Airport Ground Support Equipment Medium and Heavy Duty Hybrid Electric Vehicles

352

Biomass Conversion  

Science Journals Connector (OSTI)

Accounting for all of the factors that go into energy demand (population, vehicle miles traveled per ... capita, vehicle efficiency) and land required for energy production (biomass land yields, biomass conversion

Stephen R. Decker; John Sheehan…

2012-01-01T23:59:59.000Z

353

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EVSE Designed And Manufactured To Allow Power And Energy Data Collection And Demand Response Control Residential EVSE Installed For All Vehicles 1,300 Commercial EVSE...

354

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt066vsskarner2012...

355

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt066vsskarner2011...

356

Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...  

Energy Savers (EERE)

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt072vssmackie2011...

357

Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...  

Energy Savers (EERE)

2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt072vssmackie2012...

358

Heuristic methods for vehicle routing problem with time windows K.C. Tana,*, L.H. Leeb  

E-Print Network (OSTI)

of the problem is to ®nd routes for the vehicles to serve all the customers at a minimal cost (in terms of travelHeuristic methods for vehicle routing problem with time windows K.C. Tana,*, L.H. Leeb , Q.L. Zhua , K. Oua a Department of Electrical and Computer Engineering, National University of Singapore, 10

Zhu, Kenny Q.

359

Greenhouse Gas Mitigation Planning for Business Travel  

Energy.gov (U.S. Department of Energy (DOE))

Business travel is among the largest sources of Scope 3 greenhouse gas (GHG) emissions accounted for by Federal agencies. For some agencies, business travel can represent up to 60% of Scope 3...

360

Enabling time travel for the scholarly web  

NLE Websites -- All DOE Office Websites (Extended Search)

Enabling time travel for the scholarly web Enabling time travel for the scholarly web An international team of information scientists has begun a study to investigate how web links...

Note: This page contains sample records for the topic "vehicle miles traveled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

vehicle aging have an additional but unknown effect on the MPG of individual vehicles. Energy Information AdministrationHousehold Vehicles Energy Consumption 1991 27 Of the...

362

Vehicle Research Laboratory - FEERC  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Research Laboratory Vehicle Research Laboratory Expertise The overall FEERC team has been developed to encompass the many disciplines necessary for world-class fuels, engines, and emissions-related research, with experimental, analytical, and modeling capabilities. Staff members specialize in areas including combustion and thermodynamics, emissions measurements, analytical chemistry, catalysis, sensors and diagnostics, dynamometer cell operations, engine controls and control theory. FEERC engineers have many years of experience in vehicle research, chassis laboratory development and operation, and have developed specialized systems and methods for vehicle R&D. Selected Vehicle Research Topics In-use investigation of Lean NOx Traps (LNTs). Vehicle fuel economy features such as lean operation GDI engines,

363

Vehicle Modeling and Simulation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

* PHEV Simulations and Analysis - Travel Profile Database - PHEV Impact on Components - Integration with Renewable Fuels - PHEV Economics - PHEV Test Procedures * Route-Based...

364

Corporate CardsCorporate Cards Travel Card  

E-Print Network (OSTI)

Travel Card Preferred method of payment for University travel Not to be used for purchasing goods and services orNot to be used for purchasing goods and services or personal use ­ Please review the Travel PolicyPurchasing Card Program Preferred method of Purchasing low dollar goods andPreferred method of Purchasing low

Brownstone, Rob

365

Simulation Study of a Traffic Light Assistant Based on Vehicle-Infrastructure Communication  

E-Print Network (OSTI)

Vehicle-infrastructure communication opens up new ways to improve traffic flow efficiency at signalized intersections. In this study, we assume that equipped vehicles can obtain information about switching times of relevant traffic lights in advance, and additionally counting data from upstream detectors. By means of simulation, we investigate, how equipped vehicles can make use of this information to improve traffic flow. Criteria include cycle-averaged capacity, driving comfort, fuel consumption, travel time, and the number of stops. Depending on the overall traffic demand and the penetration rate of equipped vehicles, we generally find several percent of improvement.

Treiber, Martin

2014-01-01T23:59:59.000Z

366

NREL Works to Increase Electric Vehicle Efficiency Through Enhanced Thermal Management (Fact Sheet)  

SciTech Connect

Researchers at NREL are providing new insight into how heating and cooling systems affect the distance that electric vehicles can travel on a single charge. Electric vehicle range can be reduced by as much as 68% per charge because of climate-control demands. NREL engineers are investigating opportunities to change this dynamic and increase driving range by improving vehicle thermal management. NREL experts are collaborating with automotive industry partners to investigate promising thermal management technologies and strategies, including zone-based cabin temperature controls, advanced heating and air conditioning controls, seat-based climate controls, vehicle thermal preconditioning, and thermal load reduction technologies.

Not Available

2014-06-01T23:59:59.000Z

367

Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per  

NLE Websites -- All DOE Office Websites (Extended Search)

5: September 15, 5: September 15, 2003 Vehicles per Thousand People: An International Comparison to someone by E-mail Share Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Facebook Tweet about Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Twitter Bookmark Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Google Bookmark Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Delicious Rank Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Digg

368

Household demand and willingness to pay for hybrid vehicles  

Science Journals Connector (OSTI)

Abstract This paper quantitatively evaluates consumers' willingness to pay for hybrid vehicles by estimating the demand of hybrid vehicles in the U.S. market. Using micro-level data on consumer purchases of hybrid and non-hybrid vehicles from National Household Travel Survey 2009, this paper formulates a mixed logit model of consumers' vehicle choices. Parameter estimates are then used to evaluate consumers' willingness to pay for hybrids. Results suggest that households' willingness to pay for hybrids ranges from $963 to $1718 for different income groups, which is significantly lower than the average price premium (over $5000) of hybrid vehicles, even when taking the fuel costs savings of hybrid vehicles into consideration. The differences reveal that although the market has shown increasing interest in hybrid vehicles, consumers' valuation of the hybrid feature is still not high enough to compensate for the price premium when they make new purchases. Policy simulations are conducted to examine the effects of raising federal tax incentives on the purchase of hybrid vehicles.

Yizao Liu

2014-01-01T23:59:59.000Z

369

Vehicle Technologies Office: Favorites  

NLE Websites -- All DOE Office Websites (Extended Search)

Favorites to someone by Favorites to someone by E-mail Share Vehicle Technologies Office: Favorites on Facebook Tweet about Vehicle Technologies Office: Favorites on Twitter Bookmark Vehicle Technologies Office: Favorites on Google Bookmark Vehicle Technologies Office: Favorites on Delicious Rank Vehicle Technologies Office: Favorites on Digg Find More places to share Vehicle Technologies Office: Favorites on AddThis.com... Favorites #248 Top Ten Net Petroleum Importing Countries, 2000 December 23, 2002 #246 U.S. Oil Imports - Top 10 Countries of Origin December 9, 2002 #244 Sport Utility Vehicle Spotlight November 25, 2002 #243 Fuel Economy Leaders for 2003 Model Year Light Trucks November 18, 2002 #242 Fuel Economy Leaders for 2003 Model Year Cars November 11, 2002 #238 Automobile and Truck Population by Vehicle Age, 2001 October 14, 2002

370

Vehicle Technologies Office: Partners  

NLE Websites -- All DOE Office Websites (Extended Search)

Partners to someone by Partners to someone by E-mail Share Vehicle Technologies Office: Partners on Facebook Tweet about Vehicle Technologies Office: Partners on Twitter Bookmark Vehicle Technologies Office: Partners on Google Bookmark Vehicle Technologies Office: Partners on Delicious Rank Vehicle Technologies Office: Partners on Digg Find More places to share Vehicle Technologies Office: Partners on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness Workforce Development Plug-in Electric Vehicle Basics Partners The interactive map below highlights Workplace Charging Challenge Partners across the country who are installing plug-in electric vehicle charging infrastructure for their employees. Select a worksite to learn more about

371

Vehicle Technologies Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

News News Site Map Printable Version Share this resource Send a link to Vehicle Technologies Office: News to someone by E-mail Share Vehicle Technologies Office: News on Facebook Tweet about Vehicle Technologies Office: News on Twitter Bookmark Vehicle Technologies Office: News on Google Bookmark Vehicle Technologies Office: News on Delicious Rank Vehicle Technologies Office: News on Digg Find More places to share Vehicle Technologies Office: News on AddThis.com... Vehicle Technologies News Blog Newsletters Information for Media Subscribe to News Updates News December 18, 2013 USDA Offers $118 Million for Renewable Energy, Smart Grid Projects The U.S. Department of Agriculture (USDA) announced $73 million in funding for renewable energy projects and $45 million for smart grid technology as

372

Social networking in vehicles  

E-Print Network (OSTI)

In-vehicle, location-aware, socially aware telematic systems, known as Flossers, stand to revolutionize vehicles, and how their drivers interact with their physical and social worlds. With Flossers, users can broadcast and ...

Liang, Philip Angus

2006-01-01T23:59:59.000Z

373

Electric Vehicle Research Group  

E-Print Network (OSTI)

.................................................................................9 From diesel to electric: a new era in personnel transport for underground coal minesElectric Vehicle Research Group Annual Report 2012 #12;Table of Contents Executive Summary................................................................................8 C2-25 Electric Vehicle Drivetrain

Liley, David

374

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September byet al. , 1988,1989 HYDROGEN FUEL-CELL VEHICLES: TECHNICALIn the FCEV, the hydrogen fuel cell could supply the "net"

Delucchi, Mark

1992-01-01T23:59:59.000Z

375

Vehicles | Open Energy Information  

Open Energy Info (EERE)

renewable and alternative fuels. Advanced vehicles and fuels can also put the brakes on air pollution and improve our environment. At least 250 million vehicles are in use in the...

