Powered by Deep Web Technologies
Note: This page contains sample records for the topic "vehicle ldv energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Vehicles | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

The U.S. Department of Energy (DOE) supports the development and deployment of advanced vehicle technologies, including advances in electric vehicles, engine efficiency, and...

2

Evaluating the impact of advanced vehicle and fuel technologies in U.S. light duty vehicle fleet  

E-Print Network (OSTI)

The unrelenting increase in oil use by the U.S. light-duty vehicle (LDV) fleet presents an extremely challenging energy and environmental problem. A variety of propulsion technologies and fuels have the promise to reduce ...

Bandivadekar, Anup P

2008-01-01T23:59:59.000Z

3

Vehicle Technologies Office: Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage to someone by E-mail Share Vehicle Technologies Office: Energy Storage on Facebook Tweet about Vehicle Technologies Office: Energy Storage on Twitter Bookmark...

4

Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicles Vehicles Vehicles EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. Image of three semi truck cabs. The one on the left is yellow, the middle is green, and the far right truck is red. The U.S. Department of Energy (DOE) supports the development and deployment of advanced vehicle technologies, including advances in electric vehicles, engine efficiency, and lightweight materials. Since 2008, the Department of

5

Energy Basics: Electric Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

6

Energy Basics: Propane Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

7

Energy Basics: Alternative Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

8

Energy Basics: Alternative Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

fuels. Learn more about the following types of vehicles: Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

9

Energy Basics: Electric Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Photo of an electric bus driving up a hill. Electricity can be used as a transportation fuel to power battery electric vehicles (EVs). EVs store electricity in an energy storage...

10

Household Vehicles Energy Consumption  

Reports and Publications (EIA)

This report provides newly available national and regional data and analyzes the nation's energy use by light-duty vehicles. This release represents the analytical component of the report, with a data component having been released in early 2005.

Mark Schipper

2005-11-30T23:59:59.000Z

11

Energy Basics: Propane Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

gasoline vehicles. Dedicated propane vehicles are designed to run only on propane; bi-fuel propane vehicles have two separate fueling systems that enable the vehicle to use...

12

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

DOEEIA-0464(91) Distribution Category UC-950 Household Vehicles Energy Consumption 1991 December 1993 Energy Information Administration Office of Energy Markets and End Use U.S....

13

Vehicles | Open Energy Information  

Open Energy Info (EERE)

Vehicles Jump to: navigation, search TODO: Add description Related Links List of Companies in Vehicles Sector List of Vehicles Incentives Retrieved from "http:en.openei.orgw...

14

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

a regular basis at the time of the 1990 RECS personal interviews. Electricity: See Main Heating Fuel. Energy Information AdministrationHousehold Vehicles Energy Consumption 1991...

15

Household Vehicles Energy Consumption 1994  

U.S. Energy Information Administration (EIA) Indexed Site

AdministrationHousehold Vehicles Energy Consumption 1994 110 Electricity: See Main Heating Fuel. Energy Used in the Home: For electricity or natural gas, the quantity is the...

16

Energy Basics: Flexible Fuel Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Flexible Fuel Vehicles Photo of a gray van with 'E85 Ethanol' written on the side. Flexible fuel vehicles (FFVs) are capable of operating on gasoline, E85 (85%...

17

Energy Basics: Fuel Cell Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Fuel Cell Vehicles Photo of a blue car with 'The Road to Hydrogen' written on it, filling up at a hydrogen fueling station. Fuel cell vehicles, powered by...

18

Vehicle Technologies Office: Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Energy Storage Improving the batteries for electric drive vehicles, including hybrid electric (HEV) and plug-in electric (PEV) vehicles, is key to improving vehicles' economic, social, and environmental sustainability. In fact, transitioning to a light-duty fleet of HEVs and PEVs could reduce U.S. foreign oil dependence by 30-60% and greenhouse gas emissions by 30-45%, depending on the exact mix of technologies. For a general overview of electric drive vehicles, see the DOE's Alternative Fuel Data Center's pages on Hybrid and Plug-in Electric Vehicles and Vehicle Batteries. While a number of electric drive vehicles are available on the market, further improvements in batteries could make them more affordable and convenient to consumers. In addition to light-duty vehicles, some heavy-duty manufacturers are also pursuing hybridization of medium and heavy-duty vehicles to improve fuel economy and reduce idling.

19

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

Aggregate Aggregate Ratio: See Mean and Ratio Estimate. AMPD: Average miles driven per day. See Appendix B, "Estimation Methodologies." Annual Vehicle Miles Traveled: See Vehicle Miles Traveled. Automobile: Includes standard passenger car, 2-seater car and station wagons; excludes passenger vans, cargo vans, motor homes, pickup trucks, and jeeps or similar vehicles. See Vehicle. Average Household Energy Expenditures: A ratio estimate defined as the total household energy expenditures for all RTECS households divided by the total number of households. See Ratio Estimate, and Combined Household Energy Expenditures. Average Number of Vehicles per Household: The average number of vehicles used by a household for personal transportation during 1991. For this report, the average number of vehicles per household is computed as the ratio of the total number of vehicles to the

20

Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NREL. National Clean Fleets partners are investing in hybrid vehicles to reduce their oil use, vehicle emissions and fuel costs. What's Your PEV Readiness Score? PEV readiness...

Note: This page contains sample records for the topic "vehicle ldv energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

1. 1. Introduction The purpose of this report is to provide information on the use of energy in residential vehicles in the 50 States and the District of Columbia. Included are data about: the number and type of vehicles in the residential sector, the characteristics of those vehicles, the total annual Vehicle Miles Traveled (VMT), the per household and per vehicle VMT, the vehicle fuel consumption and expenditures, and vehicle fuel efficiencies. The Energy Information Administration (EIA) is mandated by Congress to collect, analyze, and disseminate impartial, comprehensive data about energy--how much is produced, who uses it, and the purposes for which it is used. To comply with this mandate, EIA collects energy data from a variety of sources covering a range of topics 1 . Background The data for this report are based on the household telephone interviews from the 1991 RTECS, conducted

22

Household vehicles energy consumption 1994  

SciTech Connect

Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use some 6,000 vehicles provided information to describe vehicle stock, vehicle-miles traveled, energy end-use consumption, and energy expenditures for personal vehicles. The survey results represent the characteristics of the 84.9 million households that used or had access to vehicles in 1994 nationwide. (An additional 12 million households neither owned or had access to vehicles during the survey year.) To be included in then RTECS survey, vehicles must be either owned or used by household members on a regular basis for personal transportation, or owned by a company rather than a household, but kept at home, regularly available for the use of household members. Most vehicles included in the RTECS are classified as {open_quotes}light-duty vehicles{close_quotes} (weighing less than 8,500 pounds). However, the RTECS also includes a very small number of {open_quotes}other{close_quotes} vehicles, such as motor homes and larger trucks that are available for personal use.

NONE

1997-08-01T23:59:59.000Z

23

Household Vehicles Energy Consumption 1994  

U.S. Energy Information Administration (EIA) Indexed Site

W as hi ng to n, DC DOEEIA-0464(94) Distribution Category UC-950 Household Vehicles Energy Consumption 1994 August 1997 Energy Information Administration Office of Energy Markets...

24

Household vehicles energy consumption 1991  

Science Conference Proceedings (OSTI)

The purpose of this report is to provide information on the use of energy in residential vehicles in the 50 States and the District of Columbia. Included are data about: the number and type of vehicles in the residential sector, the characteristics of those vehicles, the total annual Vehicle Miles Traveled (VMT), the per household and per vehicle VMT, the vehicle fuel consumption and expenditures, and vehicle fuel efficiencies. The data for this report are based on the household telephone interviews from the 1991 RTECS, conducted during 1991 and early 1992. The 1991 RTECS represents 94.6 million households, of which 84.6 million own or have access to 151.2 million household motor vehicles in the 50 States and the District of Columbia.

Not Available

1993-12-09T23:59:59.000Z

25

Vehicle Technologies Office: Solid State Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Conversion to someone by E-mail Share Vehicle Technologies Office: Solid State Energy Conversion on Facebook Tweet about Vehicle Technologies Office: Solid State Energy...

26

Advanced Vehicle Testing Activity: Energy Storage Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Testing to someone by E-mail Share Advanced Vehicle Testing Activity: Energy Storage Testing on Facebook Tweet about Advanced Vehicle Testing Activity: Energy...

27

Advanced Vehicle Testing Activity: Energy Storage Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Testing The Advanced Vehicle Testing Activity is tasked by the U.S. Department of Energy's Vehicle Technologies Office to conduct various types of energy storage...

28

Vehicles News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 14, 2010 July 14, 2010 Department of Energy Releases New Report on Economic Impact of Recovery Act Advanced Vehicle Investments Report Finds Recovery Act Advanced Vehicle Projects Are Creating Jobs, Spurring Private Capital Investment and Cutting Electric Vehicle Cost May 26, 2010 Deputy Secretary Poneman Attends Ground Breaking at Tennessee Advanced Vehicle Battery Plant Smyrna Electric Vehicle Project Expected to provide up to 1,500 Jobs in Tennessee March 31, 2010 GSA Doubles the Federal Hybrid Fleet, DOE Takes the Lead in Updating to Hybrids Agencies Move to Increase Energy Security and Fuel Efficiency January 11, 2010 Secretary Chu Announces $187 Million to Improve Vehicle Efficiency for Heavy-Duty Trucks and Passenger Vehicles October 15, 2009 2010 Annual Fuel Economy Guide Now Available

29

Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Amgad Elgowainy and Michael Wang Center for Transportation Research Argonne National Laboratory LDV Workshop July26, 2010 2 2 2 Team Members 2  ANL's Energy Systems (ES) Division  Michael Wang (team leader)  Dan Santini  Anant Vyas  Amgad Elgowainy  Jeongwoo Han  Aymeric Rousseau  ANL's Decision and Information Sciences (DIS) Division:  Guenter Conzelmann  Leslie Poch  Vladimir Koritarov  Matt Mahalik  Thomas Veselka  Audun Botterud  Jianhui Wang  Jason Wang 3 3 3 Scope of Argonne's PHEV WTW Analysis: Vehicle Powertrain Systems and Fuel Pathways 3  Vehicle powertrain systems:  Conventional international combustion engine vehicles (ICEVs)

30

Energy Basics: Fuel Cell Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

31

Energy Basics: Flexible Fuel Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

32

Energy Basics: Hybrid Electric Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

33

Energy Basics: Natural Gas Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

34

Vehicles Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicles Blog Vehicles Blog Vehicles Blog RSS November 22, 2013 As part of the 21st Century Truck Partnership, the Army will demonstrate technology that converts waste heat from an exhaust system to electricity used in its Stryker vehicle. | Photo courtesy of courtesy of U.S. Army Top U.S. Automakers Collaborate to Improve Heavy-Duty Freight Efficiency The 21st Century Truck Partnership aims to improve the fuel efficiency of heavy duty-freight vehicles in existing and future fleets throughout the country. The partnership includes 15 heavy-duty engine, truck, and bus manufacturers, four federal agencies and 12 national laboratories. September 19, 2013 A Clean Energy Revolution -- Now Critics often say America's clean energy future will "always be five years away." For four key clean energy technologies, that clean energy

35

Household Vehicles Energy Use Cover Page  

U.S. Energy Information Administration (EIA) Indexed Site

Household Vehicles Energy Use Cover Page Glossary Home > Households, Buildings & Industry >Transportation Surveys > Household Vehicles Energy Use Cover Page Contact Us * Feedback *...

36

VEHICLE TECHNOLOGIES PROGRAM - Energy  

75 vehicle technologies program ed wall, program manager ed.wall@ee.doe.gov (202) 586-8055 venture capital technology showcase aug 21 and 22, 2007

37

Vehicles News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

News News Vehicles News RSS September 4, 2013 Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies Thirty-eight projects will accelerate the research and development of technologies to improve vehicle fuel efficiency, lower transportation costs, and cut carbon pollution. Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies Building on President Obama's Climate Action Plan to build a 21st century transportation sector and reduce greenhouse gas emissions, the Energy Department announced today more than $45 million for thirty-eight new projects that accelerate the research and development of vehicle technologies to improve fuel efficiency, lower transportation costs, and protect the environment in communities nationwide.

38

Energy 101: Electric Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Vehicles Electric Vehicles Energy 101: Electric Vehicles Addthis Below is the text version for the Energy 101: Electric Vehicles video. The video opens with "Energy 101: Electric Vehicles." This is followed by various shots of different electric vehicles on the road. Wouldn't it be pretty cool to do all of your daily driving without ever having to fill up at a gas station? Well, that's quickly becoming a reality for people who drive electric vehicles-sometimes called EVs. EVs are gaining popularity. And with good reason-they're convenient; they're sleek and quiet; they keep our air clean. And for most of the short-distance driving we do, they're the perfect way to get from point A to point B safely, reliably, and comfortably. Text appears onscreen: "80% of Americans drive less than 40 miles round

39

Energy 101: Electric Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy 101: Electric Vehicles Energy 101: Electric Vehicles Energy 101: Electric Vehicles January 9, 2012 - 4:22pm Addthis A look at how electric vehicles (EVs) work and what current and future models are doing to cut transit costs, reduce emissions, and strengthen our nation's energy security. John Schueler John Schueler Former New Media Specialist, Office of Public Affairs While the North American International Auto Show is slated to kick off today in Detroit, and the industry is already abuzz with the latest innovations in electric vehicles, we wanted to take a moment to highlight how electric vehicles (EVs) work and what current and future models are doing to cut transit costs, reduce emissions, and strengthen our nation's energy security. The basic principles behind the technology are this: the electric

40

Cover Page of Household Vehicles Energy Use: Latest Data & Trends  

U.S. Energy Information Administration (EIA) Indexed Site

Household Vehicles Energy Use Cover Page Cover Page of Household Vehicles Energy Use: Latest Data & Trends...

Note: This page contains sample records for the topic "vehicle ldv energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Detailed Tables The following tables present detailed characteristics of vehicles in the residential sector. Data are from the 1991 Residential Transportation Energy Consumption Survey. The "Glossary" contains the definitions of terms used in the tables. Table Organization The "Detailed Tables" section consists of three types of tables: (1) Tables of totals such as number of vehicle miles traveled (VMT) or gallons consumed; (2) Tables of per household statistics such as VMT per household; and (3) Tables of per vehicle statistics such as vehicle fuel consumption per vehicle. The tables have been grouped together by specific topics such as model year data, or family income data to facilitate finding related information. The Quick-Reference Guide to the detailed tables indicates major topics of each table. Row and Column Factors These tables present estimates

42

Energy 101: Electric Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Vehicles Electric Vehicles Energy 101: Electric Vehicles January 9, 2012 - 4:22pm Addthis A look at how electric vehicles (EVs) work and what current and future models are doing to cut transit costs, reduce emissions, and strengthen our nation's energy security. John Schueler John Schueler Former New Media Specialist, Office of Public Affairs While the North American International Auto Show is slated to kick off today in Detroit, and the industry is already abuzz with the latest innovations in electric vehicles, we wanted to take a moment to highlight how electric vehicles (EVs) work and what current and future models are doing to cut transit costs, reduce emissions, and strengthen our nation's energy security. The basic principles behind the technology are this: the electric

43

Visualizing Electric Vehicle Sales | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Projects and State Memos DOE Recovery Field Projects and State Memos Advanced Vehicle Technologies Awardees Advanced Vehicle Technologies Awardees Department of Energy...

44

Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicles Vehicles Vehicles In the first half of 2013, Americans doubled the number of PEVs they purchased compared to the same period in 2012, and this summer, PEV sales reached a new record high. More than 11,000 PEVs were sold in August 2013 -- that's a 29 percent improvement in sales over the previous monthly record. Learn now about the clean technology revolution that is here today. In the first half of 2013, Americans doubled the number of PEVs they purchased compared to the same period in 2012, and this summer, PEV sales reached a new record high. More than 11,000 PEVs were sold in August 2013 -- that's a 29 percent improvement in sales over the previous monthly record. Learn now about the clean technology revolution that is here today.

45

Vehicles News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 13, 2011 May 13, 2011 Secretary Chu Highlights More Than 1,800 Electric Vehicle Chargers Installed Under the Recovery Act Investments in Electric Vehicles Helping to Reduce America's Reliance on Imported Oil April 19, 2011 Secretary Chu Announces New Funding and Partnership with Google to Promote Electric Vehicles Since its inception in 1993, DOE's Clean Cities program helped save nearly 3 billion gallons of gasoline April 13, 2011 Department of Energy Announces Advanced Vehicle Technology Competition, EcoCar2: Plugging into the Future Washington, DC - Today, at the SAE 2011 World Congress in Detroit, Mich., U.S. Department of Energy's Assistant Secretary for Policy and International Affairs, David Sandalow, announced the official launch of the EcoCar2: Plugging into the Future competition and the sixteen university

46

New Energy 101 Video: Electric Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Energy 101 Video: Electric Vehicles New Energy 101 Video: Electric Vehicles January 17, 2012 - 5:15am Addthis Eric Barendsen Energy Technology Program Specialist, Office of...

47

Voltage Vehicles | Open Energy Information  

Open Energy Info (EERE)

Sector Vehicles Product Voltage Vehicles is a nascent, full-service alternative fuel vehicle distributor specializing in the full spectrum of electric vehicles (EV) and...

48

Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) supports the development and deployment of advanced vehicle technologies, including advances in electric vehicles, engine efficiency, and lightweight materials....

49

Hybrid energy storage system integration for vehicles  

Science Conference Proceedings (OSTI)

Energy consumption and the associated environmental impact are a pressing challenge faced by the transportation sector. Emerging electric-drive vehicles have shown promises for substantial reductions in petroleum use and vehicle emissions. Their success, ... Keywords: analysis, electric-drive vehicles, energy storage systems

Jia Wang; Kun Li; Qin Lv; Hai Zhou; Li Shang

2010-08-01T23:59:59.000Z

50

Vehicle Cost Calculator | Open Energy Information  

Open Energy Info (EERE)

Vehicle Cost Calculator Vehicle Cost Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Vehicle Cost Calculator Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Transportation Phase: Evaluate Options Resource Type: Online calculator User Interface: Website Website: www.afdc.energy.gov/calc/ Web Application Link: www.afdc.energy.gov/calc/ OpenEI Keyword(s): Energy Efficiency and Renewable Energy (EERE) Tools Language: English References: Vehicle Cost Calculator[1] Logo: Vehicle Cost Calculator Calculate the total cost of ownership and emissions for makes and models of most vehicles, including alternative fuel and advanced technology vehicles. Overview This tool uses basic information about your driving habits to calculate

51

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

. . Trends in Household Vehicle Stock The 1991 RTECS counted more than 150 million vehicles in use by U.S. households. This chapter examines recent trends in the vehicle stock, as measured by the RTECS and other reputable vehicle surveys. It also provides some details on the type and model year of the household vehicle stock, and identifies regional differences in vehicle stock. Because vehicles are continuously being bought and sold, this chapter also reports findings relating to turnover of the vehicle stock in 1991. Finally, it examines the average vehicle stock in 1991 (which takes into account the acquisition and disposal of household vehicles over the course of the year) and identifies variations in the average number of household vehicles based on differences in household characteristics. Number of Household Vehicles Over the past 8 years, the stock of household vehicles has

52

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

C C Quality of the Data Appendix C Quality of the Data Introduction This appendix discusses several issues relating to the quality of the Residential Transportation Energy Consumption Survey (RTECS) data and to the interpretation of conclusions based on these data. The first section discusses under- coverage of the vehicle stock in the residential sector. The second section discusses the effects of using July 1991 as a time reference for the survey. The remainder of this appendix discusses the treatment of sampling and nonsampling errors in the RTECS, the quality of specific data items such as the Vehicle Identification Number (VIN) and fuel prices, and poststratification procedures used in the 1991 RTECS. The quality of the data collection and the processing of the data affects the accuracy of estimates based on survey data. All the statistics published in this report such as total

53

Electric Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Vehicle Basics Electric Vehicle Basics Electric Vehicle Basics July 30, 2013 - 4:45pm Addthis Text Version Photo of an electric bus driving up a hill. Electricity can be used as a transportation fuel to power battery electric vehicles (EVs). EVs store electricity in an energy storage device, such as a battery. The electricity powers the vehicle's wheels via an electric motor. EVs have limited energy storage capacity, which must be replenished by plugging into an electrical source. In an electric vehicle, a battery or other energy storage device is used to store the electricity that powers the motor. EV batteries must be replenished by plugging the vehicle to a power source. Some EVs have onboard chargers; others plug into a charger located outside the vehicle. Both types use electricity that comes from the power grid. Although

54

Propane Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicles Propane Vehicles August 20, 2013 - 9:16am Addthis There are more than 270,000 on-road propane vehicles in the United States and more than 10 million worldwide. Many are...

55

Electric vehicles | Open Energy Information  

Open Energy Info (EERE)

Electric vehicles Jump to: navigation, search TODO: add content Electric vehicles first came into existence in the mid-19th century, when electricity was among the preferred...

56

Energy Basics: Hybrid Electric Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

a hybrid electric vehicle. Hybrid electric vehicles (HEVs) combine the benefits of high fuel economy and low emissions with the power, range, and convenience of conventional diesel...

57

EPA Green Vehicle Guide | Open Energy Information  

Open Energy Info (EERE)

fuel economy are both important for the environment. Retrieved from "http:en.openei.orgwindex.php?titleEPAGreenVehicleGuide&oldid367218" Categories: Tools Community Energy...

58

Fuel Cell Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cell Vehicle Basics Fuel Cell Vehicle Basics Fuel Cell Vehicle Basics August 20, 2013 - 9:11am Addthis Photo of a blue car with 'The Road to Hydrogen' written on it, filling up at a hydrogen fueling station. Fuel cell vehicles, powered by hydrogen, have the potential to revolutionize our transportation system. They are more efficient than conventional internal combustion engine vehicles and produce no harmful tailpipe exhaust-their only emission is water. Fuel cell vehicles and the hydrogen infrastructure to fuel them are in an early stage of development. The U.S. Department of Energy is leading government and industry efforts to make hydrogen-powered vehicles an affordable, environmentally friendly, and safe transportation option. Visit the Alternative Fuels and Advanced Vehicles Data Center to learn more

59

Fuel Cell Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Basics Vehicle Basics Fuel Cell Vehicle Basics August 20, 2013 - 9:11am Addthis Photo of a blue car with 'The Road to Hydrogen' written on it, filling up at a hydrogen fueling station. Fuel cell vehicles, powered by hydrogen, have the potential to revolutionize our transportation system. They are more efficient than conventional internal combustion engine vehicles and produce no harmful tailpipe exhaust-their only emission is water. Fuel cell vehicles and the hydrogen infrastructure to fuel them are in an early stage of development. The U.S. Department of Energy is leading government and industry efforts to make hydrogen-powered vehicles an affordable, environmentally friendly, and safe transportation option. Visit the Alternative Fuels and Advanced Vehicles Data Center to learn more

60

Alternative Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

following types of vehicles: Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane Vehicles Addthis Related Articles...

Note: This page contains sample records for the topic "vehicle ldv energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Vehicle Technologies Office: 2006 U.S. Department of Energy Heavy Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of U.S. Department of Energy Heavy Vehicle Systems Review to someone by E-mail Share Vehicle Technologies Office: 2006 U.S. Department of Energy Heavy Vehicle Systems Review on Facebook Tweet about Vehicle Technologies Office: 2006 U.S. Department of Energy Heavy Vehicle Systems Review on Twitter Bookmark Vehicle Technologies Office: 2006 U.S. Department of Energy Heavy Vehicle Systems Review on Google Bookmark Vehicle Technologies Office: 2006 U.S. Department of Energy Heavy Vehicle Systems Review on Delicious Rank Vehicle Technologies Office: 2006 U.S. Department of Energy Heavy Vehicle Systems Review on Digg Find More places to share Vehicle Technologies Office: 2006 U.S. Department of Energy Heavy Vehicle Systems Review on AddThis.com... Publications Key Publications

62

Vehicle and Fuel Use | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle and Fuel Use Vehicle and Fuel Use Vehicle and Fuel Use Mission The team evaluates and incorporates, as deemed appropriate for LM operations, the requirements for vehicle and fuel use as defined in Executive Order (EO) 13423, Strengthening Federal Environmental, Energy, and Transportation Management, and (EO) 13514, Federal Leadership in Environmental, Energy, and Economic Performance, and DOE Order 436.1, Departmental Sustainability, and approved by LM. The Vehicle and Fuel Use Team advocates natural resource sustainability by evaluating vehicle and fuel use. Scope The team evaluates the vehicle and fuel use goals included in Executive Orders 13423 and 13514, establishes metrics, and develops and implements a plan of action to meet these goals. These goals may include increasing

63

Connecting electric vehicles and green energy  

Science Conference Proceedings (OSTI)

This paper discusses the interrelationship between the purchase of green energy (GE) and electric vehicles (EV) and the motivations for and values formed around the purchase of the combination of the two. The BMW Group completed a two-year EV and GE ... Keywords: electric vehicle, environment, green energy, solar

Peter Dempster

2013-07-01T23:59:59.000Z

64

2007. Impacts Assessment of Plug-in Hybrid Vehicles on Electric  

E-Print Network (OSTI)

The U.S. electric power infrastructure is a strategic national asset that is underutilized most of the time. With the proper changes in the operational paradigm, it could generate and deliver the necessary energy to fuel the majority of the U.S. light-duty vehicle (LDV) fleet. In doing so, it would reduce greenhouse gas emissions, improve the economics of the electricity industry, and reduce the U.S. dependency on foreign oil. Two companion papers investigate the technical potential and economic impacts of using the existing idle capacity of the electric infrastructure in conjunction with the emerging plug-in hybrid electric vehicle (PHEV) technology to meet the majority of the daily energy needs of the U.S. LDV fleet. This initial paper estimates the regional percentages of the energy requirements for the U.S. LDV stock that could potentially be supported by the existing infrastructure, based on the 12 modified North American Electric Reliability Council regions, as of 2002. For the United States as a whole, up to 84% of U.S. cars, pickup trucks, and sport utility vehicles (SUVs) could be supported by the existing infrastructure, although the local percentages vary by region. Using the LDV fleet classification, which includes cars, pickup trucks, SUVs, and vans, the technical potential is 73%. This has an estimated gasoline displacement potential of 6.5 million barrels of oil equivalent per day, or approximately 52 % of

Michael Kintner-meyer; Kevin Schneider; Robert Pratt

2007-01-01T23:59:59.000Z

65

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

. . Vehicle Fuel Efficiency and Consumption Fuel consumption is estimated from RTECS data on the vehicle stock (Chapter 2) and miles traveled (Chapter 3), in combination with vehicle fuel efficiency ratings, adjusted to account for individual driving circumstances. The first two sections of this chapter present estimates of household vehicle fuel efficiency and household fuel consumption calculated from these fuel efficiency estimates. These sections also discuss variations in fuel efficiency and consumption based on differences in household and vehicle characteristics. The third section presents EIA estimates of the potential savings from replacing the oldest (and least fuel-efficient) household vehicles with new (and more fuel-efficient) vehicles. The final section of this chapter focuses on households receiving (or eligible to receive) supplemental income under

66

Vehicle Battery Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Battery Basics Vehicle Battery Basics Vehicle Battery Basics November 22, 2013 - 1:58pm Addthis Batteries are essential for electric drive technologies such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (AEVs). What is a Battery? A battery is a device that stores chemical energy and converts it on demand into electrical energy. It carries out this process through an electrochemical reaction, which is a chemical reaction involving the transfer of electrons. Batteries have three main parts, each of which plays a different role in the electrochemical reaction: the anode, cathode, and electrolyte. The anode is the "fuel" electrode (or "negative" part), which gives up electrons to the external circuit to create a flow of electrons, otherwise

67

Blog Feed: Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Blog Feed: Vehicles Blog Feed: Vehicles Blog Feed: Vehicles RSS September 11, 2013 Dr. Michael Knotek, Deputy Undersecretary for Science and Energy at the Energy Department, delivers remarks at the NASCAR Green Summit in Chicago, where the DOE-NASCAR MOU was announced. | Photo courtesy of NASCAR. New DOE-NASCAR Partnership Revs Deployment of Pollution Reducing Technologies From the electricity that powers race-day broadcasts to the fuel in the cars themselves, a new DOE-NASCAR Memorandum of Understanding pinpoints transformative energy technologies that will benefit NASCAR and its fans. September 4, 2013 Dr. Ping Liu of ARPA-E discusses the RANGE program and its innovative approach to energy storage for electric vehicles. | Photo courtesy of ARPA-E. ARPA-E Program Takes an Innovative Approach to Electric Vehicle Batteries

68

Energy Storage Fuel Cell Vehicle Analysis  

DOE Green Energy (OSTI)

In recent years, hydrogen fuel cell (FC) vehicle technology has received considerable attention as a strategy to decrease oil consumption and reduce harmful emissions. However, the cost, transient response, and cold performance of FC systems may present significant challenges to widespread adoption of the technology for transportation in the next 15 years. The objectives of this effort were to perform energy storage modeling with fuel cell vehicle simulations to quantify the benefits of hybridization and to identify a process for setting the requirements of ES for hydrogen-powered FC vehicles for U.S. Department of Energy?s Energy Storage Program.

Pesaran, A.; Markel, T.; Zolot, M.; Sprik, S.; Tataria, H.; Duong, T.

2005-08-01T23:59:59.000Z

69

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

3. 3. Vehicle Miles Traveled This chapter presents information on household vehicle usage, as measured by the number of vehicle miles traveled (VMT). VMT is one of the two most important components used in estimating household vehicle fuel consumption. (The other, fuel efficiency, is discussed in Chapter 4). In addition, this chapter examines differences in driving behavior based on the characteristics of the household and the type of vehicle driven. Trends in household driving patterns are also examined using additional information from the Department of Transportation's Nationwide Personal Transportation Survey (NPTS). Household VMT is a measure of the demand for personal transportation. Demand for transportation may be viewed from either an economic or a social perspective. From the economic point-of-view, the use of a household vehicle represents the consumption of one

70

On Minimizing the Energy Consumption of an Electrical Vehicle  

E-Print Network (OSTI)

Abstract. The electrical vehicle energy management can be expressed ... Electrical vehicle uses an electrical energy source for its displacement which can.

71

Figure 2. Energy Consumption of Vehicles, Selected Survey Years  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Households, Buildings & Industry >Transportation Surveys > Household Vehicles Energy Use > Figure 2 Figure 2. Energy Consumption of Vehicles, Selected Survey Years...

72

Use financing vehicles | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Use financing vehicles Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial...

73

Energy Basics: Vehicles and Fuels  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

more about: Alternative Fuels Alternative Vehicles For more information on fuels made from biomass, such as ethanol or biodiesel fuels, see the Biomass section: Biodiesel Ethanol...

74

Blog Feed: Vehicles | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy.gov » Blog Feed: Vehicles Energy.gov » Blog Feed: Vehicles Blog Feed: Vehicles RSS January 9, 2014 Join us on Thursday, January 16, at 2 p.m. ET for a Google+ Hangout on Energy 101: Fuel Cells. | Graphic by Sarah Gerrity, Energy Department. Live Discussion on Energy 101: Fuel Cells Join us for a Google+ Hangout on Energy 101: Fuel Cells to learn everything you need to know about fuel cells. January 6, 2014 The Clean Energy Economy in Three Charts Over the last five years, American inventors and investors have made significant progress in developing and deploying key clean energy technologies -- supported by Energy Department policies. January 3, 2014 Our Best Energy Videos of 2013 Check out our best videos from 2013 -- from Secretary Moniz's first day on the job, to the rivalry between Edison and Tesla, to a visit to a

75

New Energy 101 Video: Electric Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Energy 101 Video: Electric Vehicles New Energy 101 Video: Electric Vehicles New Energy 101 Video: Electric Vehicles January 17, 2012 - 5:15am Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy Electric vehicles, sometimes called EVs, can give drivers like you a convenient way to get around, while saving you money on fuel, reducing emissions, and supporting the nation's energy security. Learn about the advantages of electric vehicles, see EVs in action, and find out how they work by checking out DOE's new Electric Vehicle 101 video. The basics principles behind this technology are this: the EV's battery transfers energy to an electric motor, the motor turns a drive train, which then turns the wheels. Up to 80% of the energy in the battery is

76

Energy Storage Fuel Cell Vehicle Analysis: Preprint  

DOE Green Energy (OSTI)

In recent years, hydrogen fuel cell (FC) vehicle technology has received considerable attention as a strategy to decrease oil consumption and reduce harmful emissions. However, the cost, transient response, and cold performance of FC systems may present significant challenges to widespread adoption of the technology for transportation in the next 15 years. The objectives of this effort were to perform energy storage modeling with fuel cell vehicle simulations to quantify the benefits of hybridization and to identify a process for setting the requirements of ES for hydrogen-powered FC vehicles for U.S. Department of Energy's Energy Storage Program.

Markel, T.; Pesaran, A.; Zolot, M.; Sprik, S.; Tataria, H.; Duong, T.

2005-04-01T23:59:59.000Z

77

Accelerating Electric Vehicle Deployment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accelerating Electric Vehicle Deployment Accelerating Electric Vehicle Deployment Accelerating Electric Vehicle Deployment Accelerating Electric Vehicle Deployment More Documents &...

78

EIA - Household Transportation report: Household Vehicles Energy  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Transportation logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Consumption 1994 August 1997 Release Next Update: EIA has discontinued this series. Based on the 1994 Residential Transportation Energy Consumption Survey conducted by the Energy Information Administration (EIA) - survey series has been discontinued Only light-duty vehicles and recreational vehicles are included in this report. EIA has excluded motorcycles, mopeds, large trucks, and buses. Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use

79

Energy Star Concepts for Highway Vehicles  

Science Conference Proceedings (OSTI)

The authors of this report, under the sponsorship of the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Weatherization and Intergovernmental Program, have investigated the possible application of Energy Star ratings to passenger cars and light trucks. This study establishes a framework for formulating and evaluating Energy Star rating methods that is comprised of energy- and environmental-based metrics, potential vehicle classification systems, vehicle technology factors, and vehicle selection criteria. The study tests several concepts and Energy Star rating methods using model-year 2000 vehicle data--a spreadsheet model has been developed to facilitate these analyses. This study tests two primary types of rating systems: (1) an outcome-based system that rates vehicles based on fuel economy, GHG emissions, and oil use and (2) a technology-based system that rates vehicles based on the energy-saving technologies they use. Rating methods were evaluated based on their ability to select vehicles with high fuel economy, low GHG emissions, and low oil use while preserving a full range of service (size and acceleration) and body style choice. This study concludes that an Energy Star rating for passenger cars and light trucks is feasible and that several methods could be used to achieve reasonable tradeoffs between low energy use and emissions and diversity in size, performance, and body type. It also shows that methods that consider only fuel economy, GHG emissions, or oil use will not select a diverse mix of vehicles. Finally, analyses suggest that methods that encourage the use of technology only, may result in increases in acceleration power and weight rather than reductions in oil use and GHG emissions and improvements in fuel economy.

Greene, D.L.

2003-06-24T23:59:59.000Z

80

Energy Information Administration/Household Vehicles Energy Consumption 1994  

U.S. Energy Information Administration (EIA) Indexed Site

, , Energy Information Administration/Household Vehicles Energy Consumption 1994 ix Household Vehicles Energy Consumption 1994 presents statistics about energy-related characteristics of highway vehicles available for personal use by members of U.S. households. The data were collected in the 1994 Residential Transportation Energy Consumption Survey, the final cycle in a series of nationwide energy consumption surveys conducted during the 1980's and 1990's by the Energy Information Administrations. Engines Became More Powerful . . . Percent Distribution of Total Residential Vehicle Fleet by Number of Cylinders, 1988 and 1994 Percent Distribution of Vehicle Fleet by Engine Size, 1988 and 1994 Percent Percent 4 cyl Less than 2.50 liters 6 cyl 2.50- 4.49 liters 8 cyl 4.50 liters or greater 20 20 40 40 Vehicle

Note: This page contains sample records for the topic "vehicle ldv energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Electric Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

bus driving up a hill. Electricity can be used as a transportation fuel to power battery electric vehicles (EVs). EVs store electricity in an energy storage device, such as a...

82

Blog Feed: Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Blog Feed: Vehicles Blog Feed: Vehicles Blog Feed: Vehicles RSS January 16, 2014 Live Discussion on Energy 101: Fuel Cells Watch our Google+ Hangout on Energy 101: Fuel Cells to learn everything you need to know about fuel cells. January 15, 2014 Wide Bandgap Semiconductors: Essential to Our Technology Future Learn how wide bandgap semiconductor-based power electronics could impact clean energy technology and our daily lives. January 6, 2014 The Clean Energy Economy in Three Charts Over the last five years, American inventors and investors have made significant progress in developing and deploying key clean energy technologies -- supported by Energy Department policies. January 3, 2014 Our Best Energy Videos of 2013 Check out our best videos from 2013 -- from Secretary Moniz's first day on

83

Alternative Fuels Data Center: Vehicle-to-Grid Energy Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle-to-Grid Energy Vehicle-to-Grid Energy Credit to someone by E-mail Share Alternative Fuels Data Center: Vehicle-to-Grid Energy Credit on Facebook Tweet about Alternative Fuels Data Center: Vehicle-to-Grid Energy Credit on Twitter Bookmark Alternative Fuels Data Center: Vehicle-to-Grid Energy Credit on Google Bookmark Alternative Fuels Data Center: Vehicle-to-Grid Energy Credit on Delicious Rank Alternative Fuels Data Center: Vehicle-to-Grid Energy Credit on Digg Find More places to share Alternative Fuels Data Center: Vehicle-to-Grid Energy Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vehicle-to-Grid Energy Credit Retail electricity customers with at least one grid-integrated electric vehicle (EV) may qualify to receive kilowatt-hour credits for energy

84

Energy control strategy for a hybrid electric vehicle - Energy ...  

An energy control strategy (10) for a hybrid electric vehicle that controls an electric motor during bleed and charge modes of operation. The control strategy (10 ...

85

Department of Energy Offers Vehicle Production Group Nearly ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Production Group Nearly 50 Million Conditional Loan Commitment Department of Energy Offers Vehicle Production Group Nearly 50 Million Conditional Loan Commitment November...

86

Energy Department Accelerates the Deployment of Advanced Vehicle...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accelerates the Deployment of Advanced Vehicle Technologies with Private Industry Partnerships Energy Department Accelerates the Deployment of Advanced Vehicle Technologies with...

87

Table 37. Light-Duty Vehicle Energy Consumption by Technology ...  

U.S. Energy Information Administration (EIA)

Table 37. Light-Duty Vehicle Energy Consumption by Technology Type and Fuel Type (trillion Btu) Light-Duty Consumption by Technology Type Conventional Vehicles 1/

88

American Electric Vehicles Inc | Open Energy Information  

Open Energy Info (EERE)

Vehicles Inc Jump to: navigation, search Name American Electric Vehicles Inc Place Palmer Lake, Colorado Zip 80133 Sector Vehicles Product American Electric Vehicles (AEV) builds...

89

Advanced Vehicle Technologies Awards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Vehicle Technologies Awards Advanced Vehicle Technologies Awards Microsoft Word - VTP 175 Advanced Vehicle Tech project descriptions draft v5 8-2-11 AdvancedVehiclesTechn...

90

Household Vehicles Energy Consumption 1994 - PDF Tables  

U.S. Energy Information Administration (EIA)

Table 1 U.S. Number of Vehicles, Vehicle Miles, Motor Fuel Consumption and Expenditures, 1994 Table 2 U.S. per Household Vehicle Miles Traveled, Vehicle Fuel ...

91

Vehicle Technologies Program Awards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Technologies Program Awards Vehicle Technologies Program Awards vtpnum.zip More Documents & Publications Advanced Vehicle Technologies Awards Table Advanced Vehicle...

92

Vehicle Technologies Program (EERE) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Technologies Program (EERE) Vehicle Technologies Program (EERE) information about the Vehicle Technologies Program (EERE) Vehicle Technologies Program (EERE) More Documents...

93

Blog Feed: Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 17, 2010 February 17, 2010 Energy Savers in the Community: Fuel Cell Vehicle Pioneer As the communications coordinator for EERE's Clean Cities program, I'm always on the lookout for interesting stories about alternative fuel vehicles. February 4, 2010 How Has Saving Energy Affected Your Health? We don't often speak of it in these terms, but saving energy can sometimes have a positive influence on your health. February 2, 2010 Sites I Thought About Last Wednesday While President Obama was talking about his plans and goals for the future, it made me think of a lot of the work that EERE is already doing. January 26, 2010 Electric Cars Coming to Former Delaware GM Plant If a company's cars are luxurious enough for the Crown Prince of Denmark, then just imagine how the vehicles - which have a 50-mile, emission-free

94

Blog Feed: Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 18, 2011 January 18, 2011 Fuel Economy on the Fly If you're in the market for a new car, FuelEconomy.gov can help you pick the most fuel-efficient vehicle for your needs. January 12, 2011 A Look Inside the Detroit Auto Show A first hand perspective from the floor of the North American International Auto Show. January 11, 2011 Chevy Volt and replica battery | Photo Courtesy of Argonne Lab's Flickr The Department of Energy's Innovation in GM's Chevrolet Volt Argonne National Laboratory's breakthrough battery technology makes its way into the Chevy Volt. January 3, 2011 10 Ways to Save Money and Energy in the New Year These easy tips are great way to save money and energy throughout the New Year. December 22, 2010 The Facts On Electric Vehicles: Interview with Pat Davis Pat Davis, the Director of our Vehicle Technologies Program, doles out the

95

Vehicles News and Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

About Us » News & Blog » Vehicles News and Blog About Us » News & Blog » Vehicles News and Blog Vehicles News and Blog Blog The Integrated Biorefinery Research Facility at the National Renewable Energy Laboratory in Golden, Colorado enables partners to test conversion technologies on up to one ton of biomass material a day. | Photo by Dennis Schroeder, National Renewable Energy Laboratory From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are Making a Difference December 16, 2013 2:46 PM The Energy Department is working to cut the cost of biofuel production by supporting advanced development and demonstration facilities throughout the country that enable researchers to fully examine their efforts on a large scale without having to maintain an expensive pilot plant. Read The Full

96

Acronyms and Abbreviations for Advanced Technology Vehicle Testing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Project LDV Light-duty vehicle LEV Low emission vehicle LF Low-floor Li Lithium LNG Liquid natural gas LPG Liquid petroleum gas LSR Low storage requirement MCI Motor Coach...

97

Predictive energy management for hybrid electric vehicles -Prediction horizon and  

E-Print Network (OSTI)

Predictive energy management for hybrid electric vehicles - Prediction horizon and battery capacity of a combined hybrid electric vehicle. Keywords: Hybrid vehicles, Energy Management, Predictive control, Optimal on a sliding window in order to minimize the hybrid vehicle fuel consumption. For real time implementation

Paris-Sud XI, Université de

98

ENERGY STAR Focus on Energy Efficiency in Motor Vehicle Manufacturing |  

NLE Websites -- All DOE Office Websites (Extended Search)

Motor Vehicle Motor Vehicle Manufacturing Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Get started with ENERGY STAR Make the business case Build an energy management program Measure, track, and benchmark Tools for benchmarking energy management practices Tools for tracking and benchmarking facility energy performance ENERGY STAR Energy Performance Indicators for plants

99

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

methodology used to estimate these statistics relied on data from the 1990 Residential Energy Consumption Survey (RECS), the 1991 Residential Transportation Energy Consumption...

100

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

Appendix A How the Survey Was Conducted Introduction The Residential Transportation Energy Consumption Survey (RTECS) was designed by the Energy Information Administration (EIA)...

Note: This page contains sample records for the topic "vehicle ldv energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

NREL: Vehicles and Fuels Research - Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Research Search More Search Options Site Map NREL's Energy Storage Project is leading the charge on battery thermal management, modeling, and systems solutions to enhance the performance of fuel cell, hybrid electric, and electric vehicles (FCVs, HEVs, and EVs) for a cleaner, more secure transportation future. NREL's experts work closely with the U.S. Department of Energy (DOE), industry, and automotive manufacturers to improve energy storage devices, such as battery modules and ultracapacitors, by enhancing their thermal performance and life-cycle cost. Activities also involve modeling and simulation to evaluate technical targets and energy storage parameters, and investigating combinations of energy storage systems to increase vehicle efficiency. Much of this research is conducted at our state-of-the-art energy storage

102

The Impact of Residential Density on Vehicle Usage and Energy Consumption  

E-Print Network (OSTI)

Vehicle Usage and Energy Consumption Table 2 Housing Unitsresidential vehicular energy consumption is graphed as aon Vehicle Usage and Energy Consumption with vehicles, but

Golob, Thomas F.; Brownstone, David

2005-01-01T23:59:59.000Z

103

Blog Feed: Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 14, 2012 February 14, 2012 Fuel Economy Valentines What's more romantic this Valentine's Day than taking a drive with your sweetheart? January 17, 2012 New Energy 101 Video: Electric Vehicles Electric vehicles, sometimes called EVs, can give drivers like you a convenient way to get around, while saving you money on fuel, reducing emissions, and supporting the nation's energy security. January 13, 2012 Arun Majumdar speaks at Idaho National Lab (INL) during a visit to the site earlier this week. | Photo courtesy of INL. EV Technology Accelerates in Colorado While the North American International Auto Show began this week in Detroit, ARPA-E Director Arun Majumadar is visiting another town on the cutting edge of vehicle R&D - Longmont, Colorado, home of UQM Technologies.

104

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

Efficiency from Executive Summary Efficiency from Executive Summary With more efficient light-duty vehicles, motor gasoline consumption declines while diesel fuel use grows, even as more natural gas is used in heavy-duty vehicles figure data The AEO2013 Reference case incorporates the GHG and CAFE standards for LDVs [6] through the 2025 model year. The increase in vehicle efficiency reduces LDV energy use from 16.1 quadrillion Btu in 2011 to 14.0 quadrillion Btu in 2025, predominantly motor gasoline (Figure 6). LDV energy use continues to decline through 2036, then levels off until 2039 as growth in population and vehicle miles traveled offsets more modest improvement in fuel efficiency. Furthermore, the improved economics of natural gas as a fuel for heavy-duty vehicles result in increased use that offsets a portion of diesel fuel

105

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

Transportation from Executive Summary Transportation from Executive Summary With more efficient light-duty vehicles, motor gasoline consumption declines while diesel fuel use grows, even as more natural gas is used in heavy-duty vehicles figure data The AEO2013 Reference case incorporates the GHG and CAFE standards for LDVs [6] through the 2025 model year. The increase in vehicle efficiency reduces LDV energy use from 16.1 quadrillion Btu in 2011 to 14.0 quadrillion Btu in 2025, predominantly motor gasoline (Figure 6). LDV energy use continues to decline through 2036, then levels off until 2039 as growth in population and vehicle miles traveled offsets more modest improvement in fuel efficiency. Furthermore, the improved economics of natural gas as a fuel for heavy-duty vehicles result in increased use that offsets a portion of diesel fuel

106

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

Transportation from Executive Summary Transportation from Executive Summary With more efficient light-duty vehicles, motor gasoline consumption declines while diesel fuel use grows, even as more natural gas is used in heavy-duty vehicles figure data The AEO2013 Reference case incorporates the GHG and CAFE standards for LDVs [6] through the 2025 model year. The increase in vehicle efficiency reduces LDV energy use from 16.1 quadrillion Btu in 2011 to 14.0 quadrillion Btu in 2025, predominantly motor gasoline (Figure 6). LDV energy use continues to decline through 2036, then levels off until 2039 as growth in population and vehicle miles traveled offsets more modest improvement in fuel efficiency. Furthermore, the improved economics of natural gas as a fuel for heavy-duty vehicles result in increased use that offsets a portion of diesel fuel

107

Energy 101: Electric Vehicles | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

your style. These vehicles rely primarily on an electric motor, but switch over to a gasoline-fueled engine to supplement power when the battery is low. The costs of today's EVs...

108

Financial Vehicles within an Integrated Energy Efficiency Program...  

NLE Websites -- All DOE Office Websites (Extended Search)

Financial Vehicles within an Integrated Energy Efficiency Program Slide 1 Financial mechanisms within Integrated Energy Efficiency Programs Every successful energy efficiency...

109

Blog Feed: Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 2, 2009 April 2, 2009 Energy Saver Heroes: Clean Cities Coordinators Clean Cities, the deployment arm of EERE's Vehicle Technology Program, works to support local decisions to reduce petroleum consumption in transportation. February 12, 2009 Question of the Week: Do You Use Alternative Fuels? Share your thoughts on using alternative fuels for your vehicle. February 10, 2009 What Does E85 Have to Do with Clean Air? How the Energy Department helped Minnesota become a renewable energy powerhouse. February 5, 2009 Question of the Week: What Is Your Daily Commute Like? In data collected from 2005 through 2007, The U.S. Census Bureau found that 76% of workers drove alone to work. Tell us about your daily commute? January 13, 2009 Be a Safe and Efficient Winter Driver We've been advising you on ways to make the home more energy smart, so

110

Energy Management Strategies for Plug-In Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

Summarizes and compares potential energy management strategies for plug-in hybrid electric vehicles, accounting for duty cycle distance.

Gonder, J.; Markel, T.

2007-05-01T23:59:59.000Z

111

Miles Electric Vehicles | Open Energy Information  

Open Energy Info (EERE)

Miles Electric Vehicles Jump to: navigation, search Name Miles Electric Vehicles Place Santa Monica, California Zip 90405 Sector Vehicles Product California-based developer of...

112

Solar Electrical Vehicles | Open Energy Information  

Open Energy Info (EERE)

California Zip 91361 Sector Solar, Vehicles Product US-based manufacturer of solar battery chargers for hybrid vehicles. References Solar Electrical Vehicles1 LinkedIn...

113

US Ethanol Vehicle Coalition | Open Energy Information  

Open Energy Info (EERE)

Vehicle Coalition Jump to: navigation, search Name US Ethanol Vehicle Coalition Place Jefferson City, Missouri Zip 65109 Product The National Ethanol Vehicle Coalition is the...

114

A MOOS MODULE FOR MONITORING ENERGY USAGE OF AUTONOMOUS VEHICLES  

E-Print Network (OSTI)

A MOOS MODULE FOR MONITORING ENERGY USAGE OF AUTONOMOUS VEHICLES Anthony Kanago, Kevin Roos, James--Tracking the energy usage of an autonomous underwater vehicle (AUV) and making accurate data available provides especially effectively in energy-aware systems, allowing inspection vehicles (which typically travel farther

Idaho, University of

115

Total energy cycle emissions and energy use of electric vehicles  

DOE Green Energy (OSTI)

The purpose of this project is to provide estimates of changes in life cycle energy use and emissions that would occur with the introduction of EVs. The topics covered include a synopsis of the methodology used in the project, stages in the EV and conventional vehicle energy cycles, characterization of EVs by type and driving cycle, load analysis and capacity of the electric utility, analysis of the materials used for vehicle and battery, description of the total energy cycle analysis model, energy cycle primary energy resource consumption, greenhouse gas emissions, energy cycle emissions, and conclusions.

Singh, M.

1997-12-31T23:59:59.000Z

116

Blog Feed: Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 10, 2013 January 10, 2013 BPA Headquarters Now "Gold Certified" for Sustainability BPA recently became the first federal agency in Portland, Oregon, to achieve the city's Sustainability at Work Gold Certification for sustainability efforts at its headquarters building. December 24, 2012 Day 12: Drive Your Way to Fuel Savings 12 Days of Energy Savings We're getting in the energy-saving spirit this holiday with tips for 12 days of energy savings. December 21, 2012 #LabChat Recap: Innovations Driving More Efficient Vehicles The #LabChat on Dec. 13 sparked an engaging discussion about technologies that are improving vehicle fuel economy. December 12, 2012 This graphic shows how Goodyear's new Air Maintenance Technology -- also called the self-regulating tire -- works. | Graphic courtesy of Goodyear.

117

Definition: Electric Vehicle Charging Station | Open Energy Information  

Open Energy Info (EERE)

Vehicle Charging Station Vehicle Charging Station Jump to: navigation, search Dictionary.png Electric Vehicle Charging Station An electric vehicle charging station that uses communications technology to enable it to intelligently integrate two-way power flow enabling electric vehicle batteries to become a useful utility asset.[1] View on Wikipedia Wikipedia Definition An electric vehicle charging station, also called EV charging station, electric recharging point, charging point and EVSE (Electric Vehicle Supply Equipment), is an element in an infrastructure that supplies electric energy for the recharging of plug-in electric vehicles, including all-electric cars, neighborhood electric vehicles and plug-in hybrids. As plug-in hybrid electric vehicles and battery electric vehicle ownership is

118

Blog Feed: Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 29, 2011 November 29, 2011 This Month on Energy Savers: November 2011 The holiday season is in full swing. We've been focusing on ways to keep our homes warm during the cold months of winter, whether we're home or on vacation. November 17, 2011 How Do You Save Energy While on Vacation? What steps do you take to save energy at home or on the road while you're on vacation? November 15, 2011 New Calculator Helps You Buy the Energy-Saving Vehicle of Your Dreams Every day, people across America are making the choice to buy energy-efficient vehicles that save energy and money, protect the environment, and help reduce America's dependence on foreign oil. November 10, 2011 Under Secretary for Nuclear Security Tom D'Agostino, Sustainability Performance Office Director Jennifer MacDonald, Chris Evans and Deputy Secretary of Energy and Daniel Poneman at the 2011 Sustainability Awards. | Image courtesy of the Energy Department

119

Blog Feed: Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 5, 2010 November 5, 2010 An electric vehicle uses a charging station. | Media photo from ECOtality Arizona EV Infrastructure Plans Revealed Out in the desert, a revolution in automotive technology is happening. Some Arizona drivers are taking part in an innovative new project that will help develop electric vehicle infrastructure and gather crucial research data toward ensuring the vitality of EVs for years to come. November 4, 2010 How Do You Reduce the Time You Spend Idling? Tell us how you reduce the time you spend idling? October 29, 2010 Geek-Up[10.29.2010]: The Halloween Special Find out what Ghostbusters do in their free time, why witches are trailblazers in clean energy transit and how you can identify and slay the energy vampires that may be lurking in your home.

120

List of Companies in Vehicles Sector | Open Energy Information  

Open Energy Info (EERE)

EV Energy Co Ltd PEVE Pengcheng Electric Taxi Company Phylion Battery Pihsiang Electric Vehicle Manufacturing Co Ltd Pihsiang Energy Technology PHET Plug In Hybrid Development...

Note: This page contains sample records for the topic "vehicle ldv energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

List of Vehicles Incentives | Open Energy Information  

Open Energy Info (EERE)

The following contains the list of 34 Vehicles Incentives. The following contains the list of 34 Vehicles Incentives. CSV (rows 1 - 34) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alternative Fuel Transportation Grant Program (Indiana) State Grant Program Indiana Commercial Nonprofit Local Government Renewable Transportation Fuels Renewable Fuel Vehicles Fuel Cells No Alternative Fuel Vehicle Loan Program (Missouri) State Loan Program Missouri Schools Local Government Renewable Fuel Vehicles Other Alternative Fuel Vehicles Refueling Stations No Alternative Fuel Vehicle Rebate (Colorado) State Rebate Program Colorado Schools Local Government State Government Renewable Fuel Vehicles No Alternative Fuel Vehicle Tax Credit (West Virginia) Personal Tax Credit West Virginia Residential Renewable Fuel Vehicles No

122

Modular Energy Storage System for Alternative Energy Vehicles  

Science Conference Proceedings (OSTI)

An electrical vehicle environment was established to promote research and technology development in the area of high power energy management. The project incorporates a topology that permits parallel development of an alternative energy delivery system and an energy storage system. The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles ?? plugin electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. In order to meet the project objectives, the Vehicle Energy Management System (VEMS) was defined and subsystem requirements were obtained. Afterwards, power electronics, energy storage electronics and controls were designed. Finally, these subsystems were built, tested individually, and integrated into an electric vehicle system to evaluate and optimize the subsystems?? performance. Phase 1 of the program established the fundamental test bed to support development of an electrical environment ideal for fuel cell application and the mitigation of many shortcomings of current fuel cell technology. Phase 2, continued development from Phase 1, focusing on implementing subsystem requirements, design and construction of the energy management subsystem, and the integration of this subsystem into the surrogate electric vehicle. Phase 2 also required the development of an Alternative Energy System (AES) capable of emulating electrical characteristics of fuel cells, battery, gen set, etc. Under the scope of the project, a boost converter that couples the alternate energy delivery system to the energy storage system was developed, constructed and tested. Modeling tools were utilized during the design process to optimize both component and system design. This model driven design process enabled an iterative process to track and evaluate the impact of design alternatives and the impact of changes. Refinement of models was accomplished through correlation studies to measured data obtained from functioning hardware. Specifically, correlation and characterization of the boost converter resulted in a model that was effectively used to determine overall VEMS performance. The successful development of the boost converter can be attributed to utilization of previously proven technologies and adapting to meet the VEMS requirements. This program provided significant improvement in development time of various generations of boost converters. The software strategies and testing results support the development of current energy management systems and directly contribute to the future of similar, commercial products at Magna E-Car Systems. Because of this development project, Magna E-Car Systems is able to offer automotive customers a boost converter system with reduced time to market and decreased product cost, thus transferring the cost and timing benefits to the end use consumer.

Janice Thomas; Frank Ervin

2012-02-28T23:59:59.000Z

123

Department of Energy Finalizes $50 Million Loan for Vehicle Production...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

50 Million Loan for Vehicle Production Group Department of Energy Finalizes 50 Million Loan for Vehicle Production Group March 10, 2011 - 12:00am Addthis Washington, D.C. - U.S....

124

Energy Department Partners with EU on Electric Vehicle and Smart...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Partners with EU on Electric Vehicle and Smart Grid Coordination Energy Department Partners with EU on Electric Vehicle and Smart Grid Coordination July 19, 2013 - 5:17pm Addthis...

125

Apps for Vehicles Challenge Finalists Announced | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Apps for Vehicles Challenge Finalists Announced Apps for Vehicles Challenge Finalists Announced Apps for Vehicles Challenge Finalists Announced February 5, 2013 - 12:14pm Addthis Apps for Vehicles Finalists Apps for Vehicles Finalists Ian Kalin Director of the Energy Data Initiative What does this project do? The Apps for Vehicles competition challenges entrepreneurs to use vehicle open data to make cars and drivers safer and more efficient. American innovators have once again responded to a national call to action. Nearly 40 teams submitted ideas in response to a $50,000 Apps for Vehicles Challenge that seeks to improve safety and fuel efficiency through data innovation. Entrepreneurs were given the task to demonstrate what new products or services could help vehicle owners take advantage of largely untapped data from their own vehicles. Eight finalists have been selected

126

Blog Feed: Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, 2011 , 2011 A123 battery in passenger vehicle application | Photo Courtesy of A123 Systems Innovation in Electric Vehicle Technology? Easy as A123 How A123 Systems evolved from a team of researchers at MIT to becoming the world's second largest producer of lithium-ion batteries. April 29, 2011 This Month on Energy Savers: April 2011 A recap of April Energy Savers news, along with a few other tidbits. April 18, 2011 Participants in the EcoCar2 challenge gather for the spring workshop in Ann Arbor, Michigan. Students Drive Home Innovative Engineering in the EcoCAR2 Competition EcoCar2 kicks off with the announcement of the 16 student teams and the vehicle they'll be re-engineering over the course of the competition. April 13, 2011 Algae samples back at the NREL lab, ready to be analyzed and run through the Fluorescent-Activated Cell Sorter, or FACS, which separates the cells. | Credit: NREL Staff Photographer Dennis Schroeder.

127

EIA - Annual Energy Outlook 2013 Early Release  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption by Sector Energy Consumption by Sector Transportation figure data Delivered energy consumption in the transportation sector remains relatively constant at about 27 quadrillion Btu from 2011 to 2040 in the AEO2013 Reference case (Figure 6). Energy consumption by LDVs (including commercial light trucks) declines in the Reference case, from 16.1 quadrillion Btu in 2011 to 14.0 quadrillion Btu in 2025, due to incorporation of the model year 2017 to 2025 GHG and CAFE standards for LDVs. Despite the projected increase in LDV miles traveled, energy consumption for LDVs further decreases after 2025, to 13.0 quadrillion Btu in 2035, as a result of fuel economy improvements achieved through stock turnover as older, less efficient vehicles are replaced by newer, more fuel-efficient vehicles. Beyond 2035, LDV energy demand begins to level off

128

Blog Feed: Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 22, 2011 February 22, 2011 Airports Soar to New Heights with Alternative Fuels A number of airports have adopted the use of alternative fuels and advanced technology vehicles, ranging from gaseous fuels to hybrid cars. February 18, 2011 Racing Ahead in Automotive Education Does your school have what it takes to develop the next generation of automotive engineers? If so, develop and expand your curriculum by becoming a Graduate Automotive Technology Education (GATE) Center of Excellence. February 14, 2011 Jeff Chamberlain Speaks at Brookings Battery Forum | Photo Courtesy of Audra Capas, 5StarPR Argonne Lab's Breakthrough Cathode Technology Powers Electric Vehicles of Today Jeff Chamberlain, who leads Argonne's Energy Storage Initiative, explains what goes into taking advanced battery technologies from the lab to the

129

Blog Feed: Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 29, 2011 July 29, 2011 President Barack Obama delivers remarks on fuel efficiency standards for 2017-2025 model year cars and light-duty trucks during an event at the Washington Convention Center in Washington, D.C., July 29, 2011. Seated behind the President are at left are auto industry executives and Transportation Secretary Ray LaHood. (Official White House Photo by Samantha Appleton) New Vehicle Fuel Economy Standards Will Continue to Inspire Innovation President Obama announced a landmark agreement with automakers that sets aggressive new fuel-economy standards for cars and light-duty trucks. Find out how the Energy Department is unleashing innovation that will create jobs and make sure that the fuel-efficient vehicles of the future are made in America.

130

Household Vehicles Energy Consumption 1994 - Appendix C  

U.S. Energy Information Administration (EIA) Indexed Site

Introduction This appendix discusses several issues relating to the quality of the Residential Transportation Energy Consumption Survey (RTECS) data and to the interpretation of conclusions based on these data. The first section discusses undercoverage of the vehicle stock in the residential sector. The second section discusses the effects of using July 1994 as a time reference for the survey. The remainder of this appendix discusses the treatment of sampling and nonsampling errors in the RTECS, the quality of specific data items such as the Vehicle Identification Number (VIN) and fuel prices, and poststratification procedures used in the 1994 RTECS. The quality of the data collection and the processing of the data affects the accuracy of estimates based on survey data. All the statistics

131

Modular Energy Storage System for Hydrogen Fuel Cell Vehicles  

SciTech Connect

The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles ?? plug-in electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. The in-depth research into the complex interactions between the lower and higher voltage systems from data obtained via modeling, bench testing and instrumented vehicle data will allow an optimum system to be developed from a performance, cost, weight and size perspective. The subsystems are designed for modularity so that they may be used with different propulsion and energy delivery systems. This approach will allow expansion into new alternative energy vehicle markets.

Janice Thomas

2010-05-31T23:59:59.000Z

132

Blog Feed: Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31, 2011 31, 2011 This Month on Energy Savers: May 2011 A recap of May news on Energy Savers. May 27, 2011 Making Memorial Day Plans? Be Sure They're Efficient Useful tips from Energy Savers - from cooking, to entertaining, to driving - how to stay energy efficient this Memorial Day weekend. May 27, 2011 Clean Cities Reaches Across the Sea Clean Cities International collaborates with leaders from Kazakhstan and Sweden share best practices and accomplish mutual goals. May 26, 2011 NREL's Large-Volume Battery Calorimeter has the highest-capacity chamber in the world for testing of this kind. From bottom clockwise:NREL researchers Matthew Keyser, Dirk Long & John Ireland | Photo Courtesy of Dennis Schroeder Electric Vehicle Battery Testing: It's Hot Stuff! A look at the Large Volume Battery Calorimeter, a tool developed by

133

Australia's Green Vehicle Guide | Open Energy Information  

Open Energy Info (EERE)

Australia's Green Vehicle Guide Australia's Green Vehicle Guide Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Australia's Green Vehicle Guide Agency/Company /Organization: Commonwealth of Australia Focus Area: Vehicles, Fuel Efficiency Topics: Analysis Tools, Market Analysis Website: www.greenvehicleguide.gov.au/GVGPublicUI/home.aspx Equivalent URI: cleanenergysolutions.org/content/australias-green-vehicle-guide,http:/ Language: English Policies: Regulations Regulations: Fuel Efficiency Standards The Green Vehicle Guide provides information about the environmental performance of new light-duty vehicles sold in Australia, including carbon dioxide (CO2) emissions and fuel consumption. The Guide includes resources such as a fuel calculator, electric vehicle information and a truck buyers

134

Other Alternative Fuel Vehicles | Open Energy Information  

Open Energy Info (EERE)

Alternative Fuel Vehicles Jump to: navigation, search TODO: Add description List of Other Alternative Fuel Vehicles Incentives Retrieved from "http:en.openei.orgw...

135

Hitachi Electric Vehicle Ltd | Open Energy Information  

Open Energy Info (EERE)

Hitachi Electric Vehicle Ltd Jump to: navigation, search Name Hitachi Electric Vehicle, Ltd Place Japan Product String representation "A Japan-based c ... le automobiles." is too...

136

Vehicles and Fuels | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicles and Fuels Vehicles and Fuels Photo of an electric car plugged in and charging. Learn more about exciting technologies and ongoing research in alternative and advanced...

137

Alternative Fuels Vehicle Group | Open Energy Information  

Open Energy Info (EERE)

Product Focussed on news and information on natural gas, biofuel, battery-electric, hybrid and fuel cell vehicles. References Alternative Fuels Vehicle Group1 LinkedIn...

138

Vehicles and Fuels Technologies - Energy Innovation Portal  

Vehicles and Fuels Technology Marketing Summaries Here youll find marketing summaries of advanced vehicle and fuel technologies available for licensing from U.S ...

139

Vehicle Battery Basics | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

22, 2013 - 1:58pm Addthis Batteries are essential for electric drive technologies such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and...

140

Announcing the Apps for Vehicles Challenge | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announcing the Apps for Vehicles Challenge Announcing the Apps for Vehicles Challenge Announcing the Apps for Vehicles Challenge December 5, 2012 - 9:00am Addthis Announcing the Apps for Vehicles Challenge Patrick B. Davis Patrick B. Davis Vehicle Technologies Program Manager How can I participate? You can learn more about the competition at: http://go.usa.gov/g87k. Here at the Energy Department's Vehicle Technologies Program, we're revved up about the next great smartphone app: yours. That's why we're launching the Apps for Vehicles Challenge, which is looking for the best business plans, app ideas and product designs that use open vehicle data to help vehicle owners save fuel, save money and stay safe. Improving fuel efficiency is a national priority. With the country spending about $1 billion per day on foreign oil, the Administration spearheaded

Note: This page contains sample records for the topic "vehicle ldv energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Vehicle Emission Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Emission Basics Vehicle Emission Basics Vehicle Emission Basics November 22, 2013 - 2:07pm Addthis Vehicle emissions are the gases emitted by the tailpipes of vehicles powered by internal combustion engines, which include gasoline, diesel, natural gas, and propane vehicles. Vehicle emissions are composed of varying amounts of: water vapor carbon dioxide (CO2) nitrogen oxygen pollutants such as: carbon monoxide (CO) nitrogen oxides (NOx) unburned hydrocarbons (UHCs) volatile organic compounds (VOCs) particulate matter (PM) A number of factors determine the composition of emissions, including the vehicle's fuel, the engine's technology, the vehicle's exhaust aftertreatment system, and how the vehicle operates. Emissions are also produced by fuel evaporation during fueling or even when vehicles are

142

Hybrid energy storage systems and battery management for electric vehicles  

Science Conference Proceedings (OSTI)

Electric vehicles (EV) are considered as a strong alternative of internal combustion engine vehicles expecting lower carbon emission. However, their actual benefits are not yet clearly verified while the energy efficiency can be improved in many ways. ... Keywords: battery-supercapacitor hybrid, charging/discharging asymmetry, electric vehicle, regenerative braking

Sangyoung Park, Younghyun Kim, Naehyuck Chang

2013-05-01T23:59:59.000Z

143

Electrochemical Capacitors as Energy Storage in Hybrid-Electric Vehicles: Present Status and Future Prospects  

E-Print Network (OSTI)

Energy Storage in Hybrid- Electric Vehicles: Present Statusmarketing of hybrid-electric vehicles of various types arefor various types of hybrid-electric vehicles Type of hybrid

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

144

Energy Star Concepts for Highway Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

37 37 Energy Star Concepts for Highway Vehicles June 2003 David L. Greene Oak Ridge National Laboratory Robert C. Gibson The University of Tennessee K. G. Duleep Energy and Environmental Analysis, Inc. DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge: Web site: http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source: National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone: 703-605-6000 (1-800-553-6847) TDD: 703-487-4639 Fax: 703-605-6900 E-mail: info@ntis.fedworld.gov Web site: http://www.ntis.gov/support/ordernowabout.htm

145

Blog Feed: Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 16, 2012 May 16, 2012 Getting It Right: Accurate Testing and Assessments Critical to Deploying the Next Generation of Auto Fuels Today, the Coordinating Research Council released a report on the effects of E15 and E20 on vehicle engines. We, at the Energy Department, believe the study is significantly flawed. May 14, 2012 The Race is On: Clean Energy and New Jobs in America, Starting in Michigan Deputy Secretary Poneman travels to Michigan to highlight how America can win the clean energy race May 11, 2012 Do You Have Your Own Tips for Saving Fuel? Do you have any other ideas for saving gas this summer? May 9, 2012 A Few Simple Steps for Better Gas Mileage One woman's quest to improve fuel economy on her family's summer roadtrip with simple maintenance and other easy techniques.

146

An Energy Evolution: Alternative Fueled Vehicle  

E-Print Network (OSTI)

Hydrogen #12;5 What is best for society? · Hybrid electric vehicles? (HEVs) · Plug-in hybrids? (PHEVs) Gasoline HEVs Fuel Cell Hybrid Electric Vehicle (FCEV) Gasoline PHEVs Ethanol PHEVs #12;11 Fuel Cell) · Biofuels? · Fuel cell electric vehicles? (FCEVs) · Battery Electric Vehicles (BEVs) ... .or all

147

Household Vehicles Energy Use: Latest Data and Trends - Table A04  

U.S. Energy Information Administration (EIA)

... Buildings & Industry > Transportation Surveys > Household Vehicles Energy ... U.S. Vehicles by Model ... Office of Coal, Nuclear, Electric, and Alternate ...

148

Energy and Materials Issues That Affect Electric Vehicle Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

leaching processes on the spent battery (without smelting). Argonne has published several papers on Ni-MH batteries. Energy and Materials Issues That Affect Electric Vehicle...

149

Vehicle Technologies Office: Materials for Energy Recovery Systems...  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems and Controlling Exhaust Gases to someone by E-mail Share Vehicle Technologies Office: Materials for Energy Recovery Systems and Controlling Exhaust Gases on Facebook...

150

Energy Storage for Advanced Electric Vehicles - Programmaster.org  

Science Conference Proceedings (OSTI)

Presentation Title, Energy Storage for Advanced Electric Vehicles. Author(s), Christopher Johnson, David Howell. On-Site Speaker (Planned), Christopher...

151

ALTERNATIVE ENERGY TESTBED ELECTRIC VEHICLE AND THERMAL MANAGEMENT SYSTEM INVESTIGATION.  

E-Print Network (OSTI)

??Methodology of and details on designing, constructing, and testing an efficient low power electric vehicle for alternative energy testing purposes. Experimental analysis of the drive (more)

Gregg, Christopher B

2007-01-01T23:59:59.000Z

152

On Minimizing the Energy Consumption of an Electrical Vehicle  

E-Print Network (OSTI)

Apr 20, 2011 ... The problem that we focus on, is the minimization of the energy consumption of an electrical vehicle achievable on a given driving cycle.

153

Clean Cities 2014 Vehicle Buyer's Guide (Brochure), Energy Efficiency...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

mation on vehicle specs, manufacturer suggested retail price (MSRP), fuel economy, energy impact, and emissions. When you are ready to identify your options, com- pare...

154

China Lithium Energy Electric Vehicle Investment Group CLEEVIG | Open  

Open Energy Info (EERE)

Investment Group CLEEVIG Investment Group CLEEVIG Jump to: navigation, search Name China Lithium Energy Electric Vehicle Investment Group (CLEEVIG) Place Beijing, China Zip 100101 Product Beijing-based investment company with a focus on Electric Vehicle R&D. References China Lithium Energy Electric Vehicle Investment Group (CLEEVIG)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. China Lithium Energy Electric Vehicle Investment Group (CLEEVIG) is a company located in Beijing, China . References ↑ "[ China Lithium Energy Electric Vehicle Investment Group (CLEEVIG)]" Retrieved from "http://en.openei.org/w/index.php?title=China_Lithium_Energy_Electric_Vehicle_Investment_Group_CLEEVIG&oldid=343507

155

Vehicle Technologies Office: Fact #792: August 12, 2013 Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

2: August 12, 2013 Energy Consumption by Sector and Energy Source, 1982 and 2012 to someone by E-mail Share Vehicle Technologies Office: Fact 792: August 12, 2013 Energy...