376

Isotopic Analysis At Seven Mile Hole Area (Larson, Et Al., 2009) | Open  

Open Energy Info (EERE)

2009) 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Seven Mile Hole Area (Larson, Et Al., 2009) Exploration Activity Details Location Seven Mile Hole Area Exploration Technique Isotopic Analysis- Rock Activity Date Usefulness useful DOE-funding Unknown Notes The 40Ar/39Ar data were collected from a single fragment of alunite from sample Y-05-25, approximately 0.5 cm3 in size. References Peter B. Larson, Allison Phillips, David John, Michael Cosca, Chad Pritchard, Allen Andersen, Jennifer Manion (2009) A Preliminary Study Of Older Hot Spring Alteration In Sevenmile Hole, Grand Canyon Of The Yellowstone River, Yellowstone Caldera, Wyoming Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis_At_Seven_Mile_Hole_Area_(Larson,_Et_Al.,_2009)&oldid=68747

377

Toward 300 Miles on a Single Charge? | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Toward 300 Miles on a Single Charge? Toward 300 Miles on a Single Charge? Discovery & Innovation Stories of Discovery & Innovation Brief Science Highlights SBIR/STTR Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 11.27.13 Toward 300 Miles on a Single Charge? Berkeley Lab scientists design a high-performance, long cycle-life lithium-sulfur battery. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo. Enlarge Photo Scanning electron microscope image of sulfur graphene oxide. Photo courtesy of Lawrence Berkeley National Laboratory Scanning electron microscope image of sulfur graphene oxide. The batteries that pervade your life these days-from your cell phone to your sleek new tablet and even to your automobile, if you happen to drive

378

Environmental Conservation 29 (3): 282289 2002 Foundation for Environmental Conservation DOI:10.1017/S0376892902000206 Ecotourism can be a vehicle for community-based  

E-Print Network (OSTI)

.1017/S0376892902000206 SUMMARY Ecotourism can be a vehicle for community-based conservation, ecotourism, profit leakage, protected areas, sustainable use INTRODUCTION The International Ecotourism Society's definition of ecotourism is `Responsible travel to natural areas that conserves the environment

Sekercioglu, Cagan Hakki

379

Advanced Vehicle Electrification  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

380

Advanced Vehicle Electrification  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

Note: This page contains sample records for the topic "vehicle miles traveled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Consumer Vehicle Technology Data  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

382

Advanced Electric Drive Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

383

The Future of Electric Vehicles and Arizona State University's MAIL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Future of Electric Vehicles and Arizona State University's The Future of Electric Vehicles and Arizona State University's MAIL Battery The Future of Electric Vehicles and Arizona State University's MAIL Battery August 11, 2010 - 4:26pm Addthis Cody Friesen and his team at Arizona State University | Photo Credit Arizona State University Cody Friesen and his team at Arizona State University | Photo Credit Arizona State University Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs What does this mean for me? EV batteries will have the ability to recharge at least 1000 times at a low cost due to its composition of only domestically-sourced, earth abundant material Electric Vehicles are becoming a reality. Last month, the President got behind the wheel of a Chevy Volt in Michigan, and traveled to Smith

384

Powertrain & Vehicle Research Centre  

E-Print Network (OSTI)

Simulation Basic Engine Test Vehicle Test Cost & Complexity Towards Final Product Lean Powertrain Development Viewing Trade-Offs and Finding Optima Realism Advanced Engine Test Vehicle Test Rolling Road Powertrain powertrain development tasks to reduce costs and time to market The vehicle powertrain is the system

Burton, Geoffrey R.

385

Energy 101: Electric Vehicles  

ScienceCinema (OSTI)

This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

None

2013-05-29T23:59:59.000Z

386

Microsoft Word - 20050821_Appendix_A.doc  

U.S. Energy Information Administration (EIA) Indexed Site

. U.S. Per Vehicle Average Miles Traveled, Vehicle Fuel Consumption and Expenditures, 2001 . U.S. Per Vehicle Average Miles Traveled, Vehicle Fuel Consumption and Expenditures, 2001 ENERGY INFORMATION ADMINISTRATION / HOUSEHOLD VEHICLES ENERGY USE: LATEST A N D TRENDS 59 Average per Vehicle 2001 Household and Vehicle Characteristics Number of Vehicles (million) Vehicle-Miles Traveled (thousands) Consumption (gallons) Expenditures (dollars) Miles per Gallon Household Characteristics Total.............................. 191.0 12.0 592 787 20.2 Census Region and Division Northeast......................... 31.7 11.9 571 766 20.9 New England...................... 10.0 12.3 586 810 21.0 Middle Atlantic ................. 21.8 11.7 564 746 20.8 Midwest .......................... 47.1 11.9 588 793 20.2

387

Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

2: October 3, 2: October 3, 2005 Household Vehicle Ownership to someone by E-mail Share Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Facebook Tweet about Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Twitter Bookmark Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Google Bookmark Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Delicious Rank Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Digg Find More places to share Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on AddThis.com... Fact #392: October 3, 2005 Household Vehicle Ownership Household vehicle ownership has changed significantly over the last 40

388

Well-to-wheels energy use and greenhouse gas emissions analysis of plug-in hybrid electric vehicles.  

SciTech Connect

Researchers at Argonne National Laboratory expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model and incorporated the fuel economy and electricity use of alternative fuel/vehicle systems simulated by the Powertrain System Analysis Toolkit (PSAT) to conduct a well-to-wheels (WTW) analysis of energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW results were separately calculated for the blended charge-depleting (CD) and charge-sustaining (CS) modes of PHEV operation and then combined by using a weighting factor that represented the CD vehicle-miles-traveled (VMT) share. As indicated by PSAT simulations of the CD operation, grid electricity accounted for a share of the vehicle's total energy use, ranging from 6% for a PHEV 10 to 24% for a PHEV 40, based on CD VMT shares of 23% and 63%, respectively. In addition to the PHEV's fuel economy and type of on-board fuel, the marginal electricity generation mix used to charge the vehicle impacted the WTW results, especially GHG emissions. Three North American Electric Reliability Corporation regions (4, 6, and 13) were selected for this analysis, because they encompassed large metropolitan areas (Illinois, New York, and California, respectively) and provided a significant variation of marginal generation mixes. The WTW results were also reported for the U.S. generation mix and renewable electricity to examine cases of average and clean mixes, respectively. For an all-electric range (AER) between 10 mi and 40 mi, PHEVs that employed petroleum fuels (gasoline and diesel), a blend of 85% ethanol and 15% gasoline (E85), and hydrogen were shown to offer a 40-60%, 70-90%, and more than 90% reduction in petroleum energy use and a 30-60%, 40-80%, and 10-100% reduction in GHG emissions, respectively, relative to an internal combustion engine vehicle that used gasoline. The spread of WTW GHG emissions among the different fuel production technologies and grid generation mixes was wider than the spread of petroleum energy use, mainly due to the diverse fuel production technologies and feedstock sources for the fuels considered in this analysis. The PHEVs offered reductions in petroleum energy use as compared with regular hybrid electric vehicles (HEVs). More petroleum energy savings were realized as the AER increased, except when the marginal grid mix was dominated by oil-fired power generation. Similarly, more GHG emissions reductions were realized at higher AERs, except when the marginal grid generation mix was dominated by oil or coal. Electricity from renewable sources realized the largest reductions in petroleum energy use and GHG emissions for all PHEVs as the AER increased. The PHEVs that employ biomass-based fuels (e.g., biomass-E85 and -hydrogen) may not realize GHG emissions benefits over regular HEVs if the marginal generation mix is dominated by fossil sources. Uncertainties are associated with the adopted PHEV fuel consumption and marginal generation mix simulation results, which impact the WTW results and require further research. More disaggregate marginal generation data within control areas (where the actual dispatching occurs) and an improved dispatch modeling are needed to accurately assess the impact of PHEV electrification. The market penetration of the PHEVs, their total electric load, and their role as complements rather than replacements of regular HEVs are also uncertain. The effects of the number of daily charges, the time of charging, and the charging capacity have not been evaluated in this study. A more robust analysis of the VMT share of the CD operation is also needed.

Elgowainy, A.; Burnham, A.; Wang, M.; Molburg, J.; Rousseau, A.; Energy Systems

2009-03-31T23:59:59.000Z

389

Shifting primary energy source and NOx emission location with plug-in hybrid vehicles  

Science Journals Connector (OSTI)