156

Hybrid Electric Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics August 20, 2013 - 9:13am Addthis Photo of hands holding a battery pack (grey rectangular box) for a hybrid electric vehicle. Hybrid electric vehicles (HEVs) combine the benefits of high fuel economy and low emissions with the power, range, and convenience of conventional diesel and gasoline fueling. HEV technologies also have potential to be combined with alternative fuels and fuel cells to provide additional benefits. Future offerings might also include plug-in hybrid electric vehicles. Hybrid electric vehicles typically combine the internal combustion engine of a conventional vehicle with the battery and electric motor of an electric vehicle. The combination offers low emissions and convenience-HEVs never need to be plugged in.

157

Hybrid Electric Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics August 20, 2013 - 9:13am Addthis Photo of hands holding a battery pack (grey rectangular box) for a hybrid electric vehicle. Hybrid electric vehicles (HEVs) combine the benefits of high fuel economy and low emissions with the power, range, and convenience of conventional diesel and gasoline fueling. HEV technologies also have potential to be combined with alternative fuels and fuel cells to provide additional benefits. Future offerings might also include plug-in hybrid electric vehicles. Hybrid electric vehicles typically combine the internal combustion engine of a conventional vehicle with the battery and electric motor of an electric vehicle. The combination offers low emissions and convenience-HEVs never need to be plugged in.

158

Natural Gas Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Vehicle Basics Natural Gas Vehicle Basics Natural Gas Vehicle Basics August 20, 2013 - 9:15am Addthis Photo of a large truck stopped at a gas station that reads 'Natural Gas for Vehicles.' Natural gas vehicles (NGVs) are either fueled exclusively with compressed natural gas or liquefied natural gas (dedicated NGVs) or are capable of natural gas and gasoline fueling (bi-fuel NGVs). Dedicated NGVs are designed to run only on natural gas. Bi-fuel NGVs have two separate fueling systems that enable the vehicle to use either natural gas or a conventional fuel (gasoline or diesel). In general, dedicated natural gas vehicles demonstrate better performance and have lower emissions than bi-fuel vehicles because their engines are optimized to run on natural gas. In addition, the vehicle does not have to

159

Advanced Vehicle Technologies Awards Table | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Technologies Awards Table Vehicle Technologies Awards Table Advanced Vehicle Technologies Awards Table The table contains a listing of the applicants, their locations, the amounts of the awards, and description of each project. The sub-categories of the table include: Advanced fuels and lubricants Light-weighting materials Demonstration Project for a Multi-Material Light-Weight Prototype Vehicle Advanced cells and design technology for electric drive batteries Advanced power electronics and electric motor technology Solid State Thermoelectric Energy Conversion Devices Fleet Efficiency Advanced Vehicle Testing and Evaluation Microsoft Word - VTP $175 Advanced Vehicle Tech project descriptions draft v5 8-2-11 More Documents & Publications Advanced Vehicle Technologies Awards advanced vehicle technologies awards table

160

Blog Feed: Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 30, 2009 November 30, 2009 Energy Efficiency Can Be at the Top of Your Shopping List I hope your holidays are filled with cool ways to fine-tune your life that will get you closer to the cutting edge of energy efficiency. November 12, 2009 How Does Your Fuel Economy Compare to the Test Ratings on Fueleconomy.gov? On Monday, you read about the resources on Fueleconomy.gov and how they can help you compare the fuel economy of vehicles. November 9, 2009 Buying a Car? Find Out What it Will REALLY Cost You Each Year If you're in the market for a new car, you've probably been doing a lot of research. October 15, 2009 What Are You Doing to Fight Climate Change? October is a big month for climate change awareness! Whether you're blogging about it today or joining in the efforts on October 24th, tell us:

Note: This page contains sample records for the topic "vehicle ldv energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Blog Feed: Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 12, 2010 October 12, 2010 Saving Energy in Spanish To connect with the 12.4% of Americans who are frequent Spanish speakers, EERE has created some great tools that speak their language. October 5, 2010 EnerDel is expanding its Mt. Comfort-based factory to produce advanced lithium-ion batteries such as this.| Photo courtesy of EnderDel EnerDel Expanding Battery Manufacturing in Indiana "We really do like Indiana as an operating environment because it's pro business," says Jeff Seidel. And for Mt. Comfort, Ind., that's good news. October 4, 2010 David Sandalow at the Paris Auto Show | DOE photo The Paris Motor Show Electric vehicles take center stage at the Paris Motor Show. September 27, 2010 A worker synchronizes a traffic light on State Road A1A in St. Augustine, FL. | Energy Department Photo |

162

The Impact of Residential Density on Vehicle Usage and Energy Consumption  

E-Print Network (OSTI)

residential transportation energy usage is vital for theDensity on Vehicle Usage and Energy Consumption Table 2Density on Vehicle Usage and Energy Consumption with

Golob, Thomas F.; Brownstone, David

2005-01-01T23:59:59.000Z

163

Vehicle Education Efforts Fuel Our Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Education Efforts Fuel Our Future Vehicle Education Efforts Fuel Our Future Vehicle Education Efforts Fuel Our Future May 4, 2012 - 3:42pm Addthis In addition to hosting the vehicles education exhibit at the White House, Energy Department employees participated in many activities as part of Take Our Daughters and Sons to Work Day - like the fitness presentation shown above. | Energy Department file photo. In addition to hosting the vehicles education exhibit at the White House, Energy Department employees participated in many activities as part of Take Our Daughters and Sons to Work Day - like the fitness presentation shown above. | Energy Department file photo. Connie Bezanson Education & Outreach Manager, Vehicle Technologies Program What does this project do? Helping students gain hands-on experience with science and

164

Energy Department Announces Apps for Vehicles Challenge Winners |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Announces Apps for Vehicles Challenge Winners Energy Department Announces Apps for Vehicles Challenge Winners Energy Department Announces Apps for Vehicles Challenge Winners April 1, 2013 - 4:55pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's commitment to expand access to data and reduce fuel costs for consumers, the Energy Department today announced the winners of the Apps for Vehicles Challenge. The competition asked app developers and entrepreneurs to demonstrate how the open data available on most vehicles can be used to improve vehicle safety, fuel efficiency and comfort. The Department awarded New York City-based Dash the Judges' Prize and MyCarma, headquartered in Troy, Michigan, the Popular Choice prize. Green Button Gamer, based in Boston, Massachusetts,

165

Vehicle Education Efforts Fuel Our Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Education Efforts Fuel Our Future Vehicle Education Efforts Fuel Our Future Vehicle Education Efforts Fuel Our Future May 4, 2012 - 3:42pm Addthis In addition to hosting the vehicles education exhibit at the White House, Energy Department employees participated in many activities as part of Take Our Daughters and Sons to Work Day - like the fitness presentation shown above. | Energy Department file photo. In addition to hosting the vehicles education exhibit at the White House, Energy Department employees participated in many activities as part of Take Our Daughters and Sons to Work Day - like the fitness presentation shown above. | Energy Department file photo. Connie Bezanson Education & Outreach Manager, Vehicle Technologies Program What does this project do? Helping students gain hands-on experience with science and

166

Energy Department Announces Apps for Vehicles Challenge Winners |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Announces Apps for Vehicles Challenge Winners Energy Department Announces Apps for Vehicles Challenge Winners Energy Department Announces Apps for Vehicles Challenge Winners April 1, 2013 - 4:55pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's commitment to expand access to data and reduce fuel costs for consumers, the Energy Department today announced the winners of the Apps for Vehicles Challenge. The competition asked app developers and entrepreneurs to demonstrate how the open data available on most vehicles can be used to improve vehicle safety, fuel efficiency and comfort. The Department awarded New York City-based Dash the Judges' Prize and MyCarma, headquartered in Troy, Michigan, the Popular Choice prize. Green Button Gamer, based in Boston, Massachusetts,

167

Do You Drive a Hybrid Electric Vehicle? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Do You Drive a Hybrid Electric Vehicle? Do You Drive a Hybrid Electric Vehicle? Do You Drive a Hybrid Electric Vehicle? July 9, 2009 - 1:34am Addthis In Tuesday's entry, Francis X. Vogel from the Wisconsin Clean Cities coalition told us about his plug-in hybrid electric vehicle (PHEV). He's one of the lucky few in the United States to drive one of these vehicles because factory-made PHEV's are not yet available to the public. Regular hybrid electric vehicles, however, are widely available and seem to be more and more common on the roads. Do you drive a hybrid electric vehicle? Please share your experience with it in the comments. Each Thursday, you have the chance to share your thoughts on a topic related to energy efficiency or renewable energy for consumers. Please comment with your answers, and also feel free to respond to other comments.

168

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

Pollutants for industrial boilers and process heaters 1; New light-duty vehicle (LDV) greenhouse gas (GHG) and corporate average fuel economy (CAFE) standards for model years...

169

Fuel Cell Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cell Vehicles Fuel Cell Vehicles August 20, 2013 - 9:11am Addthis Photo of a blue car with 'The Road to Hydrogen' written on it, filling up at a hydrogen fueling station. Fuel...

170

EIA - Gasoline and Diesel Fuel report: Household Vehicles Energy  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 Transportation logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Consumption 1991 December 1993 Release Next Update: August 1997. Based on the 1991 Residential Transportation Energy Consumption Survey conducted by the Energy Information Administration (EIA) - survey series has been discontinued after EIA's 1994 survey. Only light-duty vehicles and recreational vehicles are included in this report. EIA has excluded motorcycles, mopeds, large trucks, and buses. This report, Household Vehicles Energy Consumption 1991, is based on data from the 1991 Residential Transportation Energy Consumption Survey (RTECS). Focusing on vehicle miles traveled (VMT) and energy enduse consumption and expenditures by households for personal transportation, the 1991 RTECS is

171

Alternative Fuels and Advanced Vehicles Data Center | Open Energy  

Open Energy Info (EERE)

Alternative Fuels and Advanced Vehicles Data Center Alternative Fuels and Advanced Vehicles Data Center Jump to: navigation, search Tool Summary Name: Alternative Fuels and Advanced Vehicles Data Center Agency/Company /Organization: United States Department of Energy Sector: Energy Focus Area: Fuels & Efficiency, Biomass, Hydrogen, Transportation Phase: Evaluate Options, Develop Goals, Prepare a Plan Topics: Datasets, Technology characterizations Resource Type: Dataset, Guide/manual User Interface: Website Website: www.afdc.energy.gov/afdc/ Cost: Free References: Alternative Fuels and Advanced Vehicles Data Center[1] The Alternative Fuels and Advanced Vehicles Data Center provides a wide range of information and resources to enable the use of alternative fuels, in addition to other petroleum reduction options such as advanced vehicles,

172

Blog Feed: Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 9, 2010 December 9, 2010 Country-Fried Biofuels Instead of tossing your grease and used cooking oil, let a clean cities coordinator in your area help recycle it into biodiesel. December 7, 2010 Country-Fried Biofuels Some Clean Cities coalitions, supported by the Vehicle Technologies Program in EERE, have worked with their local governments to make holiday drippings into clean fuel. December 3, 2010 Innovations: Making Biofuels More Efficient A new project is using thermophilic extremophiles -- microorganisms that grow optimally in temperatures above 160 deg F -- to produce a new highly efficient fuel. Learn more. December 2, 2010 Civil War Icon Becomes National Clean Energy Model Nearly a century and a half after the first shots of the Civil War, Fort Sumter National Monument is poised to become a national model for clean

173

Blog Feed: Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 24, 2010 March 24, 2010 Novozymes was awarded a $28.4 million tax credit to build an enzyme facility in Blair, Neb. | Photo courtesy of Novozymes Biofuels Company Builds New Facility in Nebraska The biofuels company Novozymes received a $28.4 million tax credit under the Recovery Act for the construction of a new facility in Blair, Neb., that produces enzymes to turn waste into fuel. The project, sparked by the increasing demand for cellulosic fuel, will create 100 jobs and reduce the company's transportation costs. March 22, 2010 Advanced batteries will enable electricity generated through renewable energy sources to be used in plug-in vehicles. | File photo Battery Jobs Coming to Michigan A123 Systems, of Watertown, Mass., was awarded a $249 million Recovery Act

174

Alternative Fuel Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alternative Fuel Vehicles Alternative Fuel Vehicles Learn how a local Clean Cities coalition helped Idaho's Valley Regional Transit switch to compressed natural gas buses, allowing the transit authority to maintain its service while reducing harmful emissions. Learn how a local Clean Cities coalition helped Idaho's Valley Regional Transit switch to compressed natural gas buses, allowing the transit authority to maintain its service while reducing harmful emissions. From electric cars and propane vehicles to natural gas-powered buses and trucks that run on biodiesel, today's options for alternative fuel vehicles are vast. Increasing the use of alternative fuels and vehicles will help reduce consumers' fuel costs, minimize pollution and increase

175

Finnish Electric Vehicle Technologies FEVT | Open Energy Information  

Open Energy Info (EERE)

Finnish Electric Vehicle Technologies FEVT Finnish Electric Vehicle Technologies FEVT Jump to: navigation, search Name Finnish Electric Vehicle Technologies (FEVT) Place Finland Zip 4320 Product Offers large capacity electrical energy storage solutions using technology based on lithium-ion batteries and intelligent cell control systems. References Finnish Electric Vehicle Technologies (FEVT)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Finnish Electric Vehicle Technologies (FEVT) is a company located in Finland . References ↑ "Finnish Electric Vehicle Technologies (FEVT)" Retrieved from "http://en.openei.org/w/index.php?title=Finnish_Electric_Vehicle_Technologies_FEVT&oldid=345367"

176

Plug-In Hybrid Electric Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plug-In Hybrid Electric Vehicles Plug-In Hybrid Electric Vehicles Plug-In Hybrid Electric Vehicles A new study released on Plug-in Hybrid Electric Vehicles (PHEVs) found there is enough electric capacity to power plug-in vehicles across much of the nation. The Office of Electricity Delivery and Energy Reliability supported researchers at the Pacific Northwest National Laboratory to develop this study that found "off-peak" electricity production and transmission capacity could fuel 84 percent of the 198 million cars, pickup trucks, and sport utility vehicles (SUVs) in the nation if they were plug-in hybrid electrics. This is the first review of what the impacts would be of very high market penetrations of PHEVs. Plug-In Hybrid Electric Vehicles More Documents & Publications

177

Smith Electric Vehicles US SEV US | Open Energy Information  

Open Energy Info (EERE)

Electric Vehicles US SEV US Electric Vehicles US SEV US Jump to: navigation, search Name Smith Electric Vehicles US (SEV-US) Place Kansas City, Missouri Zip 64163 Product Kansas-based company owned by US investors and the Tanfield Group, which manufactures all-electric zero-emissions commercial trucks. References Smith Electric Vehicles US (SEV-US)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Smith Electric Vehicles US (SEV-US) is a company located in Kansas City, Missouri . References ↑ "Smith Electric Vehicles US (SEV-US)" Retrieved from "http://en.openei.org/w/index.php?title=Smith_Electric_Vehicles_US_SEV_US&oldid=351204" Categories: Clean Energy Organizations

178

The Impact of Residential Density on Vehicle Usage and Energy Consumption  

E-Print Network (OSTI)

on Vehicle Usage and Energy Consumption References Bento,Vehicle Usage and Energy Consumption UCI-ITS-WP-05-1 Thomason Vehicle Usage and Energy Consumption Thomas F. Golob

Golob, Thomas F; Brownstone, David

2005-01-01T23:59:59.000Z

179

Vehicle Technologies Office: Fact #607: January 25, 2010 Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

7: January 25, 2010 Energy and Power by Battery Type to someone by E-mail Share Vehicle Technologies Office: Fact 607: January 25, 2010 Energy and Power by Battery Type on...

180

Vehicle Technologies Office: Fact #554: January 19, 2009 Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

4: January 19, 2009 Energy Intensity of Light Rail Transit Systems to someone by E-mail Share Vehicle Technologies Office: Fact 554: January 19, 2009 Energy Intensity of Light...

Note: This page contains sample records for the topic "vehicle ldv energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Total energy cycle energy use and emissions of electric vehicles.  

SciTech Connect

A total energy cycle analysis (TECA) of electric vehicles (EV) was recently completed. The EV energy cycle includes production and transport of fuels used in power plants to generate electricity, electricity generation, EV operation, and vehicle and battery manufacture. This paper summarizes the key assumptions and results of the EVTECA. The total energy requirements of EVS me estimated to be 24-35% lower than those of the conventional, gasoline-fueled vehicles they replace, while the reductions in total oil use are even greater: 55-85%. Greenhouse gases (GHG) are 24-37% lower with EVs. EVs reduce total emissions of several criteria air pollutants (VOC, CO, and NO{sub x}) but increase total emissions of others (SO{sub x}, TSP, and lead) over the total energy cycle. Regional emissions are generally reduced with EVs, except possibly SO{sub x}. The limitations of the EVTECA are discussed, and its results are compared with those of other evaluations of EVs. In general, many of the results (particularly the oil use, GHG, VOC, CO, SO{sub x}, and lead results) of the analysis are consistent with those of other evaluations.

Singh, M. K.

1999-04-29T23:59:59.000Z

182

Department of Energy Offers Vehicle Production Group Nearly $50 Million  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Production Group Nearly $50 Vehicle Production Group Nearly $50 Million Conditional Loan Commitment Department of Energy Offers Vehicle Production Group Nearly $50 Million Conditional Loan Commitment November 22, 2010 - 12:00am Addthis Washington, D.C. - U.S. Energy Secretary Steven Chu announced today an offer of a nearly $50 million conditional loan commitment to The Vehicle Production Group LLC (VPG). The conditional loan commitment will support the development of the six-passenger MV-1, a factory-built wheelchair accessible vehicle that will run on compressed natural gas. The vehicle will be produced at the Mishawaka, Indiana AM General Plant. "This project represents an investment in innovation that will create new jobs, promote the use of alternative fuels, and help our nation maintain

183

Definition: Alternative-fuel vehicle | Open Energy Information  

Open Energy Info (EERE)

Alternative-fuel vehicle Alternative-fuel vehicle Jump to: navigation, search Dictionary.png Alternative-fuel vehicle A vehicle designed to operate on an alternative fuel (e.g., compressed natural gas, methane blend, electricity). As defined by the Energy Policy Act, any dedicated, flexible-fuel, or dual-fuel vehicle designed to operate on at least one alternative fuel.[1][2] View on Wikipedia Wikipedia Definition Related Terms fuel cell References ↑ http://www.afdc.energy.gov/afdc/glossary.html ↑ http://205.254.135.24/tools/glossary/index.cfm?id=A sus LikeLike UnlikeLike You like this.Sign Up to see what your friends like. tainability,sustainability, Retrieved from "http://en.openei.org/w/index.php?title=Definition:Alternative-fuel_vehicle&oldid=502587" Category: Definitions

184

Natural Gas Vehicle Cost Calculator | Open Energy Information  

Open Energy Info (EERE)

Natural Gas Vehicle Cost Calculator Natural Gas Vehicle Cost Calculator Jump to: navigation, search Tool Summary Name: Natural Gas Vehicle Cost Calculator Agency/Company /Organization: United States Department of Energy Phase: "Evaluate Options and Determine Feasibility" is not in the list of possible values (Bring the Right People Together, Create a Vision, Determine Baseline, Evaluate Options, Develop Goals, Prepare a Plan, Get Feedback, Develop Finance and Implement Projects, Create Early Successes, Evaluate Effectiveness and Revise as Needed) for this property. User Interface: Website Website: www.afdc.energy.gov/afdc/vehicles/natural_gas_calculator.html Determine the costs to acquire and use a Natural Gas Vehicle (Honda Civic GX) as compared to a conventional vehicle.

185

Electric Energy Industry Workforce: Trends in Motor Vehicle Crashes  

Science Conference Proceedings (OSTI)

EPRI has established an ongoing injury/illness research programthe Occupational Health and Safety Database (OHSD) Programto provide information about the occurrence of workplace injury and illness among the electric energy industry workforce. Vehicles operated by electric utility workers typically include bucket trucks, digger/derrick trucks, washer trucks, pole and material trucks and trailers, and other vehicles used in line construction and maintenance. These vehicles are generally operated over low m...

2007-04-26T23:59:59.000Z

186

Executive Fleet Vehicles Report | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Executive Fleet Vehicles Report Executive Fleet Vehicles Report Executive Fleet Vehicles Report On May 24, 2011, the President issued a Presidential Memorandum on Federal Fleet Performance. In accordance with Section 1 (b) of the Presidential Memorandum and pursuant to Federal Management Regulation 102-34.50 (41 CFR 102-34.50), executive fleets are required to achieve maximum fuel efficiency; be limited in motor vehicle body size, engine size, and optional equipment to what is essential to meet agency mission; and be midsize or smaller sedans, except where larger sedans are essential to the agency mission. Executive fleet vehicles that are larger than midsize sedans or are not AFVs must be disclosed on the website of the agency operating the vehicles within 180 days of the date of the memorandum (on or before November 17,

187

hydrogen pilot plant, H2ICE vehicle testing INL alternative energy vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Pilot Plant, H2ICE Hydrogen Pilot Plant, H2ICE Vehicle Testing, & INL Alternative Energy Vehicles (Advanced Vehicle Testing Activity) Jim Francfort Discovery Center of Idaho - September 2005 INL/CON-05-00694 AVTA Presentation Outline * Arizona Public Service's Alternative Fuel (Hydrogen) Pilot Plant Design and Operations * Hydrogen internal combustion engine vehicle testing * Oil bypass filter system evaluation * Diesel engine idling testing * INL alternative fuel infrastructure * INL alternative fuel fleet * WWW information APS Alternative Fuel (Alt-Fuel) Pilot Plant - Partners * Arizona Public Service (APS) * Electric Transportation Applications (ETA) * Idaho National Laboratory (INL) * Started operations - 2002 Alt-Fuel Pilot Plant & Vehicle Testing - Objectives * Evaluate the safety & reliability of operating ICE

188

Renewable Fuel Vehicles | Open Energy Information  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Renewable Fuel Vehicles Jump to: navigation, search TODO: Add description List of Renewable...

189

Alternative Fuel Vehicles | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

the transit authority to maintain its service while reducing harmful emissions. From electric cars and propane vehicles to natural gas-powered buses and trucks that run on...

190

Blog Feed: Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 30, 2012 November 30, 2012 Argonne scientists Ira Bloom (front) and Javier Bareño prepare a sample of battery materials for Raman spectroscopy, which is used to gather information regarding the nature of the materials present in the sample. | Photo courtesy of Argonne National Laboratory. Building a Better Battery for Vehicles and the Grid The new Batteries and Energy Storage Hub is a coordinated effort designed to push the limits on battery advances. November 30, 2012 Scientists and engineers at the Energy Department and its national laboratories are finding new, more efficient ways to convert biomass into biofuels that can take the place of conventional fuels like gasoline, diesel and jet fuel. At Oak Ridge National Laboratory's Environmental Science Division, graduate students and researchers use transplanted trees in a number of studies, including those involving biomass conversion to biofuels. In this photo, graduate student Alina Campbell is removing damaged leaves from Eastern Cottonwood trees, which helps stimulate the trees' growth.| Photo courtesy of Jason Richards.

191

EIA - Appendix B: Estimation Methodologies of Household Vehicles Energy  

U.S. Energy Information Administration (EIA) Indexed Site

If you have trouble viewing this page, contact the National Energy Informaiton Center at (202) 586-8800. Return to Energy Information Administration Home Page If you have trouble viewing this page, contact the National Energy Informaiton Center at (202) 586-8800. Return to Energy Information Administration Home Page EIA Home > Transportation Home Page > Appendix B Estimation MethodologiesIntroduction Appendix B Estimation Methodologies Introduction Statistics concerning vehicle miles traveled (VMT), vehicle fuel efficiency (given in terms of miles per gallon (MPG)), vehicle fuel consumption, and vehicle fuel expenditures are presented in this report. The methodology used to estimate these statistics relied on data from the 1993 Residential Energy Consumption Survey (RECS), the 1994 Residential Transportation Energy Consumption Survey (RTECS), the U.S. Environmental Protection Agency (EPA) fuel efficiency test results, the U.S. Bureau of Labor Statistics (BLS) retail pump price series, and the Lundberg Survey, Inc., price series for 1994.

192

What Are Your Thoughts on Electric Vehicles? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thoughts on Electric Vehicles? Thoughts on Electric Vehicles? What Are Your Thoughts on Electric Vehicles? October 21, 2010 - 7:30am Addthis On Tuesday, Erin told you about some pilot programs to install residential and commercial charging stations throughout the United States. These pilot programs will help researchers determine where the best locations are for these charging stations (outside the home). With the ramp-up in charging stations, tell us: What are your thoughts on electric vehicles? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. E-mail your responses to the Energy Saver team at consumer.webmaster@nrel.gov. Addthis Related Articles Electric Vehicle Charging Stations, Coming Soon to a City Near You

193

Blog Feed: Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 18, 2011 March 18, 2011 Kansas City Buses Provide a Clean Ride for Kids On Wednesday March 16, the Kansas City, Kansas School District welcomed some newcomers to their community - 47 natural gas school buses deployed as part of the Clean Cities Alternative Fuel Vehicle Pilot Program. March 18, 2011 Driving "Back to the Future": Flex-Fuel Vehicle Awareness How Flexible Fuel Vehicles are empowering consumers and reducing our reliance on foreign oil. March 17, 2011 Manhattan Beer Distributors' first diesel-electric hybrid delivery vehicle | Photo Courtesy of Manhattan Beer Distributors Green Beer: Not Just for St. Patrick's Day How the Clean Cities program has helped small business fleets like Manhattan Beer Distributors adopt fuel efficient vehicle technology --

194

Visualizing Electric Vehicle Sales | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Visualizing Electric Vehicle Sales Visualizing Electric Vehicle Sales Visualizing Electric Vehicle Sales July 25, 2013 - 2:48pm Addthis Data compiled by Yan (Joann) Zhou at Argonne National Laboratory. (*) Sales from the second quarter of 2013 for Tesla Model S are based off of estimates provided by the Hybrid Market Dashboard. Data updated 9/25/2013. Daniel Wood Daniel Wood Data Integration Specialist More on eGallon: Read more about electric vehicle sales and eGallon's continued consistency. Check out our first blog post on the eGallon launch. Read the eGallon Q&A to learn more about the new tool. Last week, we reported on how electric vehicle sales have taken off in the last few months as prices have dropped and more manufacturers install fast charging stations across the country. Using the data we released last week, we created an interactive chart that

195

Visualizing Electric Vehicle Sales | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Visualizing Electric Vehicle Sales Visualizing Electric Vehicle Sales Visualizing Electric Vehicle Sales July 25, 2013 - 2:48pm Addthis Data compiled by Yan (Joann) Zhou at Argonne National Laboratory. (*) Sales from the second quarter of 2013 for Tesla Model S are based off of estimates provided by the Hybrid Market Dashboard. Data updated 9/25/2013. Daniel Wood Daniel Wood Data Integration Specialist More on eGallon: Read more about electric vehicle sales and eGallon's continued consistency. Check out our first blog post on the eGallon launch. Read the eGallon Q&A to learn more about the new tool. Last week, we reported on how electric vehicle sales have taken off in the last few months as prices have dropped and more manufacturers install fast charging stations across the country. Using the data we released last week, we created an interactive chart that

196

Big Green Bus: A Vehicle for Change | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Bus: A Vehicle for Change Green Bus: A Vehicle for Change Big Green Bus: A Vehicle for Change July 1, 2010 - 3:35pm Addthis The Big Green Bus rolled into Washington, D.C., and parked outside the Department of Energy offices Monday to showcase its clean energy features. | Photo Courtesy of Joshua Delung | The Big Green Bus rolled into Washington, D.C., and parked outside the Department of Energy offices Monday to showcase its clean energy features. | Photo Courtesy of Joshua Delung | Joshua DeLung Twelve Dartmouth College students stopped at the U.S. Department of Energy Monday in a Big Green Bus, a 1989 MCI coach with an engine modified to run on waste vegetable oil. The students' goals are to promote alternative fuels and sustainable living with the slogan "Vehicle for Change" on this sixth-annual cross-country educational tour.

197

Big Green Bus: A Vehicle for Change | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Big Green Bus: A Vehicle for Change Big Green Bus: A Vehicle for Change Big Green Bus: A Vehicle for Change July 1, 2010 - 3:35pm Addthis The Big Green Bus rolled into Washington, D.C., and parked outside the Department of Energy offices Monday to showcase its clean energy features. | Photo Courtesy of Joshua Delung | The Big Green Bus rolled into Washington, D.C., and parked outside the Department of Energy offices Monday to showcase its clean energy features. | Photo Courtesy of Joshua Delung | Joshua DeLung Twelve Dartmouth College students stopped at the U.S. Department of Energy Monday in a Big Green Bus, a 1989 MCI coach with an engine modified to run on waste vegetable oil. The students' goals are to promote alternative fuels and sustainable living with the slogan "Vehicle for

198

TTRDC - Light Duty E-Drive Vehicles Monthly Sales Updates  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Duty Electric Drive Vehicles Monthly Sales Updates Currently available electric-drive vehicles (EDV) in the U.S market include hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and all electric vehicles (AEV). Plug-in Vehicles (PEV) include both PHEV and AEV. HEVs debuted in the U.S. market in December 1999 with 17 sales of the first-generation Honda Insight, while the first PHEV (Chevrolet Volt) and AEV (Nissan Leaf) most recently debuted in December 2010. Electric drive vehicles are offered in several car and SUV models, and a few pickup and van models. Historical sales of HEV, PHEV, and AEV are compiled by Argonne's Center for Transportation Research and reported to the U.S. Department of Energy's Vehicle Technology Program Office each month. These sales are shown in Figures 1, 2 and 3. Figure 1 shows monthly new PHEV and AEV sales by model. Figure 2 shows yearly new HEV sales by model. Figure 3 shows electric drive vehicles sales share of total light-duty vehicle (LDV) sales since 1999. Figure 4 shows HEV and PEV sales change with gasoline price..

199

LEAFing Through New Vehicle Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LEAFing Through New Vehicle Technology LEAFing Through New Vehicle Technology LEAFing Through New Vehicle Technology May 26, 2010 - 11:32am Addthis An artist’s rendering of a Nissan LEAF charging outside a café. | Courtesy The EV Project An artist's rendering of a Nissan LEAF charging outside a café. | Courtesy The EV Project Joshua DeLung Oil and gas price fluctuations and environmental concerns are driving innovators to find new ways to power our vehicles. That's the focus of The EV Project, a new program of ECOtality North America, which was awarded a $114.8 million Recovery Act grant from the U.S. Department of Energy. The EV Project will create a network of charging stations for participants' electric vehicles and gather data on the stations' usage. "As [Energy] Secretary [Steven] Chu rightly pointed out, the only way

200

Motor Vehicle Emission Simulator (MOVES) | Open Energy Information  

Open Energy Info (EERE)

Motor Vehicle Emission Simulator (MOVES) Motor Vehicle Emission Simulator (MOVES) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Motor Vehicle Emission Simulator (MOVES) Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy Focus Area: Transportation Topics: GHG inventory Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.epa.gov/otaq/models/moves/index.htm Cost: Free Equivalent URI: cleanenergysolutions.org/content/motor-vehicle-emission-simulator-move Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration & Implementation References: http://www.epa.gov/otaq/models/moves/index.htm Intended to replace MOBILE6, NONROAD, and NMIM. Estimates energy consumption emissions from highway vehicles from 1999-2050 and accounts for

Note: This page contains sample records for the topic "vehicle ldv energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

VISION Model for Vehicle Technologies and Alternative Fuels | Open Energy  

Open Energy Info (EERE)

VISION Model for Vehicle Technologies and Alternative Fuels VISION Model for Vehicle Technologies and Alternative Fuels Jump to: navigation, search Tool Summary LAUNCH TOOL Name: VISION Model for Vehicle Technologies and Alternative Fuels Agency/Company /Organization: Argonne National Laboratory Sector: Energy Focus Area: Transportation Phase: Create a Vision Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.transportation.anl.gov/modeling_simulation/VISION/ OpenEI Keyword(s): EERE tool, VISION Model for Vehicle Technologies and Alternative Fuels References: The VISION Model [1] Estimate the potential energy use, oil use, and carbon emission impacts of advanced light and heavy-duty vehicle technologies and alternative fuels through 2050. The VISION model has been developed to provide estimates of the potential

202

Department of Energy Announces Advanced Vehicle Technology Competition,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Vehicle Technology Advanced Vehicle Technology Competition, EcoCar2: Plugging into the Future Department of Energy Announces Advanced Vehicle Technology Competition, EcoCar2: Plugging into the Future April 13, 2011 - 12:00am Addthis Washington, DC - Today, at the SAE 2011 World Congress in Detroit, Mich., U.S. Department of Energy's Assistant Secretary for Policy and International Affairs, David Sandalow, announced the official launch of the EcoCar2: Plugging into the Future competition and the sixteen university teams that were selected to participate. EcoCar2 is a unique educational partnership between General Motors and the Department of Energy to help prepare future engineers for opportunities in clean energy and advanced vehicle industries. EcoCar2 is one piece of the Department's broad

203

Flywheel Energy Storage Device for Hybrid and Electric Vehicles  

ORNL 2011-G00218/jcn UT-B ID 200701859 07.2011 Flywheel Energy Storage Device for Hybrid and Electric Vehicles Technology Summary This cost-effective technology ...

204

Light-Duty Vehicle Energy Consumption by Technology Type from...  

Open Energy Info (EERE)

Light-Duty Vehicle Energy Consumption by Technology Type from EIA AEO 2011 Early Release Supplemental Table 47 of EIA AEO 2011 Early Release
2011-02-23T15:57:46Z...

205

Hybrid vehicle motor alignment - Energy Innovation Portal  

A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion ...

206

EVI Electric Vehicles International | Open Energy Information  

Open Energy Info (EERE)

EVI Electric Vehicles International EVI Electric Vehicles International Jump to: navigation, search Name EVI (Electric Vehicles International) Place Stockton, California Product California-based Electric Vehicle Manufacturer. Coordinates 40.45184°, -112.362524° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.45184,"lon":-112.362524,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

207

Blog Feed: Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

I thought I'd talk about a few hiding in the Alternative Fuels and Advanced Vehicles Data Center (hereafter referred to as the AFDC.) July 9, 2009 Do You Drive a Hybrid Electric...

208

Fuel Cell Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Photo of a blue car with 'The Road to Hydrogen' written on it, filling up at a hydrogen fueling station. Fuel cell vehicles, powered by hydrogen, have the potential to...

209

Analysis of Fuel Cell Vehicles Hybridization and Implications for Energy Storage Devices (Presentation)  

DOE Green Energy (OSTI)

Presents an analysis of hybridization and implications energy storage devices concerning fuel cell vehicles.

Zolot, M.; Markel, T.; Pesaran, A.

2004-06-01T23:59:59.000Z

210

Advanced Vehicle Technologies Awardees | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Person Solar Energy Potential Solar Energy Potential Renewable Energy Production By State Renewable Energy Production By State 2009 Total Energy Production by State 2009 Total...

211

EIA - Household Transportation report: Household Vehicles Energy Use:  

U.S. Energy Information Administration (EIA) Indexed Site

Transportation logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Use: Latest Data & Trends November 2005 Release (Next Update: Discontinued) Based on the 2001 National Household Travel Survey conducted by the U.S. Department of Transportation and augmented by EIA Only light-duty vehicles and recreational vehicles are included in this report. EIA has excluded motorcycles, mopeds, large trucks, and buses in an effort to maintain consistency with its past residential transportation series, which was discontinued after 1994. This report, Household Vehicles Energy Use: Latest Data & Trends, provides details on the nation's energy use for household passenger travel. A primary purpose of this report is to release the latest consumer-based data

212

Blog Feed: Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 20, 2010 July 20, 2010 Eco-Driving: An Everyday Way to Reduce Our Oil Dependence Global warming and oil dependence are on the front burner for good, and for good reason. Thankfully, there is something we can all do today. July 15, 2010 VP 100: President Obama Hails Electric-Vehicle Battery Plant President Obama visits Compact Power in Holland, Michigan -- one of nine new battery plants under construction as a result of the $2.4 billion in Recovery Act advanced battery and electric vehicle awards the President announced last August. July 15, 2010 UQM will manufacture electric vehicle propulsion systems like this at its new facility in Longmont, Colo. | Photo courtesy of UQ VP 100: UQM revving up electric motor production How UQM Technologies, a Colorado-based manufacturer and developer of

213

Blog Feed: Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 11, 2010 August 11, 2010 Cody Friesen and his team at Arizona State University | Photo Credit Arizona State University The Future of Electric Vehicles and Arizona State University's MAIL Battery Building cost-effective EVs just got a little easier. August 11, 2010 Electric vehicles are powered by electricity that comes in the form of electrically charged molecules known as ions. Those ions need a substance to transport them throughout the system as they travel from the anode to the cathode and back again. That substance is an electrolyte. | Staff Photo Illustration Novolyte Charging Up Electric Vehicle Sector Just outside Baton Rouge in Zachary, Louisiana, sits Novolyte Technologies, a battery component manufacturer in business since the early 1970s, making components for batteries used in everything from calculators to hearing

214

Reduce growth rate of light-duty vehicle travel to meet 2050 global climate goals This article has been downloaded from IOPscience. Please scroll down to see the full text article.  