Plug-in hybrid vehicles (PHEVs) present an interesting technological opportunity for using non-fossil primary energy in light duty passenger vehicles, with the associated potential for reducing air pollutant and greenhouse gas emissions, to the extent that the electric power grid is fed by non-fossil sources. This perspective, accompanying the article by Thompson et al (2011) in this issue, will touch on two other studies that are directly related: the Argonne study (Elgowainy et al 2010) and a PhD thesis from Utrecht (van Vliet 2010). Thompson et al (2011) have examined air quality effects in a case where the grid is predominantly fossil fed. They estimate a reduction of 7.42 tons/day of NOx from motor vehicles as a result of substituting electric VMTs for 20% of the light duty gasoline vehicle miles traveled. To estimate the impact of this reduction on air quality they also consider the increases in NOx emissions due to the increased load on electricity generating units. The NOx emission increases are estimated as 4.0, 5.5 and 6.3 tons for the Convenience, Battery and Night charging scenarios respectively. The net reductions are thus in the 1.1–3.4 tons/day range. The air quality modelling results presented show that the air quality impact from a ground-level ozone perspective is favorable overall, and while the effect is stronger in some localities, the difference between the three scenarios is small. This is quite significant and suggests that localization of the NOx emissions to point sources has a more pronounced effect than the absolute reductions achieved. Furthermore it demonstrates that localization of NOx emissions to electricity generating units by using PHEVs in vehicle traffic has beneficial effects for air quality not only by minimizing direct human exposure to motor vehicle emissions, but also due to reduced exposure to secondary pollutants (i.e. ozone). In an electric power grid with a smaller share of fossil fired generating units, the beneficial effects would be more pronounced. In such a case, it would also be possible to realize reductions in greenhouse gas emissions. The significance of the electric power generation mix for plug-in hybrid vehicles and battery electric vehicles is a key aspect of Argonne National Laboratories' well-to-wheel study which focuses on petroleum use and greenhouse gas emissions (Elgowainy et al 2010). The study evaluates possible reductions in petroleum use and GHG emissions in the electric power systems in four major regions of the United States as well as the US average generation mix, using Argonne's GREET life-cycle analysis model. Two PHEV designs are investigated through a Powertrain System Analysis Toolkit (PSAT) model: the power-split configuration (e.g. the current Toyota Prius model with Hymotion conversion), and a future series configuration where the engine powers a generator, which charges a battery that is used by the electric motor to propel the vehicle. Since the petroleum share is small in the electricity generation mix for most regions in the United States, it is possible to achieve significant reductions in petroleum use by PHEVs. However, GHG reduction is another story. In one of the cases in the study, PHEVs in the charge depleting mode and recharging from a mix with a large share of coal generation (e.g., Illinois marginal mix) produce GHG emissions comparable to those of baseline gasoline internal combustion engine vehicles (with a range from ?15% to +10%) but significantly higher than those of gasoline hybrid electric vehicles (with a range from +20% to +60%). In what is called the unconstrained charging scenario where investments in new generation capacity with high efficiency and low carbon intensity are envisaged, it becomes possible to achieve significant reductions in both petroleum use and GHG emissions. In a PhD dissertation at Utrecht University, van Vliet (2010) presents a comprehensive analysis of alternatives to gasoline and diesel by looking at various fuel and vehicle technologies. Three chapters are of particular interest from the

Deniz Karman

2011-01-01T23:59:59.000Z

390

A Set of Comparable Carbon Footprints for Auto, Truck and Transit Travel in Metropolitan America  

NLE Websites -- All DOE Office Websites (Extended Search)

Set of Comparable Carbon Footprints for Highway Travel in Set of Comparable Carbon Footprints for Highway Travel in Metropolitan America by Frank Southworth* and Anthon Sonnenberg** August 31, 2009 *Corresponding author: Senior R&D Staff, Oak Ridge National Laboratory and Principal Research Scientist Georgia Institute of Technology 790 Atlantic Drive SEB Building, Room 324 Atlanta, GA 30332-0355 E-mail: frank.southworth@ce.gatech.edu ** PhD Student, Georgia Institute of Technology School of Civil and Environmental Engineering Georgia Institute of Technology 1 Abstract The authors describe the development of a set of carbon dioxide emissions estimates for highway travel by automobile, truck, bus and other public transit vehicle movements within the nation's 100 largest metropolitan areas, in calendar year 2005. Considerable variability is found to exist

391

Vehicle Technologies Office: Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

Deployment Deployment Site Map Printable Version Share this resource Send a link to Vehicle Technologies Office: Deployment to someone by E-mail Share Vehicle Technologies Office: Deployment on Facebook Tweet about Vehicle Technologies Office: Deployment on Twitter Bookmark Vehicle Technologies Office: Deployment on Google Bookmark Vehicle Technologies Office: Deployment on Delicious Rank Vehicle Technologies Office: Deployment on Digg Find More places to share Vehicle Technologies Office: Deployment on AddThis.com... Energy Policy Act (EPAct) Clean Cities Educational Activities Deployment Our nation's energy security depends on the efficiency of our transportation system and on which fuels we use. Transportation in the United States already consumes much more oil than we produce here at home

392

Vehicle Technologies Office: Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Batteries to someone by Batteries to someone by E-mail Share Vehicle Technologies Office: Batteries on Facebook Tweet about Vehicle Technologies Office: Batteries on Twitter Bookmark Vehicle Technologies Office: Batteries on Google Bookmark Vehicle Technologies Office: Batteries on Delicious Rank Vehicle Technologies Office: Batteries on Digg Find More places to share Vehicle Technologies Office: Batteries on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Batteries Battery Systems Applied Battery Research Long-Term Exploratory Research Ultracapacitors Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Materials Technologies Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various

393

Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicles Vehicles Vehicles EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. Image of three semi truck cabs. The one on the left is yellow, the middle is green, and the far right truck is red. The U.S. Department of Energy (DOE) supports the development and deployment of advanced vehicle technologies, including advances in electric vehicles, engine efficiency, and lightweight materials. Since 2008, the Department of

394

Analysis of data from electric and hybrid electric vehicle student competitions  

SciTech Connect

The US Department of Energy sponsored several student engineering competitions in 1993 that provided useful information on electric and hybrid electric vehicles. The electrical energy usage from these competitions has been recorded with a custom-built digital meter installed in every vehicle and used under controlled conditions. When combined with other factors, such as vehicle mass, speed, distance traveled, battery type, and type of components, this information provides useful insight into the performance characteristics of electrics and hybrids. All the vehicles tested were either electric vehicles or hybrid vehicles in electric-only mode, and had an average energy economy of 7.0 km/kwh. Based on the performance of the ``ground-up`` hybrid electric vehicles in the 1993 Hybrid Electric Vehicle Challenge, data revealed a I km/kwh energy economy benefit for every 133 kg decrease in vehicle mass. By running all the electric vehicles at a competition in Atlanta at several different constant speeds, the effects of rolling resistance and aerodynamic drag were evaluated. On average, these vehicles were 32% more energy efficient at 40 km/h than at 72 km/h. The results of the competition data analysis confirm that these engineering competitions not only provide an educational experience for the students, but also show technology performance and improvements in electric and hybrid vehicles by setting benchmarks and revealing trends.

Wipke, K.B. [National Renewable Energy Lab., Golden, CO (United States); Hill, N.; Larsen, R.P. [Argonne National Lab., IL (United States)

1994-01-01T23:59:59.000Z

395

Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy  

NLE Websites -- All DOE Office Websites (Extended Search)

3: March 8, 2010 3: March 8, 2010 Vehicle Occupancy Rates to someone by E-mail Share Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Facebook Tweet about Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Twitter Bookmark Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Google Bookmark Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Delicious Rank Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Digg Find More places to share Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on AddThis.com... Fact #613: March 8, 2010 Vehicle Occupancy Rates The average number of persons occupying a car is 1.59 and has not changed

396

Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual  

NLE Websites -- All DOE Office Websites (Extended Search)

FY 2008 DOE Vehicle FY 2008 DOE Vehicle Technologies Office Annual Merit Review to someone by E-mail Share Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Facebook Tweet about Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Twitter Bookmark Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Google Bookmark Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Delicious Rank Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Digg Find More places to share Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on AddThis.com... Publications

397

Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

8: February 16, 8: February 16, 2009 Transit Vehicle Age and Cost to someone by E-mail Share Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on Facebook Tweet about Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on Twitter Bookmark Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on Google Bookmark Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on Delicious Rank Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on Digg Find More places to share Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on AddThis.com... Fact #558: February 16, 2009 Transit Vehicle Age and Cost

398

Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

3: January 22, 3: January 22, 2007 Household Vehicle Ownership to someone by E-mail Share Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Facebook Tweet about Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Twitter Bookmark Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Google Bookmark Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Delicious Rank Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Digg Find More places to share Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on AddThis.com... Fact #453: January 22, 2007 Household Vehicle Ownership

399

A dynamic vehicle routing problem based on real-time traffic information  

Science Journals Connector (OSTI)

We treat the dynamic vehicle routing problem with time windows (DVRPTW) in the context of real-time traffic information. We integrate traffic information obtained in real time to change the speed profile according to the accidents on the road network (congestion, etc.). The travel times are based on a time-dependent model in which the travel speeds are step functions. This model is enriched with an exponential smoothing function able to calculate the forecasted speed. The analysis of the results of these experiments shows that our method with real-time traffic information provides a good performance, a better robustness against a simple model with time dependent travel time.

Xin Zhao; Gilles Goncalves; Remy Dupas

2010-01-01T23:59:59.000Z

400

Modeling the Last Mile of the Smart Grid G.A. Pagani  

E-Print Network (OSTI)

Modeling the Last Mile of the Smart Grid G.A. Pagani Johann Bernoulli Institute of Mathematics in the grid and allowing for micro-production to be part of the smart grid. Such changes will have a major- archical, unidirectional and capillary, though the new smart grid scenario calls for an infrastructure

Aiello, Marco

Note: This page contains sample records for the topic "vehicle miles traveled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Crisis contained, The Department of Energy at Three Mile Island: a history  

SciTech Connect

An account is given of the response of US DOE to the Three Mile Island-2 accident on March 28, 1979. The accident is treated as though it was a military battle. A synoptic chronologgy of the accident events and of DOE and other responses is included. (DLC)

Cantelon, P L; Williams, R C

1980-12-01T23:59:59.000Z

402

Invisibility Cloaking via Non-Smooth Transformation Optics and Ray Miles M. Crosskey  

E-Print Network (OSTI)

Invisibility Cloaking via Non-Smooth Transformation Optics and Ray Tracing Miles M. Crosskey of theoretically-predicted invisibility cloaks with shapes other than spheres and cylin- ders, including cones explicitly displaying the non-uniqueness of invisibility cloaks of the same shape. We depict rays propagating

Kovacic, Gregor

403

Global Change and Climate Change by Miles R. Silman, Ph.D.  

E-Print Network (OSTI)

, the answer illustrates of the power of biogeochemistry. Water cycles between three compartments, ocean (by of one city In the early spring of 1889, we learned an important lesson--our first lesson--in what computers.The oceans are a reservoir of about 1.35 billion cubic kilometers (322 million cubic miles

Silman, Miles R.