E-Print Network (OSTI)

.iop.org/ERL/6/024018 Abstract Strong policies to constrain increasing global use of light-duty vehicles (cars reductions may be sought in sectors such as electricity generation and light-duty vehicle (LDV

Kammen, Daniel M.

215

Flexible Fuel vehicle cost calculator | Open Energy Information  

Open Energy Info (EERE)

Flexible Fuel vehicle cost calculator Flexible Fuel vehicle cost calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Flexible Fuel Vehicle Cost Calculator Agency/Company /Organization: United States Department of Energy Phase: "Evaluate Options and Determine Feasibility" is not in the list of possible values (Bring the Right People Together, Create a Vision, Determine Baseline, Evaluate Options, Develop Goals, Prepare a Plan, Get Feedback, Develop Finance and Implement Projects, Create Early Successes, Evaluate Effectiveness and Revise as Needed) for this property. User Interface: Website Website: www.afdc.energy.gov/afdc/progs/cost_anal.php?0/E85 Calculate the cost to drive a flex-fueled vehicle (one that can run on either E85 Ethanol or gasoline) on each fuel type.

216

American Electric Vehicles, Inc | Open Energy Information  

Open Energy Info (EERE)

Vehicles, Inc Vehicles, Inc Jump to: navigation, search Name American Electric Vehicles, Inc Address P.O. Box 509 707 County Line Rd. Place Palmer Lake, CO Zip 80133 Sector Vehicles Product EV Drive Train and Services Year founded 2008 Number of employees 11-50 Phone number 719-488-1600 Website http://www.aevehicles.com Coordinates 39.127659°, -104.902071° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.127659,"lon":-104.902071,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

217

VIA Motors electric vehicle platform | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

VIA Motors electric vehicle platform VIA Motors electric vehicle platform extended range electric vehicle technologies VIA Motors electric vehicle platform More Documents &...

218

Blog Feed: Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 25, 2013 July 25, 2013 Data compiled by Yan (Joann) Zhou at Argonne National Laboratory. (*) Sales from the second quarter of 2013 for Tesla Model S are based off of estimates provided by the Hybrid Market Dashboard. Data updated 9/25/2013. Visualizing Electric Vehicle Sales Our new interactive chart lets you explore the continued growth of electric vehicle sales. July 24, 2013 By applying pressure to the generator, one is able to generate about six nanoamperes of current and 400 millivolts of potential -- roughly a quarter of the voltage of a AAA battery and enough to flash a number on the small LCD screen. | Photo courtesy of Seung-Wuk Lee's lab at Lawrence Berkeley National Laboratory.

219

Advanced Vehicle Technologies Awardees | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Act -Energy Sector Jobs -Education & Training -Funding Opportunities --Grants -Prices & Trends -Energy Policy Environmental Cleanup -Emergency Response & Procedures or Search...

220

Evaluation of a Lower-Energy Energy Storage System (LEESS) for Full-Hybrid Electric Vehicles (HEVs) (Presentation)  

DOE Green Energy (OSTI)

This presentation discusses the evaluation of a lower-energy energy storage system for full-hybrid electric vehicles.

Gonder, J.; Ireland, J.; Cosgrove, J.

2013-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle ldv energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

The Impact of Residential Density on Vehicle Usage and Energy Consumption  

E-Print Network (OSTI)

residential transportation energy usage is vital for theDensity on Vehicle Usage and Energy Consumption ReferencesDensity on Vehicle Usage and Energy Consumption UCI-ITS-WP-

Golob, Thomas F; Brownstone, David

2005-01-01T23:59:59.000Z

222

Vehicle emissions and energy consumption impacts of modal shifts  

E-Print Network (OSTI)

Growing concern over air quality has prompted the development of strategies to reduce vehicle emissions in these areas. Concern has also been expressed regarding the current dependency of the U,S, on foreign oil. An option for addressing these concerns is to reduce vehicle-miles travelled (VMT), High- occupancy vehicle (HOV) lanes have been cited as one alternative for achieving this goal. However, latent travel demand frequently negates some or all of the VMT savings brought about by HOV lanes, The net effects of modal shifts to HOV lanes and the subsequent latent travel demand were studied in the thesis, A methodology was developed for estimating vehicle emissions and energy consumption impacts of modal shifts from private vehicles in the freeway mainlanes to buses in an HOV lane when latent travel demand is considered. The methodology was evaluated and determined to yield reasonable results, Finally, the methodology was applied to a freeway corridor in Houston, Texas. The results of the application indicate that reductions in VMT do not necessarily cause reductions in vehicle emissions of interest even when considered, all three of the pollutants of latent travel demand is not consumption was decreased at considered. Energy consumption was decreased a virtually all levels of latent travel demand except where latent travel demand was equivalent to the mode shift.

Mallett, Vickie Lynn

1993-01-01T23:59:59.000Z

223

Energy Department Accelerates the Deployment of Advanced Vehicle  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accelerates the Deployment of Advanced Vehicle Accelerates the Deployment of Advanced Vehicle Technologies with Private Industry Partnerships Energy Department Accelerates the Deployment of Advanced Vehicle Technologies with Private Industry Partnerships March 5, 2013 - 2:15pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's commitment to speeding the transition to more sustainable energy sources that will help drive economic growth, the Energy Department today announced 16 major U.S. employers and two stakeholder groups have joined the Workplace Charging Challenge to give more American workers access to new transportation options, while another three U.S. corporations have joined the National Clean Fleets Partnership. These steps support President Obama's goal to

224

Household Vehicles Energy Use: Latest Data & Trends  

U.S. Energy Information Administration (EIA) Indexed Site

This page left blank. This page left blank. E N E R G Y O V E RV I E W ENERGY INFORMATION ADMINISTRATION/HOUSEHOLD VEHICLES ENERGY USE: LATEST DATA & TRENDS ENERGY OVERVIEW E N E R G Y O V E RV I E W INTRODUCTION Author's Note Estimates of gallons of fuel consumed, type of fuel used, price paid for fuel, and fuel economy are based on data imputed by EIA, using vehicle characteristics and vehicle-miles traveled data collected during the interview process for the 2001 National Household Travel Survey (NHTS). Rather than obtaining that information directly from fuel purchase diaries, EIA exploited its experience and expertise with modeling techniques for transportation studies, filling missing and uncollected data with information reported to other federal agencies, as described in Appendices

225

Household Vehicles Energy Use: Latest Data & Trends  

U.S. Energy Information Administration (EIA) Indexed Site

E E N E R G Y O V E RV I E W ENERGY INFORMATION ADMINISTRATION/HOUSEHOLD VEHICLES ENERGY USE: LATEST DATA & TRENDS ENERGY OVERVIEW E N E R G Y O V E RV I E W INTRODUCTION Author's Note Estimates of gallons of fuel consumed, type of fuel used, price paid for fuel, and fuel economy are based on data imputed by EIA, using vehicle characteristics and vehicle-miles traveled data collected during the interview process for the 2001 National Household Travel Survey (NHTS). Rather than obtaining that information directly from fuel purchase diaries, EIA exploited its experience and expertise with modeling techniques for transportation studies, filling missing and uncollected data with information reported to other federal agencies, as described in Appendices B and C of this report.

226

Energy Efficiency in Heavy Vehicle Tires, Drivetrains, and Braking Systems  

DOE Green Energy (OSTI)

This document was prepared to support the primary goals of the Department of Energy, Office of Heavy Vehicle Technologies. These were recently stated as follows: ''Develop by 2004 the enabling technologies for a class 7-8 truck with a fuel efficiency of 10 mpg (at 65 mph) which will meet prevailing emission standards. For Class 3-6 trucks operating on an urban driving cycle, develop by 2004 commercially viable vehicles that achieve at least double the fuel economy of comparable current vehicles (1999), and as a research goal, reduce criteria pollutants to 30% below EPA standards. Develop by 2004 the diesel engine enabling technologies to support large-scale industry dieselization of Class 1 and 2 trucks, achieving a 35 % fuel efficiency improvement over comparable gasoline-fueled trucks, while meeting applicable emissions standards.'' The enabling technologies for improving the fuel efficiency of trucks, include not only engine technologies but also technologies involved with lowering the rolling resistance of tires, reducing vehicle aerodynamic drag, improving thermal management, and reducing parasitic frictional losses in drive train components. Opportunities also exist for making better use of the energy that might ordinarily be dissipated during vehicle braking. Braking systems must be included in this evaluation since safety in truck operations is vital, and braking requirements are greater for vehicles having lowered resistance to rolling. The Office of Heavy Vehicle Technologies has initiated a program to improve the aerodynamics of heavy vehicles through wind tunnel testing, computational modeling, and on-road evaluations. That activity is described in a separate multi-year plan; therefore, emphasis in this document will be on tires, drive trains, and braking systems. Recent, dramatic fluctuations in diesel fuel prices have emphasized the importance of effecting savings in truck fuel economy by implementing new component designs and materials.

Peter J. Blau

2000-04-26T23:59:59.000Z

227

Vehicle Technologies Office: Solid State Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid State Energy Conversion The Solid State Energy Conversion R&D activity is focused on developing advanced thermoelectric technologies for utilizing engine waste heat by...

228

Blog Feed: Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 8, 2010 June 8, 2010 What's Up With Fuel Cells? We hear a lot about renewables like wind and solar these days, but what's the deal with fuel cells and is there a future in them? May 26, 2010 An artist's rendering of a Nissan LEAF charging outside a café. | Courtesy The EV Project LEAFing Through New Vehicle Technology The LEAF is a five-passenger hatchback, powered by advanced lithium-ion batteries - with a range of more than 100 miles on a single charge. The vehicle will cost drivers about $25,000 after a federal tax credit. May 20, 2010 Are You Participating in Bike-to-Work Day? Are you participating in Bike-to-Work day? Tell us about your plans! May 18, 2010 EcoCAR: The NeXt Challenge Beyond the use of advanced technology, EcoCAR is unique among student competitions in that it provides students with access to and training on

229

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

share for vehicles that use electric storage. Gasoline-electric and diesel-electric hybrid vehicles account for 5 percent of total LDV sales and 13 percent of unconventional...

230

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

percent of LDV sales and 9 percent of sales of vehicles using diesel, alternative fuels, hybrid, or all-electric systems. Sales of diesel vehicles also increase, to 4 percent of...

231

Electric Vehicle Battery Testing: It's Hot Stuff! | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Vehicle Battery Testing: It's Hot Stuff! Electric Vehicle Battery Testing: It's Hot Stuff! Electric Vehicle Battery Testing: It's Hot Stuff! May 26, 2011 - 2:45pm Addthis NREL's Large-Volume Battery Calorimeter has the highest-capacity chamber in the world for testing of this kind. From bottom clockwise:NREL researchers Matthew Keyser, Dirk Long & John Ireland | Photo Courtesy of Dennis Schroeder NREL's Large-Volume Battery Calorimeter has the highest-capacity chamber in the world for testing of this kind. From bottom clockwise:NREL researchers Matthew Keyser, Dirk Long & John Ireland | Photo Courtesy of Dennis Schroeder Sarah LaMonaca Communications Specialist, Office of Energy Efficiency & Renewable Energy What does this mean for me? Increased performance and travel distance in future hybrid and

232

Fueling the Next Generation of Vehicle Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fueling the Next Generation of Vehicle Technology Fueling the Next Generation of Vehicle Technology Fueling the Next Generation of Vehicle Technology February 6, 2013 - 11:20am Addthis Professor Jack Brouwer, Associate Director and Chief Technology Officer of the National Fuel Cell Research Center, points out the tri-generation facility that uses biogas from Orange County Sanitation District’s wastewater treatment plant to produce hydrogen, heat and power. | Photo courtesy of the Energy Department. Professor Jack Brouwer, Associate Director and Chief Technology Officer of the National Fuel Cell Research Center, points out the tri-generation facility that uses biogas from Orange County Sanitation District's wastewater treatment plant to produce hydrogen, heat and power. | Photo courtesy of the Energy Department.

233

Blog Feed: Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 17, 2013 May 17, 2013 Zero Emission Bay Area (ZEBA) -- a group of regional transit agencies in Northern California -- operates twelve, zero-emission, fuel cell buses in real-world service throughout the Bay Area's diverse communities and landscapes. | Photo courtesy of Leslie Eudy, NREL. Top 11 Things You Didn't Know About Fuel Cells Test your fuel cell knowledge with these little-known facts. May 15, 2013 Mississippi's Community Counseling Services converted 29 vans to run on propane, saving more than $1.50 per gallon on fuel or more than $60,000 a year. | Photo courtesy of Community Counseling Services. Clean Cities Helps Nonprofit Cut Fuel Costs with Propane Switching to propane vehicles is helping a Mississippi nonprofit save money and maintain key services.

234

Electrochemical Capacitors as Energy Storage in Hybrid-Electric Vehicles: Present Status and Future Prospects  

E-Print Network (OSTI)

Capacitors as Energy Storage in Hybrid- Electric Vehicles:uncertainty regarding the energy storage technologies.Whether a particular energy storage technology is suitable

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

235

The Impact of Residential Density on Vehicle Usage and Energy Consumption  

E-Print Network (OSTI)

Understanding total residential transportation energy usageon Vehicle Usage and Energy Consumption total annual fuelUsage and Energy Consumption Gasoline-equivalent gallons per year total

Golob, Thomas F; Brownstone, David

2005-01-01T23:59:59.000Z

236

The Impact of Residential Density on Vehicle Usage and Energy Consumption  

E-Print Network (OSTI)

Kenworthy (1989a). Gasoline consumption and cities. Journalon Vehicle Usage and Energy Consumption References Bento,Vehicle Usage and Energy Consumption UCI-ITS-WP-05-1 Thomas

Golob, Thomas F; Brownstone, David

2005-01-01T23:59:59.000Z

237

How Would You Use a Neighborhood Electric Vehicle? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

How Would You Use a Neighborhood Electric Vehicle? How Would You Use a Neighborhood Electric Vehicle? How Would You Use a Neighborhood Electric Vehicle? October 8, 2009 - 4:22pm Addthis This week, John discussed hybrid electric vehicles and neighborhood electric vehicles. We know many of you are driving hybrid electric vehicles, but what do you think about neighborhood electric vehicles? How would you use a neighborhood electric vehicle? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. Please comment with your answers, and also feel free to respond to other comments. Addthis Related Articles Do You Drive a Hybrid Electric Vehicle? Will You Be Trading in Your Clunker for Cash--and a More Efficient Vehicle? How Will You Shop for Your Next Vehicle?

238

New Calculator Helps You Buy the Energy-Saving Vehicle of Your Dreams |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Calculator Helps You Buy the Energy-Saving Vehicle of Your Calculator Helps You Buy the Energy-Saving Vehicle of Your Dreams New Calculator Helps You Buy the Energy-Saving Vehicle of Your Dreams November 15, 2011 - 5:25am Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy Every day, people across America are making the choice to buy energy-efficient vehicles that save energy and money, protect the environment, and help reduce America's dependence on foreign oil. The work we do at the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) has played an important role in developing key technologies - such as innovative batteries - that are making possible the hybrids, electric vehicles, and other alternative fuel vehicles available to consumers and fleets today. These high-efficiency vehicles,

239

An Energy Evolution:Alternative Fueled Vehicle Comparisons  

NLE Websites -- All DOE Office Websites (Extended Search)

Evolution: Evolution: Alternative Fueled Vehicle Com parisons Presented to the DOE EERE Office July 26, 2010 Presented by Patrick Serfass, VP, National Hydrogen Association Prepared by C. E. (Sandy) Thomas, Ph.D., ex-President H 2 Gen Innovations, Inc. Alexandria, Virginia and Director, National Hydrogen Association www.CleanCarOptions.com 2 Outline * Main Results from 100-year simulation - Greenhouse Gas Emissions - Oil consumption * Battery vs. Fuel Cell system comparison * Capital investments (industry & Government) required for: - Hydrogen infrastructure - Electrical charging infrastructure * Government Incentives required for: - BEVs - FCEVs * Natural Gas Vehicle Comparisons 3 NHA Task Force Leader- Frank Novachek (Xcel Energy) Participating Organizations: * ARES Corp. * BP * Canadian Hydrogen

240

Blog Feed: Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 26, 2013 March 26, 2013 The Energy Department is supporting new research and development projects that focus on reducing energy use and costs for U.S. manufacturers. One project is expected to dramatically reduce the cost and lower the energy needed to produce aircrafts. | Photo courtesy of ARM Climate Research Facility. New Investment in Energy-Efficient Manufacturing Five new R&D projects will focus on reducing energy use and costs for U.S. manufacturers while helping to boost product output and improve companies' bottom lines. March 20, 2013 #tipsEnergy: How to Save Energy This Spring We asked, you shared tips for saving energy and money this spring. March 15, 2013 In his 2013 State of the Union address, President Obama called on Congress to create an Energy Security Trust Fund, which would free American families and business from painful spikes in gas prices. The President's plan builds on an idea that has bipartisan support from experts including retired admirals and generals and leading CEOs, and it focuses on one goal: shifting America's cars and trucks off oil entirely. | Infographic from the White House.

Note: This page contains sample records for the topic "vehicle ldv energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Number of Vehicles - Energy Information Administration  

U.S. Energy Information Administration (EIA)

If you are having any technical problems with this site, please contact the EIA Webmaster at wmaster@eia.doe.gov . Energy Information ...

242

Energy Storage System Considerations for Grid-Charged Hybrid Electric Vehicles (Presentation)  

DOE Green Energy (OSTI)

Provides an overview of a study regarding energy storage system considerations for a plug-in hybrid electric vehicle.

Markel, T.; Simpson, A.

2005-09-01T23:59:59.000Z

243

Energy Storage Systems Considerations for Grid-Charged Hybrid Electric Vehicles: Preprint  

DOE Green Energy (OSTI)

This paper calculates battery power and energy requirements for grid-charged hybrid electric vehicles (HEVs) with different operating strategies.

Markel, T.; Simpson, A.

2005-09-01T23:59:59.000Z

244

New-vehicle fuel economy continues to increase - Today in Energy ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA ... Most manufacturers, even those that do not receive credits for qualified alternative fuel vehicles, ...

245

Blog Feed: Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 18, 2013 June 18, 2013 With the help of Kentucky Clean Fuels Coalition, Mammoth Cave National Park was the first National Park fleet to use 100 percent alternative fuel. The Global Electric Motorcar (pictured above) is used by park rangers who need to travel between the Mammoth Cave Campground and the Visitor Center area. | Photo courtesy of Victor Peek Photography. Transitioning Kentucky Off Oil: An Interview with Clean Cities Coordinator Melissa Howell As part of the blog series celebrating Clean Cities' 20th anniversary, we interviewed Clean Cities Coordinator Melissa Howell to learn how she is helping transition Kentucky off oil. June 14, 2013 Nearly 100 Clean Cities coalitions work to reduce petroleum use in communities across the country. Led by Clean Cities coordinators, coalitions are composed of businesses, fuel providers, vehicle fleets, state and local government agencies, and community organizations. These stakeholders come together to share information and resources, educate the public, help craft public policy, and collaborate on projects that reduce petroleum use. Click on a region for more information.

246

Intelligent energy management agent for a parallel hybrid vehicle  

E-Print Network (OSTI)

This dissertation proposes an Intelligent Energy Management Agent (IEMA) for parallel hybrid vehicles. A key concept adopted in the development of an IEMA is based on the premise that driving environment would affect fuel consumption and pollutant emissions, as well as the operating modes of the vehicle and the driver behavior do. IEMA incorporates a driving situation identification component whose role is to assess the driving environment, the driving style of the driver, and the operating mode (and trend) of the vehicle using long and short term statistical features of the drive cycle. This information is subsequently used by the torque distribution and charge sustenance components of IEMA to determine the power split strategy, which is shown to lead to improved fuel economy and reduced emissions.

Won, Jong-Seob

2005-05-01T23:59:59.000Z

247

advanced vehicle technologies awards table | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

advanced vehicle technologies awards table advanced vehicle technologies awards table Microsoft Word - VTP 175 Advanced Vehicle Tech project descriptions draft v5 8-2-11 More...

248

Electric Energy and Power Consumption by Light-Duty Plug-in Electric Vehicles  

E-Print Network (OSTI)

.S. roads alone by 2015. PEVs-- either plug-in hybrid electric vehicles (PHEVs) or pure electric vehicles (EVs)--adopt similar drivetrain configurations as hybrid electric vehicles (HEVs) [21 Electric Energy and Power Consumption by Light-Duty Plug-in Electric Vehicles Di Wu, Student

Tesfatsion, Leigh

249

Vehicle Technologies Office: Fact #709: January 9, 2012 Engine Energy Use:  

NLE Websites -- All DOE Office Websites (Extended Search)

9: January 9, 9: January 9, 2012 Engine Energy Use: Where Does the Energy Go? to someone by E-mail Share Vehicle Technologies Office: Fact #709: January 9, 2012 Engine Energy Use: Where Does the Energy Go? on Facebook Tweet about Vehicle Technologies Office: Fact #709: January 9, 2012 Engine Energy Use: Where Does the Energy Go? on Twitter Bookmark Vehicle Technologies Office: Fact #709: January 9, 2012 Engine Energy Use: Where Does the Energy Go? on Google Bookmark Vehicle Technologies Office: Fact #709: January 9, 2012 Engine Energy Use: Where Does the Energy Go? on Delicious Rank Vehicle Technologies Office: Fact #709: January 9, 2012 Engine Energy Use: Where Does the Energy Go? on Digg Find More places to share Vehicle Technologies Office: Fact #709: January 9, 2012 Engine Energy Use: Where Does the Energy Go? on

250

Vehicle Technology and Alternative Fuel Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Technology and Alternative Fuel Basics Vehicle Technology and Alternative Fuel Basics Vehicle Technology and Alternative Fuel Basics Photo of an electric car plugged in and charging. Learn more about exciting technologies and ongoing research in alternative and advanced vehicles-or vehicles that run on fuels other than traditional petroleum. Alternative Vehicles There are a variety of alternative vehicle fuels available. Learn more about: Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane Vehicles Also learn about: Vehicle Battery Basics Vehicle Emissions Basics Alternative Fuels There are a number of alternative fuel and advanced technology vehicles. Learn more about the following types of vehicles: Biodiesel Electricity Ethanol Hydrogen Natural Gas

251

Blog Feed: Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 18, 2012 July 18, 2012 Deputy Secretary Daniel Poneman tours Proinlosa Energy Corp. in Houston, Texas. Proinlosa is a company in the wind turbine manufacturing supply chain that develops tower parts and has benefitted from the Production Tax Credit (PTC). | Photo courtesy of Keri Fulton. Technology Key to Harnessing Natural Gas Potential New projects, funded by the Energy Department, will research ways to increase production of natural gas by reducing our dependency on foreign oil and creating American jobs. June 22, 2012 The Big Green Bus visited the Energy Department and Secretary Chu this Tuesday. Ten Dartmouth students are touring the nation on the Big Green Bus to build enthusiasm for community involvement through environmental action. This is the 8th year this completely student run initiative has hit the road to travel 12,000 miles across 24 states on a reused, veggie-powered Greyhound bus. | Image: Justin Vandenbroeck, Energy Department

252

Household Vehicles Energy Use: Latest Data & Trends  

U.S. Energy Information Administration (EIA) Indexed Site

Jan-98 Jan-02 Constant 2005 per barrel Official Price of Saudi Light Refiner Acquisition Cost of Imported Crude Oil (RAC) Source: Energy Information Administration. Iran-Iraq War...

253

Transportation Energy Futures Series: Vehicle Technology Deployment...  

NLE Websites -- All DOE Office Websites (Extended Search)

as well as the full series of reports, can be found at http:www.eere.energy.govanalysistransportationenergyfutures. Contract Nos. DC-A36-08GO28308 and DE-AC02-06CH11357 v...

254

New Energy 101 Video: Electric Vehicles | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

trips easier by switching to a gasoline-fueled engine to power the car's electric motor when the battery is low. Visit the Vehicle Cost Calculator on DOE's Alternative Fuels...

255

Blog Feed: Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 12, 2011 December 12, 2011 John Ferrell (center -- 4th from left) participates in a ribbon cutting ceremony marking the grand opening of a cellulosic ethanol demonstration facility in Tennessee. | Photo by Amy Smotherman Burgess. Biomass for the Nation: How One Energy Department Expert Has Helped Lead the Way A look at one Energy Department employee's impact on the biofuels industry. December 12, 2011 Rajit Sapar analyzes samples at the Joint BioEnergy Institute's lab. | Photo by Roy Kaltschmidt at Lawrence Berkeley National Lab. Researchers Borrow From Fir Tree to Create Biodiesel Researchers at the Office of Science's Joint BioEnergy Institute (JBEI) have tapped an unlikely source to help create a renewable alternative to diesel fuel. December 12, 2011 Dr. Riccardo Signorelli, CEO of FastCAP Systems meets with Secretary Chu. Signorelli founded a startup focused on researching and developing carbon nanotube ultracapacitors and was chosen by Technology Review as a "35 Under 35" innovator along with Foro Energy's Dr. Joel Moxely (another ARPA-E performer). | Courtesy of ARPA-E.

256

2010 Vehicle Technologies Market Report | Open Energy Information  

Open Energy Info (EERE)

2010 Vehicle Technologies Market Report 2010 Vehicle Technologies Market Report Jump to: navigation, search Tool Summary LAUNCH TOOL Name: 2010 Vehicle Technologies Market Report Focus Area: Idle Reduction Topics: Deployment Data Website: www1.eere.energy.gov/vehiclesandfuels/pdfs/2010_vt_market_rpt.pdf Equivalent URI: cleanenergysolutions.org/content/2010-vehicle-technologies-market-repo Language: English Policies: "Deployment Programs,Regulations,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Demonstration & Implementation Regulations: "Emissions Standards,Fuel Efficiency Standards" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

257

List of Renewable Fuel Vehicles Incentives | Open Energy Information  

Open Energy Info (EERE)

Vehicles Incentives Vehicles Incentives Jump to: navigation, search The following contains the list of 33 Renewable Fuel Vehicles Incentives. CSV (rows 1 - 33) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alternative Fuel Transportation Grant Program (Indiana) State Grant Program Indiana Commercial Nonprofit Local Government Renewable Transportation Fuels Renewable Fuel Vehicles Fuel Cells No Alternative Fuel Vehicle Loan Program (Missouri) State Loan Program Missouri Schools Local Government Renewable Fuel Vehicles Other Alternative Fuel Vehicles Refueling Stations No Alternative Fuel Vehicle Rebate (Colorado) State Rebate Program Colorado Schools Local Government State Government Renewable Fuel Vehicles No Alternative Fuel Vehicle Tax Credit (West Virginia) Personal Tax Credit West Virginia Residential Renewable Fuel Vehicles No

258

Blog Feed: Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 15, 2011 September 15, 2011 A customer fills up at a new Energy Department supported fuel cell hydrogen energy station in Fountain Valley, California. | Photo courtesy of Air Products and Chemicals. Fuel Station of the Future- Innovative Approach to Fuel Cell Technology Unveiled in California Imagine pulling-up to a fuel station that supplies your car with clean, renewable fuel. Now imagine that, while you're filling up, this same fuel-station just so happens to be providing power back to an entire industrial facility. Sound a little far-fetched? Perhaps, but, in a first-of-its kind milestone-a new fuel cell and hydrogen energy station in Fountain Valley, CA, is doing just that. September 15, 2011 The Liquid Metal Battery is comprised of liquid metal electrodes and a liquid electrolyte of differing densities, which allows the liquids to separate and stratify without the need for any solid separator.

259

Blog Feed: Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 25, 2011 August 25, 2011 Have You Seen Energy Efficiency Improvements in Your Neighborhood? After discovering a renewable energy project in our blogger's own community, we're curious: What energy-saving, innovative projects have you come across in your neighborhood? August 19, 2011 SRNL's Porous Walled Hollow Glass Microspheres (which are about half the width of a human hair in diameter) have a network of interconnected pores that enable them to be filled with, hold and release gases and other materials. | Image courtesy of SRNL Tiny Glass Bubbles With Big Potential If these glass microspheres' walls could talk...They would explain how their tiny pores allow the potential for handling, storing and transporting a variety of materials, including drugs that have targeted delivery and

260

Energy and Environmental Impacts of Rural Vehicles in China  

E-Print Network (OSTI)

Chinas Largest Farm Vehicle Manufacturer. Available onlineCRV manufacturers that produce poor quality vehicles and

Sperling, Dan; Lin, Zhenhong

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle ldv energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network (OSTI)

of light-duty vehicles in Xcel Energy service territory inVehicle Charging in the Xcel Energy Colorado Service

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

262

Household Vehicles Energy Use: Latest Data & Trends  

U.S. Energy Information Administration (EIA) Indexed Site

O V E M E U R T E C S N H T S S U R V E Y 2 0 0 1 I N D E X . H T M L The Energy Information Administration, the independent statistical and analytical administration...

263

Blog Feed: Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 26, 2011 September 26, 2011 Berkeley Lab researchers have designed a new anode -- a key component of lithium ion batteries -- made from a "tailored polymer" (pictured above at right in purple). It has a greater capacity to store energy since it can conduct electricity itself rather than using a polymer binder (such as PVDF, pictured above at left in brown) in the traditional method. National Labs Leading Charge on Building Better Batteries Teams at two of the Energy Department's laboratories are making headway on two projects that will enable building a new lithium battery that charges faster, lasts longer, runs more safely, and might also arrive on the market in the not-too-distant future. Learn more. September 23, 2011 Data Center Celebrates 20 Years of Delivering Savings

264

Plug-In Hybrid Electric Vehicle Energy Storage System Design: Preprint  

DOE Green Energy (OSTI)

This paper discusses the design options for a plug-in hybrid electric vehicle, including power, energy, and operating strategy as they relate to the energy storage system.

Markel, T.; Simpson, A.

2006-05-01T23:59:59.000Z

265

The Impact of Residential Density on Vehicle Usage and Energy Consumption  

E-Print Network (OSTI)

Kenworthy (1989a). Gasoline consumption and cities. JournalVehicle Usage and Energy Consumption Table 2 Housing Unitsvehicular energy consumption is graphed as a function of

Golob, Thomas F.; Brownstone, David

2005-01-01T23:59:59.000Z

266

Modeling, Control and Prototyping of Alternative Energy Storage Systems for Hybrid Vehicles.  

E-Print Network (OSTI)

??Electrochemical batteries are typically considered for secondary energy storage device on hybrid vehicles. Still other forms of energy storage are receiving considerable interest today. In (more)

Samuel Durair Raj, Kingsly Jebakumar

2012-01-01T23:59:59.000Z

267

List of Other Alternative Fuel Vehicles Incentives | Open Energy  

Open Energy Info (EERE)

Fuel Vehicles Incentives Fuel Vehicles Incentives Jump to: navigation, search The following contains the list of 8 Other Alternative Fuel Vehicles Incentives. CSV (rows 1 - 8) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alternative Fuel Vehicle Loan Program (Missouri) State Loan Program Missouri Schools Local Government Renewable Fuel Vehicles Other Alternative Fuel Vehicles Refueling Stations No Alternative Fuels Incentive Grant Fund (AFIG) (Pennsylvania) State Grant Program Pennsylvania Commercial Industrial Residential General Public/Consumer Nonprofit Schools Local Government Renewable Transportation Fuels Renewable Fuel Vehicles Other Alternative Fuel Vehicles Refueling Stations Ethanol Methanol Biodiesel No Alternative Vehicle Conversion Credits - Corporate (Louisiana) Corporate Tax Credit Louisiana Commercial Renewable Fuel Vehicles

268

Dynamic reconfiguration of photovoltaic energy harvesting system in hybrid electric vehicles  

Science Conference Proceedings (OSTI)

Photovoltaic (PV) energy harvesting system is a promising energy source for battery replenishment in hybrid electric vehicles (HEVs.) The PV cell array is installed on different parts of a vehicle body such as the engine hood, door panels, and the roof ... Keywords: dynamic programming., hybrid electric vehicle, photovoltaic array reconfiguration, photovoltaic system

Yanzhi Wang; Xue Lin; Naehyuck Chang; Massoud Pedram

2012-07-01T23:59:59.000Z

269

Vehicle Technologies Office: Hybrid and Vehicle Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid and Vehicle Hybrid and Vehicle Systems to someone by E-mail Share Vehicle Technologies Office: Hybrid and Vehicle Systems on Facebook Tweet about Vehicle Technologies Office: Hybrid and Vehicle Systems on Twitter Bookmark Vehicle Technologies Office: Hybrid and Vehicle Systems on Google Bookmark Vehicle Technologies Office: Hybrid and Vehicle Systems on Delicious Rank Vehicle Technologies Office: Hybrid and Vehicle Systems on Digg Find More places to share Vehicle Technologies Office: Hybrid and Vehicle Systems on AddThis.com... Just the Basics Hybrid & Vehicle Systems Modeling & Simulation Integration & Validation Benchmarking Parasitic Loss Reduction Propulsion Systems Advanced Vehicle Evaluations Energy Storage Advanced Power Electronics & Electrical Machines

270

Blog Feed: Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 13, 2010 September 13, 2010 Back to School: Emphasizing Green in the Bluegrass State How Recovery Act funding is helping schools in the Bluegrass State go green. September 13, 2010 Biodiesel Offers a Renewable Alternative Biodiesel is a renewable fuel made of vegetable oils or animal fats. It can be produced from new oils such as soy or used vegetable oils like restaurant grease. September 10, 2010 North Lauderdale Gets 'Smart' on Cars The Parks and Recreation Department of North Lauderdale, Fla., is saving money and reducing its carbon footprint, thanks to the recent addition of two energy efficient "Smart Cars" to the city's fleet. September 10, 2010 Ed McNeel, superintendent of Corbin's school district, poses aboard the district's new hybrid-diesel bus. | Photo Courtesy of Susie Hart.

271

Energy Department Awards Will Promote Electric Vehicles in 24 States and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Awards Will Promote Electric Vehicles in 24 Energy Department Awards Will Promote Electric Vehicles in 24 States and Train a Workforce for Advanced Vehicle Development Energy Department Awards Will Promote Electric Vehicles in 24 States and Train a Workforce for Advanced Vehicle Development September 8, 2011 - 3:17pm Addthis Washington, D.C. - U.S. Energy Secretary Steven Chu today announced 16 projects supporting activities in 24 states and the District of Columbia to accelerate the adoption of electric vehicles (EVs) in communities across the nation, and seven additional projects in seven states to help prepare college students for careers designing and building advanced vehicle technologies. "By developing the next generation of automotive engineers and preparing communities for plug-in electric vehicles, these projects will help reduce

272

DOE Hydrogen Analysis Repository: Advanced Vehicle Cost and Energy-use  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Vehicle Cost and Energy-use Model (AVCEM) Advanced Vehicle Cost and Energy-use Model (AVCEM) Project Summary Full Title: Advanced Vehicle Cost and Energy-use Model (AVCEM) Project ID: 123 Principal Investigator: Mark Delucchi Brief Description: AVCEM is an electric and gasoline vehicle energy-use and lifetime-cost model. AVCEM designs a motor vehicle to meet range and performance requirements specified by the modeler, and then calculates the initial retail cost and total private and social lifetime cost of the designed vehicle. Purpose AVCEM designs a motor vehicle to meet range and performance requirements specified by the modeler, and then calculates the initial retail cost and total private and social lifetime cost of the designed vehicle. It can be used to investigate the relationship between the lifetime cost -- the total

273

Electric and Gasoline Vehicle Lifecycle Cost and Energy-Use Model  

E-Print Network (OSTI)

Auto Industry Models to Review Electric Vehicle Costing andElectric Vehicles in the Nation's Energy Future , DE86-003295, Argonne National Laboratory, Illinois, November (1984). Auto industry

Delucchi, Mark; Burke, Andy; Lipman, Timothy; Miller, Marshall

2000-01-01T23:59:59.000Z

274

How Will You Shop for Your Next Vehicle? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

How Will You Shop for Your Next Vehicle? How Will You Shop for Your Next Vehicle? How Will You Shop for Your Next Vehicle? July 28, 2011 - 11:41am Addthis On Monday, Shannon talked about how she's been using the online tools from the Advanced Technology Vehicle Data Center (AFDC) to help her decide what type of highly efficient vehicle may be best for her household. The AFDC provides excellent information such as a Light Duty Vehicle Search, an Alternative Fueling Station Locator, and a Hybrid and Plug-in Electric Vehicles section. All of these are helpful if you're wondering what type of vehicle can fit your needs while using the least possible amount of gasoline. In June, Eric's post Driving Home to a Clean Energy Future shared the latest in gasoline, electric, and hybrid vehicle labels. How about you? Are you starting to research vehicles, and if so, what tools

275

MOBILE6 Vehicle Emission Modeling Software | Open Energy Information  

Open Energy Info (EERE)

MOBILE6 Vehicle Emission Modeling Software MOBILE6 Vehicle Emission Modeling Software Jump to: navigation, search Tool Summary Name: MOBILE6 Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy Focus Area: Transportation Topics: GHG inventory Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.epa.gov/oms/m6.htm Cost: Free References: http://www.epa.gov/oms/m6.htm MOBILE6 is an emission factor model for predicting gram per mile emissions of Hydrocarbons (HC), Carbon Monoxide (CO), Nitrogen Oxides (NOx), Carbon Dioxide (CO2), Particulate Matter (PM), and toxics from cars, trucks, and motorcycles under various conditions. MOBILE6 is an emission factor model for predicting gram per mile emissions of Hydrocarbons (HC), Carbon Monoxide (CO), Nitrogen Oxides (NOx), Carbon

276

Utilization of rotor kinetic energy storage for hybrid vehicles  

DOE Patents (OSTI)

A power system for a motor vehicle having an internal combustion engine, the power system comprises an electric machine (12) further comprising a first excitation source (47), a permanent magnet rotor (28) and a magnetic coupling rotor (26) spaced from the permanent magnet rotor and at least one second excitation source (43), the magnetic coupling rotor (26) also including a flywheel having an inertial mass to store kinetic energy during an initial acceleration to an operating speed; and wherein the first excitation source is electrically connected to the second excitation source for power cycling such that the flywheel rotor (26) exerts torque on the permanent magnet rotor (28) to assist braking and acceleration of the permanent magnet rotor (28) and consequently, the vehicle. An axial gap machine and a radial gap machine are disclosed and methods of the invention are also disclosed.

Hsu, John S. (Oak Ridge, TN)

2011-05-03T23:59:59.000Z

277

Vehicle Technologies Office: Fact #710: January 16, 2012 Engine Energy Use  

NLE Websites -- All DOE Office Websites (Extended Search)

10: January 16, 10: January 16, 2012 Engine Energy Use for Heavy Trucks: Where Does the Energy Go? to someone by E-mail Share Vehicle Technologies Office: Fact #710: January 16, 2012 Engine Energy Use for Heavy Trucks: Where Does the Energy Go? on Facebook Tweet about Vehicle Technologies Office: Fact #710: January 16, 2012 Engine Energy Use for Heavy Trucks: Where Does the Energy Go? on Twitter Bookmark Vehicle Technologies Office: Fact #710: January 16, 2012 Engine Energy Use for Heavy Trucks: Where Does the Energy Go? on Google Bookmark Vehicle Technologies Office: Fact #710: January 16, 2012 Engine Energy Use for Heavy Trucks: Where Does the Energy Go? on Delicious Rank Vehicle Technologies Office: Fact #710: January 16, 2012 Engine Energy Use for Heavy Trucks: Where Does the Energy Go? on Digg

278

Vehicle Technologies Office: Fact #289: October 13, 2003 U.S. Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

9: October 13, 9: October 13, 2003 U.S. Energy Consumption, 2002 to someone by E-mail Share Vehicle Technologies Office: Fact #289: October 13, 2003 U.S. Energy Consumption, 2002 on Facebook Tweet about Vehicle Technologies Office: Fact #289: October 13, 2003 U.S. Energy Consumption, 2002 on Twitter Bookmark Vehicle Technologies Office: Fact #289: October 13, 2003 U.S. Energy Consumption, 2002 on Google Bookmark Vehicle Technologies Office: Fact #289: October 13, 2003 U.S. Energy Consumption, 2002 on Delicious Rank Vehicle Technologies Office: Fact #289: October 13, 2003 U.S. Energy Consumption, 2002 on Digg Find More places to share Vehicle Technologies Office: Fact #289: October 13, 2003 U.S. Energy Consumption, 2002 on AddThis.com... Fact #289: October 13, 2003 U.S. Energy Consumption, 2002

279

ENERGY STAR Focus on Energy Efficiency in Motor Vehicle Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Skip to main content ENERGY STAR logo Skip directly to page content Facebook Twitter YouTube Our Blog Search Search Energy Efficient Products Energy Efficient Products ENERGY STAR...

280

A survey-based type-2 fuzzy logic system for energy management in hybrid electrical vehicles  

Science Conference Proceedings (OSTI)

Hybrid electrical vehicles combine two or more energy sources (at least one electrical) to benefit from their different characteristics regarding autonomy, reversibility and dynamic response. Energy management consists in discovering an energy distribution ... Keywords: Energy management, Group decision making, Hybrid electrical vehicles, Linguistic modelling, Survey-based fuzzy logic systems, Type-2 fuzzy sets

Javier Solano Martnez; Robert I. John; Daniel Hissel; Marie-Ccile Pra

2012-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle ldv energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Wind-Energy based Path Planning For Electric Unmanned Aerial Vehicles Using Markov Decision Processes  

E-Print Network (OSTI)

Wind-Energy based Path Planning For Electric Unmanned Aerial Vehicles Using Markov Decision wind-energy is one possible way to ex- tend flight duration for Unmanned Arial Vehicles. Wind-energy sources of wind energy available to exploit for this problem [5]: 1) Vertical air motion, such as thermal

Smith, Ryan N.

282

Wanxiang Electric Vehicle Co Ltd | Open Energy Information  

Open Energy Info (EERE)

electric vehicles as well as the lithium polymer batteries, powertrain components, Battery Management Systems and electronic control components for those vehicles. Coordinates...

283

Vehicle Technologies Office: FY 2012 Progress Report for Energy Storage R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

FY 2012 Progress Report FY 2012 Progress Report for Energy Storage R&D to someone by E-mail Share Vehicle Technologies Office: FY 2012 Progress Report for Energy Storage R&D on Facebook Tweet about Vehicle Technologies Office: FY 2012 Progress Report for Energy Storage R&D on Twitter Bookmark Vehicle Technologies Office: FY 2012 Progress Report for Energy Storage R&D on Google Bookmark Vehicle Technologies Office: FY 2012 Progress Report for Energy Storage R&D on Delicious Rank Vehicle Technologies Office: FY 2012 Progress Report for Energy Storage R&D on Digg Find More places to share Vehicle Technologies Office: FY 2012 Progress Report for Energy Storage R&D on AddThis.com... Publications Key Publications Plans & Roadmaps Partnership Documents Annual Progress Reports

284

Vehicle Technologies Office: FY 2011 Progress Report for Energy Storage R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

11 Progress Report 11 Progress Report for Energy Storage R&D to someone by E-mail Share Vehicle Technologies Office: FY 2011 Progress Report for Energy Storage R&D on Facebook Tweet about Vehicle Technologies Office: FY 2011 Progress Report for Energy Storage R&D on Twitter Bookmark Vehicle Technologies Office: FY 2011 Progress Report for Energy Storage R&D on Google Bookmark Vehicle Technologies Office: FY 2011 Progress Report for Energy Storage R&D on Delicious Rank Vehicle Technologies Office: FY 2011 Progress Report for Energy Storage R&D on Digg Find More places to share Vehicle Technologies Office: FY 2011 Progress Report for Energy Storage R&D on AddThis.com... Publications Key Publications Plans & Roadmaps Partnership Documents Annual Progress Reports

285

Vehicle Technologies Office: Fact #686: August 1, 2011 Emissions and Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

6: August 1, 6: August 1, 2011 Emissions and Energy Use Model - GREET to someone by E-mail Share Vehicle Technologies Office: Fact #686: August 1, 2011 Emissions and Energy Use Model - GREET on Facebook Tweet about Vehicle Technologies Office: Fact #686: August 1, 2011 Emissions and Energy Use Model - GREET on Twitter Bookmark Vehicle Technologies Office: Fact #686: August 1, 2011 Emissions and Energy Use Model - GREET on Google Bookmark Vehicle Technologies Office: Fact #686: August 1, 2011 Emissions and Energy Use Model - GREET on Delicious Rank Vehicle Technologies Office: Fact #686: August 1, 2011 Emissions and Energy Use Model - GREET on Digg Find More places to share Vehicle Technologies Office: Fact #686: August 1, 2011 Emissions and Energy Use Model - GREET on AddThis.com...

286

Energy Management System for an Hybrid Electric Vehicle, Using Ultracapacitors and Neural Networks  

E-Print Network (OSTI)

Energy Management System for an Hybrid Electric Vehicle, Using Ultracapacitors and Neural Networks management system for hybrid electric vehicles (HEV), using neural networks (NN), was developed and tested, similar in shape and size to a Chevrolet S-10, which was converted to an electric vehicle

Rudnick, Hugh

287

EcoCAR 2: Racing Towards Vehicle Efficiency | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EcoCAR 2: Racing Towards Vehicle Efficiency EcoCAR 2: Racing Towards Vehicle Efficiency EcoCAR 2: Racing Towards Vehicle Efficiency May 23, 2012 - 1:55pm Addthis Teams of university students are exploring the hardware of plug-in hybrid electric vehicles this week at the EcoCAR 2 finals in Los Angeles, CA. | Energy Department photo, credit Myles Regan. Teams of university students are exploring the hardware of plug-in hybrid electric vehicles this week at the EcoCAR 2 finals in Los Angeles, CA. | Energy Department photo, credit Myles Regan. Connie Bezanson Education & Outreach Manager, Vehicle Technologies Program What are the key facts? First year finals of the EcoCAR2 competition conclude today in Los Angeles, CA. For the second and third years of the competition, teams integrate their systems into a "mule" vehicle and refine their vehicles to meet

288

Energy Department Awards Will Promote Electric Vehicles in 24 States and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Will Promote Electric Vehicles in 24 Will Promote Electric Vehicles in 24 States and Train a Workforce for Advanced Vehicle Development Energy Department Awards Will Promote Electric Vehicles in 24 States and Train a Workforce for Advanced Vehicle Development September 8, 2011 - 3:17pm Addthis Washington, D.C. - U.S. Energy Secretary Steven Chu today announced 16 projects supporting activities in 24 states and the District of Columbia to accelerate the adoption of electric vehicles (EVs) in communities across the nation, and seven additional projects in seven states to help prepare college students for careers designing and building advanced vehicle technologies. "By developing the next generation of automotive engineers and preparing communities for plug-in electric vehicles, these projects will help reduce

289

Preliminary Assessment of Plug-in Hybrid Electric Vehicles on Wind Energy Markets  

DOE Green Energy (OSTI)

This report examines a measure that may potentially reduce oil use and also more than proportionately reduce carbon emissions from vehicles. The authors present a very preliminary analysis of plug-in hybrid electric vehicles (PHEVs) that can be charged from or discharged to the grid. These vehicles have the potential to reduce gasoline consumption and carbon emissions from vehicles, as well as improve the viability of renewable energy technologies with variable resource availability. This paper is an assessment of the synergisms between plug-in hybrid electric vehicles and wind energy. The authors examine two bounding cases that illuminate this potential synergism.

Short, W.; Denholm, P.

2006-04-01T23:59:59.000Z

290

Propane-Fueled Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Propane-Fueled Vehicle Basics Propane-Fueled Vehicle Basics Propane-Fueled Vehicle Basics August 20, 2013 - 9:16am Addthis There are more than 270,000 on-road propane vehicles in the United States and more than 10 million worldwide. Many are used in fleets, including light- and heavy-duty trucks, buses, taxicabs, police cars, and rental and delivery vehicles. Compared with vehicles fueled with conventional diesel and gasoline, propane vehicles can produce significantly fewer harmful emissions. The availability of new light-duty original equipment manufacturer propane vehicles has declined in recent years. However, certified installers can economically and reliably retrofit many light-duty vehicles for propane operation. Propane engines and fueling systems are also available for heavy-duty vehicles such as school buses and street sweepers.

291

Flexible-Fuel Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Flexible-Fuel Vehicle Basics Flexible-Fuel Vehicle Basics Flexible-Fuel Vehicle Basics August 20, 2013 - 9:05am Addthis Photo of a gray van with 'E85 Ethanol' written on the side. Flexible fuel vehicles (FFVs) are capable of operating on gasoline, E85 (85% ethanol, 15% gasoline), or a mixture of both. There are almost 8 million flexible fuel vehicles on U.S. roads today, but many FFV owners don't know their vehicle is one. Unlike natural gas vehicles and propane bi-fuel vehicles, flexible fuel vehicles contain one fueling system, which is made up of ethanol-compatible components and is set to accommodate the higher oxygen content of E85. E85 should only be used in ethanol-capable FFVs. For more information, read Flexible Fuel Vehicles: Powered by a Renewable American Fuel. Download Adobe Reader.

292

U.S. Department of Energy FreedomCAR and Vehicle Technologies Program Advanced Vehicle Testing Activity Federal Fleet Use of Electric Vehicles  

Science Conference Proceedings (OSTI)

Per Executive Order 13031, Federal Alternative Fueled Vehicle Leadership, the U.S. Department of Energys (DOEs) Advanced Vehicle Testing Activity provided $998,300 in incremental funding to support the deployment of 220 electric vehicles in 36 Federal fleets. The 145 electric Ford Ranger pickups and 75 electric Chrysler EPIC (Electric Powered Interurban Commuter) minivans were operated in 14 states and the District of Columbia. The 220 vehicles were driven an estimated average of 700,000 miles annually. The annual estimated use of the 220 electric vehicles contributed to 39,000 fewer gallons of petroleum being used by Federal fleets and the reduction in emissions of 1,450 pounds of smog-forming pollution. Numerous attempts were made to obtain information from all 36 fleets. Information responses were received from 25 fleets (69% response rate), as some Federal fleet personnel that were originally involved with the Incremental Funding Project were transferred, retired, or simply could not be found. In addition, many of the Department of Defense fleets indicated that they were supporting operations in Iraq and unable to provide information for the foreseeable future. It should be noted that the opinions of the 25 fleets is based on operating 179 of the 220 electric vehicles (81% response rate). The data from the 25 fleets is summarized in this report. Twenty-two of the 25 fleets reported numerous problems with the vehicles, including mechanical, traction battery, and charging problems. Some of these problems, however, may have resulted from attempting to operate the vehicles beyond their capabilities. The majority of fleets reported that most of the vehicles were driven by numerous drivers each week, with most vehicles used for numerous trips per day. The vehicles were driven on average from 4 to 50 miles per day on a single charge. However, the majority of the fleets reported needing gasoline vehicles for missions beyond the capabilities of the electric vehicles, usually because of range limitations. Twelve fleets reported experiencing at least one charge depletion while driving, whereas nine fleets reported not having this problem. Twenty-four of the 25 fleets responded that the electric vehicles were easy to use and 22 fleets indicated that the payload was adequate. Thirteen fleets reported charging problems; eleven fleets reported no charging problems. Nine fleets reported the vehicles broke down while driving; 14 fleets reported no onroad breakdowns. Some of the breakdowns while driving, however, appear to include normal flat tires and idiot lights coming on. In spite of operation and charging problems, 59% of the fleets responded that they were satisfied, very satisfied, or extremely satisfied with the performance of the electric vehicles. As of September 2003, 74 of the electric vehicles were still being used and 107 had been returned to the manufacturers because the leases had concluded.

Mindy Kirpatrick; J. E. Francfort

2003-11-01T23:59:59.000Z

293

Energy Savers in the Community: Fuel Cell Vehicle Pioneer | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Savers in the Community: Fuel Cell Vehicle Pioneer Energy Savers in the Community: Fuel Cell Vehicle Pioneer Energy Savers in the Community: Fuel Cell Vehicle Pioneer February 17, 2010 - 10:58am Addthis Shannon Brescher Shea Communications Manager, Clean Cities Program As the communications coordinator for EERE's Clean Cities program, I'm always on the lookout for interesting stories about alternative fuel vehicles. So when my church pastor, Todd Thomas, mentioned that he'd soon be driving a hydrogen fuel cell vehicle, it caught my attention. What a unique opportunity! Luckily, he was more than willing to sit down with me and describe his experiences. From September to October 2009, Todd participated in Project Driveway, a Chevrolet fuel cell vehicle pilot program. Fuel cell vehicles run on hydrogen, the simplest and most abundant element in the universe. The

294

Analysis of Fuel Cell Vehicle Hybridization and Implications for Energy Storage Devices: June 2004  

DOE Green Energy (OSTI)

This paper addresses the impact of fuel efficiency characteristics on vehicle system efficiency, fuel economy from downsizing different fuel cells, as well as the energy storage system.

Zolot, M.; Markel, T.; Pesaran, A.

2007-01-01T23:59:59.000Z

295

A comparative analysis of energy management strategies for hybrid electric vehicles.  

E-Print Network (OSTI)

??The dissertation offers an overview of the energy management problem in hybrid electric vehicles. Several control strategies described in literature are presented and formalized in (more)

Serrao, Lorenzo

2009-01-01T23:59:59.000Z

296

Using Data-Focused Tools to Assess Lower Vehicle Energy Use (Presentation)  

DOE Green Energy (OSTI)

This presentation, 'Using Data-Focused Tools to Assess Lower Vehicle Energy Use,' was presented at the Green Truck Summit 2013; March 5, 2013, Indianapolis, IN.

Walkowicz, K.

2013-05-01T23:59:59.000Z

297

The Impact of Residential Density on Vehicle Usage and Energy Consumption  

E-Print Network (OSTI)

DC. Steiner, R.L. (1994). Residential density and traveland Brownstone The Impact of Residential Density on VehicleUsage Total annual residential vehicular energy consumption

Golob, Thomas F.; Brownstone, David

2005-01-01T23:59:59.000Z

298

Light-Duty Vehicle Energy Consumption by Fuel Type from EIA AEO...  

Open Energy Info (EERE)

Linked Data Search Share this page on Facebook icon Twitter icon Light-Duty Vehicle Energy Consumption by Fuel Type from EIA AEO 2011 Early Release Dataset Summary...

299

Plug-in electric vehicles as dispersed energy storage interactions with a smart office building  

Science Conference Proceedings (OSTI)

Renewable energy resources (RESs) with plug-in electric vehicles (PEVs) are being gradually accepted by society for their low carbon emission merits. However

Qian Dai; Shanxu Duan; Tao Cai; Changsong Chen

2013-01-01T23:59:59.000Z

300

Evaluation of prediction error effects in wind energy-based electric vehicle charging  

Science Conference Proceedings (OSTI)

This paper first presents a battery operation scheduler for the sake of practical integration of wind energy generation and electric vehicle charging, and then measures its performance mainly focusing on the effect of wind speed prediction errors. The ... Keywords: battery operation scheduler, electric vehicle charging, renewable energy gain, smart grid, wind energy

Junghoon Lee, Gyung-Leen Park, Il-Woo Lee, Wan Ki Park

2013-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle ldv energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Dynamic Reconfiguration of Photovoltaic Energy Harvesting System in Hybrid Electric Vehicles  

E-Print Network (OSTI)

Dynamic Reconfiguration of Photovoltaic Energy Harvesting System in Hybrid Electric Vehicles Yanzhi, xuelin, pedram}@usc.edu, 2 {naehyuck}@elpl.snu.ac.kr ABSTRACT Photovoltaic (PV) energy harvesting system is a promising energy source for battery replenishment in hybrid electric vehicles (HEVs.) The PV cell array

Pedram, Massoud

302

Wind-Energy based Path Planning For Unmanned Aerial Vehicles Using Markov Decision Processes  

E-Print Network (OSTI)

Wind-Energy based Path Planning For Unmanned Aerial Vehicles Using Markov Decision Processes Wesam H. Al-Sabban, Luis F. Gonzalez and Ryan N. Smith Abstract-- Exploiting wind-energy is one possible way to extend the flight duration of an Unmanned Aerial Vehicle. Wind-energy can also be used

Smith, Ryan N.

303

Optimal Energy Management for a Hybrid Energy Storage System for Electric Vehicles Based on  

E-Print Network (OSTI)

}@lea.uni-paderborn.de Abstract--For electric and hybrid electric cars, commonly nickel-metal hydride and lithium-ion batteries. The BMW Mini-E is an all electric powered car field-tested in the United States, United KingdomOptimal Energy Management for a Hybrid Energy Storage System for Electric Vehicles Based

Noé, Reinhold

304

Persu Mobility was Venture Vehicles Inc | Open Energy Information  

Open Energy Info (EERE)

Persu Mobility was Venture Vehicles Inc Persu Mobility was Venture Vehicles Inc Jump to: navigation, search Name Persu Mobility (was Venture Vehicles Inc) Place Los Angeles, California Zip 90067 Product Los Angeles based electric and hybrid plug-in vehicle developer with a Persu Hybrid vehicle that has 3 wheels and leans into turns. References Persu Mobility (was Venture Vehicles Inc)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Persu Mobility (was Venture Vehicles Inc) is a company located in Los Angeles, California . References ↑ "Persu Mobility (was Venture Vehicles Inc)" Retrieved from "http://en.openei.org/w/index.php?title=Persu_Mobility_was_Venture_Vehicles_Inc&oldid=349682"

305

ADVISOR (ADvanced VehIcle SimulatOR) | Open Energy Information  

Open Energy Info (EERE)

ADVISOR (ADvanced VehIcle SimulatOR) ADVISOR (ADvanced VehIcle SimulatOR) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: ADVISOR (ADvanced VehIcle SimulatOR) Focus Area: Fuel Economy Topics: System & Application Design Website: sourceforge.net/projects/adv-vehicle-sim/ Equivalent URI: cleanenergysolutions.org/content/advisor-advanced-vehicle-simulator Language: English Policies: Regulations Regulations: Fuel Efficiency Standards This tool, originally developed by the National Renewable Energy Laboratory (NREL), allows users to simulate and analyze conventional, advanced, light, and heavy vehicles, including hybrid electric and fuel cell vehicles. The tool allows users to assess the effect of changes in vehicle components (such as motors, batteries, catalytic converters, climate control systems,

306

Laboratory testing of high energy density capacitors for electric vehicles  

DOE Green Energy (OSTI)

Laboratory tests of advanced, high energy density capacitors in the Battery Test Laboratory of the Idaho National Engineering Laboratory have been performed to investigate their suitability for load-leveling the battery in an electric vehicle. Two types of devices were tested -- 3 V, 70 Farad, spiral wound, carbon-based, single cell devices and 20 V, 3. 5 Farad, mixed-oxide, multi-cell bipolar devices. The energy density of the devices, based on energy stored during charge to the rated voltage, was found to be 1--2 Wh/kg, which agreed well with that claimed by the manufacturers. Constant power discharge tests were performed at power densities up to 1500 W/kg. Discharges at higher power densities could have been performed had equipment been available to maintain constant power during discharges of less than one second. It was found that the capacitance of the devices were rate dependent with the rate dependency of the carbon-based devices being higher than that of the mixed-oxide devices. The resistance of both types of devices were relatively low being 20--30 milliohms. Testing done in the study showed that the advanced high energy density capacitors can be charged and discharged over cycles (PSFUDS) which approximate the duty cycle that would be encountered if the devices are used to load-level the battery in an electric vehicle. Thermal tests of the advanced capacitors in an insulated environment using the PSFUDS cycle showed the devices do not overheat with their temperatures increasing only 4--5{degrees}C for tests that lasted 5--7 hours. 7 refs., 33 figs., 11 tabs.

Burke, A.F.

1991-10-01T23:59:59.000Z

307

Analysis of the Impact of Fuel Cell Vehicles on Energy Systems in the  

Open Energy Info (EERE)

Analysis of the Impact of Fuel Cell Vehicles on Energy Systems in the Analysis of the Impact of Fuel Cell Vehicles on Energy Systems in the Transportation Sector in Japan Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Analysis of the Impact of Fuel Cell Vehicles on Energy Systems in the Transportation Sector in Japan Agency/Company /Organization: Tohoku University Focus Area: Fuels & Efficiency, Hydrogen Topics: Analysis Tools, Policy Impacts, Policy Impacts Website: www.iaee.org/documents/Aberdeen/a02nakata.pdf Equivalent URI: cleanenergysolutions.org/content/analysis-impact-fuel-cell-vehicles-en Language: English Policies: Financial Incentives This report examines the recent advances in fuel cell vehicles. The report then evaluates the impact of such vehicles on energy systems in the transportation sector in Japan and effectiveness of government subsidies in

308

US Department of Energy Hybrid Vehicle Battery and Fuel Economy Testing  

DOE Green Energy (OSTI)

The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energys FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August, 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and research and development programs. The AVTA has tested over 200 advanced technology vehicles including full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles. Currently, the AVTA is conducting significant tests of hybrid electric vehicles (HEV). This testing has included all HEVs produced by major automotive manufacturers and spans over 1.3 million miles. The results of all testing are posted on the AVTA web page maintained by the Idaho National Laboratory. Through the course of this testing, the fuel economy of HEV fleets has been monitored and analyzed to determine the "real world" performance of their hybrid energy systems, particularly the battery. While the initial "real world" fuel economy of these vehicles has typically been less than that evaluated by the manufacturer and varies significantly with environmental conditions, the fuel economy and, therefore, battery performance, has remained stable over vehicle life (160,000 miles).

Donald Karner; J.E. Francfort

2005-09-01T23:59:59.000Z

309

National Ethanol Vehicle Coalition NEVC | Open Energy Information  

Open Energy Info (EERE)

Ethanol Vehicle Coalition NEVC Ethanol Vehicle Coalition NEVC Jump to: navigation, search Name National Ethanol Vehicle Coalition (NEVC) Place Jefferson City, Missouri Zip 65109 Product The National Ethanol Vehicle Coalition is a non-profit membership organisation serving as a primary advocacy group promoting the use of 85% ethanol in the US as a form of alternative transportation fuel. References National Ethanol Vehicle Coalition (NEVC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. National Ethanol Vehicle Coalition (NEVC) is a company located in Jefferson City, Missouri . References ↑ "National Ethanol Vehicle Coalition (NEVC)" Retrieved from "http://en.openei.org/w/index.php?title=National_Ethanol_Vehicle_Coalition_NEVC&oldid=349065

310

Do You Drive a Hybrid Electric Vehicle? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Drive a Hybrid Electric Vehicle? Do You Drive a Hybrid Electric Vehicle? July 9, 2009 - 1:34am Addthis In Tuesday's entry, Francis X. Vogel from the Wisconsin Clean Cities...

311

Electric Vehicle Grid Integration for Sustainable Military Installations (Presentation), National Renewable Energy Laboratory (NREL)  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Grid Integration for Electric Vehicle Grid Integration for Sustainable Military Installations NDIA Joint Service Power Expo Mike Simpson Mike.Simpson@NREL.gov 5 May 2011 NREL/PR-5400-51519 NATIONAL RENEWABLE ENERGY LABORATORY Agenda 2 1. NREL Transportation Research 2. Net Zero Energy Installations (NZEI) 3. Fort Carson as a Case Study - Vehicles On-Site - Utility Operations - Vehicle Charge Management 4. Full Fleet Simulation 5. Continuing Work NATIONAL RENEWABLE ENERGY LABORATORY NREL is the only national laboratory solely dedicated to advancing renewable energy and energy efficiency. Our employees are committed to building a cleaner, sustainable world. Photo Credits: NREL 3 NATIONAL RENEWABLE ENERGY LABORATORY What is Electric Vehicle Grid Integration (EVGI)? 4 Cross Cutting Enablers Grid / Renewables

312

Annual Energy Outlook 2010: With Projections to 2035  

Annual Energy Outlook 2012 (EIA)

ITC Investment tax credit LCFS Low Carbon Fuel Standard (California) LED Light-emitting diode LDV Light-duty vehicle LNG Liquefied natural gas LPG Liquid petroleum gas MHEV...

313

Energy Department Announces $45 Million to Advance Next-Generation Vehicle  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

$45 Million to Advance Next-Generation $45 Million to Advance Next-Generation Vehicle Technologies Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies September 4, 2013 - 12:00pm Addthis Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies Thirty-eight projects will accelerate the research and development of technologies to improve vehicle fuel efficiency, lower transportation costs, and cut carbon pollution. Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies Thirty-eight projects will accelerate the research and development of technologies to improve vehicle fuel efficiency, lower transportation costs, and cut carbon pollution. Building on President Obama's Climate Action Plan to build a 21st century

314

Household Vehicles Energy Use: Latest Data & Trends  

U.S. Energy Information Administration (EIA) Indexed Site

B B : E S T I M AT I O N M E T H O D O L O G I E S APPENDIX B A P P E N D I X B ESTIMATION METHODOLOGIES INTRODUCTION The National Household Travel Survey (NHTS) is the nation's inventory of local and long distance travel, according to the U.S. Department of Transportation. Between April 2001 and May 2002, roughly 26 thousand households 41 were interviewed about their travel, based on the use of over 53 thousand vehicles. Using confidential data collected during those interviews, coupled with EIA's retail fuel prices, external data sources of test 42 fuel economy, and internal procedures for modifying test fuel economy to on-road, in-use fuel economy, EIA has extended this inventory to include the energy used for travel, thereby continuing a data series that was discontinued by EIA in 1994. This appendix presents the methods used for each eligible sampled

315

Energy control strategy for a hybrid electric vehicle  

DOE Patents (OSTI)

An energy control strategy (10) for a hybrid electric vehicle that controls an electric motor during bleed and charge modes of operation. The control strategy (10) establishes (12) a value of the power level at which the battery is to be charged. The power level is used to calculate (14) the torque to be commanded to the electric motor. The strategy (10) of the present invention identifies a transition region (22) for the electric motor's operation that is bounded by upper and lower speed limits. According to the present invention, the desired torque is calculated by applying equations to the regions before, during and after the transition region (22), the equations being a function of the power level and the predetermined limits and boundaries.

Phillips, Anthony Mark (Northville, MI); Blankenship, John Richard (Dearborn, MI); Bailey, Kathleen Ellen (Dearborn, MI); Jankovic, Miroslava (Birmingham, MI)

2002-01-01T23:59:59.000Z

316

Energy control strategy for a hybrid electric vehicle  

DOE Patents (OSTI)

An energy control strategy (10) for a hybrid electric vehicle that controls an electric motor during bleed and charge modes of operation. The control strategy (10) establishes (12) a value of the power level at which the battery is to be charged. The power level is used to calculate (14) the torque to be commanded to the electric motor. The strategy (10) of the present invention identifies a transition region (22) for the electric motor's operation that is bounded by upper and lower speed limits. According to the present invention, the desired torque is calculated by applying equations to the regions before, during and after the transition region (22), the equations being a function of the power level and the predetermined limits and boundaries.

Phillips, Anthony Mark (Northville, MI); Blankenship, John Richard (Dearborn, MI); Bailey, Kathleen Ellen (Dearborn, MI); Jankovic, Miroslava (Birmingham, MI)

2002-08-27T23:59:59.000Z

317

U.S. Department of Energy -- Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle Testing and Demonstration Activities  

DOE Green Energy (OSTI)

The U.S. Department of Energys (DOE) Advanced Vehicle Testing Activity (AVTA) tests plug-in hybrid electric vehicles (PHEV) in closed track, dynamometer and onroad testing environments. The onroad testing includes the use of dedicated drivers on repeated urban and highway driving cycles that range from 10 to 200 miles, with recharging between each loop. Fleet demonstrations with onboard data collectors are also ongoing with PHEVs operating in several dozen states and Canadian Provinces, during which trips- and miles-per-charge, charging demand and energy profiles, and miles-per-gallon and miles-per-kilowatt-hour fuel use results are all documented, allowing an understanding of fuel use when vehicles are operated in charge depleting, charge sustaining, and mixed charge modes. The intent of the PHEV testing includes documenting the petroleum reduction potential of the PHEV concept, the infrastructure requirements, and operator recharging influences and profiles. As of May 2008, the AVTA has conducted track and dynamometer testing on six PHEV conversion models and fleet testing on 70 PHEVs representing nine PHEV conversion models. A total of 150 PHEVs will be in fleet testing by the end of 2008, all with onboard data loggers. The onroad testing to date has demonstrated 100+ miles per gallon results in mostly urban applications for approximately the first 40 miles of PHEV operations. The primary goal of the AVTA is to provide advanced technology vehicle performance benchmark data for technology modelers, research and development programs, and technology goal setters. The AVTA testing results also assist fleet managers in making informed vehicle purchase, deployment and operating decisions. The AVTA is part of DOEs Vehicle Technologies Program. These AVTA testing activities are conducted by the Idaho National Laboratory and Electric Transportation Engineering Corporation, with Argonne National Laboratory providing dynamometer testing support. The proposed paper and presentation will discuss PHEV testing activities and results. INL/CON-08-14333

James E. Francfort; Donald Karner; John G. Smart

2009-05-01T23:59:59.000Z

318

Energy efficiency of electric vehicles at the 1994 American Tour de Sol  

DOE Green Energy (OSTI)

In 1994, the US Department of Energy, through Argonne National Laboratory`s Center for Transportation Research, sponsored energy-efficiency data collection from student, private, and professional electric vehicles during the American Tour de Sol (ATdS). The ATDS is a multiple-day road rally event, from New York City to Philadelphia. During each leg of the event, kilowatt-hour meters measured the efficiency of the electric vehicles (EVs), which averaged from 5.68 to 65.74 km/kWh. In addition to daily energy-usage measurements, some vehicles used a data-acquisition unit to collect second-by-second information. This showed, in one case, that 21% of the total energy was captured in regenerative braking. Some of the vehicles were also tested on a dynamometer for energy-efficiency, acceleration, and steady-state power ratings. This paper also compares the energy efficiency of the vehicles during the road rally to the dynamometer results. In almost all vehicles, there was an increase in energy efficiency when the vehicle was traveling over the road, due to the non-transient duty cycle and efficient driving techniques. The dynamometer testing also showed that some EVs are equal to or better than gasoline vehicles in performance and efficiency.

Quong, S.; Duoba, M.; Buitrago, C.; LeBlanc, N.; Larsen, R.

1994-11-01T23:59:59.000Z

319

View the Apps for Vehicles Phase One Submissions | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

View the Apps for Vehicles Phase One Submissions View the Apps for Vehicles Phase One Submissions View the Apps for Vehicles Phase One Submissions January 24, 2013 - 11:13am Addthis 9 of the 37 entries for the Apps for Vehicles competition. 9 of the 37 entries for the Apps for Vehicles competition. Ian Kalin Director of the Energy Data Initiative How can I participate? Visit the competition website to view the submitted ideas. Starting on March 15, you'll be able to vote for your favorite completed apps. Apps for Vehicles The Open Data Initiative reached another milestone last week with the completion of the first phase of the Apps for Vehicles Challenge. This incentive-based competition seeks to improve safety and fuel efficiency through data innovation. Thirty-seven entries were submitted to the Challenge's judges, which are all publically viewable on the competition

320

EIA - Annual Energy Outlook 2012 Early Release  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption by Sector Energy Consumption by Sector Transportation figure data Delivered energy consumption in the transportation sector grows from 27.6 quadrillion Btu in 2010 to 28.8 quadrillion Btu in 2035 in the AEO2012 Reference case (Figure 7). Energy consumption by light-duty vehicles (LDVs) (including commercial light trucks) initially declines in the Reference case, from 16.5 quadrillion Btu in 2010 to 15.7 quadrillion Btu in 2025, due to projected increases in the fuel economy of highway vehicles. Projected energy consumption for LDVs increases after 2025, to 16.3 quadrillion Btu in 2035. The AEO2012 Reference case projections do not include proposed increases in LDV fuel economy standards-as outlined in the December 2011 EPA and NHTSA Notice of Proposed Rulemaking for 2017 and

Note: This page contains sample records for the topic "vehicle ldv energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Department of Energy Awards More Than $175 Million for Advanced Vehicle  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More Than $175 Million for Advanced More Than $175 Million for Advanced Vehicle Research and Development Department of Energy Awards More Than $175 Million for Advanced Vehicle Research and Development August 10, 2011 - 3:33pm Addthis Washington, D.C. - U.S. Energy Secretary Steven Chu today announced more than $175 million over the next three to five years to accelerate the development and deployment of advanced vehicle technologies. The funding will support 40 projects across 15 states and will help improve the fuel efficiency of next generation vehicles. The projects will target new innovations throughout the vehicle, including better fuels and lubricants, lighter weight materials, longer-lasting and cheaper electric vehicle batteries and components, more efficient engine technologies, and more.