404

Vehicle Technologies Office: Key Activities in Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Activities in Vehicles Activities in Vehicles We conduct work in four key areas to develop and deploy vehicle technologies that reduce the use of petroleum while maintaining or improving performance, power, and comfort. Research and development (R&D); testing and analysis; government and community stakeholder support; and education help people access and use efficient, clean vehicles that meet their transportation needs. Researcher loads a sample mount of battery cathode materials for X-ray diffraction, an analysis tool for obtaining information on the crystallographic structure and composition of materials. Research and Development of New Technologies Develop durable and affordable advanced batteries as well as other forms of energy storage. Improve the efficiency of combustion engines.

405

Electric vehicles: UK content  

Science Journals Connector (OSTI)

... overnight recharging are identified as the main obstacles to the early success of the all-electric car. Another problem is that most of the advantages accrue to society and the electricity ... in Britain. They offer the most promising prospects for private use by overcoming the pure electric car problem of short range, typically 50-70 miles. They also do not necessarily depend ...

Judy Redfearn

1980-09-11T23:59:59.000Z

406

Technology Improvement Pathways to Cost-Effective Vehicle Electrification  

SciTech Connect

Electrifying transportation can reduce or eliminate dependence on foreign fuels, emission of green house gases, and emission of pollutants. One challenge is finding a pathway for vehicles that gains wide market acceptance to achieve a meaningful benefit. This paper evaluates several approaches aimed at making plug-in electric vehicles (EV) and plug-in hybrid electric vehicles (PHEVs) cost-effective including opportunity charging, replacing the battery over the vehicle life, improving battery life, reducing battery cost, and providing electric power directly to the vehicle during a portion of its travel. Many combinations of PHEV electric range and battery power are included. For each case, the model accounts for battery cycle life and the national distribution of driving distances to size the battery optimally. Using the current estimates of battery life and cost, only the dynamically plugged-in pathway was cost-effective to the consumer. Significant improvements in battery life and battery cost also made PHEVs more cost-effective than today's hybrid electric vehicles (HEVs) and conventional internal combustion engine vehicles (CVs).

Brooker, A.; Thornton, M.; Rugh, J. P.

2010-04-01T23:59:59.000Z

407

A Review of High Occupancy Vehicle (HOV) Lane Performance and Policy  

Open Energy Info (EERE)

A Review of High Occupancy Vehicle (HOV) Lane Performance and Policy A Review of High Occupancy Vehicle (HOV) Lane Performance and Policy Options in the United States: Final Report Jump to: navigation, search Tool Summary LAUNCH TOOL Name: A Review of High Occupancy Vehicle (HOV) Lane Performance and Policy Options in the United States: Final Report Focus Area: Vehicle Distance Traveled Reduction Topics: Best Practices Website: ops.fhwa.dot.gov/publications/fhwahop09029/index.htm Equivalent URI: cleanenergysolutions.org/content/review-high-occupancy-vehicle-hov-lan Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration & Implementation This report provides an assessment of performance of existing high occupancy vehicle (HOV) lane facilities in the United States and explores policy alternatives and effects related to conversion of existing HOV lanes

408

Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

39: October 6, 39: October 6, 2008 Light Vehicle Production by State to someone by E-mail Share Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Facebook Tweet about Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Twitter Bookmark Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Google Bookmark Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Delicious Rank Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Digg Find More places to share Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on AddThis.com... Fact #539: October 6, 2008

409

Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

1: January 23, 1: January 23, 2012 Top Vehicles around the Globe, 2011 to someone by E-mail Share Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on Facebook Tweet about Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on Twitter Bookmark Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on Google Bookmark Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on Delicious Rank Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on Digg Find More places to share Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on AddThis.com...

410

Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Progress Report 4 Progress Report for Heavy Vehicle Propulsion Materials Program to someone by E-mail Share Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Facebook Tweet about Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Twitter Bookmark Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Google Bookmark Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Delicious Rank Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Digg Find More places to share Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on

411

Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

9: May 10, 2004 9: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison to someone by E-mail Share Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on Facebook Tweet about Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on Twitter Bookmark Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on Google Bookmark Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on Delicious Rank Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on Digg Find More places to share Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on

412

Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

300: December 29, 300: December 29, 2003 World Vehicle Production by Country/Region to someone by E-mail Share Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on Facebook Tweet about Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on Twitter Bookmark Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on Google Bookmark Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on Delicious Rank Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on Digg Find More places to share Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on

413

Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Progress Report 3 Progress Report for Heavy Vehicle Propulsion Materials Program to someone by E-mail Share Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Facebook Tweet about Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Twitter Bookmark Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Google Bookmark Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Delicious Rank Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Digg Find More places to share Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on

414

Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

5: January 11, 5: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 to someone by E-mail Share Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Facebook Tweet about Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Twitter Bookmark Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Google Bookmark Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Delicious Rank Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Digg Find More places to share Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on AddThis.com...

415

Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

8: November 23, 8: November 23, 2009 Hybrid Vehicle Sales by Model to someone by E-mail Share Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Facebook Tweet about Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Twitter Bookmark Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Google Bookmark Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Delicious Rank Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Digg Find More places to share Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on AddThis.com... Fact #598: November 23, 2009

416

Within-day recharge of plug-in hybrid electric vehicles: Energy impact of public charging infrastructure  

Science Journals Connector (OSTI)

This paper examines the role of public charging infrastructure in increasing the share of driving on electricity that plug-in hybrid electric vehicles might exhibit, thus reducing their gasoline consumption. Vehicle activity data obtained from a global positioning system tracked household travel survey in Austin, Texas, is used to estimate gasoline and electricity consumptions of plug-in hybrid electric vehicles. Drivers’ within-day recharging behavior, constrained by travel activities and public charger availability, is modeled. It is found that public charging offers greater fuel savings for hybrid electric vehicles s equipped with smaller batteries, by encouraging within-day recharge, and providing an extensive public charging service is expected to reduce plug-in hybrid electric vehicles gasoline consumption by more than 30% and energy cost by 10%, compared to the scenario of home charging only.

Jing Dong; Zhenhong Lin

2012-01-01T23:59:59.000Z

417

Within-Day Recharge of Plug-In Hybrid Electric Vehicles: Energy Impact of Public Charging Infrastructure  

SciTech Connect

This paper examines the role of public charging infrastructure in increasing the share of driving on electricity that plug-in hybrid electric vehicles might exhibit, thus reducing their gasoline consumption. Vehicle activity data obtained from a global positioning system tracked household travel survey in Austin, Texas, is used to estimate gasoline and electricity consumptions of plug-in hybrid electric vehicles. Drivers within-day recharging behavior, constrained by travel activities and public charger availability, is modeled. It is found that public charging offers greater fuel savings for hybrid electric vehicles s equipped with smaller batteries, by encouraging within-day recharge, and providing an extensive public charging service is expected to reduce plug-in hybrid electric vehicles gasoline consumption by more than 30% and energy cost by 10%, compared to the scenario of home charging only.

Dong, Jing [ORNL; Lin, Zhenhong [ORNL

2012-01-01T23:59:59.000Z

418

Vehicle Technologies Office: Favorites  

NLE Websites -- All DOE Office Websites (Extended Search)

Favorites Favorites #248 Top Ten Net Petroleum Importing Countries, 2000 December 23, 2002 #246 U.S. Oil Imports - Top 10 Countries of Origin December 9, 2002 #244 Sport Utility Vehicle Spotlight November 25, 2002 #243 Fuel Economy Leaders for 2003 Model Year Light Trucks November 18, 2002 #242 Fuel Economy Leaders for 2003 Model Year Cars November 11, 2002 #238 Automobile and Truck Population by Vehicle Age, 2001 October 14, 2002 #234 2003 Model Year Alternative Fuel Vehicles September 16, 2002 #233 Vehicles per Thousand People: U.S. Compared to Other Countries September 9, 2002 #230 Hybrid Electric Vehicles in the United States August 19, 2002 #229 Medium and Heavy Truck Sales August 12, 2002 #228 New Light Vehicle Sales Shares, 1976-2001 August 5, 2002

419

CMVRTC: Overweight Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

overweight vehicle data collection overweight vehicle data collection scale The Federal Motor Carrier Safety Administration requested information regarding overweight and oversized vehicle traffic entering inspection stations (ISs) in order to develop strategies for future research efforts and possibly help guide regulatory issues involving overweight commercial motor vehicles (CMVs). For a period of one month, inspection stations in Knox County and Greene County, Tennessee, recorded overweight and oversized vehicles that entered these ISs. During this period, 435 CMVs were recorded using an electronic form filled out by enforcement personnel at the IS. Of the 435 CMVs recorded, 381 had weight information documented with them. The majority (52.2%) of the vehicles recorded were five-axle combination

420

Vehicle Technologies Office: Lubricants  

NLE Websites -- All DOE Office Websites (Extended Search)

Lubricants Lubricants As most vehicles are on the road for more than 15 years before they are retired, investigating technologies that will improve today's vehicles is essential. Because 11.5 percent of fuel energy is consumed by engine friction, decreasing this friction through lubricants can lead to substantial improvements in the fuel economy of current vehicles, without needing to wait for the fleet to turn over. In fact, a 1 percent fuel savings in the existing vehicle fleet possible through lubricants could save 97 thousand barrels of oil a day or $3.5 billion a year. Because of these benefits, the Vehicle Technologies Office supports research on lubricants that can improve the efficiency of internal combustion engine vehicles, complementing our work on advanced combustion engine technology.

Note: This page contains sample records for the topic "vehicle miles traveled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Vehicle underbody fairing  

DOE Patents (OSTI)

A vehicle underbody fairing apparatus for reducing aerodynamic drag caused by a vehicle wheel assembly, by reducing the size of a recirculation zone formed under the vehicle body immediately downstream of the vehicle wheel assembly. The fairing body has a tapered aerodynamic surface that extends from a front end to a rear end of the fairing body with a substantially U-shaped cross-section that tapers in both height and width. Fasteners or other mounting devices secure the fairing body to an underside surface of the vehicle body, so that the front end is immediately downstream of the vehicle wheel assembly and a bottom section of the tapered aerodynamic surface rises towards the underside surface as it extends in a downstream direction.