322

Natural Gas Vehicle Incentive Program | Open Energy Information  

Open Energy Info (EERE)

Natural Gas Vehicle Incentive Program Natural Gas Vehicle Incentive Program Jump to: navigation, search Tool Summary Name: Natural Gas Vehicle Incentive Program Agency/Company /Organization: Natural Gas Vehicles for America Focus Area: Standards - Incentives - Policies - Regulations Topics: Best Practices Website: www.emisstar.com/docs_and_pdfs/070709_NGV_fullreport NGVAmerica engaged Emisstar LLC to develop a streamlined and efficient natural gas vehicle incentive program to promote and accelerate the replacement of older diesel trucks with new natural gas vehicles. How to Use This Tool This tool is most helpful when using these strategies: Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies Learn more about the avoid, shift, improve framework for limiting air

323

New Energy Tax Credit for Electric Vehicles Purchased in 2009  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Tax Credits for Electric Vehicles Federal Tax Credits for Electric Vehicles Photo of cash and keys Federal Tax Credit Up To $7,500! Electric vehicles (EVs) purchased in 2009 may be eligible for a federal income tax credit of up to $7,500. The amount will vary based on the capacity of the battery used to power the vehicle. This credit was replaced with a similar credit for EVs purchased after 2009. The maximum amount of this credit is the same, but the the requirements and credit phase-out criteria are slightly different. For more information on the credit for EVs purchased after 2009, click here. Vehicle Make & Model Full Credit Phase Out No Credit 50% 25% Tesla Motors Jan. 1, 2010, to Present TBD TBD TBD Tesla Roadster 2008-10 Tesla Roadster $7,500 -- -- -- Qualified Plug-In Electric Drive Motor Vehicles (IRC 30D)

324

Demonstrating Electric Vehicles in Canada | Open Energy Information  

Open Energy Info (EERE)

Demonstrating Electric Vehicles in Canada Demonstrating Electric Vehicles in Canada Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Demonstrating Electric Vehicles in Canada Agency/Company /Organization: Natural Resources Canada Focus Area: Vehicles Topics: Best Practices Website: www.emc-mec.ca/RelatedReports/DemonstratingElectricVehiclesInCanada-Pr The purpose of this demonstration study is to define the desirable characteristics of Canadian projects that demonstrate plug-in vehicles, and to determine the appropriate mechanism to collect and disseminate the monitoring data. How to Use This Tool This tool is most helpful when using these strategies: Improve - Enhance infrastructure & policies Learn more about the avoid, shift, improve framework for limiting air pollutants and greenhouse gas emissions.

325

Comparison of Vehicle Efficiency Technology Attributes and Synergy Estimates  

DOE Green Energy (OSTI)

Analyzing the future fuel economy of light-duty vehicles (LDVs) requires detailed knowledge of the vehicle technologies available to improve LDV fuel economy. The National Highway Transportation Safety Administration (NHTSA) has been relying on technology data from a 2001 National Academy of Sciences (NAS) study (NAS 2001) on corporate average fuel economy (CAFE) standards, but the technology parameters were updated in the new proposed rulemaking (EPA and NHTSA 2009) to set CAFE and greenhouse gas standards for the 2011 to 2016 period. The update is based largely on an Environmental Protection Agency (EPA) analysis of technology attributes augmented by NHTSA data and contractor staff assessments. These technology cost and performance data were documented in the Draft Joint Technical Support Document (TSD) issued by EPA and NHTSA in September 2009 (EPA/NHTSA 2009). For these tasks, the Energy and Environmental Analysis (EEA) division of ICF International (ICF) examined each technology and technology package in the Draft TSD and assessed their costs and performance potential based on U.S. Department of Energy (DOE) program assessments. ICF also assessed the technologies? other relevant attributes based on data from actual production vehicles and from recently published technical articles in engineering journals. ICF examined technology synergy issues through an ICF in-house model that uses a discrete parameter approach.

Duleep, G.

2011-02-01T23:59:59.000Z

326

Electric machine for hybrid motor vehicle - Energy Innovation ...  

A power system for a motor vehicle having an internal combustion engine and an electric machine is disclosed. The electric machine has a stator, a permanent magnet ...

327

Motor Vehicle Plant Lighting Level Best Practices | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Motor Vehicle Plant Lighting Level Best Practices Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial...

328

An Ultracapacitor - Battery Energy Storage System for Hybrid Electric Vehicles.  

E-Print Network (OSTI)

??The nickel metal hydride (NiMH) batteries used in most hybrid electric vehicles (HEVs) provide satisfactory performance but are quite expensive. In spite of their lower (more)

Stienecker, Adam W

2005-01-01T23:59:59.000Z

329

Vehicle Technology and Fuel Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

more about: Alternative Fuels Alternative Vehicles For more information on fuels made from biomass, such as ethanol or biodiesel fuels, see the Biomass section: Biodiesel Ethanol...

330

Austin Energy Offers 100% Renewable Electrical Vehicle Charging ...  

Austin area electric vehicle drivers can purchase pre-paid Plug-in EVerywhere network cards for $25 each, which allows unlimited public station charging for six months.

331

Natural Gas Vehicle Fuel Price - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Gas volumes delivered for use as vehicle fuel are included in the State annual totals through 2009 but not in ... electric power price data are for regulated ...

332

Riverside, CA Vehicle Purchase Incentives | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

are eligible to receive a rebate toward the purchase of qualified natural gas or hybrid electric vehicles purchased from a City of Riverside automobile dealership. The...

333

AVCEM: Advanced-Vehicle Cost and Energy Use Model  

E-Print Network (OSTI)

of the battery, according to the battery cost equations (seediscussion of battery cost above). There actually are twoin the amount and cost of fuel-storage, battery, vehicle

Delucchi, Mark

2005-01-01T23:59:59.000Z

334

Mitigation of Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage (Presentation), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

GREAT MINDS THINK ELECTRIC / WWW.EVS26.ORG GREAT MINDS THINK ELECTRIC / WWW.EVS26.ORG Mitigation of Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage Mike Simpson National Renewable Energy Laboratory 8 May 2012 NREL/PR-5400-55080 GREAT MINDS THINK ELECTRIC / WWW.EVS26.ORG Electric Vehicle Grid Integration 2 Cross Cutting Enablers Grid / Renewables Communities Vehicles SMART GRID & COMMUNI- CATION RENEWABLE GENERATION INTERMITTENCY POWER ELECTRONICS EFFICIENCY INFRASTRUCTURE CODES & STANDARDS BUILDING ENERGY MANAGE- MENT GRID OPERATION & RELIABILITY ENERGY STORAGE LIFE & COST STRATEGIC ENERGY ANALYSIS VEHICLE SYSTEMS ANALYSIS & TESTING DEPLOYMENT & PARTNERSHIPS Tx Tx Tx GREAT MINDS THINK ELECTRIC / WWW.EVS26.ORG 3 Vehicle Test Facilities at NREL

335

Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 1: technical report  

DOE Green Energy (OSTI)

This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline-powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume I contains the major results, a discussion of the conceptual framework of the study, and summaries of the vehicle, utility, fuel production, and manufacturing analyses. It also contains summaries of comments provided by external peer reviewers and brief responses to these comments.

Cuenca, R.; Formento, J.; Gaines, L.; Marr, B.; Santini, D.; Wang, M. [Argonne National Lab., IL (United States); Adelman, S.; Kline, D.; Mark, J.; Ohi, J.; Rau, N. [National Renewable Energy Lab., Golden, CO (United States); Freeman, S.; Humphreys, K.; Placet, M. [Pacific Northwest National Lab., Richland, WA (United States)

1998-01-01T23:59:59.000Z

336

Nickel-Metal-Hydride Batterie--High Energy Storage for Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Freedomcar & Vehicle Technologies Program Freedomcar & Vehicle Technologies Program Nickel-Metal-Hydride Batteries - High Energy Storage for Electric Vehicles Background The key to making electric vehicles (EVs) practical is the development of batteries that can provide performance comparable with that of con ventional vehicles at a similar cost. Most EV batteries have limited energy storage capabili ties, permitting only relatively short driving distances before the batteries must be recharged. In 1991, under a coopera tive agreement with The U.S. Department of Energy (DOE), the United States Advanced Battery Consortium (USABC) initiated development of nickel- metal-hydride (NiMH) battery technology and established it as a prime mid-term candidate for use in EVs. DOE funding has been instru

337

RTEV Inc Ruff Tuff Electric Vehicles | Open Energy Information  

Open Energy Info (EERE)

RTEV Inc Ruff Tuff Electric Vehicles RTEV Inc Ruff Tuff Electric Vehicles Jump to: navigation, search Name RTEV Inc. (Ruff & Tuff Electric Vehicles) Place Winnsboro, South Carolina Zip 29180 Sector Vehicles Product Electric vehicle company that has developed low speed electric vehicles and recreational electric vehicles. Currently developing a full speed electric vehicle. Coordinates 32.957805°, -95.290203° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.957805,"lon":-95.290203,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

338

Energy efficient navigation management for hybrid electric vehicles on highways  

Science Conference Proceedings (OSTI)

Plug-in Hybrid Electric Vehicles (PHEVs) are gaining popularity due to their economical efficiency as well as their contribution to environmental preservation. PHEVs allow the driver to use exclusively electric power for 30-50 miles of driving, and switch ... Keywords: formal model, navigation plan, plug-in hybrid vehicle

Mohammad Ashiqur Rahman, Qi Duan, Ehab Al-Shaer

2013-04-01T23:59:59.000Z

339

Novolyte Charging Up Electric Vehicle Sector | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Novolyte Charging Up Electric Vehicle Sector Novolyte Charging Up Electric Vehicle Sector Novolyte Charging Up Electric Vehicle Sector August 11, 2010 - 10:15am Addthis Electric vehicles are powered by electricity that comes in the form of electrically charged molecules known as ions. Those ions need a substance to transport them throughout the system as they travel from the anode to the cathode and back again. That substance is an electrolyte. | Staff Photo Illustration Electric vehicles are powered by electricity that comes in the form of electrically charged molecules known as ions. Those ions need a substance to transport them throughout the system as they travel from the anode to the cathode and back again. That substance is an electrolyte. | Staff Photo Illustration Joshua DeLung What does this mean for me?

340

Suzhou Eagle Electric Vehicle Manufacturing Co Ltd | Open Energy  

Open Energy Info (EERE)

Suzhou Eagle Electric Vehicle Manufacturing Co Ltd Suzhou Eagle Electric Vehicle Manufacturing Co Ltd Jump to: navigation, search Name Suzhou Eagle Electric Vehicle Manufacturing Co Ltd Place Suzhou, China Sector Vehicles Product China-based manufacturer of golf carts, industrial and other 4-wheel electric vehicles. Coordinates 31.3092°, 120.613121° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.3092,"lon":120.613121,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "vehicle ldv energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Awards To Advanced Vehicle Development | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awards To Advanced Vehicle Development Awards To Advanced Vehicle Development Awards To Advanced Vehicle Development September 8, 2011 - 11:30am Addthis Awards To Advanced Vehicle Development Projects to support community planning for plug-in electric vehicles and charging infrastructure will receive $8.5 million through DOE's Clean Cities initiative to facilitate local public-private partnerships that will develop EV deployment strategies. The funding recipients range from communities with extensive EV planning experience to those that are eager to begin, but have not previously had the resources to do so. These one-year projects will help communities address their specific needs, which include updating permitting processes, revising codes, training municipal personnel, promoting public awareness, or developing incentives, and each

342

Awards To Advanced Vehicle Development | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awards To Advanced Vehicle Development Awards To Advanced Vehicle Development Awards To Advanced Vehicle Development September 8, 2011 - 11:30am Addthis Awards To Advanced Vehicle Development Projects to support community planning for plug-in electric vehicles and charging infrastructure will receive $8.5 million through DOE's Clean Cities initiative to facilitate local public-private partnerships that will develop EV deployment strategies. The funding recipients range from communities with extensive EV planning experience to those that are eager to begin, but have not previously had the resources to do so. These one-year projects will help communities address their specific needs, which include updating permitting processes, revising codes, training municipal personnel, promoting public awareness, or developing incentives, and each

343

The Department of Energy Vehicle Technologies Program's $135 Million in Funding to Ecotality, Inc.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Vehicle Energy Vehicle Technologies Program's $135 Million in Funding to Ecotality, Inc. OAS-RA-13-29 July 2013 Department of Energy Washington, DC 20585 July 25, 2013 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on "The Department of Energy Vehicle Technologies Program's $135 Million in Funding to Ecotality, Inc." BACKGROUND The Department of Energy's Vehicle Technologies Program aims to decrease U.S. oil dependence by developing and deploying advanced transportation technologies. Historically, this Program had been allocated about $300 million annually. The scope of the Program was significantly increased when it received approximately $2.8 billion in funds as part of the

344

Propane Vehicle and Infrastructure Codes and Standards Citations (Brochure), NREL (National Renewable Energy Laboratory)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Propane Vehicle and Infrastructure Codes and Standards Citations This document lists codes and standards typically used for U.S. propane vehicle and infrastructure projects. To determine which codes and standards apply to a specific project, identify the codes and standards currently in effect within the jurisdiction where the project will be located. Some jurisdictions also have unique ordinances or regulations that could apply. Learn about codes and standards basics at www.afdc.energy.gov/afdc/codes_standards_basics.html. Find propane vehicle and infrastructure codes and standards in these categories:

345

Electric Vehicle and Infrastructure Codes and Standards Citations (Brochure), NREL (National Renewable Energy Laboratory)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Electric Vehicle and Infrastructure Codes and Standards Citations This document lists codes and standards typically used for U.S. electric vehicle and infrastructure projects. To determine which codes and standards apply to a specific project, identify the codes and standards currently in effect within the jurisdiction where the project will be located. Some jurisdictions also have unique ordinances or regulations that could apply. Learn about codes and standards basics at www.afdc.energy.gov/afdc/codes_standards_basics.html. Find electric vehicle and infrastructure codes and standards in these categories:

346

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network (OSTI)

of Plug-in Hybrid Electric Vehicle Technology, Nationalof Plug-In Hybrid Electric Vehicles on Energy and Emissionsof Plug-In Hybrid Electric Vehicles on Energy and Emissions

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

347

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network (OSTI)

Analysis of Plug-in Hybrid Electric Vehicle Technology,Impacts of Plug-In Hybrid Electric Vehicles on Energy andImpacts of Plug-In Hybrid Electric Vehicles on Energy and

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

348

Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles  

Fuel Cell Technologies Publication and Product Library (EERE)

This report examines energy use and emissions from primary energy source through vehicle operation to help researchers understand the impact of the upstream mix of electricity generation technologies

349

Energy Flowchart Scenarios of Future U.S. Energy Use Incorporating Hydrogen Fueled Vehicles  

SciTech Connect

This project has adapted LLNL energy flowcharts of historical U.S. energy use drawn from the DOE Energy Information Administration (EIA) data to include scenarios involving hydrogen use. A flexible automated process for preparing and drawing these flowcharts has also been developed. These charts show the flows of energy between primary sectors of the economy so that a user can quickly understand the major implications of a proposed scenario. The software can rapidly generate a spectrum of U.S. energy use scenarios in the 2005-2050 timeframe, both with and without a transition to hydrogen-fueled transportation. These scenarios indicate that fueling 100% of the light duty fleet in 2050 (318 million 80 mpg-equivalent compressed hydrogen fuel cell vehicles) will require approximately 100 million tonnes (10.7 quads) of H2/year, reducing petroleum use by at least 7.3 million barrels of oil/day (15.5 quads/yr). Linear extrapolation of EIA's 2025 reference projection to 2050 indicates approximate U.S. primary energy use of 180 quads/yr (in 2050) relative to current use of 97 quads/yr (comprising 39 quads/yr of petroleum). Full deployment of 50% efficient electricity generation technologies for coal and nuclear power and improvements in gasoline lightduty vehicle fleet fuel economy to 50 mpg would reduce projected U.S. primary energy consumption to 143 quads/yr in 2050, comprising 58 quads/yr (27 million bbl/day) of petroleum. Full deployment of H2 automobiles by 2050 could further reduce U.S. petroleum dependence to 43 quads/yr. These projections indicate that substantial steps beyond a transition to H2 light-duty vehicles will be necessary to reduce future U.S. petroleum dependence (and related greenhouse gases) below present levels. A flowchart projecting future U.S. energy flows depicting a complete transition by 2050 to compressed hydrogen light-duty vehicles is attached on the following page (corresponding to scenario 7 in the Appendix). It indicates that producing 100 billion kilograms of hydrogen fuel annually (10.7 quads/yr) from a balanced blend of primary energy sources will likely require 16.2 quads of primary energy input, with an additional 0.96 Quads of electricity for hydrogen storage. These energy flows are comparable to or smaller than projected growth in individual primary energy sources over the 2005-2050 timeframe except perhaps the case of windpower.

Berry, G; Daily III, W

2004-06-03T23:59:59.000Z

350

Fuel-cycle energy and emissions impacts of tripled fuel economy vehicles  

DOE Green Energy (OSTI)

This paper presents estimates of the full cycle energy and emissions impacts of light-duty vehicles with tripled fuel economy (3X vehicles) as currently being developed by the Partnership for a New Generation of Vehicles (PNGV). Seven engine and fuel combinations were analyzed: reformulated gasoline, methanol, and ethanol in spark-ignition, direct-injection engines; low sulfur diesel and dimethyl ether in compression-ignition, direct-injection engines; and hydrogen and methanol in fuel-cell vehicles. The fuel efficiency gain by 3X vehicles translated directly into reductions in total energy demand, petroleum demand, and carbon dioxide emissions. The combination of fuel substitution and fuel efficiency resulted in substantial reductions in emissions of nitrogen oxide, carbon monoxide, volatile organic compounds, sulfur oxide, and particulate matter smaller than 10 microns, particularly under the High Market Share Scenario.

Mintz, M.M.; Wang, M.Q.; Vyas, A.D.

1998-12-31T23:59:59.000Z

351

As Electric Vehicles Take Charge, Costs Power Down | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

As Electric Vehicles Take Charge, Costs Power Down As Electric Vehicles Take Charge, Costs Power Down As Electric Vehicles Take Charge, Costs Power Down January 13, 2012 - 1:29pm Addthis Thanks to a cost-sharing project with the Energy Department, General Motors has been able to develop the capacity to build electric and hybrid motors internally. That capacity has made cars like the upcoming Chevy Spark EV (above) possible. | Image courtesy of General Motors. Thanks to a cost-sharing project with the Energy Department, General Motors has been able to develop the capacity to build electric and hybrid motors internally. That capacity has made cars like the upcoming Chevy Spark EV (above) possible. | Image courtesy of General Motors. Patrick B. Davis Patrick B. Davis Vehicle Technologies Program Manager The record number of electric-drive vehicles on the floor of Detroit's

352

Electric Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet), NREL (National Renewable Energy Laboratory)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Dispensing Dispensing Infrastructure NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. CONTROLLING AUTHORITIES: State and Federal Energy Regulatory Commissions CONTROLLING AUTHORITIES: Local Building and Fire Departments CONTROLLING AUTHORITIES: DOT/NHTS Many standards development organizations (SDOs) are working to develop codes and standards needed for the utilization of alternative fuel vehicle technologies. This chart shows the SDOs responsible for leading the support and development of key codes and standards for electric. Electric Vehicle and Infrastructure Codes and Standards Chart Institute of Electrical and Electronics Engineers, Inc. FERC Federal Energy

353

Integration of plug-in electric vehicle charging and wind energy scheduling on electricity grid  

Science Conference Proceedings (OSTI)

Plug-in electric vehicles (PEVs) and wind energy are both key new energy technologies. However, they also bring challenges to the operation of the electricity grid. Charging a large number of PEVs requires a lot of grid energy, and scheduling wind energy ...

Chiao-Ting Li; Changsun Ahn; Huei Peng; Jing Sun

2012-01-01T23:59:59.000Z

354

Energy Department Partners with EU on Electric Vehicle and Smart Grid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Partners with EU on Electric Vehicle and Smart Partners with EU on Electric Vehicle and Smart Grid Coordination Energy Department Partners with EU on Electric Vehicle and Smart Grid Coordination July 19, 2013 - 5:17pm Addthis Yesterday, representatives from the Energy Department, the European Commission and Argonne National Lab celebrated the launch of the Electric Vehicle-Smart Grid Interoperability Center. From left to right: Mr. Giovanni De Santi, Director of the JRC Institute for energy and transport (IET); Mr. Dominique Ristori, Director-General of the European Commission's Joint Research Centre (JRC); Dr. Phyllis Yoshida, DOE Deputy Assistant Secretary for Europe, Asia and the Americas; Dr. Eric Isaacs, Director of Argonne National Laboratory. | Photo courtesy of Argonne National Lab. Yesterday, representatives from the Energy Department, the European

355

Implementations of electric vehicle system based on solar energy in Singapore : assessment of solar photovoltaic systems  

E-Print Network (OSTI)

To evaluate the feasibility of solar energy based Electric Vehicle Transportation System in Singapore, the state of the art Photovoltaic Systems have been reviewed in this report with a focus on solar cell technologies. ...

Sun, Li

2009-01-01T23:59:59.000Z

356

Using Data-Focused Tools to Assess Lower Vehicle Energy Use (Presentation)  

SciTech Connect

This presentation, 'Using Data-Focused Tools to Assess Lower Vehicle Energy Use,' was presented at the Green Truck Summit 2013; March 5, 2013, Indianapolis, IN.

Walkowicz, K.

2013-05-01T23:59:59.000Z

357

U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity, Hydrogen/CNG Blended Fuels Performance Testing in a Ford F-150  

Science Conference Proceedings (OSTI)

Federal regulation requires energy companies and government entities to utilize alternative fuels in their vehicle fleets. To meet this need, several automobile manufacturers are producing compressed natural gas (CNG)-fueled vehicles. In addition, several converters are modifying gasoline-fueled vehicles to operate on both gasoline and CNG (Bifuel). Because of the availability of CNG vehicles, many energy company and government fleets have adopted CNG as their principle alternative fuel for transportation. Meanwhile, recent research has shown that blending hydrogen with CNG (HCNG) can reduce emissions from CNG vehicles. However, blending hydrogen with CNG (and performing no other vehicle modifications) reduces engine power output, due to the lower volumetric energy density of hydrogen in relation to CNG. Arizona Public Service (APS) and the U.S. Department of Energys Advanced Vehicle Testing Activity (DOE AVTA) identified the need to determine the magnitude of these effects and their impact on the viability of using HCNG in existing CNG vehicles. To quantify the effects of using various blended fuels, a work plan was designed to test the acceleration, range, and exhaust emissions of a Ford F-150 pickup truck operating on 100% CNG and blends of 15 and 30% HCNG. This report presents the results of this testing conducted during May and June 2003 by Electric Transportation Applications (Task 4.10, DOE AVTA Cooperative Agreement DEFC36- 00ID-13859).

James E. Francfort

2003-11-01T23:59:59.000Z

358

Texas Department of Motor Vehicles | Open Energy Information  

Open Energy Info (EERE)

Motor Vehicles Motor Vehicles Jump to: navigation, search Logo: Texas Department of Motor Vehicles Name Texas Department of Motor Vehicles Short Name TxDMV Address 4000 Jackson Ave. Place Austin, Texas Zip 78731 Phone number 1-888-368-4689 Website http://www.txdmv.gov/ Coordinates 30.3134782°, -97.7553907° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.3134782,"lon":-97.7553907,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

359

Northeast Advanced Vehicle Consortium NAVC | Open Energy Information  

Open Energy Info (EERE)

Northeast Advanced Vehicle Consortium NAVC Northeast Advanced Vehicle Consortium NAVC Jump to: navigation, search Name Northeast Advanced Vehicle Consortium (NAVC) Place Boston, Massachusetts Zip 2111 Product Association of private and public sector firms focussed on advanced vehicle technologies such as fuel cells and hybrids. Coordinates 42.358635°, -71.056699° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.358635,"lon":-71.056699,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

360

Nevada Department of Motor Vehicles | Open Energy Information  

Open Energy Info (EERE)

Motor Vehicles Motor Vehicles Jump to: navigation, search Logo: Nevada Department of Motor Vehicles Name Nevada Department of Motor Vehicles Address 555 Wright Way Place Carson City, Nevada Zip 89711 Phone number 702-486-4368 Website http://dmvnv.com/ Coordinates 39.1549237°, -119.7635207° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.1549237,"lon":-119.7635207,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "vehicle ldv energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Definition: Vehicle to Grid Charging Station | Open Energy Information  

Open Energy Info (EERE)

charging station that can also deliver AC power to the utility power system from the DC electricity stored in the plug-in electric vehicle batteries. Such a charging station...

362

Energy Department Awards Will Promote Electric Vehicles in 24...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for plug-in electric vehicles, these projects will help reduce our nation's dependence on oil imports, create jobs, and help America capture the growing global market for advanced...

363

Summary of results from the National Renewable Energy Laboratory`s vehicle evaluation data collection efforts  

DOE Green Energy (OSTI)

The U.S. DOE National Renewable Energy Laboratory conducted a data collection project for light-duty, alternative fuel vehicles (AFVs) for about 4 years. The project has collected data on 10 vehicle models (from the original equipment manufacturers) spanning model years 1991 through 1995. Emissions data have also been collected from a number of vehicles converted to natural gas (CNG) and liquefied petroleum gas (LPG). Most of the vehicles involved in the data collection and evaluation are part of the General Services Administration`s fleet of AFVs. This evaluation effort addressed the performance and reliability, fuel economy, and emissions of light- duty AFVs, with comparisons to similar gasoline vehicles when possible. Driver-reported complaints and unscheduled vehicle repairs were used to assess the performance and reliability of the AFVs compared to the comparable gasoline vehicles. Two sources of fuel economy were available, one from testing of vehicles on a chassis dynamometer, and the other from records of in-service fuel use. This report includes results from emissions testing completed on 169 AFVs and 161 gasoline control vehicles.

Whalen, P.; Kelly, K.; Motta, R.; Broderick, J.

1996-05-01T23:59:59.000Z

364

Life-cycle energy savings potential from aluminum-intensive vehicles  

DOE Green Energy (OSTI)

The life-cycle energy and fuel-use impacts of US-produced aluminum-intensive passenger cars and passenger trucks are assessed. The energy analysis includes vehicle fuel consumption, material production energy, and recycling energy. A model that stimulates market dynamics was used to project aluminum-intensive vehicle market shares and national energy savings potential for the period between 2005 and 2030. We conclude that there is a net energy savings with the use of aluminum-intensive vehicles. Manufacturing costs must be reduced to achieve significant market penetration of aluminum-intensive vehicles. The petroleum energy saved from improved fuel efficiency offsets the additional energy needed to manufacture aluminum compared to steel. The energy needed to make aluminum can be reduced further if wrought aluminum is recycled back to wrought aluminum. We find that oil use is displaced by additional use of natural gas and nonfossil energy, but use of coal is lower. Many of the results are not necessarily applicable to vehicles built outside of the United States, but others could be used with caution.

Stodolsky, F.; Vyas, A.; Cuenca, R.; Gaines, L.

1995-07-01T23:59:59.000Z

365

A comparison of modeled and measured energy use in hybrid electric vehicles  

DOE Green Energy (OSTI)

CarSim 2.5.4, written by AeroVironment, Inc. of Monrovia, California and SIMPLEV 3.0, written by Idaho National Engineering Laboratory were used to simulate two series-configured hybrid electric vehicles that competed in the 1994 Hybrid Electric Vehicle Challenge. Vehicle speed and battery energy use were measured over a 0.2-km maximum effort acceleration and a 58-km range event. The simulations` predictions are compared to each other and to measured data. A rough uncertainty analysis of the validation is presented. The programs agree with each other to within 5% and with the measured energy data within the uncertainty of the experiment.

Cuddy, M.

1995-01-01T23:59:59.000Z

366

Life-cycle energy analyses of electric vehicle storage batteries. Final report  

DOE Green Energy (OSTI)

The results of several life-cycle energy analyses of prospective electric vehicle batteries are presented. The batteries analyzed were: Nickel-zinc; Lead-acid; Nickel-iron; Zinc-chlorine; Sodium-sulfur (glass electrolyte); Sodium-sulfur (ceramic electrolyte); Lithium-metal sulfide; and Aluminum-air. A life-cycle energy analysis consists of evaluating the energy use of all phases of the battery's life, including the energy to build it, operate it, and any credits that may result from recycling of the materials in it. The analysis is based on the determination of three major energy components in the battery life cycle: Investment energy, i.e., The energy used to produce raw materials and to manufacture the battery; operational energy i.e., The energy consumed by the battery during its operational life. In the case of an electric vehicle battery, this energy is the energy required (as delivered to the vehicle's charging circuit) to power the vehicle for 100,000 miles; and recycling credit, i.e., The energy that could be saved from the recycling of battery materials into new raw materials. The value of the life-cycle analysis approach is that it includes the various penalties and credits associated with battery production and recycling, which enables a more accurate determination of the system's ability to reduce the consumption of scarce fuels. The analysis of the life-cycle energy requirements consists of identifying the materials from which each battery is made, evaluating the energy needed to produce these materials, evaluating the operational energy requirements, and evaluating the amount of materials that could be recycled and the energy that would be saved through recycling. Detailed descriptions of battery component materials, the energy requirements for battery production, and credits for recycling, and the operational energy for an electric vehicle, and the procedures used to determine it are discussed.

Sullivan, D; Morse, T; Patel, P; Patel, S; Bondar, J; Taylor, L

1980-12-01T23:59:59.000Z

367

Comparing Hybrid and Plug-in Electric Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Comparing Hybrid and Plug-in Electric Vehicles Comparing Hybrid and Plug-in Electric Vehicles Comparing Hybrid and Plug-in Electric Vehicles June 6, 2013 - 11:02am Addthis A variety of hybrid and all-electric vehicles are available for consumers. | Photo courtesy of Andrew Hudgins, NREL 17078. A variety of hybrid and all-electric vehicles are available for consumers. | Photo courtesy of Andrew Hudgins, NREL 17078. Elizabeth Spencer Communicator, National Renewable Energy Laboratory How can I participate? If you're shopping for a new hybrid car this summer, FuelEconomy.gov's side-by-side comparisons can help you pick the right one. I love to look at new cars! Even though I'm not interested at buying one, I love looking at all the cool features. Back-up cameras and GPSes! Music, playlists, touchpads and phones! There are so many cool things

368

Comparing Hybrid and Plug-in Electric Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Comparing Hybrid and Plug-in Electric Vehicles Comparing Hybrid and Plug-in Electric Vehicles Comparing Hybrid and Plug-in Electric Vehicles June 6, 2013 - 11:02am Addthis A variety of hybrid and all-electric vehicles are available for consumers. | Photo courtesy of Andrew Hudgins, NREL 17078. A variety of hybrid and all-electric vehicles are available for consumers. | Photo courtesy of Andrew Hudgins, NREL 17078. Elizabeth Spencer Communicator, National Renewable Energy Laboratory How can I participate? If you're shopping for a new hybrid car this summer, FuelEconomy.gov's side-by-side comparisons can help you pick the right one. I love to look at new cars! Even though I'm not interested at buying one, I love looking at all the cool features. Back-up cameras and GPSes! Music, playlists, touchpads and phones! There are so many cool things

369

Property:EIA/861/AltFuelVehicle | Open Energy Information  

Open Energy Info (EERE)

AltFuelVehicle AltFuelVehicle Jump to: navigation, search This is a property of type Boolean. Description: Alt Fuel Vehicle Entity operated alternative-fueled vehicles during the year (Y or N) [1] References ↑ EIA Form EIA-861 Final Data File for 2008 - F861 File Layout-2008.doc Pages using the property "EIA/861/AltFuelVehicle" Showing 25 pages using this property. (previous 25) (next 25) A AEP Generating Company + true + AEP Texas Central Company + true + AEP Texas North Company + true + Access Energy Coop + true + Adams Electric Cooperative Inc + true + Agralite Electric Coop + true + Alabama Power Co + true + Ameren Illinois Company + true + Appalachian Power Co + true + Arizona Public Service Co + true + Atchison-Holt Electric Coop + true + Atlantic City Electric Co + true +

370

Property:EIA/861/AltFuelVehicle2 | Open Energy Information  

Open Energy Info (EERE)

AltFuelVehicle2 AltFuelVehicle2 Jump to: navigation, search This is a property of type Boolean. Description: Alt Fuel Vehicle2 Entity plans to operate alternative-fueled vehicles next year (Y or N) [1] References ↑ EIA Form EIA-861 Final Data File for 2008 - F861 File Layout-2008.doc Pages using the property "EIA/861/AltFuelVehicle2" Showing 25 pages using this property. (previous 25) (next 25) A AEP Generating Company + true + AEP Texas Central Company + true + AEP Texas North Company + true + Access Energy Coop + true + Adams Electric Cooperative Inc + true + Agralite Electric Coop + true + Alabama Power Co + true + Ameren Illinois Company + true + Appalachian Power Co + true + Arizona Public Service Co + true + Atchison-Holt Electric Coop + true + Atlantic City Electric Co + true +

371

MOtor Vehicle Emission Simulator (MOVES) | Open Energy Information  

Open Energy Info (EERE)

MOtor Vehicle Emission Simulator (MOVES) MOtor Vehicle Emission Simulator (MOVES) Jump to: navigation, search Tool Summary Name: MOtor Vehicle Emission Simulator (MOVES) Agency/Company /Organization: U.S. Environmental Protection Agency Focus Area: GHG Inventory Development Topics: Analysis Tools Website: www.epa.gov/otaq/models/moves/index.htm This emission modeling system estimates emissions from mobile sources, including cars, trucks, and motorcycles. The modeling tool covers a broad range of pollutants and allows multiple scale analysis. How to Use This Tool This tool is most helpful when using these strategies: Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies Learn more about the avoid, shift, improve framework for limiting air pollutants and greenhouse gas emissions.

372

Motor Vehicle Plant Lighting Level Best Practices | ENERGY STAR Buildings &  

NLE Websites -- All DOE Office Websites (Extended Search)

Motor Vehicle Plant Lighting Level Best Practices Motor Vehicle Plant Lighting Level Best Practices Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories

373

Energy conversion apparatus for supplying variable voltage direct current power to an electrically propelled vehicle  

SciTech Connect

A synchronous machine, operable as both a motor and a generator, is mounted on an electrically powered vehicle, such as a mine shuttle car, and includes a plurality of conductors having connections that are detachably engagable with receptacles of a stationary power bank. Engagement of the conductors with the receptacles supplies variable voltage alternating current power to the machine. The machine is drivingly connected to a flywheel on the vehicle and, operating as a motor, energizes the flywheel to store a preselected amount of mechanical energy. The electrical connection between the vehicle and the power bank is opened after the flywheel has been sufficiently charged. The stored energy in the flywheel is then available to drive the machine as a generator and produce high frequency, three phase, alternating current power. The generated power is transmitted to a full wave silicon controlled rectifier that converts the alternating current power to direct current for powering the traction motors of the vehicle. A variable voltage controller is connected to the rectifier and actuates the rectifier to supply direct current at a selected voltage level. The controller is responsive to an operator foot pedal. By manually depressing the foot pedal to a selected position, the voltage level of the rectified current is controlled. Thus, the speed of the traction motors is adjustable topropel the vehicle at a speed within a given range. After a portion of the energy stored by the flywheel is consumed, the vehicle is returned to the power bank to replenish the energy supply.

Jamison, W.B.; Burr, J.F.

1976-09-07T23:59:59.000Z

374

Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 2: appendices A-D to technical report  

DOE Green Energy (OSTI)

This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline- powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume II contains additional details on the vehicle, utility, and materials analyses and discusses several details of the methodology.

NONE

1998-01-01T23:59:59.000Z

375

Fuel-cycle energy and emissions impacts of tripled fuel-economy vehicles  

DOE Green Energy (OSTI)

This paper presents estimates of the fill fuel-cycle energy and emissions impacts of light-duty vehicles with tripled fuel economy (3X vehicles) as currently being developed by the Partnership for a New Generation of Vehicles (PNGV). Seven engine and fuel combinations were analyzed: reformulated gasoline, methanol, and ethanol in spark-ignition, direct-injection engines; low-sulfur diesel and dimethyl ether in compression-ignition, direct-injection engines; and hydrogen and methanol in fuel-cell vehicles. Results were obtained for three scenarios: a Reference Scenario without PNGVs, a High Market Share Scenario in which PNGVs account for 60% of new light-duty vehicle sales by 2030, and a Low Market Share Scenario in which PNGVs account for half as many sales by 2030. Under the higher of these two, the fuel-efficiency gain by 3X vehicles translated directly into a nearly 50% reduction in total energy demand, petroleum demand, and carbon dioxide emissions. The combination of fuel substitution and fuel efficiency resulted in substantial reductions in emissions of nitrogen oxide (NO{sub x}), carbon monoxide (CO), volatile organic compounds (VOCs), sulfur oxide, (SO{sub x}), and particulate matter smaller than 10 microns (PM{sub 10}) for most of the engine-fuel combinations examined. The key exceptions were diesel- and ethanol-fueled vehicles for which PM{sub 10} emissions increased.

Mintz, M. M.; Vyas, A. D.; Wang, M. Q.

1997-12-18T23:59:59.000Z

376

Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector  

Science Conference Proceedings (OSTI)

Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Vyas, A. D.; Patel, D. M.; Bertram, K. M.

2013-03-01T23:59:59.000Z

377

Electric Vehicle Handbook: Electrical Contractors (Brochure), NREL (National Renewable Energy Laboratory)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electrical Electrical Contractors Plug-In Electric Vehicle Handbook for Electrical Contractors 2 Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 PEV Basics . . . . . . . . . . . . . . . . . . . . . . . . . 4 Charging Basics . . . . . . . . . . . . . . . . . . . . . 6 Installing and Maintaining EVSE . . . . . . . 9 EVSE Training for Electrical Contractors . . . . . . . . . . . . . . . . 18 Electrifying the Future . . . . . . . . . . . . . . . 19 Clean Cities Helps Deploy PEV Charging Infrastructure Installing plug-in electric vehicle (PEV) charg- ing infrastructure requires unique knowledge and skills . If you need help, contact your local Clean Cities coordinator . Clean Cities is the U .S . Depart- ment of Energy's flagship alternative-transportation deployment initiative . It is supported by a diverse and capable team of stakeholders from private companies, utilities, government agencies, vehicle

378

Advanced Vehicle Testing Activity: Electric Vehicle Supply Equipment...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Supply Equipment (EVSE) Testing The Advanced Vehicle Testing Activity is tasked by the U.S. Department of Energy's (DOE) Vehicle Technologies Office (VTO) to...

379

Electric Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Electricity can be used as a transportation fuel to power battery electric vehicles (EVs). EVs store electricity in an energy storage device, such as a battery.

380

Definition: Plug-in Electric Vehicle Charging Station | Open Energy  

Open Energy Info (EERE)

Plug-in Electric Vehicle Charging Station Plug-in Electric Vehicle Charging Station Jump to: navigation, search Dictionary.png Plug-in Electric Vehicle Charging Station A device or station that provides power to charge the batteries of an electric vehicle. These chargers are classified according to output voltage and the rate at which they can charge a battery. Level 1 charging is the slowest, and can be done through most wall outlets at 120 volts and 15 amps AC. Level 2 charging is faster, and is done at less than or equal to 240 volts and 60 amps AC, with a power output of less than or equal to 14.4 kW. Level 3 charging is fastest, and can be done with power output of greater than 14.4 kW. Level 1 and 2 charging can be done at home with the proper equipment, and Level 2 and 3 charging can be done at fixed public charging

Note: This page contains sample records for the topic "vehicle ldv energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Energy Efficiency and Performance Testing of Non-Road Electric Vehicles: Forklift Truck Evaluation Status Report  

Science Conference Proceedings (OSTI)

Forklift trucks play an integral role in the industrial economy, and the majority of those trucks in service in the United States are electric. The benefits of such non-road electric vehicles include lower life cycle costs, improved worker health and safety, and reduced maintenance. However, large numbers of electric lift trucks can become a concern to the electric utility industry if the vehicles are inefficient or cause power quality problems. Southern California Edison (SCE) has evaluated the energy e...

2003-12-31T23:59:59.000Z

382

EIA - Annual Energy Outlook 2014 Early Release  

Gasoline and Diesel Fuel Update (EIA)

Acronyms Acronyms List of Acronyms AEO Annual Energy Outlook LDV Light-duty vehicle AEO2013 Annual Energy Outlook 2013 LED Light emitting diode AEO20014 Annual Energy Outlook 2014 LNG Liquefied natural gas ATRA American Taxpayer Relief Act of 2012 LPG Liquefied petroleum gases bbl Barrels LRG Liquefied refinery gases Btu British thermal units MATS Mercury and Air Toxics Standards CAFE Corporate Average Fuel Economy MECS Manufacturing Energy Consumption Survey CAIR Clean Air Interstate Rule MMbbl/d Million barrels per day CO2 Carbon dioxide MMBtu Million Btu CTL Coal-to-liquids MMst Million short tons DOE U.S. Department of Energy NEMS National Energy Modeling System E85 Motor fuel containing up to 85% ethanol NGL Natural gas liquids

383

Electric vehicles  

SciTech Connect

Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

Not Available

1990-03-01T23:59:59.000Z

384

Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 3: appendix E to technical report, comprehensive EVTECA results tables  

DOE Green Energy (OSTI)

This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline-powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume III presents the results of the total energy cycle model runs, which are summarized in Volume I.

NONE

1998-01-01T23:59:59.000Z

385

Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Maximizing Alternative Maximizing Alternative Fuel Vehicle Efficiency to someone by E-mail Share Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Facebook Tweet about Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Twitter Bookmark Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Google Bookmark Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Delicious Rank Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Digg Find More places to share Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines

386

Using GPS Travel Data to Assess the Real World Driving Energy Use of Plug-In Hybrid Electric Vehicles (PHEVs)  

DOE Green Energy (OSTI)

Highlights opportunities using GPS travel survey techniques and systems simulation tools for plug-in hybrid vehicle design improvements, which maximize the benefits of energy efficiency technologies.

Gonder, J.; Markel, T.; Simpson, A.; Thornton, M.

2007-05-01T23:59:59.000Z

387

Combining a New Vehicle Fuel Economy Standard with a Cap-and-Trade Policy: Energy  

E-Print Network (OSTI)

Combining a New Vehicle Fuel Economy Standard with a Cap-and-Trade Policy: Energy and Economic coordinated design of future climate and energy policy. In this work we use a computable general equilibrium No. 217 May 2012 #12;The MIT Joint Program on the Science and Policy of Global Change

388

Energy Management Framework Designed for Autonomous Electric Vehicle with Sensor Networks Navigation  

Science Conference Proceedings (OSTI)

Cyber-physical systems (CPS) have emerged as a cutting edge technology for next-generation industrial applications, and are undergoing rapid development and inspiring numerous application domains. This article presents an innovative CPS application for ... Keywords: cyber-physical systems, wireless sensor networks, energy management, energy-efficient design, autonomous electric vehicle

Hui Suo, Jiafu Wan, Di Li, Caifeng Zou

2012-10-01T23:59:59.000Z

389

Climate and Energy Policy for U.S. Passenger Vehicles: A Technology-Rich Economic Modeling and Policy Analysis  

E-Print Network (OSTI)

Climate and Energy Policy for U.S. Passenger Vehicles: A Technology-Rich Economic Modeling and Energy Policy for U.S. Passenger Vehicles: A Technology-Rich Economic Modeling and Policy Analysis and energy security concerns have prompted policy action in the United States and abroad to reduce petroleum

390

Light-Duty Diesel Vehicles: Market Issues and Potential Energy and Emissions Impacts  

Gasoline and Diesel Fuel Update (EIA)

2 2 Light-Duty Diesel Vehicles: Market Issues and Potential Energy and Emissions Impacts January 2009 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. Unless referenced otherwise, the information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Service Reports are prepared by the Energy Information Administration upon special request and are based on assumptions specified by the requester.

391

Biodiesel Vehicle and Infrastructure Codes and Standards Citations (Brochure), NREL (National Renewable Energy Laboratory)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Vehicle and Infrastructure Codes and Standards Citations Biodiesel Vehicle and Infrastructure Codes and Standards Citations This document lists codes and standards typically used for U.S. biodiesel vehicle and infrastructure projects. To determine which codes and standards apply to a specific project, identify the codes and standards currently in effect within the jurisdiction where the project will be located. Some jurisdictions also have unique ordinances or regulations that could apply. Learn about codes and standards basics at www.afdc.energy.gov/afdc/codes_standards_basics.html. Find biodiesel vehicle and infrastructure codes and standards in these categories: * Definition and Classification of Liquids * Fire Prevention and Fire Risk Control * Building Construction Requirements * Electrical Systems

392

Ethanol Vehicle and Infrastructure Codes and Standards Citations (Brochure), NREL (National Renewable Energy Laboratory)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Vehicle and Infrastructure Codes and Standards Citations Ethanol Vehicle and Infrastructure Codes and Standards Citations This document lists codes and standards typically used for U.S. ethanol vehicle and infrastructure projects. To determine which codes and standards apply to a specific project, identify the codes and standards currently in effect within the jurisdiction where the project will be located. Some jurisdictions also have unique ordinances or regulations that could apply. Learn about codes and standards basics at www.afdc.energy.gov/afdc/codes_standards_basics.html. Find ethanol vehicle and infrastructure codes and standards in these categories: * Definition and Classification of Liquids * Fire Prevention and Fire Risk Control * Building Construction Requirements * Electrical Systems

393

Natural Gas Vehicle and Infrastructure Codes and Standards Citations (Brochure), NREL (National Renewable Energy Laboratory)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Vehicle and Infrastructure Codes and Standards Citations Natural Gas Vehicle and Infrastructure Codes and Standards Citations This document lists codes and standards typically used for U.S. natural gas vehicle and infrastructure projects. To determine which codes and standards apply to a specific project, identify the codes and standards currently in effect within the jurisdiction where the project will be located. Some jurisdictions also have unique ordinances or regulations that could apply. Learn about codes and standards basics at www.afdc.energy.gov/afdc/codes_standards_basics.html. Find natural gas vehicle and infrastructure codes and standards in these categories: * Fire Code Requirements * General CNG Requirements and Equipment Qualifications * CNG Engine Fuel Systems * CNG Compression, Gas Processing, Storage, and Dispensing Systems

394

Hydrogen Vehicle and Infrastructure Codes and Standards Citations (Brochure), NREL (National Renewable Energy Laboratory)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Vehicle and Infrastructure Codes and Standards Citations Hydrogen Vehicle and Infrastructure Codes and Standards Citations This document lists codes and standards typically used for U.S. hydrogen vehicle and infrastructure projects. To determine which codes and standards apply to a specific project, identify the codes and standards currently in effect within the jurisdiction where the project will be located. Some jurisdictions also have unique ordinances or regulations that could apply. Learn about codes and standards basics at www.afdc.energy.gov/afdc/codes_standards_basics.html. Find hydrogen vehicle and infrastructure codes and standards in these categories: * Annual Inspections and Approvals * General Station Requirements * Gaseous Hydrogen Storage, Compression, and Generation Systems * Liquefied Hydrogen Storage Systems

395

Financing U.S. Renewable Energy Projects Through Public Capital Vehicles: Qualitative and Quantitative Benefits  

NLE Websites -- All DOE Office Websites (Extended Search)

Financing U.S. Renewable Financing U.S. Renewable Energy Projects Through Public Capital Vehicles: Qualitative and Quantitative Benefits Michael Mendelsohn and David Feldman Technical Report NREL/TP-6A20-58315 April 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Financing U.S. Renewable Energy Projects Through Public Capital Vehicles: Qualitative and Quantitative Benefits Michael Mendelsohn and David Feldman Prepared under Task No. SM13.1030

396

Green Week 2011 Day 4: NNSA Highlights Energy Efficient Vehicles Throughout  

National Nuclear Security Administration (NNSA)

4: NNSA Highlights Energy Efficient Vehicles Throughout 4: NNSA Highlights Energy Efficient Vehicles Throughout NNSA | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Press Releases > Green Week 2011 Day 4: NNSA Highlights ... Press Release Green Week 2011 Day 4: NNSA Highlights Energy Efficient Vehicles Throughout NNSA

397

54.5 MPG and Beyond: Fueling Energy-Efficient Vehicles | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4.5 MPG and Beyond: Fueling Energy-Efficient Vehicles 4.5 MPG and Beyond: Fueling Energy-Efficient Vehicles 54.5 MPG and Beyond: Fueling Energy-Efficient Vehicles November 27, 2012 - 11:08am Addthis This infographic looks how new fuel economy standards will save Americans money at the pump, reduce our dependence on foreign oil and grow the U.S. economy. Click here to view the full infographic. | Infographic by Sarah Gerrity. This infographic looks how new fuel economy standards will save Americans money at the pump, reduce our dependence on foreign oil and grow the U.S. economy. Click here to view the full infographic. | Infographic by Sarah Gerrity. This infographic looks how new fuel economy standards will save Americans money at the pump, reduce our dependence on foreign oil and grow the U.S. economy. Click here to view the full infographic. | Infographic by Sarah Gerrity.

398

Autonomous Vehicles Have a Wide Range of Possible Energy Impacts (Poster)  

SciTech Connect

This poster presents initial estimates of the net energy impacts of automated vehicles (AVs). Automated vehicle technologies are increasingly recognized as having potential to decrease carbon dioxide emissions and petroleum consumption through mechanisms such as improved efficiency, better routing, lower traffic congestion, and by enabling advanced technologies. However, some effects of AVs could conceivably increase fuel consumption through possible effects such as longer distances traveled, increased use of transportation by underserved groups, and increased travel speeds. The net effect on petroleum use and climate change is still uncertain. To make an aggregate system estimate, we first collect best estimates for the energy impacts of approximately ten effects of AVs. We then use a modified Kaya Identity approach to estimate the range of aggregate effects and avoid double counting. We find that depending on numerous factors, there is a wide range of potential energy impacts. Adoption of automated personal or shared vehicles can lead to significant fuel savings but has potential for backfire.

Brown, A.; Repac, B.; Gonder, J.

2013-07-01T23:59:59.000Z

399

Electric vehicle using the vehicle's kinetic and mechanical power to regenerate it's energy storage device  

SciTech Connect

This patent describes an electrocombustible drive vehicle which consists of: a. motor means for driving the electrocombustible vehicle the motor means being activated by combustible fuel or a pulsating voltage; b. first means for storing electrical energy for use as DC voltage; c. chopper means for providing a pulsating voltage to the motor means for activation of electro portion of the motor means, the first means for storing electrical energy proving DC voltage input to the chopper means; d. means for controlling the quantity of the pulsating voltage supplied to the motor means; e. first generator means for producing electrical voltage, the first generator means mechanical input being connected to the direct output of the motor means independent of the movement of the vehicle allowing the generator to produce a voltage while the vehicle is in the idle position; f. means for charging the first means for storing electrical voltage produced by the generator; g. second means for storing electrical energy for use as a DC voltage; h. second generator means for producing electrical voltage, the second generator means mechanical input being connected to a velocity dependent moving portion of electric vehicle independent of the output of the motor means and dependent on air movement relative to the vehicle, means for selectively charging the first and second means for storing electrical voltage employing the electrical voltage produced by the second generator means; i. means for charging the second means for storing electrical energy employing the electrical voltage produced by the chopper means.

Barnard, R.

1986-07-01T23:59:59.000Z

400

Advanced Vehicle Testing Activity: Light-Duty Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Light-Duty Light-Duty Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Light-Duty Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Light-Duty Vehicles on Twitter Bookmark Advanced Vehicle Testing Activity: Light-Duty Vehicles on Google Bookmark Advanced Vehicle Testing Activity: Light-Duty Vehicles on Delicious Rank Advanced Vehicle Testing Activity: Light-Duty Vehicles on Digg Find More places to share Advanced Vehicle Testing Activity: Light-Duty Vehicles on AddThis.com... Home Overview Light-Duty Vehicles Alternative Fuel Vehicles Plug-in Hybrid Electric Vehicles Hybrid Electric Vehicles Micro Hybrid Vehicles ARRA Vehicle and Infrastructure Projects EVSE Testing Energy Storage Testing Hydrogen Internal Combustion Engine Vehicles Other ICE

Note: This page contains sample records for the topic "vehicle ldv energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 4: peer review comments on technical report  

DOE Green Energy (OSTI)

This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline-powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume IV includes copies of all the external peer review comments on the report distributed for review in July 1997.

NONE

1998-01-01T23:59:59.000Z

402

NREL: Vehicles and Fuels Research - Energy Department Launches...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Department Launches National Fuel Cell Technology Evaluation Center to Advance Fuel Cell Technologies September 12, 2013 Following Energy Secretary Ernest Moniz's visit to...

403

Vehicle Technologies Office: Fact #689: August 22, 2011 Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Market Report. Original source: Energy Information Administration, Monthly Energy Review. Return to 2011 Facts of the Week Contacts | Web Site Policies | U.S....

404

AN ASSESSMENT OF FLYWHEEL HIGH POWER ENERGY STORAGE TECHNOLOGY FOR HYBRID VEHICLES  

Science Conference Proceedings (OSTI)

An assessment has been conducted for the DOE Vehicle Technologies Program to determine the state of the art of advanced flywheel high power energy storage systems to meet hybrid vehicle needs for high power energy storage and energy/power management. Flywheel systems can be implemented with either an electrical or a mechanical powertrain. The assessment elaborates upon flywheel rotor design issues of stress, materials and aspect ratio. Twelve organizations that produce flywheel systems submitted specifications for flywheel energy storage systems to meet minimum energy and power requirements for both light-duty and heavy-duty hybrid applications of interest to DOE. The most extensive experience operating flywheel high power energy storage systems in heavy-duty and light-duty hybrid vehicles is in Europe. Recent advances in Europe in a number of vehicle racing venues and also in road car advanced evaluations are discussed. As a frame of reference, nominal weight and specific power for non-energy storage components of Toyota hybrid electric vehicles are summarized. The most effective utilization of flywheels is in providing high power while providing just enough energy storage to accomplish the power assist mission effectively. Flywheels are shown to meet or exceed the USABC power related goals (discharge power, regenerative power, specific power, power density, weight and volume) for HEV and EV batteries and ultracapacitors. The greatest technical challenge facing the developer of vehicular flywheel systems remains the issue of safety and containment. Flywheel safety issues must be addressed during the design and testing phases to ensure that production flywheel systems can be operated with adequately low risk.

Hansen, James Gerald [ORNL

2012-02-01T23:59:59.000Z

405

Optimal Sizing of Energy Storage System in Solar Energy Electric Vehicle Using Genetic Algorithm and Neural Network  

Science Conference Proceedings (OSTI)

Owing to sun's rays distributing randomly and discontinuously and load fluctuation, energy storage system is very important in Solar Energy Electric Vehicle (SEEV). The combinatorial optimization by genetic algorithm and neural network was used to optimize ... Keywords: battery flywheel, genetic algorithm, neural network

Shiqiong Zhou; Longyun Kang; Miaomiao Cheng; Binggang Cao

2009-11-01T23:59:59.000Z

406

Energy and environmental impacts of electric vehicle battery production and recycling  

DOE Green Energy (OSTI)

Electric vehicle batteries use energy and generate environmental residuals when they are produced and recycled. This study estimates, for 4 selected battery types (advanced lead-acid, sodium-sulfur, nickel-cadmium, and nickel-metal hydride), the impacts of production and recycling of the materials used in electric vehicle batteries. These impacts are compared, with special attention to the locations of the emissions. It is found that the choice among batteries for electric vehicles involves tradeoffs among impacts. For example, although the nickel-cadmium and nickel-metal hydride batteries are similar, energy requirements for production of the cadmium electrodes may be higher than those for the metal hydride electrodes, but the latter may be more difficult to recycle.

Gaines, L.; Singh, M.

1995-12-31T23:59:59.000Z

407

Comprehensive Well to Wheel Analysis for Plug-in-Hybrid Electric Vehicles in the U.S.  

SciTech Connect

The U.S. electric power infrastructure is a strategic national asset that is underutilized most of the time. With the proper changes in the operational paradigm, it could generate and deliver the necessary energy to fuel the majority of the U.S. light-duty vehicle (LDV) fleet. In doing so, it would reduce greenhouse gas emissions, improve the economics of the electricity industry, and reduce the U.S. dependency on foreign oil. This paper estimates the regional percentages of the energy requirements for the U.S. LDV stock that could potentially be supported by the existing infrastructure, based on the 12 modified North American Electric Reliability Council regions, as of 2002. For the United States as a whole, about 70% of LDV fleet in the U.S. could be supported by the existing infrastructure with some degree of load management. This has an estimated gasoline displacement potential of 6.5 million barrels of oil equivalent per day, or approximately 52% of the nation's oil imports. The paper also discusses the impact on overall emissions of criteria gases and greenhouse gases as a result of shifting emissions from millions of individual vehicles to a few hundred power plants. Overall, PHEVs could reduce greenhouse gas emissions with regional variations dependent on the local generation mix. Total NOX emissions may or may not increase, dependent on the use of coal generation in the region. Any additional SO2 emissions associated with the expected increase in generation from coal power plants would need to be cleaned up to meet the existing SO2 emissions constraints. Particulate emissions would increase in 8 of the 12 regions. The emissions in urban areas are found to improve across all pollutants and regions as the emission sources shift from millions of tailpipes to a smaller number of large power plants in less-populated areas. This paper concludes with a discussion about possible grid impacts as a result of the PHEV load as well as the likely impacts on the plant and technology mix of future generation-capacity expansions.

Kintner-Meyer, Michael CW; Pratt, Robert G.; Schneider, Kevin P.

2008-09-19T23:59:59.000Z

408

Household Vehicles Energy Use: Latest Data & Trends  

U.S. Energy Information Administration (EIA) Indexed Site

C C : Q U A L I T Y O F T H E D ATA APPENDIX C A P P E N D I X C QUALITY OF THE DATA INTRODUCTION This section discusses several issues relating to the quality of the National Household Travel Survey (NHTS) data and to the interpretation of conclusions based on these data. In particular, the focus of our discussion is on the quality of specific data items, such as the fuel economy and fuel type, that were imputed to the NHTS via a cold-decking imputation procedure. This imputation procedure used vehicle-level information from the NHTSA Corporate Average Fuel Economy files for model year's 1978 through 2001. It is nearly impossible to quantify directly the quality of this imputation procedure because NHTS does not collect the necessary fuel economy information for comparison. At best, we have indirect evidence on the quality of our

409

Advanced Vehicle Research Center of North Carolina | Open Energy  

Open Energy Info (EERE)

of North Carolina of North Carolina Jump to: navigation, search Name Advanced Vehicle Research Center of North Carolina Place Raleigh, North Carolina Zip 27614-7636 Product Provide a modern automotive testing facility Coordinates 37.760748°, -81.161183° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.760748,"lon":-81.161183,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

410

Light-Duty Vehicle Energy Consumption by Fuel Type from EIA AEO...  

Open Energy Info (EERE)

Light-Duty Vehicle Energy Consumption by Fuel Type from EIA AEO 2011 Early Release Supplemental Table 47 of EIA AEO 2011 Early Release
2011-02-23T16:04:28Z 2011-03-31T19:33:44Z...

411

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network (OSTI)

Cost-benefit Analysis of Plug-in Hybrid Electric Vehicle Technology, National Renewable EnergyCost and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory, National Renewable

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

412

Vehicles News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

news Office of Energy Efficiency & news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies http://energy.gov/eere/articles/energy-department-announces-45-million-advance-next-generation energy-department-announces-45-million-advance-next-generation" class="title-link">Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies

413

Propulsion system for a motor vehicle using a bidirectional energy converter  

DOE Patents (OSTI)

A motor vehicle propulsion system includes an electrical energy source and a traction motor coupled to receive electrical energy from the electrical energy source. The system also has a first bus provided electrical energy by the electrical energy source and a second bus of relatively lower voltage than the first bus. In addition, the system includes an electrically-driven source of reaction gas for the electrical energy source, the source of reaction gas coupled to receive electrical energy from the first bus. Also, the system has an electrical storage device coupled to the second bus for storing electrical energy at the lower voltage. The system also includes a bidirectional energy converter coupled to convert electrical energy from the first bus to the second bus and from the second bus to the first bus.

Tamor, Michael Alan (Toledo, OH); Gale, Allan Roy (Livonia, MI)

1999-01-01T23:59:59.000Z

414

NREL: Energy Analysis - Vehicles and Fuels Research Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

303-275-4451 Access more information on all of our Staff Analysts Printable Version Energy Analysis Home Capabilities & Expertise Technology Analysis Biomass Buildings...

415

Mission Aware Energy Saving Strategies For Army Ground Vehicles.  

E-Print Network (OSTI)

??Fuel energy is a basic necessity for this planet and the modern technology to perform many activities on earth. On the other hand, quadrupled automotive (more)

Dattathreya, Macam

2013-01-01T23:59:59.000Z

416

Passive cooling system for a vehicle - Energy Innovation Portal  

The passive cooling system includes one or more heat pipes (112) having an evaporator section ... Building Energy Efficiency; ... Solar Thermal; Startup America;

417

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Release Date: June 2013 | Release Date: June 2013 | Report Number: DOE/EIA-0383(2012) Acronyms List of Acronyms AB Assembly Bill IHSGI IHS Global Insight AB32 California Assembly Bill 32 INFORUM Interindustry Forecasting Project at the University of Maryland ACI Activated carbon injection IOU Invester-owned utility AEO Annual Energy Outlook IREC Interstate Renewable Energy Council AEO2012 Annual Energy Outlook 2012 ITC Investment tax credit ANWR Arctic National Wildlife Refuge LCFS Low Carbon Fuel Standard ARRA2009 American Recovery and Reinvestment Act of 2009 LDV Light-duty vehicle ASHRAE American Society of Heating, Refrigerating, and Air-Conditioning Engineers LED Light-emitting diode Blue Chip Blue Chip Consensus LFMM Liquid Fuels Market Module

418

Clean Cities 2011 Stakeholders Summit - Electric Drive Vehicles...  

NLE Websites -- All DOE Office Websites (Extended Search)

Department of Energy's Vehicle Technologies Program Vehicle Technologies Program - Clean Cities 2011 Stakeholders Summit - Electric Drive Vehicles and Charging Infrastructure...

419

Vehicle to Micro-Grid: Leveraging Existing Assets for Reliable Energy Management (Poster)  

DOE Green Energy (OSTI)

Fort Carson, a United States Army installation located south of Colorado Springs, Colorado, is seeking to be a net-zero energy facility. As part of this initiative, the base will be constructing a micro-grid that ties to various forms of renewable energy. To reduce petroleum consumption, Fort Carson is considering grid-connected vehicles (GCVs) such as pure electric trucks to replace some of its on-base truck fleet. As the availability and affordability of distributed renewable energy generation options increase, so will the GCV options (currently, three all-electric trucks are available on the GSA schedule). The presence of GCVs on-base opens up the possibility to utilize these vehicles to provide stability to the base micro-grid. This poster summarizes work to estimate the potential impacts of three electric vehicle grid interactions between the electric truck fleet and the Fort Carson micro-grid: 1) full-power charging without management, 2) full-power charging capability controlled by the local grid authority, and 3) full-power charge and discharge capability controlled by the local grid authority. We found that even at relatively small adoption rates, the control of electric vehicle charging at Fort Carson will aid in regulation of variable renewable generation loads and help stabilize the micro-grid.

Simpson, M.; Markel, T.; O'Keefe, M.

2010-12-01T23:59:59.000Z

420

Model documentation report: Transportation sector model of the National Energy Modeling System  

DOE Green Energy (OSTI)

Over the past year, several modifications have been made to the NEMS Transportation Model, incorporating greater levels of detail and analysis in modules previously represented in the aggregate or under a profusion of simplifying assumptions. This document is intended to amend those sections of the Model Documentation Report (MDR) which describe these superseded modules. Significant changes have been implemented in the LDV Fuel Economy Model, the Alternative Fuel Vehicle Model, the LDV Fleet Module, and the Highway Freight Model. The relevant sections of the MDR have been extracted from the original document, amended, and are presented in the following pages. A brief summary of the modifications follows: In the Fuel Economy Model, modifications have been made which permit the user to employ more optimistic assumptions about the commercial viability and impact of selected technological improvements. This model also explicitly calculates the fuel economy of an array of alternative fuel vehicles (AFV`s) which are subsequently used in the estimation of vehicle sales. In the Alternative Fuel Vehicle Model, the results of the Fuel Economy Model have been incorporated, and the program flows have been modified to reflect that fact. In the Light Duty Vehicle Fleet Module, the sales of vehicles to fleets of various size are endogenously calculated in order to provide a more detailed estimate of the impacts of EPACT legislation on the sales of AFV`s to fleets. In the Highway Freight Model, the previous aggregate estimation has been replaced by a detailed Freight Truck Stock Model, where travel patterns, efficiencies, and energy intensities are estimated by industrial grouping. Several appendices are provided at the end of this document, containing data tables and supplementary descriptions of the model development process which are not integral to an understanding of the overall model structure.

NONE

1997-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle ldv energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Chinese Rural Vehicles: An Explanatory Analysis of Technology, Economics, Industrial Organization, Energy Use, Emissions, and Policy  

E-Print Network (OSTI)

larger conventional vehicle manufacturers? We address theseLargest Farm Vehicle Manufacturer , http://www.yanmar.co.jp/conventional vehicle manufacturers. A key to understanding

Sperling, Dan; Lin, Zhenhong; Hamilton, Peter

2004-01-01T23:59:59.000Z

422

Electric and Gasoline Vehicle Lifecycle Cost and Energy-Use Model  

E-Print Network (OSTI)

Electric and Hybrid Electric Vehicles (Workshop Proceedings,J. Oros, President, Electric Vehicle Infrastructure, Inc. ,Hydride Batteries for Electric Vehicles, presented at the

Delucchi, Mark; Burke, Andy; Lipman, Timothy; Miller, Marshall

2000-01-01T23:59:59.000Z

423

Electrochemical Capacitors as Energy Storage in Hybrid-Electric Vehicles: Present Status and Future Prospects  

E-Print Network (OSTI)

batteries and ultracapacitors for electric vehicles. EVS24Battery, Hybrid and Fuel Cell Electric Vehicle Symposiumpublications on electric and hybrid vehicle technology and

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

424

Household Vehicles Energy Use: Latest Data and Trends - Table A01  

U.S. Energy Information Administration (EIA)

Table A1. U.S. Number of Vehicles, Vehicles-Miles, Motor Fuel Consumption and Expenditures, 2001: 2001 Household and Vehicle Characteristics

425

Electrochemical Capacitors as Energy Storage in Hybrid-Electric Vehicles: Present Status and Future Prospects  

E-Print Network (OSTI)

ultracapacitors, fuel cells and hybrid vehicle design. Dr.on electric and hybrid vehicle technology and applicationssupervises testing in the Hybrid Vehicle Propulsion Systems

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

426

Anticipating plug-in hybrid vehicle energy impacts in California: Constructing consumer-informed recharge profiles  

E-Print Network (OSTI)

converted plug-in hybrid vehicles. Transportation ResearchM. , 2006. Plug-In Hybrid Vehicle Analysis. Nationalgas emissions from plug-in hybrid vehicles: implications for

Axsen, Jonn; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

427

US-China_Fact_Sheet_Electric_Vehicles.pdf | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ElectricVehicles.pdf US-ChinaFactSheetElectricVehicles.pdf US-ChinaFactSheetElectricVehicles.pdf More Documents & Publications THE WHITE HOUSE...

428

Anticipating plug-in hybrid vehicle energy impacts in California: Constructing consumer-informed recharge profiles  

E-Print Network (OSTI)

of Plug-In Hybrid Electric Vehicles, vol. 1. Nationwidecompetitive plug-in hybrid electric vehicles. EnvironmentalDriving plug-in hybrid electric vehicles: reports from US

Axsen, Jonn; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

429

Local government energy management: liquid petroleum gas (LPG) as a motor vehicle fuel  

SciTech Connect

The retrofit or conversion of automotive engines to operate on liquid petroleum gas (LPG) or propane fuel is one of many potentially cost-effective strategies for reducing a local government's annual fleet operating and maintenance costs. The cost effectiveness of an LPG conversion decision is highly dependent on the initial conversion cost, vehicle type, current and projected fuel costs, vehicle fuel economy (miles per gallon), and yearly average mileage. A series of plots have been developed which indicate simple paybacks for the conversion of several vehicle types (passenger car, small and standard pickups, and two and three ton trucks) over a wide range of fuel economies and annual usage patterns. A simple payback of less than three years can be achieved for vehicles with poor fuel economy and high annual use. The figures provided in this report may be used by fleet management personnel as a screening tool to identify those passenger cars, small or standard pickups, or light duty trucks which are candidates for LPG conversion. In addition to examining the benefits of an LPG conversion, local governments should also consider the competing energy management strategies of downsizing, and the acquisition of fuel efficient, diesel powered vehicles.

McCoy, G.A.; Kerstetter, J.

1983-10-01T23:59:59.000Z

430

Department of Energy Announces Advanced Vehicle Technology Competition...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

in Detroit, Mich., U.S. Department of Energy's Assistant Secretary for Policy and International Affairs, David Sandalow, announced the official launch of the EcoCar2: Plugging...

431

EERE News: Energy Department Announces Apps for Vehicles Challenge...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

As part of the Obama Administration's commitment to expand access to data and reduce fuel costs for consumers, the Energy Department today announced the winners of the Apps for...

432

Transportation Energy Futures Series: Vehicle Technology Deployment Pathways: An Examination of Timing and Investment Constraints  

SciTech Connect

Scenarios of new vehicle technology deployment serve various purposes; some will seek to establish plausibility. This report proposes two reality checks for scenarios: (1) implications of manufacturing constraints on timing of vehicle deployment and (2) investment decisions required to bring new vehicle technologies to market. An estimated timeline of 12 to more than 22 years from initial market introduction to saturation is supported by historical examples and based on the product development process. Researchers also consider the series of investment decisions to develop and build the vehicles and their associated fueling infrastructure. A proposed decision tree analysis structure could be used to systematically examine investors' decisions and the potential outcomes, including consideration of cash flow and return on investment. This method requires data or assumptions about capital cost, variable cost, revenue, timing, and probability of success/failure, and would result in a detailed consideration of the value proposition of large investments and long lead times. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Plotkin, S.; Stephens, T.; McManus, W.

2013-03-01T23:59:59.000Z

433

Design of a fuzzy controller for energy management of a parallel hybrid electric vehicle  

E-Print Network (OSTI)

This thesis addresses the design of a control scheme based on Fuzzy Logic to minimize automobile fuel consumption and exhaust emissions while maximizing battery state of charge (SOC) for hybrid vehicles. The advantages the hybrid vehicle has over the conventional vehicle are very low emission of pollutants, and more efficient fuel consumption if controlled properly. The principal components of the drive train are an internal combustion engine and an electric motor. Since there are two devices, it becomes impossible for the driver to individually control both components while driving along, and it will be necessary to automate the use of these elements so that the vehicle is driven in the same way as a conventional vehicle. In the parallel configuration, both devices apply torque directly to the drive shaft for propelling the vehicle. Each component of the hybrid vehicle is modeled, and throttle angle, motor current and brake torque command are chosen as the control inputs. Another input considered is the driver behavior. This input is obtained from an Artificial Neural Network that classifies the behavior based on the pedal angle characteristics over a period of time. The problem in question is how to distribute the energy demands for each component of the hybrid vehicle so that the objectives, maximizing the battery SOC and minimizing fuel consumption and pollutant emissions, are met. Because these objectives depend on different components, we must decide how to demand energy from them to fulfill the driver request and at the same time meeting the objectives. A Fuzzy Logic Controller is designed to meet the driver demand so that the engine, motor and battery are as little exposed as possible to abrupt transitions. Smooth transitions are desired in the engine in order to decrease fuel consumption and emission of pollutants. Smooth transitions in the battery will lead to extended battery life. Simulation results verify that the controller achieves the design objectives. Because the design procedure is based on trial and error, optimality is not guaranteed. Also stability is hard to prove, since there is not much information on this particular issue of Fuzzy Logic.