Ortega, Jason M. (Pacifica, CA); Salari, Kambiz (Livermore, CA); McCallen, Rose (Livermore, CA)

2010-11-09T23:59:59.000Z

422

Advanced Technology Vehicle Testing  

SciTech Connect

The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

James Francfort

2004-06-01T23:59:59.000Z

423

Answers to frequently asked questions about cleanup activities at Three Mile Island, Unit 2. Public information report  

SciTech Connect

The document presents answers to frequently asked questions about plans for cleanup and decontamination activities at Three Mile Island, Unit 2. Answers to the questions asked are based on information in the NRC 'Draft Programmatic Environmental Impact Statement related to decontamination and disposal of radioactive wastes resulting from March 28, 1979, accident, Three Mile Island Nuclear Station, Unit 2,' NUREG-0683.

Not Available

1980-09-01T23:59:59.000Z

424

Chevrolet Volt Vehicle Demonstration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8.2 Overall AC electrical energy consumption (AC Whmi) 157 Average Trip Distance 12.3 Total distance traveled (mi) 407,245 Average Ambient Temperature (deg F) 67.9 Electric...

425

Chevrolet Volt Vehicle Demonstration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

70.1 Overall AC electrical energy consumption (AC Whmi) 169 Average Trip Distance 12.3 Total distance traveled (mi) 2,817,365 Average Ambient Temperature (deg F) 62.4 Electric...

426

Long-term Decline of Aggregate Fuel Use per Cargo-ton-mile of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Vehicle Technologies (OFCVT). deer07santini.pdf More Documents & Publications Diesel Injection Shear-Stress Advanced Nozzle (DISSAN) Electric Turbo Compounding...

427

Young media-induced travelers: online representations of media-induced travel conversations  

E-Print Network (OSTI)

participation and influence in the travel and tourism industry has received moderate attention both conceptually and empirically. Furthermore, despite the increasing availability of travel information online, youths’ predisposition toward media usage...

Scarpino, Michelle Renee

2009-05-15T23:59:59.000Z

428

Environmental and Energy Implications of Plug-In Hybrid-Electric Vehicles  

Science Journals Connector (OSTI)

Environmental and Energy Implications of Plug-In Hybrid-Electric Vehicles ... PHEVs are similar to conventional hybrids (HEVs), but with a larger battery typically providing an all-electric range of some 30–60 km (20–40 miles) and, crucially, the means to charge the battery from an ordinary electric outlet. ... The U.S. electrical infrastructure is divided into regions under the supervision of the North American Electric Reliability Council (NERC) (14). ...

Craig H. Stephan; John Sullivan

2008-01-16T23:59:59.000Z

429

Accomodating Electric Vehicles  

E-Print Network (OSTI)

Accommodating Electric Vehicles Dave Aasheim 214-551-4014 daasheim@ecotality.com A leader in clean electric transportation and storage technologies ECOtality North America Overview Today ? Involved in vehicle electrification... ECOtality North America Overview Today ?Warehouse Material Handling ? Lift trucks ? Pallet Jacks ? Over 200 Customers ? Over 5,000 Installations ECOtality North America Overview Today ? 1990?s involved in EV1 ? EV Chargers ? Vehicle & battery...

Aasheim, D.

2011-01-01T23:59:59.000Z

430

Quadrennial Technology Review Vehicle Efficiency and Electrification...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Efficiency and Electrification Workshop Documents Quadrennial Technology Review Vehicle Efficiency and Electrification Workshop Documents QTR Vehicle Efficiency and...

431

Advanced Technology Vehicles Manufacturing Incentive Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program A fact sheet detailling the advanced technology vehicles...

432

Hybrid Vehicle Technology - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

* Batteries * Batteries * Modeling * Testing Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Hybrid Vehicle Technology revolutionize transportation Argonne's Research Argonne researchers are developing and testing various hybrid electric vehicles (HEVs) and their components to identify the technologies, configurations, and engine control strategies that provide the best combination of high fuel economy and low emissions. Vehicle Validation Argonne also serves as the lead laboratory for hardware-in-the-loop (HIL) and technology validation for the U.S. Department of Energy (DOE). HIL is a

433

Advanced Vehicle Electrification  

Energy.gov (U.S. Department of Energy (DOE))

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

434

Vehicle Modeling and Simulation  

Energy.gov (U.S. Department of Energy (DOE))

Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

435

Flex Fuel Vehicle Systems  

Energy.gov (U.S. Department of Energy (DOE))

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

436

Electric Vehicle Supply Equipment  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Procurement of Electric Vehicle Supply Equipment This Guidance provides a description of the types of requirements to be included in an employer's workplace charging request for...

437

Vehicle Technologies Office: Conferences  

Energy.gov (U.S. Department of Energy (DOE))

The Vehicle Technologies Office supports and sponsors conferences related to the Office's goals and objectives. When such conferences are planned and conference information becomes available, it...

438

Alternative Fuel Vehicle Resources  

Energy.gov (U.S. Department of Energy (DOE))

Alternative fuel vehicles use fuel types other than petroleum and include such fuels as electricity, ethanol, biodiesel, natural gas, hydrogen, and propane. Compared to petroleum, these...

439

Vehicle Emissions Review - 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Emissions Review - 2012 Tim Johnson October 16, 2012 2 Environmental Technologies Summary * Regulations - LEVIII finalized, Tier 3? RDE in Europe developing and very...

440

Vehicle highway automation.  

E-Print Network (OSTI)

??Vehicle Highway Automation has been studied for several years but a practical system has not been possible because of technology limitations. New advances in sensing… (more)

Challa, Dinesh Kumar

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle miles traveled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Vehicles | Department of Energy  

Energy Savers (EERE)

Calculator is an interactive tool that helps you plan a route, pick a car and estimate a fuel costs. Subtopics Alternative Fuel Vehicles Batteries Hydrogen & Fuel Cells Bioenergy...

442

Integrated Vehicle Thermal Management  

Energy.gov (U.S. Department of Energy (DOE))

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

443

Blog Feed: Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 8, 2010 June 8, 2010 What's Up With Fuel Cells? We hear a lot about renewables like wind and solar these days, but what's the deal with fuel cells and is there a future in them? May 26, 2010 An artist's rendering of a Nissan LEAF charging outside a café. | Courtesy The EV Project LEAFing Through New Vehicle Technology The LEAF is a five-passenger hatchback, powered by advanced lithium-ion batteries - with a range of more than 100 miles on a single charge. The vehicle will cost drivers about $25,000 after a federal tax credit. May 20, 2010 Are You Participating in Bike-to-Work Day? Are you participating in Bike-to-Work day? Tell us about your plans! May 18, 2010 EcoCAR: The NeXt Challenge Beyond the use of advanced technology, EcoCAR is unique among student competitions in that it provides students with access to and training on

444

EPRI-SCE testing and evaluation of electric vehicles: Lucas van and Jet 007, 750, and 1400. Annual report  

SciTech Connect

This report describes the second phase of the EPRI-SCE Electric Vehicle Project, in which four additional electric vehicles (EVs) were tested and evaluated: the Jet Industries Model 007 passenger car, Model 750 pickup truck, and Model 1400 passenger van; and the Lucas-Bedford Model CFE cargo van. During the first phase of this project, four EVs were also tested: Jet 500, Volkswagen Type 2, DAUG Type GM2, and Battronic Minivan. The project emphasizes road-testing of vehicles to acquire data on their useful driving range, performance, reliability, and driver acceptance in utility-fleet use. Each vehicle was driven more than 100 miles along SCE-selected test routes to determine the effects of different terrains (level, slight grades, and steep grades), traffic conditions (one-, two-, three-, and four-stops/mile and freeway), and payload. The vehicle component failures that occurred during testing are itemized and described briefly, and assessments are made of expected field reliability. Other vehicle characteristics and measurements of interest are presented. The data base on these test vehicles is intended to provide the reader an overview of the real world performance that can be expected from present-day state-of-the-art EVs.

Not Available

1981-02-01T23:59:59.000Z

445

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

. . Trends in Household Vehicle Stock The 1991 RTECS counted more than 150 million vehicles in use by U.S. households. This chapter examines recent trends in the vehicle stock, as measured by the RTECS and other reputable vehicle surveys. It also provides some details on the type and model year of the household vehicle stock, and identifies regional differences in vehicle stock. Because vehicles are continuously being bought and sold, this chapter also reports findings relating to turnover of the vehicle stock in 1991. Finally, it examines the average vehicle stock in 1991 (which takes into account the acquisition and disposal of household vehicles over the course of the year) and identifies variations in the average number of household vehicles based on differences in household characteristics. Number of Household Vehicles Over the past 8 years, the stock of household vehicles has

446

Medium and Heavy Duty Vehicle Field Evaluations (Presentation)  

SciTech Connect

This presentation discusses field evaluations of medium- and heavy-duty vehicles performed by NREL. The project provides medium-duty (MD) and heavy-duty (HD) test results, aggregated data, and detailed analysis, including 3rd party unbiased data (data that would not normally be shared by industry in an aggregated and detailed manner). Over 5.6 million miles of advanced technology MD and HD truck data have been collected, documented, and analyzed on over 240 different vehicles since 2002. Data, analysis, and reports are shared within DOE, national laboratory partners, and industry for R&D planning and strategy. The results help guide R&D for new technology development, help define intelligent usage of newly developed technology, and help fleets/users understand all aspects of advanced technology.

Walkowicz, K.

2014-06-01T23:59:59.000Z

447

A Predictive Tool for Emissions from Heavy-Duty Diesel Vehicles  

Science Journals Connector (OSTI)

This study was motivated by the need to augment a traffic simulation model, TRANSIMS (Los Alamos National Laboratories), with emissions predic tion capability, but the approach has wide and general application. ... Vehicle emissions were characterized using a variety of driving cycles, including the CBD Cycle, 5-Peak Cycle, 5-Mile Route, NY Bus Cycle, and the CSHVR (1, 2). ... Although off-cycle emissions will be curtailed in the future, they are present in many diesel vehicles manufactured over a decade of model years. ...

Nigel N. Clark; Prakash Gajendran; Justin M. Kern

2002-11-27T23:59:59.000Z

448

Carbon Emission Targets for Driving Sustainable Mobility with US Light-Duty Vehicles  

Science Journals Connector (OSTI)

The Intergovernmental Panel on Climate Change (IPCC) and many independent scientists warn that if global mean temperatures rise 1?5 °C from 1990 levels due to anthropogenic greenhouse gas emissions, risks of extreme climate events and widespread regional ecological and economic impacts will significantly increase (11, 12). ... PHEVs can displace on-road gasoline-powered vehicles and help to meet the defined targets if the average carbon intensity of the remaining conventional and PHEV vehicle mix is less than the LDV g/mile target. ... Keoleian, G. A.; Kar, K.; Manion, M.; Bulkley, J. W. Industrial Ecology of the Automobile: A Life Cycle Assessment; Society of Automotive Engineers: Warrendale, PA, 1997. ...

Hilary G. Grimes-Casey; Gregory A. Keoleian; Blair Willcox

2008-12-31T23:59:59.000Z

449

2012 U.S. Vehicle Analysis  

E-Print Network (OSTI)

Electric Vehicles …………………………………………………………. Dieselperformance of electric vehicles Diesel Vehicle From Tableelectric vehicles ……………………… 3.15: Emission and fuel efficiency performance of diesel

Lam, Ho Yeung Michael

2012-01-01T23:59:59.000Z

450

Employer Based Travel Demand Management -Devising Options to Meet Employee Travel Needs  

E-Print Network (OSTI)

Employer Based Travel Demand Management - Devising Options to Meet Employee Travel Needs Bruce for presentation at the 2002 Annual Conference of the Canadian Institute of Transportation Engineers to be held May to Meet Employee Travel Needs Bruce Hellinga1 , Charles Lee2 , James Mallett3 , JoAnn Woodhall4 ABSTRACT

Hellinga, Bruce

451

Life Cycle Environmental Assessment of Lithium-Ion and Nickel Metal Hydride Batteries for Plug-In Hybrid and Battery Electric Vehicles  

Science Journals Connector (OSTI)

Infrastructure and transport requirements, though often generic, were always included. ... vehicles (PHEV), which use electricity from the grid to power a portion of travel, could play a role in reducing greenhouse gas (GHG) emissions from the transport sector; however, meaningful GHG emissions redns. ... storage systems in renewable energy plants, as well as power systems for sustainable vehicles, such as hybrid and elec. ...

Guillaume Majeau-Bettez; Troy R. Hawkins; Anders Hammer Strřmman

2011-04-20T23:59:59.000Z

452

Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

4: January 26, 4: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions to someone by E-mail Share Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Facebook Tweet about Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Twitter Bookmark Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Google Bookmark Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Delicious Rank Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Digg Find More places to share Vehicle Technologies Office: Fact #304:

453

Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

6: December 2, 6: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 to someone by E-mail Share Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Facebook Tweet about Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Twitter Bookmark Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Google Bookmark Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Delicious Rank Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Digg Find More places to share Vehicle Technologies Office: Fact #806:

454

Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per  

NLE Websites -- All DOE Office Websites (Extended Search)

8: April 12, 8: April 12, 2010 Vehicles per Household and Other Demographic Statistics to someone by E-mail Share Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Facebook Tweet about Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Twitter Bookmark Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Google Bookmark Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Delicious Rank Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Digg Find More places to share Vehicle Technologies Office: Fact #618:

455

Vehicle Technologies Office: 2010 Vehicle and Systems Simulation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Office: 2010 Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and Testing R&D Annual Progress...

456

Vehicle Technologies Office: 2012 Vehicle and Systems Simulation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2 Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2012 Vehicle and Systems Simulation and Testing R&D Annual Progress Report FY...

457

Vehicle Technologies Office: 2013 Vehicle and Systems Simulation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

3 Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2013 Vehicle and Systems Simulation and Testing R&D Annual Progress Report FY...

458

Vehicle Technologies Office: 2011 Vehicle and Systems Simulation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2011 Vehicle and Systems Simulation and Testing R&D Annual Progress Report FY...

459

Vehicle Technologies Office Merit Review 2014: In-Vehicle Evaluation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

In-Vehicle Evaluation of Lower-Energy Energy Storage System (LEESS) Devices Vehicle Technologies Office Merit Review 2014: In-Vehicle Evaluation of Lower-Energy Energy Storage...

460

Highway travel and fuel comsumption from 1970 to 1980  

SciTech Connect

The change in fuel price and availability (1970-80) has had a profound impact on the way and the extent of travel. Within the decade there were two precipitous increases in fuel price among a posture of steadily rising energy costs. In response to these price increases, a number of public policies were enacted. For instance, the 55-mph speed limit was imposed in 1974. At the end of that same year, the Federal Energy Administration and the Energy Policy and Conservation Act (EPCA) were formulated to prescribe certain conservation guidelines for states to follow in formulating their own programs. Specifically, EPCA established a program for the development of plans designed for the promotion of energy conservation and a reduction of the energy demand growth rate. Parallel to the conservation measures are technological improvements in vehicle fuel consumption. EPCA mandated that automobile manufacturers achieve fuel efficiency incrementally through 1985 to reach an average fuel economy of 27.5 mpg. This article reviews the historical impact of these factors from 1970 through 1980. Its objective is to observe the relative significance of each of these energy-saving alternatives on the growth rate of travel and fuel use. This historical perspective is particularly interesting since it presents the before-and-after effects of two ''crises'' occurring during this 10-year period. 1 figure, 10 tables.

Chan, Y.

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle miles traveled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

A zinc-air battery and flywheel zero emission vehicle  

SciTech Connect

In response to the 1990 Clean Air Act, the California Air Resources Board (CARB) developed a compliance plan known as the Low Emission Vehicle Program. An integral part of that program was a sales mandate to the top seven automobile manufacturers requiring the percentage of Zero Emission Vehicles (ZEVs) sold in California to be 2% in 1998, 5% in 2001 and 10% by 2003. Currently available ZEV technology will probably not meet customer demand for range and moderate cost. A potential option to meet the CARB mandate is to use two Lawrence Livermore National Laboratory (LLNL) technologies, namely, zinc-air refuelable batteries (ZARBs) and electromechanical batteries (EMBs, i. e., flywheels) to develop a ZEV with a 384 kilometer (240 mile) urban range. This vehicle uses a 40 kW, 70 kWh ZARB for energy storage combined with a 102 kW, 0.5 kWh EMB for power peaking. These technologies are sufficiently near-term and cost-effective to plausibly be in production by the 1999-2001 time frame for stationary and initial vehicular applications. Unlike many other ZEVs currently being developed by industry, our proposed ZEV has range, acceleration, and size consistent with larger conventional passenger vehicles available today. Our life-cycle cost projections for this technology are lower than for Pb-acid battery ZEVs. We have used our Hybrid Vehicle Evaluation Code (HVEC) to simulate the performance of the vehicle and to size the various components. The use of conservative subsystem performance parameters and the resulting vehicle performance are discussed in detail.

Tokarz, F.; Smith, J.R.; Cooper, J.; Bender, D.; Aceves, S.

1995-10-03T23:59:59.000Z

462

MHK Projects/Thirty Five Mile Point Project | Open Energy Information  

Open Energy Info (EERE)

Thirty Five Mile Point Project Thirty Five Mile Point Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.0146,"lon":-90.4774,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

463

18 MILES NORTH OF PHlLADEl.PHlA HATBORO, PA. August  

Office of Legacy Management (LM)

8 MILES NORTH OF PHlLADEl.PHlA 8 MILES NORTH OF PHlLADEl.PHlA HATBORO, PA. August 27, 1948 ! ! Frank Giaccio' Commission / I This follows my letter of August ZOth, in which I promised to advise you of our thoughts concerning beryllium, after I had completed a series of con- tacts with both.Government and private,grou?s and had an opportunity to evaluate the possibilities of using our process from the point of view of industrial research. By this, I meanthe possibility of the research leading into substantial production of parts. I believe I mentioned some of the contacts to you when I was in your office, and that we still had more to make. It is my opinion now that as far as beryllium is concerned, I cannot visualize the possibility of large production runs of parts; because it is

464

MHK Projects/Eighty One Mile Point Project | Open Energy Information  

Open Energy Info (EERE)

Eighty One Mile Point Project Eighty One Mile Point Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.16,"lon":-91.0056,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

465

Compound and Elemental Analysis At Seven Mile Hole Area (Larson, Et Al.,  

Open Energy Info (EERE)

2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Seven Mile Hole Area (Larson, Et Al., 2009) Exploration Activity Details Location Seven Mile Hole Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Standard X-ray diffractometer (XRD) analyses were used in the laboratory to confirm the PIMA mineral identifications and to look for minerals that have poor SWIR response (e.g., quartz and feldspars) or were not present in great enough concentrations to be detected by the PIMA. Petrographic and electron microprobe analyses of selected samples were conducted in the laboratories of the GeoAnalytical Laboratory at Washington State

466

"Table 11. Fuel Economy, Selected Survey Years (Miles Per Gallon)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Economy, Selected Survey Years (Miles Per Gallon)" Fuel Economy, Selected Survey Years (Miles Per Gallon)" ,"Survey Years" ,1983,1985,1988,1991,1994,2001 "Total",15.1,16.1,18.3,19.3,19.8,20.2 "Household Characteristics" "Census Region and Division" " Northeast",15.6,"NA",19.6,20.9,20.7,20.85531 " New England",16.5,"NA",19.7,21.1,20.4,20.97907 " Middle Atlantic ",15.3,"NA",19.6,20.8,20.8,20.79659 " Midwest ",14.8,"NA",18.2,19,20.1,20.18362 " East North Central",14.9,"NA",18.4,19.4,20.1,20.26056 " West North Central ",14.5,"NA",17.8,17.9,20,20.01659 " South",15,"NA",18,19.2,19.6,20.17499 " South Atlantic",15.6,"NA",19,20.2,20.2,20.5718

467

Greater commitment needed to solve continuing problems at Three Mile Island. Report to the Congress  

SciTech Connect

The Nation's first major accident at a commercial nuclear-powered electricity generating station occurred at Three Mile Island over 2 years ago, yet the resolution of the resultant problems is still subject to regulatory and financial uncertainty. Consequently, little progress has been made to clean up the damaged facility or alleviate the extreme financial stress placed upon its owners. The remedies required to resolve the continuing problems at Three Mile Island will require unprecedented coordination and commitment by Federal and State regulatory bodies, the electric utility industry, the financial community, and the owners of the damaged facility. To safeguard against similar problems in the future, the Nuclear Regulatory Commission should develop accident recovery guidelines and ensure that increased property insurance coverage is available for nuclear facilities.