Estrada Gutierrez, Pedro Cuauhtemoc

1997-01-01T23:59:59.000Z

434

FY2001 Highlights Report for the Vehicle High-Power Energy Storage Program  

NLE Websites -- All DOE Office Websites (Extended Search)

HIGH-POWER HIGH-POWER ENERGY STORAGE 2 0 0 1 A N N U A L P R O G R E S S R E P O R T U.S. Department of Energy Energy Efficiency and Renewable Energy Office of Transportation Technologies A C K N O W L E D G E M E N T We would like to express our sincere appreciation to Argonne National Laboratory and to Sentech, Inc., for their artistic and technical contributions in preparing and publishing this report. In addition, we would like to thank all our program participants for their contributions to the programs and all the authors who prepared the project abstracts that comprise this report. U.S. Department of Energy Office of Advanced Automotive Technologies 1000 Independence Ave., S.W. Washington, DC 20585-0121 FY 2001 Highlights Report for the Vehicle High-Power Energy Storage Program Energy Efficiency and Renewable Energy

435

Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles  

E-Print Network (OSTI)

Analyzed distribution of vehicles by last trip ending time for each region Generated PHEVs load profiles PSAT were adjusted to on-road values for this analysis PHEV miles driven by grid electricity and onWell-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Amgad

436

FY2000 Highlights Report for the Vehicle High-Power Energy Storage Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Energy Office of Advanced Automotive Technologies 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2000 Highlights Report for the Vehicle High-Power Energy Storage Program Energy Efficiency and Renewable Energy Office of Transportation Technologies Office of Advanced Automotive Technologies Energy Management Team Raymond A. Sutula Energy Management Team Leader November 2000 This document highlights work sponsored by agencies of the U.S. Government. Neither the U.S. Government nor any agency, thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe

437

NREL Reveals Links Among Climate Control, Battery Life, and Electric Vehicle Range (Fact Sheet), Innovation: The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Reveals Links Among Reveals Links Among Climate Control, Battery Life, and Electric Vehicle Range Researchers at the National Renewable Energy Laboratory (NREL) are providing new insights into the relationships between the climate-control systems of plug-in electric vehicles and the distances these vehicles can travel on a single charge. In particular, NREL research has determined that "preconditioning" a vehicle- achieving a comfortable cabin temperature and preheating or precooling the battery while the vehicle is still plugged in-can extend its driving range and improve battery life over the long term. One of the most significant barriers to widespread deployment of electric vehicles is range anxiety-a driver's uncertainty about the vehicle's ability to reach a destination before fully

438

NREL Helps Cool the Power Electronics in Electric Vehicles (Fact Sheet), The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Helps Cool the Power Helps Cool the Power Electronics in Electric Vehicles Researchers at the National Renewable Energy Laboratory (NREL) are developing and demonstrating innovative heat-transfer technologies for cooling power electronics devices in hybrid and electric vehicles. In collaboration with 3M and Wolverine Tube, Inc., NREL is using surface enhancements to dissipate heat more effectively, permitting a reduction in the size of power electronic systems and potentially reducing the overall costs of electric vehicles. Widespread use of advanced electric-drive vehicles-including electric vehicles (EVs) and hybrid electric vehicles (HEVs)-could revolutionize transportation and dramatically reduce U.S. oil consumption. Improving the cost and performance of these vehicles' electric-drive systems

439

US Energy Secretary Chu Announces $528 Million Loan for Advanced Vehicle  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

528 Million Loan for Advanced 528 Million Loan for Advanced Vehicle Technology for Fisker Automotive US Energy Secretary Chu Announces $528 Million Loan for Advanced Vehicle Technology for Fisker Automotive September 22, 2009 - 12:00am Addthis Washington, DC - Energy Secretary Steven Chu today announced a $528.7 million conditional loan for Fisker Automotive for the development of two lines of plug-in hybrids that will save hundreds of millions gallons of gasoline and offset millions of tons of greenhouse gas emissions by 2016. The project will result in approximately 5,000 jobs created or saved for domestic parts suppliers and thousands more to manufacture a plug-in hybrid in the U.S. "This investment will create thousands of new American jobs and is another critical step in making sure we are positioned to compete for the clean

440

Hybrid Vehicle Comparison Testing Using Ultracapacitor vs. Battery Energy Storage (Presentation)  

SciTech Connect

With support from General Motors, NREL researchers converted and tested a hybrid electric vehicle (HEV) with three energy storage configurations: a nickel metal-hydride battery and two ultracapacitor (Ucap) modules. They found that the HEV equipped with one Ucap module performed as well as or better than the HEV with a stock NiMH battery configuration. Thus, Ucaps could increase the market penetration and fuel savings of HEVs.

Gonder, J.; Pesaran, A.; Lustbader, J.; Tataria, H.

2010-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle ldv energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Hybrid Electric Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Association Conference Transportation Association Conference Vancouver, Canada December 2005 Hybrid Electric Vehicle Testing Jim Francfort U.S. Department of Energy - FreedomCAR & Vehicle Technologies Program, Advanced Vehicle Testing Activity INL/CON-05-00964 Presentation Outline * Background & goals * Testing partners * Hybrid electric vehicle testing - Baseline performance testing (new HEV models) - 1.5 million miles of HEV fleet testing (160k miles per vehicle in 36 months) - End-of-life HEV testing (rerun fuel economy & conduct battery testing @ 160k miles per vehicle) - Benchmark data: vehicle & battery performance, fuel economy, maintenance & repairs, & life-cycle costs * WWW information location Background * Advanced Vehicle Testing Activity (AVTA) - part of the

442

Energy Department Awards More Than $7 Million for Innovative Hydrogen Storage Technologies in Fuel Cell Electric Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy today announced more than $7 million to fund four projects in California, Washington and Oregon to advance hydrogen storage technologies to be used in fuel cell electric vehicles.

443

Field Testing Plug-in Hybrid Electric Vehicles with Charge Control Technology in the Xcel Energy Territory  

DOE Green Energy (OSTI)

Results of a joint study by Xcel Energy and NREL to understand the fuel displacement potential, costs, and emissions impacts of market introduction of plug in hybrid electric vehicles.

Markel, T.; Bennion K.; Kramer, W.; Bryan, J.; Giedd, J.

2009-08-01T23:59:59.000Z

444

Advanced Vehicle Testing Activity: Other Internal Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Other Internal Combustion Engine Vehicles The Advanced Vehicle Testing Activity (AVTA) is tasked by the U.S. Department of Energy's (DOE) Vehicle Technology Office (VTO) to conduct...

445

Projected Cost, Energy Use, and Emissions of Hydrogen Technologies for Fuel Cell Vehicles  

SciTech Connect

Each combination of technologies necessary to produce, deliver, and distribute hydrogen for transportation use has a corresponding levelized cost, energy requirement, and greenhouse gas emission profile depending upon the technologies' efficiencies and costs. Understanding the technical status, potential, and tradeoffs is necessary to properly allocate research and development (R&D) funding. In this paper, levelized delivered hydrogen costs, pathway energy use, and well-to-wheels (WTW) energy use and emissions are reported for multiple hydrogen production, delivery, and distribution pathways. Technologies analyzed include both central and distributed reforming of natural gas and electrolysis of water, and central hydrogen production from biomass and coal. Delivery options analyzed include trucks carrying liquid hydrogen and pipelines carrying gaseous hydrogen. Projected costs, energy use, and emissions for current technologies (technology that has been developed to at least the bench-scale, extrapolated to commercial-scale) are reported. Results compare favorably with those for gasoline, diesel, and E85 used in current internal combustion engine (ICE) vehicles, gasoline hybrid electric vehicles (HEVs), and flexible fuel vehicles. Sensitivities of pathway cost, pathway energy use, WTW energy use, and WTW emissions to important primary parameters were examined as an aid in understanding the benefits of various options. Sensitivity studies on production process energy efficiency, total production process capital investment, feed stock cost, production facility operating capacity, electricity grid mix, hydrogen vehicle market penetration, distance from the hydrogen production facility to city gate, and other parameters are reported. The Hydrogen Macro-System Model (MSM) was used for this analysis. The MSM estimates the cost, energy use, and emissions trade offs of various hydrogen production, delivery, and distribution pathways under consideration. The MSM links the H2A Production Model, the Hydrogen Delivery Scenario Analysis Model (HDSAM), and the Greenhouse Gas, Regulated Emission, and Energy for Transportation (GREET) Model. The MSM utilizes the capabilities of each component model and ensures the use of consistent parameters between the models to enable analysis of full hydrogen production, delivery, and distribution pathways. To better understand spatial aspects of hydrogen pathways, the MSM is linked to the Hydrogen Demand and Resource Analysis Tool (HyDRA). The MSM is available to the public and enables users to analyze the pathways and complete sensitivity analyses.

Ruth, M. F.; Diakov, V.; Laffen, M. J.; Timbario, T. A.

2010-01-01T23:59:59.000Z

446

U.S. Department of Energy Vehicle Technologies Program -- Advanced Vehicle Testing Activity -- Plug-in Hybrid Electric Vehicle Charging Infrastructure Review  

DOE Green Energy (OSTI)

Plug-in hybrid electric vehicles (PHEVs) are under evaluation by various stake holders to better understand their capability and potential benefits. PHEVs could allow users to significantly improve fuel economy over a standard HEV and in some cases, depending on daily driving requirements and vehicle design, have the ability to eliminate fuel consumption entirely for daily vehicle trips. The cost associated with providing charge infrastructure for PHEVs, along with the additional costs for the on-board power electronics and added battery requirements associated with PHEV technology will be a key factor in the success of PHEVs. This report analyzes the infrastructure requirements for PHEVs in single family residential, multi-family residential and commercial situations. Costs associated with this infrastructure are tabulated, providing an estimate of the infrastructure costs associated with PHEV deployment.

Kevin Morrow; Donald Darner; James Francfort

2008-11-01T23:59:59.000Z

447

Clean Cities 2013 Vehicle Buyer's Guide (Brochure), Energy Efficiency & Renewable Energy (EERE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Natural Gas Propane Electric Hybrid Ethanol Flex-Fuel Biodiesel Vehicle Buyer's Guide Clean Cities 2013 Today's auto manufacturers offer hundreds of light-duty vehicle models that take advantage of alternative fuels and advanced technologies in order to help drivers and fleets reduce petroleum use, cut emissions, and save on fuel costs. This guide features a comprehensive list of such vehicles set to arrive in Model Year 2013. Contents Introduction . . . . . . . . . . . . . . . . . 4 About This Guide . . . . . . . . . . . . 5 Compressed Natural Gas . . . . . 6 Propane . . . . . . . . . . . . . . . . . . . . 10 All-Electric . . . . . . . . . . . . . . . . . . 12 Plug-In Hybrid Electric . . . . . . . 16 Hybrid Electric . . . . . . . . . . . . . . 18 Ethanol Flex-Fuel . . . . . . . . . . . . 24 Biodiesel . . . . . . . . . . . . . . . . . . . 34 Vehicle Buyer's Guide Clean Cities 2013 Disclaimers This report was

448

Clean Cities 2012 Vehicle Buyer's Guide (Brochure), Energy Efficiency & Renewable Energy (EERE)  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Gas Propane Electric Ethanol Flex-Fuel Biodiesel Vehicle Buyer's Guide Clean Cities 2012 The expanding availability of alternative fuels and advanced vehicles makes it easier than ever to reduce petroleum use, cut emissions, and save on fuel costs. This guide features a comprehensive list of vehicles set to hit the market in model year 2012. Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . 4 About This Guide . . . . . . . . . . . . . . . . . . . 5 Compressed Natural Gas . . . . . . . . . . . . 6 Propane . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 All-Electric . . . . . . . . . . . . . . . . . . . . . . . . . 10 Plug-In Hybrid Electric . . . . . . . . . . . . . . 13 Hybrid Electric . . . . . . . . . . . . . . . . . . . . . 14 Ethanol Flex-Fuel . . . . . . . . . . . . . . . . . . . 20 Biodiesel . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Vehicle Buyer's Guide Clean Cities 2012 Disclaimers This report was prepared as an account of work sponsored by an agency of the United States government. Neither the

449

Integrated PEV Charging Solutions and Reduced Energy for Occupant Comfort (Brochure), Vehicle Testing and Integration Facility (VTIF)  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Testing and Integration Facility Vehicle Testing and Integration Facility Integrated PEV Charging Solutions and Reduced Energy for Occupant Comfort Plug-in electric vehicles (PEVs) offer the opportunity to shift transportation energy demands from petroleum to electricity, but broad adoption will require integration with other systems. While automotive experts work to reduce the cost of PEVs, fossil- fueled cars and trucks continue to burn hundreds of billions of gallons of petroleum each year-not only to get from point A to point B, but also to keep passengers comfortable with air condi- tioning and heat. At the National Renewable Energy Laboratory (NREL), three instal- lations form a research laboratory known as the Vehicle Testing and Integration Facility (VTIF). At the VTIF, engineers are develop-

450

Well-to-wheel energy use and greenhouse gas emissions of advanced fuel/vehicle systems North American analysis.  

DOE Green Energy (OSTI)

There are differing, yet strongly held views among the various ''stakeholders'' in the advanced fuel/propulsion system debate. In order for the introduction of advanced technology vehicles and their associated fuels to be successful, it seems clear that four important stakeholders must view their introduction as a ''win'': Society, Automobile manufacturers and their key suppliers, Fuel providers and their key suppliers, and Auto and energy company customers. If all four of these stakeholders, from their own perspectives, are not positive regarding the need for and value of these advanced fuels/vehicles, the vehicle introductions will fail. This study was conducted to help inform public and private decision makers regarding the impact of the introduction of such advanced fuel/propulsion system pathways from a societal point of view. The study estimates two key performance criteria of advanced fuel/propulsion systems on a total system basis, that is, ''well'' (production source of energy) to ''wheel'' (vehicle). These criteria are energy use and greenhouse gas emissions per unit of distance traveled. The study focuses on the U.S. light-duty vehicle market in 2005 and beyond, when it is expected that advanced fuels and propulsion systems could begin to be incorporated in a significant percentage of new vehicles. Given the current consumer demand for light trucks, the benchmark vehicle considered in this study is the Chevrolet Silverado full-size pickup.

Wang, M.

2001-04-18T23:59:59.000Z

451

Within-Day Recharge of Plug-In Hybrid Electric Vehicles: Energy Impact of Public Charging Infrastructure  

SciTech Connect

This paper examines the role of public charging infrastructure in increasing the share of driving on electricity that plug-in hybrid electric vehicles might exhibit, thus reducing their gasoline consumption. Vehicle activity data obtained from a global positioning system tracked household travel survey in Austin, Texas, is used to estimate gasoline and electricity consumptions of plug-in hybrid electric vehicles. Drivers within-day recharging behavior, constrained by travel activities and public charger availability, is modeled. It is found that public charging offers greater fuel savings for hybrid electric vehicles s equipped with smaller batteries, by encouraging within-day recharge, and providing an extensive public charging service is expected to reduce plug-in hybrid electric vehicles gasoline consumption by more than 30% and energy cost by 10%, compared to the scenario of home charging only.

Dong, Jing [ORNL; Lin, Zhenhong [ORNL

2012-01-01T23:59:59.000Z

452

RD&D Cooperation for the Development of Fuel Cell, Hybrid and Electric Vehicles within the International Energy Agency: Preprint  

DOE Green Energy (OSTI)

Annex XIII on 'Fuel Cell Vehicles' of the Implementing Agreement Hybrid and Electric Vehicles of the International Energy Agency has been operating since 2006, complementing the ongoing activities on battery and hybrid electric vehicles within this group. This paper provides an overview of the Annex XIII final report for 2010, compiling an up-to-date, neutral, and comprehensive assessment of current trends in fuel cell vehicle technology and related policy. The technological description includes trends in system configuration as well as a review of the most relevant components including the fuel cell stack, batteries, and hydrogen storage. Results from fuel cell vehicle demonstration projects around the world and an overview of the successful implementation of fuel cells in specific transport niche markets will also be discussed. The final section of this report provides a detailed description of national research, development, and demonstration (RD&D) efforts worldwide.

Telias, G.; Day, K.; Dietrich, P.

2011-01-01T23:59:59.000Z

453

VEHICLE SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 of 5 Page 1 of 5 VEHICLE SPECIFICATIONS 1 Vehicle Features Base Vehicle: 2011 Nissan Leaf VIN: JN1AZ0CP5BT000356 Class: Mid-size Seatbelt Positions: 5 Type: EV Motor Type: Three-Phase, Four-Pole Permanent Magnet AC Synchronous Max. Power/Torque: 80 kW/280 Nm Max. Motor Speed: 10,390 rpm Cooling: Active - Liquid cooled Battery Manufacturer: Automotive Energy Supply Corporation Type: Lithium-ion - Laminate type Cathode/Anode Material: LiMn 2 O 4 with LiNiO 2 /Graphite Pack Location: Under center of vehicle Number of Cells: 192 Cell Configuration: 2 parallel, 96 series Nominal Cell Voltage: 3.8 V Nominal System Voltage: 364.8 V Rated Pack Capacity: 66.2 Ah Rated Pack Energy: 24 kWh Max. Cell Charge Voltage 2 : 4.2 V Min. Cell Discharge Voltage 2 : 2.5 V

454

US-China_Fact_Sheet_Electric_Vehicles.pdf | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

US-ChinaFactSheetElectricVehicles.pdf US-ChinaFactSheetElectricVehicles.pdf US-ChinaFactSheetElectricVehicles.pdf More Documents & Publications THE WHITE HOUSE FACT...

455

Impacts of Electric Vehicles on Primary Energy Consumption and Petroleum Displacement  

E-Print Network (OSTI)

The 9th International Electric Vehicle symposium, EVS88-072,10th International of Electric Vehicle Symposium, pp.154-International in of Electric Vehicle Symposium, pp.401-410,

Wang, Quanlu; Delucchi, Mark A.

1991-01-01T23:59:59.000Z

456

A Preliminary Study of Energy Recovery in Vehicles by Using Regenerative Magnetic Shock Absorbers  

DOE Green Energy (OSTI)

Road vehicles can expend a significant amount of energy in undesirable vertical motions that are induced by road bumps, and much of that is dissipated in conventional shock absorbers as they dampen the vertical motions. Presented in this paper are some of the results of a study aimed at determining the effectiveness of efficiently transforming that energy into electrical power by using optimally designed regenerative electromagnetic shock absorbers. In turn, the electrical power can be used to recharge batteries or other efficient energy storage devices (e.g., flywheels) rather than be dissipated. The results of the study are encouraging - they suggest that a significant amount of the vertical motion energy can be recovered and stored.

R. B. Goldner; P. Zerigian; J. R. Hull

2001-05-14T23:59:59.000Z

457

System Modeling and Energy Management Strategy Development for Series Hybrid Vehicles .  

E-Print Network (OSTI)

??A series hybrid electric vehicle is a vehicle that is powered by both an engine and a battery pack. An electric motor provides all of (more)

Cross, Patrick Wilson

2008-01-01T23:59:59.000Z

458

Electric Vehicle Field Operations Program  

NLE Websites -- All DOE Office Websites (Extended Search)

vehicle performance information. The final product is a report describing energy use, miles driven, maintenance requirements, and overall vehicle performance. Fleet Testing....

459

Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers  

Science Conference Proceedings (OSTI)

The motor vehicle industry in the U.S. spends about $3.6 billion on energy annually. In this report, we focus on auto assembly plants. In the U.S., over 70 assembly plants currently produce 13 million cars and trucks each year. In assembly plants, energy expenditures is a relatively small cost factor in the total production process. Still, as manufacturers face an increasingly competitive environment, energy efficiency improvements can provide a means to reduce costs without negatively affecting the yield or the quality of the product. In addition, reducing energy costs reduces the unpredictability associated with variable energy prices in today?s marketplace, which could negatively affect predictable earnings, an important element for publicly-traded companies such as those in the motor vehicle industry. In this report, we first present a summary of the motor vehicle assembly process and energy use. This is followed by a discussion of energy efficiency opportunities available for assembly plants. Where available, we provide specific primary energy savings for each energy efficiency measure based on case studies, as well as references to technical literature. If available, we have listed costs and typical payback periods. We include experiences of assembly plants worldwide with energy efficiency measures reviewed in the report. Our findings suggest that although most motor vehicle companies in the U.S. have energy management teams or programs, there are still opportunities available at individual plants to reduce energy consumption cost effectively. Further research on the economics of the measures for individual assembly plants, as part of an energy management program, is needed to assess the potential impact of selected technologies at these plants.

Galitsky, Christina; Galitsky, Christina; Worrell, Ernst

2008-01-01T23:59:59.000Z

460

Vehicle Technologies Office: Battery Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Systems A hybrid vehicle uses two or more forms of energy to propel the vehicle. Many hybrid electric vehicles (HEV) sold today are referred to as "hybrids" because it...

Note: This page contains sample records for the topic "vehicle ldv energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Transportation Energy Futures Series: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios  

DOE Green Energy (OSTI)

Achieving the Department of Energy target of an 80% reduction in greenhouse gas emissions by 2050 depends on transportation-related strategies combining technology innovation, market adoption, and changes in consumer behavior. This study examines expanding low-carbon transportation fuel infrastructure to achieve deep GHG emissions reductions, with an emphasis on fuel production facilities and retail components serving light-duty vehicles. Three distinct low-carbon fuel supply scenarios are examined: Portfolio: Successful deployment of a range of advanced vehicle and fuel technologies; Combustion: Market dominance by hybridized internal combustion engine vehicles fueled by advanced biofuels and natural gas; Electrification: Market dominance by electric drive vehicles in the LDV sector, including battery electric, plug-in hybrid, and fuel cell vehicles, that are fueled by low-carbon electricity and hydrogen. A range of possible low-carbon fuel demand outcomes are explored in terms of the scale and scope of infrastructure expansion requirements and evaluated based on fuel costs, energy resource utilization, fuel production infrastructure expansion, and retail infrastructure expansion for LDVs. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored transportation-related strategies for abating GHGs and reducing petroleum dependence.

Melaina, M. W.; Heath, G.; Sandor, D.; Steward, D.; Vimmerstedt, L.; Warner, E.; Webster, K. W.

2013-04-01T23:59:59.000Z

462

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 Number of vehicles: 143 Number of vehicle days driven: 6,598 All operation Overall gasoline fuel economy (mpg) 73.7 Overall AC electrical energy consumption (AC Whmi) 170...

463

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 Number of vehicles: 145 Number of vehicle days driven: 6,817 All operation Overall gasoline fuel economy (mpg) 66.6 Overall AC electrical energy consumption (AC Whmi) 171...

464

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

2011 Number of vehicles: 135 Number of vehicle days driven: 4,746 All operation Overall gasoline fuel economy (mpg) 68.6 Overall AC electrical energy consumption (AC Whmi) 175...

465

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

June 2011 Number of vehicles: 66 Number of vehicle days driven: 845 All operation Overall gasoline fuel economy (mpg) 85.0 Overall AC electrical energy consumption (AC Whmi) 181...

466

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 Number of vehicles: 143 Number of vehicle days driven: 5,795 All operation Overall gasoline fuel economy (mpg) 67.8 Overall AC electrical energy consumption (AC Whmi) 180...

467

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

2011 Number of vehicles: 110 Number of vehicle days driven: 3,227 All operation Overall gasoline fuel economy (mpg) 74.8 Overall AC electrical energy consumption (AC Whmi) 185...

468

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 Number of vehicles: 144 Number of vehicle days driven: 7,129 All operation Overall gasoline fuel economy (mpg) 72.5 Overall AC electrical energy consumption (AC Whmi) 166...

469

FreedomCAR :electrical energy storage system abuse test manual for electric and hybrid electric vehicle applications.  

DOE Green Energy (OSTI)

This manual defines a complete body of abuse tests intended to simulate actual use and abuse conditions that may be beyond the normal safe operating limits experienced by electrical energy storage systems used in electric and hybrid electric vehicles. The tests are designed to provide a common framework for abuse testing various electrical energy storage systems used in both electric and hybrid electric vehicle applications. The manual incorporates improvements and refinements to test descriptions presented in the Society of Automotive Engineers Recommended Practice SAE J2464 ''Electric Vehicle Battery Abuse Testing'' including adaptations to abuse tests to address hybrid electric vehicle applications and other energy storage technologies (i.e., capacitors). These (possibly destructive) tests may be used as needed to determine the response of a given electrical energy storage system design under specifically defined abuse conditions. This manual does not provide acceptance criteria as a result of the testing, but rather provides results that are accurate and fair and, consequently, comparable to results from abuse tests on other similar systems. The tests described are intended for abuse testing any electrical energy storage system designed for use in electric or hybrid electric vehicle applications whether it is composed of batteries, capacitors, or a combination of the two.

Doughty, Daniel Harvey; Crafts, Chris C.

2006-08-01T23:59:59.000Z

470

Advanced Technology Vehicle Testing  

DOE Green Energy (OSTI)

The light-duty vehicle transportation sector in the United States depends heavily on imported petroleum as a transportation fuel. The Department of Energys Advanced Vehicle Testing Activity (AVTA) is testing advanced technology vehicles to help reduce this dependency, which would contribute to the economic stability and homeland security of the United States. These advanced technology test vehicles include internal combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban electric vehicles, and electric ground support vehicles. The AVTA tests and evaluates these vehicles with closed track and dynamometer testing methods (baseline performance testing) and accelerated reliability testing methods (accumulating lifecycle vehicle miles and operational knowledge within 1 to 1.5 years), and in normal fleet environments. The Arizona Public Service Alternative Fuel Pilot Plant and H2-fueled vehicles are demonstrating the feasibility of using H2 as a transportation fuel. Hybrid, neighborhood, and urban electric test vehicles are demonstrating successful applications of electric drive vehicles in various fleet missions. The AVTA is also developing electric ground support equipment (GSE) test procedures, and GSE testing will start during the fall of 2003. All of these activities are intended to support U.S. energy independence. The Idaho National Engineering and Environmental Laboratory manages these activities for the AVTA.

James Francfort

2003-11-01T23:59:59.000Z

471

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network (OSTI)

2005). Considering the energy markets shift in demand toPHEV impact on wind energy market (Short et al. , 2006) andVehicles in California Energy Markets, Transportation

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

472

LNG Vehicle High-Pressure Fuel System and ''Cold Energy'' Utilization  

Science Conference Proceedings (OSTI)

A high-pressure fuel system for LNG vehicles with direct-injection natural gas engines has been developed and demonstrated on a heavy-duty truck. A new concept for utilizing the ''cold energy'' associated with LNG vehicles to generate mechanical power to drive auxiliary equipment (such as high-pressure fuel pumps) has also been developed and demonstrated in the laboratory. The high-pressure LNG fuel system development included the design and testing of a new type of cryogenic pump utilizes multiple chambers and other features to condense moderate quantities of sucked vapor and discharge supercritical LNG at 3,000 to 4,000 psi. The pump was demonstrated on a Class 8 truck with a Westport high-pressure direct-injection Cummins ISX engine. A concept that utilizes LNG's ''cold energy'' to drive a high-pressure fuel pump without engine attachments or power consumption was developed. Ethylene is boiled and superheated by the engine coolant, and it is cooled and condensed by rejecting h eat to the LNG. Power is extracted in a full-admission blowdown process, and part of this power is applied to pump the ethylene liquid to the boiler pressure. Tests demonstrated a net power output of 1.1. hp at 1.9 Lbm/min of LNG flow, which is adequate to isentropically pump the LNG to approximately 3,400 psi..

powers,Charles A.; Derbidge, T. Craig

2001-03-27T23:59:59.000Z

473

Clean Cities Program Contacts (Fact Sheet), Vehicle Technologies Office (VTO), Energy Efficiency & Renewable Energy (EERE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

hybrid electric bus powered by natural gas in downtown Denver. Clean Cities works hybrid electric bus powered by natural gas in downtown Denver. Clean Cities works to reduce petroleum use in the transportation sector by supporting the deployment of alternative fuels, advanced vehicles, and other strategies. Photo by Pat Corkery, NREL 17976 Transforming Transportation for Two Decades Clean Cities strives to reduce U.S. depen- dence on petroleum. The program's successes include the following: ■ Clean Cities projects and activities have saved more than 4.5 billion gallons of petroleum. ■ Clean Cities efforts have helped place more than 660,000 alternative fuel vehicles on the road and develop the fueling infrastructure to support them. ■ In 2011 alone, Clean Cities activities helped to avert more than 5.8 million tons of greenhouse gas emissions.

474

Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory  

DOE Green Energy (OSTI)

The combination of high oil costs, concerns about oil security and availability, and air quality issues related to vehicle emissions are driving interest in plug-in hybrid electric vehicles (PHEVs). PHEVs are similar to conventional hybrid electric vehicles, but feature a larger battery and plug-in charger that allows electricity from the grid to replace a portion of the petroleum-fueled drive energy. PHEVs may derive a substantial fraction of their miles from grid-derived electricity, but without the range restrictions of pure battery electric vehicles. As of early 2007, production of PHEVs is essentially limited to demonstration vehicles and prototypes. However, the technology has received considerable attention from the media, national security interests, environmental organizations, and the electric power industry. The use of PHEVs would represent a significant potential shift in the use of electricity and the operation of electric power systems. Electrification of the transportation sector could increase generation capacity and transmission and distribution (T&D) requirements, especially if vehicles are charged during periods of high demand. This study is designed to evaluate several of these PHEV-charging impacts on utility system operations within the Xcel Energy Colorado service territory.

Parks, K.; Denholm, P.; Markel, T.

2007-05-01T23:59:59.000Z

475

Plug-In Electric Vehicle Handbook for Public Charging Station Hosts (Brochure), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-In Electric Vehicle Handbook Plug-In Electric Vehicle Handbook for Public Charging Station Hosts Plug-In Electric Vehicle Handbook for Public Charging Station Hosts 2 Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 PEV Basics . . . . . . . . . . . . . . . . . . . . . . . . . 4 Charging Basics . . . . . . . . . . . . . . . . . . . . . 6 Benefits and Costs of Hosting a Charging Station . . . . . . . . . . . 9 Charging Station Locations and Hosts . . . . . . . . . . . . . . . . . 12 Ownership and Payment Models . . . . . . 14 Installing and Maintaining Charging Stations . . . . . . . . . . . . . . . . . . . 15 Electrifying the Future . . . . . . . . . . . . . . 19 Clean Cities Helps Establish PEV Charging Stations Establishing plug-in electric vehicle (PEV) charging stations requires unique knowledge and skills . If you need help, contact your local Clean Cities coordinator . Clean Cities is the U .S . Department of Energy's flagship alterna- tive-transportation

476

Advanced Heat Transfer Technologies Increase Vehicle Performance and Reliability, The Spectrum of Clean Energy Innovation (Fact Sheet)  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Heat Transfer Advanced Heat Transfer Technologies Increase Vehicle Performance and Reliability Keeping yourself cool while driving your car on a hot, sunny day can be a challenge. But it can be even more challenging to cool the power electronic components that are critically important in hybrid electric and all-electric vehicles. Researchers at the National Renewable Energy Laboratory (NREL) investigate and develop these vehicles and their components to help reduce our use of imported petroleum and curb the emissions associated with climate change. A vehicle's power electronic components include the motor controller, converters, and inverters that condition the flow of electrical power between the battery and the electric motor. The problem is that power electronics generate a lot of heat. This heat can decrease

477

Plug-In Electric Vehicle Handbook for Workplace Charging Hosts (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Workplace Workplace Charging Hosts Plug-In Electric Vehicle Handbook for Workplace Charging Hosts 2 Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 PEV Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Charging Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Benefits of Workplace Charging . . . . . . . . . . . . . . . . . . . . . . 8 Evaluating and Planning for Workplace Charging . . . . . . . 9 Workplace Charging Management and Policy Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Workplace Charging Installation . . . . . . . . . . . . . . . . . . . . . . 16 Electrifying Transportation . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Clean Cities Helps Establish Charging Infrastructure The U .S . Department of Energy's Clean Cities program supports local actions to reduce petroleum use in transportation . Nearly 100 Clean Cities coalitions across the country work

478

Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

0: October 22, 0: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving to someone by E-mail Share Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Facebook Tweet about Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Twitter Bookmark Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Google Bookmark Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Delicious Rank Vehicle Technologies Office: Fact #750: October 22, 2012

479

Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory  

NLE Websites -- All DOE Office Websites (Extended Search)

Costs and Emissions Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory K. Parks, P. Denholm, and T. Markel Technical Report NREL/TP-640-41410 May 2007 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory K. Parks, P. Denholm, and T. Markel Prepared under Task No. WR61.2001 Technical Report NREL/TP-640-41410 May 2007 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle

480

Well-to-wheels analysis of energy use and greenhouse gas emissions of plug-in hybrid electric vehicles.  

SciTech Connect

Plug-in hybrid electric vehicles (PHEVs) are being developed for mass production by the automotive industry. PHEVs have been touted for their potential to reduce the US transportation sector's dependence on petroleum and cut greenhouse gas (GHG) emissions by (1) using off-peak excess electric generation capacity and (2) increasing vehicles energy efficiency. A well-to-wheels (WTW) analysis - which examines energy use and emissions from primary energy source through vehicle operation - can help researchers better understand the impact of the upstream mix of electricity generation technologies for PHEV recharging, as well as the powertrain technology and fuel sources for PHEVs. For the WTW analysis, Argonne National Laboratory researchers used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed by Argonne to compare the WTW energy use and GHG emissions associated with various transportation technologies to those associated with PHEVs. Argonne researchers estimated the fuel economy and electricity use of PHEVs and alternative fuel/vehicle systems by using the Powertrain System Analysis Toolkit (PSAT) model. They examined two PHEV designs: the power-split configuration and the series configuration. The first is a parallel hybrid configuration in which the engine and the electric motor are connected to a single mechanical transmission that incorporates a power-split device that allows for parallel power paths - mechanical and electrical - from the engine to the wheels, allowing the engine and the electric motor to share the power during acceleration. In the second configuration, the engine powers a generator, which charges a battery that is used by the electric motor to propel the vehicle; thus, the engine never directly powers the vehicle's transmission. The power-split configuration was adopted for PHEVs with a 10- and 20-mile electric range because they require frequent use of the engine for acceleration and to provide energy when the battery is depleted, while the series configuration was adopted for PHEVs with a 30- and 40-mile electric range because they rely mostly on electrical power for propulsion. Argonne researchers calculated the equivalent on-road (real-world) fuel economy on the basis of U.S. Environmental Protection Agency miles per gallon (mpg)-based formulas. The reduction in fuel economy attributable to the on-road adjustment formula was capped at 30% for advanced vehicle systems (e.g., PHEVs, fuel cell vehicles [FCVs], hybrid electric vehicles [HEVs], and battery-powered electric vehicles [BEVs]). Simulations for calendar year 2020 with model year 2015 mid-size vehicles were chosen for this analysis to address the implications of PHEVs within a reasonable timeframe after their likely introduction over the next few years. For the WTW analysis, Argonne assumed a PHEV market penetration of 10% by 2020 in order to examine the impact of significant PHEV loading on the utility power sector. Technological improvement with medium uncertainty for each vehicle was also assumed for the analysis. Argonne employed detailed dispatch models to simulate the electric power systems in four major regions of the US: the New England Independent System Operator, the New York Independent System Operator, the State of Illinois, and the Western Electric Coordinating Council. Argonne also evaluated the US average generation mix and renewable generation of electricity for PHEV and BEV recharging scenarios to show the effects of these generation mixes on PHEV WTW results. Argonne's GREET model was designed to examine the WTW energy use and GHG emissions for PHEVs and BEVs, as well as FCVs, regular HEVs, and conventional gasoline internal combustion engine vehicles (ICEVs). WTW results are reported for charge-depleting (CD) operation of PHEVs under different recharging scenarios. The combined WTW results of CD and charge-sustaining (CS) PHEV operations (using the utility factor method) were also examined and reported. According to the utility factor method, the share of veh

Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

2010-06-14T23:59:59.000Z

Note: This page contains sample records for the topic "vehicle ldv energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Vehicle Technologies Office: Plug-in Electric Vehicle Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics Basics Plug-in electric vehicles (PEVs), which include both plug-in hybrid electric vehicles and all-electric vehicles, use electricity as either their primary fuel or to improve efficiency. Commonly Used PEV Terms All-electric vehicle (AEV) - A vehicle with plug-in capability; driving energy comes entirely from its battery. Plug-in hybrid electric vehicle (PHEV) - A vehicle with plug-in capability; driving energy can come from either its battery or a liquid fuel like gasoline, diesel, or biofuels. Plug-in electric vehicle (PEV) - Any vehicle with plug-in capability. This includes AEVs and PHEVs. Hybrid electric vehicle (HEV) - A vehicle that has an electric drive system and battery but does not have plug-in capability; driving energy comes only from liquid fuel.