Not Available

1981-08-26T23:59:59.000Z

468

Answers to questions about updated estimates of occupational radiation doses at Three Mile Island, Unit 2  

SciTech Connect

The purpose of this question and answer report is to provide a clear, easy-to-understand explanation of revised radiation dose estimates which workers are likely to receive over the course of the cleanup at Three Mile Island, Unit 2, and of the possible health consequences to workers of these new estimates. We will focus primarily on occupational dose, although pertinent questions about public health and safety will also be answered.

Not Available

1983-12-01T23:59:59.000Z

469

Criticality prevention during postaccident decontamination of TMI-2 (Three Mile Island Unit 2) plant systems  

SciTech Connect

Following the accident at Three Mile Island Unit 2 (TMI-2), the likelihood of a criticality outside of the reactor coolant system (RCS) during the plant cleanup was very small. Given the consequence of any possible critical event in the TMI-2 systems, However, it was always necessary to ensure that all steps were taken to prevent criticality. Therefore, engineered controls were developed to ensure that decontamination of plant systems containing fuel material could be conducted in a manner that precluded criticality.

Palau, G. L.

1988-01-01T23:59:59.000Z

470

NREL: Vehicles and Fuels Research - Hydraulic Hybrid Fleet Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydraulic Hybrid Fleet Vehicle Testing How Hydraulic Hybrid Vehicles Work Hydraulic hybrid systems can capture up to 70% of the kinetic energy that would otherwise be lost during...

471

Challenges in Electric Vehicle Adoption and Vehicle-Grid Integration.  

E-Print Network (OSTI)

??With rapid innovation in vehicle and battery technology and strong support from governmental bodies and regulators, electric vehicles (EV) sales are poised to rise. While… (more)

Xi, Xiaomin

2013-01-01T23:59:59.000Z

472

Vehicle Technologies Market Report  

E-Print Network (OSTI)

· Diesel comprised 73% of the class 3-8 trucks sold in 2010, down from 84% in 2006 · Class 8 combination 2011 · There are more than 4,400 electric vehicle charging stations throughout the nation · Single wide stop sites across the country to reduce truck idling time Policy · Plug-in hybrids and electric vehicle

473

> 070131-073Vehicle  

E-Print Network (OSTI)

-how developed with the design ofthe ROAZ ASV [3] [4]. Power is provided by electric batteries. The computer> 070131-073Vehicle for Network Centric Operations H. Ferreira-The design and development of the Swordfish Autonomous Surface Vehicle (ASV) system is discussed. Swordfish

Marques, Eduardo R. B.

474

DOE Releases New Video on Electric Vehicles, Highlights Administration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Video on Electric Vehicles, Highlights New Video on Electric Vehicles, Highlights Administration Support for U.S. Auto Industry in Detroit Economic Club Speech DOE Releases New Video on Electric Vehicles, Highlights Administration Support for U.S. Auto Industry in Detroit Economic Club Speech January 9, 2012 - 5:05pm Addthis Washington D.C. - U.S. Energy Secretary Steven Chu will travel to Detroit, Mich., this week to highlight the Obama Administration's support for the American automobile industry and the role investing in innovation will play in keeping U.S. workers and companies competitive. Last year, after seven straight years of decline, American auto manufacturers rebounded thanks in part to support from the Administration. Today, the Department of Energy also released a new video, "Energy 101:

475

Electric Vehicle Battery Testing: It's Hot Stuff! | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Vehicle Battery Testing: It's Hot Stuff! Electric Vehicle Battery Testing: It's Hot Stuff! Electric Vehicle Battery Testing: It's Hot Stuff! May 26, 2011 - 2:45pm Addthis NREL's Large-Volume Battery Calorimeter has the highest-capacity chamber in the world for testing of this kind. From bottom clockwise:NREL researchers Matthew Keyser, Dirk Long & John Ireland | Photo Courtesy of Dennis Schroeder NREL's Large-Volume Battery Calorimeter has the highest-capacity chamber in the world for testing of this kind. From bottom clockwise:NREL researchers Matthew Keyser, Dirk Long & John Ireland | Photo Courtesy of Dennis Schroeder Sarah LaMonaca Communications Specialist, Office of Energy Efficiency & Renewable Energy What does this mean for me? Increased performance and travel distance in future hybrid and

476

1 THE LIGHT-DUTY-VEHICLE FLEET'S EVOLUTION: 2 ANTICIPATING PHEV ADOPTION AND GREENHOUSE GAS  

E-Print Network (OSTI)

1 THE LIGHT-DUTY-VEHICLE FLEET'S EVOLUTION: 2 ANTICIPATING PHEV ADOPTION AND GREENHOUSE GAS 3 patterns ­ and associated petroleum use 33 and greenhouse gas (GHG) emissions ­ can change under different microsimulation, travel behavior modeling, greenhouse gas emissions60 INTRODUCTION AND MOTIVATION61 Per

Kockelman, Kara M.

477

CMVRTC: Overweight Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

Heavy and overweight vehicle brake testing for combination five-axle Heavy and overweight vehicle brake testing for combination five-axle tractor-flatbed scale The Federal Motor Carrier Safety Administration, in coordination with the Federal Highway Administration, sponsored the Heavy and Overweight Vehicle Brake Testing (HOVBT) program in order to provide information about the effect of gross vehicle weight (GVW) on braking performance. Because the Federal Motor Carrier Safety Regulations limit the number of braking system defects that may exist for a vehicle to be allowed to operate on the roadways, the examination of the effect of brake defects on brake performance for increased loads is also relevant. The HOVBT program seeks to provide relevant information to policy makers responsible for establishing load limits, beginning with providing test data for a

478

Which Vehicles Are Tested  

NLE Websites -- All DOE Office Websites (Extended Search)

Which Vehicles Are Tested Which Vehicles Are Tested Popular Vehicles Exempt from Federal Fuel Economy Standards Prior to 2011 Pickups SUVs Vans Manufacturer Model Chevrolet Avalanche 2500 Series ¾ Ton Silverado 2500/3500 Series Dodge RAM 2500/3500 Series Ford F-250/350 Series GMC Sierra 2500/3500 Series Manufacturer Model Chevrolet Suburban ¾ Ton* Ford Excursion§ GMC Yukon XL ¾ Ton* Hummer H1§ and H2§ Manufacturer Model Chevrolet Express 2500 Passenger* Express 3500 Cargo Ford E Series Passenger (w/ 6.8L Triton or 6.0L Diesel Engine)* E Series Cargo (w/ 6.8L Triton or 6.0L Diesel Engine) GMC Savanna 2500/3500 Passenger* Savanna 3500 Cargo Note: These vehicles are given as examples. This is not a comprehensive list. * No longer exempt as of 2011 § No longer made Manufacturers do not test every new vehicle offered for sale. They are only

479

Propane vehicles : status, challenges, and opportunities.  

SciTech Connect

Propane as an auto fuel has a high octane value and has key properties required for spark-ignited internal combustion engines. To operate a vehicle on propane as either a dedicated fuel or bi-fuel (i.e., switching between gasoline and propane) vehicle, only a few modifications must be made to the engine. Until recently propane vehicles have commonly used a vapor pressure system that was somewhat similar to a carburetion system, wherein the propane would be vaporized and mixed with combustion air in the intake plenum of the engine. This leads to lower efficiency as more air, rather than fuel, is inducted into the cylinder for combustion (Myers 2009). A newer liquid injection system has become available that injects propane directly into the cylinder, resulting in no mixing penalty because air is not diluted with the gaseous fuel in the intake manifold. Use of a direct propane injection system will improve engine efficiency (Gupta 2009). Other systems include the sequential multi-port fuel injection system and a bi-fuel 'hybrid' sequential propane injection system. Carbureted systems remain in use but mostly for non-road applications. In the United States a closed-loop system is used in after-market conversions. This system incorporates an electronic sensor that provides constant feedback to the fuel controller to allow it to measure precisely the proper air/fuel ratio. A complete conversion system includes a fuel controller, pressure regulator valves, fuel injectors, electronics, fuel tank, and software. A slight power loss is expected in conversion to a vapor pressure system, but power can still be optimized with vehicle modifications of such items as the air/fuel mixture and compression ratios. Cold start issues are eliminated for vapor pressure systems since the air/fuel mixture is gaseous. In light-duty propane vehicles, the fuel tank is typically mounted in the trunk; for medium- and heavy-duty vans and trucks, the tank is located under the body of the vehicle. Propane tanks add weight to a vehicle and can slightly increase the consumption of fuel. On a gallon-to-gallon basis, the energy content of propane is 73% that of gasoline, thus requiring more propane fuel to travel an equivalent distance, even in an optimized engine (EERE 2009b).

Rood Werpy, M.; Burnham, A.; Bertram, K.; Energy Systems

2010-06-17T23:59:59.000Z

480

Policy Title: Travel HARVARD UNIVERSITY FINANCIAL POLICY Responsible Office: UFS  

E-Print Network (OSTI)

Policy Title: Travel HARVARD UNIVERSITY FINANCIAL POLICY Responsible Office: UFS Effective Date: July 1, 2010 Revision Date: July 14, 2010TRAVEL Policy Number: TR104 HARVARD UNIVERSITY FINANCIAL POLICY POLICY STATEMENT Harvard University reimburses for necessary and reasonable travel expenses

Note: This page contains sample records for the topic "vehicle miles traveled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

1: November 29, 1: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 to someone by E-mail Share Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 on Facebook Tweet about Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 on Twitter Bookmark Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 on Google Bookmark Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 on Delicious Rank Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 on Digg

482

Vehicle Technologies Office: Plug-in Electric Vehicle Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics Basics Plug-in electric vehicles (PEVs), which include both plug-in hybrid electric vehicles and all-electric vehicles, use electricity as either their primary fuel or to improve efficiency. Commonly Used PEV Terms All-electric vehicle (AEV) - A vehicle with plug-in capability; driving energy comes entirely from its battery. Plug-in hybrid electric vehicle (PHEV) - A vehicle with plug-in capability; driving energy can come from either its battery or a liquid fuel like gasoline, diesel, or biofuels. Plug-in electric vehicle (PEV) - Any vehicle with plug-in capability. This includes AEVs and PHEVs. Hybrid electric vehicle (HEV) - A vehicle that has an electric drive system and battery but does not have plug-in capability; driving energy comes only from liquid fuel.

483

Vehicle Technologies Office: Propulsion Systems  

Energy.gov (U.S. Department of Energy (DOE))

Vehicle Technologies Office research focuses much of its effort on improving vehicle fuel economy while meeting increasingly stringent emissions standards. Achieving these goals requires a...

484

Electric vehicles | Open Energy Information  

Open Energy Info (EERE)

vehicles Jump to: navigation, search TODO: add content Electric vehicles first came into existence in the mid-19th century, when electricity was among the preferred methods for...

485

Gasoline Ultra Fuel Efficient Vehicle  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Principal Investigator 13MY11 2011 DOE Vehicle Technologies Review Gasoline Ultra Fuel Efficient Vehicle ACE064 "This presentation does not contain any proprietary,...

486

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

homes, pickup trucks, and jeeps or similar vehicles. See Vehicle. Average Household Energy Expenditures: A ratio estimate defined as the total household energy expenditures for...

487

Evaluate Greenhouse Gas Emissions Profile for Business Travel  

Energy.gov (U.S. Department of Energy (DOE))

Developing a Federal agency's business travel greenhouse gas (GHG) emissions profile first involves getting a better understanding of the nature and patterns of travel within the organization. Not all travel can be avoided or effectively substituted with information technology solutions. By understanding where people are traveling by air, the purpose of travel, and what parts of the organization travel most frequently, the agency will be in a better position to develop solutions and program-level targets.

488

Microsoft Word - 20050821_Appendix_A.doc  

U.S. Energy Information Administration (EIA) Indexed Site

Table A2. U.S. Per Household Vehicle-Miles Traveled, Vehicle Fuel Consumption and Expenditures, Table A2. U.S. Per Household Vehicle-Miles Traveled, Vehicle Fuel Consumption and Expenditures, 2001 ENERGY INFORMATION ADMINISTRATION / HOUSEHOLD VEHICLES ENERGY USE: LATEST A N D TRENDS 56 Average per Household with Vehicles 2001 Household Characteristics Number of Households with Vehicles (million) Number of Vehicles Vehicle-Miles Traveled (thousands) Consumption (gallons) Expenditures (dollars) Total.............................. 98.9 1.9 23.1 1,143 1,520 Census Region and Division Northeast......................... 17.7 1.8 21.4 1,027 1,373 New England..................... 5.4 1.9 22.6 1,086 1,500 Middle Atlantic ................ 12.3 1.8 20.8 1,001 1,317 Midwest .......................... 23.6 2.0 23.7 1,176 1,585

489

ORISE: CDC Travelers' Health Mobile App, Designed by ORISE, Gains...  

NLE Websites -- All DOE Office Websites (Extended Search)

Can I Eat This? Mobile App Helps International Travelers Make Safe Dining Choices CDC Travelers' Health app, designed by ORISE, gains attention on multiple websites How ORISE is...

490

Better World Club Travel Cool | Open Energy Information  

Open Energy Info (EERE)

responsible travel through partnerships. Company partners commit to promoting ecotourism. References: Better World Club Travel Cool1 This article is a stub. You can help...

491

Solar Decathlon: How far did they travel? | Department of Energy  

Energy Savers (EERE)

Solar Decathlon: How far did they travel? Solar Decathlon: How far did they travel? Toggle Routes onoff Return to map Solar Decathlon Journeys Visualizing the distances that...

492

Identify Strategies to Reduce Business Travel for Greenhouse Gas Mitigation  

Energy.gov (U.S. Department of Energy (DOE))

The tables below illustrate some of the more common strategies that can enable employees to travel less and travel more efficiently for business.

493

Advanced Vehicle Electrification and Transportation Sector Electrifica...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Advanced Vehicle Electrification and Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector...

494

Vehicle Technologies Office Merit Review 2014: Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Smith Electric Vehicles at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Smith Electric...

495

VEHICLE ACCESS PORTALS  

NLE Websites -- All DOE Office Websites (Extended Search)

East Jemez Road (Map 1) East Jemez Road (Map 1) VEHICLE ACCESS PORTALS Traffic Lane 1: Closed except for emergencies and maintenance operations. Traffic Lanes 2-7: Drivers required to stop and present LANL badges or other form of valid identification to Protective Force officers. Drivers may proceed upon direction of the officers. Note: Commercial delivery vehicle drivers must also pres- ent their inspection passes from Post 10. More Information: spp-questions@lanl.gov Non-work Hours Vehicles entering LANL at the East Jemez VAPs during non-work hours (between 7

496

Vehicle Technologies Office: Ambassadors  

NLE Websites -- All DOE Office Websites (Extended Search)

Ambassadors Ambassadors Workplace Charging Challenge Clean Cities Coalitions Clean Cities logo. Clean Cities National: A network of nearly 100 Clean Cities coalitions, supported by the Vehicle Technologies Office, brings together public and private stakeholders to deploy plug-in electric vehicles, alternative and renewable fuels, idle-reduction measures, fuel economy improvements, and other petroleum reduction strategies. Clean Cities coordinators are knowledgeable about local incentives and policies for workplace charging as well as other aspects of plug-in electric vehicle community readiness. Workplace Charging Challenge Ambassadors The Workplace Charging Challenge enlists stakeholder organizations as Ambassadors to promote and support workplace charging. The directory below highlights Workplace Charging Challenge Ambassadors across the country.

497

Blast resistant vehicle seat  

DOE Patents (OSTI)

Disclosed are various seats for vehicles particularly military vehicles that are susceptible to attack by road-bed explosive devices such as land mines or improvised explosive devices. The seats often have rigid seat shells and may include rigid bracing for rigidly securing the seat to the chassis of the vehicle. Typically embodiments include channels and particulate media such as sand disposed in the channels. A gas distribution system is generally employed to pump a gas through the channels and in some embodiments the gas is provided at a pressure sufficient to fluidize the particulate media when an occupant is sitting on the seat.

Ripley, Edward B

2013-02-12T23:59:59.000Z

498

Rapid road repair vehicle  

DOE Patents (OSTI)

Disclosed are improvments to a rapid road repair vehicle comprising an improved cleaning device arrangement, two dispensing arrays for filling defects more rapidly and efficiently, an array of pre-heaters to heat the road way surface in order to help the repair material better bond to the repaired surface, a means for detecting, measuring, and computing the number, location and volume of each of the detected surface imperfection, and a computer means schema for controlling the operation of the plurality of vehicle subsystems. The improved vehicle is, therefore, better able to perform its intended function of filling surface imperfections while moving over those surfaces at near normal traffic speeds.

Mara, Leo M. (Livermore, CA)

1999-01-01T23:59:59.000Z

499

Autonomous Vehicles Have a Wide Range of Possible Energy Impacts (Poster)  

SciTech Connect

This poster presents initial estimates of the net energy impacts of automated vehicles (AVs). Automated vehicle technologies are increasingly recognized as having potential to decrease carbon dioxide emissions and petroleum consumption through mechanisms such as improved efficiency, better routing, lower traffic congestion, and by enabling advanced technologies. However, some effects of AVs could conceivably increase fuel consumption through possible effects such as longer distances traveled, increased use of transportation by underserved groups, and increased travel speeds. The net effect on petroleum use and climate change is still uncertain. To make an aggregate system estimate, we first collect best estimates for the energy impacts of approximately ten effects of AVs. We then use a modified Kaya Identity approach to estimate the range of aggregate effects and avoid double counting. We find that depending on numerous factors, there is a wide range of potential energy impacts. Adoption of automated personal or shared vehicles can lead to significant fuel savings but has potential for backfire.

Brown, A.; Repac, B.; Gonder, J.

2013-07-01T23:59:59.000Z

500

SPATIALLY DISAGGREGATE PANEL MODELS OF CRASH AND INJURY COUNTS: THE EFFECT OF SPEED LIMITS AND DESIGN  

E-Print Network (OSTI)

characteristics, such as curvature and grade, as well as vehicle miles traveled (VMT). A 10 mph speed limit invites an "ecological fallacy" in results, where individual-level relationships cannot be inferred safety factors other than speed limits, including horizontal curvature and truck vehicle miles

Kockelman, Kara M.